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TABLE III
INPUT IMPEDANCES OF AN 8-ELEMENT LOW SIDE-LOBE DIPOLE ARRAY

BACKED BY A GROUND PLANE WITH AND WITHOUT A REAL SIZE

TANGENTIAL OGIVE A-SANDWICH RADOME AT S BAND

the radome inner surface, resulting in a strong interaction between the
radome and the array. Table III presents the input impedances of the
array with and without the radome. The radome effects on the input
impedances of the array are clearly noted.

IV. CONCLUSIONS

The hybrid IE/PO method has been successfully used to predict the
directive gain patterns and input impedance of electric dipole array in
the presence of electrically large 3-D radomes. Other interesting perfor-
mance indicators such as realized gain pattern and VSWR, etc, of the
radome-enclosed array can also be obtained. The principal disadvan-
tage of the technique is that discretization is required on the dielectric
radome, leading to high computation complexity for larger array.
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Passive Localization of Near-Field Sources With a
Polarization Sensitive Array

Yuntao Wu, H. C. So, Chaohuan Hou, and Jun Li

Abstract—The least squares-virtual ESPRIT algorithm (LS-VESPA) is
extended to jointly estimate the direction-of-arrival (DOA) and ranges of
multiple near-field sources impinging on an array of crossed dipoles. The
algorithm utilizes fourth-order cumulants for direct estimation of the ar-
rival angle and range parameters via the eigenvalues of certain constructed
matrices. Compared with several existing algorithms, the loss of array aper-
ture is effectively avoided. As a result, the proposed method can estimate
DOAs and ranges of ( 1) polarized near-field sources using dual-
polarization sensors. Simulation results show that the proposed method
outperforms a fourth-order statistics based ESPRIT-like method.

Index Terms—Least squares-virtual ESPRIT algorithm (LS-VESPA),
near-field, polarization, source localization.

I. INTRODUCTION

Many methods for estimation of directions of arrival (DOAs) of
emitted sources impinging on an array of sensors have been developed
in the field of array signal processing [1], such as multiple signal clas-
sification (MUSIC) and estimation of signal parameters via rotational
invariance techniques (ESPRIT). Most of them assume that the sources
of interest are located relatively far from the array so that the wave-
fronts from them can be regarded as plane waves, which implies that
each source location is characterized by a single DOA [1]. Apparently,
this assumption is no longer valid when the source is close to the array,
such as in near-field applications of sonar [2], seismic exploration [3],
and electronic surveillance [4]. For near-field sources, they must be
characterized by spherical wavefronts at the array aperture and need
to be localized by both range and DOA [2]–[5].

Since the available methods based on the far-field assumption cannot
be directly applied to the near-field scenario, near-field source localiza-
tion is typically solved by other means, such as maximum likelihood
(ML) [2], multidimensional search [4], 2D-MUSIC [5]–[9], and higher
order statistics [10]. To avoid the multidimensional search, Challa and
Shamsunder [10], [11] have developed a total least squares ESPRIT-
like algorithm as well as unitary ESPRIT method based on fourth-
order cumulants. An optimally-weighted linear prediction method for
near-field source localization is also recently presented in [12], where
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multiple optimally weighted least squares problems need to be firstly
solved for parameter estimation.

All aforementioned methods for near-field source localization do
not exploit the polarization information at the received array. Never-
theless, the advantages of different polarization-sensitive arrays have
been utilized in wireless communications and various types of radar
systems [14], [16]. The problem of parameter estimation of far-field
signal source with a diversely polarized array has been extensively
studied [14]–[16]. This is motivated by the fact that polarization has
also been incorporated in array antennas for improved estimation of
far-field signal parameters. Recently, an enhanced method for near-
field source localization with a polarization sensitive array has been
presented in [17], which shows that the incorporation of the source po-
larization information can provide improved performance over the case
of ignoring the available polarization information. Although direct es-
timation of the DOA and range parameters can be performed in a com-
putationally attractive manner using the methods of [10]–[12], [17],
they need to exploit the symmetric structure of the sensor position co-
ordinate system. As a result, the effective aperture of array is reduced
by half. In order to enhance the estimation performance and increase
the resolution accuracy particularly for closely-spaced sources, more
sensors and larger array aperture are required. This implies the need of
more complex system hardware and increased computation burden.

