
Author Assistance Visualizations for Ice-Bound,
A Combinatorial Narrative

Jacob Garbe, Aaron A. Reed, Melanie Dickinson,
Noah Wardrip-Fruin, and Michael Mateas

University of California Santa Cruz
1156 High St, Santa Cruz, CA

jgarbe@ucsc.edu, aareed@soe.ucsc.edu, mldickin@ucsc.edu,
nwf@ucsc.edu, michaelm@soe.ucsc.edu

ABSTRACT
As games increase in narrative complexity, challenges mount
for their story designers. As authors, these designers are con-
cerned with building an experience that responds to players
in consistent and engaging ways, even when players make
unpredictable story choices amongst a large group of op-
tions. Furthermore, they want those choices to have nar-
rative impact. However, historically the task of authoring
such narratives can prove daunting or infeasible. One ap-
proach to solving this problem is to use external tools to
visualize story structure. This paper introduces a new set of
design-time visualizations for combinatorial interactive nar-
rative authoring. By using these visualizations during the
creation of Ice-Bound (an interactive narrative iPad game)
we were able to author content within a large combinatorial
possibility space, and achieve both desired player freedom
and content responsiveness. This generalized visualization
strategy could also prove useful to future interactive narra-
tives using combinatorial approaches.

Categories and Subject Descriptors
K.8 [Personal Computing]: Games; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Design, Measurement

Keywords
interactive narrative, visualization, authoring tools

1. INTRODUCTION
For modes of interactive narrative based on branching tree

structures, where players choose actions from a short list,
knowing when enough content has been authored to cover
all sets of player interactions is as simple as verifying each

tree node. However, for works which involve combinatorial
narrative—or possible combinations of several different story
parts—knowing when all sets of possible player interactions
will still result in the display of appropriate content is a non-
trivial problem. During the development of Ice-Bound, an
iPad game where players use different combinations of story
elements to create narratives, it quickly became necessary
to visualize the content distribution in a way that was both
intuitive and informative, allowing us to easily zero in on
spaces needing more authoring.

Through the course of developing the visualization sys-
tem, we learned it was necessary to fluidly move between
its different information displays, and the game itself. This
both provided fact-checking for assumptions made by the
viz system, and helped provide different ways of looking at
the content authoring challenge we faced. This assisted us in
writing content efficiently, preserving both the quality and
reactiveness we desired. Furthermore, it brought to light
subtle issues arising from the combinatorial procedures of
the system, that may have otherwise remained hidden. This
suggests that tools like our visualization could generalize to
other works, assisting authors in the creation of more deeply
interactive narratives.

2. PREVIOUS WORK
Interactive narrative is an established form with a his-

tory that spans many different modalities and mediums. As
such, writing for any possible state the player may explore in
a given piece is an authoring problem that’s been addressed
in number of different ways as described below. However,
combinatorial narratives such as Ice-Bound are still rela-
tively rare, and as such require different visualizations to
provide the same level of authorial overview.

The most prevalent visualization for interactive narratives
is the simple graph (including trees), where nodes are indi-
vidual story segments (or lexias) connected via the afforded
actions of the player. Hyperfiction, for instance, typically
uses the display of node connections to show the afforded
action of clicking a link. These graph visualizations have
been in place since the early days of non-linear storytelling
with tools like Aquanet [10] and Storyspace [1], and con-
tinue to be used today in a variety of authoring tools, from
Twine [5] to game modding tools like the Neverwinter Nights
toolsets [4].

These sorts of graphs fill the most immediate need of au-
thors: seeing the overarching structure of a piece, providing
a way to see where paths of interaction dead end, where con-

centrations of links make certain content more likely to be
displayed, or the lack of links makes it perhaps impossible.
As said by Mark Amerika, author of Grammatron: “creating
complex hypertext structures for the web is a nightmare be-
cause, after a certain point, one cannot visualize a cognitive
mapping structure for a webwork that has literally thou-
sands of screens and links” [2]. In this case, Storyspace’s
ability to provide a simple spatial representation of reader
pathways proved invaluable to his efforts.

