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Abstract

In the present paper, using novel generalizations of the Hukuhara di¤erence for
fuzzy sets, we introduce and study new generalized di¤erentiability concepts for
fuzzy valued functions. Several properties of the new concepts are investigated and
they are compared to similar fuzzy di¤erentiabilities �nding connections between
them. Characterization and relatively simple expressions are provided for the new
derivatives.
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1 Introduction

The purpose of the present paper is to use the fuzzy gH-di¤erence introduced
in [37], [38] to de�ne and study new generalizations of the di¤erentiability for
fuzzy-number-valued functions. Several generalized fuzzy derivative concepts
are studied in relation with the similar notions in [2], [39]. We also show
connections to the ideas of [22], [23], [26]. As a consequence, the paper presents
several new results and discusses old ones in the light of the new concepts
introduced recently and studied here.
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These new generalized derivatives are motivated by their usefulness in a very
quickly developing area at the intersection of set-valued analysis and fuzzy
sets, namely, the area of fuzzy analysis and fuzzy di¤erential equations [1], [5],
[6], [7], [9], [15], [18], [19], [20], [21], [27], [29], [30], [33], [34], [35], [43] etc.

As we can see, a key point in our investigation is played by the di¤erence
concepts for fuzzy numbers. A recent very promising concept, the g-di¤erence
proposed by [37], [38] is studied here in detail. We observe that this di¤erence
has a great advantage over peer concepts, namely that it always exists. We
obtain relatively simple expressions, a minimality property and a characteriz-
ation for the g-di¤erence.

It is well-known that the usual Hukuhara di¤erence between two fuzzy num-
bers exists only under very restrictive conditions [10], [11], [18]. The gH-
di¤erence of two fuzzy numbers exists under much less restrictive conditions,
however it does not always exist [36], [37]. The g-di¤erence proposed in [38]
overcomes these shortcomings of the above discussed concepts and the g-
di¤erence of two fuzzy numbers always exists. The same remark is valid if
we regard di¤erentiability concepts in fuzzy setting.

Based on the gH-di¤erence coming from [38], [39], [40], new gH-derivative
concepts that generalize those in [2] are investigated, mainly in view of their
characterization. Based on the g-di¤erence a new, very general fuzzy di¤erenti-
ability concept is de�ned and studied, the so-called g-derivative. It is carefully
compared with the generalized fuzzy di¤erentiabilities in [2], [39], [40], and it
is shown that the g-di¤erence is the most general among all similar de�nitions.
The properties we obtain show characterization of the new g-di¤erentiability,
an interesting minimality property and some computational results.

The relation between the new fuzzy derivatives and the fuzzy integral is stud-
ied, and Newton-Leibniz type formulas are non-trivially extended to the fuzzy
case.

The paper is organized as follows; section 2 introduces the generalized fuzzy
di¤erence and presents some new results; next, we show some new properties of
the generalized Hukuhara derivative of a fuzzy valued function (section 3) and
we introduce the new concept of generalized derivative (section 4); the paper
concludes with section 5, where the basic relations between gH-di¤erentiability
and the integral are examined.
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2 Generalized fuzzy di¤erence

One of the �rst de�nitions of di¤erence and derivative for set-valued functions
was given by Hukuhara [16] (H-di¤erence and H-derivative); it has been ex-
tended to the fuzzy case in [32] and applied to fuzzy di¤erential equations
(FDE) by many authors in several papers (see [12], [17], [18], [19], [20], [29]).
But the H-derivative in FDE su¤ers certain disadvantages (see [2], [3], [6], [7],
[10], [13], [36]) related to the properties of the space Kn of all nonempty com-
pact sets of Rn and in particular to the fact that Minkowski addition does not
possess an inverse subtraction. On the other hand, a more general de�nition
of subtraction for compact convex sets, and in particular for compact inter-
vals, has been introduced by several authors. Markov [22], [23], [26] de�ned
a non-standard di¤erence, also called inner-di¤erence, and extended its use
to interval arithmetic and to interval calculus, including interval di¤erential
equations (see [24], [25]). In the setting of Hukuhara di¤erence, the interval
and fuzzy generalized Hukuhara di¤erences have been recently examined in
[37], [38].

We start with a brief account of these concepts.

LetKnC be the space of nonempty compact and convex sets ofRn. The Hukuhara
H-di¤erence has been introduced as a set C for which A�H B = C () A =
B + C and an important property of �H is that A �H A = f0g 8A 2 KnC
and (A+B)�H B = A, 8A;B 2 KnC . The H-di¤erence is unique, but it does
not always exist (a necessary condition for A�H B to exist is that A contains
a translate fcg + B of B). A generalization of the Hukuhara di¤erence aims
to overcome this situation. The generalized Hukuhara di¤erence of two sets
A;B 2 KnC (gH-di¤erence for short) is de�ned as follows

A�gH B = C ()

8><>: (a) A = B + C

or (b) B = A+ (�1)C
(1)

The inner-di¤erence in [26], denoted with the symbol "��", is de�ned by �rst
introducing the inner-sum of A and B by

A+� B =

8><>:X if X solves (�A) +X = B

Y if Y solves (�B) + Y = A
(2)

and then
A�� B = A+� (�B). (3)

It is not di¢ cult to see that A 	gH B = A �� B; in fact, A +� (�B) = C
means (�A) + C = (�B) i.e. case (b) of (1), or (�(�B)) + C = A i.e. case
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(a) of (1).

In case (a) of (1) the gH-di¤erence is coincident with the H-di¤erence. Thus the
gH-di¤erence, or the inner-di¤erence, is a generalization of the H-di¤erence.

The gH-di¤erence (1) or, equivalently, the inner-di¤erence (3) for intervals or
for compact convex sets is the basis for the de�nition of a new di¤erence in
the fuzzy context.

We will denote RF the set of fuzzy numbers, i.e. normal, fuzzy convex, upper
semi continuous and compactly supported fuzzy sets de�ned over the real line.
Fundamental concepts in fuzzy sets theory are the support, the level-sets (or
level-cuts) and the core of a fuzzy number.

Here, cl(X) denotes the closure of set X.

De�nition 1 Let u 2 RF be a fuzzy number. For � 2]0; 1], the �-level set of
u (or simply the ��cut) is de�ned by [u]� = fxjx 2 R; u(x) � �g and for
� = 0 by the closure of the support [u]0 = clfxjx 2 R; u(x) > 0g. The core of
u is the set of elements of R having membership grade 1, i.e., [u]1 = fxjx 2
R; u(x) = 1g.

It is well-known that the level � cuts are "nested", i.e. [u]� � [u]� for � > �:
A fuzzy set u is a fuzzy number if and only if the � � cuts are nonempty
compact intervals of the form [u]� = [u

�
� ; u

+
� ] � R. The "nested" property is

the basis for the LU representation (L for lower, U for upper) (see [14], [42]).

Proposition 2 A fuzzy number u is completely determined by any pair u =
(u�; u+) of functions u�; u+ : [0; 1] �! R, de�ning the end-points of the
�� cuts, satisfying the three conditions:
(i) u� : � �! u�� 2 R is a bounded monotonic non decreasing left-continuous
function 8� 2]0; 1] and right-continuous for � = 0;
(ii) u+ : � �! u+� 2 R is a bounded monotonic non increasing left-continuous
function 8� 2]0; 1] and right-continuous for � = 0;
(iii) u�1 � u+1 for � = 1, which implies u�� � u+� 8� 2 [0; 1] :

The following result is well known [28]:

Proposition 3 Let fU�j� 2]0; 1]g be a family of real intervals such that the
following three conditions are satis�ed:
1. U� is a nonempty compact interval for all � 2]0; 1];
2. if 0 < � < � � 1 then U� � U�;
3. given any non decreasing sequence �n 2]0; 1] with lim

n�!1
�n = � > 0 it is

U� =
1T
n=1
U�n.

Then there exists a unique LU-fuzzy quantity u such that [u]� = U� for all
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� 2]0; 1] and [u]0 = cl
 S
�2]0;1]

U�

!
.

We refer to the functions u�(:) and u
+
(:) as the lower and upper branches of u,

respectively. A trapezoidal fuzzy number, denoted by u = ha; b; c; di ; where
a � b � c � d; has � � cuts [u]� = [a+ �(b� a); d� �(d� c)] ; � 2 [0; 1],
obtaining a triangular fuzzy number if b = c:

The addition u+ v and the scalar multiplication ku are de�ned as having the
level cuts

[u+ v]� = [u]� + [v]� = fx+ yjx 2 [u]�; y 2 [v]�g
[ku]� = k[u]� = fkxjx 2 [u]�g; [0]� = f0g 8� 2 [0; 1]

The subtraction of fuzzy numbers u � v is de�ned as the addition u + (�v)
where �v = (�1)v.

