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1 Introduction

We show the existence of a sequence of nested lattices (Λ(n)
1 ,Λ(n)) with Λ(n) ⊂ Λ(n)

1 such that both lattices

are Rogers-good and Poltyrev-good. The sequence is indexed by the lattice dimension n. The existence of

a sequence of lattices Λ(n) which are good in both senses has been shown earlier [1]. Also, the existence of

nested lattices where the coarse lattice is good in both senses and the fine lattice is Poltyrev-good has also been

shown [2]. We show that the same construction as used in [2] results in a fine lattice that in addition to being

Poltyrev-good is also Rogers-good. Our proof is essentially identical to the one given in [1].

In Section 2, we describe the construction of a random ensemble of nested lattices in which the coarse lattice

Λ is fixed and the fine lattice Λ1 is constructed in a randomized manner. This construction is the same as that

described in [2]. In Section 3, we show the main result which is that with high probability, a nested lattice

(Λ1,Λ) in this ensemble is such that both Λ1 and Λ are Rogers and Poltyrev-good. A straightforward corollary

of this result is that the fine lattice Λ1 is also good for MSE quantization and this is shown in Section 4. We

conclude with some comments on further nesting of lattices in Section 5. We use the notation of [4] for lattice

related quantities.

2 Construction of the Lattice Ensemble

We describe the construction of the nested lattice first. We start with a coarse lattice Λ (the superscript is

dropped from here on) which is both Rogers and Poltyrev-good. Let V be the Voronoi region of Λ and σ2(V) be

the second moment per dimension of Λ [4]. Let the generator matrix of Λ be GΛ, i.e., Λ = GΛ · Zn. Formally,

Λ satisfies

• (Rogers-good) Let Ru and Rl be the covering and effective radius of the lattice Λ. Λ (more precisely, a

sequence of such lattices) is called Rogers-good if its covering efficiency ρcov(Λ) → 1.

• (Poltyrev-good) For any σ2 < σ2(V), let N be a Gaussian random vector whose components are i.i.d

N (0, σ2). Then, Λ (more precisely, a sequence of such lattices) is called Poltyrev-good if

Pr(N /∈ V) < exp{−n[Ep(µ)− on(1)]} (1)

where µ = σ2(V)/σ2 is the VNR (volume to noise ratio) of the lattice Λ relative to N (0, σ2) and Ep(µ) is

the Poltyrev exponent [1].
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We now construct the fine lattice Λ1 using Loeliger’s type-A construction [3]. Let k, n, p be integers such that

k ≤ n and p is prime. Their precise magnitudes are described later. Let G be a k × n generating matrix with

its elements chosen uniformly from Zp = {0, 1, . . . , p− 1}. The construction of the fine lattice is now described

by

• Define the discrete codebook C = {x : x = y ·G for some y ∈ Zk
p}

• Lift C to Rn to form

Λ
′

1 = p−1C + Zn (2)

• Λ1 , GΛ · Λ
′

1 is the fine lattice

Note that, by construction, Λ ⊂ Λ1. We now show that a randomly chosen member from this ensemble of nested

lattices is such that Λ1 is both Rogers and Poltyrev-good. The fact that such random selection results in a fine

lattice which is with high probability Poltyrev-good has already been shown [2]. We now show that a similar

selection results in Rogers-good fine lattices as well. By union bound then, we will have proved our claim.

3 Proof

To show Rogers-goodness, we show that a random fine lattice (with high probability) covers all the points inside

the Voronoi region V of the coarse lattice with a covering efficiency that asymptotically reaches unity. We

do this by first showing that almost every point in V is covered with high probability by a subset of the fine

lattice points. We then show that increasing the number of points in the fine lattice decreases the number of

uncovered points at a certain rate till no points remain uncovered. We then show that the covering efficiency

of this construction asymptotically approaches unity.

Number the points of the fine lattice Λ1 that lie inside V. Let Λ1(i) be the ith such point for i = 0, 1, . . . , pk−1.

Since the whole space is tiled by regions congruent to V, we restrict attention to only V. Let A∗ then denote A

mod V for any set A.

Proposition 1. The random ensemble described in Section 2 satisfies the following properties.

• Λ1(0) = 0 deterministically.

