
GestMan: A Cloud-based Tool for Stroke-Gesture Datasets
Nathan Magrofuoco, Paolo
Roselli, Jean Vanderdonckt
Université catholique de Louvain

Louvain-la-Neuve, Belgium
{firstname.lastname}@uclouvain.be

Jorge Luis Pérez-Medina
Universidad de las Américas,

Intelligent & Interactive Systems Lab,
Quito, Ecuador

jorge.perez.medina@udla.edu.ec

Radu-Daniel Vatavu
University Stefan cel Mare of Suceava

MintViz Lab MANSiD Center
Suceava, Romania

radu.vatavu@usm.ro

Gesture sample

Gesture class

Current Gesture set

Gesture samples for the same class

Save
gesture

Clear
gesture

Recognize
gesture Translate Rotate

Scal
e up Scale

down

Setting

Webcam
capture

Feature
extraction and
computation

My gesture vocabularies
and gesture sets

Structure of a gesture set

Figure 1: Screenshots of theGestMan application illustrating (1) management of gesture vocabularies and datasets, (2) editing

the structure of a gesture set, (3) processing gesture samples, and (4) computation of gesture features.

ABSTRACT

We introduce GestMan, a cloud-based GESTure MANagement
tool to support the acquisition, design, and management of stroke-
gesture datasets for interactive applications.GestMan stores stroke-
gestures at multiple levels of representation, from individual sam-
ples to classes, clusters, and vocabularies and enables practitioners
to process, analyze, classify, compile, and reconfigure sets of gesture
commands according to the specific requirements of their applica-
tions, prototypes, and interactive systems. Our online tool enables
acquisition of 2-D stroke-gestures via a HTML5-based user interface
as well as 3-D touch+air and webcam-based gestures via dedicated

P. Roselli is also at Università degli Studi di Roma “Tor Vergata”, 00173 Roma, Italy.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EICS ’19, June 18–21, 2019, Valencia, Spain
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6745-5/19/06. . . $15.00
https://doi.org/10.1145/3319499.3328227

mappers. GestMan implements five software quality characteris-
tics of the ISO-25010 standard and employs a new mathematical
formalization of stroke-gestures as vectors to support efficient com-
putation of various gesture features.

CCS CONCEPTS

• Human-centered computing → Gestural input; • Informa-

tion systems→ Data management systems; • Theory of compu-

tation → Data structures and algorithms for data management;

KEYWORDS

Stroke-gestures; Gesture sets; Cloud computing; Gesture data man-
agement; Tool; Isochronicity; Isometricity; Isoparameterization.

ACM Reference format:

Nathan Magrofuoco, Paolo Roselli, Jean Vanderdonckt, Jorge Luis Pérez-
Medina, and Radu-Daniel Vatavu. 2019. GestMan: A Cloud-based Tool
for Stroke-Gesture Datasets. In Proceedings of ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, Valencia, Spain, June 18–21, 2019
(EICS ’19), 6 pages.
https://doi.org/10.1145/3319499.3328227

https://doi.org/10.1145/3319499.3328227
https://doi.org/10.1145/3319499.3328227

EICS ’19, June 18–21, 2019, Valencia, Spain Magrofuoco et al.