The goal of this paper is to reduce the loss of the array aperture
in conventional ESPRIT-like methods for localization of near-field
sources, and then obtain the performance improvement of resolving
closely spaced signals with a small number of sensors. By using the
cumulant-based matrices instead of those used in the conventional
ESPRIT-like methods [17], a uniform linear array with N dual-polar-
ization sensors can be used to resolve DOAs of up to (N � 1) signals,
which is twice the maximum number of DOAs that can be estimated
by several available methods [10]–[12], [17]. In fact, this paper can
also be regarded as an extension of the least squares-virtual ESPRIT
algorithm (LS-VESPA) proposed in [19] to the problem of near-field
source localization.

This paper is organized as follows. Section II describes the data
model of near-field source localization with a polarization sensi-
tive array and the problem formulation. Section III shows how the
LS-VESPA can be utilized to estimate the two dimensional parame-
ters of near-field sources. Finally, simulation results are provided in
Section IV, followed by a conclusion in Section V.

II. PROBLEM FORMULATION

Consider P near-field narrow-band sources impinging on a uniform
linear array of N dual-polarization sensors with inter-element spacing
d. The array configuration is shown in Fig. 1, where all the sensors,
namely, �1; 0; . . . ; N � 2, lie on the y-axis. The pair of variables
(�i; ri) denotes the DOA and range of source i at the reference sensor 0.

Given a transverse electromagnetic (TEM) wave propagating into
the array, we consider the polarization ellipse produced by its electric
field as the incoming wave is viewed from the coordinate origin.

Suppose the electric field has transverse components

~E = E�
~���+E�

~��� (1)

where E��� is the horizontal component and E��� is the vertical compo-
nent, and ~��� and ~��� are the spherical unit vectors along the azimuth and
elevation angles � and �, respectively. For simplicity, it is assumed that
the source signal is in the y� z plane perpendicular to that of the array
which is located in the x � y plane. Then, � = 90�, ~��� = �~x and

~E = �E�~x + E�
~��� = �E�~x +E� cos(�)~y � E� sin(�)~z (2)

Fig. 1. Uniformly spaced linear array configuration.

with ~x, ~y and~z representing the unit vectors along the x, y and z direc-
tions, respectively. Alternatively, the polarized signal can be described
as

E�

E�

=
E0 cos(
)

E0 sin(
)e
j� (3)

where 
 and � denote the magnitude ratio and the phase between the
two polarization components, and E0 represents the signal amplitude
which is an arbitrary nonzero complex constant.

With the use of (3), (2) can be written as

~E=E0(�cos(
)~x+cos(�) sin(
)ej�~y � sin(�) sin(
)ej�~z): (4)

The signal component in the~z direction is eliminated using the specific
orientation of the cross-polarized array of Fig. 1. Apparently, the value
of � in (4) varies at each of the N sensors. It is straightforward to show
that the DOA of the ith source signal at sensor m, denoted by �mi, is

�mi = sin�1 ri sin(�i)�md

r2i +m2d2 � 2rimd sin(�i)
: (5)

The received signals at sensor m for polarization x and y, denoted
by u

[x]
m (t) and u

[y]
m (t), can be approximated as [17]

u
[x]
m (t)=�

P

i=1

si(t) cos(
i)e
j(! m+� m ) + n

[x]
m (t)

and

u
[y]
m (t)=

P

i=1

si(t) cos(�mi) sin(
i)e
j�

e
j(! m+� m )+n

[y]
m (t)

m = �1; 0; 1; . . . ; N � 2 (6)

where n
[l]
m(t); l = x; y, is the noise component for polarization l at

the mth sensor and si is the ith source signal. The parameters !i and
�i are functions of the azimuth angle �i and range ri of the ith source,
and they are related as

!i =
�2�

�
d sin(�i) and �i = �

d2

�ri
cos2(�i) (7)

where � denotes the wavelength of the source wavefronts. The task is
to estimate the parameters f�1; . . . ; �P ; r1; . . . ; rP g of the P sources
from the received array data ful

�1(t); . . . ; u
l
N�2(t)g; l = x; y.

