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Abstract

A common technique for source localization is to utilize the time-of-arrival (TOA) measurements
between the source and several spatially separated sensors. The TOA information defines a set of
circular equations from which the source position can be calculated with the knowledge of the
sensor positions. Apart from nonlinear optimization, least squares calibration (LSC) and linear
least squares (LLS) are two computationally simple positioning alternatives which reorganize the
circular equations into a unique and non-unique set of linear equations, respectively. As the LSC and
LLS algorithms employ standard least squares (LS), an obvious improvement is to utilize weighted
LS estimation. In this paper, it is proved that the best linear unbiased estimator (BLUE) version
of the LLS algorithm will give identical estimation performance as long as the linear equations
correspond to the independent set. The equivalence of the BLUE-LLS approach and the BLUE
variant of the LSC method is analyzed. Simulation results are also included to show the comparative
performance of the BLUE-LSC, BLUE-LLS, LSC, LLS and constrained weighted LSC methods with
Cramér-Rao lower bound.
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1 Introduction

Source localization using measurements from an array of spatially separated sensors has been an im-

portant problem in radar, sonar, global positioning system [1], mobile communications [2], multimedia

[3] and wireless sensor networks [4]. One commonly used location-bearing parameter is the time-of-

arrival (TOA) [2],[4], that is, the one-way signal propagation or round trip time between the source

and sensor. For two-dimensional positioning, each noise-free TOA provides a circle centered at the

sensor on which the source must lie. By using M ≥ 3 sensors, the source location can be uniquely

determined by the intersection of circles. In practice, the TOA measurements are noisy which implies

multiple intersection points and thus they are usually converted into a set of circular equations, from

which the source position is estimated with the knowledge of the signal propagation speed and sensor

array geometry.

Commonly used techniques for solving the circular equations include linearization via Taylor-series

expansion [5] and steepest descent method [6]. Although this direct approach can attain optimum

estimation performance, it is computationally intensive and sufficiently precise initial estimates are

required to obtain the global solution. On the other hand, an alternative approach which allows

real-time computation and ensures global convergence is to reorganize the nonlinear equations into a

set of linear equations by introducing an extra variable that is a function of the source position. It

is noteworthy that this idea is first introduced in [7]-[8] for time-difference-of-arrival (TDOA) based

localization. The linear equations can then be solved straightforwardly by using least squares and

the corresponding estimator is referred to as the least squares calibration (LSC) method [9], or by

eliminating the common variable via subtraction of each equation from all others, which is referred

to as the linear least squares (LLS) estimator [10]-[11]. In this work, we will focus on relationship

development between the the best linear unbiased estimator (BLUE) [12] versions of the LSC and

LLS algorithms. Our contributions do not lie on new positioning algorithm development as the BLUE

technique for localization applications has already been proposed in the literature [13]. Our major

findings include (i) All BLUE realizations of the LLS algorithm have identical estimation performance

as long as the (M − 1) linear equations correspond to the independent set [10]; (ii) The covariance

matrices of the position estimates in the BLUE-LLS scheme with the independent set and the BLUE

version of the LSC algorithm are identical. By comparing with Cramér-Rao lower bound (CRLB)

for TOA-based localization [14], it is then shown that they are suboptimal estimators, and this result

is different from the iterative BLUE estimator of [13] which gives maximum likelihood estimation

performance; and (iii) Among the BLUE-LLS and BLUE-LSC algorithms, the latter is preferable as

it involves lower computational complexity. Note that the research results can also be applied to

source localization systems with received signal strength [2] measurements as they employ the same

trilateration concept where the propagation path losses from the source to the sensors are measured
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to give their distances.

The organization of this paper is as follows. In Section 2, we first develop the weighted versions

of the LSC and LLS methods based on BLUE. The equivalences between various forms of the BLUE-

LLS solutions within the independent set and the BLUE-LSC estimate are then proved. Furthermore,

their suboptimality and computational requirement will be discussed. Simulation results are included

in Section 3 to evaluate the estimation performance of the BLUE-LSC and BLUE-LLS algorithms

by comparing with the LSC, LLS and constrained weighted LSC [14] methods as well as verify our

theoretical development. Finally, conclusions are drawn in Section 4.