The standard Hukuhara di¤erence (H-di¤erence �H) is de�ned by u �H v =
w () u = v + w; being + the standard fuzzy addition; if u �H v exists, its
�� cuts are [u�H v]� = [u�� � v�� ; u+� � v+� ]: It is well known that u�H u = 0
(here 0 stands for the singleton f0g) for all fuzzy numbers u; but u� u 6= 0.

The Hausdor¤ distance on RF is de�ned by

D (u; v) = sup
�2[0;1]

n
k[u]� 	gH [v]�k�

o
;

where, for an interval [a; b], the norm is

k[a; b]k� = maxfjaj; jbjg:

The metric D is well de�ned since the gH-di¤erence of intervals, [u]�	gH [v]�
always exists. Also, this allows us to deduce that (RF ; D) is a complete metric
space. This de�nition is equivalent to the usual de�nitions for metric spaces
of fuzzy numbers in e.g., [12], [18], [14].

The next lemma will be used throughout the paper.

Lemma 4 Let f : R ! RF be a fuzzy-number-valued function. Let x0 2 R.
Then if
(i) limx!x0 [f(x)]� = U� = [u

�
� ; u

+
� ] uniformly with respect to � 2 [0; 1];

(ii) u�� ; u
+
� ful�ll the conditions in Proposition 2 or equivalently U� ful�ll the

conditions in Proposition 3,
then limx!x0 f(x) = u, with [u]� = U� = [u

�
� ; u

+
� ]:

PROOF. By condition (ii) the intervals U� de�ne a fuzzy number, denoted
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u: Then, by condition (i), we have

lim
x!x0

D(f(x); u) = lim
x!x0

sup
�2[0;1]

n
k[f(x)]� 	gH [u]�k�

o
= 0;

i.e., limx!x0 f(x) = u:�

De�nition 5 Given two fuzzy numbers u; v 2 RF ; the generalized Hukuhara
di¤erence (gH-di¤erence for short) is the fuzzy number w, if it exists, such
that

u�gH v = w ()

8><>: (i) u = v + w

or (ii) v = u� w
. (4)

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp
number.

In terms of �� cuts we have [u�gH v]� = [minfu�� � v�� ; u+� � v+� g;maxfu�� �
v�� ; u

+
� � v+� g] and if the H-di¤erence exists, then u �H v = u �gH v; the

conditions for the existence of w = u�gH v 2 RF are

case (i)

8><>:w
�
� = u

�
� � v�� and w+� = u

+
� � v+�

with w�� increasing , w
+
� decreasing , w

�
� � w+�

;8� 2 [0; 1]

case (ii)

8><>:w
�
� = u

+
� � v+� and w+� = u

�
� � v��

with w�� increasing, w
+
� decreasing, w

�
� � w+� .

;8� 2 [0; 1]

(5)

The following properties were obtained in [38].

Proposition 6 ([38]) Let u; v 2 RF be two fuzzy numbers; then
i) if the gH-di¤erence exists, it is unique;
ii) u�gH v = u�H v or u�gH v = �(v�H u) whenever the expressions on the
right exist; in particular, u�gH u = u�H u = 0;
iii) if u�gH v exists in the sense (i), then v�gH u exists in the sense (ii) and
vice versa,
iv) (u+ v)�gH v = u,
v) 0�gH (u�gH v) = v �gH u;
vi) u�gH v = v �gH u = w if and only if w = �w; furthermore, w = 0 if and
only if u = v.

In the fuzzy case, it is possible that the gH-di¤erence of two fuzzy numbers
does not exist. For example we can consider a triangular and a trapezoidal
fuzzy number u = h0; 2; 2; 4i and v = h0; 1; 2; 3i; level-wise, the gH-di¤erences
exist and they are e.g. for both the 0 and 1 level sets the same [0; 1], but the
gH-di¤erence u	gH v does not exist. Indeed, if we suppose that it exists then
either case (i) or (ii) of (5) should hold for any � 2 [0; 1]: But w�0 = u�0 �v�0 =
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0 < w+0 = u
+
0 � v+0 = 1 while w�1 = 1 > w+1 = 0; so neither case (i) or (ii) is

true from (5). To solve this shortcoming, in [37], [38] a new di¤erence between
fuzzy numbers was proposed, a di¤erence that always exists.

De�nition 7 The generalized di¤erence (g-di¤erence for short) of two fuzzy
numbers u; v 2 RF is given by its level sets as

[u	g v]� = cl
[
���
([u]� 	gH [v]�);8� 2 [0; 1]; (6)

where the gH-di¤erence 	gH is with interval operands [u]� and [v]�:

Proposition 8 The g-di¤erence (6) is given by the expression

[u	g v]� =
"
inf
���

minfu�� � v�� ; u+� � v+� g; sup
���

maxfu�� � v�� ; u+� � v+� g
#

PROOF. Let � 2 [0; 1] be �xed. We observe that for any � � � we have

[u]� 	gH [v]� =
h
minfu�� � v�� ; u+� � v+� g;maxfu�� � v�� ; u+� � v+� g

i
�
"
inf
���

minfu���v�� ; u+��v+� g; sup
���

maxfu���v�� ; u+��v+� g
#

and it follows that

cl
[
���
([u]� 	gH [v]�) �

"
inf
���

minfu���v�� ; u+��v+� g; sup
���

maxfu���v�� ; u+��v+� g
#

Let us consider now

cl
[
���
([u]�	gH [v]�) = cl

[
���

h
minfu�� � v�� ; u+� � v+� g;maxfu�� � v�� ; u+� � v+� g

i
:

For any n � 1; there exist an 2 fu�� � v�� ; u+� � v+� : � � �g such that
inf���minfu�� � v�� ; u+� � v+� g > an � 1

n
: Also there exist bn 2 fu�� � v�� ; u+� �

v+� : � � �g such that sup���maxfu�� � v�� ; u+� � v+� g < bn +
1
n
: We have

cl
[
���
([u]� 	gH [v]�) � [an; bn];8n � 1 and we obtain

cl
[
���
([u]� 	gH [v]�) �

[
n�1
[an; bn] �

�
lim
n!1

an; lim
n!1

bn

�

and �nally

cl
[
���
([u]�	gH [v]�) �

"
inf
���

minfu���v�� ; u+��v+� g; sup
���

maxfu���v�� ; u+��v+� g
#
:
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The conclusion"
inf
���

minfu���v�� ; u+��v+� g; sup
���

maxfu���v�� ; u+��v+� g
#
= cl

[
���
([u]� 	gH [v]�)

of the proposition follows.�

Remark 9 The property in the previous proposition 8 holds in particular for
� = 0, case which is covered because of the right continuity of the functions
u�� � v�� ; u+� � v+� .

The following proposition gives a simpli�ed notation for u	g v and v 	g u.

Proposition 10 For any two fuzzy numbers u; v 2 RF the two g-di¤erences
u 	g v and v 	g u exist and, for any � 2 [0; 1], we have u 	g v = �(v 	g u)
with

[u	g v]� = [d�� ; d+� ] and [v 	g u]� = [�d+� ;�d�� ] (7)
where

d�� = inf(D�); d+� = sup(D�)

and the sets D� are
D� = fu�� � v�� j� � �g [ fu+� � v+� j� � �g.

PROOF. Consider a �xed � 2 [0; 1]. Clearly, using Proposition 8,

[u	g v]� =
"
inf
���

minfu�� � v�� ; u+� � v+� g; sup
���

maxfu�� � v�� ; u+� � v+� g
#

� [inf(D�); sup(D�)] = [d
�
� ; d

+
� ].

Vice versa, for all n � 1 and from the de�nition of d�� and d
+
� , there exist

an; bn 2 D� such that

d�� � an < d�� +
1

n

d+� �
1

n
< bn � d+�

and the following limits exist

lim an = d
�
� , lim bn = d

+
� ;

on the other hand, [an; bn] � cl
[
���
([u]� 	gH [v]�) for all n � 1 and then

[
n�1
[an; bn] � cl

[
���
([u]� 	gH [v]�).

8



It follows that

[d�� ; d
+
� ] = [lim an; lim bn] � cl

[
n�1
[an; bn] � cl

[
���
([u]� 	gH [v]�)

and the proof is complete.

Remark 11 We observe that there are other possible di¤erent expressions for
the g-di¤erence as e.g.,

[u	gv]� =
"
minf inf

���
(u���v�� ); inf

���
(u+��v+� )g;maxfsup

���
(u���v�� ); sup

���
(u+��v+� )g

#
:

The next proposition shows that the g-di¤erence is well de�ned for any two
fuzzy numbers u; v 2 RF :

Proposition 12 ([38]) For any fuzzy numbers u; v 2 RF the g-di¤erence u	g
v exists and it is a fuzzy number.