Another interesting aspect of tools such as Tinderbox [3]
and Twine, is that the authoring interface can be heavily
bound up in the visualization itself, where creating a new
node in the visualization directly maps to creating a new
node in the work. Semantic flags in the writing itself can
create new nodes, which are immediately added to the vi-
sualization. In these sorts of environments, the authoring is
done from within the data visualization of the media artifact
rather than as a response to experiencing the game or text,
which (through leveraging good UI design) can dramatically
increase an author’s ability to architect complex narrative
structures.

Games that provide powerful tools for the creation of
new narratives with game engines, such as the Neverwinter
Nights toolsets, still hold to the graph structure for narrative
visualization, if they provide one at all. The well-used tree
map for branching dialogue with NPCs is still the standard,
and well-suited to most forms of menu-driven interaction
with game characters. But it also begs the question: with
different, more sophisticated visualizations, what narratives
could become feasible to create?

Another visualization tool for interactive narrative debug-
ging is the IDE for Inform 7, a parser-based interactive fic-
tion language, which features a view of possible traversals of
the story called the “Skein.” This mode also makes use of a
graph metaphor, although with the graph now showing mul-
tiple playthroughs of the interactive narrative, which can be
replayed upon changes to the narrative code to ensure they
still produce the expected output. This opens up interesting
diagnostic affordances to authors, allowing them to zero in
on specific series of actions taken by players [7]. However,
this visualization has trouble addressing IF’s sheer combina-
torial scale. The basic player affordance to interact via an
arbitrary combination of nouns and verbs (“get lamp”, “drop
lamp”, “light lamp”) quickly becomes too large to be tenable
for visualization, and would even perhaps not be considered
useful. In general, it isn’t sensible to author dedicated con-
tent for nonsensical parser commands, such as “eat lamp”.
Therefore, the easiest way to generate data for visualization
falls back to playtraces, which can rely generally on play-
ers to engage in goal-directed play that avoids nonsensical
parser command combinations.

Continuing in this vein, recent projects such as Playtracer
[6] are making headway in providing representations that
could conceivably be adapted to provide narrative diagnostic
strategies for projects where readers have a high level of
expressive affordance. Playtracer generates graph structures
where certain nodes are defined as goal states, and each
choice or state the player can induce in the system is a node
connected by the action to the previous state. The distance
of nodes from each other is calculated using an abstraction
of the states’ dissimilarity from each other. The size of nodes
is the number of playtraces that involve that state.

There have also been playthrough visualizations used for

Figure 1: Each Ice-Bound level has around eight
to twelve sockets and two to four movable lights.
Here the player has activated four sockets by using
all four lights, while a fifth socket (in the center
of Katrine’s Room) is always on regardless of the
player’s actions. Four other sockets are inactive.

interactive narratives to better understand the potential space
explored through interaction. For Prom Week, a game mak-
ing use of cutting-edge persistent social state modeling to
create dynamic experiences for each player, visualization
served a critical evaluative purpose in exposing how quickly
individual playthroughs become unique [9]. These same
techniques were used to demonstrate a similar property in
Façade, an earlier work famous for its expressive player af-
fordances.

But while these sorts of visualizations proved illuminating
for certain aspects of these works, they were used after the
authoring was completed. In contrast, Ice-Bound ’s visual-
ization system was created to provide a continuous form of
feedback about the narrative state, helping to target author-
ing of content to cover as many possibilities as possible.

3. LIVE DEMO
A live demo of the visualization system can be accessed

at http://ice-bound.com/viz.

4. ICE-BOUND: THE NARRATIVE SYSTEM
A reader plays Ice-Bound by crafting sets of stories from

component texts. Each story is presented as a set of sockets
arranged on a map and corresponds to potential narrative
symbols, such as a character trait, or a dramatically charged
location (Figure 1). By positioning a limited supply of lights
on those sockets, the player activates some subset of the
story sockets and sets the corresponding symbols to active.
The combination of active symbols triggers various events
and endings which narrate a story arising from the symbols

Figure 2: The build process for a room

chosen by the player. The player eventually selects one of
the endings as the preferred one, locking in the story, and
continuing on to the next level [8].

