
18

AB4Web: An On-Line A/B Tester for Comparing User
Interface Design Alternatives

JEAN VANDERDONCKT, Université catholique de Louvain, Belgium

MATHIEU ZEN, Université catholique de Louvain, Belgium

RADU-DANIEL VATAVU,MintViz Lab, MANSiD, University Ştefan cel Mare of Suceava, Romania

We introduce AB4Web, a web-based engine that implements a balanced randomized version of the multivariate

A/B testing, specifically designed for practitioners to readily compare end-users’ preferences for user interface

alternatives, such as menu layouts, widgets, controls, forms, or visual input commands. AB4Web automatically

generates a balanced set of randomized pairs from a pool of user interface design alternatives, presents them to

participants, collects their preferences, and reports results from the perspective of four quantitative measures:

the number of presentations, the preference percentage, the latent score of preference, and the matrix of

preferences. In this paper, we exemplify the AB4Web tester with a user study for which N=108 participants
expressed their preferences regarding the visual design of 49 distinct graphical adaptive menus, with a total

number of 5,400 preference votes. We compare the results obtained from our quantitative measures with four

alternative methods: Condorcet, de Borda count starting at one and zero, and the Dowdall scoring system. We

plan to release AB4Web as a public tool for practitioners to create their own A/B testing experiments.

Additional KeyWords and Phrases: A/B testing; Design by exploration; Experiment; Graphical adaptive menus;

Multivariate testing; Overall Evaluation Criterion; Randomized procedure; User interface variants.

ACM Reference Format:

Jean Vanderdonckt, Mathieu Zen, and Radu-Daniel Vatavu. 2019. AB4Web: An On-Line A/B Tester for

Comparing User Interface DesignAlternatives. Proc. ACMHum.-Comput. Interact. 3, EICS, Article 18 (June 2019),
28 pages. https://doi.org/101145.3331160

1 INTRODUCTION AND TERMINOLOGY
Designing User Interfaces (UI) is an iterative process, where the original prototype is being con-

tinuously updated and improved towards the final release. More often than not, designers or

stakeholders come up with several UI alternatives as a result of “designing by exploration,” a

method that consists in designing multiple UI alternatives for an interactive application, followed

by selecting the most suitable one according to predefined criteria, such as aesthetics, performance,

preference [27]. Once the UI design alternatives are available and testable, they are submitted to a

panel of representative end-users to collect their preferences and feedback. This process represents

an instance of User Acceptance Testing (UAT), which consists in verifying that a part of the software

product, such as its user interface, is acceptable for end-users, as opposed to System Testing.

Authors’ addresses: Jean Vanderdonckt, Université catholique de Louvain, LouRIM Institute, Place des Doyens, 1, 1348,

Louvain-la-Neuve, Belgium, jean.vanderdonckt@uclouvain.be; Mathieu Zen, Université catholique de Louvain, Exploitation

des produits et services du système d’information (SIPS), Pierre & Marie Curie, rue du Compas 1, 1348, Louvain-la-Neuve,

Belgium, mathieu.zen@uclouvain.be; Radu-Daniel Vatavu, MintViz Lab, MANSiD, University Ştefan cel Mare of Suceava, 13

Universitatii, Suceava, State, 720229, Romania, radu.vatavu@usm.ro.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2573-0142/2019/6-ART18 $15.00

https://doi.org/101145.3331160

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://doi.org/101145.3331160
https://doi.org/101145.3331160

18:2 Vanderdonckt, Zen, and Vatavu

1.1 Bivalued Split Testing
One way to conduct this process is represented by A/B testing, also referred to as “split testing,”

a between-subjects experimental design that presents participants with pairs of two UI design

alternatives, referred to as variant A and variant B, to determine which variant is superior according

to some Overall Evaluation Criteria (OEC). These criteria are defined in the form of qualitative or

quantitative measures, usually referred to as dependent variables or user’s responses [31]. The OEC
could actually cover various aspects, such as effectiveness, goodness-of-fit, overall performance,

users’ preferences, or social acceptance. When an OEC addresses a qualitative aspect, such as

preference, it can still be transformed into a quantitative measure by means of ratings, rankings,

and scales. A/B testing is known for its simple application with very good results in practice.

A factor expresses a controllable experimental variable that is expected to affect positively or

negatively the OEC. The factor presents a stimulus with different values. In the original A/B testing,

there is only one factor with two values (monovariate bivalued), thus producing two variants, A
and B. A variant consists of an alternative being tested by assigning values to the factors: it is

either the control or one of the treatments [31]. The control designates the existing variant being
compared against the new treatments. When there is no control, all variants are simply considered

as treatments. The two variants are simultaneously presented to isolate the factor’s effect on the

Overall Evaluation Criteria.

For example, Fig. 1 depicts an original split testing where the search box of a web site (the

stimulus) could be located (the factor) either at the top right (first value in variant A) or in the

middle of the screen (second value in variant B). The population sample is then equally divided into

two parts, each using a particular variant. In this example, 50% of the sample will be directed to

variant A here considered as the control, while the rest will visit the variant B, here considered as

the treatment challenging the control. One computes the conversion rate (the OEC) which equals

the ratio between the amount of search box usages and the amount of web page visits. In our

example, 46% of participants use the search engine located on the top right while 32% of participants

use it when located in the middle. Thus, the variant A is the winner, B is the looser.

100% of population sample


50% of

participants
test variant A



50% of
participants

test variant B



46
%



32
%



Overall Evaluation
Criteria (OEC)=
conversion rate

Enter your search term here… Search

Variant B: value = ‘’middle’’

Treatment

Enter your search term here… Search

Variant A: value = ‘’top right’’

Control

Stimulus = search box, Factor = location

Fig. 1. The original Split Testing.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:3

100% of population sample



75
%



25
%



Overall Evaluation
Criteria (OEC)=

preference

Enter your search term here… Search

Variant B: value = ‘’middle’’

Treatment

Enter your search term here… Search

Variant A: value = ‘’top right’’

Control

Stimulus = search box, Factor = location

Total = 100%

Overall Evaluation
Criteria (OEC)=
Effort (minutes)

Almost certain
loser

Almost certain
winner

+5
+4
+3
+2
+1

0
-1
-2
-3
-4
-5

+2.75

Ba
se

d
on

40
te

st
s a

nd
 a

 +
2.

75
 re

pe
at

ab
ili

ty
 ,

va
ria

nt
 A

 w
ill

 li
ke

ly
 w

in
 w

ith
 1

3.
3%

 m
ed

ia
n

ef
fe

ct

(a) (b)

Fig. 2. The original Split Testing with full population sample: (a) for preference, (b) by pattern.

Instead of dividing the sample into the amount of variants (two groups of 50% of participants

in Fig. 1), all participants could be engaged directly in the full A/B testing, see Fig. 2: 100% of the

population sample is confronted to both variants, participants are asked to express their overall

preference for one of these two possible variants (Fig. 2a). The stimulus, the factor, and the values

remain the same while the OEC considers the participants’ preference: 75% of participants prefer

the variant A while 25% prefer the variant B, thus totaling 100%. Fig. 2b represents the same testing

with another OEC: the effort of using the stimulus. The results are expressed as a design pattern

emerging from statistical data inspired by GoodUI
1
: the variant A will likely win over variant B

with 13.3% median effect for a +2.75 repeatability based on 40 A/B tests performed so far.

1.2 Multivalued Split Testing
When a factor is assigned to more than two values, the split testing becomes multivalued. In our

example, the search box could be located in many other positions in the web page layout and we

do not know which location is the most appreciated by end users. Fig. 3 depicts this situation

where the web page layout is discretized into a grid of seven rows and eight columns, therefore

generating fifty-six potential locations. Of course, certain locations are more likely to be accepted

or rejected. If a split test should be rigorously conducted, 56 treatments should be produced, the

location expected by participants could be graphically depicted as a heat map.

1
See http://www.goodui.org

Overall Evaluation Criteria (OEC)= expected location

Amount of variants = 7 rows x 8 columns = 56 values

Factor =
location

Total = 100%

All treatments

100% of population sample


1-2%< 1% 3-4% 5-7% 9-10% >10%

Enter your search term here… SearchStimulus =

Fig. 3. A multivalued Split Testing with full population sample

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

http://www.goodui.org

18:4 Vanderdonckt, Zen, and Vatavu

(a): N=304

6-15%≤ 5% 16-45% 46-65% 66-85% ≥85%

(b): N=302 (e): N=155

1-2%< 1% 3-4% 5-7% 9-10% >10%

(c): N=75 (d): N=94

Fig. 4. The expected location of the search box for a web application, represented in the form of a heatmap

based on percentage: (a) results from the initial study of Bernard [9], (b) the revision for electronic commerce

[10], (c) the replicated study [42], for participants of Southeast Asian culture [4], and (e) for Indian users [43].

Bernard [9] addressed this particular problem in a study to determine suitable locations for

the search box with results represented using a heatmap of expected locations (not necessarily

preferences); see Fig. 4a. Results showed that participants shared a mental model of the web page

layout, revealed by the fact that they located the search box in the top center or at the bottom center

of the web page. However, this expected location could dramatically change depending on several

factors: the type of web page (see Fig. 4b) for the heatmap representative of electronic commerce web

sites [10]), time (see Fig. 4c for the results of the same study, but replicated three years later [42]),

cultural background (see Fig. 4d for results reflective of preferences of participants from Southeast

Asian countries [4]), and country (see Fig. 4e which illustrates the locations expected by Indian

users for information web sites [43]).

1.3 Multivariate Split Testing
The previous example shows that the original A/B testing has limits whenmore than two values need

to be compared for the same factor. Instead of presenting all variants, which could be overwhelming

when many values exist for a factor, one pair of selected variants could be presented at a time. Fig. 5a

depicts a monovariate multivalued split testing where pairs of variants are presented to participants.

The total number of pairs that can be formed is calculated as:
n×(n−1)

2
=

56×(56−1)

2
= 1, 540 pairs.

Let us imagine that two factors are considered simultaneously: the location with its 56 values and

the style of the search box with 4 values, i.e., edit box only, with text push button, with icon push

button, or with text and icon push button (see Fig. 5b). Then, the total number of pairs becomes

n×(n−1)
2
=

(56×4)×((56×4)−1)

2
= 24, 976.

(b) Amount of pairs with two factors = n (n-1)/2 = (56 x 4) x (56 x 4-1)/2 = 24976

Stimulus = search box, Factor #1= location (56 values)

Treatments = All pairs

100% of population sample



Factor #2= style (4 values)

Enter your search term here… Search

Enter your search term here…

Enter your search term here… Search

Enter your search term here…Variant A

Variant B

(a) Amount of pairs with one factor = n (n-1)/2 = 56 x 55/2 = 1540

Fig. 5. A multivariate Split Testing by pairs: (a) with one factor, (b) with two factors.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:5

On one hand, presenting variants that involve more than one factor (called multivariate) with
more than two values per factor (called multivalued) may lead to user responses that are difficult to

associate to individual changes in each factor and, thus, fall outside the simple application of the

split testing method [19]. On the other hand, A/B testing needs collecting responses to a number of

questions that depends quadratically on the pairs of variants. In the last example, administering

a very large amount of questions will lead to boredom, fatigue, and/or deficits of attention or of

commitment to completing the study, with direct impact on the quality of the collected feedback

and the number of volunteers willing to participate in the study. Thus, simple A/B testing quickly

becomes prohibitive, even when not all variants are practically feasible or meaningful.

Amount of pairs = P ≤ n (n-1)/2 = 50 (for example)

Stimulus = search box, Factor #1= location (56 values)

Treatments = P pairs

100% of population sample



Factor #2= style (4 values)

Enter your search term here… Search

Enter your search term here…

Enter your search term here… Search

Enter your search term here…Variant A

Variant B

Balanced computation

Fig. 6. A randomized multivariate split testing with balance.

To address these problems, we provide the following contributions:

(1) We introduce the randomized split testing, a new version of the multivariate and multivalued

A/B testing [31], where participants are presented with a reasonable number of variants,

while making sure that a sufficient number of responses are collected for each A/B pair over

all participants, thanks to a balancing method computed (see Fig. 6).

