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Abstract: A procedure for determining the probability distribution of the rth order statistic, Gr:L, r ¼ 1, 2, . . . , L,
among a set of L correlated Nakagami diversity branch gains G1, G2, . . ., GL has been described in David and
Nagaraja (2003) and Elkashlan et al. (2008). The results are used to evaluate the bit error rate (BER) of
general order selection (GOS), a diversity method in which the rth order branch is selected for transmission,
over correlated Nakagami fading branches. GOS can be used to improve system throughput and provide
various levels of services, both of which are highly desirable in high-speed communication systems. Numerical
and simulation results are presented and used to illustrate the effects of fading correlation on the BER
associated with the rth order gain branch.
1 Introduction
To increase system capacity and improve the quality-of-
service (QoS) offerings in wireless communication systems,
numerous techniques have been proposed to mitigate the
deleterious effects of channel fading and to improve the
received signal-to-noise ratio (SNR). These techniques
include diversity reception, dynamic channel allocation and
power control. In this paper, the focus is on diversity and
channel allocation methods.

The theory of order statistics underpins the performance
analyses of many diversity reception techniques that involve
efficient channel allocation and signal processing algorithms
for signal detection and estimation. Selection combining
(SC) is relatively simple since it involves processing only
the signal on the diversity branch with the highest SNR.
The performance analysis of SC assuming independent
channel fading, has been studied extensively in the
literature [1–4]. However, the assumption of independent
fading is valid only if the diversity branches are spaced
sufficiently far apart, a situation which is not always
possible in practice. The performance analysis of SC over
correlated fading branches, for dual and triple branch
diversity, is treated in [5–9]. As far as higher order
he Institution of Engineering and Technology 2008
diversity is concerned, bit error rate (BER) expressions
for the highest SNR with an arbitrary number of
branches are given in [10, 11]. In [12], the performance of
a hybrid selection/maximal-ratio combining (H-S/MRC)
diversity scheme over exchangeable correlated Nakagami
fading branches is analysed. A set of random variables
A1, . . . , AL are said to be exchangeable if the joint
distribution of Ap1

, . . . , ApL
does not depend on the

permutation p.

The distribution of the rth order SNR is required for the
performance evaluation of general order selection (GOS),
in which the rth order branch is selected for transmission.
This distribution is also often required in the performance
analyses of various diversity systems in the presence of
incorrect channel estimation and signal detection. For
example, it is useful in calculating the performance loss of
SC when an error in selecting the highest SNR branch
occurs. GOS can be utilised to support applications with
different QoS requirements. As an example, it can be
employed in IEEE 802.16 OFDM-based WiMAX
systems to offer differentiated personal broadband services,
such as mobile entertainment [13]. The selective allocation
of OFDM subcarriers, bit and power loading to different
data streams based on their respective QoS requirements
IET Commun., 2008, Vol. 2, No. 7, pp. 928–934
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provides a highly scalable and flexible method to
support differentiated high-bandwidth and low-latency
entertainment applications.

A performance analysis of multibranch GOS over
correlated fading channels is not available in the literature.
In this paper, the BER of GOS for binary phase shift
keying (BPSK) modulation over a set of correlated and
not necessarily exchangeable Nakagami fading channels
is studied. We formulate the problem in a general
framework and derive a solution which is applicable to
various multiple access and diversity schemes such as
the channel-aware frequency hopping (CAFH) scheme in
[14]. In CAFH, a given mobile station (MS) may not be
able to transmit in its highest SNR subband because this
particular subband may already have been assigned to
another MS. The remainder of this paper is organised as
follows. In Section 2, the system model is described and a
discussion of relevant cumulative distribution functions
(cdf’s) is provided. In Section 3, an expression for the BER
of GOS is derived. Numerical results are presented in
Section 4, and in Section 5, some concluding remarks
are drawn.