Each socket has a type which limits the pool of symbols
that can be assigned to it. As seen in Figure 2, the socket on
the left is global, meaning it takes symbols from the global
symbol pool. The middle socket is fixed, requesting a specific
symbol. The rightmost socket is level-specific, meaning only
symbols in the pool authored for this particular story can
appear here. In addition, the middle symbol is marked “al-
ways on,” meaning it will always be active (which allows the
author to express fixed components of the potential story;
in this case, specifying that this story will always involve
Katrine being lonely). If the player was given at least two
lights, this room would allow for four possible combinations
of active symbols: (lonely), (afraid of dark | lonely), (lonely
| creative), and (afraid of dark | lonely | creative). The se-
lection of certain symbols for the sockets is also subject to
filters concerning those symbols’ themes. This will be dis-
cussed later in Section 5.1: Theme-driven Filters.

5. SYMBOL COMBINATIONS AND POSSI-
BILITY SPACES

Ice-Bound ’s narrative possibility space is combinatorial in
two distinct ways:

1. Build-time combinations. When a player starts
a level, the system first builds it by assigning sym-
bols to sockets from a wider pool of available content.
The same level might be built with different symbols
based on the way the player has resolved prior sto-
ries, or simple random variation. The total number
of possible combinations for a level (given every possi-
ble build) with our current preliminary set of symbols
ranges from 500 to 5000.

2. Run-time combinations. While playing a given
build of a level, the player can explore the combina-
tions of active symbols made possible by the number
of lights they are given. The number of unique com-
binations the player can activate typically ranges from
30 to 70.

The large number of build-time combinations allow au-
thors to make the selection of content for sockets sensitive

to player choices through theme-driven filters. The number
of run-time combinations means that players are presented
with a wide array of choices, which gives them the ability
to explore a highly varied story landscape and construct a
fictional experience that resonates with the themes they find
compelling in Ice-Bound.

Each of these plays an integral role in the richness and re-
sponsiveness of the game. However, two distinct authoring
challenges arise from this structure: 1) ensuring all build-
time combinations produce a satisfying narrative possibility
space, and 2) ensuring most player-arranged run-time com-
binations produce a satisfying story.

The definition of “satisfying” is an author-selected met-
ric based on playtesting feedback. The targeted goal for
content authoring was that for any given combination using
all available lights for the level, at least three events and
two endings would be activated. Fewer than that, and the
system feels unsatisfying to explore (and if no endings are
present, stories become impossible to resolve).

In the process of authoring more symbols for global sock-
ets, which radically increases the number of build-time com-
binations on every level of the game, it became apparent
early in the design process that a visualization tool was
sorely needed to keep on top of the many different com-
binations made possible by these additions. This assisted us
in our efforts to ensure that there was always a “satisfying”
number of events and endings triggered by them.

5.1 Theme-driven Filters
Theme-driven filters are the selection strategy that helps

“cash out” the combinatorial richness of Ice-Bound. Each
symbol, event, or ending in Ice-Bound is tagged with one or
more of 27 descriptive themes. These themes are activated
every time players confirm endings for stories they’ve formed
from activated symbols and events on a given level. These
activated themes affect symbol selection for the building of
subsequent levels through theme-driven filters.

The intent with this strategy is to allow the system to
react to player choice in order to more often offer story
options the player wants to explore. By running possible
level symbols through a theme-driven filter—such as one
centering around “addiction”, “self-realization”, or “loss of
innocence”—the build-time combinations will start to more
prominently feature themes the player has demonstrated an
interest in.

6. VISUALIZATION DESIGN GOALS
The goal of the visualization system is to highlight where

symbol combinations do not trigger at least three events and
two endings, our self-selected minimum requirement for con-
tent. Symbol combinations where this is not the case need
more authoring. This metric is also parameterized, such
that we can make it stricter later on in the authoring pro-
cess, to provide finer feedback. When considering where new
content would be most useful, the primary consideration is
discovering a combination of symbols to be used as a precon-
dition that fills existing holes in the possibility space. The
visualization needed to provide information to allow authors
to intuitively grasp how to accomplish that.