• Λ1(i) is equally likely to be any of the points in p−1Λ ∩ V.

• For any i 6= j, (Λ1(i)− Λ1(j))∗ is uniformly distributed over p−1Λ ∩ V.

Proof: A brief sketch of the proof of these facts is presented here. First, we note that since there is a

one-to-one correspondence between the points of the lattices Λ
′

1 and Λ1, it suffices to prove the assertions for

the lattice Λ
′

1.

• Clearly, 0n ∈ C for any choice of the random matrix G in the construction described in Section 2. Hence

the point 0n belongs to the lattices Λ
′

1 and Λ1 deterministically. Without loss of generality, we can name

this point as Λ1(0) and hence the first property is proved.
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• Let C(i) denote the codeword corresponding to the lattice point Λ
′

1(i). It is easy to see that Λ1(i) is

uniformly distributed over the pn points in p−1Λ∩GΛ·CUBE where CUBE = [0, 1)n. Because every lattice

point has a one-to-one correspondence with both GΛ · CUBE and V and both these sets tile Rn, it must

be that they both have the same volume. This also implies that |p−1Λ ∩ GΛ ·CUBE| = |p−1Λ ∩ V| = pn.

Thus, the points in these two sets can be put in one-to-one correspondence with one another. By this

correspondence and the fact that p−1Λ ∩ GΛ · CUBE, it follows that Λ1(i) is uniformly distributed over

p−1Λ ∩ V.

• Once again, the same argument as above can be used. It is easy to show that (Λ1(i)−Λ1(j)) is uniformly

distributed over the pn points of p−1Λ ∩ GΛ · CUBE for i 6= j. Using the one-to-one correspondence

between this region and p−1Λ ∩ V, it must be that (Λ1(i)− Λ1(j))∗ is uniformly distributed over the pn

points of p−1Λ ∩ V.

This completes the proof of the properties of the lattice ensemble.

If we use the lattice points Λ1 ∩V as codewords, then the effective rate of such a code would be R = k
n log p.

In what follows, we will be interested in keeping this code rate fixed as n →∞. Thus pk →∞ as n →∞. We

also remark that the following proof works for any R > 0.

Part I: Almost complete covering

Fix an r > 0 to be chosen later. Fix an arbitrary x ∈ V. Let S1(x) be the set of all points in p−1Λ ∩ V that

are within a distance (r − d) of x, i.e.,

S1(x) = (p−1Λ ∩ (x + (r − d)B))∗ (3)

Here, B denotes a ball of unit radius and d is the covering radius of Voronoi region of the lattice p−1Λ. The

probability that x is covered by the ith point of the fine lattice Λ1 is given by

Pr(x ∈ (Λ1(i) + (r − d)B)∗) =
|S1(x)|

pn
(4)

We use the following lower bound on the cardinality of S1(x). Define S2(x) as

S2(x) = {y ∈ p−1Λ : (y + p−1V)∗ ∩ (x + (r − 2d)B)∗ 6= φ} (5)

Clearly S2(x) ⊂ S1(x) and the cardinality of S2(x) can be bounded by VB(r − 2d)/Vol(p−1V). Thus a lower

bound on the probability that x is (r − d) covered by Λ1(i) is

Pr(x ∈ (Λ1(i) + (r − d)B)∗) ≥ VB(r − 2d)
|V|

for i = 1, . . . , pk − 1 (6)

Note that we exclude i = 0 from consideration since Λ1(0) = 0 deterministically. Let ηi be the indicator random

variable that indicates whether x is covered by Λ1(i) for i = 1, . . . , pk − 1. Let χ be the total number of points

in Λ1 ∩ V that cover x. Then E(χ) is given by

E(χ) =
pk−1∑
i=1

E(ηi) (7)

≥ (pk − 1)
VB(r − 2d)

|V|
(8)
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We have |V|/|V1| = pk and that pk →∞ as n →∞. Thus, E(χ) can be written as

E(χ) ≥ cn
VB(r − 2d)

|V1|
= cn

(
r − 2d

rΛ1

)n

(9)

where rΛ1 is the effective radius of the Voronoi region V1 of the fine lattice Λ1 and cn = 1− e−nR → 1.