2 Channel and system model
Let G1, G2, . . . , GL be L arbitrarily correlated random
variables (rv’s) corresponding to the branch gains in a
diversity communication system. The received baseband
signal at the lth branch is

r‘(t) ¼ G‘s(t)e�jc‘ þ n‘(t), ‘ ¼ 1, 2, . . . , L (1)

where s(t), t [ (0,T ) is the transmitted signal and n‘(t) is an
independent additive white Gaussian noise (AWGN)
process. The phase c‘ is uniformly distributed over the
range [0, 2p). The corresponding branch SNR’s are
denoted by G1, G2, . . . , GL, with

G‘ W [G‘]
2E=N0, ‘ ¼ 1, 2, . . . , L (2)

where E ¼
Ð T

0 s2(t)dt is the transmitted bit energy and N0 is
the one-sided noise power spectral density (PSD).

If the rv’s G1, . . . , GL are arranged in increasing order of
their magnitudes and written as

G1:L � � � � � GL:L (3)

we refer to Gr:L as the rth order statistic. The rv’s
G1, . . . , GL are statistically dependent and not necessarily
exchangeable branch gains. The SNR of the rth order
statistic is then

Gr:L ¼ [Gr:L]2E=N0 (4)
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From [15, p. 99], and [16] the cdf of the rth order statistic
can be obtained as

FGr:L
(g)

¼
XL

i¼r

(� 1)i�r i � 1

r � 1

� � X
1�p1,���,pi�L

F
(p1,...,pi)
Gi:i

(g)

" #

(5)

In (5), the inner sum is over all possible ways of
selecting i out of L rv’s and the superscript notation in
F

(p1,...,pi )
Gi:i

indicates that only Gp1
, . . . , Gpi

are included in
the selection. The Gl’s are modelled as correlated
Nakagami-m rv’s with a marginal Nakagami probability
density function (pdf) given by [17]

fG‘
(g) ¼

2

G(m‘)
�

m‘

V‘

� �m‘

� g2m‘�1
� e�(m‘=V‘)g

2

, g � 0

‘ ¼ 1, 2, . . . , L (6)

where G(.) is the Gamma function, ml is the fading
parameter, and V‘ ¼ E[(G‘)

2]. It is well-known that the
pdf of G‘ follows a Gamma distribution, that is

fG‘ (g) ¼
m

m‘
‘

G(m‘)
�
gm‘�1

(G‘)
m‘
� e�m‘(g=G‘), g � 0

‘ ¼ 1, 2, . . . , L (7)

where the average SNR on the lth branch is given by
G‘ ¼ (E=N0)V‘. We assume that each branch experiences
the same fading parameter value, i.e., m‘ ¼ m for
l ¼ 1, 2, . . . , L. Given the fact that the instantaneous
SNR’s are always non-negative, we can express their joint
cdf as [18, p. 140]

FG1,...,GL
(g1, . . . , gL) ¼

1

(2p)L

ð1

�1

� � �

ð1

�1

f(t1, . . . , tL)
YL

‘¼1

1� e�jt‘g‘

jt‘

� �
dt1 � � � dtL (8)

where j ¼
ffiffiffiffiffiffiffi
�1
p

and f(t1, . . . , tL) is the joint characteristic
function (CF) of the Gl’s given in (24). From (8), the cdf of
the highest order statistic Gi:i W max {G1, . . .Gi} can be
written as

FGi:i
(g) ¼ Pr{G1, . . . , Gi � g} ¼

1

(2p)i

ð1

�1

� � �

ð1

�1

f(t1, . . . , ti)
Yi

‘¼1

1� e�jt‘g

jt‘

� �
dt1 � � � dti (9)
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3 Error performance of GOS
By differentiating (5), we can write the pdf of Gr:L as

fGr:L
(g) ¼

dFGr:L
(g)

dg

¼
XL

i¼r

(�1)i�r i � 1

r � 1

� � X
1�p1,���,pi�L

dF
(p1,...,pi)
Gi:i

(g)

dg

" #

¼
XL

i¼r

"
(�1)i�r i � 1

r � 1

� � X
1�p1,���,pi�L

f
(p1,...,pi)
Gi:i

(g)

#

(10)

where the pdf of the highest order statistic, Gi:i, is given by [11]

f
(p1,...,pi)
Gi:i

(g) ¼
1

(2p)i

ð1

�1

� � �

ð1

�1

f(tp1
, . . . , tpi

)