For unique parameter estimation, we have made the following
assumptions.

(A1) The P sources fs1(t); . . . ; sP (t)g are assumed to be zero
mean, statistically independent of each other and have nonzero
fourth-order cumulants, whereas the additive noise components
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TABLE I
COMPARISON OF DIFFERENT ALGORITHMS FOR N DOAS ESTIMATION

Remark: the proposed method for estimation ofN signal sources needs onlyN +1 sensors, but other methods without 2D search computation need a minimum
of 2N sensors.

n
[x]
m (t) and n

[y]
m (t) are zero mean, Gaussian distributed and inde-

pendent of the source signals.
(A2) The inter-element spacing between two adjacent dipole pairs
d satisfies d � �=4 to avoid ambiguity problem of angle estima-
tion. It is noteworthy that in [10], [11], the use of cumulants to
linearize the quadratic phase in (6) renders the near-field sources
to be equivalent to multiple far-field sources observed with a vir-
tual array of sensors spaced 2d apart. As a result, (A2) is required
so that the effective sensor spacing is again �=2 as dictated by the
spatial Nyquist criterion.
(A3) The number of required sensors is N > P , whose minimum
is around half of those in [10], [12], [17]. Table I shows a require-
ment comparison of different DOA estimation algorithms.

In practice, there is mutual coupling between the array elements.
Since effective methods have already been introduced to compensate
the coupling effect in the ESPRIT direction finding algorithm [20],
[21], we can employ them to pre-process the received array data or for
pre-calibration. As a result, we assume that the mutual coupling effect
has been removed in advance. Furthermore, both the sensor position
errors as well as gain and phase errors of all sensors are assumed to be
negligible.

From (6), the array outputs can be written in matrix form as

u
[l](t) = A

[l]
s
[l](t) + n

[l](t); l = x; y (8)

where

u
[l](t) = [u

[l]
�1 u

[l]
0 u

[l]
1 � � � u

[l]
N�2]

T

s
[x](t) = � [s1(t) cos(
1); � � � sP (t) cos(
P )]

T

s
[y](t) = [s1(t) sin(
1)e

j� ; � � � sP (t) sin(
P )e
j� ]T

and

n
[l] = [n

[l]
�1 n

[l]
0 � � � n

[l]
N�2]

T ; l = x; y

where T denotes transpose. The columns of the polarization-dependent
N � P steering matrices A[x] and A[y] are

a
[x]
i (�i; ri)

=[ej(�1)! +j(�1) � 1 ej(! +� ) � � � ej(N�2)! +j(N�2) � ]T

A
[x]=[a1; . . . ; aP ]

a
[y]
i (�i; ri)

= [ej(�1)! +j(�1) � cos(��1i) cos(�0i); . . . ;

ej(N�2)! +j(N�2) � cos(�(N�2)i)]
T

and

A
[y]=[a

[y]
1 ; . . . ; a

[y]
P ]:

Note that the source polarization appears in both s[l](t) and A[y].

III. THE PROPOSED ALGORITHM

Due to the quadratic dependence of signal phase on sensor loca-
tion in (6), far-field source localization methods cannot be directly ap-
plied to the case of near-field sources. Our key idea is to explore the
possibility to reduce the polynomial order of the exponent in (6), so
that existing algorithms based on far-field assumption can be utilized.
Since second-order correlations have only one lag, it is not possible to
achieve the polynomial order reduction. On the other hand, cumulants
with multiple lags can provide the desired extra degrees of freedom.
In this work, cumulant matrices generated from (9) will be used for
the development of the near-field source localization algorithm. Since
the available dual-polarization is exploited, it is expected that the de-
veloped algorithm will yield better estimation performance than those
without utilizing it.