PROOF. We regard the LU-fuzzy quantity u 	g v: Then according to the
previous result, if we denote w� = (u	g v)� and w+ = (u	g v)+ we have

w�(�) = inf
���

minfu�� � v�� ; u+� � v+� g � w+(�) = sup
���

maxfu�� � v�� ; u+� � v+� g:

Obviously w� is bounded and non decreasing while w+ is bounded non in-
creasing. Also, w�; w+ are left continuous on (0; 1]; since u�� v�; u+� v+ are
left continuous on (0; 1] and they are right continuous at 0 since so are the
functions u� � v�; u+ � v+:�

Let us consider the fuzzy inclusion de�ned as u � v () u(x) � v(x) ;8x 2 R
() [u]� � [v]�;8� 2 [0; 1]: The following proposition provides a minimality
property for the g-di¤erence.

Proposition 13 The g-di¤erence u 	g v is the smallest fuzzy number w in
the sense of fuzzy inclusion such that

[u]� 	gH [v]� � [w]� ;8� 2 [0; 1]

and 8><>: u � v + wv � u� w
.
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PROOF. For the proof, �rst we observe that

[u]� 	gH [v]� � [u	g v]� ;8� 2 [0; 1]:

Let w 2 RF ful�ll
[u]� 	gH [v]� � [w]� ;8� 2 [0; 1]:

Then for any �; � 2 [0; 1]; � � � we have

[u]� 	gH [v]� � [w]� � [w]� :

and so [
���
[u]� 	gH [v]� � [w]� ;

and since [w]� is closed we obtain

[u	g v]� = cl
[
���
[u]� 	gH [v]� � [w]� ;8� 2 [0; 1]:

As a conclusion u 	g v � w. The inclusions u � v + w and v � u � w follow
from the de�nition of 	gH .�

The following properties turn out to be true for the g-di¤erence.

Proposition 14 Let u; v 2 RF be two fuzzy numbers; then
i) u�g v = u�gH v; whenever the expression on the right exists; in particular
u�g u = 0;
ii) (u+ v)�g v = u,
iii) 0�g (u�g v) = v �g u;
iv) u �g v = v �g u = w if and only if w = �w; furthermore, w = 0 if and
only if u = v.

PROOF. The proof of i) is immediate.
For ii) we can use i). Indeed, in this case the classical Hukuhara di¤erence
(u+ v)� v exists (and so the gH-di¤erence (u+ v)�gH v also exists) and we
have (u+ v)�g v = (u+ v)�gH v = u:
The proof of iii) follows from (7) for all � 2 [0; 1]:

[0�g (u�g v)]� = [0; 0]�g [d�� ; d+� ]
=
h
minf0� d�� ; 0� d+�g;maxf0� d�� ; 0� d+�g

i
= [�d+� ;�d�� ] = [v �g u]�:

To prove iv), consider again (7); for all � 2 [0; 1] we have [w]� = [u�g v]� =
[d�� ; d

+
� ] and [w]� = [v�gu]� = [�d+� ;�d�� ] so that w = �w and vice versa; the

last part of iv) follows from the last part of i) and the fact that w = �w = 0
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if and only if d�� = d
+
� for all � 2 [0; 1] and from the de�nition of d�� ; d

+
� this

is true if and only if u�� � v�� = 0; u+� � v+� = 0 i.e. u�� = v�� ; u+� = v+� for all
� 2 [0; 1].�

The connection between the gH-di¤erence, the g-di¤erence and the Hausdor¤
distance adds a geometric interpretation for the di¤erences constructed.

Proposition 15 For all u; v 2 RF we have

D (u; v) = sup
�2[0;1]

k[u]� �gH [v]�k� = ku�g vk

where k�k = D (�; 0).

PROOF. We have thatw = u�gv is a fuzzy number, then kwk = sup
�2[0;1]

max fjw�� j ; jw+� jg =

maxfjw�0 j; jw+0 jg and

sup
�2[0;1]

k[u]� �gH [v]�k� =

= sup
�2[0;1]




[minfu���v�� ; u+��v+�g;maxfu���v�� ; u+��v+�g]


�
= sup

�2[0;1]
maxf

���minfu���v�� ; u+��v+�g��� ; ���maxfu���v�� ; u+��v+�g���g
= sup

�2[0;1]
maxf

���u�� � v�� ��� ; ���u+� � v+� ���g = D(u; v):
Now, since max and sup are idempotent operators, we obtain

ku�g vk = sup
�2[0;1]

k[u	g v]�k�

= sup
�2[0;1]







"
inf
���

minfu�� � v�� ; u+� � v+� g; sup
���

maxfu�� � v�� ; u+� � v+� g
#





�

= sup
�2[0;1]

(
sup
���

maxf
���u�� � v�� ��� ; ���u+� � v+� ���g

)
= sup

�2[0;1]
max

n���u�� � v�� ��� ; ���u+� � v+� ���o = D(u; v):�
Example 16 Let us consider some examples when the gH-di¤erence does not
exist, while the g-di¤erence exists. At the beginning of this section we have
considered two trapezoidal fuzzy numbers u = h0; 2; 2; 4i and v = h0; 1; 2; 3i :
Their g-di¤erence is the [0; 1] interval (interpreted as the trapezoidal fuzzy
number h0; 0; 1; 1i. If we consider the trapezoidal number u = h2; 3; 5; 6i and
the triangular number v = h0; 4; 4; 8i we can see that their gH-di¤erence does
not exist. Their g-di¤erence however, exists and it is given as in Fig. 1.
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Figure 1. The g-di¤erence u�gv (solid line) of a trapezoidal u = h2; 3; 5; 6i (dash-dot
line) and a triangular v = h0; 4; 4; 8i (dashed line) fuzzy number.
Remark 17 We observe that since u	g v = u	gH v whenever the right side
exists we can also conclude

D(u; v) = ku	g vk = ku	gH vk ;

whenever u	gH v exists.

3 Generalized Hukuhara di¤erentiability (gH-di¤erentiability)

Generalized di¤erentiability concepts were �rst considered for interval-valued
functions in the works of Markov ([24], [25]). This line of research is continued
by several papers [2], [8], [31], [39] etc. dealing with interval and fuzzy-valued
functions. In this section we focus on the fuzzy case and we present and com-
pare alternative de�nitions for the derivative of a fuzzy-valued function.

The �rst two concepts were presented in [2] for the fuzzy case and in [39], [40].
These are using the usual Hukuhara di¤erence 	H .

De�nition 18 ([2]) Let f :]a; b[! RF and x0 2]a; b[:We say that f is strongly
generalized Hukuhara di¤erentiable at x0 (GH-di¤erentiable for short) if there
exists an element f 0G(x0) 2 RF ; such that, for all h > 0 su¢ ciently small,

(i) 9f(x0 + h)	H f(x0); f(x0)	H f(x0 � h) and

lim
h&0

f(x0 + h)	H f(x0)
h

= lim
h&0

f(x0)	H f(x0 � h)
h

= f 0G(x0);

or (ii) 9f(x0)	H f(x0 + h); f(x0 � h)	H f(x0) and

lim
h&0

f(x0)	H f(x0 + h)
(�h) = lim

h&0

f(x0 � h)	H f(x0)
(�h) = f 0G(x0);
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or (iii) 9f(x0 + h)	H f(x0); f(x0 � h)	H f(x0) and

lim
h&0

f(x0 + h)	H f(x0)
h

= lim
h&0

f(x0 � h)	H f(x0)
(�h) = f 0G(x0);

or (iv) 9f(x0)	H f(x0 + h); f(x0)	H f(x0 � h) and

lim
h&0

f(x0)	H f(x0 + h)
(�h) = lim

h&0

f(x0)	H f(x0 � h)
h

= f 0G(x0):

De�nition 19 ([2]) Let f :]a; b[! RF and x0 2]a; b[: For a sequence hn & 0
and n0 2 N , let us denote

A(1)n0 =
n
n � n0;9E(1)n := f(x0 + hn)	H f(x0)

o
;

A(2)n0 =
n
n � n0;9E(2)n := f(x0)	H f(x0 + hn)

o
;

A(3)n0 =
n
n � n0;9E(3)n := f(x0)	H f(x0 � hn)

o
;

A(4)n0 =
n
n � n0;9E(4)n := f(x0 � hn)	H f(x0)

o
:

We say that f is weakly generalized (Hukuhara) di¤erentiable on x0; if for any
sequence hn & 0, there exists n0 2 N , such that A(1)n0 [A(2)n0 [A(3)n0 [A(4)n0 = fn 2
N ;n � n0g and moreover, there exists an element in RF denoted by f 0w(x0);
such that if for some j 2 f1; 2; 3; 4g we have card(A(j)n0 ) = +1; then

lim
n!1
n2A(j)n0

D

 
E(j)n

(�1)j+1hn
; f 0w(x0)

!
= 0:

Based on the gH-di¤erence we obtain the following de�nition (for interval-
valued functions, the same de�nition was suggested in [25] using inner-di¤erence):

De�nition 20 Let x0 2]a; b[ and h be such that x0 + h 2]a; b[, then the
gH-derivative of a function f :]a; b[! RF at x0 is de�ned as

f 0gH(x0) = lim
h!0

1

h
[f(x0 + h)�gH f(x0)]: (8)

If f 0gH(x0) 2 RF satisfying (8) exists, we say that f is generalized Hukuhara
di¤erentiable (gH-di¤erentiable for short) at x0.

