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ABSTRACT 

We introduce the dissimilarity-consensus method, a new 
approach to computing objective measures of consensus be-
tween users’ gesture preferences to support data analysis 
in end-user gesture elicitation studies. Our method models 
and quantifes the relationship between users’ consensus 
over gesture articulation and numerical measures of gesture 
dissimilarity, e.g., Dynamic Time Warping or Hausdorf dis-
tances, by employing growth curves and logistic functions. 
We exemplify our method on 1,312 whole-body gestures 
elicited from 30 children, ages 3 to 6 years, and we report 
the frst empirical results in the literature on the consen-
sus between whole-body gestures produced by children this 
young. We provide C# and R software implementations of 
our method and make our gesture dataset publicly available. 

CCS CONCEPTS 

• Human-centered computing → User studies; Gestu-
ral input. 
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1 INTRODUCTION 

Gestures enable users to operate devices fast and intuitively 
by means of direct input on touchscreens [77], wrist con-
trol on smartwatches [22], head movements for augmented 
reality glasses [28], feet input for locomotion interfaces in 
virtual reality [70], mid-air hand shortcuts for peripheral 
interaction [55], and whole-body gesture input for video 
games [56]. However, designing efective gesture interaction 
and a rewarding user experience requires key knowledge 
about what gestures are intuitive [72], low-fatigue [30], ef-

cient to perform [33,53], and straightforward to recall [43]. 
Understanding users’ preferences for gestures they would 

like to use represents an important step towards efective 
gesture UI design. To this end, the gesture elicitation method-

ology [68,71,72] has proven immensely resourceful for de-
signers to form an understanding of users’ mental models of 
gesture interaction. Since its frst implementation for multi-

touch gestures [72], the methodology has been reapplied for 
a variety of gesture types and applications [7,13,20,31,41,52, 
53,56,60,62,69], revealing users’ preferences for interactive 
gestures and accumulating important design knowledge. 
One of the outcomes of any gesture elicitation study is 

a set of recommendable gestures together with an estima-

tion of users’ consensus or agreement [68,71] as a measure 
of the expected intuitiveness of those gestures [72]. Con-
sensus has been evaluated numerically by clustering the 
elicited gestures into classes of similar types [72], a pro-
cedure performed manually by a human and guided by a 
set of clustering criteria. Unfortunately, the criteria used 
to evaluate which gestures are similar vary from study to 
study [7,13,20,31,41,52,56,60,62], causing the magnitude of 
consensus to depend on the specifc and subjective criteria 
chosen by the practitioner. While a subjective approach to 
the interpretation of gestures is indispensable when trying 
to understand the common meaning of equivalent, yet struc-
turally diferent gestures, such as cultural gestures [4,19], 
or when applying the principles of somaesthetics [24,32,40] 
to inform movement-based interaction, the vast majority of 
gesture elicitation studies are conducted to fnd objective 
consensus in gesture articulation. For the later case, the use 
of subjective criteria to cluster elicited gestures may lead to 
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Figure 1. Thirty children performing whole-body gestures with variations in body pose, handedness, amplitude of movement, 
hand poses, etc. What criteria should be used to assess the similarity of any two body gestures in order to understand the 
consensus between these children’s gestures? Unfortunately, this is where the practitioner’s subjectivity intervenes with a 
direct infuence on the magnitude of reported consensus; see the text for a numerical example. 

diferent consensus results for the same data, a distressing 
outcome, as we are about to show with a numerical example. 
The alternative, which we introduce in this paper, is a holistic 
approach to understanding the numerical relationship between 
gesture similarity and users’ consensus over articulation, a pro-
cess that can be conducted entirely on a computer to deliver 
objective magnitudes of consensus in just a few seconds. 

Subjectivity in Reporting Consensus in End-User 
Gesture Elicitation Studies: A Motivating Example 

We provide an example to illustrate the dependence of the 
magnitude of reported consensus on the criteria employed to 
cluster elicited gestures into classes of similar types. We also 
use this example to introduce new readers to the principles 
of the end-user gesture elicitation methodology [72]. 

Consider a designer that wishes to understand children’s 
preferences for whole-body gestures to symbolize a cat scratch-
ing (an action denoted in the following as the “referent,” ac-
cording to the terminology from Wobbrock et al. [72]) in 
order to inform a technique to detect such gestures efec-
tively for a gesture-controlled video game. Following the 
steps of the gesture elicitation methodology [72], the de-
signer assembles a group of children, e.g., N =30 children, 
representative of the target user group, presents them with 
the desired efect, i.e., a cat scratching, and asks each child to 
perform a gesture to generate that efect. At the end of the 
experiment, the designer has recorded 30 gestures, such as 

in terms of, e.g., the amplitude of movement, the use of the 
dominant, nondominant, or both hands, execution speed, 
repetition of movement, hand poses to suggest claws, body 
poses and facial expressions to suggest a cat, and so on. The 
designer wishes to understand how much consensus exists 
in the data they collected, preferably as a value between 0% 
and 100%, where 0% means no consensus (i.e., all the gestures 
are diferent) and 100% denotes perfect consensus. 
Consensus has been computed in the literature as a two-

step procedure: (1) elicited gestures are clustered into classes 
of similar types, and (2) the cardinalities of all the clusters 
are aggregated into a numerical measure of consensus, such 
as the Agreement Rate [68,72]. To implement the frst step, 
the designer decides which gestures are “similar” by defning 
and employing a set of criteria to cluster the elicited gestures. 
And here is where subjectivity intervenes. Let’s say that 
two “scratch like a cat” gestures are judged to be similar if 
they are performed with the same hand or with both hands 
“scratching” simultaneously. Using this handedness criterion, 
the designer evaluates the magnitude of consensus at 39.3%, 
meaning that, of all pairs of gestures, 39.3% are similar.