Ice-Bound ’s engine is written in Javascript, so the visual-
ization tool also needed to run on the same code base. This
was necessary to minimize errors that might be introduced

Figure 3: The combination browser, as the viewer progressively zeros in on problem combinations involving
the symbols “romantic”, “descentIntoMadness”, and “paranoid”.

through re-implementation of game procedures, and also to
ensure any future changes introduced to those game proce-
dures would be faithfully reflected in the visualization.

Ideally, the tool would both provide a window on the
possibilities for an example level build (where all the sym-
bols have been selected for sockets) and reveal possible level
builds where there were not enough events or endings writ-
ten or triggered, if certain symbols were involved. Further-
more, showing us which specific symbol combinations give
rise to these states would give strong indicators for author-
ing appropriate preconditions to new events and endings in
order to fulfill our goals.

7. DESCRIPTION OF SYSTEM
The system was designed in two parts: a combination

browser and a level profiler. The browser is concerned
with broadly classifying combinations which need content,
abstracted from a specific level build. The profiler gives a
detailed view into the combinations within a specific level
build. In operation, the combination browser is used to pro-
vide a list of explicit symbol combinations where content is
sparse. The user can then click those combinations to build
a level containing the given symbols, and through the level
profiler, see how much content is needed to fix the scarcity
issue.

7.1 Combination Browser
The combination browser engages all possible symbol ac-

tivations for a level by permuting every unique combination
of symbols from the global pool and level-specific pool, equal
in length to the amount of available lights on the level. It
then uses the game logic to simulate activating each symbol,
rebuilding the level if necessary to contain those symbols. If
the level cannot be built with a particular combination of
symbols, it discards the combination as illegal. For example,
some symbols have preconditions that prevent them being
chosen if another symbol is present in the build. In this case,
the system quickly discards the combination after the level
building function determines that those symbols are impos-
sible to have together. After activating the symbols on this
simulated level, it records the number of events and endings
activated by each symbol combination.

Once the system has constructed this exhaustive list, it
decomposes the combinations such that it has a record of
how many under-authored combinations each symbol is part
of. For example, the problematic symbol combinations A,

B, C and A, C, F would yield that both A and C are part
of two problematic combos, while B and F are only part of
one.

This analytical strategy was chosen because the solution
to the problems highlighted by the viz is to write more events
and endings, with preconditions containing specific symbols.
Thus, a symbol being present in more than one combination
that is not adequately covered by content is a good candidate
for a precondition in future content.

This process of data formulation for the visualization hap-
pens quickly enough to make it useful for making small
changes and seeing how that affects the possibility space.
Furthermore, once formulated, the data in the visualization
can be quickly manipulated, which greatly increases its util-
ity.

Through a bubble cluster diagram (Figure 3) the browser
displays each symbol. The size of the bubble corresponds to
the number of problematic combinations it was involved in.
Each bubble can be clicked to tell the system to apply the
same visualization methods on the subset of combinations
only involving the selected symbol. Doing this resizes the
other bubbles in the visualization, so their new size corre-
sponds to the number of times they are involved in a prob-
lematic combination with the new set of selected symbols.
If a different bubble is clicked, the values are again updated.
This allows the viewer to interactively evaluate and discover
problematic symbol combinations.

There is a specific tension in authoring goals when trying
to patch content holes. On one hand, the more combinations
an authored event or ending hits, the more effective it is at
patching a hole. However, if it is also being activated for
combinations which do not need more events and endings,
it is potentially diluting that space. In the game itself, if a
combination triggers more than five events or three endings,
we truncate the list in order to keep the scope of the sto-
ries presented to the player from becoming overwhelming.
Therefore, the closer we can keep all combinations to that
amount, the higher the perceived causal link for the player
from their actions to the reaction of the system.