Using the pairwise independence of ηis (which follows from the 3rd property of the ensemble), we have

Var(χ) =
pk−1∑
i=1

Var(ηi) ≤
pk−1∑
i=1

E(η2
i ) =

pk−1∑
i=1

E(ηi) = E(χ) (10)

From Chebyshev’s inequality, for any ν > 0,

Pr{|χ− E(χ)| > 2ν
√

E(χ)} ≤ Var(χ)
4νE(χ)

≤ 4−ν (11)

Let µ(ν) , E(χ) − 2ν
√

E(χ). Then, we have Pr(χ < µ(ν)) ≤ 4−ν . If µ(ν) > 1, then 4−ν also bounds the

probability that none of the points of p−1Λ cover x.

Call x ∈ V remote from a set A if none of the points in A are within distance (r−d) from x. Then, χ(x) < 1

is the same as saying x is remote from Λ1. Let Q be the set of points x ∈ V that are remote from Λ1 and let

q , |Q|/|V|. Then,

|Q| =
∫
V

1(χ(x)<1)dx (12)

≤
∫
V

1(χ(x)<µ(ν))dx (13)

if µ(ν) ≥ 1. Using the previously obtained bound, we then have E(q) ≤ 4−ν . From Markov’s inequality, it then

follows that

Pr(q > 2νE(q)) < 2−ν (14)

and thus

Pr(q > 2−ν) < 2−ν (15)

If we let ν → ∞ while still keeping µ(ν) ≥ 1, we can let this probability decay to 0. This can be achieved by

letting ν = o(log n) and E(χ) > nλ for some λ > 0. But, we have E(χ) ≥ (pk − 1)VB(r − 2d)/|V|. Thus, it is

enough to choose r such that

log
(

r − 2d

rΛ1

)
≥ λ

n
log n (16)

For ease of reference, the choices of growth rates for the different variables are listed below and in the rest

of the paper as well.

Choices I:

• ν goes to ∞ as o(log n).

• r is chosen such that E(χ) > nλ for some λ > 0.
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With such a choice of parameters, for most lattices in the ensemble, almost all points of the region V are (r−d)

covered by points of the randomly chosen lattice Λ1 with high probability. Note that, it suffices to choose k = 1

even to reach this conclusion (in which case, p needs to grow exponentially). In what follows, we will restrict

attention to covering only the points of the grid p−1Λ ∩ V. We note that the bound obtained in equation (15)

holds when q is interpreted as the fraction of uncovered points in p−1Λ ∩ V as well.

Part II: Complete covering

We now extend the analysis to provide complete covering of V. The main idea is as follows. Any point x ∈ V
is within a distance d from a point in p−1Λ ∩ V. This simply follows from the definition of d as the covering

radius of p−1Λ. Thus, an (r − d) covering of the points of p−1Λ will automatically result in an r covering of V.

Thus, we restrict our attention to the lattice p−1Λ ∩ V and attempt to cover only these lattice points in what

follows. Correspondingly, we define Q(A) to be the set of all lattice points p−1Λ ∩ V that are remote from the

set A. Also, let xi, i = 0, . . . , pn − 1 denote the ith point of the constellation p−1Λ ∩ V.

Let Λ1[k1] be the fine lattice obtained using the Loeliger construction while using only the first k1 rows of

the random matrix G. We saw in the previous section that any such k1 would suffice to get an almost complete

covering of V. We will now demonstrate that the fraction of uncovered points squares when we go from Λ1[k1]

to Λ1[k1 + 1] and thus when sufficient number of rows are added, the fraction of uncovered points becomes less

than p−n with high probability. Since there are only pn points in p−1Λ, this means that every point is covered.

For this argument to work, we will need certain bounds on the magnitudes of the quantities involved which we

shall provide later.

