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Abstract

In the present paper, using novel generalizations of the Hukuhara difference for
fuzzy sets, we introduce and study new generalized differentiability concepts for
fuzzy valued functions. Several properties of the new concepts are investigated and
they are compared to similar fuzzy differentiabilities finding connections between
them. Characterization and relatively simple expressions are provided for the new
derivatives.
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1 Introduction

The purpose of the present paper is to use the fuzzy gH-difference introduced
in [37], [38] to define and study new generalizations of the differentiability for
fuzzy-number-valued functions. Several generalized fuzzy derivative concepts
are studied in relation with the similar notions in [2], [39]. We also show
connections to the ideas of [22], [23], [26]. As a consequence, the paper presents
several new results and discusses old ones in the light of the new concepts
introduced recently and studied here.
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These new generalized derivatives are motivated by their usefulness in a very
quickly developing area at the intersection of set-valued analysis and fuzzy
sets, namely, the area of fuzzy analysis and fuzzy differential equations [1], [5],

6], [7], 9], [15], [18], [19], [20], [21], [27], [29], [30], [33], [34], [35], [43] etc.

As we can see, a key point in our investigation is played by the difference
concepts for fuzzy numbers. A recent very promising concept, the g-difference
proposed by [37], [38] is studied here in detail. We observe that this difference
has a great advantage over peer concepts, namely that it always exists. We
obtain relatively simple expressions, a minimality property and a characteriz-
ation for the g-difference.

It is well-known that the usual Hukuhara difference between two fuzzy num-
bers exists only under very restrictive conditions [10], [11], [18]. The gH-
difference of two fuzzy numbers exists under much less restrictive conditions,
however it does not always exist [36], [37]. The g-difference proposed in [3§]
overcomes these shortcomings of the above discussed concepts and the g-
difference of two fuzzy numbers always exists. The same remark is valid if
we regard differentiability concepts in fuzzy setting.

Based on the gH-difference coming from [38], [39], [40], new gH-derivative
concepts that generalize those in [2] are investigated, mainly in view of their
characterization. Based on the g-difference a new, very general fuzzy differenti-
ability concept is defined and studied, the so-called g-derivative. It is carefully
compared with the generalized fuzzy differentiabilities in [2], [39], [40], and it
is shown that the g-difference is the most general among all similar definitions.
The properties we obtain show characterization of the new g-differentiability,
an interesting minimality property and some computational results.

The relation between the new fuzzy derivatives and the fuzzy integral is stud-
ied, and Newton-Leibniz type formulas are non-trivially extended to the fuzzy
case.

The paper is organized as follows; section 2 introduces the generalized fuzzy
difference and presents some new results; next, we show some new properties of
the generalized Hukuhara derivative of a fuzzy valued function (section 3) and
we introduce the new concept of generalized derivative (section 4); the paper
concludes with section 5, where the basic relations between gH-differentiability
and the integral are examined.



2 Generalized fuzzy difference

One of the first definitions of difference and derivative for set-valued functions
was given by Hukuhara [16] (H-difference and H-derivative); it has been ex-
tended to the fuzzy case in [32] and applied to fuzzy differential equations
(FDE) by many authors in several papers (see [12], [17], [18], [19], [20], [29]).
But the H-derivative in FDE suffers certain disadvantages (see [2], [3], [6], [7],
[10], [13], [36]) related to the properties of the space K" of all nonempty com-
pact sets of R™ and in particular to the fact that Minkowski addition does not
possess an inverse subtraction. On the other hand, a more general definition
of subtraction for compact convex sets, and in particular for compact inter-
vals, has been introduced by several authors. Markov [22], [23], [26] defined
a non-standard difference, also called inner-difference, and extended its use
to interval arithmetic and to interval calculus, including interval differential
equations (see [24], [25]). In the setting of Hukuhara difference, the interval
and fuzzy generalized Hukuhara differences have been recently examined in
[37], [38].

We start with a brief account of these concepts.

Let IC be the space of nonempty compact and convex sets of R”. The Hukuhara
H-difference has been introduced as a set C for which AOg B=C <= A=
B + C and an important property of ©p is that A oy A = {0} VA € K}
and (A+ B) Oy B = A, YA, B € K. The H-difference is unique, but it does
not always exist (a necessary condition for A ©y B to exist is that A contains
a translate {c} + B of B). A generalization of the Hukuhara difference aims
to overcome this situation. The generalized Hukuhara difference of two sets

A, B € K. (gH-difference for short) is defined as follows

(a) A=B+C
Ao B=C < (1)
or (b)) B=A+(-1)C

The inner-difference in [26], denoted with the symbol "—"" is defined by first
introducing the inner-sum of A and B by

B X if X solves (—A)+ X =B
A+~ B= (2)
Y if Y solves (-B)+Y =A

and then

A-—"B=A+ (—B). (3)
It is not difficult to see that A,y B = A -~ B; in fact, A+~ (-B) = C
means (—A) + C = (—B) i.e. case (b) of (1), or (—(—B)) + C = A i.e. case



(a) of (1).

In case (a) of (1) the gH-difference is coincident with the H-difference. Thus the
gH-difference, or the inner-difference, is a generalization of the H-difference.

The gH-difference (1) or, equivalently, the inner-difference (3) for intervals or
for compact convex sets is the basis for the definition of a new difference in
the fuzzy context.

We will denote R the set of fuzzy numbers, i.e. normal, fuzzy convex, upper
semi continuous and compactly supported fuzzy sets defined over the real line.
Fundamental concepts in fuzzy sets theory are the support, the level-sets (or
level-cuts) and the core of a fuzzy number.

Here, c¢l(X) denotes the closure of set X.

Definition 1 Let u € Rz be a fuzzy number. For a €]0,1], the a-level set of
u (or simply the a—cut) is defined by [u]l, = {z|r € R,u(x) > a} and for
a = 0 by the closure of the support [ulg = cl{z|r € R,u(z) > 0}. The core of
u is the set of elements of R having membership grade 1, i.e., [u]; = {x|z €
R, u(z) = 1}.

It is well-known that the level — cuts are "nested", i.e. [u], C [u]g for a > .
A fuzzy set u is a fuzzy number if and only if the o — cuts are nonempty
compact intervals of the form [u], = [u,,u] C R. The "nested" property is

a) o

the basis for the LU representation (L for lower, U for upper) (see [14], [42]).

Proposition 2 A fuzzy number u is completely determined by any pair u =
(u=,ut) of functions u=,u™ : [0,1] — R, defining the end-points of the
o — cuts, satisfying the three conditions:

(i) v~ : o« — u, € R is a bounded monotonic non decreasing left-continuous
function Vo €]0, 1] and right-continuous for a = 0;

(i1) ut : o — ul € R is a bounded monotonic non increasing left-continuous
function Yo €]0, 1] and right-continuous for oo = 0;

(1ii) vy < wuy for a =1, which implies uy, < ul Vo € [0,1].

The following result is well known [28]:

Proposition 3 Let {U,|a €]0,1]} be a family of real intervals such that the
following three conditions are satisfied:

1. U, is a nonempty compact interval for all a €]0,1];

2.0 <a < <1 thenUs C Uy;

3. given any non decreasing sequence «, €]0,1] with n@man =a >0 1tis

Ua - Oﬁ Uan'
n=1
Then there exists a unique LU-fuzzy quantity u such that [u], = U, for all



a €)0,1] and [u]y = cl ( U Ua>.

a€]0,1]

We refer to the functions Uy and uzf) as the lower and upper branches of u,
respectively. A trapezoidal fuzzy number, denoted by u = (a, b, c,d) , where
a <b<c<d has o — cuts [u], = [a+ a(b—a),d—a(d—c)], a € [0,1],
obtaining a triangular fuzzy number if b = c.