1 INTRODUCTION

The wide availability of touch and motion sensing devices has
created an urgent need for advances on good practices for ges-
ture set design towards gesture commands that are efficient to
perform [14, 26], easy to recall [2], accurately recognized [15, 21],
and a good fit to the functions they execute [9, 28]. Although there
are many application scenarios and contexts of use where gesture
input is preferable to other interaction modalities, such as to voice
input when addressing Internet-of-Things (IoT) devices [12], our
present knowledge on designing good gesture sets remains rather
scattered in various repositories, which affects its reusability. Prac-
titioners’ efforts to systematize gesture sets and data have taken
various forms, such as the creation of web pages1 that collect links
to gesture resources available on the web, including public gesture
datasets. However, these resources are characterized by hetero-
geneity and are reusable only after hands-on coding efforts: for
example, gesture sets that can be downloaded from web sites and
repositories come in various file formats, such as JSON, XML, CSV,
or ASCII, not to mention the various data structures employed to
represent them. Heterogeneity in data representation is present even
when it is the same authors that regularly release gesture datasets;
see [24–26]. Also, setting up code from repositories into production
demands technical skills, time, and effort that sometimes impede
adoption by researchers and designers. Consequently, data avail-
able in this form do not maximize reusability of available gesture
resources [2, 21, 29, 30]. To overcome this limitation, we bring the
following practical contributions in the community of Engineering
Interactive Computing Systems (EICS):
• GestMan, a cloud-based application for stroke-gesture sets (see
Fig. 1 for a screenshot) that implements management of ges-
ture data from (1) acquisition to (2) processing, (3) analysis and
classification, (4) composition of gesture sets, and (5) routing
of gestures to the next stages of the development process. We
also present technical details for the implementation of plugin
modules for GestMan regarding the acquisition and storage of
various types of gestures, e.g., touch, touch+air, and gestures
captured from a video camera.

• A practical discussion of the five ISO-25010 software quality
characteristics implemented by GestMan (see Table 1).

• A mathematical formalization of stroke-gestures as vectors im-
plemented by GestMan to compute gesture features.

2 RELATEDWORK

The first gesture-based tools were represented by applications pri-
marily aimed at facilitating coding and implementation of gesture
recognizers. For example, Gestural Interface Designer (GID) [6], the
first gesture design tool to the best of our knowledge, featured ded-
icated graphical controls as part of its controls toolbox that enabled
designers to specify the input modality in the form of pointing and
gesture input. The Gesture Design Toolkit (gdt) followed as a pro-
totyping tool for designing gesture sets and was updated by Quill
[15] to assist designers of pen-based user interfaces in creating and
optimizing their stroke-gestures for accurate recognition by the
computer. Since one of the design criteria for gesture sets is high
recognizability, a variety of stroke-gesture recognition approaches
1https://sites.google.com/site/adriendelaye/home/pen-and-touch-datasets

soon followed [17, 19–21, 23, 29]. Among the first ones, the Rubine
recognizer [17] required ten to fifteen gesture examples of each
gesture class to deliver high accuracy. When gesture classes turned
out too many, they were structured into gesture groups, such as a
group for “editing” functions. Gesture classes and groups form a
gesture set. Once training samples or templates are available, the
gesture set can be evaluated for recognition accuracy.

The Gesture and Activity Recognition Toolkit (GART) [16] en-
abled the development of gesture-based interfaces by providing an
abstraction to machine learning algorithms suitable for modeling
and recognizing different types of gestures. The toolkit also sup-
ported data collection and training of gesture recognizers.Magic
[3] was introduced to help designers create motion gestures by pro-
viding feedback regarding the internal consistency of the gesture
set, the distinguishability of the gesture classes, and highlighting
false positives. The follow-up, Magic 2.0 [11], introduced a web
service for false positives. UsiGesture [4] is a package for incorpo-
rating gestures in graphical user interfaces designed under Eclipse.
UsiGesture enables developers to select both the gesture set and
the recognizer for a particular application, but also to employ sev-
eral recognizers at once, yet does not explicitly address the problem
of organizing and managing gesture sets. Over the recent years, the
level of abstraction of gesture-based user interfaces has been in-
creasing constantly, the Gesture Library [8] and GestIt [18] being
two representative examples. For example, GestIt models gestures
using temporal and composition operators and connects them to
a user interface model in which the feedback is bound to the leafs
and nodes of a model decision tree. Several gesture datasets have
been made publicly available in the community, including stroke-
gestures [25, 26, 29], touch and multi-touch input [24], motion
gestures [5], and whole-body gesture datasets [7, 22] as well as tex-
tual descriptions of gestures collected from users during elicitation
studies, such as the smart rings study of Gheran et al. [9].

In conclusion, several environments, tools, and datasets exist
that support authoring, design, and development of gesture user
interfaces, but the management of gesture sets has been primarily
restricted to their own internal usage, i.e., once a gesture set is
created in one of these environments, it is directly integrated. 6DMG
[5], a dataset of spatio-temporal gestures with position, orientation,
acceleration, and angular speed, probably approaches GestMan
in that it provides a database for gesture sets, but management
operations are not offered via a cloud-based system.