We first define the fourth-order cumulant of the complex
measurements of fu

[l]
0 (t); u

[l]�
0 (t); u

[l]
k (t); u

[l]�
h (t)g, where “�”

represents the complex conjugate, which is denoted as cum
(u

[l]
0 (t); u

[l]�
0 (t); u

[l]
k (t); u

[l]�
h (t)). From (6) and the cumulant proper-

ties in [18], it follows that:

cum(u
[l]
0 (t); u

[l]�
0 (t); u

[l]
k (t); u

[l]�
h (t))

=

P

i=1

c
4;s

ej(k�h)! +j(k �h )� (9)

where c
[l]
4;s , i = 1; 2; . . . ; P , denotes the kurtosis of the ith signal

source for polarization l and is defined as

c
[l]
4;s = cumfs

�[l]
i (t); s

[l]
i (t); s

�[l]
i (t); s

[l]
i (t)g = Efjs

[l]
i (t)j4g (10)

where E denotes the expectation operator and s[l]i (t) is the ith element
in s[l](t). According to the independence of the source signals in (A1),
we have

cum(s
[l]
k (t); s

[l]�
k (t); s

[l]
k (t); s

[l]�
k (t))

=
c
4;s

; if k1 = k2 = k3 = k4

0; otherwise.
(11)

A. Extended LS-VESPA Derivation

In order to obtain the required rotational matrix in our proposed algo-
rithm, we assign the sensor m = 0 as the phase reference point which
is different from the center-symmetric array requirement in [17]. Com-
pared to the ESPRIT-like method [17], three constant guiding sensors,
namely, �1, 0 and 1, are exploited to construct the required cumulant
matrices in the LS-VESPA.

For k; h = �1; . . . ; N � 2, the auto-polarized cumulant matrix is
obtained as

C
[ll]
0 cum(u

[l]
0 (t); u

[l]�
0 (t);u[l](t);u[l]H(t))

=A[l]
C

[ll]
4sA

[l]H ; l = x; y: (12)
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Using (11) and different polarizations, we get the cross-polarized and
auto-polarized kurtosis of the kth signal

C
[xx]
4s = PC4sP C

[xy]
4s = PC4sQ and C

[yy]
4s = QC4sQ (13)

whereP = diag(cos2(
1); . . . ; cos
2(
N )),Q = diag(sin2(
1); . . . ;

sin2(
N )) and C4s = diag(c4s ; . . . ; c4s ).
Similarly, with the use of different sensor lags, we construct the fol-

lowing cumulant matrices C[ll]
1 and C[ll]

2 , l = x; y

C
[ll]
1 cum(u

[l]
0 (t); u

[l]�
�1 (t);u

[l](t);u[l]H(t))

=A[l]���1C
[ll]
4sA

[l]H (14)

and

C
[ll]
2 cum(u

[l]
1 (t); u

[l]�
�1 (t);u

[l](t);

u
[l]H(t)) =A[l]���2C

[ll]
4sA

[l]H (15)

where ���1 = diag(ej(! �� ); . . . ; ej(! �� )), ���2 = diag
(ej2! ; . . . ; ej2! ) and H stands for Hermitian transposition.

We further define the following cross-polarized cumulant matrices:

C
[lq]
0 cum(u

[l]
0 (t); u

[q]�
0 (t);u[l](t);u[q]H(t))

=A[l]
C

[lq]
4s A

[q]H (16)

C
[lq]
1 cum(u

[l]
0 (t); u

[q]�
�1 (t);u

[l](t);u[q]H(t))

=A[l]���1C
[lq]
4s A

[q]H (17)

and

C
[lq]
2 cum(u

[l]
1 (t); u

[q]�
�1 (t);u

[l](t);u[q]H(t))

=A[l]���2C
[lq]
4s A

[q]H
: (18)

The first two elements in C[lq]
0 ;C

[lq]
1 , and C[lq]

2 ; l; q = x; y, namely,
u
[l]
�1; u

[l]
0 , and u

[l]
1 , are guiding sensors for constructing C[lq]