The addition u + v and the scalar multiplication ku are defined as having the
level cuts

[u+v]a = [ula + [v]a = {2+ ylz € [U]a, y € [vV]a}
[ku)o = klu|o = {kz|x € [u]s}, [0]a = {0} Ya € [0,1]

The subtraction of fuzzy numbers u — v is defined as the addition u + (—v)
where —v = (—1)v.

The standard Hukuhara difference (H-difference ©p) is defined by u Oy v =
w <= u = v + w, being + the standard fuzzy addition; if u Oy v exists, its

a — cuts are [uOg v], = [u;, — v, ,ul —vlt]. It is well known that u©yz u =10

(here 0 stands for the singleton {0}) for all fuzzy numbers u, but v — u # 0.

The Hausdorff distance on R is defined by

D (u.v) = sup {I[wle g Wall. }

where, for an interval [a, b], the norm is
I[a, 0]]|, = max{]al, |b]}.

The metric D is well defined since the gH-difference of intervals, [u], Sy [V]a
always exists. Also, this allows us to deduce that (Rz, D) is a complete metric
space. This definition is equivalent to the usual definitions for metric spaces
of fuzzy numbers in e.g., [12], [18], [14].

The next lemma will be used throughout the paper.

Lemma 4 Let f : R — Rx be a fuzzy-number-valued function. Let xy € R.

Then if
(1) imy o [f(2)]a = Us = [u, ul] uniformly with respect to o € [0, 1],
(i) u,ul fulfill the conditions in Proposition 2 or equivalently U, fulfill the

conditions in Proposition 3,

then lim, ., f(z) = u, with [u], = Uy = [u,, ul].

PROOF. By condition (ii) the intervals U, define a fuzzy number, denoted



u. Then, by condition (i), we have

lim D(f(x).w) = lim sup {[[f(@)]a Su [ulall,} = 0.

¥ TT0 e0,1]
ie., lim, ., f(x)=uO

Definition 5 Given two fuzzy numbers u,v € Rg, the generalized Hukuhara
difference (gH-difference for short) is the fuzzy number w, if it exists, such
that
1) u=v+w
UGV =W ¥ . (4)
or (i) v=u—w
It is easy to show that (i) and (ii) are both valid if and only if w is a crisp
number.
In terms of a — cuts we have [u Oy v, = [min{u, — v, ,ul — vl }, max{u, —
vy, uf —vl}] and if the H-difference exists, then uw Oy v = u Oy v; the
conditions for the existence of w = u Oy v € R are
N w, =u, —v, and wl =ul — vt
case (1) Vo € [0, 1]
with w, increasing , w} decreasing , w, < w}

()

— +_
wa_ua

vl and wl =wu, —v;
Yo € 0,1]

case (i1)
with w,, increasing, w}! decreasing, w, < w} .

The following properties were obtained in [38].

Proposition 6 ([38/) Let u,v € Rx be two fuzzy numbers; then

i) if the gH-difference exists, it is unique;

i) UO g v =uOpv oruQyyv = —(vOpy u) whenever the expressions on the
right exist; in particular, w Ogg u = u Oy u = 0,

iii) if u ©Ogp v exists in the sense (i), then v Oy u exists in the sense (it) and
vice versa,

) (u+v) O v =u,

v) 0 Ogn (4 Qg v) = v Ogp U,

Vi) u Oy v = v Oy u=w if and only if w = —w; furthermore, w = 0 if and
only if u = .

In the fuzzy case, it is possible that the gH-difference of two fuzzy numbers
does not exist. For example we can consider a triangular and a trapezoidal
fuzzy number u = (0,2,2,4) and v = (0,1, 2, 3); level-wise, the gH-differences
exist and they are e.g. for both the 0 and 1 level sets the same [0, 1], but the
gH-difference u ©45 v does not exist. Indeed, if we suppose that it exists then
either case (i) or (ii) of (5) should hold for any « € [0, 1]. But wy = ug —vy, =



0 <wg =ud —vg =1 while w; =1 > w{ =0, so neither case (i) or (ii) is

true from (5). To solve this shortcoming, in [37], [38] a new difference between
fuzzy numbers was proposed, a difference that always exists.

Definition 7 The generalized difference (g-difference for short) of two fuzzy
numbers u,v € Rr is given by its level sets as

[u©gv]a = cl | ([uls Ogm [v]5), Yo € [0,1], (6)

B>a
where the gH-difference Syp is with interval operands [u]g and [v]s.

Proposition 8 The g-difference (6) is given by the expression

(US4 vy = [Bn;f min{ug — vz, uj — vy}, supmax{ug — vz, ug — UE}]
>o B>

PROOF. Let a € [0, 1] be fixed. We observe that for any § > a we have

[ulg Sgn [v]5 = [minfug — vz, uf —vF ), max{u; —vg, uf —vi}|

-

inf min{uy —vy,u} —v}}, sup max{uy —vy,ul —vi}
A28 A>p
and it follows that

c |J ([ulg ©gu [v]p) €
B>a

inf min{u; —v5,u}—vt}, supmax{u; —v5, ut—v}
Juf minug —vj, w5 —v5 b, sup max{u; v, u—v5 }

Let us consider now

cl | ([ulgyulv]s) =l | [mm{uﬁ vy, ug — vf },max{uy — vy, uj — vgf}} .

B>« B>a
For any n > 1, there exist a, € {u — Vg, uﬁ : B > a} such that
infg>q min{uy — v, uf — vy} > a, — 1. Also there ex1st by € {uz — vz, uf —

+ : B> a} such that supBZamaX{uﬁ Uﬁ,uﬂ } < b, + E We have
cl U ([ulg ©gr [v]) 2 [an, by), Vn > 1 and we obtain

B>«

cl U ulg Sgm v U p, by (hm s hm b )
e w31 n—oo

and finally

c | ([ulp Sgm [v]5) 2 | inf minfug —vg, uj—vh}, sup max{ug—vg,ug—vg}] :
B>a pza B>a



The conclusion

énf min{uz —vg, uf—vj}, supmax{uﬁ —vg,uj—vg}| = c | ([uls Sen [v]5)
B>a

of the proposition follows.[]

Remark 9 The property in the previous proposition 8 holds in particular for
a = 0, case which is covered because of the right continuity of the functions

ug — vz, uj — vg.

The following proposition gives a simplified notation for © ©, v and v ©4 u

Proposition 10 For any two fuzzy numbers u,v € Rg the two g-differences

u S, v and v &, u exist and, for any o € [0,1], we have u S, v = —(v S, u)
with
[ Sy v]a = [dy, d3] and [v Sy ulo = [=dy, —d,] (7)
where

d, = inf(D,), dP =sup(D,)

«

and the sets D, are
Do = {uz —vz|f > a} U{uf —vj|6 > a}.