To reflect these tensions, a circle color scale from green to
red was adopted to show the ratio of combos needing con-
tent versus not needing content. Red circles have the high-
est ratio of content-less combos, and green circles have the
least. This is necessary in order to discourage the authoring
of content with preconditions that trigger for combinations
that don’t need it. For example, while authoring an event

with preconditions that trigger for every combination in the
game would technically address every combination needing
content, it would also appear for many combinations that
didn’t need additional events and endings. Also, from a
narrative design standpoint, the more targeted an event or
ending is to its precondition symbols, the better. It leads
to content that strongly correlates with the player’s selec-
tion, communicating that their choices are having a real ef-
fect, and that they have agency over the story being formed.
Events or endings that show up for many different combina-
tions are also more likely to conflict in some way with other
content that is selected.

This means that the author can quickly browse to symbol
groups that both have a high content need in their combi-
nation sets (by selecting circles with redder color) as well
as representing a large number of the total combinations
needing content for the level (by selecting circles which are
larger).

Because the specifics of this are difficult to grasp, there is
an additional info panel that displays the same information
as the color and size, using text and tooltips (Figure 4). The
color, which is determined by the ratio of combos needing
content, is reflected as a pie chart (C) with explicit text (B).
The size of the circle is also shown numerically (D).

Figure 4: The detail panel in the combination
browser, showing the selected symbols (A), and the
percentage of their combinations which need con-
tent (B), also represented by the pie chart (C). (D)
shows how many of the total combinations needing
content the current selection is involved in.

While providing a good top-down view of the content dis-
tribution as a whole, the combination browser does not show
the content distribution within run-time combinations of a
particular level build. This gives rise to a blind spot in au-
thoring considerations. If the combinations lacking content
are concentrated in a few specific builds of a given level, that
is a bigger problem than a low number of problems that per-
sist across all possible level builds. For example, if only 1
out of 35 content-lacking symbol combinations is present in
a level build, it isn’t as glaring a problem as all 35 prob-
lems being present in one level build, due to the fact that
a given level build can have around 30-70 combinations. In
the first case, only 1.4 - 3% of the player’s possible chosen
combinations are lacking. In the second case, it’s closer to
50 - 100%.

To address that, we needed a visualization dealing with

specific level builds, accessible via the combination browser.
This is accomplished through listing out the symbols cur-
rently being inspected by the viewer. If the symbols“roman-
tic”, “descentIntoMadness”, and “paranoid” are selected, the
list contains every content-needing combination containing
those symbols, with a link to “build”. When clicked, the sys-
tem builds the level containing those symbols, and displays
the second visualization tool: the level profiler.

7.2 Level Profiler
The level profiler (Figure 5) was the visualization most

used during the initial round of authoring for Ice-Bound.
It displays the run-time combinations of a given level build
with a given set of symbols in the form of an annotated
stacked bar graph. Each bar represents a particular set of
active symbols, with the height corresponding to the total
number of events and endings it activates.

The bottom portion of the bars represents events, and
the upper portion endings. This provides an easy way to
see which combinations do not trigger enough content. The
coloration of these bars is either green, yellow, or red. This
is dependent again on the two combination minimums we
established for a “satisfying” story: a combination should
trigger at least three events and two endings. If a combi-
nation satisfies both of those, it is green. If it only satisfies
one, it is yellow. If it satisfies none, it is red.

Below the graph are a list of the symbols present in the
level, as well as every event and ending that can be logically
triggered by those symbols. Hovering over a given bar in the
chart highlights the symbols, events, and endings activated
in the lists below. Additionally, each item on the lists below
the chart can force a re-sort of the chart upon being clicked.
This means if authors want to see content authored for a
specific symbol, event, or ending, they click on it, and the
graph re-sorts so that all combinations involving that move
to the left.

This proved enormously useful in highlighting problems
that weren’t readily apparent from the complex interactions
of preconditions for various events and endings. Red bars
indicating problem sets of active symbols can be examined to
look for common elements, indicating there are not enough
events and endings activated by those elements. Using this
tool, one can quickly see what the combinations that need
more content have in common, and get a feel for how much
content is currently available to the reader at run-time.