2 Best Linear Unbiased Estimator based Positioning

In this Section, we first present the signal model for TOA-based localization. The BLUE-LSC and

BLUE-LLS algorithms are then devised from the LSC and LLS formulations, respectively. Their

relationship, estimation performance and computational complexity are also provided.

Let (x, y) and (xi, yi), i = 1, 2, . . . ,M , be the unknown source position and the known coordinates

of the ith sensor, respectively. With known signal propagation speed, the range measurements between

the source and sensors are straightforwardly determined from the corresponding TOA measurements,

which are modelled as

ri = di + ni, i = 1, 2, . . . ,M (1)

where di =
√

(x − xi)2 + (y − yi)2 is the noise-free range and ni is the noise in ri. For simplicity, we

assume line-of-sight propagation between the source and all sensors such that each ni is a zero-mean

white process with known variance σ2
i [14].

2.1 BLUE-LSC Algorithm

BLUE [12] is a linear estimator which is unbiased and has minimum variance among all other linear

estimators. In order to employ the BLUE technique, we need to restrict the parameters to be estimated

linear in the data. It is suitable for practical implementation as only the mean and covariance of the

data are required and complete knowledge of the probability density function is not necessary. The

BLUE version of the LSC estimator is derived as follows.

Squaring both sides of (1), we have [9]:

xix + yiy − 0.5R =
1
2
(
x2

i + y2
i − r2

i

)
+ mi, i = 1, 2, . . . ,M (2)

where mi = n2
i /2 + dini and R = x2 + y2 is the introduced variable to reorganize (1) into a set of

linear equations in x, y and R. To facilitate the development, we express (2) in matrix form:

Aθ + p = b (3)
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where

A=

⎡
⎢⎢⎢⎣

x1 y1 −0.5
...

...
...

xM yM −0.5

⎤
⎥⎥⎥⎦

θ =

⎡
⎢⎢⎣

x

y

R

⎤
⎥⎥⎦

p=

⎡
⎢⎢⎢⎣

−m1

...

−mM

⎤
⎥⎥⎥⎦

and

b=
1
2

⎡
⎢⎢⎢⎣

x2
1 + y2

1 − r2
1

...

x2
M + y2

M − r2
M

⎤
⎥⎥⎥⎦

For sufficiently small noise conditions, p ≈ [−d1n1 · · · −dMnM ]T and E{r2
i } ≈ d2

i , i = 1, 2, · · · ,M ,

where T denotes transpose operation and E is the expectation operator. Hence we have E{b} ≈ Aθ

which corresponds to the linear unbiased data model. Using the information that p is approximately

zero-mean and its covariance matrix, denoted by Cp, is a diagonal matrix of the form:

Cp ≈

⎡
⎢⎢⎢⎢⎢⎢⎣

d2
1σ

2
1 0 · · · 0

0 d2
2σ

2
2 · · · 0

...
...

. . .
...

0 0 · · · d2
Mσ2

M

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

The BLUE for θ based on (3), denoted by θ̂, is then [12]:

θ̂ = (ATC−1
p A)−1ATC−1

p b (5)

where −1 represents matrix inverse. Note that the LSC estimate is given by (5) with the substitution

of Cp = IM where IM is the M ×M identity matrix, without utilizing the mean and covariance of the

data. Since {di} are unknown, they will be substituted by {ri} in practice. The covariance matrix for

θ̂, denoted by Cθ, is [12]:

Cθ ≈ (ATC−1
p A)−1 (6)
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where the variances for the estimates of x and y are given by the (1, 1) and (2, 2) entries of Cθ,

respectively. It is worthy to mention that the same weighting matrix of C−1
p has been proposed in

[14], which can be considered as a constrained weighted least squares calibration (CWLSC) algorithm

with utilizing the constraint of x2 + y2 = R. We expect that the BLUE-LSC algorithm is inferior to

the CWLSC scheme as the parameter relationship in θ is not exploited.