3 GESTURE DATA MANAGEMENT AND

PROCESSINGWITH GESTMAN

3.1 Software Architecture

We implemented GestMan as a cloud-based JavaScript applica-
tion to enable any online participant to contribute with gesture ex-
amples regardless of their operating system, web browser, or input
device. The technology used for GestMan was MEAN (MongoDB,
Express.js, Angular.js, and Node.js) deployed in the form of a
Heroku application on top of a persistent gesture database; see Fig. 2
for a visual illustration of the architecture. MongoDB is structured in
terms of collections (the equivalent of tables in SQL terminology) of
JSON documents (equivalent to columns in SQL terminology) char-
acterized by schemas, which can be directly queried based on fields

https://sites.google.com/site/adriendelaye/home/pen-and-touch-datasets

GestMan: A Cloud-based Tool for Stroke-Gesture Datasets EICS ’19, June 18–21, 2019, Valencia, Spain

Characteristic (factor) Definition

Interoperability (compatibility) Degree to which two or more systems, products or components can exchange information and use it
Integrity (security) Degree to which a system prevents unauthorized access to, or modification of information
Accountability (security) Degree to which the actions can be traced uniquely to the user
Modifiability (portability) Degree to which a system can be modified without introducing defects
Adaptability (portability) Degree to which a system can effectively and efficiently be adapted to evolving hardware, software, and usages

Table 1: ISO/IEC 25010 characteristics and corresponding definitions used to assess software quality for GestMan.

(or SQL rows), ranges, or regular expressions. MongoDB also supports
a series of functions to manipulate stored gestures, making them
persistent and interoperable from one application to another. Since
MongoDB is a NoSQL document-oriented database that manipulates
JSON documents, it relies on schema to structure the gesture data.
These schema can be seen as the “blueprints” of the collections from
the database, enabling validation of the various fields of the stored
gestures. While MongoDB uses a flexible schema that does not en-
force any document structure, it prescribes the usage of more rigid
schema that are then converted into models; see Fig. 2b. These mod-
els are used to instantiate documents in the database, ensuring that
each document follows the structure defined in the corresponding
Mongoose schema and can be manipulated accordingly.

3.2 Gesture Data Structure

GestMan presents three views for each gesture (see Fig. 1):

(1) An external view that depicts each gesture graphically to
end-users 3 .

Figure 2: GestMan software architecture.

(2) A conceptual view showing gesture properties that are useful
for designers 5 .

(3) An internal view that presents gestures in terms of raw data
(see Fig. 3), which can be directly queried from the database,
such as “which gestures are appropriate for navigation with a
smartphone?”

The atomic level of our representation is the point with cor-
responding timestamp and list of properties. All samples can be
assigned (property, value) pairs. This way, an event listener can be
implemented on a specific gesture area to receive notification when
the associated property changes. A stroke represents a list of points
and a gesture is represented as a list of strokes.

A gesture class 2 contains all the gesture samples of the same
type. Gestures can be grouped into a gesture cluster, which can be
decomposed into a series of sub-clusters, e.g., the cluster “Letters”
could group all the letters and be further decomposed into lowercase
and uppercase letters. Classes and clusters form a gesture set 1 ,
e.g., “Letters and Digits,” which can be assembled into a gesture
vocabulary, such as the ”Latin alphabet” or ”More’s alphabet”; see
Fig. 4. Gesture sets can be declared as public to be accessed by all
users without registration required, application-oriented when the
gesture set can be modified by GestMan registered users only,
or private when it can be only modified by invited members. Any
gesture set can also be marked as standard, such as widely employed
gesture sets to preserve their consistent usage, such as HHReco

Figure 3: The internal view for gestures stored in GestMan.

EICS ’19, June 18–21, 2019, Valencia, Spain Magrofuoco et al.

a b c d e f g h i k l

m n o p q r s t u, v x y

Figure 4: More’s alphabet of stroke-gestures.