8. DEVELOPMENT HISTORY
Of the two, the level profiler was actually developed first.

Previous to this, we would play-test our levels after an arbi-
trary period of authoring, and add more events and endings
if we seemed to be encountering content gaps consistently.
But once this tool was completed, we were able to profile
level builds and quickly cycle through them. This led to
rapidly identifying several instances where there were too
few events or endings triggering, which would have taken an
infeasible amount of time to find by hand. This led to the
authoring of more needed events and endings, and a much
more well-rounded content base.

However, since the build-time combinations of symbols
can number in the thousands, that means statistically we
would have to re-build using the level profiler an infeasible
number of times to be completely certain we had seen the
total possibility space with all possible symbols. Therefore,

Figure 5: The level profiler for Ice-Bound, showing all possible run-time combinations of active symbols for
a single build of a level. Red bars indicate content-sparse combinations.

the combination browser was created to provide a much-
needed higher level view, balancing the level profiler, which
grounds out those findings with specific level builds.

9. DESIGN CHALLENGES
The biggest technical challenge in designing our tool was

ensuring the simulated builds of the levels were in fact going
through all the steps the real game used, in order to reduce
false positives. Because of Ice-Bound ’s precondition com-
plexity, tight integration between the combination browser,
the level profiler, and the game itself were needed to provide
oversight for the visualization data.

A large conceptual hurdle in the design of this visual-
ization was how to simply communicate the complex inter-
play between gaps in the possibility space, and the delicate
balance between specificity and effectiveness in authoring
future content. In earlier versions of this visualization we
provided explicit numbers and percentages inside each cir-
cle, but found that it was visually overwhelming, and slowed
the process of comparison when trying to determine which
circles represented symbols needing the most content.

A later iteration also translated the pie chart in the de-
tail panel (Figure 4) to the circles themselves, creating a
sort of “pie chart cluster diagram”, but in trying to present
slight differences it proved ineffective, and still overwhelm-
ing. Thus, color was substituted for that metric. With this
change it proved much easier to distinguish fine differences,
while reserving the pie chart as a further detail allowed the
communication of more specific data if needed.

10. FUTURE WORK
With the level profiler alone, we were able to significantly

reduce content-sparse combinations down to roughly 3%.
However, content authoring for Ice-Bound is still underway,

with two of the proposed eight levels finished, and comple-
tion estimated by summer of 2014. So far, there are thirty
symbols, forty events, and thirty endings between the two
levels. The largest build-time combination space so far is
roughly five thousand, but it is expected to radically in-
crease as more levels are created. It was this combinatorial
expansion that prompted the creation of the the combina-
tion browser, so that as the project continues we can expect
to be able to keep on top of problematic combinations.

Given this, there are a series of improvements planned for
the tool to increase its utility for future content creation.
For the combination browser, there is currently no way to
see how many events or endings each symbol combination
is lacking, only whether or not it falls outside our speci-
fied parameters. If we incorporated this information into
the tool, it would more faithfully reflect the authorial work
needed. Combinations currently represented by small circles
may actually need more content, and large circles may not
need that much more content to be acceptable. This raises
the question too of whether an additional visual strategy
could be used to highlight combinations which can be “eas-
ily” solved through the addition of a few events or endings,
versus combinations which need many. The ability to filter
the display to focus on events vs. endings could also help
focus the visualization to the particular authorial task the
viewer is interested in undertaking.

Also, compared to a level-specific symbol, a given global
symbol has a much lower probability of being cast in a level,
due to the relatively larger pool it is chosen from during
the level build. In comparison, level-specific symbols have
a higher likelihood, due to their consistently smaller pool.
If this disparity was factored in to the visualization, one
would see level-specific symbol problems emphasized over
global symbol problems, which would help prioritize author-
ing. This would be yet another analytical lens, which would

allow us to more accurately fix content gaps that are statis-
tically more likely to turn up than others.