PROOF. Consider a fixed a € [0, 1]. Clearly, using Proposition 8,

[u ey v], = }322 min{uz — vy, uf —v5}, Zgg max{uz — vz, uf —vj}
C [inf(Da), sup(Da)] = [, dg].
Vice versa, for all n > 1 and from the definition of d and d, there exist
an, b, € D, such that
_ _ 1
d, <a,<d, +—
n

1
df— = <b, <d
n

and the following limits exist

lima, =d, , limb, =d};

on the other hand, [a,,b,] C ¢l U a Sgu [V]a) for all n > 1 and then
B>a
U arm n C cl U 6gH )
n>1 B>«



It follows that

d,d}] = lima,, limb,] C cl | [an, bs] C | ([u]g Ogu [v]5)

n>1 B>«

and the proof is complete.

Remark 11 We observe that there are other possible different expressions for
the g-difference as e.g.,

UOv|q = |min{inf (u; —v3), inf (uf —v})}, max{sup(u; —vy),sup(ut—vi)}| .
[ g ] {ﬂ>a( B ﬁ) 62a< B 5)} {Bzg( B ﬁ) Bzg( 8 5)}

The next proposition shows that the g-difference is well defined for any two
fuzzy numbers u,v € Rg.

Proposition 12 (/38]) For any fuzzy numbers u,v € R the g-difference ue,
v exists and it 1s a fuzzy number.

PROOF. We regard the LU-fuzzy quantity v ©, v. Then according to the
previous result, if we denote w™ = (u S, v)~ and w* = (u S, v)" we have

w (o) = ég(fxmm{ug —vg,uy —vg} <w'(a) = ngmax{uﬁ vg, Uy — v}
= «

Obviously w™ is bounded and non decreasing while w* is bounded non in-
creasing. Also, w™,w™ are left continuous on (0, 1], since v~ —v~,ut — o™ are
left continuous on (0,1] and they are right continuous at 0 since so are the
functions v~ — v, u" —ov*.00

Let us consider the fuzzy inclusion defined asu C v <= u(z) < v(z),Vz € R
< [u], C [v]a, Vo € [0, 1]. The following proposition provides a minimality
property for the g-difference.

Proposition 13 The g-difference uw ©4 v is the smallest fuzzy number w in
the sense of fuzzy inclusion such that

U)o ©gn []a € 0], , Vo€ [0, 1]

and
uCov+w

vCu—w



PROOF. For the proof, first we observe that
(W] Ogrr [V]a C [u©y 0], , Vo € [0,1].

Let w € R fulfill
[u]a Sgr [V]a € [w], ,Va €10, 1].

Then for any «, 5 € [0,1],a < 5 we have

[uls Sgn [v]s € [wly € ], -

and so
5U [uls Sgn [v]s C [w],

and since [w], is closed we obtain

[ ©g 0], = cl U [uls Spu [v]s € [w],, , Vo € [0,1].

B>a

As a conclusion u ©, v C w. The inclusions v C v +w and v C u — w follow
from the definition of ©,x.0]

The following properties turn out to be true for the g-difference.

Proposition 14 Let u,v € Ry be two fuzzy numbers; then

i) Oy v =u Oy v, whenever the expression on the right exists; in particular
uOgu =0,

i) (u+v)Qgv

i) 00, (u Oy v) =vO4u

W) uOyv =v0,u=w if and only if w = —w; furthermore, w = 0 if and
only if u = .

PROOF. The proof of i) is immediate.

For ii) we can use i). Indeed, in this case the classical Hukuhara difference
(u+v) © v exists (and so the gH-difference (u + v) ©4p v also exists) and we
have (u 4 v) Oy v = (u +v) Oy v = u.

The proof of iii) follows from (7) for all « € [0, 1]:

004 (uOgv)]a = [0,0] O [da’di]
= [min{O —d,,0—dl}, max{0—d,,0— dz}}
= [—di, —da] = [vOy tla-

To prove iv), consider again (7); for all a € [0, 1] we have [w], = [u O, V], =
[d,,d}] and [w], = [vO,uls = [—d}, —d,] so that w = —w and vice versa; the

o) o

last part of iv) follows from the last part of i) and the fact that w = —w =0

10



if and only if d; = d} for all « € [0, 1] and from the definition of d_,d; this

is true if and only if u, —v, =0, uf — v} =01ie u, =v,, ul = v} for all
a€0,1.0

The connection between the gH-difference, the g-difference and the Hausdorff
distance adds a geometric interpretation for the differences constructed.

Proposition 15 For all u,v € Rx we have

D (u,v) = sup ||[u]a Ogn [v]all, = [lu©g v]|
a€gl0,1]

where ||-|| = D (+,0).
PROOF. We have that w = u©,v is a fuzzy number, then |w|| = sup max {|w, |, |wl|} =
a€l0,1]

max{|wy |, [wg |} and

sup ||[ula Ogn [V]all, =

a€gl0,1]

= sup | [min{u, —v,,ul—vl}, max{u; —v, ul—vi}]|
a€l0,1] *

= sup max{‘min{u;—v;,u:—vz} : max{u;—va_,u;—vj;}‘}
a€(0,1]

I

= sup max{‘u; —vg |, jub — v:{‘} = D(u,v).

a
a€l0,1]

Now, since max and sup are idempotent operators, we obtain

[u©g v|| = sup |[[[uS,vlal,
a€(0,1]

= sup
a€l0,1]

[inf min{uy — vy, u — vy },sup max{uy — vy, uj — v}'}}
B>a

B>a
ug — UE‘}}

ub — v+‘} = D(u,v).00

*

I

= sup {supmax{}ug —vg
a€0,1] (B>a

? e} e}

= sup max{‘u; — v,
a€(0,1]

Example 16 Let us consider some examples when the gH-difference does not
exist, while the g-difference exists. At the beginning of this section we have
considered two trapezoidal fuzzy numbers u = (0,2,2,4) and v = (0,1,2,3).
Their g-difference is the [0,1] interval (interpreted as the trapezoidal fuzzy
number (0,0,1,1). If we consider the trapezoidal number v = (2,3,5,6) and
the triangular number v = (0,4,4,8) we can see that their gH-difference does
not exist. Their g-difference however, exists and it is given as in Fig. 1.

11
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Figure 1. The g-difference u©4v (solid line) of a trapezoidal u = (2, 3,5, 6) (dash-dot
line) and a triangular v = (0,4, 4, 8) (dashed line) fuzzy number.

Remark 17 We observe that since u ©4v = u Oy v whenever the right side
exists we can also conclude

D(u,v) = [lu Sy vl = [lu Sgn v,

whenever u Ogy v exists.

3 Generalized Hukuhara differentiability (gH-differentiability)

Generalized differentiability concepts were first considered for interval-valued
functions in the works of Markov ([24], [25]). This line of research is continued
by several papers [2], [8], [31], [39] etc. dealing with interval and fuzzy-valued
functions. In this section we focus on the fuzzy case and we present and com-
pare alternative definitions for the derivative of a fuzzy-valued function.

The first two concepts were presented in [2] for the fuzzy case and in [39], [40].
These are using the usual Hukuhara difference ©p.