(2) We introduce AB4Web, a web-based engine that implements an on-line instantiation of the

randomized split testing, where participants are presented with a number of pairs determined

by the designer and where they express their preference by selecting the variant of their

choice.

(3) AB4Web is specifically tailored to manipulate UI design alternatives as variants, which are

represented by static (e.g., screen shots, mock-ups, wireframes) or dynamic UI design artifacts

(e.g., animations, prototypes, or a URL).

(4) AB4Web computes and reports four measures of user preference, i.e., the number of presenta-

tions, the preference percentage, the latent score of preference, and the matrix of preferences.

(5) To illustrate AB4Web for a practical scenario, we conducted an on-line A/B testing to collect

users’ preferences regarding various designs of Graphical Adaptive Menus (GAMs). We chose

this application domain because menu selection represents a fundamental task in virtually

any modern interactive application, and the quality of the adaptation determines how much

time users actually spend searching for and selecting items from the menu.

The remainder of this paper is structured as follows: Section 2 provides a comparative analysis

of selected software applications for conducting A/B testing and highlights the unique features

of AB4Web; Section 3 describes the AB4Web software architecture and system walkthrough, and

defines the fourmeasures of preference computed byAB4Web; Section 4 demonstrates AB4Webwith

a user study on GAMs; Section 5 discusses advantages and limitations intrinsic to the randomized

version of A/B testing and suggests ways to address the limitations in future work.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:6 Vanderdonckt, Zen, and Vatavu

N
am

e
A

re
a

St
im

ul
us

Fa

ct
or

s
V

al
ue

s
O

E
C

O

ut
pu

t m
ea

su
re

s
M

et
ho

d
H

ub
Sp

ot

C
us

to
m

er

re
la

tio
ns

hi
p

m
an

.

El
ec

tro
ni

c
m

ai
l

M
es

sa
ge

 st
yl

e
Tw

o
va

lu
es

C

al
l-t

o-
ac

tio
n

A
ct

io
n

su
cc

es
s r

at
e

M
on

ov
ar

ia
te

si

m
pl

e
A

/B

te
st

in
g

O
pt

im
iz

el
y

El
ec

tro
ni

c
co

m
m

er
ce

W

eb
 p

ag
e

O
ne

 w
eb

 p
ag

e
el

em
en

t
(e

.g
.,

a
w

id
ge

t,
an

 im
ag

e)

Tw
o

to
 m

an
y

va
lu

es

fo
r a

 p
ro

pe
rty

 o
f t

he

w
eb

 p
ag

e
el

em
en

t o
r

tw
o

di
ff

er
en

t e
le

m
en

ts

U
se

r a
ct

io
n

pe
rf

or
m

ed
 o

n
th

e
w

eb
 p

ag
e

el
em

en
t

C
lic

k
th

ro
ug

h
ra

te

(n
ot

 e
xt

en
si

bl
e)

M

on
ov

ar
ia

te

si
m

pl
e

A
/B

te

st
in

g

Pa
rd

ot

M
ar

ke
tin

g
W

eb
 p

ag
e

O
ne

 w
eb

 p
ag

e
el

em
en

t a
t

a
tim

e
(e

.g
.,

he
ad

er
s,

he
ad

lin
es

, l
an

di
ng

 p
ag

es
,

fo
rm

 fi
el

ds
).

Tw
o

va
lu

es
 o

f o
ne

pr

op
er

ty

U
sa

ge
 d

at
a

on

el
em

en
t

C
lic

k
th

ro
ug

h
ra

te

(n
ot

 e
xt

en
si

bl
e)

M

on
ov

ar
ia

te

si
m

pl
e

A
/B

te

st
in

g

G
oo

dU
I

W
eb

 si
te

pa

tte
rn

s
G

U
I

pa
tte

rn

O
ne

 to
 m

an
y

G
U

I
el

em
en

ts

O
ne

 to
 m

an
y

w
id

ge
t

pr
op

er
tie

s
O

w
n

em
pi

ric
al

da

ta
 (n

o
so

ftw
ar

e)

W
in

ne
r/l

oo
se

r
M

ed
ia

n
ef

fe
ct

(n

ot
 e

xt
en

si
bl

e)

M
ul

tiv
ar

ia
te

si

m
pl

e
A

/B

te
st

in
g

M
O

O
C

LE
T

D
is

ta
nc

e
le

ar
ni

ng

A
da

pt
iv

e
w

eb
 p

ag
es

Pr

od
uc

tio
n

ru
le

s f
or

qu

es
tio

ns
/a

ns
w

er
s

Tw
o

to
 m

an
y

co
nc

lu
si

on
s f

or

pr
od

uc
tio

n
ru

le
s

U
se

r’
s a

ns
w

er
 to

qu

es
tio

ns

C
or

re
ct

 a
ns

w
er

 ra
te

M

ul
tiv

ar
ia

te

si
m

pl
e

A
/B

te

st
in

g
A

SS
IS

T-
M

EN
TS

eL

le
ar

ni
ng

W

eb

ex
er

ci
se

s
Ex

er
ci

se
 p

ol
ic

y
M

an
y

po
lic

ie
s b

as
ed

on

 le
ar

ne
r’

s p
ro

fil
e

U
se

r’
s a

ns
w

er
 to

qu

es
tio

ns

C
or

re
ct

 a
ns

w
er

 ra
te

M

ul
tiv

ar
ia

te

si
m

pl
e

A
/B

te

st
in

g
M

TU
R

K

M
ul

tim
ed

ia

ap
pl

ic
at

io
n

M
ul

ti-
m

ed
ia

co

nt
en

ts

O
ne

 to
 m

an
y

m
ul

tim
ed

ia

co
nt

en
ts

M

an
y

co
nt

en
ts

Q

ua
lit

at
iv

e
cr

ite
ria

(e

.g
.,

go
od

ne
ss

 o
f

fit
)

C
rit

er
ia

 p
os

iti
ve

 ra
te

M

ul
tiv

ar
ia

te

si
m

pl
e

A
/B

te

st
in

g
IP

EA
D

G

am
es

G

am
e

sc
re

en
s

O
ne

 to
 m

an
y

ga
m

e
el

em
en

ts
 (e

.g
.,

co
m

m
an

d
la

yo
ut

)

M
an

y
ae

st
he

tic

ch
an

ge
s

Q
ua

lit
at

iv
e

cr
ite

ria

C
rit

er
ia

 p
os

iti
ve

 ra
te

M

ul
tiv

ar
ia

te

si
m

pl
e

A
/B

te

st
in

g
A

B
4W

eb

U
I d

es
ig

n
by

 e
xp

lo
-

ra
tio

n

A
ny

 U
I

ar
te

fa
ct

O

ne
 to

 m
an

y
U

I a
rte

fa
ct

s
O

ne
 to

 m
an

y
ar

te
fa

ct
s

or
 e

le
m

en
ts

Q

ua
lit

at
iv

e
ra

nk
in

g
(e

.g
.,

us
er

’s
 p

re
fe

re
nc

e)

N
um

be
r o

f p
re

se
nt

at
io

ns
,

Pr
ef

er
en

ce
 p

er
ce

nt
ag

e,

La
te

nt
 sc

or
e

of
 p

re
fe

re
nc

e,

M
at

rix
 o

f p
re

fe
re

nc
es

(e

xt
en

si
bl

e)

M
ul

tiv
ar

ia
te

ra

nd
om

iz
ed

A

/B
 te

st
in

g

Table 1. Comparison of existing A/B testing software.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:7

2 RELATEDWORK
A wide variety of software for conducting A/B testing, both online and offline, is available to

practitioners. For example, Capterra
2
compares product reviews and features (e.g., audience target-

ing, campaign segmentation, heatmaps, multivariate testing, split testing) of several A/B testing

software in the field of marketing. In this section, we conduct a comparative analysis of selected,

representative software for running A/B testing according to the following criteria: applicability

range, type of stimulus, factors and values, OEC, output measures, and the specific implementation

of A/B testing; see Table 1:

(1) HubSpot
3
compares two styles of a promotion electronic mail in Customer Relationship

Management (CRM) by recording the call-to-action that could be triggered from the email.

Thus, it implements a monovariate bivalued A/B testing procedure.

(2) Optimizely
4
represents the standard software for A/B testing in electronic commerce. A

single element of a web page is subject to two variants, for instance a “Submit” button with

two different formats and styles. Optimizely computes the ratio between the number of times

a specific button was clicked out of the number of times that button was presented to users.

In this way, marketing practitioners can understand what design attracts customers more.

Although the default setting is to compare just two conditions for one factor, Optimizely can

accommodate more conditions, but each time only two variants are presented.

(3) Pardot
5
is a marketing automation software implementing A/B testing to evaluate two web

page variants based on their header images, headlines, landing pages, form fields, etc. For

example, a designer may introduce a new treatment by changing the landing page of an

institutional web site. Pardot collects usage statistics, such as ”the click-through-rate has
increased by 20% with respect to the control variant.” The designer uses this information to

keep the current treatment as a new control and test against other treatments.

(4) GoodUI
6
provides a catalogue of patterns reporting the final results of several tests, such

as ”Based on 4 tests comparing variant A with a coupon field in a shopping cart and variant
B without, with a repeatability of +2.75, the B variant is likely to win with a 13.3% median
effect,” thus recommending to remove the coupon field from the shopping cart UI. While

A/B testing patterns are interesting, GoodUI does not permit conducting A/B testing on-line.

Thus, GoodUI acts more like a guide for applying existing A/B testing results rather than

being a software for conducting A/B testing per se.

(5) MOOClet [48] consists of an engine for running A/B tests in the context of distance learning

based on adaptation policies, such as production rules. Different questions, which can be

considered as variants of A/B testing, are automatically selected and presented to participants.

The answers and the adaptation policy determine which variants are presented next. The

ratio of correct responses is computed for each student. Since multiple-answer questions are

permitted, MOOClet is multivariate and multivalued.

(6) AssistMents [28, 49] is an eLearning system that offers personalized A/B testing to students

depending on their profile. Instructors define the learning policy [48] that is used to automat-

ically create an online A/B test for quickly deploying exercises. The system reports the ratio

of correct responses.

2
https://www.capterra.com/ab-testing-software/compare/

3
http://www.hubppot.com

4
http://www.optimizely.com

5
http://www.pardot.com

6
http://www.goodui.org

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://www.capterra.com/ab-testing-software/compare/
http://www.hubppot.com
http://www.optimizely.com
http://www.pardot.com
http://www.goodui.org

18:8 Vanderdonckt, Zen, and Vatavu

Welcome page: Brief introduction, participation
consent, demographics

A/B testing: Randomized pairs of UI variants are
presented to participants and preferences elicited

Summary/statistics: summary preference
measures computed by AB‐4‐Web

1 2 3

Pool of User
Interface Design

Alternatives

User Preference
Measures &
Statistics

AB‐4‐Web Engine
for randomized

A/B trials
A
B

%
≡

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Greyscalingmenu

Fig. 7. The AB4Web architecture illustrated with snapshots collected during our study on users’ preferences

for Graphical Adaptive Menus.

(7) Amazon’s crowdsourcing platform Mechanical Turk
7
can involve hundreds of participants

to A/B test variants for a multimedia application within a remote virtual machine called

HIT [47]. The software leaves the OEC open to define and reports the ratio between positive

feedback for a given variant and the number of times that variant was presented.

(8) IPEAD (Ideation, Prioritization, Execution, Analysis, and Documentation) [44] is an A/B

testing framework for investigating the impact of organizational changes by applying lean

management and gamification. Large-scale A/B tests were conducted in the field of games:

variants with different aesthetic improvements were compared together and the effect of

each improvement on play time, progress, and the positive criteria rate was examined [2]).

In conclusion, most of the existing software applications implement the simple A/B testing

procedure, which is monovariate and bivalued. Some applications are more flexible by enabling

multiple values for the same factor or more than one factor. However, they all implement the

traditional version of the A/B testing procedure by repeatedly presenting the variants to partici-

pants. In contrast, AB4Web implements a balanced, randomized version of A/B testing that saves

considerable time during the study and, consequently, can be applied for studies where the number

of potential comparisons of A/B variants is prohibitively large.