Figure 5: A “helix” 3-D motion gesture.

[10], NicIcon [27], $1 [29], or the difficulty datasets [26], which
are unmodifiable to ensure integrity. These gesture sets can be
duplicated to enable further editing.

3.3 Gesture Acquisition

During acquisition, points are delivered by a sensor and stored
as real numbers with timestamps and referred to as Raw Data
Points (RDP) [6] or in the form of Euler angles or Tait-Bryan angles.
Gestures can be converted into a vector-based representation, as
employed by PennyPincher [19] and !FTL [20] gesture recognizers,
which reduces the size of the representation that is both structure
preserving and coordinates-free. Each gesture gesture sample 3
can be acquired on-demand with contextual information 4 re-
garding the user, the input device, and the environment. Hence,
any gesture can be declared as user-dependent or user-independent.
Similarly, gestures can be attached to a particular platform, e.g.,
a tablet, or environment, e.g., a smart room. Therefore, gestures
can be marked as user-, device-, or environment-dependent un-
der GestMan. A platform-dependent gesture is applicable to only
one platform. The current version of GestMan supports acqui-
sition of 2-D gestures (via a HTML5-compatible browser) and 3-D
gestures (through finger- or object-tracking 6 from video and the
3DTouchPad device); see Fig. 7 and 5 .

3.4 Gesture Processing

GestMan provides the following set of primitives 7 : acquire, clear,
save, recognize, translate, rotate, and scale. Making a gesture posi-
tion, scale, or rotation invariant is optional [30]. For instance, the
“person” gesture from the NicIcon dataset [27] should be rotation-
dependent for two classes: a person laying down and standing
up, although the symbol remains the same. Similarly, a the arrow
“>” gesture can be made scale-dependent when associated to fast
forward function, for instance. The starting point of a gesture is
marked using a specific symbol and color, see the red circle shown
in Fig. 4, which is a recommendation from Chen et al. [5].

3.5 Gesture Analysis and Recognition

GestMan computes geometric features for gestures 5 , such as
Rubine’s features [17]. If needed, analysis can be conducted at
sample level, and gestures can be processed to maintain properties,
such as isometricity (i.e., the same distance between the points on the
gesture path), isochronicity (gesture points that are equally spaced
in time), and isoparameterization (the same amount of points) [20].

In addition to concentrating gesture knowledge into a single
repository, GestMan supports conducting experiments in an incre-
mental and collaborative way that relate to the three ACM badges2
concerning repeatability (same team, same experimental setup),
reproducibility (different team, same experimental setup), and repli-
cability (different team and different experimental setup). Gesture
set owners can ask participants to acquire new gestures or modify
existing gestures. For instance, Fig. 6 presents a snapshot from an
experiment conducted using GestMan.

The current version of GestMan implements four recognizers:
$1 [1], $P [21], !FTL and !NFTL [20], while PennyPincher [19], and
$Q [23] will be integrated in the future. GestMan supports adapt-
ability by enabling other recognizers, algorithms, and web services
(as recommended in [11]) to be integrated, such as Gestures-a-GoGo
[13] for producing synthetic gestures or KeyTime [14] for predict-
ing gesture production time. GestMan enables direct import of
code supporting therefore modifiability. Also, GestMan captures
stroke-gestures as points that can be converted to a vector represen-
tation. To this end, we defined vector-based formulae for Rubine’s
features [17], e.g., the f1 feature can be computed as follows:

f1 = cosα =
x2 − x0√

(x2 − x0)2 + (y2 − y0)2
=

(®u2 − ®u0) · ®e1
| ®u2 − ®u0 |

(1)

3.6 Gesture Composition

To support gesture integration, gestures can be composed by ap-
pending their strokes, decomposed from multi-strokes to unistrokes,
and recomposed at any level. When a gesture class is considered
definitive, it can be declared as “standard” to prevent changes or
loss of information. All these operations along with the primitives
from the processing stage are recorded into a log file that can be
replayed, providing thus a design history. Since all operations are
tracked, accountability is intrinsically supported.

