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ABSTRACT
We apply the dissimilarity-consensus method to quantify and report
the articulation consistency of gestures produced on touchscreens
by users with low vision, which we compare to the consistency
of people without visual impairments. We report results in terms
of dissimilarity-consensus growth curves and logistic models on
a public dataset of 6,562 stroke-gestures collected from 54 partic-
ipants, of which 27 with low vision. Our empirical results show
that participants with low vision were 28% less consistent in their
gesture articulations compared to the participants without visual
impairments. We also demonstrate the suitability of the method,
applied so far for whole-body gestures only, for the analysis of
touchscreen stroke-gestures.
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1 INTRODUCTION
Touch and stroke-gesture input, in the form of taps, swipes, flicks,
and symbolic shapes, are predominant for interacting with mobile
and wearable devices with touchscreens. While taps implement a
visual process requiring users to focus their visual attention to the
intended target, stroke-gesture input can be performed in eyes-free
contexts of use and, thus, is better suited for users with visual im-
pairments to interact with touchscreen devices [4,6,7,10]. To this
end, design knowledge regarding how users with visual impair-
ments articulate stroke-gestures on touchscreens and the gestures
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they prefer to use [12] is needed to inform effective gesture sets
and recognizers [4,7].

Gesture articulation encompasses many aspects, from the geom-
etry of gesture paths to production speed and to the order in which
the individual strokes that form a multi-stroke gesture are entered;
see Figure 1 for a few examples of stroke-gestures used in this
work. Gestures that are consistently articulated by users reduce the
complexity demands of recognition algorithms [14] and facilitate
formation of high-consensus gesture sets for intuitive gesture-based
user interfaces [13]. The articulation consistency of stroke-gestures
has been evaluated using agreement rate measures [1,10]. Recently,
a new method based on dissimilarity-consensus curves and logistic
models [8] was introduced as an alternative technique, but demon-
strated for whole-body input only.

The contributions of this work are as follows: (1) we present
the first application of the dissimilarity-consensus method [8] to
stroke-gestures produced on touchscreens to confirm the method
suitability for other gesture types than whole-body input; (2) we
report empirical results for stroke-gestures articulated by users
with low vision and compare their articulation consistency with
that of users without visual impairments. Our results on a public
dataset [10] of 6,562 samples collected from 54 participants reveal
28% less consistency for users with low vision.

2 THE DISSIMILARITY-CONSENSUS
METHOD

The dissimilarity-consensusmethod (τ -C)was introduced byVatavu
[8] to reduce the effort of manually analyzing and clustering gesture
datasets in end-user gesture elicitation studies [13]. The method
consists of using a gesture dissimilarity function δ , such as Dynamic
Time Warping (DTW) [5,7,14], $1 [14], or $P/$P+ [7,9], together
with a threshold τ . Two gestures are considered similar enough to
be clustered into the same class if the dissimilarity between them is
less than τ . The τ threshold is varied from 0 (when all the gestures
are considered different) to ∞ (all the gestures are similar), and
consensus (consistency in this paper) among gestures is computed
as follows:

C(τ ) =

N∑
i=1

N∑
j=i+1

[ξ
(
δ (дi,t ,дj,u )∀t ,u) ≤ τ ]

0.5N (N − 1)
(1)

where N is the number of users that were elicited for gestures,
дi,t and дj,u are two gesture samples from users i and j, δ is the
dissimilarity, and ξ an aggregator function that produces one single
value for comparisons involving multiple gestures when the same
gesture was repeatedly collected from the same user; see [8, pp.
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Figure 1: Examples of stroke-gestures produced by people without visual impairments (top row) and with low vision (bottom
row) from the public gesture dataset of Vatavu et al. [10]. Note: Following Anthony et al. [1], colors show stroke orderings.

4-5]. The τ -C curve is the functional relationship from Eq. 1 that
describes how consistency C(τ ) varies with τ . This relationship is
modeled with a logistic function:

C(τ ) =
C∞ ·C0

C0 + (C∞ −C0) · exp(−r · τ )
(2)

where the growth rate r is an indicator of consistency, i.e., the faster
the τ -C curve grows, the more consistency there is in the gestures
from which the curve was computed; see Figure 2 for examples. The
values of the C0/C∞ parameters are estimated so that the logistic
model best fits the observed dissimilarity-consensus data.