1 
But 

what about body pose? Is it important if the child stands 
straight up, sits down on the foor, crouches, walks around, 
and so on, while scratching like a cat? With the body pose 
criterion added, consensus drops at 19.6%.1 

But what about 
the pattern of the hand(s) moving to symbolize scratching? Is 

the ones illustrated in Figure 1. Clearly, not all the gestures 1
This example reports actual consensus values from our data (N =30 chil-

will have the same articulation, but rather gestures will vary dren) using the Agreement Rate measure of Vatavu and Wobbrock [68]. 
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scratching with the left hand followed by the right the same 2 RELATED WORK 
gesture as scratching with the right hand followed by the left 
and then the right hand again? By considering the pattern 
criterion, consensus drops further at 12.2%.1 

What about 
repetitive movements? Is scratching once the same gesture 
as scratching multiple times? With repetition as the fourth 
criterion, consensus drops at 4.7%,1 

a value that is 8 times 
smaller than the original magnitude of consensus computed 
with the handedness criterion only. What about the location 
where scratching takes place, the speed of the scratching 
movement, or the hand pose that symbolizes a claw? Should 
all these criteria, or others, be considered? The answer may 
depend on many factors (e.g., the application requirements, 
the resolution of the sensor, the goals of the investigation, 
etc.) but, it is clear that, by considering more criteria, the 
magnitude of consensus can eventually become 0% for this 
example. Our designer will compromise somewhere between 
0% and 39.3%, favoring some criteria and dismissing others, 
but it is evident now how the choice of the clustering criteria 
afects the magnitude of reported consensus. 

Contributions 
We contribute an alternative approach to subjective clus-
tering criteria and manual labeling of elicited gestures and 
introduce the “dissimilarity-consensus” method (abbreviated 
τ -C) by adopting a holistic perspective on computing and un-
derstanding how consensus forms. Moreover, the process is 
implemented entirely by a computer, which transforms long 
hours and even days of manual, subjective clustering into 
obtaining reliable, objective results in a matter of just a few 
seconds. Our method employs growth curves, modeled with 
logistic functions, that describe how fast consensus increases 
in response to an increase in the tolerance in gesture dissimi-

larity that is allowed when judging how similar two gestures 
are. Our practical contributions are as follows: 
(1) We introduce the dissimilarity-consensus method (τ -C) 

for computing objective magnitudes of consensus in end-
user gesture elicitation studies. 

(2) We demonstrate the τ -C method on whole-body gestures 
elicited from children aged 3 to 6 years, a user group 
that we specifcally chose to maximize the variance of 
elicited gestures (children at this age are still developing 
their motor and cognitive skills) and, thus, maximize 
the infuence of clustering criteria on the magnitude of 
consensus reported with the traditional approach. 

(3) We release software implementations in C# and R to com-

pute consensus and visualize τ -C growth curves to sup-
port data analysis for end-user gesture elicitation studies 
towards accumulation of new gesture knowledge in our 
community. We also release our dataset of 1,312 whole-
body gestures produced by 30 children to foster advances 
in designing gesture interaction for small children. 

We relate in this section to prior work on gesture elicitation 
studies and review whole-body interaction for children. 

End-User Gesture Elicitation Studies 
Wobbrock et al. [71] introduced the elicitation methodol-

ogy in 2005 as a practical implementation of a participa-
tory design study to evaluate and maximize the “guessabil-
ity” of symbolic input with an application to text entry 
and the EdgeWrite [73] alphabet. The frst application to 
gestures (2009) was for multitouch input on tabletops [72]. 
Since then, many gesture elicitation studies have been con-
ducted to unveil end-users’ preferences for a variety of ges-
ture types and gesture-controlled applications, such as video 
games [56], augmented reality [46], TV control [62,75], in-
teraction with multiple displays [54], pairing devices [31], 
keyboard shortcuts [7,20], web applications [41], motion 
gestures on smartphones [52], interacting with drones [12], 
smart environments [36], on-skin input [8], elastic and de-
formable displays [60], input on smart rings [21], smart-

watches [5], mid-air gesture input for connected cars [38], 
designing consistent gesture commands across devices [16], 
etc. Over the years, the original method [72] has been refned 
with an updated formula for computing agreement [20], mea-

sures of disagreement and co-agreement [68], adaptations 
to within-subjects and between-subjects designs [68,69] and 
using crowdsourcing to elicit users’ preferences [1]. Tick-
lish aspects, such as the “legacy bias” [42], i.e., the infu-
ence of users’ prior experience with interactive systems on 
elicited gestures, were addressed with methodological varia-
tions, such as production, priming, and partners [23,42], soft-
constraints [53], and the “framed guessability” approach [10]. 
However, the essential part of computing consensus by man-

ual clustering of gestures has remained unchanged. 

Studies on Children’s Whole-Body Gestures 
In this work, we demonstrate our new dissimilarity-consensus 
method by applying it to whole-body gestures elicited from 
small children, ages 3 to 6 years. To connect our results with 
the literature on child-computer interaction, we review in 
this section prior work conducted to understand how chil-
dren perform whole-body gestures. 