2.2 BLUE-LLS Algorithm

On the other hand, subtracting the first equation of (2) from the remaining equations, R can be

eliminated and we get (M − 1) equations:

(xi − x1)x + (yi − y1)y =
1
2
(
x2

i + y2
i − x2

1 − y2
1 − r2

i + r2
1

)
+ mi − m1, i = 2, 3, . . . ,M (7)

Expressing (7) in matrix form yields

Gφ + q = h (8)

where

G=

⎡
⎢⎢⎢⎣

x2 − x1 y2 − y1

...
...

xM − x1 yM − y1

⎤
⎥⎥⎥⎦

φ =

⎡
⎣ x

y

⎤
⎦

q=

⎡
⎢⎢⎢⎣

m1 − m2

...

m1 − mM

⎤
⎥⎥⎥⎦

and

h=
1
2

⎡
⎢⎢⎢⎣

x2
2 + y2

2 − x2
1 − y2

1 − r2
2 + r2

1
...

x2
M + y2

M − x2
1 − y2

1 − r2
M + r2

1

⎤
⎥⎥⎥⎦

Following the development of the BLUE-LSC algorithm, the BLUE-LLS estimate for φ based on (8),

denoted by φ̂, is:

φ̂ = (GTC−1
q G)−1GTC−1

q h (9)
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where Cq is the covariance matrix for q which has the form of

Cq ≈

⎡
⎢⎢⎢⎢⎢⎢⎣

d2
1σ

2
1 + d2

2σ
2
2 d2

1σ
2
1 · · · d2

1σ
2
1

d2
1σ

2
1 d2

1σ
2
1 + d2

3σ
2
3 · · · d2

1σ
2
1

...
...

. . .
...

d2
1σ

2
1 d2

1σ
2
1 · · · d2

1σ
2
1 + d2

Mσ2
M

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

With the use of matrix inversion lemma, its inverse can be computed as:

C−1
q ≈ diag

(
1

d2
2σ

2
2

,
1

d2
3σ

2
3

, · · · ,
1

d2
Mσ2

M

)
− 1

M∑
i=1

1
d2

i σ2
i

⎡
⎢⎢⎢⎢⎢⎢⎣

1
d4
2σ4

2

1
d2
2d2

3σ2
2σ2

3
· · · 1

d2
2d2

M σ2
2σ2

M

1
d2
3d2

2σ2
3σ2

2

1
d4
3σ4

3
· · · 1

d2
3d2

M σ2
3σ2

M
...

...
. . .

...
1

d2
M d2

1σ2
M σ2

1

1
d2

M d2
3σ2

M σ2
3

· · · 1
d4

M σ4
M

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Note that the LLS estimate is given by (9) with the substitution of Cq = IM−1, without utilizing

the mean and covariance of the data. The estimator of (9) has minimum variance according to the

data model of (8). It is worthy to note that although the dependent variable of R is eliminated in the

LLS approach, estimation performance degradation occurs in the conversion of (2) to (7) or (8). This

is analogous to TOA-based and TDOA-based positioning where the former estimation performance

bound is lower than that of the latter if the TDOAs are obtained from substraction between the TOAs

[15]-[16]. The covariance matrix for φ̂, denoted by Cφ, is:

Cφ ≈ (GTC−1
q G)−1 (12)

Although there are at most M(M − 1) LLS equations can be generated from (2), only (M − 1) are

independent [10]. In fact, (7) is an example of the independent set of equations. Although we can use

up to M(M−1) dependent equations in the standard LLS algorithm, this is not possible for the BLUE

realization because the corresponding noise covariance matrix will be singular. In the following, we will

prove that as long as the (M − 1) equations belong to the independent set, the BLUE-LLS estimator

performance will agree with the covariance matrices given by (6) and (12). Their suboptimality is

then illustrated by contrasting with the CRLB.