3 AB4WEB
We implemented AB4Web as an AngularJS

8
front-end in HTML5 with JavaScript and CSS3 code

coupled to a FireBase
9
backend. Data communication is ensured by FireBase, running as a NoSQL

database management system interfaced as a web service with REST (Representational State

Transfer) calls. The FireBase Storage and Hosting are then exploited to make the database persistent

and accessible through a console when there is a need to retrieve data directly. For example, if other

database queries are needed, such as for specific calculations, the FireBase database can be exported

into a JSON format and converted to CSV or XLS format thanks to any on-line converter
10
.

7
https://www.mturk.com

8
https://angularjs.org

9
https://firebase.google.com

10
For example, see http://www.convertcsv.com/json-to-csv.htm.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://www.mturk.com
https://angularjs.org
https://firebase.google.com
http://www.convertcsv.com/json-to-csv.htm

AB4Web: An On-Line A/B Tester of UI Alternatives 18:9

3.1 SystemWalkthrough and Procedure
Before the experiment, the designer prepares the UI variants as images (e.g., PNG files), animations

(e.g., animated GIF files), videos (e.g. MP4 files), or links to an external third-party application (e.g.,
a prototyping tool). Regarding the latter, any sketching software or prototyping application can

be used to export UI prototypes or to generate a direct URL to those prototypes. For example, the

Gambit platform [40] for collaborative UI design by sketching produces screenshots, web pages,

and sketches, which can then be linked from AB4Web. The artifacts can cover monovariate A/B

testing, but also multivariate, bi-valued, and multivalued. In the monovariate multivalued case, the

conditions should present variations of a single factor. In the multivariate multivalued case, the

conditions could present variations of multiple factors, each of them with two or more values as

indicated on the bottom row of Table 1.

All variants are then uploaded into a pool, materialized by a web directory created for each

experiment. The designer specifies a configuration file containing the starting and ending dates of

the study, the textual and/or graphical instructions for the participants, the text for the consent

form, the number of comparisons per participant, and the demographic data to be captured. If

the pool contains n variants, the maximum amount of pairs is
n ·(n−1)

2
. Our randomized version

does not require to present this full set of pairs, but rather a reasonable subset of P ≤
n ·(n−1)

2
. For

example, an exhaustive A/B testing procedure for a pool containing 50 variants would require 1,225

comparisons. In contrast, our randomized version is shortened with P = 50 comparisons, provided

that the number of participants is sufficient to cover all the possible comparisons repeatedly. To

ensure the equal proportion of pairs to compare, AB4Web implements a balanced randomized

procedure. Each time pair (A,B) or (B,A) is generated, a counter is updated to make sure the

maximum number of presentations per pair is not exceeded. This way, the number of presentations

of each pair is upper bounded.

AB4Web exposes two URLs: one for conducting the study which is sent to participants and one

for access to the results. Once participants receive the URL, the study starts: (1) a welcome page is

presented with instructions; (2) the the pairs of variants are presented and the participant selects

one of the variants by applying the OEC criteria or selects ”It’s a draw” if undecided; (3) an ending

page is displayed showing the participant their results.

3.2 Output Measures
AB4Web collects, stores, and uses participants’ responses to compute preference measures. Each

time a participant clicks on a variant or on the ”It’s a draw” push button, AB4Web records these

selections and computes the following output measures:

(1) The Number of Presentations (Num-Presentations) represents the total amount of

times that a particular UI variant was included in an A/B test and, thus, presented to par-

ticipants. Considering the aforementioned example about the search box design with 6 × 5

variants and a total possible number of 435 A/B pairs, if the variant “search box at middle

location in the browser with text only elements” is randomly selected by AB4Web to be

presented as part of 37 distinct A/B-type pairs, then Num-Presentations is simply 37.

(2) The Preference Percentage (Preference) represents the ratio between the number of

times that a particular UI variant was marked as preferred by participants during A/B-testing

and Num-Presentations. In the previous example, if the “middle location, text only” search

box was preferred by participants for 23 times over other variants, then Preference is

23/37 = 62.2%. Inversely, the dislike percentage is (37 − 23)/37 = 37.8%.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:10 Vanderdonckt, Zen, and Vatavu

(3) The Latent Score of Preference (Latent-Preference) is based on the calculation

model of Bradley-Terry-Luce (BTL) [16], i.e., participants’ responses are entered into a prefer-
ence vector with values +1 (preferred), −1 (not preferred), and 0 (undecided), from which the

probability that a specific variant is preferred to others is computed as follows:

PBTL(A preferred over B) =
pA

pA + pB
(1)

where pA and pB are positive, real-valued scores assigned to variants A and B. Let’s assume

that option A was preferred 20 times and disliked 11 times compared to option B, while

in 6 cases participants voted for a draw. Then, Latent-Preference is 20 − 11 = 9 and

PBTL = 9/37 = 24.3%.

(4) The Matrix of Preferences (Preference-Matrix) computes for each A/B pair a nor-

malized score between −b and +b, where b is a bounding real number indicating the relative

preference of variant A over B. When b = N , the number of responses, the values are normal-

ized in −1..1. The matrix offers the practitioner an overall perspective of what was preferred
and by how much, especially when it is visualized using color coding schemes.

4 USER STUDY ON GRAPHICAL ADAPTIVE MENUS
4.1 Motivations
In order to illustrate the functioning of AB4Web, we conducted an experiment for collecting end

users’ preferences for Graphical Adaptive Menus (GAMs), which are graphical menus subject to

adaptation depending on different parameters such as selection history, user profile, etc. Despite

the fact that GAMs have received extensive research [21, 25, 26, 37], user preference over their

visual design has remained little evaluated in studies that focused mostly on obtrusiveness [37],

predictability [26], subjective satisfaction [37], awareness [21], or disruption [30]. Comparing the

performance of the many GAM alternatives proposed in the literature is virtually impossible: their

implementation requires a substantive development effort and identifying one common quantitative

OEC is illusory. Item selection time could serve to quantitatively compare GAMs of interest, but

instrumenting code for properly capturing and computing this variable for all the GAMs would

require an enormous development effort. Moreover, the deployment of the experiment would

involve consequent resources that would not necessarily lead to conclusive results.

In contrast, understanding user preferences for these alternatives is doable and readily achievable

using AB4Web since preference can be assessed as a common OEC for all of them, independently

of their implementation.

A GAM should identify the best adaptation mechanism depending on the context of use, which

means to automatically display menu items of immediate predicted use to the user while optimizing

several variables: maximize perception of predicted items, maximize the ease of understanding,

minimize navigation operations and selection time, maximize retention over time, etc. Since

these variables are often conflicting and posing constraints, optimizing them all simultaneously is

virtually impossible. Similarly, conducting a series of experiments to determine the best adaptation

mechanism would require a substantive amount of resources without being sure to reach conclusive

results. Interpreting menu selection as an optimization problem enables at least to consider a sub-set

of constraints and optimize a sub-set of these variables, like in multi-criteria optimization. But

the risk is real to obtain an under-constrained problem where too many variants are identified or

to obtain an over-constrained situation where no variant finally emerges. Conducting a series of

experiments by controlling these variables would lead to overwhelming complexity. In particular,

determining one single variable that would be transversely and consistently used for comparing

GAMs remains illusory. Therefore, we decided to adopt a randomized A/B testing.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:11

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

MenuItem3

MenuItem6

(2) Bubbling menu(1) Blinking menu (3) Blurring menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemAItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7



MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(4) Boxing menu (5) Bolding menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

MenuItem3
MenuItem6

(6) Cloud menu (9) Fish-eye menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA



(10) Fish-eye
colored menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA



(11) Frequency-
based menu

ItemA

MenuItem3
MenuItem6
MenuItem1
MenuItem4
MenuItem2
MenuItem5
MenuItem7

MenuItem3

MenuItem6

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

500 ms
(7) Ephemeral menu (8) Evanescent menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemB

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemB

MenuItem3

MenuItem6

(12) Flower
menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(13) Font-changing
menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(14) Glowing
menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(15) Greyscaling
menu

(16) Heatmap
menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Fig. 8. Catalog of Graphical Adaptive Menus: part 1/4.

4.2 Menu Types
A forward and backward snowballing procedure was applied to the pioneer reference [41], which

resulted into 122 references
11
, which were browsed to come up with a pool of 49 unique GAMs. We

consistently describe these GAMS (Figs. 8,9,10,11) in alphabetic order (for easy further reference)

according to three criteria: a sentence describing the adaptation mechanism along with its original

reference, a description of the selection mechanism, and the Bertin’s visual variables that are

affected based on [11]: position, size, shape, value, color, orientation, texture, and motion. When

such a visual variable is affected, it will be denoted as Variable+. We refer to their respective

references for details.

(1) Blinking Menu [36]: frequent items are blinking on and off for two times in a row (Value+,
Motion+).

(2) Bubbling Menu [45]: frequent items are made more easily accessible by a bubbling cursor.

This menu accelerates the selection of the frequently used items by directly jumping to

them one by one by combining two techniques: the bubble cursor, whose size dynamically

changes as the cursor moves and selects the target within the closest distance, and directional

mouse-gesture techniques, which accelerate reaching predicted items (Position+,Value+).
(3) Blurring Menu

12
: infrequent items are progressively blurred (Value+).

(4) Boxing Menu: frequent items are displayed surrounded by a box (Shape+).
(5) Bolding Menu [37]: predicted items, such as frequent items, are boldfaced (Value+).

11
Only 2D GAMs were considered, not 3D menus such as those used in virtual or augmented reality.

12
See https://tympanus.net/codrops/2011/10/19/blur-menu-with-css3-transitions/.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://tympanus.net/codrops/2011/10/19/blur-menu-with-css3-transitions/

18:12 Vanderdonckt, Zen, and Vatavu

(17) Highlighting menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

ItemA

ItemB

ItemC

ItemD

MenuItem2

(18)
Hyperbolic

menu (19) In-context appearing menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

500 ms

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem3

MenuItem6

MenuItem3

MenuItem6

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(20) Italicizing
menu

MenuItem1
MenuItem2

MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(21) Morphing
menu

(22) Out-context disappearing menu
500 ms

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem3
MenuItem6

ItemA

MenuItem3
MenuItem6
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(23) Patined menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

(24) Polymodal
menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

MenuItem3
MenuItem6
MenuItem1
MenuItem2
MenuItem4
MenuItem5
MenuItem7

ItemA

(25) Pushpin menu

(28) Prediction-
by-Line menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

(26) Prediction-
by-Bar menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

(30) Prediction-by-
Scale menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

0.0 0.2 0.4 0.6

(29) Prediction-
by- rainbow

menu

MenuItem3
MenuItem6
MenuItem1
MenuItem4
MenuItem2
MenuItem5
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(27) Prediction-
by-Color menu (31) Probability-

based menu

ItemA

MenuItem1
MenuItem2
MenuItem3 
MenuItem4

MenuItem5
MenuItem6 
MenuItem7

Fig. 9. Catalog of Graphical Adaptive Menus: part 2/4.

(6) Cloud Menu [46]: predicted menu items are arranged in a circular tag cloud superimposed

to the full menu with a location consistent with their corresponding position in this menu

and a font size determined by their prediction level (Position+,Size+,Shape+).
(7) Ephemeral Menu [23]: at opening the menu, user finds predicted items and after a delay of

500ms remaining items appear gradually (Value+,Motion+).
(8) EvanescentMenu [15]: a prediction window containing the predicted items is superimposed

over the menu and progressively made transparent to reveal all the items, thus enabling the

user to select a predicted item if it belongs to the prediction window and any other item from

the full menu after (Position+,Shape+,Motion+).
(9) Fish-Eye Menu [8]: the font size of frequent items is increased and items are grouped.

Initially, this menu displays items with a font size that increases or decreases depending on

the distance with respect to cursor position: the closer, the larger, the further, the smaller.