Definition 18 (/2]) Let f :]a,b|— Rz and zo €]a,b]. We say that f is strongly
generalized Hukuhara differentiable at xo (GH-differentiable for short) if there
exists an element f.(zo) € Rz, such that, for all h > 0 sufficiently small,

(i) 3f(xo + h) & f(x0), f(xo) ©1 f(zo — h) and
f(xo+h) Sn f(x0) ~ lim f(xo) ©m f(xo — h)

H h N0 h = Ja(wo)
or (1) 3f(xo) O f(xo + h), f(xo—h) O f(xg) and

. f(@o) O f(wo+h) . flzo—h)Ou f(x0) _

o ==y =l T = feleo),

12



or (i) 3f (xo + h) ©u f(x0), f(xo—h) Su f(x) and
f(zo +h) ©n f(x0) f(xo — h) ©n f(x0)

A h = ho (—h) = falwo),
or (iv) 3f(x0) ©n f(zo + h), f(x0) O f(xo —h) and

. f(z0) On fzo + D) . f(zo) On f(wo — h) /

N (—h) = o h = (o).

Definition 19 (/2]) Let f :]a,b[— Rz and x¢ €la,b]. For a sequence h, \, 0
and ng € N, let us denote

ALY = {n = ng; 3ED = f(wo+ ha) S flwo)}

A®) = {n > ng; IEP) = f(x0) O f(wo + hn)} )

no

AD = {0 > n; 3ED = f(o) Su flao— )}

o

AW = {n 2 no;3BY = fao— o) S fla0)}.

0
We say that f is weakly generalized (Hukuhara) differentiable on xq, if for any
sequence hy, \, 0, there exists ng € N, such that AV UAD UAB UAY = {n
N;n > ng} and moreover, there exists an element in Ry denoted by f! (zo),
such that if for some j € {1,2,3,4} we have card(AY)) = +oo, then

| B
dim D ((—Wb’fw(%)) =0.

Based on the gH-difference we obtain the following definition (for interval-
valued functions, the same definition was suggested in [25] using inner-difference):

Definition 20 Let zy €|a,b] and h be such that xo + h €la,b|, then the
gH-derivative of a function f :]a,b|— Rx at zq is defined as

Fya() = T 2 [ (o + ) Oy f(r0)] (®)

If fou(z0) € Ry satisfying (8) exists, we say that f is generalized Hukuhara
differentiable (gH-differentiable for short) at xy.

Theorem 21 The gH-differentiability concept and the weakly generalized (Hukuhara)
differentiability given in Definition 19 coincide.

13



PROOF. The proof is similar to the proof of a corresponding result in [39].
Indeed, let us suppose that f is gH-differentiable (as in Definition 20). By
Proposition 6, iii), for any sequence h,, \, 0, for n sufficiently large, at least two
of the Hukuhara differences f(xo+h,)om f(x0), f(xo)Su f(xo+hn), f(z0)Sn
f(@o—hy), f(zo—hy)On f(20) exist. As a conclusion we have AQNVUABPIUABU
AW = {n € N;n > no} for any ng € N. The rest is obtained by observing that

ET(lj) _ f(x0+h7L)eng(x0)
(—1)7FTh, — b
if we assume f to be weakly generalized (Hukuhara) differentiable then since

at least two of the sets AW, AZ) A® AW are infinite }llli%%[ f(xo + h) Ogu

no ?
f(#o)] = lim
differentiable. As a conclusion weakly generalized (Hukuhara) differentiability
is equivalent to gH-differentiability.[]

, written with gH-difference this time. Reciprocally,

()
(71])3}%% for at least two indices from j € {1,2,3,4}, so f is gH-

Example 22 Let f(z) = p(x)a where p is a crisp differentiable function and
a € Rg, then it follows relatively easily that the gH-derivative exists and it is

on () = p'(z)a.

As we have seen in conditions (5) and in equation (6), both gH-difference
and g-difference are based on the gH-difference for each a-cut of the involved
fuzzy numbers; this level characterization is obviously inherited by the gH-
derivative, with respect to the level-wise gH-derivative.

Definition 23 Let ¢ €|a,b| and h be such that zo+ h €]a,b[, then the level-
wise gH-deriative (LgH-derivative for short) of a function f :la,b[— Rz at
xo 15 defined as the set of interval-valued gH-derivatives, if they exist,

Frou (o) = i (1f(xo + ), Oy (20, ©

If f141(70)a s @ compact interval for all o € [0, 1], we say that f is level-wise
generalized Hukuhara differentiable (LgH-differentiable for short) at xy and
the family of intervals { f1,p(z0)ala € [0,1]} is the LgH-derivative of f at xo,
denoted by f1,m (o).

Clearly, LgH-differentiability, and consequently level-wise continuity, is a ne-
cessary condition for gH-differentiability; but from (5), it is not sufficient.

The next result gives the analogous expression of the fuzzy gH-derivative in
terms of the derivatives of the endpoints of the level sets. This result extends
the result given in [6] (Theorem 5) and it is a characterization of the gH-
differentiability for an important class of fuzzy functions.

Theorem 24 Let f :Ja,b]— Rz be such that [f(z)], = [f, (x), f.F(x)]. Sup-
pose that the functions f, (z) and fI(x) are real-valued functions, differen-
tiable w.r.t. x, uniformly w.r.t. « € [0,1]. Then the function f(x) is gH-
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differentiable at a fized x €la,b] if and only if one of the following two cases
holds:

a) (f7) () is increasing, (f) () is decreasing as functions of o, and

/
() @) < () @), or
b) (f7) (z) is decreasing, (f) (x) is increasing as functions of a, and
/
)

(1) (@) < (1) (@).
Also, Ya € [0, 1] we have

[fra(@)] = min{(£2) @), (£) @} max{(£;) @), (£1) @} (10)

PROOF. Let f be gH-differentiable and assume that f (z) and f}(z) are
differentiable. Clearly, gH-differentiability implies LgH differentiability; then
we have

(@) = min{(£7) (@), (£) @)} max{(£2) @), (£) @)}

Now suppose that for fixed = € [a, b], the differences (f}) (x)—(f;) (z) change
sign at a fixed ag € (0,1). Then { ;H(x)] is a singleton and, for all « such
@0

that ap < o < 1, also [f;H(x)} is a singleton because [f;H(a:)} - { ;H(x)} ;
« « aoQ

it follows that, for the same values of o, (fF) (x) — (f) (z) = 0, which is a
contradiction with the fact that (fF)" (z) — (f;) (x) changes sign. We then
conclude that () (z)—(f;)" (z) cannot change sign with respect to o € [0, 1].
To prove our conclusion, we distinguish three cases according to the sign of

() @) = () @)
I (f7) (2) < (fF) (@), then () (2) = (/:
(

fa@)] = 1(£) @, (£) @)
since f is gH-differentiable, the intervals [(f5) (z), (fF) ()] should form a
fuzzy number, ie., for any a > 8, [(£;) (z), (f1) ()] € [(£; ) (@), () (@)]

which shows that (f;) () is increasing and (f})’ () is decreasing as a func-
tion of a.

- If (ff)l(x) > (ff)/(:v), then (f) (z) — (f7) (z) < 0 for every a € [0,1]

and, in this case, / /
@) =1(f) @), (£2) (x)]
so that [(£) (2), (f2) (z)] € [(£] ) a:),(fg) , for any a > (3, which

shows that (f;) () is decreasing and (f;) () is increasing as a function of
a. . — / / . ! .

- In the third case, we have (fl) (x) = ( 1*) (x); if (fyu) () € R is a
crisp number, the conclusion is obvious; if this is not the case, then we may

have either (fo_)l (z) < (f0+>/ (z) or (fo_)/ (z) > (f&r)/(x) and, taking oy =

) (x) > 0 for every o € [0,1]
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inf{a| (f;) (x) = (f;)' (x)}, we have correspondingly that (f;)" (z) < (f)' ()}
or (f7) () > (fF) (z)} for all @ € (0,1), because the differences cannot
change sign w.r.t. a. We conclude that (f;) (x) and (f)' () are monotonic
w.r.t. a.