One way to acquire data about children’s gestures is through 
observational studies, where children are placed in interac-
tive contexts and their actions observed. For example, Rah-
man et al. [49] examined children’s perceptions of whole-
body gesture interaction (Kinect) vs. touch input (iPad); Hoys-
niemi et al. [25,26] conducted a Wizard-of-Oz study to ob-
serve children’s whole-body movements to control an avatar; 
and Connell et al. [13] collected gestures from 6 children, 
ages 3 to 8 years, in response to 22 referents regarding ob-
ject manipulation, navigation, and spatial interaction tasks. 
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Two recent studies [17,29] revealed diferences between chil-
dren and adults’ whole-body gesture articulations. Jain et 
al.’s [29] perceptual study showed that the gestures of chil-
dren between 5 and 9 years old are perceived diferently by 
human observers than the same gesture types performed by 
an adult. This result has implications for recognition tech-
niques that should be tailored to children’s specifc ways 
to articulate gestures, but also to data synthesis of “child-
like” movements [17] to support creation of realistic child 
characters for computer animations and video games. 

These studies have contributed with important knowledge 
on how children, of various age groups, perform gestures. 
However, compared to the considerable advances in generic 
body gesture recognition and analysis for adults [2,11,47,48, 
62,64,65,76], children’s whole-body gesture performance is, 
unfortunately, still little understood today. Besides limited 
research, the lack of publicly-available datasets on gestures 
produced by children has also prevented new discoveries. A 
very recent (2018) initiative of Aishat et al. [3] was to release 
a Kinect dataset with 58 motions performed by 10 children 
(ages 5 to 9 years) and 10 adults. As a side contribution of this 
work, we also align to this initiative by releasing our dataset 
of gestures performed by 30 children, ages 3 to 6 years. In 
this context, our empirical results on the consensus between 
children’s gesture articulations and our dataset come at a 
right time to stimulate more research in this direction. 

3 THE DISSIMILARITY-CONSENSUS APPROACH 
TO ANALYZING GESTURE ELICITATION DATA 

We present in this section our new method to compute the 
consensus between end-users’ gestures. Our approach intro-
duces a shift from gesture data analysis based on manual 
labeling and subjective clustering criteria, currently in-use 
in the community, to a holistic modeling of the numerical 
relationship between consensus and gesture dissimilarity. 

Automated Computation of Consensus using Gesture 
Dissimilarity Functions 
We start the presentation of our method by introducing a 
formula to compute consensus for a set of gestures by using 
a gesture dissimilarity function. Let дi represent the ges-
ture elicited from the i-th participant in response to some 
referent R. Let ∆ denote a dissimilarity function that com-

putes a real, positive number to characterize how dissimilar 
two gestures are. For example, ∆ may be the Dynamic Time 
Warping (DTW) cost function, a popular and accurate tech-
nique for classifying time-series data [15,50], including ges-
ture data of all kinds, e.g., stylus gestures [74], fnger touch 
strokes [34,67], motion gestures [35,51,63], mid-air freehand 
gestures [6], and whole-body movement [14,58,59,64,65]. Let 
τ represent our tolerance for deciding when two gestures 
are “similar,” i.e., gestures дi and дj are considered similar if 

∆(дi , дj ) ≤ τ . With these defnitions, we compute the con-
sensus between N gestures дi(=1..N ) elicited for referent R 
from N users as follows: 

Defnition: Consensus for referent R is the percent 
of all pairs of gestures that are evaluated to be similar, 

N N Õ Õ � � 
∆(дi , дj ) ≤ τ 

i=1 j=i+1 
CR (τ ) = [·100%] (1) 

1 
2 N (N − 1) 

where N is the number of participants from which ges-
tures are elicited, and the expression in square brackets eval-
uates to either 1 or 0, depending whether it is true or false. 
CR (τ ) takes values in [0..100], where 0% denotes no consen-
sus and 100% perfect consensus. For example, consider that 
N = 4 participants are elicited for their gesture preferences 
with respect to some referent and that the DTW dissimilarity 
computed on all the (4 × 3)/2 = 6 pairs of participants gives 
the results shown in Table 1. If we choose τ = 1.00, then 
consensus is CR = (1 + 0 + 1 + 0 + 1 + 0)/6 · 100% = 50%. 

P1 P2 P3 P4 

P1 0 0.25 1.85 0.93 

P2 0.25 0 2.13 0.78 

P3 1.85 2.13 0 1.10 

P4 0.93 0.78 1.10 0 

Table 1. Mock-up example to illustrate computation of con-
sensus. Using Eq. 1 and τ = 1.00, consensus is 50%. 

Computation of Consensus for Repeated Elicitation 

Eq. 1 covers the case where only one gesture is elicited from 
each participant for referent R, which represents the original 
implementation of the gesture elicitation methodology [72]. 
However, more complex experimental designs may elicit 
more than one gesture per participant, a procedure known 
as “production” to force participants move beyond legacy-
biased gestures [42]. In the following, we extend Eq. 1 to 
address such scenarios involving multiple, distinct gestures 
collected from the same participant for the same referent. 

Let дi ,t represent the t-th gesture proposal collected from 
the i-th participant for R. The extended formula becomes: 

Defnition: Consensus for referent R, under repeated 
elicitation, is the percent of all pairs of gestures, includ-
ing their repetitions, that are evaluated to be similar, Õ Õ N N � � � � 

ζ ∆(дi ,t , дj ,u ) ∀t, u ≤ τ 
i=1 j=i+1 

CR 
⋆(τ ) = [·100%] 

1 
2 N (N − 1) 

(2) 
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Figure 2. Growth curves quantify the relationship between 
consensus and the tolerance in gesture dissimilarity, τ , be-
low which two gestures are considered similar. In this exam-
ple, the growth rate of consensus for referent “A” is larger 
than for “B,” showing faster reaching consensus for “A.” 
Note: actual consensus in orange, logistic model ft in black. 