0 ;C
[lq]
1 ,

and C[lq]
2 , respectively. The sensor m = 0 is set to be the phase ref-

erence point in our method while the phase reference point must lo-
cate at the symmetry center of array in [10], [12], [17]. We exploit
efficiently the symmetry of sensor pair fu[l]

�1; u
[l]
1 g, l = x; y, to con-

struct the cumulant matrix C[lq]
2 and then yield the rotational matrix

���2 which is a function of f!ig only. This also suggests the important
usage of symmetry of sensor pair fu[l]

�1; u
[l]
1 g, l = x; y, is to eliminate

the quadratic phase �i of the signal model of (6) by cumulant com-
putation. Assuming that the steering matrix A[l], l = x; y, and C[lq]

s ,
l; q = x; y, are of full rank, (12)–(18) satisfy all the requirements of
the LS-VESPA .

Combining the cumulant matrices C[lq]
0 ;C

[lq]
1 , and C[lq]

2 ; l; q =
x; y, we form four 3N � N matrices

C
[lq]
c =

C
[lq]
0

C
[lq]
1

C
[lq]
2

; l; q = x; y: (19)

Now applying the LS-VESPA method and we easily obtain the dual-
polarized matrix

C =
C

[xx]
c C

[xy]
c

C
[yx]
c C

[yy]
c

=
~A[x]

~A[y] C4s[A
[x]
P A

[y]
Q]H (20)

where

~A[x] =

A[x]P

A[x]P���1

A[x]P���2

and ~A[y] =

A[y]Q

A[y]Q���1

A[y]Q���2

: (21)

From (20), it is evident that the polarization diversity doubles the space
dimension of the conventional problem formulation without polariza-
tion information.

Using the idea of the ESPRIT algorithm, the signal subspace Es of
the matrix C can be obtained by the P eigenvectors of the cumulant
matrix C corresponding to the P nonzero eigenvalues

Es=fe1; . . . ; eP g

= (E
[x]
0 )T (E

[x]
1 )T (E

[x]
2 )T (E

[y]
0 )T (E

[y]
1 )T (E

[y]
2 )T

T

= [( ~A[x])T ( ~A[y])T ]TF (22)

where FP�P is an invertible matrix.
Combining the definitions of ~A[x] and ~A[y] and using the rotational

invariance of subspace, we obtain

[(E
[x]
1 )T (E

[y]
1 )T ]T = [(E

[x]
0 )T (E

[y]
0 )T ]T			1 (23)

and

[(E
[x]
2 )T (E

[y]
2 )T ]T = [(E

[x]
0 )T (E

[y]
0 )T ]T			2: (24)

Furthermore, 			1 and 			2 can be computed by using least-squares

			1 =([(E
[x]
0 )T (E

[y]
0 )T ]T )#[(E

[x]
1 )T (E

[y]
1 )T ]T and

			2 =([(E
[x]
0 )T (E

[y]
0 )T ]T )#[(E

[x]
2 )T (E

[y]
2 )T ]T (25)

where # denotes the pseudo-inverse of a matrix.
According to (21) and (22), we have

			1 = F
�1
1 ���1F1 and 			2 = F

�1
2 ���2F2 (26)

where the columns of F1 and F2 are the eigenvectors of 			1 and 			2,
respectively. Hence the eigenvalues of 			1 and 			2 give the estimates
of the diagonal elements of ���1 and ���2, respectively.

Since the independent eigendecompositions of			1 and			2 lead to ar-
bitrary ordering of the diagonal elements in���1 and���2, we first need to
pair the elements of the two sets of parameters f!i� �ig; f2!ig. For-
tunately, the eigenvalues of 			1 and 			2 correspond to the same eigen-
vector of F in (22), which can then be used to restore the correct pa-
rameter pairs.