2https://www.acm.org/publications/policies/artifact-review-badging

Figure 6: Conducting an experiment on a gesture set.

https://www.acm.org/publications/policies/artifact-review-badging

GestMan: A Cloud-based Tool for Stroke-Gesture Datasets EICS ’19, June 18–21, 2019, Valencia, Spain

Figure 7: Touch+air gestures acquired by 3DTouchPad.

Source: https://www.microchip.com/DevelopmentTools/

ProductDetails/DM160225

3.7 Gesture Routing

To support deployment of gesture vocabularies or sets, GestMan
exports JavaScript code of a selected gesture recognizer and the
gesture set stored in a compatible format. The exported resources
can be incorporated in the development life-cycle of the gesture
user interface.

4 PLUGIN MODULES FOR GESTMAN

Stroke-gestures are in GestMan as points entered using an HTML5
canvas or from a video camera using a special module. In the first
case, gesture points are directly captured and stored. In the sec-
ond case, points need to be extracted from the video using image
processing techniques. Therefore, a generic software architecture
problem arises: how to acquire a wide variety of gesture types us-
ing an application running in a web browser? For a stand-alone
application, this question is usually solved in a straightforward way
by relying on the SDK/API provided by the device vendor. Unfortu-
nately, this solution is tied to a particular software/hardware and
not always available in a web browser. In the rest of this section, we
exemplify our solution for two gesture types: touch+air gestures
and webcam-based 3-D gestures.

4.1 Touch+Air Gestures

Touch+air gestures are 2-D touch multistrokes followed by mid-air
gestures performed at a small distance (maximum 30 cm) from the
touchpad; see Fig. 7.. To acquire such gestures3, we developed a
3DTouchPad mapper with two threads (see Fig. 8) 4:

(1) A LibWebSockets client responsible for the polling of the
3DTouchPad device that collects data every 50 ms and cre-
ates a JSON message sent to a server. LibWebSockets5 is an
open-source C library for lightweight network protocols: a
data structure containing the connection information is cre-
ated with a protocol setup, an initialisation takes place and
the loop for the service is launched; a function callback is
executed for each event.

3https://www.microchip.com/DevelopmentTools/ProductDetails/DM160225
4Code is accessible at https://github.com/gigi199596/3DTouchPad-Mapper.
5https://libwebsockets.org/

Figure 8: Software architecture of the 3DTouchPad Mapper.

(2) A LibWebSockets server that sends messages to connected
clients. The server also delivers a local web page to display
a log of the messages that were received.

4.2 Webcam-based Gestures

To acquire a 2-D and a half or 3-D gesture, the tracking.js JavaScript
API6 uses lightweight computer vision techniques to track the color
of a pointer, such as an object, a pen, a finger, through the webcam.
This pointer color can be configured in the settings box, such as a
yellow highlighter (6 in Fig. 1).

5 CONCLUSION AND FUTUREWORK

We introduced GestMan, a publicly available7 cloud-based ap-
plication for collaboratively managing stroke-gestures, vocabular-
ies, sets, classes, and clusters, which implements five ISO quality
characteristics. GestMan as a handy platform for practitioners,
researchers, and developers to collaboratively manage their ges-
ture knowledge by fostering reusability, this artifact is evaluated
and reusable8 since it is documented, consistent (GestMan is intro-
duced in this technical note), complete, and permanently exercisable
(GestMan can be used by simple login and password). The code is
accessible through the Dashboard Heroku (see ”Deploy” to clone
the project): https://dashboard.heroku.com/apps/gestman.

Although some more sophisticated gestures could be captured,
GestMan still does not support other exchange protocols like
TUIO9 or Virtual Reality Peripheral Network (VRPN)10, which
would allow GestMan to support gesture acquisition from a wider
variety of devices. We leave such explorations for future work.

GestMan is intended to create a Community of Practice (CoP)
around stroke-gesture datasets, where every interested party could
contribute by: converting existing datasets and importing them into
GestMan, adding new datasets, editing shared datasets, defining
standard datasets such as those promoted by software vendors, per-
form a comparison of stroke-recognizers on some of these datasets.