where t and u index gestures proposed by participants i 
and j for referent R, and ζ is a new function that takes as 
input all the dissimilarity values computed for all the t × u 
combinations of дi ,t and дj ,u and returns a single, aggregated 
value. In this work, we implement and evaluate ζ with the 
min, max, and avg functions, corresponding to optimistic, 
pessimistic, and realistic computation of consensus. For ex-
ample, consider that the four participants from Table 1 were 
elicited two more times. In this case, we would have a set 
of 12 gestures with three gestures from each participant. 
To compare the gestures of, say, participants P1 and P2, we 
need 3 × 3 = 9 evaluations of the dissimilarity measure ∆ 
in Eq. 2. Suppose that the resulting dissimilarity values are, 
in ascending order, 0.23, 0.29, 0.35, 0.36, 0.51, 0.72, 0.89, 1.10, 
and 1.51. Depending on our choice of ζ , the aggregated dis-
similarity between gestures elicited from P1 and P2 may be 
0.23 for ζ =min, 1.51 for ζ =max, 0.66 for ζ =avg, and so on. 
After the aggregation, computation of consensus for a given 
τ proceeds similarly as in the previous example; see Table 1. 

Dissimilarity-Consensus Growth Curves 
The value chosen for the tolerance parameter, τ , can cause 
consensus to take any value from 0% to 100%, e.g., choosing 
a small, conservative value when judging how similar two 
gestures are will lead to a smaller magnitude of consensus 
than when employing a more permissive τ . Thus, working 
with a single τ value would be equivalent to clustering the 
elicited gestures according to a specifc set of criteria, just 
like in the example from the introduction of this paper. 

The alternative approach, which we propose in the follow-
ing, is to adopt a holistic perspective, according to which the 
relationship between consensus and τ is modeled in the form 
of a growth curve. Figure 2 illustrates two examples of τ -C 
growth curves for two referents from our dataset (presented 
in the next section). When τ values are small, consensus 
is small as well, and it is difcult to diferentiate the two 
referents by the magnitudes of their consensus. For τ less 
than 0.1 m, it appears that referent “B” has a slightly larger 
consensus than referent “A,” but the diference is small and 

it may be that we are too conservative in our dissimilarity 
criterion to detect a true diference in consensus. For τ values 
larger than 0.4 m, both referents reach very high consensus, 
i.e., 100% for “A” and 94% for “B,” but this time it may be that 
we are too permissive in our criteria (τ ) to really understand 
diferences in consensus. The big picture is provided only 
when we look at consensus overall as a function of τ , instead 
of taking snapshots at specifc points. 

To characterize the growth of consensus numerically, we 
need a model of the τ -C relationship. Because consensus can-
not grow indefnitely as it is upper bounded by 100%, logistic 
growth, a technique commonly employed to model growth 
for populations that increase towards a maximum limit [61], 
seems appropriate to model the dissimilarity-consensus rela-
tionship. We thus employ the standard form of the logistic 
model which, expressed using our notations, is: 

C∞ · C0 
CR (τ ) = (3) 

C0 + (C∞ − C0) · exp (−r · τ ) 

where C∞=limτ →∞ C(τ ) and C0=limτ →0 C(τ ) are the upper 
and lower bounds of consensus and r is the growth rate. For 
the experiments reported in this work, we ft growth curves 
using the R library growthcurver by Sproufske [57]. For a 
good ft, we want C0 to be close to zero, C∞ close to 100, and 
r to show a statistically signifcant ft at α = .05. The growth 
rate r is our measure to characterize the overall numerical 
relationship between consensus and gesture dissimilarity. 

Creation of Consensus Gesture Sets 
According to Wobbrock et al. [72], the consensus set of recom-

mendable gestures is formed by “taking the largest groups of 
identical gestures for each referent and assigning those groups’ 
gestures to the referent” (p. 1087). The τ -C technique basi-
cally works by running an iterative clustering of the elicited 
gestures for multiple, continuously increasing values of the 
tolerance threshold τ . At any τ , the result is a binary matrix 
encoding similarity relationships between any two gestures, 
according to the evaluation of the expression [∆(дi , дj ) ≤ τ ]. 
From this matrix, a set of optimally separable clusters and, 
specifcally, the largest cluster of similar gestures can be de-
termined automatically using techniques such as hill climb-

ing or correlation clustering, among others, as demonstrated 
by the recent Crowdsensus system [1]. If the practitioner 
cannot decide on a single τ , the range values of τ can be sam-

pled, e.g., in 10 or 50 points, and the corresponding binary 
matrices added together, providing thus an overall perspec-
tive of similarity relationships across all τ ’s, just like the 
logistic curve describes the relationship between dissimilar-

ity and consensus. The same clustering techniques [1] are 
then applied directly to the sum matrix to identify the largest 
cluster and, correspondingly, the “winning” gestures. Also, 
as consensus is determined for each referent independently, 
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the same type of outcomes as in previous work on gesture 
elicitation, e.g., selecting the same gesture for two distinct 
referents, are still possible with our technique. 

Domain of Application 

In this work, we demonstrate the τ -C method on whole-body 
gestures elicited from small children; see the next section. 
However, our method is general and applicable to any type 
of gestures, such as touch, multitouch, mid-air, free-hand, 
whole-body, or any combinations of these, as long as a nu-
merical representation of those gestures is available and a 
dissimilarity function ∆ can be defned to be used in Eqs. 1 
and 2. For example, gestures are commonly represented as 
time series, where instantaneous measurements about the 
progression of a gesture in time are reported by some sensor. 
These measurements can be 2-D points for touch input [74], 
3-D accelerations for motion gestures [63], hand poses for 
free-hand gestures [75], or poses of the whole body [64], as 
exemplifed later in this paper. For time series, the Dynamic 
Time Warping function, to name just one example, has been 
proven to work remarkably well in practice [50,58]. 