In fact, pairing of ���1 and ���2 is equivalent to pairing of the eigen-
vectors of 			1 and 			2. Here we repeat the same pairing procedure
of Liu and Mendel in [19]. The procedure is based on projecting the
columns of F1 onto eigenspaces of 			2. Let f1k , k = 1; 2; . . . ; P ,
be the k-th column of F1, then each entry in the complex projection
row vector fH1kF2 represents the eigenspaces will have their magni-
tudes less than unity since we are in the complex domain. In the pres-
ence of noise, we pick f2l, l 2 f1; 2; . . . ; Pg, such that the magni-
tude of fH1kf2l is closest to unity. Next, we form the eigenvalue pair
f���1(k; k);���2(l; l)g, k; l = 1; 2; . . . ; P , where their associated eigen-
vectors are f1k and f2l from F1 and F2, respectively.

From each pair of (!̂i; �̂i), i = 1; 2; . . . ; P , the DOA and range
parameters are computed as

�̂i = sin�1 ��!̂i
2�d

(27)

and

r̂i =
�d2 cos2(�̂i)

��̂i
: (28)
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Fig. 2. The RMSE of estimated DOA for source 1 versus input SNR. The pa-
rameters of two sources are (40 ; 5�; 20 ; 3:5�). There are four sensors and
1000 snapshots are used.

Fig. 3. The RMSE of estimated DOA for source 2 versus input SNR. The pa-
rameters of two sources are (40 ; 5�; 20 ; 3:5�). There are four sensors and
1000 snapshots are used.

The procedure of our proposed algorithm is summarized as follows:

• ComputeC[lq]
0 ;C

[lq]
1 , andC[lq]

2 , l; q = x; y, defined in (12)–(18);

• Perform singular value decomposition (SVD) of C to estimate
the number of incident signals P using the well-known minimum
description length (MDL) criterion [22] and then obtain theEs in (22);

• Compute the 			1 and 			2 using (25).

• Eigendecompose 			1 and 			2 to obtain ���1;F1, ���2, and F2;

• Align ���1(i; i) and ���2(i; i); i = 1; . . . ; P and obtain the estimates
of !i and �i;

• Compute �̂i and r̂i; i = 1; 2; . . . ; P using (27) and (28).

IV. SIMULATION RESULTS

To verify the performance of the proposed method, a set of com-
puter simulations is carried out. We consider a uniform linear array

Fig. 4. The RMSE of estimated range for source 1 versus input SNR. The pa-
rameters of two sources are (40 ; 5�; 20 ; 3:5�). There are four sensors and
1000 snapshots are used.

Fig. 5. The RMSE of estimated range for source 2 versus input SNR. The pa-
rameters of two sources are (40 ; 5�; 20 ; 3:5�). There are four sensors and
1000 snapshots are used.

consisting of several crossed dipoles with the inter-spacing d = �=4.
The reference sensor is sensor 0. Two equal power uncorrelated TEM
waves with non-Gaussian distribution are impinging on this array and
are modelled as ej� , where the phases �t are uniformly distributed
in the interval [0; 2�]. The sensor noise is additive Gaussian process.
The estimation performance is measured by the root mean square error
(RMSE). The RMSE of range parameter is normalized by the signal
wavelength �. The polarization parameters (
; �) of the two sources
are (10�; 0�) and (80�; 0�).

In the first experiment, the first source is located at �1 = 40� with a
range of r1 = 5� while the second source is located at �2 = 20� with
a range of r2 = 3:5�. The number of sensors is N = 4 and the number
of samples at each sensor is T = 1000. All provided results are aver-
ages of 100 independent runs. The results for range and DOA estimates
of the two sources are shown in Figs. 2–5. For comparison, the results
using the ESPRIT-like algorithm [17] are also shown. Figs. 2 and 3
show that the proposed method outperforms the ESPRIT algorithm in
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Fig. 6. The RMSE of estimated DOA for source 1 plotted as a function of
the DOA of source 2. The DOA of source 1 is fixed at 50 and there are four
sensors. The ranges of two sources are (5�; 0:5�). The input SNR is 5 dB and
200 snapshots are used.

Fig. 7. The RMSE of estimated DOA for source 2 plotted as a function of
the DOA of source 2. The DOA of source 1 is fixed at 50 and there are four
sensors. The ranges of two sources are (5�;0:5�). The input SNR is 5 dB and
200 snapshots are used.