Theorem 21 The gH-di¤erentiability concept and the weakly generalized (Hukuhara)
di¤erentiability given in De�nition 19 coincide.
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PROOF. The proof is similar to the proof of a corresponding result in [39].
Indeed, let us suppose that f is gH-di¤erentiable (as in De�nition 20). By
Proposition 6, iii), for any sequence hn & 0; for n su¢ ciently large, at least two
of the Hukuhara di¤erences f(x0+hn)	H f(x0); f(x0)	H f(x0+hn); f(x0)	H
f(x0�hn); f(x0�hn)	Hf(x0) exist. As a conclusion we have A(1)n0 [A(2)n0 [A(3)n0 [
A(4)n0 = fn 2 N;n � n0g for any n0 2 N. The rest is obtained by observing that

E
(j)
n

(�1)j+1hn =
f(x0+hn)	gHf(x0)

hn
; written with gH-di¤erence this time. Reciprocally,

if we assume f to be weakly generalized (Hukuhara) di¤erentiable then since
at least two of the sets A(1)n0 ; A

(2)
n0
; A(3)n0 ; A

(4)
n0
are in�nite lim

h!0
1
h
[f(x0 + h) �gH

f(x0)] = lim
hn&0

E
(j)
n

(�1)j+1hn for at least two indices from j 2 f1; 2; 3; 4g; so f is gH-
di¤erentiable. As a conclusion weakly generalized (Hukuhara) di¤erentiability
is equivalent to gH-di¤erentiability.�

Example 22 Let f(x) = p(x)a where p is a crisp di¤erentiable function and
a 2 RF , then it follows relatively easily that the gH-derivative exists and it is
f 0gH(x) = p

0(x)a.

As we have seen in conditions (5) and in equation (6), both gH -di¤erence
and g-di¤erence are based on the gH -di¤erence for each �-cut of the involved
fuzzy numbers; this level characterization is obviously inherited by the gH -
derivative, with respect to the level-wise gH -derivative.

De�nition 23 Let x0 2]a; b[ and h be such that x0+h 2]a; b[, then the level-
wise gH-derivative (LgH-derivative for short) of a function f :]a; b[! RF at
x0 is de�ned as the set of interval-valued gH-derivatives, if they exist,

f 0LgH(x0)� = lim
h!0

1

h
([f(x0 + h)]� �gH [f(x0)]�) : (9)

If f 0LgH(x0)� is a compact interval for all � 2 [0; 1], we say that f is level-wise
generalized Hukuhara di¤erentiable (LgH-di¤erentiable for short) at x0 and
the family of intervals ff 0LgH(x0)�j� 2 [0; 1]g is the LgH-derivative of f at x0,
denoted by f 0LgH(x0).

Clearly, LgH-di¤erentiability, and consequently level-wise continuity, is a ne-
cessary condition for gH-di¤erentiability; but from (5), it is not su¢ cient.

The next result gives the analogous expression of the fuzzy gH-derivative in
terms of the derivatives of the endpoints of the level sets. This result extends
the result given in [6] (Theorem 5) and it is a characterization of the gH-
di¤erentiability for an important class of fuzzy functions.

Theorem 24 Let f :]a; b[! RF be such that [f(x)]� = [f�� (x); f
+
� (x)]. Sup-

pose that the functions f�� (x) and f
+
� (x) are real-valued functions, di¤eren-

tiable w.r.t. x, uniformly w.r.t. � 2 [0; 1]. Then the function f(x) is gH-
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di¤erentiable at a �xed x 2]a; b[ if and only if one of the following two cases
holds:
a) (f�� )

0
(x) is increasing, (f+� )

0
(x) is decreasing as functions of �; and�

f�1
�0
(x) �

�
f+1
�0
(x), or

b) (f�� )
0
(x) is decreasing, (f+� )

0
(x) is increasing as functions of �; and�

f+1
�0
(x) �

�
f�1
�0
(x).

Also, 8� 2 [0; 1] we haveh
f 0gH(x)

i
�
= [minf

�
f��
�0
(x);

�
f+�
�0
(x)g;maxf

�
f��
�0
(x);

�
f+�
�0
(x)g] (10)

PROOF. Let f be gH-di¤erentiable and assume that f�� (x) and f
+
� (x) are

di¤erentiable. Clearly, gH-di¤erentiability implies LgH di¤erentiability; then
we haveh

f 0gH(x)
i
�
= [minf

�
f��
�0
(x);

�
f+�
�0
(x)g;maxf

�
f��
�0
(x);

�
f+�
�0
(x)g]:

Now suppose that for �xed x 2 [a; b]; the di¤erences (f+� )
0
(x)�(f�� )

0
(x) change

sign at a �xed �0 2 (0; 1): Then
h
f 0gH(x)

i
�0
is a singleton and, for all � such

that �0 � � � 1, also
h
f 0gH(x)

i
�
is a singleton because

h
f 0gH(x)

i
�
�
h
f 0gH(x)

i
�0
;

it follows that, for the same values of �, (f+� )
0
(x) � (f�� )

0
(x) = 0, which is a

contradiction with the fact that (f+� )
0
(x) � (f�� )

0
(x) changes sign. We then

conclude that (f+� )
0
(x)�(f�� )

0
(x) cannot change sign with respect to � 2 [0; 1].

To prove our conclusion, we distinguish three cases according to the sign of�
f+1
�0
(x)�

�
f�1
�0
(x)

- If
�
f�1
�0
(x) <

�
f+1
�0
(x), then (f+� )

0
(x) � (f�� )

0
(x) � 0 for every � 2 [0; 1]

and h
f 0gH(x)

i
�
= [
�
f��
�0
(x);

�
f+�
�0
(x)];

since f is gH-di¤erentiable, the intervals [(f�� )
0
(x); (f+� )

0
(x)] should form a

fuzzy number, i.e., for any � > �, [(f�� )
0
(x); (f+� )

0
(x)] � [

�
f��
�0
(x);

�
f+�
�0
(x)]

which shows that (f�� )
0
(x) is increasing and (f+� )

0
(x) is decreasing as a func-

tion of �:
- If

�
f�1
�0
(x) >

�
f+1
�0
(x), then (f+� )

0
(x) � (f�� )

0
(x) � 0 for every � 2 [0; 1]

and, in this case, h
f 0gH(x)

i
�
= [
�
f+�
�0
(x);

�
f��
�0
(x)]

so that [(f+� )
0
(x); (f�� )

0
(x)] � [

�
f+�
�0
(x);

�
f��
�0
(x)]; for any � > �, which

shows that (f�� )
0
(x) is decreasing and (f+� )

0
(x) is increasing as a function of

�:
- In the third case, we have

�
f�1
�0
(x) =

�
f+1
�0
(x); if (fgH)

0 (x) 2 R is a
crisp number, the conclusion is obvious; if this is not the case, then we may
have either

�
f�0
�0
(x) <

�
f+0
�0
(x) or

�
f�0
�0
(x) >

�
f+0
�0
(x) and, taking �0 =

15



inff�j (f�� )
0
(x) = (f+� )

0
(x)g, we have correspondingly that (f�� )

0
(x) � (f+� )

0
(x)g

or (f�� )
0
(x) � (f+� )

0
(x)g for all � 2 (0; 1), because the di¤erences cannot

change sign w.r.t. �. We conclude that (f�� )
0
(x) and (f+� )

0
(x) are monotonic

w.r.t. �.
Reciprocally, let us consider the Banach space B = �C[0; 1] � �C[0; 1], where
�C[0; 1] is the space of left continuous functions on (0; 1]; right continuous at
0; with the uniform norm. For any �xed x 2]a; b[, the mapping jx : RF ! B,
de�ned by

jx(f) = (f
�(x); f+(x)) = f(f�� (x); f+� (x))j� 2 [0; 1]g;

is an isometric embedding. Assuming that, for all �, the two functions f�� (x)
and f+� (x) are di¤erentiable with respect to x, the limits

�
f��
�0
(x) = lim

h!0

f�� (x+ h)� f�� (x)
h�

f+�
�0
(x) = lim

h!0

f+� (x+ h)� f+� (x)
h

exist uniformly for all � 2 [0; 1]. Taking a sequence hn ! 0; we will have

�
f��
�0
(x) = lim

n!1

f�� (x+ hn)� f�� (x)
hn�

f+�
�0
(x) = lim

n!1

f+� (x+ hn)� f+� (x)
hn

;

i.e., (f�� )
0
(x); (f+� )

0
(x) are uniform limits of sequences of left continuous func-

tions at � 2 (0; 1], so they are themselves left continuous for � 2 (0; 1].
Similarly the right continuity at 0 can be deduced.
Assuming that, for a �xed x 2 [a; b], the function (f�� )

0
(x) is increasing and

the function (f+� )
0
(x) is decreasing as functions of �, and that

�
f�1
�0
(x) ��

f+1
�0
(x), then also (f�� )

0
(x) � (f+� )

0
(x) 8� 2 [0; 1] and it is easy to see that

the pair of functions (f�� )
0
(x), (f+� )

0
(x) ful�ll the conditions in proposition

2 and the intervals [(f�� )
0
(x); (f+� )

0
(x)], � 2 [0; 1] determine a fuzzy number.