4 EXPERIMENT 

To demonstrate our method, we conducted a gesture elicita-
tion experiment [72] to collect whole-body gestures. 

Participants 
Thirty (30) children, ages 3 to 6 years (M = 4.4, SD = 0.9), 
participated in our study. Half were boys, and the age distri-
butions were similar for the two gender groups (M=4.4 years 
for boys and 4.5 years for girls, respectively). Parents’ con-
sent was obtained before the study. Children were divided 
into three age groups of equal size: (i) younger than 4 years, 
(ii) between 4 and 5 years old, and (iii) older than 5 years. 

Apparatus 
Children’s whole-body gestures were captured with a Mi-

crosoft Kinect sensor v1.8 [39] that was connected to a 
2.1 GHz Dual-Core PC running Windows 7 and our custom 
software application. All gestures were stored as skeleton 
data in XML format with 20 joints per body pose. 

Task 

Children stood at about 3 m in front of the Kinect sensor in-
side a circle with a diameter of 2 m delimited on the ground 
with white tape to prevent them from exiting the active sens-
ing area; see Figure 1. Children were asked to produce body 
gestures in response to short instructions provided by our 
software with audio recordings, e.g., “show how you throw 
a ball!” or “draw a fower in mid-air!” There was no visual 
feedback in order not to infuence children’s body move-

ments in any way. Instructions were played by a speaker in 

No. Referent Instructions received† 

1 Throw ball Show how you throw a ball! 
2 Climb ladder Show how you climb a ladder! 
3 Slice carrots Show how you slice carrots! 
4 Angry bear Show how an angry bear looks like! 
5 Bird fying Show how a bird fies! 
6 Cat scratching Show how a cat scratches! 
7 Circle Draw a circle in mid-air! 
8 Square Draw a square in mid-air! 
9 Flower Draw a fower in mid-air! 
10 Applaud Applaud as hard as you can! 
11 Hands up Raise your hands up in the air! 
12 Stand on one foot Stand on one foot! 
13 Jump Jump as high as you can! 
14 Crouch Crouch! 
15 Turn around Turn around! 
†
Provided to children in the form of audio recordings. 

Table 2. The set of referents used to elicit body gestures. 

the form of a bear toy, representing an implementation of 
gamifcation [9], to keep children motivated during the study. 
Children were told to move as they wished in response to 
the instructions received from the bear. After the child con-
frmed that the instructions were understood, they produced 
the gesture, which was recorded by our application. 
We selected 15 referents to reveal children’s metaphors 

of thought for various iconic movements, e.g., manipula-

tion of objects, mimicking animal behavior, and drawing 
shapes in mid-air; see Table 2. Some of the gesture types 
were inspired by previous work, e.g., “throw a ball” [49], 
“jump” [3,25], “crouch” [25], “fy like a bird” and “climb” [3], 
while the others were newly designed to complement the 
gesture types from the literature. In contrast to other stud-
ies [3], we elicited children for the same referent multiple 
times to collect more gesture variation. Each referent was 
presented for three times, resulting in 15 × 3 = 45 trials. 
The order of the trials was randomized per participant. On 
average, data collection took about 7 minutes per child. 

Completion Rate 

The total number of expected gestures was 30 (children) × 
15 (referents) × 3 (repetitions) = 1,350. The actual number 
of collected gestures was 1,312, corresponding to a comple-

tion rate of 97.2%. Missing data were caused by children not 
knowing how to move in response to some of the referents. 
Except “angry bear” (71.1%), all the other referents scored 
completion rates over 95.5%, very high given the small age 
of our children (3−6 years) and the low completion rates 
often reported in the literature for studies with children, e.g., 
81.8% for touch input [66] or between 73% and 97% for stroke 
gesture input on smartphones [9]. Implementing gamifca-

tion (the bear toy) and keeping the data collection procedure 
short (7 minutes on average) defnitely helped. 
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Figure 3. Growth curves (actual data in orange, logistic models in black) illustrating the dissimilarity-consensus relationship: 
the larger the tolerance τ allowed for judging two whole-body gestures as similar (x axis), the higher the consensus (y axis). 
Notes: growth rates, r , and their standard errors are shown for each referent: the larger the growth rate, the faster consensus 
is reached for the same unit of τ ; all growth rates showed a statistically signifcant ft at p < .001. 

5 RESULTS #1: VALIDATION OF THE LOGISTIC 
MODEL FOR CONSENSUS GROWTH CURVES 

We start the presentation of our empirical results with an 
evaluation of the goodness of ft of the logistic function for 
modeling τ -C growth curves. At the same time, we also 
want to understand the efect of the gesture dissimilarity 
measure (∆ in Eqs. 1 and 2) and the aggregator function (ζ in 
Eq. 2) on consensus. To this end, we designed the validation 
procedure as a 3-way 15 × 4 × 3 mixed design with the 
following independent variables: 
(1) Referent, nominal, 15 conditions; see Table 2. 
(2) Dissimilarity ∆, nominal, 4 conditions: DTW, Euclidean, 

Hausdorf, and modifed Hausdorf, described next. 
(3) Aggregator ζ , nominal, 3 conditions: min, max, and avg. 

