EE 570: Location and Navigation INS/GPS Integration

Aly El-Osery

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

April 29, 2011

Aly El-Osery (NMT) [EE 570: Location and Navigation](#page-26-0) April 29, 2011 1/15

 -4

重

イロトメ 倒 トメ 君 トメ 君

 299

Aly El-Osery (NMT) [EE 570: Location and Navigation](#page-0-0) April 29, 2011 2/15

重

 298

イロト イ部 トイ磨 トイ磨 ト

重

 298

イロト イ部 トイモ トイモト

イロト イ部 トイモ トイモト

Aly El-Osery (NMT) [EE 570: Location and Navigation](#page-0-0) April 29, 2011 2/15

重

 298

[Overview](#page-5-0)

Need for Integration

E

 299

(ロトイ部)→(差)→(差)→

Closed-Loop Integration

If error estimates are fedback to correct the INS mechanization, a reset of the state estimates becomes necessary.

4. 17. 31.

 Ω

 $A \equiv 0.4 \equiv$

Loosely Coupled Integration

Correct INS Output

- **o** Simple
- **Cascade KF therefore** integration KF BW must be less than that of GNSS KF (e.g. update interval of 10s)
- Minimum of 4 satellites required

 $1\sqcap$ $1\sqcap 1$

 \rightarrow

 Ω

化重新分量

Loosely Coupled Integration

- Simple \bullet
- **Cascade KF therefore** integration KF BW must be less than that of GNSS KF (e.g. update interval of 10s)
- Minimum of 4 satellites \bullet required

 $1\sqcap$ $1\sqcap 1$

 \rightarrow

 Ω

化重新分量

Tightly Coupled Integration

- No cascade KF
- **o** KF BW must be kept less than the GNSS tracking loop
- Does not require 4 satellites

イロト イ押ト イヨト イヨ

 \rightarrow

E

 299

Tightly Coupled Integration

- No cascade KF
- KF BW must be kept less than the GNSS tracking loop
- Does not require 4 satellites

イロト イ押ト イヨト イヨ

 \rightarrow

E

 QQ

INS Derived Psuedo-Range and -Rates

$$
\hat{\rho}_{Cj,k} = \sqrt{[\hat{\mathbf{r}}_{esj}^e(\check{t}_{st,j,k}) - \hat{\mathbf{r}}_{ea,kj}^e]^T [\hat{\mathbf{r}}_{esj}^e(\check{t}_{st,j,k}) - \hat{\mathbf{r}}_{ea,kj}^e]} + \delta \hat{\rho}_{rc,k} + \delta \rho_{ie,j} \quad (1)
$$
\n
$$
\hat{\rho}_{Cj,k} = \hat{\mathbf{u}}_{as,j,k}^e [\hat{\mathbf{v}}_{esj}^e(\check{t}_{st,j,k}) - \hat{\mathbf{v}}_{ea,kj}^e]^T + \delta \hat{\rho}_{rc,k} + \delta \rho_{ie,j} \quad (2)
$$
\nwhere

$$
\vec{\mathbf{u}}_{as,j}^{e} = \frac{\vec{\mathbf{r}}_{es,j}^{e}(t_{st,j}) - \vec{\mathbf{r}}_{as,j}^{a}(t_{sa})}{\|\vec{\mathbf{r}}_{es,j}^{e}(t_{st,j}) - \vec{\mathbf{r}}_{as,j}^{a}(t_{sa})\|}
$$
(3)

Aly El-Osery (NMT) [EE 570: Location and Navigation](#page-0-0) April 29, 2011 7/15

重

 \rightarrow

 299

イロトメ 倒 トメ 君 トメ 君

Observability

- Attitude and acceleration errors are observable through growth in velocity and position errors.
- In level accelertion, heading error only produces velocity error, therefore requires significant maneuvering.
- • If level and not accelerating, vertical accel bias is the only cause of vertical velocity error growth.

ECEF Error Mechanization (loosely coupled)

Assuming errors are due to biases that are modeled as WGN.