First, we define two sets:

Ξ = {eM,i − eM,j : i, j = 1, 2, · · · ,M, i �= j and em,n is the nth column of Im} (13)

and

Θ =
{

ξ ∈ R(M−1)×M : ξTeM−1,k ∈ Ξ, k = 1, 2, · · · ,M and rank (ξ) = M − 1
}

(14)

where Θ corresponds to all independent sets of the LLS equations. In doing so, we can generalize (8)

as:

KALφ + Kp = Kb (15)
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for any K ∈ Θ where LT = [I2 02×1] with 0M×N denotes the M × N zero matrix. As a result, the

general BLUE-LLS estimate and its covariance matrix are then:

φ̂ =
(
LTATKT

(
KCpKT

)−1
KAL

)−1
LTATKT (KCpKT )−1Kb (16)

and

Cφ ≈
(
LTATKT

(
KCpKT

)−1
KAL

)−1
(17)

As an illustration, substituting K = [−1M−1 IM−1] in (16) and (17), where 1M−1 is a column vector

of length M − 1 with all elements equal 1, yield (9) and (12).

2.3 Relationship and Performance

Using the property of K1M = 0(M−1)×1, we construct an idempotent matrix B ∈ RM×M which has

the form of:

B =
C

− 1
2

p 1M1T
MC

− 1
2

p

tr
(
C−1

p

) + C
1
2
pKT

(
KCpKT

)−1
KC

1
2
p (18)

where tr is the trace operator. Since rank(B) = tr(B) and the traces of the first and second terms in

(18) can be computed as 1 and (M − 1), respectively, we get rank(B) = M . Employing the full rank

property of B as well as idempotent property of B (IM − B) = 0M×M yield

B = IM (19)

With the use of (19), we pre-multiply and post-multiply both sides of (18) by C
− 1

2
p to obtain

KT
(
KCpKT

)−1
K = C−1

p − C−1
p 1M1T

MC−1
p

tr
(
C−1

p

) (20)

Hence the value of KT
(
KCpKT

)−1 K will be identical for all K ∈ Θ, which implies that all variants

of the BLUE-LLS algorithms have the same covariance matrix of (12).

Furthermore, the covariance matrix for the estimates of x and y in the BLUE-LSC algorithm

can be expressed as LT
(
ATC−1

p A
)−1 L, which corresponds to the upper left 2 × 2 sub-matrix of(

ATC−1
p A

)−1:

(
ATC−1

p A
)−1

=

⎡
⎣ LTATC−1

p AL −0.5LT ATC−1
p 1M

−0.51T
MC−1

p AL 0.251T
MC−1

p 1M

⎤
⎦
−1

(21)

With the use of the partitioned inversion formula, LT
(
ATC−1

p A
)−1 L is computed as

LT
(
ATC−1

p A
)−1

L =

(
LTAT

(
C−1

p − C−1
p 1M1T

MC−1
p

tr
(
C−1

p

)
)

AL

)−1

(22)
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From (17), (20) and (22), we easily see that the estimation performance of the BLUE-LLS and BLUE-

LSC algorithms is essentially identical.

Assuming that {ni} are Gaussian distributed, comparison of (12) and the CRLB for positioning is

made as follows. Denote the corresponding Fisher information matrix by D−1, which has the form of

[14]

D−1 = FTC−1
p F (23)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

x − x1 y − y1

x − x2 y − y2

...
...

x − xM y − yM

⎤
⎥⎥⎥⎥⎥⎥⎦

Exploiting G = −KF and Cq = KCpKT and with the use of (12) and (20), the inverse of Cφ can be

expressed as

C−1
φ = FT

(
C−1

p − C−1
p 1M1T

MC−1
p

tr
(
C−1

p

)
)

F (24)

From (23) and (24), we have

D−1 − C−1
φ = FT

C−1
p 1M1T

MC−1
p

tr
(
C−1

p

) F (25)

which is positive semidefinite. This implies that Cφ − D is also positive semidefinite, and thus the

variances of the BLUE-LLS estimates of x and y are greater than or equal to their corresponding

performance limits.