� h(g, t)dtp1
� � � dtpi

(11)

and

h(g, t)¼
d

dg

Yi

‘¼1

1� e�jtp‘g

jtp‘

 !" #

¼
Yi

‘¼1

( jtp‘ )

" #�1 Xi

n¼1

(�1)nþ1

"

�
X

bp1
þ���þbpi

¼n

j(bp1
tp1
þ � � � þ bpi

tpi
)

exp( jg[bp1
t1þ � � � þ bpi

tpi
])

3
5 (12)

where bp1
, . . . , bpi

is a binary sequence whose elements
assume the value of zero or one. For BPSK modulation over
an AWGN channel with one-sided PSD N0, the average
error probability when transmitting on the rth order branch
out of L branches is obtained by averaging the conditional
error probability, P(ejg), over the pdf of Gr:L, that is

Pr:L
e ¼

ð1

0

P(ejg)fGr:L
(g)dg (13)

where [19]

P(ejg)¼ Q(
ffiffiffiffiffiffi
2g

p
) (14)

Using (10) in (13) yields

Pr:L
e ¼

XL

i¼r

(�1)i�r i� 1

r� 1

� �
�

X
1�p1,���,pi�L

ð1

�1

� � �

ð1

�1

f(p1,...,pi)(tp1
, . . . , tpi

)

�w(p1,...,pi)(tp1
, . . . , tpi

)dt1 � � �dtpi
(15)
0
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with

w(p1,...,pi )(tp1
, . . . , tpi

)¼
1

(2p)i

ð1

0

P(ejg)h(p1,...,pi)(g, t)dg

(16)

As noted in [11], the integrand in (15) consists of two terms.
The first term f(t) depends only on the channel whereas the
second term w(t) depends only on the modulation scheme.
Substituting (14) into (16) yields

w(p1,...,pi )(tp1
, . . . , tpi

)¼
1

(2p)i

ð1

0

Q(
ffiffiffiffiffiffi
2g

p
)h(p1,...,pi)(g, t)dg

(17)

Integration by parts as

w(p1,...,pi )(tp1
, . . . , tpi

)¼
1

(2p)i

Yi

‘¼1

( jtp‘ )

" #�1Xi

n¼1

(�1)nþ1

X
bp1
þ���þbpi

¼n

ð1

0

Q(
ffiffiffiffiffiffi
2g

p
)

zfflfflfflffl}|fflfflfflffl{u

j(bp1
tp1
þ � � � þ bpi

tpi
)

exp ( jg [bp1
tp1
þ � � � þ bpi

tpi
])

dg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ds

(18)

yields

w(p1,...,pi )(tp1
, . . . , tpi

)

¼
1

(2p)i

Yi

‘¼1

( jtp‘ )

" #�1Xi

n¼1

(�1)nþ1

�
X

bp1
þ���þbpi

¼n

1

2
1�

1ffiffiffiffi
p
p

�

�

ð1

0

e�g(1þj[bp1
tp1
þ���þbpi

tpi
])ffiffiffi

g
p dg

#

(19)

Letting x¼
ffiffiffi
g
p

, we obtain

w(p1,...,pi)(tp1
, . . . , tpi

)

¼
1

(2p)i

Yi

‘¼1

(jtp‘ )

" #�1Xi

n¼1

(�1)nþ1
X

bp1
þ���þbpi

¼n

1

2
�

1ffiffiffiffi
p
p

� ð1

0

e�x2(1þj[bp1
tp1
þ���þbpi

tpi
])dx

�
(20)

Using

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

ð1

0

e�x2=2s2

dx¼
1

2
(21)
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in (20) with s2
¼ 1=(2(1þ j[bp1

tp1
þ � � � þ bpi

tpi
])), we have

w(p1,...,pi)(tp1
, . . . , tpi

)

¼
1

(2p)i

Yi

‘¼1

(jtp‘ )

" #�1Xi

n¼1

(�1)nþ1
X

bp1
þ���þbpi

¼n

1

2
1�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j[bp1

tp1
þ � � � þ bpi

tpi
�

q
2
64

3
75 (22)

The error performance can then be obtained by inserting
w(p1,...,pi )(tp1

, . . . , tpi
) and f(p1,...,pi)(tp1

, . . . , tpi
) for a given

channel into (15).