$$
\begin{pmatrix}\n\delta \dot{\vec{\Psi}}_{eb}^{e} \\
\delta \dot{\vec{\Psi}}_{eb}^{e} \\
\delta \vec{\mathbf{r}}_{eb}^{e} \\
\dot{\vec{\mathbf{b}}}_{g} \\
\dot{\vec{\mathbf{b}}}_{g}\n\end{pmatrix} = \mathbf{F}(t) \begin{pmatrix}\n\delta \vec{\Psi}_{eb}^{e} \\
\delta \vec{\mathbf{v}}_{eb}^{e} \\
\delta \vec{\mathbf{r}}_{eb}^{e} \\
\dot{\vec{\mathbf{b}}}_{g}\n\end{pmatrix} = \mathbf{F}(t)\vec{\mathbf{x}}(t)
$$
\n(4)

a miller \leftarrow

where

$$
\textbf{F}(t)=\begin{pmatrix} -[\vec{\omega}_{\textit{ie}}^{e}\times] & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{C}^{e}_{b}\\ -[\textbf{C}^{e}_{b}\vec{t}_{\textit{lb}}^{b}\times] & -2\Omega^{i}_{\textit{ie}} & \frac{2g_{0}}{\|\vec{r}_{\textit{eb}}^{e}\|r_{\textit{eb}}^{e}}[\vec{r}_{\textit{eb}}^{e}(\vec{r}_{\textit{eb}}^{e})^{T}]\delta\vec{r}_{\textit{eb}}^{e} & \textbf{C}^{e}_{b} & \textbf{0}_{3\times 3}\\ \textbf{0}_{3\times 3} & \textbf{1}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3}\\ \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3}\\ \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} & \textbf{0}_{3\times 3} \end{pmatrix}
$$

 299

化重压 不重

[Integration Filter](#page-19-0)

Kalman Filter

$$
\hat{\mathbf{x}}_{k|k-1} = \mathbf{\Phi}_{k-1} \hat{\mathbf{x}}_{k-1|k-1}
$$
 (5)

$$
\mathbf{P}_{k|k-1} = \mathbf{Q}_{k-1} + \mathbf{\Phi}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{\Phi}_{k-1}^T
$$
 (6)

$$
\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k(\vec{\mathbf{z}}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1})
$$
(7)

$$
\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right) \mathbf{P}_{k|k-1} \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right)^T + \mathbf{K}_k \mathbf{R}_k \mathbf{K}_k^T
$$
 (8)

$$
\mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1}
$$
(9)

画

 299

イロト イ部 トイ磨 トイ磨 ト

Kalman Filter

 $\hat{\vec{\mathbf{x}}}_{k|k} = \hat{\vec{\mathbf{x}}}_{k|k-1} + \mathbf{K}_k (\vec{\mathbf{z}}_k - \mathbf{H}_k \hat{\vec{\mathbf{x}}}_{k|k-1})$

 $\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right) \mathbf{P}_{k|k-1} \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right)^T + \mathbf{K}_k \mathbf{R}_k \mathbf{K}_k^T$

 $\mathbf{K}_k = \mathbf{P}_{k|k-1}\mathbf{H}_k^T(\mathbf{H}_k\mathbf{P}_{k|k-1}\mathbf{H}_k^T + \mathbf{R}_k)^{-1}$

E

イロト イ押 トイラト イラト

) (7)

(8)

(9)

[Integration Filter](#page-21-0)

Kalman Filter

$$
\hat{\mathbf{x}}_{k|k-1} = \mathbf{\Phi}_{k-1} \hat{\mathbf{x}}_{k-1|k-1}
$$
 (5)

$$
\mathbf{P}_{k|k-1} = \mathbf{Q}_{k-1} + \mathbf{\Phi}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{\Phi}_{k-1}^T
$$
 (6)

Update

Closed-Loop Kalman Filter

Since the errors are being fedback to correct the INS, the state estimate must be reset after each INS correction.

$$
\hat{\vec{\mathbf{x}}}_{k|k-1} = 0 \tag{10}
$$

$$
\mathbf{P}_{k|k-1} = \mathbf{Q}_{k-1} + \mathbf{\Phi}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{\Phi}_{k-1}^T
$$
 (11)

$$
\hat{\vec{\mathbf{x}}}_{k|k} = \mathbf{K}_k \vec{\mathbf{z}}_k \tag{12}
$$

 $1.71 \times 1.71 \times$

$$
\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right) \mathbf{P}_{k|k-1} \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right)^T + \mathbf{K}_k \mathbf{R}_k \mathbf{K}_k^T \tag{13}
$$

$$
\mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1}
$$
(14)

 Ω

重 レス 重

[Integration Filter](#page-23-0)

Discretization

$$
\Phi_{k-1} \approx I + F\tau_s \tag{15}
$$
\n
$$
\mathbf{Q} = \begin{pmatrix}\n\eta_{rg}^2 \mathbf{I}_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & \eta_{ag}^2 \mathbf{I}_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & \eta_{bad}^2 \mathbf{I}_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & \eta_{bgd}^2 \mathbf{I}_{3 \times 3}\n\end{pmatrix} \tau_s \tag{15}
$$

where $\tau_{\scriptscriptstyle \mathcal{S}}$ is the sample time, $n_{\scriptscriptstyle \mathcal{G}}^2$, $n_{\scriptscriptstyle \mathcal{S}}^2$, $n_{\scriptscriptstyle \mathcal{Bd}}^2$, $n_{\scriptscriptstyle \mathcal{Bgd}}^2$ are the PSD of the gyro and accel random noise, and accel and gyro bias variation, respectively.