2.4 Complexity Analysis

Finally, the computational complexity of the linear equation based algorithms is investigated. The

numbers of multiplications and additions, denoted by M and A , respectively, required in the BLUE-

LSC, LSC, BLUE-LLS and LLS algorithms are provided in Table I which clearly shows the calculation

breakdown. Note that the Gaussian elimination is employed for performing the matrix inverse oper-

ation. In particular, we have assumed the covariance matrix of (10) which has a closed-form inverse

in the BLUE-LLS method. Excluding the computationally extensive task of solving the Lagrange

multiplier corresponding to the constraint of x2 + y2 = R, the CWLSC method needs (16M + 24)

multiplications and (10M +7) additions. Although the BLUE-LSC and BLUE-LLS methods are iden-

tical, we see that the former is preferable because it is more computationally attractive. Furthermore,

the computational requirement of the BLUE-LSC estimator is comparable with those of the LSC and

LLS schemes and is significantly less than that of the CWLSC method.
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BLUE-LSC LSC BLUE-LLS LLS

G,A 0 0 2M A 2M A

Cp,Cq 3M M 0
3M M

M A
0

C−1
p ,C−1

q M M 0
0.5M2 + 1.5M M

M − 1 A
0

ATC−1
p ,

GTC−1
q

2M + 1 M 0
2M2 − 4M + 2 M

2M2 − 6M + 4 A
0

ATC−1
p A,

GTC−1
q G

3M + 4 M

5M − 5 A

3M + 4 M

5M − 5 A

3M − 3 M

3M − 6 A

3M − 3 M

3M − 6 A

b, h
4M M

2M A

4M M

2M A

4M M

3M − 1 A

4M M

3M − 1 A

ATC−1
p b,

GTC−1
q h

3M M

3M − 3 A

3M M

3M − 3 A

2M − 2 M

2M − 4 A

2M − 2 M

2M − 4 A

Gaussian

Elimination

17 M

14 A

17 M

14 A

6 M

4 A

6 M

4 A

Total
16M + 22 M

10M + 6 A

10M + 21 M

10M + 6 A

2.5M2 + 9.5M + 3 M

2M2 + 6M − 4 A

9M + 1 M

10M − 7 A

Table 1: Breakdown of computational complexity
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3 Numerical Examples

Computer simulations have been conducted to evaluate the performance of the BLUE-LSC and BLUE-

LLS algorithms by comparing with the LLS, LSC and CWLSC [14] algorithms as well as CRLB. The

BLUE-LLS method is implemented using the form of (9). The range errors {ni} are zero-mean white

Gaussian processes. All results were averages of 1000 independent runs.

We first consider a mobile positioning scenario with 4 sensors of known coordinates (3000, 3000)m,

(3000,−3000)m, (−3000, 3000)m and (−3000,−3000)m. Figure 1 plots the mean square position

errors (MSPEs) of the positioning methods versus average noise power when the source is at (x, y) =

(1000, 2000)m. That is, the source is located inside the square bounded by the sensor coordinates.

The MSPE is defined as E
{
(x − x̂)2 + (y − ŷ)2

}
where x̂ and ŷ denote the estimates of x and y,

respectively, and the average noise power is given by σ2 = 1
M

M∑
i=1

σ2
i , where σ2

i is chosen such that all

{σ2
i /d

2
i } are kept identical. It is seen that the CWLSC scheme has the best estimation performance as

its MSPE attains the CRLB when the average noise power is less than 70 dBm2 where m is referenced

to one meter or σ = 103.5m. That is, the average noise power has a value of 10 log10 σ2 in terms of

dBm2. Note that for larger noise conditions, the CWLSC method becomes a biased estimator as its

