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Integration Architectures

Closed-Loop Integration
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INS Derived Psuedo-Range and -Rates

Ocjk = \/[?gsj(?st,j,k) — Yoan] T [Fosi(Bstjk) — Fo il + OPrek +Opiej (1)

fst,k = l_jeas,j,k[‘_’)gsj(?Sl‘,j,k) Vea, k/] + 5Prc Kk + (Sp,ej (2)
where
o _ Fos,(tst) — Fas,(fsa) )
el HFSS,j(tStJ') - ras,j(tsa) H
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Observability

@ Attitude and acceleration errors are observable through growth in
velocity and position errors.

@ In level accelertion, heading error only produces velocity error,
therefore requires significant maneuvering.

@ If level and not accelerating, vertical accel bias is the only cause
of vertical velocity error growth.
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ECEF Error Mechanization (loosely coupled)

Assuming errors are due to biases that are modeled as WGN.

S 5Py
oVep Vg,
gy | =F(1) | oTe, | = F(OX(1) (4)
5 b,
;. 5,
where
—[c?zf?x] 033 O3x3 O3x3 Cg
C[Cofx] 200, e (P2 TI0F, €3 Oa
F(t) = O3x3 133 O3x3 03x3 0O3x3
O3x3 O3x3 O3x3 O3x3 Osxs
O3x3 O3x3 O3x3 O3x3 O3x3
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Integration Filter

Kalman Filter

)A_ik|k—1 = ‘I)kf1§(‘k—1\k—1 (5)

Prik—1 = Q1 + P 1Py_1 41 B (6)

Xk = k1 + Kic(Zx — Hikgo_1) (7)

Puk = (1= KkHi) Pyi_y (1= KeHi) T+ K(ReKY (8)
Kk = Pyjk—1H{ (HkPyk_1Hf 4+ Rg) ™ 9)
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Integration Filter

Closed-Loop Kalman Filter

Since the errors are being fedback to correct the INS, the state
estimate must be reset after each INS correction.

)g(k|k4 =0 (10)

Pik—1 = Q1+ Pr_1Pr_1jk_1Pf_ (11)

Xk = KiZx (12)

Puik = (1= KieHi) Py 1 (1= KiHi) T+ KRiK Y (13)
Kk = Pjk_1H{ (HkPyk_1H{ + Ry) ™ (14)
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Integration Filter

Discretization

nlsxa O3z Osxs  Ozua 03x3
03x3 Miglaxs Osxsz  O3x3 O3x3

Q= 0343 O3x3 Ozxz  Osxs O3x3 | Ts (16)

>
03x3 03x3  03x3 Npglaxs  0O3x3

>
03x3 O3xa  Osxz  Ozxz  Mpgglaxs

i : 2 2 .2 2
where T is the sample time, Mg, Nzg, Myags Mhgd arelthe PS.D. of the
gyro and accel random noise, and accel and gyro bias variation,

respectively.
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Measurement Models

ECEF INS/GNSS Loosely Coupled

. Faps — 1S
2= | . N (17)
Vaps — Vg
03x3 03x3 —l3x3 03x3 0343 (18)

H-—
03x3 —l3xz 0O3x3 0Ozx3 O3x3

Theoretically, the lever arm from the INS to the GNSS antenna needs
to be included, but in practice, the coupling of the attitude errors and
gyro biases into the measurement through the lever arm is week.
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ECEF INS/GNSS Tightly Coupled

Pseudo-ranges are used instead of XYZ.

= (2) 1

where
2, = (pc1 —pc1.fc2 —Pca. - - - Pcn— Pcn) (20)
Z, = (fc1 — Pci.Pc2 — Pc2.--- Pon— Pen) (21)
- Se . = - . T
X(t) = (693, ovE, o5, Ba By dpr dirc) (22)

fcj» and p¢; and pg;, and pg; are the psuedo-ranges and rates
obtained from the GNSS and INS, respectively, for the jth satallite.
These equations are none linear and an EKF needs to be used. dp,c
and Jp,c are the clock bias and drift.
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Measurement Models

Tightly Coupled Linearized Measurement Matrix

—al

O1x3 O1xgz Uzgy O1xz O1xz 1 Oixs
—al
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—»eT
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- AT
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—al
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