Now we observe that the following limit uniformly exists"
lim
h!0

f(x+ h)	gH f(x)
h

#
�

=

"
lim
h!0

f�� (x+ h)� f�� (x)
h

; lim
h!0

f+� (x+ h)� f+� (x)
h

#
= [
�
f��
�0
(x);

�
f+�
�0
(x)];8� 2 [0; 1];

and it is a fuzzy number, so by Lemma 4 we obtain that f is gH-di¤erentiable.
If (f�� )

0
(x) is decreasing, (f+� )

0
(x) is increasing as functions of �, and

�
f+1
�0
(x) ��

f�1
�0
(x), then also (f+� )

0
(x) � (f�� )

0
(x) 8� 2 [0; 1] and, by proposition 2, the

intervals [(f+� )
0
(x); (f�� )

0
(x)], � 2 [0; 1] determine a fuzzy number. Observing
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that the following limit exists uniformly"
lim
h!0

f(x+ h)	gH f(x)
h

#
�

=

"
lim
h!0

f+� (x+ h)� f+� (x)
h

; lim
h!0

f�� (x+ h)� f�� (x)
h

#
= [
�
f+�
�0
(x);

�
f��
�0
(x)];8� 2 [0; 1];

and it is a fuzzy number, using Lemma 4 again, we obtain that f is gH-
di¤erentiable.�

Remark 25 It is interesting to observe that conditions a) and b) require the
monotonicity of (f�� )

0
(x) and (f+� )

0
(x) with respect to � in [0; 1]. On the

other hand, the monotonicity seems not su¢ cient, as in fact it is also ne-
cessary that (f+� )

0
(x) and (f�� )

0
(x) be left-continuous for � 2]0; 1] and right

continuous at � = 0. It follows that the relationship between the (level-wise)
LgH-di¤erentiability and the (fuzzy) gH-di¤erentiability is not obvious. On the
other hand, we know that f�� (x) and f

+
� (x) satisfy (for all x) the left-continuity

for � 2]0; 1] and right-continuity at � = 0. We can formalize the problem in
terms of iterated limits as follows. For simplicity, denote with g�(x) one of the
two functions f�� (x) or f

+
� (x) and let g

0
�(x) be its derivative with respect to x.

We know that each f�� (x) or f
+
� (x) is left-continuous for � 2]0; 1] (the case of

right continuity for � = 0 is analogous), so is g�(x), i.e. lim
h"0
g�+h(x) = g�(x).

On the other hand, di¤erentiability of g�+h(x) with respect to x means

lim
k!0

g�+h(x+ k)� g�+h(x)
k

= g0�+h(x).

Now, it is true that

g0�(x) = lim
k!0

g�(x+ k)� g�(x)
k

= lim
k!0

1

k

�
lim
h"0
g�+h(x+ k)� lim

h"0
g�+h(x)

�
= lim

k!0

 
lim
h"0

g�+h(x+ k)� g�+h(x)
k

!

and to have g0�(x) left continuous at � we need

g0�(x) = lim
h"0
g0�+h(x)

= lim
h"0

 
lim
k!0

g�+h(x+ k)� g�+h(x)
k

!
.

It follows that left continuity of g0�(x) requires that the following iterated limit
equality holds:

lim
k!0

 
lim
h"0

g�+h(x+ k)� g�+h(x)
k

!
= lim

h"0

 
lim
k!0

g�+h(x+ k)� g�+h(x)
k

!
. (11)
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From a well known theorem on double and iterated limits, the existence of
the double limit lim

k!0;h"0
g�+h(x+k)�g�+h(x)

k
in the (�; x) plane is su¢ cient, in our

case, for (11) to be valid. As we can see from the previous Theorem 24, the
existence of derivatives, uniformly for all level sets, is a su¢ cient condition
to solve the problem discussed in the remark.

According to Theorem 24, for the de�nition of gH-di¤erentiability when f�� (x)
and f+� (x) are both di¤erentiable, we distinguish two cases, corresponding to
(i) and (ii) of (4).

De�nition 26 Let f : [a; b] �! RF and x0 2]a; b[ with f�� (x) and f+� (x) both
di¤erentiable at x0. We say that
- f is (i)-gH-di¤erentiable at x0 if

(i.)
h
f 0gH(x0)

i
�
= [
�
f��
�0
(x0);

�
f+�
�0
(x0)];8� 2 [0; 1] (12)

- f is (ii)-gH-di¤erentiable at x0 if

(ii.)
h
f 0gH(x0)

i
�
= [
�
f+�
�0
(x0);

�
f��
�0
(x0)];8� 2 [0; 1]: (13)

It is possible that f : [a; b] �! RF is gH-di¤erentiable at x0 and not (i)-gH-
di¤erentiable nor (ii)-gH-di¤erentiable, as illustrated by the following example,
taken from [34].

Example 27 Consider f :] � 1; 1[�! Rf de�ned by the ��cuts (it is 0-
symmetric)

[f(x)]� =

"
� 1

(1 + jxj)(1 + �) ;
1

(1 + jxj)(1 + �)

#
(14)

i.e. f�� (x) = � 1
(1+jxj)(1+�) and f

+
� (x) =

1
(1+jxj)(1+�) : The level sets are as in

Fig. 2.

For all x 6= 0 and all � 2 [0; 1], both f�� and f+� are di¤erentiable and satisfy
conditions of Theorem 24; at the origin x = 0 the two functions f�� and f+�
are not di¤erentiable; they are, respectively, left and right di¤erentiable but
left derivative and right derivative are di¤erent, in fact

(f�� )
0(x) =

8>>>>><>>>>>:
� 1
(1�x)2(1+�) x < 0

@ x = 0

1
(1+x)2(1+�)

x > 0

and (f+� )
0(x) =

8>>>>><>>>>>:
1

(1�x)2(1+�) x < 0

@ x = 0

� 1
(1+x)2(1+�)

x > 0

.
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Figure 2. The level sets of the function in (14), � = 0; 0:1; :::; 1

Now, for the gH-di¤erence and h 6= 0 we have

[f(h)	gH f(0)]�
h

=

=
1

h

"
� 1

(1 + jhj)(1 + �) ;
1

(1 + jhj)(1 + �)

#
	gH

"
� 1

(1 + �)
;

1

(1 + �)

#

=
1

h(1 + �)

"
min

(
jhj

(1 + jhj) ;
�jhj

(1 + jhj)

)
;maxfidemg

#

=
1

h(1 + �)

"
�jhj

(1 + jhj) ;
jhj

(1 + jhj)

#

=
1

(1 + �)

"
�1

(1 + jhj) ;
1

(1 + jhj)

#

It follows that the limit exists

f 0gH(0) = lim
h�!0

[f(h)	gH f(0)]�
h

=

"
�1

(1 + �)
;

1

(1 + �)

#

and f is gH-di¤erentiable at x = 0 but f�� and f+� are not di¤erentiable at
x = 0 for all �; observe that f is (i)-gH-di¤erentiable if x < 0 and is (ii)-gH-
di¤erentiable if x > 0. (see Fig. 3).

Remark 28 It is easy to see that the gH-di¤erentiability concept introduced
above is more general than the GH-di¤erentiability in De�nition 18. Indeed,
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Figure 3. The level sets of the gH-derivative of the function in (14)

consider the function f : R! RF ,

f(x) =

8><>: (�1; 0; 1) � (1� x
2 sin 1

x
) if x 6= 0

(�1; 0; 1), otherwise
:

It is easy to check by Theorem 24 that f is gH-di¤erentiable at x = 0 and
f 0gH(0) = 0: Also, we observe that f is not GH-di¤erentiable since there does
not exist � > 0 such that f(h)	H f(0) or f(�h)	H f(0) exist for all h 2 (0; �):

The following properties are obtained from Theorem 24.

