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Integration Architectures

Closed-Loop Integration
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Integration Architectures

INS Derived Psuedo-Range and -Rates

ρ̂Cj,k =
√

[~̂reesj(t̃st ,j,k )−~̂r
e
ea,kj ]

T [~̂reesj(t̃st ,j,k )−~̂r
e
ea,kj ] + δρ̂rc,k + δρie,j (1)

ˆ̇ρCj,k = ~̂ueT

as,j,k [~̂v
e
esj(t̃st ,j,k )−~̂veea,kj ]

T + δ ˆ̇ρrc,k + δρ̇ie,j (2)

where

~ue
as,j =

~rees,j(tst ,j)−~raas,j(tsa)

‖~rees,j(tst ,j)−~raas,j(tsa)‖
(3)
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Observability

Observability

Attitude and acceleration errors are observable through growth in

velocity and position errors.

In level accelertion, heading error only produces velocity error,

therefore requires significant maneuvering.

If level and not accelerating, vertical accel bias is the only cause

of vertical velocity error growth.
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Error Mechanization

ECEF Error Mechanization (loosely coupled)

Assuming errors are due to biases that are modeled as WGN.
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Integration Filter

Kalman Filter

~̂xk |k−1 = Φk−1~̂xk−1|k−1 (5)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (6)

~̂xk |k = ~̂xk |k−1 +Kk (~zk −Hk~̂xk |k−1) (7)

Pk |k = (I−KkHk )Pk |k−1 (I−KkHk )
T +KkRkK

T
k (8)

Kk = Pk |k−1H
T
k (HkPk |k−1H

T
k +Rk )

−1 (9)
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Integration Filter
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Integration Filter

Closed-Loop Kalman Filter

Since the errors are being fedback to correct the INS, the state

estimate must be reset after each INS correction.

~̂xk |k−1 = 0 (10)

Pk |k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk |k = Kk~zk (12)

Pk |k = (I−KkHk )Pk |k−1 (I−KkHk )
T +KkRkK

T
k (13)

Kk = Pk |k−1H
T
k (HkPk |k−1H

T
k +Rk )

−1 (14)
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Integration Filter

Discretization

Φk−1 ≈ I+ Fτs (15)

Q =























n2
rg I3×3 03×3 03×3 03×3 03×3

03×3 n2
ag I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 n2
bad I3×3 03×3

03×3 03×3 03×3 03×3 n2
bgd I3×3























τs (16)

where τs is the sample time, n2
rg , n2

ag , n2
bad , n2

bgd are the PSD of the

gyro and accel random noise, and accel and gyro bias variation,

respectively.
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Measurement Models

ECEF INS/GNSS Loosely Coupled

~zek =





~̃rGPS −~̂reeb

~̃vGPS −~̂veeb



 (17)

H =





03×3 03×3 −I3×3 03×3 03×3

03×3 −I3×3 03×3 03×3 03×3



 (18)

Theoretically, the lever arm from the INS to the GNSS antenna needs

to be included, but in practice, the coupling of the attitude errors and

gyro biases into the measurement through the lever arm is week.
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Measurement Models

ECEF INS/GNSS Tightly Coupled

Pseudo-ranges are used instead of XYZ.

~z =

(

~zρ

~zρ̇

)

(19)

where
~zρ = (ρ̃C1 − ρ̂C1, ρ̃C2 − ρ̂C2, . . . , ρ̃Cn − ρ̂Cn) (20)

~zρ̇ = ( ˜̇ρC1 − ˆ̇ρC1,
˜̇ρC2 − ˆ̇ρC2, . . . ,

˜̇ρCn − ˆ̇ρCn) (21)

~x(t) =
(

δ~ψ
e

eb δ~veeb δ~reeb
~ba

~bg δρrc δρ̇rc

)T
(22)

ρ̃Cj , and ˜̇ρCj and ρ̂Cj , and ˆ̇ρCj are the psuedo-ranges and rates

obtained from the GNSS and INS, respectively, for the j th satallite.

These equations are none linear and an EKF needs to be used. δρrc
and δρ̇rc are the clock bias and drift.
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Measurement Models

Tightly Coupled Linearized Measurement Matrix

He =











































01×3 01×3 ~ueT

as,1 01×3 01×3 1 01×3

01×3 01×3 ~ueT
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...
...

...
...

...
...

...

01×3 01×3 ~ueT
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01×3 ~ueT

as,1 01×3 01×3 01×3 01×3 1

01×3 ~ueT
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...
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(23)
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