 Ω

重き す重

 \leftarrow \overline{m} \rightarrow

ECEF INS/GNSS Loosely Coupled

$$
\vec{\mathbf{z}}_{k}^{e} = \begin{pmatrix} \tilde{\vec{\mathbf{r}}}_{GPS} - \hat{\vec{\mathbf{r}}}_{eb}^{e} \\ \tilde{\vec{\mathbf{v}}}_{GPS} - \hat{\vec{\mathbf{v}}}_{eb}^{e} \end{pmatrix}
$$
(17)

$$
\mathbf{H} = \begin{pmatrix} 0_{3\times3} & 0_{3\times3} & -\mathbf{I}_{3\times3} & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & -\mathbf{I}_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \end{pmatrix}
$$
(18)

Theoretically, the lever arm from the INS to the GNSS antenna needs to be included, but in practice, the coupling of the attitude errors and gyro biases into the measurement through the lever arm is week.

ECEF INS/GNSS Tightly Coupled

Pseudo-ranges are used instead of XYZ.

$$
\vec{\mathbf{z}} = \begin{pmatrix} \vec{\mathbf{z}}_{\rho} \\ \vec{\mathbf{z}}_{\rho} \end{pmatrix}
$$
 (19)

where

$$
\vec{\mathbf{z}}_{\rho} = (\tilde{\rho}_{C1} - \hat{\rho}_{C1}, \tilde{\rho}_{C2} - \hat{\rho}_{C2}, \dots, \tilde{\rho}_{Cn} - \hat{\rho}_{Cn})
$$
(20)

$$
\vec{\mathbf{z}}_{\hat{\rho}} = (\tilde{\rho}_{C1} - \hat{\rho}_{C1}, \tilde{\rho}_{C2} - \hat{\rho}_{C2}, \dots, \tilde{\rho}_{Cn} - \hat{\rho}_{Cn})
$$
(21)

$$
\vec{\mathbf{x}}(t) = \begin{pmatrix} \delta \vec{\psi}^e_{eb} & \delta \vec{\mathbf{v}}^e_{eb} & \delta \vec{\mathbf{r}}^e_{eb} & \vec{\mathbf{b}}_a & \vec{\mathbf{b}}_g & \delta \rho_{rc} & \delta \dot{\rho}_{rc} \end{pmatrix}^T
$$
(22)

 $\tilde{\rho}_{Ci}$, and $\tilde{\rho}_{Ci}$ and $\hat{\rho}_{Ci}$, and $\hat{\rho}_{Ci}$ are the psuedo-ranges and rates obtained from the GNSS and INS, respectively, for the jth satallite. These equations are none linear and an EKF needs to be used. *δρ*rc and $\delta \dot{\rho}_r$ are the clock bias and drift.

Tightly Coupled Linearized Measurement Matrix

$$
\mathbf{H}^{e} = \begin{pmatrix} 0_{1\times 3} & 0_{1\times 3} & \vec{\mathbf{u}}_{as,1}^{e^T} & 0_{1\times 3} & 0_{1\times 3} & 1 & 0_{1\times 3} \\ 0_{1\times 3} & 0_{1\times 3} & \vec{\mathbf{u}}_{as,2}^{e^T} & 0_{1\times 3} & 0_{1\times 3} & 1 & 0_{1\times 3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0_{1\times 3} & 0_{1\times 3} & \vec{\mathbf{u}}_{as,n}^{e^T} & 0_{1\times 3} & 0_{1\times 3} & 1 & 0_{1\times 3} \\ 0_{1\times 3} & \vec{\mathbf{u}}_{as,1}^{e^T} & 0_{1\times 3} & 0_{1\times 3} & 0_{1\times 3} & 0_{1\times 3} & 1 \\ 0_{1\times 3} & \vec{\mathbf{u}}_{as,2}^{e^T} & 0_{1\times 3} & 0_{1\times 3} & 0_{1\times 3} & 0_{1\times 3} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0_{1\times 3} & \vec{\mathbf{u}}_{as,n}^{e^T} & 0_{1\times 3} & 0_{1\times 3} & 0_{1\times 3} & 0_{1\times 3} & 1 \end{pmatrix}
$$

(23)

隱

 299

(ロトイ部)→(差)→(差)→