Proposition 29 If f : [a; b] �! RF is gH-di¤erentiable (or right or left gH-
di¤erentiable) at x0 2 [a; b] then it is level-wise continuous (or right or left
level-wise continuous) at x0.

PROOF. If f : [a; b] �! RF is gH-di¤erentiable at x0 and [f(x)]� = [f�� (x); f+� (x)]
let [f 0(x0)]� = [g

�
� (x0); g

+
� (x0)] where

g�� (x0) = lim
h!0

min

(
f�� (x0 + h)� f�� (x0)

h
;
f+� (x0 + h)� f+� (x0)

h

)

g+� (x) = lim
h!0

max

(
f�� (x0 + h)� f�� (x0)

h
;
f+� (x0 + h)� f+� (x0)

h

)
.

Then for any " > 0 there exists �" > 0 such that for all values of h with
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jhj < �" we have (simultaneously)

g�� (x0)� " < min
(
f�� (x0 + h)� f�� (x0)

h
;
f+� (x0 + h)� f+� (x0)

h

)
(15)

< g�� (x0) + "

and

g+� (x0)� " < max
(
f�� (x0 + h)� f�� (x0)

h
;
f+� (x0 + h)� f+� (x0)

h

)
(16)

< g+� (x0) + ".

Suppose f�� (x)or f
+
� (x) are not continuous w.r.t. x for some � 2 [0; 1]; then

lim
h!0

(f�� (x0 + h)� f�� (x0)) 6= 0 or lim
h!0

(f+� (x0 + h)� f+� (x0)) 6= 0 and so one

of the two functions f�� (x0+h)�f�� (x0)
h

or f+� (x0+h)�f+� (x0)
h

is unbounded for small
jhj and this contradicts inequalities 15 or 16; so f�� (x)or f+� (x) are continuous
for all � 2 [0; 1] and f is level-wise continuous.�

Proposition 30 The (i)-gH-derivative and (ii)-gH-derivative are additive op-
erators, i.e., if f and g are both (i)-gH-di¤erentiable or both (ii)-gH-di¤erentiable
then
(i) (f + g)0(i)�gH = f

0
(i)�gH + g

0
(i)�gH ,

(ii) (f + g)0(ii)�gH = f
0
(ii)�gH + g

0
(ii)�gH .

PROOF. Consider (i) and suppose that f and g are both (i)-gH-di¤erentiable;
then, for every � 2 [0; 1] we have, [f 0]� = [(f�� )0; (f+� )0] and [g0]� = [(g�� )0; (g+� )0]
with (f�� )

0 � (f+� )0 and (g�� )0 � (g+� )0; it follows that

[(f + g)0]� = [(f
�
� + g

�
� ); (f

+
� + g

+
� )]

0

= [(f�� + g
�
� )

0; (f+� + g
+
� )

0]

= [(f�� )
0 + (g�� )

0; (f+� )
0 + (g+� )

0]

= [(f�� )
0; (f+� )

0] + [(g�� )
0; (g+� )

0]

= [f 0]� + [g
0]�;

the case of f and g both (ii)-gH-di¤erentiable is similar.�

Remark 31 From Proposition 30, it follows that (i)-gH-derivative and (ii)-
gH-derivative are semi-linear operators (i.e. additive and positive homogen-
eous). They are not linear in general since we have (kfgH)0(i)�gH = k(fgH)

0
(ii)�gH ,

if k < 0.
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4 Generalized fuzzy di¤erentiability (g-di¤erentiability)

Based on the g-di¤erence introduced in De�nition 7, we propose the following
g-di¤erentiability concept, that further extends the gH-di¤erentiability.

De�nition 32 Let x0 2]a; b[ and h be such that x0 + h 2]a; b[, then the
g-derivative of a function f :]a; b[! RF at x0 is de�ned as

f 0g(x0) = lim
h!0

1

h
[f(x0 + h)�g f(x0)]: (17)

If f 0g(x0) 2 RF satisfying (17) exists, we say that f is generalized di¤erentiable
(g-di¤erentiable for short) at x0.

Remark 33 Let us observe that the g-derivative is the most general among
the previous de�nitions. Indeed, f(x0 + h) �g f(x0) = f(x0 + h) �gH f(x0)
whenever the gH-di¤erence on the right exists. An example of a function that
is g-di¤erentiable and not gH-di¤erentiable will be given later in Example 39.

In the following theorem we prove that the g-derivative is well de�ned for a
large class of fuzzy valued functions. Also we prove a characterization and a
practical formula for the g-derivative.

Theorem 34 Let f : [a; b] ! RF be such that [f(x)]� = [f�� (x); f
+
� (x)].

If f�� (x) and f
+
� (x) are di¤erentiable real-valued functions with respect to x,

uniformly for � 2 [0; 1]; then f(x) is g-di¤erentiable and we have

h
f 0g(x)

i
�
=

"
inf
���

minf
�
f��
�0
(x);

�
f+�
�0
(x)g; sup

���
maxf

�
f��
�0
(x);

�
f+�
�0
(x)g

#
:

(18)

PROOF. By Proposition 8 we have

1

h
[f(x+ h)	g f(x)]� =

1

h
[ inf
���

minff(x+ h)���f(x)
�
� ; f(x+ h)

+
��f(x)

+
� g;

sup
���

maxff(x+ h)���f(x)
�
� ; f(x+ h)

+
��f(x)

+
� g]:

Since f�� (x); f
+
� (x) are di¤erentiable we obtain

lim
h!0

1

h
[f(x+ h)	g f(x)]�

=

"
inf
���

minf
�
f��
�0
(x);

�
f+�
�0
(x)g; sup

���
maxf

�
f��
�0
(x);

�
f+�
�0
(x)g

#
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for any � 2 [0; 1]: Also, let us observe that if f�� ; f+� are left continuous with
respect to � 2 (0; 1] and right continuous at 0, considering a sequence hn ! 0,
the functions

f�� (x+ hn)� f�� (x)
hn

;
f+� (x+ hn)� f+� (x)

hn

are left continuous at � 2 (0; 1] and right continuous at 0: Also, the functions

inf
���

min

(
f�� (x+ hn)� f�� (x)

hn
;
f+� (x+ hn)� f+� (x)

hn

)

and

sup
���

max

(
f�� (x+ hn)� f�� (x)

hn
;
f+� (x+ hn)� f+� (x)

hn

)

ful�ll the same properties. Then it follows that

inf
���

minf
�
f��
�0
(x);

�
f+�
�0
(x)g; sup

���
maxf

�
f��
�0
(x);

�
f+�
�0
(x)g

are left continuous for � 2 (0; 1] and right continuous at 0. It is easy to

check that inf���minf
�
f��
�0
(x);

�
f+�
�0
(x)g is increasing w.r.t. � 2 [0; 1] and

sup���maxf
�
f��
�0
(x);

�
f+�
�0
(x)g is decreasing w.r.t. � 2 [0; 1]; by Proposition

2 they de�ne a fuzzy number. As a conclusion, the level sets
h
f 0g(x)

i
�
de�ne a

fuzzy number, and so, by Lemma 4, the derivative f 0g(x) exists in the sense of
the g-derivative.�

The next result provides an expression for the g-derivative and its connec-
tion to the interval gH-derivative of the level sets. According to the res-
ult that the existence of the gH-di¤erences for all level sets is su¢ cient to
de�ne the g-di¤erence, the uniform LgH-di¤erentiability is su¢ cient for the
g-di¤erentiability.

Theorem 35 Let f :]a; b[! RF be uniformly LgH-di¤erentiable at x0. Then
f is g-di¤erentiable at x0 and, for any � 2 [0; 1],

[f 0g(x0)]� = cl

0@ [
���
f 0LgH(x0)�

1A :
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PROOF. Let x0 2]a; b[ and h be such that x0 + h 2]a; b[, and denote, for
� 2 [0; 1], the intervals

��(h) =
1

h
([f(x0 + h)]� �gH [f(x0)]�) ,

l� = lim
h!0
��(h) = f

0
LgH(x0)�,

��(h) = cl

0@ [
���
��(h)

1A = 1

h
([f(x0 + h)]� �g [f(x0)]�) ,

L� = cl

0@ [
���
l�

1A .