Dissimilarity Measures for Whole-Body Gestures 
As mentioned earlier, one choice for the dissimilarity mea-

sure ∆ is DTW due to its high accuracy and popularity in the 
gesture literature, including for whole-body gestures [14,58, 
63–65], while the avg function seems a reasonable implemen-

tation of the aggregator function ζ for repeated elicitation 
that is neither pessimistic nor optimistic. These choices will 
be validated by the results of this section, as we compare mul-

tiple ∆ and ζ conditions. Next, we provide a defnition and a 
brief motivation for each dissimilarity measure that we em-

ploy in this work. For all following defnitions, we consider 
a whole-body gesture д to be represented as a time series 

� 
of body poses, д = д[i] | i = 1..n , where n is the number of 
body poses and each pose is a set of 3-D points represent-n o 
ing locations of body joints in space, д[i] = д

[ 
k
i] | k = 1..20 . 

Note that we place the index i in square brackets to refer 
to a body pose and, thus, to diferentiate from the notations 
regarding participants’ indices used in Eqs. 1 and 2. 

Dynamic Time Warping. DTW is a generic technique for 
matching time series data of all kinds that computes the op-
timum chronological alignment between two series using 
dynamic programming [15]. The optimum matching is com-

puted using memoization, i.e., partial results are stored in a 
matrix ∆, so that cell ∆i , j contains the optimum matching of 
the frst i data points of the frst series to the frst j data points 
of the second. The fnal result is found in the bottom-right 
cell of the matrix, ∆n,m , where n and m are the lengths of the 
two series. In this work, we employ the normalized DTW 
measure by dividing the matching result ∆n,m to the number 
of alignments performed during the matching process, ln,m : 

∆DTW(д, h) = ∆n,m /ln,m (4) 

where the matrix ∆ ·, · is defned recursively as follows: δ (д[1], h[1]), if i = 1 ∧ j = 1  ∆1, j−1 + δ (д[1], h[j]), if i = 1 ∧ j > 1 
∆i , j = 

∆i−1,1 + δ (д[i], h[1]), if i > 1 ∧ j = 1 � min ∆i−1, j−1, ∆i−1, j , ∆i , j−1 + δ (д[i], h[j]), otherwise 
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and δ (д[i], h[j]) = 
20

1 Í 
k 
20 
=1 |д[ 

k
i] − hk 

[j] | represents the Euclidean 
distance between the i-th body pose of gesture д and the j-th 
body pose of gesture h, respectively. We divide the sum by 
20 to make δ invariant to the number of points tracked on 
the human body by the Kinect v1.8 sensor. 

Euclidean distance. The Euclidean distance between two ges-
tures д and h computes the sum of the Euclidean distances 
between their corresponding body poses, д[i] and h[i], under 
the assumption of the same number n of body poses for both 
д and h. (An assumption not met in practice, but achieved 
with a resampling procedure; see next.) 

nÕ 
1 

∆E(д, h) = δ (д[i], h[i]) (5) 
n i=1 

where δ was introduced before. The Euclidean distance does 
not posses the matching fexibility of DTW, but is straight-
forward to implement and was found to work well with all 
kinds of gesture types represented as time series [63,65,74]. 

Hausdorf distance. A common and accurate technique em-

ployed in the Computer Vision community to match shapes, 
point sets, sketches, stroke-gestures, volumes, and images is 
to compute the maximum of the minimum distances between 
pairs of data points of the two sequences being matched, 
known as the “Hausdorf distance” [27]. This procedure can 
be easily extended to whole-body gestures as follows: 

∆H(д, h) = max {Hausdorf(д, h), Hausdorf(h, д)} (6) � � 

Hausdorf(д, h) = max min δ (д[i], h[j]) 
i=1,n j=1,m 

where δ is the Euclidean distance, and n and m represent the 
number of body poses of gestures д and h, respectively. 

Modified Hausdorf distance. A variant of the Hausdorf dis-
tance, delivering more accurate results in practice [18], con-
siders the average instead of the maximum aggregator: 

∆MH(д, h) = max {m-Hausdorf(д, h), m-Hausdorf(h, д)} (7) 
nÕ 

1 
m-Hausdorf(д, h) = min δ (д[i], h[j]) 

n j=1,m 
i=1 

Gesture Preprocessing 

Before computing the dissimilarity measures, we normalized 
all the gestures using the following steps: 
(1) Resampling of body poses. This operation makes the dis-

similarity computations independent of the sampling 
resolution of the sensor. We resampled all the gestures 
at 25 fps. For example, a gesture that took 3.32 seconds 
to produce was resampled into 83 body poses, uniformly 
spaced at 3.32/(83 − 1) = 0.04 seconds apart (i.e., 25 fps). 

(2) Height normalization. This operation makes the dissim-

ilarity values independent of children’s body sizes. We 

† ‡ ∆ ζ C0 C∞ Growth rate r 
min 0.18 96.55 82.92 (p < .001) 

∆DTW max 0.37 95.07 47.26 (p < .001) 
avg 0.25 95.77 65.24 (p < .001) 
min 0.13 96.62 76.33 (p < .001) 

∆E max 0.33 95.33 45.67 (p < .001) 
avg 0.20 95.97 61.77 (p < .001) 
min 0.29 96.00 61.36 (p < .001) 

∆H max 0.69 92.96 32.42 (p < .001) 
avg 0.60 94.93 43.80 (p < .001) 
min 0.18 95.89 94.89 (p < .001) 

∆MH max 0.37 94.43 55.39 (p < .001) 
avg 0.26 95.34 74.99 (p < .001) 

Average, all ∆ × ζ 0.32 95.41 · 
† 
Values of C0 closer to 0 show a better ft. 

‡ 
Values of C∞ closer to 100 show a better ft. 

Table 3. Numerical indicators of the goodness of ft of the 
logistic growth model for all the ∆ × ζ conditions. 

rescaled all the gestures so that to the body height of 
each child, standing up straight, was 1.0 m. 