4 Numerical results and
discussion
To illustrate the usefulness of the approach described in
Section 3, numerical examples are provided for a commonly
used correlation model. We calculate the BER, Pr:L

e , when
transmitting on the rth order SNR branch (subband) out of
L available subbands in a Nakagami-m correlated fading
environment. We assume that the various subbands are
subject to correlated fading, where the degree of correlation
depends on, among other factors, the subband frequency
separation. The correlation at any instant of time between
the fade envelopes, Gk and Gl of the kth and lth subbands,
respectively, is assumed to be [20]

E{Gk, Gl } ¼
1

1þ fk � fl=Bc

� 	2
; rk,l (23)

where Bc is the coherence bandwidth of the channel and rk,l

is the correlation coefficient. Therefore the L � L covariance
matrix R is given by

R ¼ G

1 r1,2 � � � r1,L

r2,1 1 � � � r2,L

..

. . .
. . .

. ..
.

rL,1 rL,2 � � � 1

2
6664

3
7775

where R is symmetric and positive definite [21] and Ḡ

denotes the average SNR. For correlated Nakagami-m
fading, the joint CF is given by [22, p. 359]

f(t1, . . . , tL) ¼ jI � jTSj�m (24)

where I is the identity matrix of size L� L, j � j denotes the
determinant, T ¼ diag{t1, t2, . . . , tL}, m [ [0:5, 1) and S
Commun., 2008, Vol. 2, No. 7, pp. 928–934
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is a symmetric matrix with elements

Sk,l ¼

ffiffiffiffiffiffiffiffi
Rk,l

m

r
(25)

In (25), Rk,l is the element in row k and column l of the
covariance matrix R.

Substituting the component correlation coefficients
into (15) and using (22) to calculate w(p1,...,pi)

(tp1
, . . . , tpi

), we can obtain Pr:L
e in a Nakagami-m

correlated fading environment. The results are plotted
in Fig. 6, with m ¼ 1, L ¼ 8 and Bn W Bs=Bc ¼ 0:9,
where Bs is the bandwidth of each subband. In this case,
the covariance matrix R for Bn ¼ 0:9 can be calculated
using (23) as

R ¼ G

1:000 0:552 0:235 0:120

0:552 1:000 0:552 0:235

0:235 0:552 1:000 0:552

0:120 0:235 0:552 1:000

0:071 0:120 0:235 0:552

0:047 0:071 0:120 0:235

0:033 0:047 0:071 0:120

0:024 0:033 0:047 0:071

2
66666666666664

0:071 0:047 0:033 0:024

0:120 0:071 0:047 0:033

0:235 0:120 0:071 0:047

0:552 0:235 0:120 0:071

1:000 0:552 0:235 0:120

0:552 1:000 0:552 0:235

0:235 0:552 1:000 0:552

0:120 0:235 0:552 1:000

3
77777777777775

Since the off-diagonal elements are not all equal, the
subband gains are not exchangeable. The BER curves for
BPSK GOS in this fading environment with r ¼ 1, 4, 7
and 8 are shown as solid lines. Corresponding curves for
an uncorrelated fading environment are shown as dotted
lines. Computer simulation results for GOS for the
correlated fading case were obtained to ascertain the
accuracy of the analysis and are shown as circles. It can
be seen that the analytic and simulation results agree
closely. For comparison, the BER of BPSK with no
diversity is also plotted (dashed line).

From Fig. 1, when the highest SNR subband is selected
(i.e. G8:8 ), the performance is better when the subbands
are independently fading. On the other hand, if the lowest
SNR subband is selected (i.e. G1:8), correlated fading yields
a slightly better performance. This is due to the fact that
there is less variability among the different subband gains
in a correlated environment. It can also be seen that the
931
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performance difference between the correlated and
uncorrelated fading cases increases with r. At a SNR of
10 dB, operation in an uncorrelated fading environment
provides roughly a 20-fold, 7-fold and 2-fold reduction in
BER compared with a correlated case for r ¼ 8, 7 and 4,
respectively.