DOA estimation for smaller signal-to-noise ratio (SNR) condition al-
though they have almost identical performance at higher SNRs. While
from Figs. 4 and 5, we observe that the proposed scheme is superior to
[17] for all SNRs in range estimation. It is also seen that the RMSE of
the range estimate for the second source, which is closer to the array, is
smaller than that of the first source. These phenomena agree with the
theoretical analysis in [13], which indicates that the standard deviation
of range estimate for the source closer to the array is smaller than that
of the source far away from it while the standard deviations of DOA
estimates are similar for all sources.

In the second experiment, the performance in angle resolving capa-
bility of the proposed method is compared with that of the ESPRIT-like
method. The DOA of the first source is fixed at 50� and we vary the
DOA of the second source. The ranges of the first and second sources
are 5� and 0:5�, respectively. The input SNR of the two sources is set

Fig. 8. The RMSE of estimated DOA for source 1 versus input snapshots. The
parameters of two sources are (40 ; 5�; 20 ; 3:5�). There are four sensors and
SNR = 0 dB.

Fig. 9. The RMSE of estimated DOA for source 2 versus input snapshots. The
parameters of two sources are (40 ; 5�; 20 ; 3:5�). There are four sensors and
SNR = 0 dB.

to be SNR = 5 dB and 200 samples are taken at each sensor. The
RMSEs of the DOA estimates are shown in Figs. 6 and 7 and we can
see the superiority of the proposed algorithm for all cases.

In the third experiment, the two sources have the DOA and range
parameters as in the first experiment and we vary the number of snap-
shots used for estimation. The input SNRs of the two sources are fixed
at SNR = 0 dB. The RMSEs of the DOA estimates are shown in
Figs. 8 and 9 and the superiority of the proposed algorithm for all cases
is again observed. It is because the effective aperture size of the pro-
posed method is much larger than that in the ESPRIT-like method.

Finally, Figs. 10 and 11 show that the proposed algorithm can resolve
two sources with identical DOA, namely, �1 = �2 = 20

�, or range,
namely, r1 = r2 = 0:5�. It is noteworthy that the number of sensors
N = 3 is less than 2P with P = 2 and thus the ESPRIT-like method
cannot be employed in this test.
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Fig. 10. Simulation results for 50 runs. Two signal sources with identical DOAs
are used. The other parameters are SNR = 20 dB, 200 snapshots, and three
sensors, actual parameters are (20 ; 5�) and (20 ; 0:5�), i.e., � = � .

Fig. 11. Simulation results for 50 runs. Two signal sources with identical
ranges are used. The other parameters are SNR = 20 dB, 200 snapshots, and
three sensors, actual parameters are (40 ; 0:5�) and (20 ; 0:5�), i.e, r = r .

V. CONCLUSION

In this paper, a novel ESPRIT-like method based on cumulants is
presented for localization of multiple polarized near-field sources with
a polarization sensitive array. The proposed algorithm effectively uses
the aperture of array and thus it can estimate the DOAs of (N � 1)
signal sources using N sensors. The cumulant-based method requires
only a simple pair-matching in the case of multiple near-field sources.
Furthermore, simulation results demonstrate its effectiveness in both
estimation accuracy and resolving capability particularly with a small
number of sensors.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
careful comments and insightful suggestions, which significantly im-
proved the quality of this paper.

REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array processing research:
The parametric approach,” IEEE Signal Process. Mag., vol. 13, no. 4,
pp. 67–94, Jul. 1996.

[2] J. H. Kim, I. S. Yang, K. M. Kim, and W. T. Oh, “Passive ranging sonar
based on multi-beam towed array,” in Proc. IEEE Oceans, Sep. 2000,
vol. 3, pp. 1495–1499.

[3] A. L. Swindlelhurst and T. Kailath, “Passive direction of arrival and
range estimation for near-field sources,” in IEEE Workshop on Spec-
trum Estimation and Modeling Workshop, 1988, pp. 123–128.

[4] C. M. Lee, K. S. Yoon, and K. K. Lee, “Efficient algorithm for local-
ising 3-D narrowband multiple sources,” Proc. Inst. Elect. Eng. Radar,
Sonar Navig., vol. 148, pp. 23–26, Feb. 2001.