(3) Translation to origin. This operation makes the dissimilar-

ity values independent of where the gesture is produced 
in space. For each gesture, we subtracted its centroid from 
each body joint, so that the new centroid was (0, 0, 0). 

Goodness of Fit of the Logistic Model 
We computed the τ -C growth curves for all the ffteen refer-
ents and the twelve ∆ × ζ combinations. Figure 3 illustrates 
the data for the ∆DTW dissimilarity and the avg ζ aggregator: 
raw data is shown in orange and the ftted logistic model 
in black. (For space concerns, we skip the illustration of the 
other ∆ × ζ combinations, but numerical goodness of ft re-
sults are shown in Table 3 for all ∆ × ζ , while all the growth 
curves are accessible from the companion web page of this 
paper, where we make our gesture dataset publicly available.) 
Figure 3 shows visually that the logistic model provides a 
good ft for all the referents. Table 3 confrms this intuition 
with the numerical results of the ft. The estimated values 
for C0 (see Eq. 3) are close to zero (M = 0.32, SD = 0.17) 
and the values of C∞ approach 100 (M = 95.41, SD = 1.00), 
both signs of a good ft. Moreover, all the growth rates r are 
signifcant at p<.001, which confrms the suitability of the 
logistic function to model the τ -C relationship. 

The Efect of Gesture Dissimilarity and Aggregator 
Next, we analyze the efect of the dissimilarity measure ∆ 
and aggregator function ζ on growth rates r . Specifcally, we 
want to know whether the magnitude of growth rates r and 
the ranking of gestures by overall consensus, as refected by 
growth rates, are impacted by the choice of ∆ and/or ζ . 

A preliminary RM ANOVA indicated a signifcant efect of 
∆ on the magnitude of growth rates r (F(2.078,29.090) = 98.260, 
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ζ = min ζ = max ζ = avg 

∆DTW ∆E ∆H ∆MH ∆DTW ∆E ∆H ∆MH ∆DTW ∆E ∆H ∆MH 

∆DTW 
∆E 
∆H 
∆MH 

1.000 
· 
· 
· 

.974 
1.000 
· 
· 

.972 

.953 
1.000 
· 

.971 

.956 

.971 
1.000 

1.000 
· 
· 
· 

.977 
1.000 
· 
· 

.915 

.923 
1.000 
· 

.935 

.877 

.836 
1.000 

1.000 
· 
· 
· 

.988 
1.000 
· 
· 

.959 

.940 
1.000 
· 

.971 

.958 

.940 
1.000 

Average Pearson’s r(N =15) = .966 Pearson’s r(N =15) = .911 Pearson’s r(N =15) = .959 

Table 4. Pearson coefcients between growth rates for each ∆ × ζ combination. Note: all correlations are signifcant at p < .001. 

p < .001, η2 = .875, Greenhouse-Geisser’s ϵ̂  = .693) as well p
as a signifcant efect of aggregator function ζ (F(1.157,16.202) = 
68.509, p < .001, η2 = .830, ϵ̂  = .579). However, this result is p
little informative, as diferences are expected to be present in 
the magnitude of growth rates simply because of the diferent 
magnitudes delivered by diferent dissimilarity functions on 
the same data; see Eqs. 4, 5, 6, and 7. What we are actually 
interested in is whether the ratio of consensus (e.g., as in the 
expression “consensus for referent A growths twice faster 
than consensus for B”) is preserved across ∆’s and ζ ’s. To this 
end, we normalized growth rates r for each ∆ × ζ condition 
into [0..1] by applying a linear scale transform, i.e., r = (r − 
min(r ))/(max(r ) − min(r )). This time, the same ANOVA test 
found no signifcant efects of either ∆ (F(3,42)=.891, p>.05, 
n.s .) or ζ (F(1.144,16.020)=.909, p>.05, n.s ., ϵ̂  = .572) on mean 
growth rates r , which builds up confdence that the relative 
consensus is preserved across ∆ and ζ functions. 

To further understand the impact of ∆ × ζ on ranking ref-
erents by consensus, we also performed Pearson correlations 
between the growth rates computed for the N = 15 referents. 
Results are shown in Table 4. Pearson coefcients were very 
large: .966 on average for ζ =min, .911 for ζ =max, and .959 for 
ζ =avg, showing that the ranking of referents by consensus, 
as refected by their growth rates r , is little afected by the 
choice of ∆ and ζ . The largest correlation coefcients were 
obtained for ζ =min (the optimistic aggregator) and ζ =avg 
(the realistic aggregator). Based on this empirical evidence, 
we recommend ∆DTW and ζ =avg for use in practice. 

Manual Gesture Clustering vs. Automated 
Computation of Consensus using Growth Rates 
As a fnal test, we computed Pearson correlation coefcients 
between the magnitudes of growth rates r obtained with 
∆DTW and the avg aggregator and agreement rates AR calcu-
lated using the formula of Vatavu and Wobbrock [68] after 
manual labeling and clustering of the elicited gestures using 
the criteria mentioned in the example from the Introduction. 
Because there is no extended formula of AR [68] for repeated 
elicitation, we computed agreement rates separately for each 
trial: AR1, AR2, and AR3, respectively. Results showed statisti-
cally signifcant correlations between growth rates r and AR1 

(Pearson’s r(N =15)=.644, p<.01), AR2 (r(N =15)=.647, p<.01), 
and AR3 (r(N =15)=.650, p<.01), respectively. 