To demonstrate the impact of the fading correlation on the
BER, Bn is chosen as 0.5, with m ¼ 1 and L ¼ 8 in Fig. 2.
The covariance matrix for Bn ¼ 0.5 is given by

R ¼ G

1:000 0:800 0:500 0:307

0:800 1:000 0:800 0:500

0:500 0:800 1:000 0:800

0:307 0:500 0:800 1:000

0:200 0:307 0:500 0:800

0:137 0:200 0:307 0:500

0:100 0:137 0:200 0:307

0:075 0:100 0:137 0:200

2
66666666666664

0:200 0:137 0:100 0:075

0:307 0:200 0:137 0:100

0:500 0:307 0:200 0:137

0:800 0:500 0:307 0:200

1:000 0:800 0:500 0:307

0:800 1:000 0:800 0:500

0:500 0:800 1:000 0:800

0:307 0:500 0:800 1:000

3
77777777777775

It is evident from a comparison of Figs. 1 and 2 that for
high values of r, the BER significantly increases with
increased correlation, that is, increases with lower values
of Bn. In Fig. 2, at a SNR of 10 dB, the performance
difference between the uncorrelated and correlated
fading cases is roughly 100-fold, 30-fold and 4-fold
r ¼ 8, 7 and 4, respectively. For r ¼ 1 the BER slightly

Figure 1 BPSK BER against average SNR for m ¼ 1 and
Bn ¼ 0.9
he Institution of Engineering and Technology 2008
decreases with correlation and the performance
difference is more noticeable as the correlation increases.
The BER curves for Bn ¼ 0:25, m ¼ 1 and L ¼ 8 are
shown in Fig. 3. The covariance matrix for Bn ¼ 0:25 is
given by

R ¼ G

1:000 0:941 0:800 0:640

0:941 1:000 0:941 0:800

0:800 0:941 1:000 0:941

0:640 0:800 0:941 1:000

0:500 0:640 0:800 0:941

0:390 0:500 0:640 0:800

0:307 0:390 0:500 0:640

0:246 0:307 0:390 0:500

2
66666666666664

0:500 0:390 0:307 0:246

0:640 0:500 0:390 0:307

0:800 0:640 0:500 0:390

0:941 0:800 0:640 0:500

1:000 0:941 0:800 0:640

0:941 1:000 0:941 0:800

0:800 0:941 1:000 0:941

0:640 0:800 0:941 1:000

3
77777777777775

The results from Figs. 1, 2 and 3 show that the difference
in BER between the correlated and uncorrelated cases is
small for r ¼ 1 with the BER decreasing slightly as the
correlation increases. For r ¼ 8, the BER degrades rapidly
with increased correlation.

Figs. 4–6 show the BER against average SNR for
m ¼ 0.5, L ¼ 8 and Bn ¼ 0.9, 0.5 and 0.25, respectively.
The curves for m ¼ 0.5 are qualitatively similar to the
m ¼ 1 results. The case m ¼ 0.5 corresponds to a one-
sided Gaussian distribution. As expected, the BER is
generally higher with a smaller value of m since it
corresponds to a more severe fading environment.

Figure 2 BPSK BER against average SNR for m ¼ 1 and
Bn ¼ 0.5
IET Commun., 2008, Vol. 2, No. 7, pp. 928–934
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Figure 4 BPSK BER against average SNR for m ¼ 0.5 and
Bn ¼ 0.9

Figure 3 BPSK BER against average SNR for m ¼ 1 and
Bn ¼ 0.25

Figure 5 BPSK BER against average SNR for m ¼ 0.5 and
Bn ¼ 0.5
Commun., 2008, Vol. 2, No. 7, pp. 928–934
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5 Conclusion
An expression for the BER of rth order selection involving a set
of arbitrarily correlated (not necessarily exchangeable) diversity
branch gains was obtained. The proposed approach may be
applied in the performance analyses of various diversity
systems operating over correlated Nakagami fading channels.
It was found that the sensitivity of the BER performance to
correlation among the branches depends on the branch order.
The strongest branch showed the largest degradation in a
correlated environment compared with an uncorrelated
environment. On the other hand, the weakest branch showed
an improvement in performance in a correlated environment.
The performance difference between the correlated and
uncorrelated fading cases increases with r and correlation.
This is due to the fact that there is less variability among the
different subband gains as the correlation increases.
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