Reciprocally, let us consider the Banach space B = C[0,1] x C[0, 1], where
C[0,1] is the space of left continuous functions on (0, 1], right continuous at
0, with the uniform norm. For any fixed = €|a, b[, the mapping j, : R — B,

defined by

Jo(f) = (f (@), [T (@) = {(f3 (2), fa ()] € [0, 1]},

is an isometric embedding. Assuming that, for all «, the two functions f, ()
and fF(x) are differentiable with respect to x, the limits

exist uniformly for all « € [0, 1]. Taking a sequence h,, — 0, we will have

fo w4+ hn) = fo (%)

(42) (@) = Jim

n—oo h,
(fof)/ () = lim, falz+ h;ZT)L - f;f(l‘)7

ie., (f2) (2), (f}) (x) are uniform limits of sequences of left continuous func-

tions at a € (0,1], so they are themselves left continuous for o € (0,1].
Similarly the right continuity at 0 can be deduced.
Assuming that, for a fixed = € [a, b], the function (f;) () is increasing and

the function (fF)’(z) is decreasing as functions of «, and that ( fi )/ (x) <
(ff)l (z), then also () (z) < (f) (z) Va € [0, 1] and it is easy to see that
the pair of functions (f;) (x), (fF)' (x) fulfill the conditions in proposition

2 and the intervals [(f7) (z), (fF) (2)], @ € [0, 1] determine a fuzzy number.
Now we observe that the following limit uniformly exists

lMJW+M6wﬂ@]:Fmﬂ@+mﬁmwhmﬂ@+2—ﬂww

h—0 h h—0 h ’ h—0

/ /
=[(f) @), (£7) @)],Ya € 0,1],
and it is a fuzzy number, so by Lemma 4 we obtain that f is gH-differentiable.
/
If (f7) (z) is decreasing, (f) (z) is increasing as functions of a, and (ffr) () <
(ff)l (z), then also (f) (x) < (f7) (x) Ya € [0, 1] and, by proposition 2, the
intervals [(f) (x), (f7) (x)], a € [0, 1] determine a fuzzy number. Observing
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that the following limit exists uniformly

i £ @) S f(x)] _ lhm fa(z+h) = fa(@) o falz+h) = fol@)
- h

h—0 h h—0 " h—0
=[(f1) @), (£2) @), va € [0,1],

and it is a fuzzy number, using Lemma 4 again, we obtain that f is gH-
differentiable.[]

Remark 25 It is interesting to observe that conditions a) and b) require the
monotonicity of (f7) () and (fF)' (x) with respect to a in [0,1]. On the
other hand, the monotonicity seems not sufficient, as in fact it is also ne-
cessary that (£1) (z) and (f7) (z) be left-continuous for o €]0,1] and right
continuous at o« = 0. It follows that the relationship between the (level-wise)
LgH-differentiability and the (fuzzy) gH-differentiability is not obvious. On the
other hand, we know that f,, (x) and f}(x) satisfy (for all x) the left-continuity
for a €]0,1] and right-continuity at « = 0. We can formalize the problem in
terms of iterated limits as follows. For simplicity, denote with g,(z) one of the
two functions f, (x) or f(x) and let g/ () be its derivative with respect to x.
We know that each f; (x) or fI(x) is left-continuous for a €]0,1] (the case of
right continuity for a = 0 is analogous), so is g.(x), i.e. lg%lgam(x) = gu().

On the other hand, differentiability of gon(x) with respect to x means

. Ga+h(T + k) — gayn(T)
lim = ,2 0 g @),

Now, it is true that

Jo(x + k) — ga(x)

, Y
.1/ .
= lim <1}%19a+h(fc + k) — %%Lga-i-h(:p))
k—0 \ h10 k

and to have ¢!, (x) left continuous at o we need

go(x) = limg,, ., (x)

h10
= lim <limga+h(x + k) _ ga+h(x)> .
h10 \ k—0 k

It follows that left continuity of g.,(x) requires that the following iterated limit
equality holds:

lim <1imga+h($ + k) B goz-&-h(x)) — lim <hmgoc+h($ + k) — ga-i—h(x)) ) (11)

k—0 \ h10 k 10 \ k—0 k
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From a well known theorem on double and iterated limits, the existence of

the double limit . liOI%T g"”(”k;_ga*h(x) in the (o, x) plane is sufficient, in our

case, for (11) to be valid. As we can see from the previous Theorem 24, the
existence of derivatives, uniformly for all level sets, is a sufficient condition
to solve the problem discussed in the remark.

According to Theorem 24, for the definition of gH-differentiability when f, (x)
and f(x) are both differentiable, we distinguish two cases, corresponding to
(i) and (ii) of (4).

Definition 26 Let f : [a,b] — Rz and zo €]a,b] with f, (x) and fI(x) both

differentiable at xq. We say that
- f is (i)-gH-differentiable at xq if

() [fuo)] =1(£) @) (£) @) Voo, (12)
- f is (ii)-gH-differentiable at xq if

(i) [fu(eo)] = 1(£) @), (£) @)l Vae 0,1 (13)

It is possible that f : [a,b] — Rz is gH-differentiable at 27 and not (i)-gH-
differentiable nor (ii)-gH-differentiable, as illustrated by the following example,
taken from [34].

Example 27 Consider f :] — 1,1[— Ry defined by the a—cuts (it is 0-
symmetric)
1 1
. , 14
e = | " R v a) G r A+ a) 14
ie. fo(x) = —WM and f(x) = m The level sets are as in

Fig. 2.

For all x # 0 and all « € [0,1], both f, and [} are differentiable and satisfy
conditions of Theorem 24; at the origin x = 0 the two functions f, and f}
are not differentiable; they are, respectively, left and right differentiable but
left derivative and right derivative are different, in fact

1 1
~ g £ <0 T+ <V
(f)(x)=< % =0 and (f1)(z)=< % =0 .
1 1
i *>0 — ey >0
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Figure 2. The level sets of the function in (14), a = 0,0.1,...,1

Now, for the gH-difference and h # 0 we have

[f(h) Seu FO), _
h

1 l 1 1 ]@ [ 1 1 1
hi A+ +a) A+]a)A+a)| " Q+a) (1+a)

I lmin{ il mlll } max{idem}]
h(1+ o) (L+1h)) (1+1n]) [’

1 [ pJnl ]

h(14+«) [(1+|R])" (14 |h|)

1 l -1 1 ]
(1+a) [(T+1h)" (1 +1h])
It follows that the limit exists

C o () Sem FO)], [ -1 1
Fonr0) =, h N l(1+a)’ (1+oa)]

and f is gH-differentiable at x = 0 but f; and fI are not differentiable at
x =0 for all a; observe that f is (i)-gH-differentiable if x < 0 and is (ii)-gH-
differentiable if x > 0. (see Fig. 3).

Remark 28 [t is easy to see that the gH-differentiability concept introduced
above is more general than the GH-differentiability in Definition 18. Indeed,
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Figure 3. The level sets of the gH-derivative of the function in (14)

consider the function f: R — Rg,

(-=1,0,1) - (1 —a?sin2) if  # 0
(—1,0,1), otherwise '

fx) =

It is easy to check by Theorem 24 that f is gH-differentiable at © = 0 and
11(0) = 0. Also, we observe that f is not GH-differentiable since there does
not exist 6 > 0 such that f(h)Sg f(0) or f(—h)Su f(0) exist for all h € (0,0).