Fix k1 which grows faster than (log n)2. The necessity of this growth rate is explained later. Let xj be the

jth lattice point. Again, we exclude j = 0 from consideration. Let Qi be the set of lattice points that remain

uncovered by the lattice Λ1[k1 + i], i = 0, 1, . . . , k2 = k − k1. Correspondingly, define qi = |Qi|/pn. Consider

the set S = (Λ1[k1] ∪ (Λ1[k1] + p−1gk1+1))∗ where gi is the ith row of the random matrix G. Note that

Λ1[k1 + 1] =
p−1⋃
m=0

(Λ1[k1] + m · p−1gk1+1)∗ (17)

and thus S ⊂ Λ1[k1 + 1]. This implies that Q(Λ1[k1 + 1]) ⊂ Q(S) and q1 ≤ |Q(S)|/pn. Since Λ1[k1] + p−1gk1+1

is an independent shift of Λ1[k1], the probability that xj is remote from Λ1[k1] + p−1gk1+1 is the same as the

probability that xj is remote from Λ1[k1]. Also note that, given a Λ1[k1], q0 is a deterministic function of Λ1[k1].

Therefore,

Pr(xj ∈ Q(S) | Λ1[k1]) = Pr (xj ∈ Q(S) | xj ∈ Q(Λ1[k1]),Λ1[k1]) · Pr (xj ∈ Q(Λ1[k1]) | Λ1[k1])

+ Pr(xj ∈ Q(S) | xj /∈ Q(Λ1[k1]),Λ1[k1]) · Pr(xj /∈ Q(Λ1[k1]) | Λ1[k1]) (18)

Since Λ1[k1] ⊂ S, we have that Pr(xj ∈ Q(S) | xj /∈ Q(Λ1[k1]),Λ1[k1]) = 0 and the second term in the

expression above vanishes. Given Λ1[k1], the event {xj ∈ Q(Λ1[k1])} is deterministic. Also, we have

Pr(xj ∈ Q(S) | xj ∈ Q(Λ1[k1]),Λ1[k1]) = Pr(xj ∈ Q(Λ1[k1] + p−1gk1+1) | Λ1[k1]) (19)

= Pr(xj ∈ Q(Λ1[k1] + p−1gk1+1)) (20)

= q0 (21)
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where equation (21) follows from the independent nature of the shift. Thus, equation (18) can be written as

Pr(xj ∈ Q(S) | Λ1[k1]) = q0 · Pr(xj ∈ Q(Λ1[k1]) | Λ1[k1]) (22)

= q0 · 1(xj ∈ Q(Λ1[k1]) | Λ1[k1]) (23)

Let η
′

j be the indicator random variable denoting whether the jth grid point xj belongs to Q(S) conditioned on

Λ1[k1] for j = 1, . . . , pn − 1. Then, the cardinality of Q(S) conditioned on Λ1[k1] is given by
∑

j η
′

j . Therefore,

E
(
|Q(S)|

pn

∣∣∣∣ Λ1[k1]
)

=
1
pn

pn−1∑
j=1

E(η
′

j | Λ1[k1]) (24)

=
q0

pn

pn−1∑
j=1

1(xj ∈ Q(Λ1[k1]) | Λ1[k1]) (25)

= q2
0 (26)

where the last equality follows from the definition of q0. A point worth noting is that in equation (26), q0 is a

function of the fine lattice Λ1[k1]. Using the relation E[X | E(X | Y )] = E(X | Y ), we get the following.

E
(
|Q(S)|

pn

∣∣∣∣ q0

)
= q2

0 (27)

This in turn implies that E(q1 | q0) ≤ q2
0 . Appealing to Markov inequality gives us (for any γ > 0)

Pr(q1 > 2γE(q1 | q0) | q0) ≤ 2−γ (28)

Combining this with the bound on E(q1 | q0), we get

Pr(q1 ≤ 2γ−2ν | q0 ≤ 2−ν) ≥ 1− 2−γ (29)

We use the previously derived bound for the probability of the event {q0 ≤ 2−µ} from equation (15). Note

that, even though this bound was derived for the case when q0 refers to the fraction of uncovered points in V,

a similar argument works when q0 is redefined to be the fraction of uncovered points in p−1Λ ∩ V. By Bayes’

rule, we finally arrive at

Pr(q1 ≤ 2γ−2ν) ≥ (1− 2−γ)(1− 2−ν) (30)

Iterating this procedure k2 times gives us

Pr(qk2 ≤ 22k2 (γ−ν)−γ) ≥ (1− 2−ν)(1− 2−γ)k2 (31)

We now choose k2 such that 22k2 (γ−ν)−γ < p−n. For this, it suffices to take γ = ν − 1 and 2k2 > n log p− ν + 1.