6 RESULTS #2: CONSENSUS BETWEEN 
CHILDREN’S WHOLE-BODY GESTURES 

In this section, we demonstrate the τ -C method by applying 
it to report the level of consensus between whole-body ges-
tures produced by small children, ages 3 to 6 years. Overall, 
we report empirical results on 1,312 gestures, consisting in 
a total number of 48,299 body poses, elicited from N =30 
children. Note that it is not our intention to be exhaustive 
in the analysis that we report in this section, but rather to 
demonstrate how the τ -C method can be applied in practice. 
Nevertheless, we do report, for the frst time in the literature, 
empirical results on the way children produce whole-body 
gestures, such as an efect of the age group on the magnitude 
of consensus between their gesture articulations; see next. 

Consensus Results 
We computed τ -C growth curves for each referent from Ta-
ble 2 using the ∆DTW dissimilarity, the avg aggregator, and 
the consensus formula from Eq. 2; see Figure 3. We found 
that consensus growth rates varied between r = 29.1 (for 
the “climb ladder” referent) to r = 119.0 (“applaud”) with a 
mean of 65.2 (SD = 23.4); see Figure 4a for all the referents 
listed in decreasing order of their consensus growth rates. 
The ratio between the largest and smallest growth rates was 
4.0, i.e., consensus for “applaud” grew four times faster than 
for “climb ladder” for the same unit increase of τ . Refer-
ents that involved moving around (e.g., “jump”, “crouch”) or 
movement of several body parts at once (e.g., “stand on one 
foot,” for which children used movements of both hands to 
keep stable equilibrium) achieved less consensus, revealed by 
smaller growth rates, than referents that involved stable body 
poses and movement of fewer body parts (e.g., “applaud”, 
“slice carrots”, or “hands up”). Also, we found that referents 
that necessitated instantiation of a metaphor into a motor 
response, such as “angry bear”, “cat scratching” or “climb 
ladder,” received less consensus compared to simple shapes 
drawn in mid-air, such as “fower”, “square”, and “circle.” 

The Efect of Age Group 

Our analysis showed that consensus was reached 24.5% faster 
by 4-year-olds and 44.8% times faster by 5-year-olds com-

pared to children aged between 3 and 4 years; see Figure 4b. 
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Figure 4. Consensus between whole-body gestures elicited 
from 30 children, expressed with growth rates: (a) per refer-
ent and (b) per age group. Note: error bars show 95% CIs. 

A Repeated-Measures ANOVA revealed a signifcant efect of 
Age-Group on growth rates (F(1.451,20.318) = 5.034, p = .025, 
η2 
p = .264, Greenhouse-Geisser’s ϵ̂  = .726). Post-hoc tests 
(Bonferroni corrected) revealed signifcant diferences be-
tween children with ages between 3 and 4 years and the 
5-6-years-old group (p < .001). These results fnd support 
in the literature of child development and especially in the 
developmental theory of Piaget [44]: as children grow up, 
they acquire and refne their motor skills, integrate more 
metaphors of thought, and move beyond an egocentric per-
spective afecting their cognitive representations of the phys-
ical world [45]. 

Towards Further Discoveries 
As mentioned before, it is not the goal of this paper to con-
tinue with detailed examinations of how small children per-
form whole-body gestures, although an exciting investiga-
tion. Instead, we provide our dataset in the community for 
free to foster such new discoveries; see the next section for 
details. Future investigations may include numerical analysis 
of children’s whole-body gesture articulations, such as by em-

ploying the geometric, kinematic, and body-appearance set 
of measures and toolkit of Vatavu [64], or investigating cor-
relations between consensus between proposed gestures and 
numerical measures of gesture articulation, such as gesture 
volume, quantity of movement, or body pose variation [64]. 
Designing robust gesture recognition techniques for whole-
body gestures produced by children is another challenging 

future work direction, for which our large dataset can pro-
vide support for user-independent evaluation procedures. 

7 GESTURE DATASET AND SOURCE CODE 

We release our dataset composed of 1,312 whole-body ges-
tures and 48,299 body poses elicited from 30 children free 
to download and use for research purposes. To our knowl-
edge, our dataset is the only whole-body gesture data pub-
licly available for children this young (3 to 6 years old). We 
also release source code in C# that reads the gesture data 
and implements the dissimilarity measures ∆ and aggrega-
tor functions ζ employed in this work and R code to com-

pute dissimilarity-consensus growth rates and visualize τ -C 
curves. All the resources are available from the companion 
web page of this paper at htp://www.eed.usv.ro/~vatavu 

8 CONCLUSION AND FUTURE WORK 

We introduced and evaluated in this paper a new approach to 
computing and understanding consensus in end-user gesture 
elicitation studies by adopting a holistic perspective on the 
numerical relationship between consensus and gesture dis-
similarity. We hope that our theoretical contribution, empir-

ical results, and practical source code will beneft designers 
and practitioners in the need of an objective assessment of 
the magnitude of consensus for their gesture studies. 

At the same time, we acknowledge the need for more work 
that is needed to incorporate into our method the interpre-
tative dimensions of sociocultural impact, such as cultural 
gestures with the same meaning, yet structurally diferent ap-
pearance [4] or approaches based on somaesthetics [4,19,37], 
that cannot be addressed at this moment by our automated 
technique, which is blind to such aspects. We also suggest 
further investigations of the middle ground between man-

ual and automated approaches, which we believe will foster 
valuable methodological developments. Another direction 
for future work is applying the τ -C method for other types 
of gestures. Although we demonstrated τ -C for whole-body 
movements, our technique is general and applicable to any 
type of gestures, such as touch [20,72], mid-air [46,75], or 
ring gestures [21], to name just a few. Also, we have barely 
scratched the potential for understanding how small chil-
dren produce whole-body gestures. But we hope that our 
large whole-body gesture dataset will foster new discoveries, 
advancing our present understanding regarding how small 
children perform whole-body movements. 
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