They could be made adaptive by assigning the frequency to the font size, as in morphing

menus, but also have frequent items closer to the cursor position (Position+,Size+).
(10) Fish-Eye Colored Menu: frequent items are increased in text size, colored, and grouped

(Position+,Size+,Color+).
(11) FlowerMenu [5]: frequent items are arranged according to a layout where items are accessed

by flower gestures (Position+).
(12) Font-Changing Menu: frequent items are displayed using salient fonts (Value+).
(13) Frequency-based Menu, also called Dynamic Menus [35]: items are sorted in decreasing

order of their frequency of usage (Position+). A variant of this menu is the family of

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:13

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

MenuItem3

MenuItem6

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem3
MenuItem4

MenuItem5
MenuItem6

MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

(33) Rainbow menu(32) Pulsing menu

(34) Rating menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

(35) Rotating menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

(36) Smart menu

MenuItem3
MenuItem6

ItemA



MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(37) Split menu
with arrow bar

MenuItem3
MenuItem6

MenuItem2
MenuItem3
MenuItem4

ItemA





(38) Split-with-replication
menu

MenuItem3
MenuItem6
MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5

ItemA

MenuItem6
MenuItem7 (39) Split menu

with scroll bar

MenuItem3
MenuItem6
MenuItem1
MenuItem2
MenuItem3
MenuItem4

ItemA

(40) Split menu
without replication

MenuItem3
MenuItem6
MenuItem1
MenuItem2
MenuItem4
MenuItem5
MenuItem7

ItemA

Fig. 10. Catalog of Graphical Adaptive Menus: part 3/4.

probability-based menus, where item are sorted in decreasing order of their probability of

usage, which could be computed as the ratio of item selection per unit of time [6].

(14) Glowing Menu [7]: frequent items are glowed progressively (Value+,Texture+).
(15) Greyscaling Menu: an adaptive menu for which infrequent items are greyscaled (Value+).
(16) HeatmapMenu: item frequency is depicted using a heatmap color coding (Color+, Texture+).
(17) Highlighting Menu [37]: frequent items are emphasized by contrasting them with respect

to normal items appearing in the menu (Value+,Texture+). For instance, Gajos et al. [25]
highlight predicted items by colouring their background in pink.

(18) Hyperbolic Menu [32]: frequent items are arranged in related hyperbolic (sub-)trees. This

menu consists of a ”focus + context” technique for displaying and manipulating large hierar-

chies with parts of the hyperbolic view that are expanding and collapsing depending on the

frequency (Position+, Shape+, Orientation+).
(19) In-Context Appearing Menu [14]: at opening the menu, a prediction window prompts

three predicted items and disappears gradually to leave the room for the full menu (Position+,
Shape+, Motion+).

(20) Italicizing Menu: frequent items are displayed using italic fonts (Value+).
(21) MorphingMenu [18]: the font size of each menu item is adapted depending on its prediction:

the higher the prediction is, the larger the font size becomes, the lower the prediction is, the

smaller the font size becomes (Position+,Size+).

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:14 Vanderdonckt, Zen, and Vatavu

ItemA
MenuItem3 MenuItem6 MenuItem1

MenuItem4 MenuItem2 MenuItem5

MenuItem7

(41) Square menu (42) Step-by-Step menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

MenuItem3
MenuItem6

Close

(43) Temporal menu

MenuItem3

MenuItem6

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

170 ms

(44) Time-based menu

ItemA

MenuItem3
MenuItem6
MenuItem1
MenuItem4
MenuItem2
MenuItem5
MenuItem7

am

noon

pm

(45) Transparency menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem2 MenuItem4

MenuItem3

MenuItem6

MenuItem1

MenuItem8MenuItem7

MenuItem5 ItemA

(46) Tree menu (47) Twisting menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

(49) Weared
menu

ItemA

MenuItem3

MenuItem6
MenuItem5
MenuItem4

MenuItem7

MenuItem1
MenuItem2

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

(48) Underlying
menu

Fig. 11. Catalog of Graphical Adaptive Menus: part 4/4.

(22) Out-Context Disappearing Menu [14]: at opening menu, a prediction window is immedi-

ately displayed with predicted items; after 500 msec [23], the complete menu is gradually

displayed from the back, replacing the prediction window (Position+, Shape+, Motion+).
(23) Patined Menu [34]: items are patined (Texture+).
(24) Polymodal Menu [13]: any menu item can be selected graphically (by pointing), vocally

(by voice recognition), tactilely (by touching), gesturally (by issuing a gesture representing

the menu), or any combination of them. Predicted menus are rendered in graphical or vocal

prediction window (Position+).
(25) Prediction-by-Bar Menu: item frequency is depicted with a transparent horizontal bar

(Shape+, Value+).
(26) Prediction-by-Color Menu: item frequency is rendered according to a color coding scheme

(Value+, Color+).
(27) Prediction-by-Line menu [6]: item frequency is depicted by an underlining bar (Shape+,

Color+).
(28) Prediction-by-Rainbow Menu: item frequency is shown using the rainbow color coding

scheme (Color+, Texture+).
(29) Prediction-by-ScaleMenu: item frequency is depicted by an horizontal histogram (Shape+,

Value+, Texture+).
(30) Probability-basedMenu: frequent items aremarked by partially–filled squares (Position+,

Shape+).
(31) Pulsing Menu: items selected more frequently are pulsating back and forth (Position+,

Size+, Motion+).
(32) Pushpin Menu [29]: a pushpin retains the frequently used menus on the menu to make

them salient and unmovable. When the menu button is selected by the user, a menu appears

in a rectangular box containing a pushpin and several menu items. If the user clicks on the

pushpin then the temporary menu box is converted into a permanent window which remains

on the display regardless of other display operations. The user may click again on the pushpin

to release the permanent placement of the menu on the screen (Shape+, Color+).
(33) RainbowMenu: item frequency is depictedwith a rainbow color coding (Color+, Texture+).
(34) Rating Menu: items used more frequently are marked with a number of stars (Shape+).
(35) RotatingMenu: frequent items are rotated two times (Position+, Orientation+, Motion+).

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:15

(36) Smart Menu [3]: based upon the usage pattern of the user, only the most commonly used

items are displayed in a short menu mode, which can be expanded to long menu mode to

display all items. The most frequent items are added to the short menu and the least frequent

items are removed from it (Position+, Size+, Shape+).
(37) Split-with-Arrowbar Menu [8]: frequent items are duplicated into a box added on top

of the initial menu transformed into a list with arrows at both ends (Position+, Size+,
Shape+). This menu is suggested when the amount of items in the initial menu is large.

(38) Split-with-Replication Menu [25]: frequent items are duplicated into a box added on top

of the initial menu (Size+, Shape+).
(39) Split-with-Scrollbar Menu [8]: frequent items are duplicated into a box added on top of

the initial menu transformed into a fixed list box (Position+, Size+, Shape+).
(40) Split-without-Replication Menu [22, 41]: frequent, recent, or interest-based items are

moved into a topmost box on top of the initial menu (Position+, Size+).
(41) SquareMenu [1]: initially, items of the pull-downmenus are reformatted into square regions

in order to improve their selection performance. To make it adaptive, frequent items are

displayed in a square proportional to frequency of usage (Position+, Size+, Shape+).
(42) Step-by-Step Menu [12]: displays at each level of the menu hierarchy a prediction window

containing predicted items and offers to select the most likely menu item leading to the next

level of the target path (Position+, Size+, Shape+).
(43) Temporal Menu [33]: at opening, the menu displays only frequent items and, after a delay

of 170ms, the rest of items which are assumed to be less frequent (Position+, Motion+).
(44) Time-based menu [3]: items are marked with a time value depending on their frequency

during the day (Position+, Shape+).
(45) Transparency Menu: infrequently selected items are made more transparent (Value+).
(46) Tree Menu: frequent items are arranged in the form of a marking menu, e.g. in a clockwise

manner in decreasing order of their frequency (Position, Size+, Shape+).
(47) Twisting Menu [39]: predicted items are emphasized by twisting them a limited amount of

times (Shape+, Orientation+, Motion+).
(48) Underlining Menu: items used frequently have the text underlined (Value+).
(49) Weared Menu: item frequency and recency are rendered according to a wearing scheme

(Value+, Texture+).

4.2.1 Participants. A total number of 163 participants were recruited using the authors’ institutions

mailing lists. Participants had various nationalities, originating from sixteen countries, and speaking

eight languages, in alphabetical order: Arabian, Dutch, English, French, German, Portuguese,

Romanian, and Spanish. The study took place online via AB4Web with no compensation offered.

We removed 55 outliers for different reasons: the experiment was left unfinished (hence, data were

incomplete), the same response was entered repeatedly from one pair to another (e.g. always the
right variant or always ”It’s a draw”), the user selected the ’back’ button in the browser (thus

provoking the same pair to appear twice) or because too rapid decision making alerted by our

system. The final data collected from our study is represented by 108 (participants: 36 female, 78

male) × 50 (randomized trials) = 5,400 responses over GAM pairs.

4.2.2 Representativeness of participants. Fig. 12 illustrates the age-gender demographic distribution

of our participants as an age pyramid. Overall, participants’ age varied between 22 and 73 years (M =
39.19, SD = 12.10 years). A acceptable age coverage for both gender groups: female participants

between 25 and 73 years old and males between 22 and 73 years old. The age distributions were not

normal (an observation confirmed by Shapiro-Wilk tests,W=.862, p<.001 for female andW=.948,
p<.001 for male participants, respectively) with a higher representativeness for male and young

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:16 Vanderdonckt, Zen, and Vatavu

Male
66%

Female
34%

Male
Female

16 14 12 10 8 6 4 2 0 2 4 6 8 10

20‐24 years

25‐29 years

30‐34 years

35‐39 years

40‐44 years

45‐49 years

50‐54 years

55‐59 years

60‐64 years

65 years and over
Male Female

Fig. 12. Age pyramid of participants and distribution by gender.

people, around 35 years old (the mode and the median of the sample both equal 35), in our sample.

Young people are expected to be more open and eager to use technologies, whereas older adults

are expected to rely on common technologies. From this perspective, our sample fits the goal of

our experiment, which is focused on understanding end users’ preferences for GAMs. Moreover,

the mean ages were close for the two gender groups (M=38.42,Mdn=34.50 years for female and

M=39.38, Mdn=37.00 years for male participants, respectively, Wilcoxon’s rank sum exact test

W=1708, p=.226, n.s .) and the age distributions were significantly different (as indicated by a

Kolmogorov-Smirnov test D=.111 < CritD = .131, p=.018).

4.2.3 Apparatus. The study was conducted entirely online via AB4Web, and the URL
13
was commu-

nicated to participants by email. The measures are computed in real-time and accessible on-demand

at the end of the experiment
14
. Vectorial images were produced for each GAM and converted to

high-resolution GIF images. For GAMs with visual effects, animated GIFs were produced according

to the temporal guidelines of the respective GAM, e.g., 170ms for the Temporal Menu [33], 500ms

for the Ephemeral Menu [23], etc. The animation was repeated three times in a row. Images were

uploaded to AB4Web along with a short text description of each menu type.

4.2.4 Procedure. AB4Web generated 50 GAM pairs at random for each participant, presented them

in a random order, and asked participants to select the variant they preferred by relying solely on

visual aesthetics. The GAM selected from each A/B-type comparison accumulated one point, while

the alternative was deducted one point. If participants were undecided, AB4Web offered the option

“It is a draw,” in which case no points were assigned to either variant. Since our catalog comprised

n=49 GAMs, a complete A/B testing would require n × (n − 1)/2 = 1, 176 pairs of variants to be
presented to each participant, a prohibitive study to complete. Thus, AB4Web randomly generated

a smaller number of 50 pairs (no duplicates) for each participant. The A/B pairs were randomized

in terms of their order of presentation, and variants were randomized in terms of their order within

each pair. No time constraint was imposed. The study lasted on average 15 minutes.

4.2.5 Results and Discussion for the Preference Percentage. Fig. 13 reproduces the ranking of the 49

GAMs in decreasing order of their averaged Preference, from 81% for the Grayscaling Menu to

just 8% for the Rotating Menu. In this figure, GAMs are clustered into four groups depending on

their Preference: high preference above 50% (ranging from the Greyscaling menu to the Frequency-

based menu), medium preference between 30% and 50% (ranging from Prediction-by-line Menu to

Heatmap Menu), low preference between 20% and 30% (ranging from polymodal menu to hyperbolic

menu), and very low preference below 20%.