[5] Y. D. Huang and M. Barkat, “Near-field multiple sources localization
by passive sensor array,” IEEE Trans. Antennas Propag., vol. 39, pp.
968–975, Jul. 1991.

[6] R. Jeffers, L. B. Kristine, and H. L. Van Trees, “Broadband passive
range estimation using MUSIC,” in Proc. IEEE Int. Conf. Acoust.
Speech, Signal Processing, Orlando, FL, May 2002, pp. 2920–2922.

[7] D. Starer and A. Nehorai, “Path-following algorithm for passive local-
ization of near-field sources,” in Proc. 5th ASSP Workshop on Spectrum
Estimation and Modeling, Oct. 1990, pp. 322–326.

[8] J. H. Lee, C. M. Lee, and K. K. Lee, “A modified path-following algo-
rithm using a known algebraic path,” IEEE Trans. Signal Process., vol.
47, pp. 1407–2409, May 1999.

[9] A. J. Weiss and B. Friedlander, “Range and bearing estimation using
polynomial rooting,” IEEE J. Ocean. Eng., vol. 18, pp. 130–137, Apr.
1993.

[10] R. N. Challa and S. Shamsunder, “Higher-order subspace based
algorithms for passive localization of near-field sources,” in Proc. 29th
Asilomar Conf. Signals System Computer, Pacific Grove, CA, Oct.
1995, pp. 777–781.

[11] R. N. Challa and S. Shamsunder, “Passive near-field localization of
multiple non-Gaussian sources in 3-D using cumulants,” Signal Pro-
cessing, vol. 65, no. 1, pp. 39–53, 1998.

[12] G. Emmanuele and A. M. Karim, “A weighted linear prediction method
for near-field source localization,” in Proc. IEEE Int. Conf. Acoust.
Speech, Signal Processing, Orlando, FL, May 2002, pp. 2957–2960.

[13] N. Yuen and B. Friedlander, “Performance analysis of higher- order
ESPRIT for localization of near-field sources,” IEEE Trans. Signal Pro-
cessing, vol. 46, pp. 709–719, Mar. 1998.

[14] E. R. Ferrara and T. M. Parks, “Direction finding with an array of an-
tennas having diverse polarizations,” IEEE Trans. Antennas Propag.,
vol. 31, pp. 231–236, Mar. 1983.

[15] J. Li and R. J. Compton, “Angle and polarization estimation using
ESPRIT with a polarization sensitive array,” IEEE Trans. Antennas
Propag., vol. 39, no. 9, pp. 1376–1383, 1991.

[16] Y. Hua, “A pencil-MUSIC algorithm for finding two-dimensional an-
gles and polarizations using crossed dipoles,” IEEE Trans. Antennas
Propag., vol. 41, no. 3, 1993.

[17] B. A. Obeidat, Y. Zhang, and M. G. Amin, “Range and DOA estimation
of polarized near-field signals using fourth-order statistics,” in Proc.
ICASSP’04, May 2004, vol. 2, pp. II.97–100.

[18] J. M. Mendel, “Tutorial on high-order statistics in signal processing
and system theory: Theoretical results and some applications,” Proc.
IEEE, vol. 79, pp. 278–305, Mar. 1991.

[19] T. H. Liu and J. M. Mendel, “Azimuth and elevation direction finding
using arbitrary array geometries,” IEEE Trans. Signal Processing, vol.
46, 1998.

[20] C. C. Yeh, M. L. Leou, and D. R. Ucci, “Bearing estimations with mu-
tual coupling present,” IEEE Trans. Antennas Propag., vol. 37, no. 10,
1989.

[21] T. T. Zhang, H. T. Hui, and Y. L. Lu, “Compensation for mutual cou-
pling effect in the ESPRIT direction finding algorithm by using a more
effective method,” IEEE Trans. Antennas Propag., vol. 53, no. 4, 2005.

[22] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. ASSP, vol. 33, pp. 387–392, 1985.