MSPE is smaller than the CRLB. While the BLUE-LSC and BLUE-LLS algorithms are superior to

the LLS and LSC methods for the whole noise range and their MSPEs are close to the CRLB when the

average noise power is less than 80 dBm2, which indicates the BLUE approach has a better threshold

performance than that of CWLSC scheme. We also observe that the estimation performance of the LLS

and LSC methods is different although their BLUE versions are identical. Moreover, the theoretical

development of (6) or (12) is validated for sufficiently small noise powers, and the equivalence of the

BLUE-LSC and BLUE-LLS algorithms is demonstrated. It is noteworthy that the average noise power

range is reasonable for practical mobile location applications [17].

The above test is repeated for (x, y) = (7000, 8000)m where the source is located outside the

square. We see that the CWLSC algorithm attains the CRLB when the average noise power is less

than 75 dBm2. Although the BLUE approach is inferior to the CWLSC method, it has better threshold

performance and still outperforms the standard LLS and LSC schemes. The theoretical development

of (6) or (11) is again confirmed for sufficiently small noise conditions and the suboptimality as well

as equivalence of the BLUE-LSC and BLUE-LLS methods are demonstrated.

Figure 3 plots the MSPEs of all the algorithms when the source position is randomly chosen

in an area bounded by (−6000
√

2,−6000
√

2)m, (−6000
√

2, 6000
√

2)m, (6000
√

2,−6000
√

2)m and

(6000
√

2, 6000
√

2)m for each trial. This means that approximately half of the mobile positions would

be inside the region bounded by the sensor coordinates, and the remaining would be outside this

region. As a result, the estimation performance of the methods differs at each trial because the posi-

tioning accuracy varies with the relative geometry between the source and sensors. Nevertheless, the
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observations are similar to those in Figure 2.

Figure 4 shows the MSPEs of the algorithms versus number of receivers when the average noise

power is kept at 40 dBm2 with (x, y) = (1000, 2000)m. We start with 3 sensors with known positions

at (0, 0)m, (0, 3000
√

3)m and (3000
√

3, 0)m, and the sensors with coordinates (−3000
√

3, 3000)m,

(−3000
√

3,−3000)m, (0,−6000)m and (3000
√

3,−3000)m are then added successively. Notice that

variations in the sensor number also produces geometry changes and subsequently the positioning

accuracy varies as well. In Figure 4, it is seen that the estimation accuracy of the CWLSC and BLUE

methods increases with the number of receiving sensors while that of the LSC and LLS algorithm

is loosely dependent on the sensor number. That is, the performance gain of employing the BLUE

approach over the standard one is higher for a larger number of sensors. Again, (6) agrees well with

the simulation results and the suboptimality as well as equivalence of the BLUE-LSC and BLUE-LLS

methods are demonstrated.

4 Conclusion

Best linear unbiased estimator (BLUE) versions of the least squares calibration (LSC) and linear

least squares (LLS) time-of-arrival based positioning algorithms have been examined. It is proved

that various realizations of the BLUE-LLS approach are indifferent as long as the equations which

correspond to the independent set are employed, and their estimation performance is identical to that

of the BLUE-LSC algorithm. In spite of the suboptimality of the BLUE approach, its estimation

accuracy can be close to Cramér-Rao lower bound particularly when the source is located inside the

region bounded by sensor coordinates. Furthermore, the computational requirement of the BLUE-LSC

algorithm is similar to that of the standard LSC and LLS methods and is significantly less than that of

the constrained weighted LSC estimator which provides optimal positioning accuracy for sufficiently

small noise conditions.
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Figure 1: Mean square position errors at (x, y) = (1000, 2000)m
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Figure 2: Mean square position errors at (x, y) = (7000, 8000)m
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Figure 3: Mean square position errors with random source position
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Figure 4: Mean square position errors versus number of receivers at (x, y) = (1000, 2000)m
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