Let �(h) and L be the fuzzy numbers having the intervals f��(h)j� 2 [0; 1]g
and fL�j� 2 [0; 1]g as level-cuts, respectively. The fuzzy numbers �(h) and L
are well de�ned. Indeed, as it was shown in the previous Theorem 34 the level
sets f��(h)j� 2 [0; 1]g and fL�j� 2 [0; 1]g verify the conditions in Proposition
2. We will show that the following limit exists

lim
h!0
�(h) = L

and, consequently, that the g-derivative of f at x0 exists and equals L.
Denoting the intervals ��(h) = [��� (h);�

+
� (h)] and L� = [L

�
� ; L

+
� ] we have

��� (h) = inf
���
��� (h), �

+
� (h) = sup

���
�+� (h)

L�� = inf
���
l�� , L

+
� = sup

���
l+�

and, from the uniform LgH-di¤erentiability of f , we have that for all " > 0
there exists �" > 0 such that

jhj < �" =) l�� �
"

4
< ��� (h) < l

�
� +

"

4
for all � 2 [0; 1]

jhj < �" =) l+� �
"

4
< �+� (h) < l

+
� +

"

4
for all � 2 [0; 1].

On the other hand, from the de�nition of inf and sup, we also have that, for
arbitrary " > 0 and for all � and all h, there exist �1 � �, �2 � �, �3 � �
and �4 � �, such that ��� (h) > ���1(h)�

"
4
, L�� > l

�
�2
� "

4
, �+� (h) < �

+
�3
(h) + "

4
,

L+� < l
+
�4
+ "

4
.

It follows that, for all " > 0 there exists �" > 0 such that, if jhj < �" and for
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all � 2 [0; 1],

��� (h) > �
�
�1
(h)� "

4
> l��1 �

"

4
� "
4
� L�� �

"

2
,

L�� > l
�
�2
� "
4
> ���2(h)�

"

4
� "
4
� ��� (h)�

"

2
,

�+� (h) < �
+
�3
(h) +

"

4
< l+�3 +

"

4
+
"

4
� L+� +

"

2
,

L+� < l
+
�4
+
"

4
< �+�4(h) +

"

4
+
"

4
� �+� (h) +

"

2

and, consequently, for the same values of h,

k�(h)	g Lk = sup
�2[0;1]

k��(h)	gH L�k�

= sup
�2[0;1]

maxf
������ (h)� L�� ��� ; ����+� (h)� L+� ���g

� "

2
< ".

It follows that limh!0 �(h) = L.�

The next Theorem shows a minimality property for the g-derivative.

Theorem 36 Let f be uniformly LgH-di¤erentiable. Then f 0g(x), for a �xed
x, is the smallest fuzzy number w 2 RF (in the sense of fuzzy inclusion) such
that f 0LgH(x)� � [w]� for all � 2 [0; 1].

PROOF. The result is similar to the minimality property for the g-di¤erence.
For the proof let us observe �rst that from Theorem 35, we have ([f(x)]�)

0
gH �

[f 0g(x)]�; 8� 2 [0; 1]: Let us consider now w 2 RF such that ([f(x)]�)
0
gH � [w]�:

Then for � � � we have

([f(x)]�)
0
gH � [w]� � [w]�;

and we get
cl
[
���

([f(x)]�)
0
gH � [w]�;

i.e., [f 0LgH(x)]� � [w]�:�

From the example after De�nition 26, the converse of Theorem 34 is not valid;
in fact, we may have f�� (x); f

+
� (x) not necessarily di¤erentiable in x for all �.

The most important cases of di¤erentiability, from an application point of
view, are those in (i.) and (ii.) in De�nition 26, since these cases are eas-
ily characterized using real-valued functions and used in the study of fuzzy
di¤erential equations ([4]).
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It is an interesting, non-trivial problem to see how the switch between the two
cases (i.) and (ii.) in De�nition 26 can occur. We will assume, for the rest of
this section, that f�� (x) and f

+
� (x) are di¤erentiable w.r.t. x for all �.

De�nition 37 We say that a point x 2]a; b[ is an l-critical point of f if it is
a critical point for the length function len([f(x)]�) = f+� (x)� f�� (x) for some
� 2 [0; 1]:

If f is gH-di¤erentiable everywhere in its domain the switch at every level
should happen at the same time, i.e, d

dx
len([f(x)]�) = (f

+
� (x)� f�� (x))

0
= 0

at the same point x for all � 2 [0; 1].

De�nition 38 We say that a point x0 2]a; b[ is a switching point for the
gH-di¤erentiability of f , if in any neighborhood V of x0 there exist points
x1 < x0 < x2 such that
type-I switch) at x1 (12) holds while (13) does not hold and at x2 (13) holds
and (12) does not hold, or
type-II switch) at x1 (13) holds while (12) does not hold and at x2 (12) holds
and (13) does not hold.

Obviously, any switching point is also an l-critical point. Indeed, if x0 is a
switching point then [(f�� )

0
(x0); (f

+
� )

0
(x0)] = [(f+� )

0
(x0); (f

�
� )

0
(x0)] and so�

f+0
�0
(x0) =

�
f�0
�0
(x0) and len(f(x0))0 = 0: Clearly, not all l-critical points

are also switching points.

If we consider the g-derivative, the switching phenomenon is much more com-
plex as it is shown in the following example.

Example 39 Let us consider the function f(x) given level-wise for x 2 [0; 1]
as

f�� (x) = xe
�x + �2

�
e�x

2

+ x� xe�x
�

f+� (x) = e
�x2 + x+ (1� �2)

�
ex � x+ e�x2

�
and pictured in Figure 4.

It is easy to see that it is g-di¤erentiable but it is not gH-di¤erentiable. The
derivatives of f�� (x) and f

+
� (x) are in Figure ?? and we see that it is (ii)-gH-

di¤erentiable on the sub-interval [0; x1] where x1 � 0:61, is (i)-gH-di¤erentiable
on (x2; 1] where x2 � 0:71 and is g-di¤erentiable on the sub interval [x1; x2].
The g-derivative is represented in Figure 5.

We can see that the transition between (ii)-gH and (i)-gH di¤erentiability is
not simply at a single point. Instead we have a region where the transition
happens.
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Figure 4. Level sets of the function de�ned in Example 39.

Figure 5. Example of a function that is g-di¤erentiable but not gH-di¤erentiable

De�nition 40 We say that an interval S = [x1; x2] �]a; b[, where f is g-
di¤erentiable, is a transitional region for the di¤erentiability of f , if in any
neighborhood (x1 � �; x2 + �) � S, � > 0, there exist points x1 � � < �1 < x1
and x2 < �2 < x2 + � such that
type-I region) at �1 (12) holds while (13) does not hold and at �2 (13) holds
and (12) does not hold, or
type-II region) at �1 (13) holds while (12) does not hold and at �2 (12) holds
and (13) does not hold.
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Similar to [39] we have a strong connection between the concepts of GH-
di¤erentiability, gH-di¤erentiability and g-di¤erentiability. The new concept of
g-di¤erentiability is more general than the other two concepts, but in practical
investigations we may use gH- or GH- di¤erentiabilities depending on the given
application.

Theorem 41 Let f :]a; b[! RF be a function [f(x)]� = [f�� (x); f+� (x)]: The
following statements are equivalent:
(1) f is GH-di¤erentiable,
(2) f is gH-di¤erentiable and the set of switching points is �nite,
(3) f is g-di¤erentiable and the transitional regions are singletons and there
are �nitely many of them.

PROOF. The proof of the equivalence between (1) and (2) is similar to the
proof of Theorem 28 in [39]. It is easy to see that (2) implies (3). To prove
that (3) implies (1) we can observe that except for the transitional regions, the
cases (i.) and (ii.) in De�nition 26 are satis�ed. The set of transitional regions
coincides with the set of switching points and these are now singletons. Since
there are �nitely many such switch-points we obtain that the function is GH-
di¤erentiable and the proof is complete.�

We end this section by considering the gH-derivative in terms of the CPS
(crisp+pro�le+symmetric) decomposition of fuzzy numbers, introduced in
[41] and [38]. Given a fuzzy-valued function f : [a; b] ! RF with level-cuts
[f(x)]� = [f

�
� (x); f

+
� (x)], the CPS representation decomposes f(x) in terms of

the following three additive components

f(x) = bf(x) + ef(x) + f(x)
where bf(x) = [ bf�(x); bf+(x)] is a (crisp) interval-valued function, ef(x) =
f ef�(x)j� 2 [0; 1]g is a family of real valued (pro�le) functions ef� : [a; b] ! R
and f(x) is a fuzzy valued function f : [a; b] ! RF of 0-symmetric type
[f(x)]� = [�f�(x); f�(x)]; the three components are de�ned as follows

bf(x) = [f(x)]1, i.e., bf�(x) = f�1 (x) and bf+(x) = f+1 (x)ef�(x) = f�� (x) + f
+
� (x)

2
� f

�
1 (x) + f

+
1 (x)

2
for all � 2 [0; 1]

f�(x) =
f+� (x)� f+1 (x)

2
� f

�
� (x)� f�1 (x)

2
� 0 for all � 2 [0; 1]
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and are such that

[f(x)]� = [ bf�(x); bf+(x)] + ff�(x) + [�f�(x); f�(x)], i.e., (19)

f�� (x) =
bf�(x) + ff�(x)� f�(x)

f+� (x) =
bf+(x) + ff�(x) + f�(x).