The following properties are obtained from Theorem 24.

Proposition 29 If f : [a,b] — Rz is gH-differentiable (or right or left gH-
differentiable) at xo € [a,b] then it is level-wise continuous (or right or left
level-wise continuous) at xy.

PROOF. If f : [a,b] — Ry is gH-differentiable at z¢ and [f(z)], = [f, (@), f (2)]
let [f'(w0)l,, = [9a (€0), 9o (w0)] where

o) = i [ 20 =S 0] Sl 1) oo
6t (@) = Jim max{fa (ot W= fyeo) fileo )= fg<xo>} |

Then for any € > 0 there exists 6. > 0 such that for all values of h with
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|h| < 6. we have (simultaneously)

fa (o ) — fi (w0) fi(wo+h) — fi W} (15)

g, (xg) —e < min{ . ; -

< go(w0) +¢

and

fo(zo+h) — f, (o) f;(xo—i—h)—f;(ﬂﬁo)} (16)

< gh(xg) +e.

Suppose f (z)or fF(z) are not continuous w.r.t. z for some a € [0, 1]; then

éirré (fi(xo+ h)— f(x0)) # 0 or img (ff(zo+ h) — fi(x0)) # 0 and so one

fo (@oth)—fa (o) . f& (zo+h)—fa (z0)
h h

of the two functions is unbounded for small
|h| and this contradicts inequalities 15 or 16; so f,, (z)or f.F(z) are continuous
for all @ € [0, 1] and f is level-wise continuous.[]

Proposition 30 The (i)-gH-derivative and (ii)-gH-derivative are additive op-
erators, i.e., if f and g are both (i)-gH-differentiable or both (ii)-gH-differentiable
then

@) (f+9)

/ I() f(z) gH+g(z) _gH>
(i) (f + 9)

zz) gH +g(u) —gH -

ARG

PROOF. Consider (i) and suppose that f and g are both (i)-gH-differentiable;

then, for every a € [0, 1] we have, [f']a = [(f5)", (/)] and [¢']a = [(94)", (94)']
with (f,) < (fF) and (g;) < (¢)'; it follows that

(f+9)a=[(fa +92). (fF+9D))

fo +92)(fd +92)]
fo) 4 (92) (F5) + (92)]
F) s )T+ 1(92) (92)']
To + [9]a

the case of f and ¢ both (ii)-gH-differentiable is similar.[]

It
It
It
It
=1

Remark 31 From Proposition 30, it follows that (i)-gH-derivative and (ii)-
gH-derivative are semi-linear operators (i.e. additive and positive homogen-
{3})1};3}. ghey are not linear in general since we have (k for)(;y—gir = K(for) (i) —gm-
7 < U.
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4 Generalized fuzzy differentiability (g-differentiability)

Based on the g-difference introduced in Definition 7, we propose the following
g-differentiability concept, that further extends the gH-differentiability.

Definition 32 Let zy €|a,b] and h be such that zo + h €la,b|, then the
g-derivative of a function f :la,b[— Rz at zo is defined as

filo) = imo [f(xo + ) Oy F(wo)]. a7)

If fi(x0) € Ry satisfying (17) exists, we say that f is generalized differentiable
(g-differentiable for short) at xy.

Remark 33 Let us observe that the g-derivative is the most general among
the previous definitions. Indeed, f(zo + h) ©4 f(xo) = f(xo + h) Ogu f(z0)
whenever the gH-difference on the right exists. An example of a function that
18 g-differentiable and not gH-differentiable will be given later in Example 39.

In the following theorem we prove that the g-derivative is well defined for a
large class of fuzzy valued functions. Also we prove a characterization and a
practical formula for the g-derivative.

Theorem 34 Let f : [a,b] — Rz be such that [f(z)], = [f. (%), fF(z)].
If fo(z) and f1(z) are differentiable real-valued functions with respect to x,
uniformly for a € [0,1], then f(z) is g-differentiable and we have

o], = |t min (1) @), (1) @ spmat (55) 0, (57 ()]
. (18)

PROOF. By Proposition 8 we have

FF G 1) 0 F@)]a = 3 linf min{f(z + h);— ()3, F(+ B~ ()5,
supmass{ f(z+ ) £ (2);, f(& + W)~ F @)1,

Bzo

Since f,, (z), f(x) are differentiable we obtain

lim }tmx +h) 8, f(2)]a

—0

= [t minf(75) 00, (55 @) supmax{(15) (). (77 @)
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for any o € [0,1]. Also, let us observe that if f,, f are left continuous with
respect to a € (0, 1] and right continuous at 0, considering a sequence h,, — 0,
the functions

fo @+ hn) = fo (@) folz+ha) = f3(x)
B ’ ha,

are left continuous at o € (0, 1] and right continuous at 0. Also, the functions

inf min { o (2t hm) = f5 () F @+ ) = f;m}
B>a P, I,

and
sup max { fi (@4 hy) — fg(rc)j fi (@4 hy) = f7 (2) }
B>a hy I

fulfill the same properties. Then it follows that
inf min{(f5) (). (7) (@)}, sup max{(f5) (@), (f7) (@)}

are left continuous for o € (0,1] and right continuous at 0. It is easy to
check that infgs, min{ (fg)l (x), (f;), (x)} is increasing w.r.t. a € [0,1] and
SUpgs,, Max{ (fﬁ_), (x), (fg), (x)} is decreasing w.r.t. a € [0, 1]; by Proposition
2 they define a fuzzy number. As a conclusion, the level sets { f;(:p)}a define a
fuzzy number, and so, by Lemma 4, the derivative f;(r) exists in the sense of
the g-derivative.[]

The next result provides an expression for the g-derivative and its connec-
tion to the interval gH-derivative of the level sets. According to the res-
ult that the existence of the gH-differences for all level sets is sufficient to
define the g-difference, the uniform LgH-differentiability is sufficient for the
g-differentiability.

Theorem 35 Let [ :Ja,b|— Rz be uniformly LgH-differentiable at xo. Then
f is g-differentiable at o and, for any o € [0, 1],

[fg(xo)]a = cl ( U figH(xO)B> :

B>a
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PROOF. Let z €]a,b[ and h be such that zq + h €]a, b, and denote, for
a € [0, 1], the intervals

Aalh) = 7 ([0 + D) Syt [F (o)),

lo = }llii%/\aw) = figH(xO)aa

Aa(h) = d ( U Aﬁ(h)) =

Bza

La =cl (Ulﬁ) .
B>a

Let A(h) and L be the fuzzy numbers having the intervals {A,(h)|a € [0,1]}
and {L,|a € [0, 1]} as level-cuts, respectively. The fuzzy numbers A(h) and L
are well defined. Indeed, as it was shown in the previous Theorem 34 the level
sets {An(h)|a € [0,1]} and {L,|a € [0, 1]} verify the conditions in Proposition
2. We will show that the following limit exists

([f (@0 + h)la O [f(T0)]a)

SRS

limA(h) = L

h—0

and, consequently, that the g-derivative of f at xy exists and equals L.
Denoting the intervals A,(h) = [A, (h), AL (h)] and L, = [L,, L}] we have

AL (h) = égg)\g(h), Af(h) = supXj (h)

“ B>a
L- =infl;, LT = It
= ib 1 =l

and, from the uniform LgH-differentiability of f, we have that for all ¢ > 0
there exists d. > 0 such that

| <6 — z——5<A;(h)<z;+Z for all a € [0,1]

« T g
| <5, = z;—%<xg(h)<zg+i for all o € [0,1].