13
https://mathieuzen.github.io/adaptive-menus-ranking/

14
https://mathieuzen.github.io/adaptive-menus-ranking/#/stats

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://mathieuzen.github.io/adaptive-menus-ranking/
https://mathieuzen.github.io/adaptive-menus-ranking/##/stats

AB4Web: An On-Line A/B Tester of UI Alternatives 18:17

81%
77%
76%
70%
69%
66%
63%
63%
61%
57%
57%
54%
54%
53%
52%
52%
49%
48%
46%
46%
45%
45%
44%
43%
41%
41%
40%
40%
39%
39%
37%
37%
36%
35%
34%
33%
32%
32%
31%
30%
29%
28%
28%
28%
27%
24%
21%
19%
8%

14%
18%

18%
24%

26%
26%

31%
28%

30%
32%
36%

36%
38%
33%

40%
41%

40%
39%

43%
43%

43%
44%

46%
44%

48%
48%

44%
49%

45%
43%

48%
52%

51%
56%

51%
58%
54%
57%

52%
57%

56%
57%
57%

63%
57%

63%
64%

60%
79%

5%
5%
6%
6%
6%
8%
6%
9%

10%
10%

7%
10%

8%
14%

8%
7%

11%
14%
10%
10%
12%
11%
10%
13%
11%
11%
15%
11%
15%
19%
15%
12%
14%

8%
15%
10%
14%
11%
17%
13%
16%
15%
15%
10%
15%
13%
15%
21%
13%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1. Greyscaling Menu (170)
2. Transparency Menu (218)

3. Highlighting Menu (192)
4. Rating Menu (212)

5. Underlying Menu (198)
6. Pushpin Menu (191)
7. Bowing Menu (179)

8. Fish-eye Menu (187)
9. Bolding Menu (168)

10. Morphing Menu (197)
11. Split Menu with Replication (189)

12. Patined Menu (171)
13. Probability-based Menu (190)
14. Prediction-by-bar Menu (192)

15. Smart Menu (196)
16. Frequency-based Menu (175)

17. Prediction-by-line Menu (184)
18. Font-changing Menu (197)

19. Blurring Menu (196)
20. Bubbling Menu (182)

21. Split Menu without replication (170)
22. Split Menu with Scrollbar (179)

23. Pulsing Menu (178)
24. Glowing Menu (208)

25. Prediction-by-scale Menu (163)
26. Blinking Menu (190)

27. Cloud Menu (188)
28. Fish-eye colored menu (192)

29. Time-based Menu (185)
30. Ephemeral Menu (178)

31. Rainbow menu (201)
32. Step-by-step Menu (180)

33. In-context Appearing Menu (200)
34. Split Menu with Arrowbar (192)

35. Twisting Menu (174)
36. Square Menu (187)

37. Italiczing Menu (192)
38. Temporal Menu (214)

39. Out-context Disappearing Menu (183)
40. Heatmap Menu (167)

41. Polymodal Menu (160)
42. Tree Menu (181)

43. Prediction-by-color Menu (192)
44. Evanescent Menu (178)

45. Weared Menu (204)
46. Prediction-by-rainbow Menu (183)

47. Hyperbolic Menu (190)
48. Flower Menu (176)

49. Rotating Menu (179)

Percentage [%]

M
en

u
ty

pe
 (o

rd
er

, n
um

be
r o

f p
re

se
nt

at
io

ns
)

Preferred Not preferred Undecided

≥50%

≥30%

≥20%

<20%

Fig. 13. Graphical Adaptive Menus in decreasing order of user preference. The label indicates the order and

the name of the menu type followed by the average Num-Presentations. Each bar indicates respectively the

Preference, the percentage of being not preferred, and the percentage of being undecided (figures rounded).

Positive results. A first observation reveals that the most preferred menus in general are

those menus which only admit some change in the Value visual variable: among the first 10

menus in Fig. 13, six are value-changing at pro-eminent places: greyscaling (#1), transparency (#2),

highlighting (#3), underlining (#5), boxing (#7), and bolding (#9). This suggests that participants

preferred the menus that minimize not only the amount of visual change (only one variable),

but also that among possible visual changes, they chose the one that affects the least the visual

appearance of the original menu. Greyscaling, the most preferred menu, disrupts the least the

overall appearance of the initial menu subject to adaptivity. The rating menu appeared in the 4th

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:18 Vanderdonckt, Zen, and Vatavu

position and affects size and shape only, but again leaves the original menu unaltered; it is also the

first menu changing two variables for adaptivity at the same time. The Pushpin (#6) is in the same

case, both menus are the only two designs that feature shape change, while the Fish-Eye Menu (#8)

and the Morphing Menu (#10) are the only designs with size-changing capability. These results

confirm a preference for preserving physical stability in terms of shape and size.

Themorphingmenu (#10) is the first one that tolerates a position-changing behaviour (Position+),
along with a change in size. The next one, i.e. the split with replication (#11), affects also the same

two variables, i.e. Position and Size, but represents the most appreciated split menu, probably

the only that is acceptable since the prediction window is replicated on top of the menu. All other

instances of the split menu come quite later on: split without replication (#21), split with scroll bar

(#22), and finally split with arrow bar (#34). None of them are satisfying enough.

The patined menu (#12) made the first foray into the territory of texture-changing menus, long

before other designs from the same category, such as the Weared Menu (#45), again probably

because the visual change is minimized, even if it is textured. Surprisingly, the smart menu (#15),

which has been much reviled [17], is the first menu accommodating with 3 visual variables changed

simultaneously. The prediction-by-line (#17) is the first GAMaccepting some color change, far before

all other color-changing menus, but another member of this family, is still preferred: prediction-by-

bar (#14). The frequency-based menu (#16) closes the first cluster with high preference (≥ 50%).

Negative results. Among other motion-changing menus, the Pulsing menu (#23) belongs to

the second cluster of medium preferences, followed by Glowing Menu (#24), the Blinking Menu

(#26), and the Ephemeral Menu (#30), the twisting menu (#35). Other members of this category

come long after, such as temporal menus (#38), ICD (#33) and its counterpart OCD (#39), or the

evanescent menu (#44).

We also found out that color-changing menus were not appreciated at all in most menu de-

signs, probably because participants could not easily map colors to item frequency, even with the

Prediction-by-color (#43), Prediction-by-Rainbow (#46) or the Heatmap Menu (#40). Our intuition

is that these color schemes seem more appropriate for the visualization of frequencies, rather than

to assist item selection. The Cloud Menu (#27) [46] is the first GAM with a superimposed prediction

window, as opposed to a tiled one, as in Split-with-Replication (#11). Menus with unusual shapes,

such as the Square Menu (#36) or the Hyperbolic Menu (#47) were not appreciated either, probably

because their respective advantages are elsewhere than in their visual design. Two menus belong

to the fourth cluster of very low agreement, i.e. the flower menu (#48) and the rotating menu (#49),

the first one because participants did not succeed to map gestures to the various items, especially

after adaptation, the second one because rotating is the most distractive animation.

4.2.6 Results and Discussion for the Latent Score of Preference. Fig. 14 reproduces the ranking of
the 49 GAMs in decreasing order of their averaged Latent-Preference, from a score of BTL = 127

for the Transparency Menu to just BTL = −128 for the Rotating Menu. This approach gives a

clearer stance on the possible GAMS that could be kept and those that should be avoided: only

eighteen GAMS, ranging from the transparency menu to the prediction-by-line menu, are revealed

acceptable, with a positive BTL score. Those menus which display a close-to-zero or negative BTL

score are meant to be definitely discarded. It is interesting to notice that in this set of 18 admissible

GAMS, we find again exactly the same first GAMSwhich were discovered thanks to the Preference

measure. The main difference is that the discrimination criteria appear more clearly through the

Latent-Preference than through the Preference variable. Fundamentally, the ranking obtained

by BTL does not change the main position and the main clusters: menus appear almost at the same

position, sometimes with a slightly changed order. The first and last menus of each cluster always

appear in the same position, which confirm the initially obtained results.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:19

127
114

110
99

85
76

64
58

52
49

40
39

32
30

23
19
18
17

6
5
4
3

-3
-4

-7
-8

-12
-13
-14

-17
-22

-27
-29
-30

-38
-40

-42
-44
-45

-47
-52

-54
-55

-61
-63

-71
-72

-82
-128

-140 -90 -40 10 60 110

Transparency Menu
Greyscaling Menu
Highlighting Menu

Rating Menu
Underlying Menu

Pushpin Menu
Fish-eye Menu
Bowing Menu
Bolding Menu

Morphing Menu
Split Menu with Replication

Prediction-by-bar Menu
Patined Menu

Probability-based Menu
Smart Menu

Frequency-based Menu
Font-changing Menu

Prediction-by-line Menu
Blurring Menu

Bubbling Menu
Split Menu without replication

Split Menu with Scrollbar
Glowing Menu

Pulsing Menu
Cloud Menu

Ephemeral Menu
Prediction-by-scale Menu

Time-based Menu
Blinking Menu

Fish-eye colored menu
Rainbow menu

Step-by-step Menu
Twisting Menu

In-context Appearing Menu
Out-context Disappearing Menu

Split Menu with Arrowbar
Italiczing Menu

Polymodal Menu
Heatmap Menu

Square Menu
Tree Menu

Temporal Menu
Prediction-by-color Menu

Weared Menu
Evanescent Menu

Flower Menu
Prediction-by-rainbow Menu

Hyperbolic Menu
Rotating Menu

M
en

u
ty

pe

BTL score

Fig. 14. Graphical Adaptive Menus in decreasing order of their Latent-Preference.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:20 Vanderdonckt, Zen, and Vatavu

Graphical Adaptive Menus Blinking MeBlurring MeBolding MeBowing MeBubbling MCloud Men Ephemeral EvanescentFish‐eye M Fish‐eye co
1 Blinking Menu 0 ‐1 ‐3 ‐4 2 ‐1 ‐1 3 ‐2 2
2 Blurring Menu 1 0 0 ‐4 1 1 1 3 1 0
3 Bolding Menu 3 0 0 1 2 4 0 1 ‐1 5
4 Bowing Menu 4 4 ‐1 0 1 4 1 3 1 1
5 Bubbling Menu ‐2 ‐1 ‐2 ‐1 0 2 1 2 ‐3 0
6 Cloud Menu 1 ‐1 ‐4 ‐4 ‐2 0 1 2 ‐3 2
7 Ephemeral Menu 1 ‐1 0 ‐1 ‐1 ‐1 0 1 ‐2 ‐1
8 Evanescent Menu ‐3 ‐3 ‐1 ‐3 ‐2 ‐2 ‐1 0 0 ‐2
9 Fish‐eye Menu 2 ‐1 1 ‐1 3 3 2 0 0 3

10 Fish‐eye colored menu ‐2 0 ‐5 ‐1 0 ‐2 1 2 ‐3 0

Fig. 15. An excerpt of the Normalized Matrix of Preferences.

4.2.7 Results for the Matrix of Preferences. Fig. 15 reproduces an excerpt of the matrix of prefer-

ences Preference-Matrix normalized by the bounding value b = 8 after applying a conditional

formatting based on this value. The full matrix of preferences is provided in the supplemental

resources. This symmetric matrix gives an idea to what extent any particular GAM is preferred or

not with respect to another as each cell contains the BTL score normalized between two GAMs of a

pair: each cellmi j gives the relative preference of menumi overmj , between -8 and +8 in our case.

For example, the first column of Fig. 15 is interpreted as follows: the blinking menu is equivalent

to itself (hence, the 0 score), the blurring menu is slightly preferred over the blinking menu (hence,

the 1 score), the bolding and the bowing menus are much more preferred over the blinking menu

(respectively, with a score of 3 and 4). Conversely, the bubbling menu is judged inferior to the

blinking menu (with a negative score of -1), the evanescent menu is estimated quite more inferior

to the blinking menu (with a score of -3). The cell c3,10 = 5 suggests that the bolding menu is much

more preferred over the fish-eye menu with colors.