Equations (19) de�ne the CPS decomposition of f(x) 2 RF ; for its properties
we refer to [41] and [38]. Consider that f(x) is a symmetric fuzzy number if
and only if ff�(x) = 0 for all � 2 [0; 1] (the pro�le is identically zero). We callbf(x) + f(x) the symmetric part of f(x).
Assume that the lower and the upper functions f�� and f

+
� are di¤erentiable

w.r.t. x for all �; then also bf� and bf+ are di¤erentiable w.r.t. x; ff� and f�
are di¤erentiable w.r.t. x for all �. Obviously

(f�� )
0(x) = ( bf�)0(x) + (ff�)0(x)� (f�)0(x)

(f+� )
0(x) = ( bf+)0(x) + (ff�)0(x) + (f�)0(x)

and the level cuts of the gH-derivative of f are given by

[f 0gH ]� = (
ff�)0 + [minf( bf�)0 � (f�)0; ( bf+)0 + (f�)0g;maxfidemg]. (20)

From (20) we deduce some interesting facts.

First, if f is (i)-gH-di¤erentiable or (ii)-gH-di¤erentiable, the form of di¤eren-
tiability is decided by the derivative of the symmetric part bf(x) + f(x).
Second, the two cases of Theorem 24 can be rewritten in terms of the com-
ponents. In fact, (f�� )

0(x) is increasing (or decreasing, respectively) w.r.t. �
if and only if � < � implies (ff�)0(x) � (f�)0(x) � (ff�)0(x) � (f�)0(x) (or
(ff�)0(x) � (f�)0(x) � (ff�)0(x) � (f�)0(x), respectively); (f+� )0(x) is increasing
(or decreasing, respectively) w.r.t. � if and only if � < � implies (ff�)0(x) +
(f�)

0(x) � (ff�)0(x) + (f�)0(x) (or (ff�)0(x) + (f�)0(x) � (ff�)0(x) + (f�)0(x),
respectively); then, the two cases in Theorem 24 become:

a) bf is (i)-gH-di¤erentiable and, for � < �, we have
���(ff�)0(x)� (ff�)0(x)��� �

(f�)
0(x)� (f�)0(x); a necessary condition is that (f�)0 is decreasing w.r.t. �;

b) bf is (ii)-gH-di¤erentiable and, for � < �, we have
���(ff�)0(x)� (ff�)0(x)��� �

(f�)
0(x)� (f�)0(x); a necessary condition is that (f�)0 is increasing w.r.t. �.

A third interesting situation is when functions f�� (x) and f
+
� (x) are di¤eren-

tiable w.r.t. x and w.r.t. �, and the mixed second order derivatives @2f�� (x)
@x@�

,
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@2f+� (x)
@x@�

exist. It follows that the monotonicity conditions, according to The-
orem 24, are

@2f�� (x)

@x@�
� 0 and @

2f+� (x)

@x@�
� 0

OR
@2f�� (x)

@x@�
� 0 and @

2f+� (x)

@x@�
� 0.

In terms of the CPS decomposition, we obtain (consider that bf�(x) and bf+(x)
do not depend on �)

@2 ef�(x)
@x@�

� @
2f�(x)

@x@�
� 0 and @

2 ef�(x)
@x@�

+
@2f�(x)

@x@�
� 0, 8�

OR

@2 ef�(x)
@x@�

� @
2f�(x)

@x@�
� 0 and @

2 ef�(x)
@x@�

+
@2f�(x)

@x@�
� 0, 8�

i.e.,

@2f�(x)

@x@�
� 0 and

�����@2 ef�(x)@x@�

����� � �@2f�(x)@x@�

OR

@2f�(x)

@x@�
� 0 and

�����@2 ef�(x)@x@�

����� � @2f�(x)

@x@�
.

Remark 42 For a symmetric fuzzy function, the monotonicity conditions for
gH-di¤erentiability are simpli�ed; in this case, ef�(x) = 0 for all � and the
monotonicity of (f�)

0(x) w.r.t. � is su¢ cient: if
a) bf is (i)-gH-di¤erentiable and (f�)0(x) is decreasing w.r.t. � (eventually
@2f�(x)
@x@�

� 0 8�);
or
b) bf is (ii)-gH-di¤erentiable and (f�)0(x) is increasing w.r.t. � (eventually
@2f�(x)
@x@�

� 0 8�);
then f is gH-di¤erentiable.
In particular, if f(x) is a symmetric fuzzy number with f�1 (x) = f

+
1 (x), then

f is gH-di¤erentiable if and only if (f�)
0(x) is monotonic w.r.t. �.

5 gH-derivative and the integral

In this section we examine the relations between gH-di¤erentiability and the
integral of fuzzy valued functions. A strongly measurable and integrably bounded
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fuzzy-valued function is called integrable [12]. The fuzzy Aumann integral of
f : [a; b]! RF is de�ned level-wise by"Z b

a
f (x) dx

#
�

=
Z b

a
[f (x)]� dx; � 2 [0; 1]:

Theorem 43 Let f : [a; b]! RF be continuous with [f(x)]� = [f�� (x); f+� (x)].
Then

(i) the function F (x) =
xR
a
f(t)dt is gH-di¤erentiable and F 0gH(x) = f(x);

(ii) the function G(x) =
bR
x
f(t)dt is gH-di¤erentiable and G0gH(x) = �f(x):

PROOF. We have [F (x)]� =
�
xR
a
f(t)dt

�
�

= [F�� (x); F
+
� (x)] and [G(x)]� ="

bR
x
f(t)dt

#
�

= [G�� (x); G
+
� (x)]. Then

(F�� )
0(x0) = minff�� (x0); f+� (x0)g = f�� (x0)

(F+� )
0(x0) = maxff�� (x0); f+� (x0)g = f+� (x0)

and

(G�)0�(x0) = minf�f�� (x0);�f+� (x0)g = �f+� (x0)
(G+)0�(x0) = maxf�f�� (x0);�f+� (x0)g = �f�� (x0):�

Proposition 44 If f is GH-di¤erentiable with no switching point in the in-
terval [a; b] then we have

Z b

a
f 0gH(x)dx = f(b)�gH f(a):

PROOF. If there is no switching point in the interval [a; b] then f is (i) or
(ii) di¤erentiable as in De�nition 26. Let us suppose for example that f is (ii)-
gH-di¤erentiable (the proof for the (i)-gH-di¤erentiability case being similar).
We have "Z b

a
f 0gH(x)dx

#
�

=
Z b

a
[
�
f+�
�0
(x);

�
f��
�0
(x)]dx

=
h
f+� (b)� f+� (a); f�� (b)� f�� (a)

i
= f(b)�gH f(a):�
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Theorem 45 Let us suppose that function f is gH-di¤erentiable with n switching
points at ci, i = 1; 2; :::; n, a = c0 < c1 < c2 < ::: < cn < cn+1 = b and exactly
at these points. Then we have

f(b)�gH f(a) =
nX
i=1

"
ciR

ci�1
f 0gH(x)dx�gH (�1)

ci+1R
ci
f 0gH(x)dx

#
: (21)

Also,
bR
a
f 0gH(x)dx =

n+1X
i=1

(f(ci)�gH f(ci�1)) : (22)

(summation denotes standard fuzzy addition in this statement).

PROOF. The proof is similar to [39], [40].�

Remark 46 It is interesting to observe that, if the values f(ci) at all the

n switching points ci, i = 1; 2; :::; n are crisp (singleton), then we have
bR
a
f 0gH(x)dx =

f(b)�f(a) (the standard fuzzy di¤erence); indeed, if u 2 RF and v 2 R we have
u�gH v = u�v and v�gH u = v�u. It follows that

Pn+1
i=1 (f(ci)�gH f(ci�1)) =Pn+1

i=1 f(ci) �gH f(ci�1) = (f(b) � f(cn))+ (f(cn) � f(cn�1))+ ::: + (f(c2) �
f(c1))+ (f(c1) � f(a)) = f(b) � f(a) (for the crisp terms we have �f(ci) +
f(ci) = 0, i = 1; 2; :::; n).

6 Conclusions and further work

We have investigated di¤erent new di¤erentiability concepts for fuzzy num-
ber valued functions. The g-di¤erentiability introduced here is a very general
derivative concept, being also practically applicable. The next step in the re-
search direction proposed here is to investigate fuzzy di¤erential equations
with g-di¤erentiability and applications.
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