A feature currently finishing development is the ability to
quickly add virtual events and endings from within the viz,
so that authors can try out a variety of preconditions that
address content holes, but still satisfy the artistic goals for
player experience. This would move it closer to the idealized
state of the tool, where structurally informed authoring can
simply take place within the tool itself, while providing real-
time feedback on how the symbols, events, and endings are
affecting the narrative space.

A second authoring concern needing to be addressed is
the incorporation of symbol combinations that are over-
authored, or trigger more than five events and / or three end-
ings. Currently the game selects a maximum of five events
and three endings from those triggered by symbol combina-
tions, based on our authoring metric. The system will select
events and endings that are more thematically apropos to
the player, yet it is still an issue (albeit a more hidden one)
if a certain symbol combination activates many more events
and endings than that. Providing a way to show those sorts
of problem combinations could help us zero in on poten-
tial situations where the story may seem to lack cohesion or
react too generically to player choices.

11. IMPLICATIONS FOR OTHER WORK
This visualization strategy could be useful for other narra-

tive games in development as well, in order to expose unin-
tended consequences from combinations of assets, be those
characters, story events, or procedures. The “symbols” as
used in Ice-Bound to create the circles could potentially be
replaced with plot items in the player’s inventory, active
quests, or conversation points with plot characters. With
further game content operating off those types of precon-
dition triggers, it would allow authoring of narratives that
can incorporate these complexities into their structure, and
allow authors to accurately diagnose both the scope of the
authorial burden, and what game states still require author-
ing.

12. CONCLUSION
The process of authoring Ice-Bound so far has driven

home the importance of having a robust visualization tool to
assist in giving creators an accurate picture of content distri-
bution from the outset of a project. These sorts of strategies
are needed to stay on top of the possibility space, as well as
prototype the effect of adding certain content. Without such
tools, creating a high-quality narrative becomes quickly in-
feasible, with much wasted effort and mis-directed energy.

It is our opinion that experiences like Ice-Bound, which
bind the story tightly to the mechanics of the game itself,
are an important direction to pursue in games. But these
sorts of works will only become more prevalent if more so-
phisticated visualizations are available to augment authorial
tools and assist in their writing. The visualization tool for
Ice-Bound provides a window into a possible form that they
may take, and the sorts of narrative authoring potentially
enabled, by increasing the ability and reach of the authors.

13. ACKNOWLEDGMENTS
Ice-Bound was developed during the 2013 SPIN Studio,

with generous support from the UC Santa Cruz Center for

Games and Playable Media.

14. REFERENCES
[1] M. Bernstein. Storyspace, June 2007.

http://www.eastgate.com/storyspace/index.html.

[2] M. Bernstein. Storyspace and the making of
grammatron, June 2007. http://www.eastgate.com/
storyspace/writing/Amerika.html.

[3] M. Bernstein. Tinderbox, Dec. 2013.
http://www.eastgate.com/Tinderbox.

[4] Bioware. Guide to the foundry- the official neverwinter
wiki, Dec. 2013.
http://nwn.wikia.com/wiki/Toolset.

[5] C. Klimas. Twine, Dec. 2013. http://twinery.org.

[6] Y.-E. Liu, E. Andersen, R. Snider, S. Cooper, and
Z. Popović. Feature-based projections for effective
playtrace analysis. In Proceedings of the 6th
International Conference on Foundations of Digital
Games, pages 69–76. ACM, 2011.

[7] A. Reed. Creating Interactive Fiction with Inform 7.
Course Technology PTR, Boston, 2011.

[8] A. Reed, J. Garbe, N. Wardrip-Fruin, and M. Mateas.
Ice-bound: Combining richly-realized story with
expressive gameplay. In Foundations of Digital Games.
FDG, 2014.

[9] S. Sali. Playing With Words: From Intuition to
Evaluation of Game Dialogue Interfaces. PhD thesis,
UC Santa Cruz, January 2012.

[10] F. M. Shipman III and C. C. Marshall. Spatial
hypertext: an alternative to navigational and semantic
links. ACM Computing Surveys (CSUR), 31(4es):14,
1999.