Using the earlier result that ν = o(log n), it implies that we need to choose k2 ≥ dlog n + log log pe. This rate

of growth for k2 (and thus k) implies through pk = 2nR that log p grows slower than n/ log n and thus k2 grows

at least as fast as log n. To ensure that k2 < k, we need k to be growing faster than k2, say as fast as (log n)2.

We can then choose k1 of the order (log n)2 to begin with. To ensure that the probability in equation (31) goes

to 1 for this choice of k2, we need to further restrict the rate of growth of ν while still ensuring that ν → ∞.
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This can be accomplished by choosing ν = 2 log(log n + log log p). With these choices, we have the probability

of complete covering of V going to 1. From standard random coding arguments, it then follows that there exists

a deterministic nested lattice (Λ,Λ1) such that the lattice points Λ1 r-cover Rn for the following choices of the

parameters.

Choices II:

• k = k1 + k2 grows as fast as (log n)2.

• k2 grows at least as fast as dlog n + log log pe.

• ν = 2 log(log n + log log p) and γ = ν − 1

The covering efficiency of the fine lattice can now be calculated.

pk1+k2 =
nλ|V|

VB(r − 2d)
pk2 (32)

However, we also have that pk = |V|/VB(rΛ1). Combining all this, we have

r

rΛ1

= n

√
VB(r)

VB(r − 2d)
nλpk2 (33)

≤
(

r

r − 2d

)
· n λ

n · 2(log p log n+log p log log p+log p)/n (34)

As n → ∞, the right hand side should go to 1. It is easy to verify that the last 2 terms do indeed tend to 1.

To show that the first term goes to 1, we need to show that d → 0 as n → ∞ for our choice of parameters.

Since Λ is Rogers-good (which implies p−1Λ is Rogers-good as well), it has a covering efficiency asymptotically

approaching 1. Thus the covering radius d of p−1Λ approaches p−1rΛ as the lattice dimension n → ∞. From

the nesting ratio, we get
|V|
|V1|

=
(

rΛ

rΛ1

)n

= pk = 2nR (35)

and hence d approaches p−12RrΛ1 . We know that (since k grows as log n + log log p and pk = 2nR) p grows as

o(n/ log n) and thus to ensure d → 0, we need rΛ1 to go to ∞ slower than p. Once could even take rΛ1 to be

constant in the above proof.

Choices III:

• rΛ1 is chosen to be any positive constant. This in turn will imply that rΛ is also constant.

Thus, we have shown that Λ1 is an efficient covering lattice.

To summarize, we first showed that a small subset of the fine lattice is enough to cover most points of the

Voronoi region of the coarse lattice with high probability. We then showed that by augmenting the fine lattice

with more points, more fraction of the points were covered till all points were covered with high probability.

We then showed that the chosen covering radius r is asymptotically the same as the effective radius of the fine

lattice. Thus, the fine lattice is Rogers-good.
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4 Goodness for MSE Quantization

It was shown in [5] that a lattice that is good for covering is necessarily good for quantization. This can be

inferred from the following relation. For any lattice Λ

G(Λ) ≤ G∗
n ·

n + 2
n

· (ρcov(Λ))2 (36)

where G(Λ) is the normalized second moment of the lattice Λ and G∗
n is the normalized second moment of the

n-dimensional sphere.

Since, we have shown that ρcov(Λ1) → 1 as n →∞ with high probability, it also follows that the fine lattice

is good for MSE quantization with high probability.

5 Conclusion

We showed the existence of nested lattices (Λ1,Λ), Λ ⊂ Λ1, such that both lattices both Rogers and Poltyrev-

good. By iterating this construction process, we can show the existence of good nested lattices with any

finite level of nesting. More precisely, for any finite m > 0, one can show the existence of a nested lattice

(Λ1,Λ2, . . . ,Λm), Λm ⊂ · · · ⊂ Λ1 such that all the lattices Λi, i = 1, . . . ,m are both Rogers-good and Poltyrev-

good. Further, such nested lattices exist for any choice of the nesting ratios. By virtue of being Rogers-good,

such lattices are also good for MSE quantization.
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