3 EXPERIMENT
Weapplied the dissimilarity-consensusmethod [8] to stroke-gestures
produced on touchscreens by people with low vision and without
visual impairments.

3.1 Dataset
We employed the public stroke-gesture dataset of Vatavu et al. [10]
consisting in 6,562 samples of 12 distinct stroke-gesture types
collected using a tablet from 54 participants, of which 27 with
low vision; see Figure 1 for a visual illustration of several ges-
tures from this dataset. The dataset is freely available to down-
load from the web page http://www.eed.usv.ro/~vatavu/projects/
LowVisionGestureDataset.

3.2 Method
We measured the consistency in gesture articulation as the growth
rate r of the logistic functions (Eq. 2) used to model the dissimilarity-
consensus curves (Eq. 1) computed for each gesture type and each
user group (users with low vision and without visual impairments,
respectively). We used the DTW function [5,7] to compute the
dissimilarity between gestures, and we normalized DTW values by
dividing them to the number of point alignments [8].

4 RESULTS
Figure 2 illustrates the τ -C growth curves for each gesture type
and user group and Table 1 shows the average values of the pa-
rameters of the logistic model from Eq. 2. Figure 2 reveals a visual
good fit between the logistic models (shown in black color) and the
dissimilarity-consensus curves (green and orange, respectively) for
all the gesture types and user groups. Table 1 confirms this obser-
vation: the values of the C0 parameter are close to zero (M=0.91,
SD=0.51 for users with low vision and M=1.50, SD=1.72 for users
without visual impairments), and the values of C∞ are close to 100
(M=96.51, SD=3.89 and M=97.64, SD=2.95, respectively). All the

Table 1: Average values for the parameters of the logistic
functions (Eq. 2) used to model the dissimilarity-consensus
growth curves shown in Figure 2.

Measure Low
vision

No visual
impairments

r 6.53 8.38
SE 0.36 0.29
p <.001 <.001
C0 0.91 1.50
SD 0.51 1.72
C∞ 96.51 97.64
SD 3.89 2.95

growth rates shown in Figure 2 were found significant at p<.001
(Bonferroni corrected α=05/24=.002). The average growth rate was
larger for gestures produced by the participants without visual
impairments (r=8.38) compared to the participants with low vi-
sion (r=6.53). The τ -C curves grew faster or, equivalently, higher
consistency was achieved for smaller τ values for the gestures of
participants without visual impairments. Overall, there was 28.4%
less consistency in the gestures of the low vision group.

The good fit found between the logistic models and the τ -C
curves confirm successful application of the τ -C method to stroke-
gestures, where this method has been demonstrated so far for
whole-body gestures only [8]. Moreover, our findings consolidate
previous results regarding gestures articulated by users with low
vision, which are overall less consistent than the same gesture types
produced by people without visual impairments [10]. From this
perspective, our results constitute a conceptual replication1 [2] and,
thus, contribute to the RepliCHI initiative2 toward consolidating
previous results in HCI, in this case to knowledge regarding touch
gesture input behavior for users with low vision.

5 CONCLUSION AND FUTUREWORK
We demonstrated the suitability of the τ -C method for stroke-
gesture analysis. We also reported findings about the consistency
of gestures articulated by users with low vision on touchscreens,
which consolidate previous results and support recommendations
from the literature to employ recognizers that are robust to varia-
tions in how gestures are articulated by users with low vision [7,10].

1Conceptual replications investigate earlier findings by means of different measures,
manipulations, and settings [3, p. 3526].
2http://www.replichi.com
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Figure 2: Dissimilarity-consensus growth curves for gestures produced by participants without visual impairments (top) and
with low vision (bottom) computed from 6,562 gestures. Logistic models are shown in black, actual data in green and orange.

Future work will apply the τ -C method to other gesture types, such
as gestures performed with smart rings [2], and user categories,
such as people with motor impairments [11].
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