6https://trackingjs.com/
7https://gestman.herokuapp.com/
8https://www.acm.org/publications/policies/artifact-review-badging
9See www.tuio.org
10See https://github.com/vrpn/vrpn/wiki

https://www.microchip.com/DevelopmentTools/ProductDetails/DM160225
https://www.microchip.com/DevelopmentTools/ProductDetails/DM160225
https://www.microchip.com/DevelopmentTools/ProductDetails/DM160225
https://github.com/gigi199596/3DTouchPad-Mapper
https://libwebsockets.org/
https://dashboard.heroku.com/apps/gestman
https://trackingjs.com/
https://gestman.herokuapp.com/
https://www.acm.org/publications/policies/artifact-review-badging
www.tuio.org
https://github.com/vrpn/vrpn/wiki

EICS ’19, June 18–21, 2019, Valencia, Spain Magrofuoco et al.

ACKNOWLEDGMENTS

R.-D. Vatavu acknowledges supported from a grant of the Ministry
of Research and Innovation, CNCS-UEFISCDI, project no. PN-III-
P1-1.1-TE-2016-2173 (TE141/2018), within PNCDI III.

REFERENCES

[1] Lisa Anthony, Radu-Daniel Vatavu, and Jacob O. Wobbrock. 2013. Understanding
the Consistency of Users’ Pen and Finger Stroke Gesture Articulation. In Proceed-
ings of Graphics Interface 2013 (GI ’13). Canadian Information Processing Society,
Toronto, Ont., Canada, 87–94. http://dl.acm.org/citation.cfm?id=2532129.2532145

[2] Caroline Appert and Shumin Zhai. 2009. Using strokes as command shortcuts:
cognitive benefits and toolkit support. In Proceedings of the 27th International
Conference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA,
April 4-9, 2009. 2289–2298. https://doi.org/10.1145/1518701.1519052

[3] Daniel Ashbrook and Thad Starner. 2010. MAGIC: A Motion Gesture Design
Tool. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). 2159–2168.

[4] François Beuvens and Jean Vanderdonckt. 2012. Designing Graphical User Inter-
faces Integrating Gestures. In Proceedings of the 30th ACM International Conference
on Design of Communication (SIGDOC ’12). ACM, New York, NY, USA, 313–322.
https://doi.org/10.1145/2379057.2379116

[5] Mingyu Chen, Ghassan AlRegib, and Biing-Hwang Juang. 2012. 6DMG: ANew 6D
Motion Gesture Database. In Proceedings of the 3rd Multimedia Systems Conference
(MMSys ’12). 83–88.

[6] R. B. Dannenberg and D. Amon. 1989. A Gesture Based User Interface Prototyping
System. In Proceedings of the 2nd Annual ACM SIGGRAPH Symposium on User
Interface Software and Technology (UIST ’89). ACM, New York, NY, USA, 127–132.
https://doi.org/10.1145/73660.73676

[7] Simon Fothergill, Helena Mentis, Pushmeet Kohli, and Sebastian Nowozin. 2012.
Instructing People for Training Gestural Interactive Systems. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). ACM,
New York, NY, USA, 1737–1746. https://doi.org/10.1145/2207676.2208303

[8] Bruno Galveia, Tiago Cardoso, Vitor Santor, and Yves Rybarczyk. 2015. To-
wards the creation of a Gesture Library. EAI Endorsed Transactions on Creative
Technologies 2, 3 (6 2015). https://doi.org/10.4108/ct.2.3.e3

[9] Bogdan-Florin Gheran, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Ges-
tures for Smart Rings: Empirical Results, Insights, and Design Implications. In
Proceedings of the 2018 Designing Interactive Systems Conference (DIS ’18). ACM,
New York, NY, USA, 623–635. https://doi.org/10.1145/3196709.3196741

[10] Heloise Hse, Michael Shilman, and A. Richard Newton. 2004. Robust Sketched
Symbol Fragmentation Using Templates. In Proceedings of the 9th International
Conference on Intelligent User Interfaces (IUI ’04). ACM, New York, NY, USA, 156–
160. https://doi.org/10.1145/964442.964472 Retrieved September 9, 2017 from
https://embedded.eecs.berkeley.edu/research/hhreco/.