On the other hand, from the definition of inf and sup, we also have that, for
arbitrary ¢ > 0 and for all « and all h, there exist 5; > a, B2 > «, 03 > «
and B4 > a, such that AJ(h) > A5 (h) — %, Ly > 15, — 5, AL (h) < Af, (h) + 5,
Li <13, +5.

It follows that, for all € > 0 there exists J. > 0 such that, if |h| < J. and for
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all o € [0, 1],

_ _ £ _ g 15 _ 9
_ _ £ _ g g _ 15
La>la =5 > A5 -5 =S 2 A0k - &,

g g 9 g

Az(h)<>\E3(h)+1<l;3+1+1§[/:+§,
15 9 15 15
L:<lg4+1</\E4(h)+i+1§A;t(h)+§

and, consequently, for the same values of h,
[A(R) &g L = S%P”HAan<9¢yLaH*
agc|0,

= sup maX{‘A;(h) - L;‘ ; ‘Ai(h) - Li\}

a€l0,1]

<€<
— < E.
2

It follows that limj_.o A(h) = L.OJ

The next Theorem shows a minimality property for the g-derivative.

Theorem 36 Let f be uniformly LgH-differentiable. Then f;(z), for a fized
x, 1s the smallest fuzzy number w € Rx (in the sense of fuzzy inclusion) such
that f1,5(7)a C [w], for all a € [0, 1].

PROOF. The result is similar to the minimality property for the g-difference.
For the proof let us observe first that from Theorem 35, we have ([f (a:)]a); u C
[f4(2)]a, Ya € [0, 1]. Let us consider now w € Rz such that ([f(x)]a)/gH C [w]a.
Then for g > a we have

and we get

U ([f(@)])ypr € [wla,

Bzo

ie, [frgn(®)la € [w]a.O

From the example after Definition 26, the converse of Theorem 34 is not valid;
in fact, we may have f (z), f;F(x) not necessarily differentiable in x for all a.

The most important cases of differentiability, from an application point of
view, are those in (i.) and (ii.) in Definition 26, since these cases are eas-
ily characterized using real-valued functions and used in the study of fuzzy
differential equations ([4]).
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It is an interesting, non-trivial problem to see how the switch between the two
cases (i.) and (ii.) in Definition 26 can occur. We will assume, for the rest of
this section, that f, (z) and f(z) are differentiable w.r.t. z for all a.

Definition 37 We say that a point x €|a, b| is an [-critical point of f if it is
a critical point for the length function len([f(x)]a) = f(x) — f7(x) for some
a € [0,1].

If f is gH-differentiable everywhere in its domain the switch at every level
should happen at the same time, i.e, Llen([f(z)l.) = (f(z) — fi(z)) =0
at the same point z for all « € [0, 1].

Definition 38 We say that a point xoy €|a,b| is a switching point for the
gH-differentiability of f, if in any neighborhood V of xq there exist points
T < x9 < Ty such that

type-1 switch) at x1 (12) holds while (13) does not hold and at xo (13) holds
and (12) does not hold, or

type-1I switch) at x; (13) holds while (12) does not hold and at x4 (12) holds
and (13) does not hold.

Obviously, any switching point is also an [-critical point. Indeed, if z( is a

switching point then [(f,)' (wo), (f1)' (20)] = [(f2)' (z0), (f3)" (wo)] and so
(fJ) (xo) = (fO’) (o) and len(f(zo))" = 0. Clearly, not all [-critical points
are also switching points.

If we consider the g-derivative, the switching phenomenon is much more com-
plex as it is shown in the following example.

Example 39 Let us consider the function f(x) given level-wise for x € [0, 1]
as

fi(z) = we™™ +a? (6712 +z— xe"r>
fr@)=e® +z+(1-0a?) (ez —x+ 6_12)

and pictured in Figure 4.

It is easy to see that it is g-differentiable but it is not gH-differentiable. The
derivatives of f (x) and fI(x) are in Figure 7?7 and we see that it is (ii)-gH-
differentiable on the sub-interval [0, x1] where x1 =~ 0.61, is (i)-gH-differentiable
on (xq, 1] where x4 ~ 0.71 and is g-differentiable on the sub interval [y, x3].
The g-derivative is represented in Figure 5.

We can see that the transition between (ii)-gH and (i)-gH differentiability is
not simply at a single point. Instead we have a region where the transition
happens.
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Figure 4. Level sets of the function defined in Example 39.

———

0.0 T T T T T T T T T T T T T T T T T T

Figure 5. Example of a function that is g-differentiable but not gH-differentiable

Definition 40 We say that an interval S = [x1,x2] Cla,b[, where f is g-
differentiable, is a transitional region for the differentiability of f, if in any
neighborhood (1 — §, x5 + ) D S, § > 0, there exist points r1 — § < & < 11
and x9 < & < 19 + 0 such that

type-1 region) at & (12) holds while (13) does not hold and at & (13) holds
and (12) does not hold, or

type-1I region) at & (13) holds while (12) does not hold and at & (12) holds
and (13) does not hold.
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Similar to [39] we have a strong connection between the concepts of GH-
differentiability, gH-differentiability and g-differentiability. The new concept of
g-differentiability is more general than the other two concepts, but in practical
investigations we may use gH- or GH- differentiabilities depending on the given
application.

Theorem 41 Let f :]a,b[— Rx be a function [f(z)], = [f5 (z), fI(x)]. The
following statements are equivalent:

(1) [ is GH-differentiable,

(2) f is gH-differentiable and the set of switching points is finite,

(8) f is g-differentiable and the transitional regions are singletons and there
are finitely many of them.

PROOF. The proof of the equivalence between (1) and (2) is similar to the
proof of Theorem 28 in [39]. It is easy to see that (2) implies (3). To prove
that (3) implies (1) we can observe that except for the transitional regions, the
cases (i.) and (ii.) in Definition 26 are satisfied. The set of transitional regions
coincides with the set of switching points and these are now singletons. Since
there are finitely many such switch-points we obtain that the function is GH-
differentiable and the proof is complete.l[]

We end this section by considering the gH-derivative in terms of the CPS
(crisp+profile+symmetric) decomposition of fuzzy numbers, introduced in
[41] and [38]. Given a fuzzy-valued function f : [a,b] — Rz with level-cuts
[f(2)]a = [f5 (z), f.F (z)], the CPS representation decomposes f(z) in terms of
the following three additive components

~ ~

f@) = f(z)+ f(2) + f(2)

where f(@) = [f (@), fT(x)] is a (crisp) interval-valued function, flz) =
{fa(x)]a € ]0,1]} is a family of real valued (profile) functions f, : [a,0] — R

and f(r) is a fuzzy valued function f i [a,b] — Rx of O-symmetric type

[f(2)]a = [ fo(2), fo(x)]; the three components are defined as follows

o~

(@) = [f(@), L., f(z) = fi (x) and [*(z) = f; (z)

~ (x x T (x Hx
fa(x):fa();rfa( ) fi( );rf (=)

) = EOHE) 1)~ fite)

for all a € [0, 1]

> 0 for all a € [0, 1]
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and are such that

Equations (19) define the CPS decomposition of f(x) € Rg; for its properties
we refer to [41] and [38]. Consider that f(x) is a symmetric fuzzy number if
and only if f,(z) = 0 for all a € [0,1] (the profile is identically zero). We call
f(z) + f(z) the symmetric part of f(z).