In general terms, ∀i, j ∈ 1, ...,n : pi, j = ci, j/b where b denotes a bounding value, typically

here, the amount of pair comparisons (in our case, P = 50). This enables us to get the probability

that a specific menu is preferred to the others: mi is preferred to mj ⇔ P(mi > mj) = pi, j =
pmi

pmi +pmj
> P(mi ≤ mj). For instance, the cellM2,1 = 1 expresses that the menuM2=blurring menu

is slightly preferred over the menuM1=blinking menu. The cellM8,1 = −3 expresses that the menu

M8=evanescent menu is largely unpreferred with respect to menuM1=blinking menu. The column

#45 containing the results of comparing GAM with respect to the transparent menu is almost red

everywhere, meaning that the transparent menu was almost always preferred to other menus

compared, except for the greyscaling menu (M15,45 = 5) and the highlighting menu (M17,45 = 4),

which were ranked before. In conclusion, instead of giving an absolute reference as in Preference,

this matrix of preferences provides a relative reference where any pair of GAMs is compared. If a

designer needs to choose between two GAMS or more before implementation, this matrix provides

a clear answer.

4.3 Other Output Measures
Beyond the computation of our four measures defined in Section 3, we also wanted to test other

measures on the same raw data to confirm or infirm the preferences. There are two related methods

for consolidating votes from participants on candidates: the Condorcet method [38] and the de Borda
method [20], the last one being often used when the first one is unable to identify a Condorcet winner.
Each method may be used to rank candidates (here, rank GAMs) for a selection based on votes

(here, based on end users’ preferences) and to choose a winner (here, the most preferred GAMs). To

choose a winner, the Condorcet method is based on one rule: select the GAM candidate (if it exists)

that beats each other GAMs in exhaustive pairwise comparison. The de Borda method is based

on a similar rule: select the GAM that on average stands highest in the participants’ preferences.

To rank the GAMs, the Condorcet method applies the rule: rank the GAMs in descending order

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:21

of their number of victories in exhaustive pairwise comparison with all the other GAMs. The de

Borda method ranks the GAMs in descending order of their standing in the participants’ rankings.

The lowest score is commonly assigned to the least preferred candidate and the score increases

with the ranking. Based on these rules, we define the following additional measures:

(1) The de Borda score starting at 1 (BordaOne) [20] represents the ratio between the

double amount of times a particular UI variant was preferred plus the amount of times it

has been assessed as undecided or unpreferred and Num-Presentations. Considering the

aforementioned example about the search box design with 6 × 5 variants and a total possible

number of 435 A/B pairs, if the variant “search box at middle location in the browser with text

only elements” was presented 37 times, among which preferred for 23 times, then undecided

for 10 times, then unpreferred for 7 times, then BordaOne is (2 × 23 + 10 + 7)/37 = 1.70.

(2) The de Borda score starting at 0 (BordaZero) [20] represents the ratio between the

amount of times a particular UI variant was preferred and Num-Presentations. Considering

the same example again, BordaZero is 23/37 = .62.

(3) The Dowdall score (Dowdall) [24] represents the ratio between the amount of times a

particular UI variant was preferred plus half the amount of times it has been assessed as

undecided plus one third of the mount of unpreferred and Num-Presentations. In the same

example, Dowdall is (23 + 10/2 + 7/3)/37 = .82.

Fig. 16 graphically depicts the two first counting measures, respectively BordaOne and Bor-

daZero in decreasing order of their value. Fig. 17 does the same job for the Dowdall measure.

Before analyzing these results, we must first acknowledge that these measures are not primarily

intended to express preferences, but to identify the n-best candidates in a pool ofm >= n, most of

the time only the best candidate should be identified (the winner takes it all).

The de Borda method starting at 1 or 0 as well as the Dowdall keep five frontrunners already

found in the previous measures: the Transparency menu (#2 in Latent-Preference) which is now

the winner in all categories (#1 in all counting methods, followed by the Rating menu (respectively,

#4, #2, #2, and #2), the Pushpin menu (respectively #6, #3, #4, #3), the Highlighting menu (#3, #4,

#3, and #4), and the Underlining menu (respectively, #5, #9, #6, #6). Surprisingly, the Greyscaling

menu, which was selected as the most preferred menu in our previous measure, falls to the #16 in

the BordaOne, #5 in the BordaZero, and #9 in the Dowdall measures. This may be explained

by the fact that these measures considers all percentages, including the number of times for

unpreferred and undecided, but with a lower coefficient, thus resulting into Transparency menu

as first winner because its value is the largest in terms of preference and rejection combined,

all measures considered. The ordering and the proportion above the average for these measures

remain more or less the same since they compute a linear combination of Preference. The Dowdall

counting exhibits a distribution analogous to BordaOne for the same reasons, apart the fact that

the amount of undecided and unpreferred count for less importance in the linear combination.

5 BENEFITS AND LIMITATIONS
In this section, we report on observed benefits of the balanced randomized A/B testing as a method,

the potential benefits of its implementation into AB4Web, and their corresponding limitations. In

this way, a shortcoming that is intrinsic to the method will be obviously propagated to AB4Web,

but the way the method is implemented in AB4Web could also lead to particular limitations. We

therefore denote by B, respectively by L a benefit, respectively a limitation and we add a suffix to

denote whether it is applicable to the method (M) or the tool implementing it (T). For example, a

tool limitation would be reported as LT , while a method benefit would be reported as BM .

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:22 Vanderdonckt, Zen, and Vatavu

4.59
3.89
3.87

3.69
3.60
3.60
3.57
3.56
3.54
3.52

3.43
3.40
3.39
3.39
3.38
3.37

3.29
3.28
3.27

3.19
3.17
3.14
3.10
3.07
3.04
3.03
2.99
2.96
2.96
2.95
2.94
2.94
2.93
2.90

2.84
2.84

2.77
2.75
2.72
2.72
2.70
2.69

2.60
2.55
2.53

2.47
2.41

2.22
2.12

0 1 2 3 4 5

Transparency Menu
Rating Menu

Pushpin Menu
Highlighting Menu

Prediction-by-bar Menu
Glowing Menu
Fish-eye Menu
Bowing Menu

Underlying Menu
Font-changing Menu

Morphing Menu
Blurring Menu

Smart Menu
Fish-eye colored menu

Split Menu with Replication
Greyscaling Menu

In-context Appearing Menu
Time-based Menu

Prediction-by-line Menu
Probability-based Menu

Rainbow menu
Ephemeral Menu

Split Menu with Arrowbar
Weared Menu
Bolding Menu

Frequency-based Menu
Bubbling Menu

Patined Menu
Cloud Menu

Temporal Menu
Out-context Disappearing Menu

Italiczing Menu
Tree Menu

Blinking Menu
Split Menu with Scrollbar

Pulsing Menu
Split Menu without replication

Prediction-by-color Menu
Prediction-by-rainbow Menu

Square Menu
Step-by-step Menu

Hyperbolic Menu
Twisting Menu

Heatmap Menu
Flower Menu

Prediction-by-scale Menu
Evanescent Menu
Polymodal Menu

Rotating Menu

de Borda Count starting at 1

M
en

u
Ty

pe

1.97
1.61
1.60

1.54
1.48

1.41
1.38

1.30
1.23

1.17
1.16
1.15

1.10
1.09
1.07
1.06
1.05
1.05

1.00
0.98
0.98

0.94
0.91
0.91

0.89
0.88
0.87
0.87
0.86
0.86

0.83
0.78

0.76
0.73
0.72
0.72
0.72
0.71

0.64
0.63
0.61

0.59
0.58

0.56
0.50

0.47
0.43

0.38
0.14

0 0.5 1 1.5 2

Transparency Menu
Rating Menu

Highlighting Menu
Pushpin Menu

Greyscaling Menu
Underlying Menu

Bowing Menu
Fish-eye Menu

Morphing Menu
Prediction-by-bar Menu

Bolding Menu
Split Menu with Replication

Smart Menu
Glowing Menu

Probability-based Menu
Blurring Menu

Prediction-by-line Menu
Font-changing Menu

Patined Menu
Fish-eye colored menu

Frequency-based Menu
Bubbling Menu
Rainbow menu

Split Menu with Scrollbar
In-context Appearing Menu

Pulsing Menu
Split Menu without replication

Cloud Menu
Split Menu with Arrowbar

Time-based Menu
Blinking Menu

Ephemeral Menu
Step-by-step Menu

Out-context Disappearing Menu
Prediction-by-scale Menu

Italiczing Menu
Temporal Menu

Square Menu
Twisting Menu

Tree Menu
Weared Menu

Prediction-by-color Menu
Heatmap Menu

Prediction-by-rainbow Menu
Evanescent Menu
Polymodal Menu
Hyperbolic Menu

Flower Menu
Rotating Menu

de Borda Count starting at 0

M
en

u
Ty

pe

Fig. 16. Graphical Adaptive Menus in decreasing order of their count computed by the de Borda method

starting at 1 and 0.

• BM1: Low cost operationalization. The total cost of conducting our balanced randomized

A/B testing equals the cost for creating, storing the UI design alternatives plus the cost of ex-

periment configuration and deployment. Therefore, the operationalization cost is considered

low compared to other methods.

• BM2: Flexibility of UI variants. The UI variants could be static or dynamic, thus leaving

ample flexibility to the designer to test real UI variants vs restricted versions (called repre-

sented UI) with real vs represented users. A new UI variant can be added at any point in time.

When the experiment was launched, we stopped examining the existing literature about

GAMs to keep the pool constant. In the meanwhile, we identified new GAMs which could be

incorporated in AB4Web simply by uploading their representation into the pool, without

requesting any other change in the software. AB4Web will then automatically consider new

menus as any other instance for comparing pairs. Nevertheless, some time will be needed to

reach a GAM distribution that is again balanced: if the Num-Presentations was around 187

until now in average (SD = 13), there will be some time needed for the new menus to reach

the same average, which is ensured by AB4Web.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:23

1.86
1.83

1.78
1.68
1.68
1.68
1.66
1.65
1.63

1.60
1.60

1.55
1.53
1.53
1.51
1.49
1.48
1.47
1.46

1.43
1.41

1.39
1.37
1.37
1.36
1.36

1.33
1.31
1.29
1.29
1.28
1.28
1.27
1.26
1.25
1.24

1.19
1.18
1.18

1.15
1.14
1.12

1.10
1.08

1.04
1.00

0.95
0.80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Transparency Menu
Rating Menu

Pushpin Menu
Highlighting Menu

Fish-eye Menu
Underlying Menu

Bowing Menu
Prediction-by-bar Menu

Greyscaling Menu
Glowing Menu

Font-changing Menu
Morphing Menu

Split Menu with Replication
Smart Menu

Blurring Menu
Fish-eye colored menu

Prediction-by-line Menu
Time-based Menu

Probability-based Menu
In-context Appearing Menu

Bolding Menu
Rainbow menu

Ephemeral Menu
Frequency-based Menu

Patined Menu
Split Menu with Arrowbar

Bubbling Menu
Cloud Menu

Weared Menu
Out-context Disappearing Menu

Blinking Menu
Split Menu with Scrollbar

Italiczing Menu
Pulsing Menu

Temporal Menu
Split Menu without replication

Tree Menu
Step-by-step Menu

Prediction-by-color Menu
Square Menu

Prediction-by-rainbow Menu
Twisting Menu

Hyperbolic Menu
Prediction-by-scale Menu

Heatmap Menu
Flower Menu

Evanescent Menu
Polymodal Menu

Rotating Menu

Dowdall method
M

en
u

Ty
pe

Fig. 17. Graphical Adaptive Menus in decreasing order of their count computed by the Dowdall method.

• BM3: Continuity of experiment. Any experiment can be launched and stopped at any

time or left open to maintain the results evolving over time. AB4Web randomly selects UI

variant based on www.random.org, which itself is a real-random service based on weather

temperatures. Although it is not a pseudo-random generator, it does not ensure the perfect

equal distribution about all UI variants (see Preference in parentheses in Fig. 13).