[11] D. Kohlsdorf, T. Starner, and D. Ashbrook. 2011. MAGIC 2.0: A web tool for false
positive prediction and prevention for gesture recognition systems. In Face and
Gesture 2011. 1–6. https://doi.org/10.1109/FG.2011.5771412

[12] Myeongcheol Kwak, Youngmong Park, Junyoung Kim, Jinyoung Han, and
Taekyoung Kwon. 2018. An Energy-efficient and Lightweight Indoor Local-
ization System for Internet-of-Things (IoT) Environments. Proc. ACM Inter-
act. Mob. Wearable Ubiquitous Technol. 2, 1, Article 17 (March 2018), 28 pages.
https://doi.org/10.1145/3191749

[13] Luis A. Leiva, Daniel Martín-Albo, and Réjean Plamondon. 2015. Gestures à
Go Go: Authoring Synthetic Human-Like Stroke Gestures Using the Kinematic
Theory of Rapid Movements. ACM Trans. Intell. Syst. Technol. 7, 2, Article 15
(Nov. 2015), 29 pages. https://doi.org/10.1145/2799648

[14] Luis A. Leiva, Daniel Martín-Albo, Réjean Plamondon, and Radu-Daniel Vatavu.
2018. KeyTime: Super-Accurate Prediction of Stroke Gesture Production Times.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 239, 12 pages. https://doi.org/10.
1145/3173574.3173813

[15] Allan Christian Long, Jr., James A. Landay, and Lawrence A. Rowe. 1999. Impli-
cations for a Gesture Design Tool. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’99). ACM, New York, NY, USA, 40–47.
https://doi.org/10.1145/302979.302985

[16] Kent Lyons, Helene Brashear, Tracy Westeyn, Jung Soo Kim, and Thad Starner.
2007. GART: The Gesture and Activity Recognition Toolkit. In Proceedings of
the 12th International Conference on Human-computer Interaction: Intelligent Mul-
timodal Interaction Environments (HCI’07). Springer-Verlag, Berlin, Heidelberg,
718–727. http://dl.acm.org/citation.cfm?id=1769590.1769671

[17] Dean Rubine. 1991. Specifying gestures by example. In Proceedings of the 18th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
1991, Providence, RI, USA, April 27-30, 1991, James J. Thomas (Ed.). ACM, 329–337.
https://doi.org/10.1145/122718.122753

[18] Lucio Davide Spano, Antonio Cisternino, Fabio Paternò, and Gianni Fenu. 2013.
GestIT: A Declarative and Compositional Framework for Multiplatform Gesture
Definition. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS ’13). ACM, New York, NY, USA, 187–196.
https://doi.org/10.1145/2494603.2480307

[19] Eugene M. Taranta, Andres N. Vargas, and Joseph J. LaViola. 2016. Streamlined
and accurate gesture recognition with Penny Pincher. Computers Graphics 55
(2016), 130 – 142. https://doi.org/10.1016/j.cag.2015.10.011

[20] Jean Vanderdonckt, Paolo Roselli, and Jorge Luis Pérez-Medina. 2018. !FTL, an
Articulation-Invariant Stroke Gesture Recognizer with Controllable Position,
Scale, and Rotation Invariances. In Proceedings of the 2018 on International Con-
ference on Multimodal Interaction (ICMI ’18). ACM, New York, NY, USA, 125–134.
https://doi.org/10.1145/3242969.3243032

[21] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2012. Gestures
as point clouds: a $P recognizer for user interface prototypes. In International
Conference on Multimodal Interaction, ICMI ’12, Santa Monica, CA, USA, October
22-26, 2012. 273–280. https://doi.org/10.1145/2388676.2388732

[22] Radu-Daniel Vatavu. 2019. The Dissimilarity-Consensus Approach to Agreement
Analysis in Gesture Elicitation Studies. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (CHI ’19). ACM, New York, NY, USA,
Article 224, 13 pages. https://doi.org/10.1145/3290605.3300454