Assume that the lower and the upper functions f, and fd are differentiable
w.r.t. x for all «; then also f and fJr are differentiable w.r.t. z; fa and f,
are differentiable w.r.t. x for all a. Obviously

(fa)'(x) = (Ji ) (@) + (fa)' () = (fa)(2)
fr

(f3) (@) = (F)' (@) + (fa) (2) + (Fa) ()

and the level cuts of the gH-derivative of f are given by

[ywla = (fa) + min{(f7)' = (F.)', (J*) + (fo)'}, max{idem}].  (20)

From (20) we deduce some interesting facts.

First, if f is (i)-gH-differentiable or (ii)-gH-differentiable, the form of differen-
tiability is decided by the derivative of the symmetric part f(z) + f(x).

Second, the two cases of Theorem 24 can be rewritten in terms of the com-
ponents. In fact, (f.)'(z) is increasing (or decreasing, respectively) w.r.t. «

if and only if o < § implies (fo)'(z) — (fo)'(2) < (f5)(x) = (J5)'(z) (or
(fo) () = (Fo) (2) = (f5)'(x) = (F5)'(x), respectively); (f)'(x) is increasing

(or decreasing, respectively) w.r.t. a if and only if @ < 3 implies ( fo) () +

(Fo)'(@) < (f) (@) + (Fa) (@) (or (fo)'(2) + (Fo)'(x) = (f5) (@) + (F5) (@),

respectively); then, the two cases in Theorem 24 become:

a) f is (i)-gH-differentiable and, for & < 3, we have ’(ﬁ)’(az) - (%)’(m)‘ <

(fa) (x) = (f5)(x); a necessary condition is that (f,)" is decreasing w.r.t. o;

b) f is (ii)-gH-differentiable and, for @ < 3, we have )(};)'(x) - (};)’(x)‘ <
(fs)'(x) = (f4)(x); a necessary condition is that (f,)" is increasing w.r.t. a.

A third interesting situation is when functions f, (z) and f;(z) are differen-

*fa (z)
Oxda ?

tiable w.r.t. x and w.r.t. «, and the mixed second order derivatives
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% exist. It follows that the monotonicity conditions, according to The-

orem 24, are

P f(x)
a > ——— K
orxda — 0 and tole} 0

OR
17 () 1 ()
a < a > 0.
oxda — 0 and oxda — 0

0 fo (x)
0

In terms of the CPS decomposition, we obtain (consider that f~(z) and f*(z)
do not depend on «)

P falz) O Fal2) 0 fal2) L Plal@)

> <
orda Oorda — 0 and Orda Oorda — 0, Vo
OR
Pfa(x)  0%f,(2) Pfa(x)  0%f,(2)
— < >
Orda Orda — 0 and Orda + Oorda — 0, Vo
ie.,
82?& ('I‘) a2f06 (33') 82?04 (1")
Orda — 0 and Orda | — O0rOa
OR
P f () Pfa(x)| _ 0%f,(2)
—Jav/ s < a .
Oxda — 0 and OxOda | = Ozl

Remark 42 For a symmetric fuzzy function, the monotonicity conditions for
gH-differentiability are simplified; in this case, f,(x) = 0 for all o and the

monotonicity of (f,) () w.r.t. a is sufficient: if

a) [ is (i)-gH-differentiable and (f,)'(v) is decreasing w.r.t. a (eventually

9%f,,(x
) <0 Va);

or B

b) f is (ii)-gH-differentiable and (f,)'(z) is increasing w.r.t. « (eventually
%f. (x

aﬁ‘é&) >0 Va);

then f is gH-differentiable.

In particular, if f(x) is a symmetric fuzzy number with f; (z) = fif (x), then

f is gH-differentiable if and only if (f,)'(z) is monotonic w.r.t. c.

5 gH-derivative and the integral

In this section we examine the relations between gH-differentiability and the
integral of fuzzy valued functions. A strongly measurable and integrably bounded
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fuzzy-valued function is called integrable [12]. The fuzzy Aumann integral of
f i [a,b] — Rg is defined level-wise by

l/abf(’r) de = /ab [f (2)], dz, a € [0,1].

Theorem 43 Let f : [a,b] — Rx be continuous with [f(x)], = [f, (x), [ (2)].
Then

(i) the function F(x) = ff(t)dt is gH-differentiable and Fyy(v) = f(z),

(ii) the function G(z) = ff(t)dt is gH-differentiable and Gy (v) = — f(7).

PROOF. We have [F(2)], — {f f(t)dt} — [Fo(2), F*(2)] and [G(2)]. =

[ jf(t)dt] =[G (), G (z)]. Then a

[e%

(F) (z0) = min{ f (w0), fi (x0)} = fo (o)
(Fo5) (o) = max{f; (o), fo (x0)} = fa (o)

and

(G7)a(wo) = min{—f; (o), — f3' (z0)} = —f+($0)
(GT)a(o) = max{—f; (z0), = fo (z0)} = — £ (z0).0

Proposition 44 If f is GH-differentiable with no switching point in the in-
terval |a,b] then we have

[ Fou(w)dr = F6) Oy f(a).

PROOF. If there is no switching point in the interval [a,b] then f is (i) or
(ii) differentiable as in Definition 26. Let us suppose for example that f is (ii)-
gH-differentiable (the proof for the (i)-gH-differentiability case being similar).
We have

[/abf;H(x)dx] _ /ab[(f;)'(:v), (f;)/(x)]da:

— [£0) = £ (@), £ () = £ ()
= f(b) Oy fla).O
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Theorem 45 Let us suppose that function f is gH-differentiable with n switching
points at ¢;, 1 =1,2,...,n, a =cyp < 1 < 3 < ... < ¢ < Cpy1 = b and exactly
at these points. Then we have

$0) ©gn f10) = 3 | T fywhde 0y (-1)F fru@as| . @1
Also,
n+1
[ fyu(r)de = - (Fle) O fei1))- (22)

i=1
(summation denotes standard fuzzy addition in this statement).

PROOF. The proof is similar to [39], [40].00

Remark 46 It is interesting to observe that, if the values f(c;) at all the
b
n switching points c;, i = 1,2,...,n are crisp (singleton), then we have [ f; y(x)dr =

f(b)—f(a) (the standard fuzzy difference); indeed, if u € Rr andv € R we have
UO v = u—v and vO,gu = v—u. It follows that S"H (f(c;) Ogm f(cii1)) =

i fle:) Ogn fleimr) = (F(0) = flen)+ (flen) = flen-1))t - + (fle2) —
f(a)+ (f(er) — f(a)) = f(b) — f(a) (for the crisp terms we have — f(c;) +
fle)=0,i=1,2,..n)

6 Conclusions and further work

We have investigated different new differentiability concepts for fuzzy num-
ber valued functions. The g-differentiability introduced here is a very general
derivative concept, being also practically applicable. The next step in the re-
search direction proposed here is to investigate fuzzy differential equations
with g-differentiability and applications.
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