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

www.random.org

18:24 Vanderdonckt, Zen, and Vatavu

77%
72%

70%
68%

64%
63%

59%
59%

55%
55%

53%
50%

49%
49%
49%

48%
48%

47%
46%

42%
42%
42%

41%
40%

39%
39%
39%

38%
38%

37%
35%
35%

33%
32%
32%
32%

31%
30%

29%
27%
27%
27%

26%
26%

25%
23%

22%
18%

9%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Greyscaling Menu
Transparency Menu

Highlighting Menu
Rating Menu

Underlying Menu
Pushpin Menu
Fish-eye Menu

Boxing Menu
Bolding Menu

Split Menu with Replication
Morphing Menu

Prediction-by-bar Menu
Smart Menu

Patined Menu
Frequency-based Menu

Probability-based Menu
Prediction-by-line Menu

Font-changing Menu
Blurring Menu

Split Menu with Scrollbar
Split Menu without replication

Glowing Menu
Bubbling Menu

Pulsing Menu
Prediction-by-scale Menu

Fish-eye colored menu
Blinking Menu

Ephemeral Menu
Time-based Menu

Cloud Menu
Step-by-step Menu

Rainbow menu
Split Menu with Arrowbar

Twisting Menu
In-context Appearing Menu

Temporal Menu
Square Menu

Italicizing Menu
Out-context Disappearing Menu

Tree Menu
Heatmap Menu

Polymodal Menu
Weared Menu

Evanescent Menu
Prediction-by-color Menu

Prediction-by-rainbow Menu
Hyperbolic Menu

Flower Menu
Rotating Menu

Preference percentage [%]

M
en

u
ty

pe

No change
Upgrade
Downgrade

Fig. 18. Evolution of Preference between two points in time.

• BM4: Comparison over time. Multiple versions could be compared between two points

in time or more, which is handy for analyzing trends in real time. Fig. 18 colors bars de-

pending on the change of ranking between two snapshots that we took over time: one while

the experiment was running (87 participants with outliers) until the second snapshot (163

participants reduced to 108 after outlier removal). Only 9 menus have seen their ranking

based on preference being increased (in green), 10 menus have been depreciated (in red), and

the remaining 30 ones remain in the same interval (in yellow). This reveals a relative conver-

gence of results, even after a reasonable amount of participants. A further analysis would be

welcome to determine the population sampling size beyond which a certain convergence

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

AB4Web: An On-Line A/B Tester of UI Alternatives 18:25

would be guaranteed. This raises the question of determining when the audience size is large

enough to be representative for inputs. Similarly, the question of how long the experiment

should be in order to produce reliable conclusion is equally important.

• BT1: No technical expertise required. Contrarily to many software for A/B testing used

in marketing, eLearning (as discussed in Section 2), AB4Web does not require any technical

expertise to be conducted, thus making it an affordable tool in the hands of designers. The

A/B testing according to our randomized procedure is completely automated when launched.

Anonymized data are automatically linked to any UI variant. At any time, it is possible to

access raw data by querying the FireBase database, but this is reserved for advanced users.

• BT2: Free format for UI variants. No constraint is imposed to the building and represen-

tation of UI variants: the variant could be a real UI (e.g., a a running one) or a represented UI

(e.g., a screen shot, an image, a wireframe, a prototype) for real users or representative users.

Once could imagine to couple AB4Web to any UI generator so that (semi-)automatically

generated user interfaces could feed the pool of UI variants in a more efficient way.

• LT1: Fixed presentation policy. All GAMs uploaded into the pool are considered equiprob-

able (same probability for all variants), they are always presented by pairs and compared

according to one single OEC. This presentation policy could be made more flexible by pa-

rameterizing the presentation policy: present UI variant according to their own probability

(instead of all same), augment the amount of UI variants per comparison (not too much,

though, probably not more than 3-4), support 1 against n UI variants orm < n at the same

time. Such a presentation policy could dynamically change the presentation rules (e.g. based
on production rules), such as changing the presentation so that the best or the worst UI

variant is presented more or less often as data re collected. This requires discovering how

to personalize the presentation policy and how these rules could be implemented. Two

approaches are particularly appropriate: ”Keep-the-Best”, where the preferred UI variant

would be included in the immediate next round and compared against a new one, and the

”Tournament”, where the selected UI variant would be added to a winners pool and would

resurface in future comparisons when all other variants have been compared.

• LT2: Single Overall Evaluation Criteria. In the current version of AB4Web, only one OEC

is assumed (in our experiment, preference). Instead of relying on only one such criteria, a

multi-criteria approach could be offered, again provided that the amount of criteria does not

reduce the easiness of the current approach. If a pair of two variants is presented for example,

AB4Web could accommodate additional widgets to capture a rating or a ranking, e.g., via
a rating bar, a slider, a drag and drop list. Equally important is also how to apply the OEC.

If several UI variants are proposed, a ranking should be offered to let participants rank the

variants according to each criteria.

• LT3: Four implementedmeasures.AB4Web implements the four output measures defined

in Section 3.2, but could implement the other ones, e.g. the Condorcet, the de Borda or the
Dowdall measures as well. This wold be particularly meaningful when the designer would

like to choose different measure depending on the desired goal: find the best UI variant

according to one or multiple criteria, find the p-best candidates among a pool of n UI variants,

find the p-best candidates above a certain threshold, etc.

• LT4: Segmentation and targeting. A/B testing usually considers that all UI variants are

equiprobable (e.g. with equal probability delivered to all participants). However, in some

circumstances, responses to UI variants may depend on some variables, like age, gender,

location or any other profile parameter. For instance, while UI variant A receives the highest

Preference, UI variant B may receive a higher value within a specific segment of the sample.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

18:26 Vanderdonckt, Zen, and Vatavu

6 CONCLUSION
We presented AB4Web, a web-based engine that implements an on-line balanced randomized

version of the multivariate A/B testing, enabling practitioners to rapidly conduct an experiment.

AB4Web is particularly handy for large design spaces, where the standard A/B testing is prohibitive

because of the large amount of factors, values, and possible pairs of comparison. This feature

represents a significant advantage for participants as the complexity of the experiment can be

managed by the practitioner. We illustrated AB4Web for collecting preferences about the visual

design of Graphical Adaptive Menus, for which we reported experimental results. Beyond the

release of the AB4Web tool in the public domain, future work will investigate how to implement a

more flexible presentation policy and multi-variate testing. Also, we plan further evaluations of our

tool by applying it to other application areas, such as collecting users’ preferences for the visual

aesthetics of menus displayed on smartglasses, Augmented Reality applications, or user preferences

for the visual appearance of the shapes of stroke-gesture commands.

ACKNOWLEDGMENTS
R.-D. Vatavu acknowledges support from the project PN-III-P1-1.1-TE-2016-2173 (TE141/2018), a

grant of the Ministry of Research and Innovation, CNCS-UEFISCDI, awarded within PNCDI III.

REFERENCES
[1] David Ahlström, Andy Cockburn, Carl Gutwin, and Pourang Irani. 2010. Why It’s Quick to Be Square: Modelling New

and Existing Hierarchical Menu Designs. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA, 1371–1380. https://doi.org/10.1145/1753326.1753534

[2] Erik Andersen, Yun-En Liu, Rich Snider, Roy Szeto, and Zoran Popović. 2011. Placing a Value on Aesthetics in Online

Casual Games. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New

York, NY, USA, 1275–1278. https://doi.org/10.1145/1978942.1979131

[3] Michael P. Arcuri, Thomas Scott Coon, Jeffrey J. Johnson, Alexis Warren, Jacob Manning, and Martijn Eldert van

Tilburg. 2000. Adaptive Menus, Patent US6121968A, Microsoft. (Sept. 2000). Filed June 17th, 1998, Issued Sep. 19th.,

2000.

[4] Aslina Baharum and Azizah Jaafar. 2013. Users’ Expectation of Web Objects Location: Case Study of ASEAN Countries.

In Third International Visual Informatics Conference on Advances in Visual Informatics - Volume 8237 (IVIC 2013).
Springer-Verlag, Berlin, Heidelberg, 383–395. https://doi.org/10.1007/978-3-319-02958-0_35

[5] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2008. Flower Menus: A New Type of Marking Menu with Large

Menu Breadth, Within Groups and Efficient Expert Mode Memorization. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI ’08). ACM, New York, NY, USA, 15–22. https://doi.org/10.1145/1385569.1385575

[6] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2016. Visual Menu Techniques. Comput. Surveys 49, 4, Article 60
(Dec. 2016), 41 pages. https://doi.org/10.1145/3002171

[7] Patrick Baudisch, Desney Tan, Maxime Collomb, Dan Robbins, Ken Hinckley, Ken Hinckley, Maneesh Agrawala,

Shengdong Zhao, and Gonzalo Ramos. 2006. Phosphor: Explaining Transitions in the User Interface Using Afterglow

Effects. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST ’06). ACM,

New York, NY, USA, 169–178. https://doi.org/10.1145/1166253.1166280

[8] Benjamin B. Bederson. 2000. Fisheye Menus. In Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology (UIST ’00). ACM, New York, NY, USA, 217–225. https://doi.org/10.1145/354401.354782

[9] Michael Bernard. 2001. User Expectations for the Location of Web Objects. In CHI ’01 Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’01). ACM, New York, NY, USA, 171–172. https://doi.org/10.1145/634067.634171

[10] Michael L. Bernard. 2003. Examining User Expectations for the Location of Common E-Commerce Web Objects.

Proceedings of the Human Factors and Ergonomics Society Annual Meeting 47, 11 (2003), 1356–1360. https://doi.org/10.

1177/154193120304701108 arXiv:https://doi.org/10.1177/154193120304701108

[11] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2016. A Design Space for Engineering Graphical

Adaptive Menus. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS
’16). ACM, New York, NY, USA, 239–244. https://doi.org/10.1145/2933242.2935874

[12] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2016. A Design Space for Engineering Graphical

Adaptive Menus. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS
’16). ACM, New York, NY, USA, 239–244. https://doi.org/10.1145/2933242.2935874

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://doi.org/10.1145/1753326.1753534
https://doi.org/10.1145/1978942.1979131
https://doi.org/10.1007/978-3-319-02958-0_35
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/3002171
https://doi.org/10.1145/1166253.1166280
https://doi.org/10.1145/354401.354782
https://doi.org/10.1145/634067.634171
https://doi.org/10.1177/154193120304701108
https://doi.org/10.1177/154193120304701108
http://arxiv.org/abs/https://doi.org/10.1177/154193120304701108
https://doi.org/10.1145/2933242.2935874
https://doi.org/10.1145/2933242.2935874

AB4Web: An On-Line A/B Tester of UI Alternatives 18:27

[13] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2017. Polymodal Menus: A Model-based Approach

for Designing Multimodal Adaptive Menus for Small Screens. Proc. ACM Hum.-Comput. Interact. 1, EICS, Article 15
(June 2017), 19 pages. https://doi.org/10.1145/3099585

[14] Sara Bouzit, Denis Chêne, and Gaëlle Calvary. 2014. From Appearing to Disappearing Ephemeral Adaptation for Small

Screens. In Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: The Future
of Design (OzCHI ’14). ACM, New York, NY, USA, 41–48. https://doi.org/10.1145/2686612.2686619

[15] Sara Bouzit, Denis Chêne, and Gaëlle Calvary. 2015. Evanescent Adaptation on Small Screens. In Proceedings of the
Annual Meeting of the Australian Special Interest Group for Computer Human Interaction (OzCHI ’15). ACM, New York,

NY, USA, 62–68. https://doi.org/10.1145/2838739.2838749

[16] Ralph Allan Bradley and Milton E. Terry. 1952. Rank Analysis of Incomplete Block Designs: I. The Method of Paired

Comparisons. Biometrika 39, 3/4 (1952), 324–345. http://www.jstor.org/stable/2334029

[17] Robert Bridle and Eric McCreath. 2006. Inducing Shortcuts on a Mobile Phone Interface. In Proceedings of the
11th International Conference on Intelligent User Interfaces (IUI ’06). ACM, New York, NY, USA, 327–329. https:

//doi.org/10.1145/1111449.1111526

[18] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A Predictive Model of Menu Performance. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, NY, USA, 627–636.

https://doi.org/10.1145/1240624.1240723

[19] Ph. Courcoux and M. Semenou. 1997. Preference data analysis using a paired comparison model. Food Quality and
Preference 8, 5 (1997), 353 – 358. https://doi.org/10.1016/S0950-3293(97)00004-9 Third Sensometrics Meeting.