[23] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2018. $Q: A Super-
quick, Articulation-invariant Stroke-gesture Recognizer for Low-resource De-
vices. In Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI ’18). ACM, New York, NY,
USA, Article 23, 12 pages. https://doi.org/10.1145/3229434.3229465

[24] Radu-Daniel Vatavu, Gabriel Cramariuc, and Doina Maria Schipor. 2015. Touch
Interaction for Children Aged 3 to 6 Years: Experimental Findings and Relation-
ship to Motor Skills. International Journal of Human-Computer Studies 74 (2015),
54–76. http://dx.doi.org/10.1016/j.ijhcs.2014.10.007

[25] Radu-Daniel Vatavu and Ovidiu-Ciprian Ungurean. 2019. Stroke-Gesture Input
for People with Motor Impairments: Empirical Results & Research Roadmap. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 215, 14 pages. https://doi.org/10.
1145/3290605.3300445

[26] Radu-Daniel Vatavu, Daniel Vogel, Géry Casiez, and Laurent Grisoni. 2011. Esti-
mating the Perceived Difficulty of Pen Gestures. In Human-Computer Interaction
– INTERACT 2011, Pedro Campos, Nicholas Graham, Joaquim Jorge, Nuno Nunes,
Philippe Palanque, and Marco Winckler (Eds.). Springer, Berlin, 89–106.

[27] Don Willems, Ralph Niels, Marcel van Gerven, and Louis Vuurpijl. 2009. Iconic
and multi-stroke gesture recognition. Pattern Recognition 42, 12 (2009), 3303 –
3312. New Frontiers in Handwriting Recognition.

[28] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-
defined Gestures for Surface Computing. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA,
1083–1092. https://doi.org/10.1145/1518701.1518866

[29] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. 2007. Gestures Without
Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology (UIST ’07). ACM, New York, NY, USA, 159–168. https://doi.org/10.
1145/1294211.1294238

[30] Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste Andersen, and
Xiang Cao. 2012. Foundational Issues in Touch-Surface Stroke Gesture Design -
An Integrative Review. Foundations and Trends in Human-Computer Interaction
5, 2 (2012), 97–205. https://doi.org/10.1561/1100000012

http://dl.acm.org/citation.cfm?id=2532129.2532145
https://doi.org/10.1145/1518701.1519052
https://doi.org/10.1145/2379057.2379116
https://doi.org/10.1145/73660.73676
https://doi.org/10.1145/2207676.2208303
https://doi.org/10.4108/ct.2.3.e3
https://doi.org/10.1145/3196709.3196741
https://doi.org/10.1145/964442.964472
https://embedded.eecs.berkeley.edu/research/hhreco/
https://doi.org/10.1109/FG.2011.5771412
https://doi.org/10.1145/3191749
https://doi.org/10.1145/2799648
https://doi.org/10.1145/3173574.3173813
https://doi.org/10.1145/3173574.3173813
https://doi.org/10.1145/302979.302985
http://dl.acm.org/citation.cfm?id=1769590.1769671
https://doi.org/10.1145/122718.122753
https://doi.org/10.1145/2494603.2480307
https://doi.org/10.1016/j.cag.2015.10.011
https://doi.org/10.1145/3242969.3243032
https://doi.org/10.1145/2388676.2388732
https://doi.org/10.1145/3290605.3300454
https://doi.org/10.1145/3229434.3229465
http://dx.doi.org/10.1016/j.ijhcs.2014.10.007
https://doi.org/10.1145/3290605.3300445
https://doi.org/10.1145/3290605.3300445
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1561/1100000012

	Abstract
	1 Introduction
	2 Related Work
	3 Gesture Data Management and Processing with GestMan
	3.1 Software Architecture
	3.2 Gesture Data Structure
	3.3 Gesture Acquisition
	3.4 Gesture Processing
	3.5 Gesture Analysis and Recognition
	3.6 Gesture Composition
	3.7 Gesture Routing

	4 Plugin Modules for GestMan
	4.1 Touch+Air Gestures
	4.2 Webcam-based Gestures

	5 Conclusion and Future Work
	References