[20] Peter Emerson. 2013. The original Borda count and partial voting. Social Choice and Welfare 40, 2 (01 Feb 2013),

353–358. https://doi.org/10.1007/s00355-011-0603-9

[21] Leah Findlater and Krzysztof Z. Gajos. 2009. Design Space and Evaluation Challenges of Adaptive Graphical User

Interfaces. AI Magazine 30, 4 (2009), 68–73. http://www.aaai.org/ojs/index.php/aimagazine/article/view/2268

[22] Leah Findlater and Joanna McGrenere. 2004. A Comparison of Static, Adaptive, and Adaptable Menus. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New York, NY, USA, 89–96.

https://doi.org/10.1145/985692.985704

[23] Leah Findlater, Karyn Moffatt, Joanna McGrenere, and Jessica Dawson. 2009. Ephemeral Adaptation: The Use of

Gradual Onset to Improve Menu Selection Performance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’09). ACM, New York, NY, USA, 1655–1664. https://doi.org/10.1145/1518701.1518956

[24] Jon Fraenkel and Bernard Grofman. 2014. The Borda Count and its real-world alternatives: Comparing scoring rules in

Nauru and Slovenia. Australian Journal of Political Science 49, 2 (2014), 186–205. https://doi.org/10.1080/10361146.2014.
900530 arXiv:https://doi.org/10.1080/10361146.2014.900530

[25] Krzysztof Z. Gajos, Mary Czerwinski, Desney S. Tan, and Daniel S. Weld. 2006. Exploring the design space for adaptive

graphical user interfaces. In Proceedings of the working conference on Advanced visual interfaces, AVI 2006, Venezia, Italy,
May 23-26, 2006, Augusto Celentano (Ed.). ACM Press, 201–208. https://doi.org/10.1145/1133265.1133306

[26] Krzysztof Z. Gajos, Katherine Everitt, Desney S. Tan, Mary Czerwinski, and Daniel S. Weld. 2008. Predictability and

Accuracy in Adaptive User Interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’08). ACM, New York, NY, USA, 1271–1274. https://doi.org/10.1145/1357054.1357252

[27] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer. 2008. Design As Exploration: Creating

Interface Alternatives Through Parallel Authoring and Runtime Tuning. In Proc. of the 21st Annual ACM Symposium on
User Interface Software and Technology (UIST ’08). ACM, New York, NY, USA, 91–100. https://doi.org/10.1145/1449715.

1449732

[28] Neil T. Heffernan and Cristina Lindquist Heffernan. 2014. The ASSISTments Ecosystem: Building a Platform that Brings

Scientists and Teachers Together for Minimally Invasive Research on Human Learning and Teaching. International
Journal of Artificial Intelligence in Education 24, 4 (01 Dec 2014), 470–497. https://doi.org/10.1007/s40593-014-0024-x

[29] Anthony Hoeber, Alan Mandler, and Norman Cox. 1992. Method and apparatus for selecting button functions and

retaining selected options on a display, Patent US5243697, Oracle America Inc. (1992). https://patents.google.com/

patent/US5243697 Filed March 15th, 1992, Granted July 9th, 1993.

[30] Bowen Hui, Grant A. Partridge, and Craig Boutilier. 2009. A probabilistic mental model for estimating disruption.

In Proc. of the 14th Int. Conf. on Intelligent User Interfaces (IUI ’08). ACM, New York, NY, USA, 287–296. https:

//doi.org/10.1145/1502650.1502691

[31] Ron Kohavi and Roger Longbotham. 2017. Online Controlled Experiments and A/B Testing. Springer US, Boston, MA,

922–929. https://doi.org/10.1007/978-1-4899-7687-1_891

[32] John Lamping, Ramana Rao, and Peter Pirolli. 1995. A Focus+Context Technique Based on Hyperbolic Geometry for

Visualizing Large Hierarchies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’95). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 401–408. https://doi.org/10.1145/223904.223956

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://doi.org/10.1145/3099585
https://doi.org/10.1145/2686612.2686619
https://doi.org/10.1145/2838739.2838749
http://www.jstor.org/stable/2334029
https://doi.org/10.1145/1111449.1111526
https://doi.org/10.1145/1111449.1111526
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1016/S0950-3293(97)00004-9
https://doi.org/10.1007/s00355-011-0603-9
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2268
https://doi.org/10.1145/985692.985704
https://doi.org/10.1145/1518701.1518956
https://doi.org/10.1080/10361146.2014.900530
https://doi.org/10.1080/10361146.2014.900530
http://arxiv.org/abs/https://doi.org/10.1080/10361146.2014.900530
https://doi.org/10.1145/1133265.1133306
https://doi.org/10.1145/1357054.1357252
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1007/s40593-014-0024-x
https://patents.google.com/patent/US5243697
https://patents.google.com/patent/US5243697
https://doi.org/10.1145/1502650.1502691
https://doi.org/10.1145/1502650.1502691
https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1145/223904.223956

18:28 Vanderdonckt, Zen, and Vatavu

[33] Dong-Seok Lee and Wan Chul Yoon. 2004. Quantitative results assessing design issues of selection-supportive menus.

International Journal of Industrial Ergonomics 33, 1 (2004), 41 – 52. https://doi.org/10.1016/j.ergon.2003.07.004

[34] Xiaoyang Mao, Yuji Hatanaka, Atsumi Imamiya, Yuki Kato, and Kentaro Go. 2000. Visualizing Computational Wear

with Physical Wear. In Proceedings of the 6th ERCIM Workshop ”User Interfaces for All” (UI4All ’00), Pier-Luigi Emiliani

and Constantine Stephanidis (Eds.). CNR-IROE, Pisa, Italy, 12. http://ui4all.ics.forth.gr/UI4ALL-2000/files/Long_papers/

Mao.pdf

[35] Jeffrey Mitchell and Ben Shneiderman. 1989. Dynamic Versus Static Menus: An Exploratory Comparison. SIGCHI
Bulletin 20, 4 (April 1989), 33–37. https://doi.org/10.1145/67243.67247

[36] Kazuma Murao, Carson Reynolds, and Masatoshi Ishikawa. 2012. Blink Suppression Sensing and Classification. In CHI
’12 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’12). ACM, New York, NY, USA, 2255–2260.

https://doi.org/10.1145/2212776.2223785

[37] Jungchul Park, Sung H. Han, Yong S. Park, and Youngseok Cho. 2007. Usability of Adaptable and Adaptive Menus.

In Usability and Internationalization. HCI and Culture, Nuray Aykin (Ed.). Springer, Berlin, Heidelberg, 405–411.

https://doi.org/10.1007/978-3-540-73287-7_49

[38] Marcus Pivato. 2015. Condorcet meets Bentham. Journal of Mathematical Economics 59 (2015), 58 – 65. https:

//doi.org/10.1016/j.jmateco.2015.04.006

[39] Antoine Ponsard, Kamyar Ardekani, Kailun Zhang, Frederic Ren, Matei Negulescu, and Joanna McGrenere. 2015.

Twist and Pulse: Ephemeral Adaptation to Improve Icon Selection on Smartphones. In Proceedings of the 41st Graphics
Interface Conference (GI ’15). Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 219–222.

http://dl.acm.org/citation.cfm?id=2788890.2788929

[40] Ugo Sangiorgi and Jean Vanderdonckt. 2012. GAMBIT: Addressing Multi-platform Collaborative Sketching with Html5.

In Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ’12). ACM, New

York, NY, USA, 257–262. https://doi.org/10.1145/2305484.2305527

[41] Andrew Sears and Ben Shneiderman. 1994. Split Menus: Effectively Using Selection Frequency to Organize Menus.

ACM Trans. Comput.-Hum. Interact. 1, 1 (March 1994), 27–51. https://doi.org/10.1145/174630.174632

[42] A. Dawn Shaikh, Barbara S. Chaparro, and Anirudha Joshi. 2006. Indian Users’ Expectations for the Location of Web

Objects on Informational Websites. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 17

(2006), 1922–1926. https://doi.org/10.1177/154193120605001744 arXiv:https://doi.org/10.1177/154193120605001744

[43] A. Dawn Shaikh and K. Lenz. 2006. WhereâĂŹs the search? Re-examining user expectations of web objects. Usability
News 8, 1 (2006), 1356–1360.

[44] Jorge Gabriel Siqueira and Melise M. V. de Paula. 2018. IPEAD A/B Test Execution Framework. In Proceedings
of the XIV Brazilian Symposium on Information Systems (SBSI’18). ACM, New York, NY, USA, Article 14, 8 pages.

https://doi.org/10.1145/3229345.3229360

[45] Theophanis Tsandilas and m. c. schraefel. 2005. An Empirical Assessment of Adaptation Techniques. In CHI ’05
Extended Abstracts on Human Factors in Computing Systems (CHI EA ’05). ACM, New York, NY, USA, 2009–2012.

https://doi.org/10.1145/1056808.1057079

[46] Jean Vanderdonckt, Sara Bouzit, Gaëlle Calvary, and Denis Chêne. 2018. Cloud Menus: A Circular Adaptive Menu

for Small Screens. In 23rd International Conference on Intelligent User Interfaces (IUI ’18). ACM, New York, NY, USA,

317–328. https://doi.org/10.1145/3172944.3172975

[47] Raynor Vliegendhart, Eelco Dolstra, and Johan Pouwelse. 2012. Crowdsourced User Interface Testing for Multimedia

Applications. In Proceedings of the ACM Multimedia 2012 Workshop on Crowdsourcing for Multimedia (CrowdMM ’12).
ACM, New York, NY, USA, 21–22. https://doi.org/10.1145/2390803.2390813

[48] Joseph Williams and Neil Heffernan. 2015. A Methodology for Discovering How to Adaptively Personalize to Users

Using Experimental Comparisons. Social Science Research Network (2015). https://doi.org/10.2139/ssrn.2660585

[49] Joseph Jay Williams, Anna N. Rafferty, Dustin Tingley, Andrew Ang, Walter S. Lasecki, and Juho Kim. 2018. Enhancing

Online Problems Through Instructor-Centered Tools for Randomized Experiments. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA, Article 207, 12 pages.

https://doi.org/10.1145/3173574.3173781

Received February 21
st
, 2019; revised April 15

th
, 2019; revised April 24

th
, 2019; accepted April 26

th
, 2019

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 18. Publication date: June 2019.

https://doi.org/10.1016/j.ergon.2003.07.004
http://ui4all.ics.forth.gr/UI4ALL-2000/files/Long_papers/Mao.pdf
http://ui4all.ics.forth.gr/UI4ALL-2000/files/Long_papers/Mao.pdf
https://doi.org/10.1145/67243.67247
https://doi.org/10.1145/2212776.2223785
https://doi.org/10.1007/978-3-540-73287-7_49
https://doi.org/10.1016/j.jmateco.2015.04.006
https://doi.org/10.1016/j.jmateco.2015.04.006
http://dl.acm.org/citation.cfm?id=2788890.2788929
https://doi.org/10.1145/2305484.2305527
https://doi.org/10.1145/174630.174632
https://doi.org/10.1177/154193120605001744
http://arxiv.org/abs/https://doi.org/10.1177/154193120605001744
https://doi.org/10.1145/3229345.3229360
https://doi.org/10.1145/1056808.1057079
https://doi.org/10.1145/3172944.3172975
https://doi.org/10.1145/2390803.2390813
https://doi.org/10.2139/ssrn.2660585
https://doi.org/10.1145/3173574.3173781

	Abstract
	1 Introduction and Terminology
	1.1 Bivalued Split Testing
	1.2 Multivalued Split Testing
	1.3 Multivariate Split Testing

	2 Related Work
	3 AB4Web
	3.1 System Walkthrough and Procedure
	3.2 Output Measures

	4 User Study on Graphical Adaptive Menus
	4.1 Motivations
	4.2 Menu Types
	4.3 Other Output Measures

	5 Benefits and Limitations
	6 Conclusion
	Acknowledgments
	References

