
Software Verification Games:
Designing Xylem, The Code of Plants

Heather Logas, Jim Whitehead, Michael Mateas, Richard Vallejos, Lauren Scott, Dan Shapiro,
John Murray, Kate Compton, Joseph Osborn, Orlando Salvatore, Zhongpeng Lin, Huascar

Sanchez, Michael Shavlovsky, Daniel Cetina, Shayne Clementi, Chris Lewis

ABSTRACT
Formal software verification is a software engineering technique
for modeling a software system’s source code, and then proving
properties about it, such as freedom from security vulnerabilities.
Though proofs are largely automated, formal source code model-
ing is time consuming and requires substantial human attention.
Xylem: The Code of Plants is an iPad game where players make
observations about unusual plants, and thereby model the behavior
of software loops. With large numbers of players, the goal of Xy-
lem is to have players model the behavior of large software systems
faster, and at lower cost, than is currently achievable with formal
verification experts.

We present an overview of major design challenges and approaches
encountered in the design of a game for crowd-sourced formal soft-
ware verification. A core challenge is the need to accurately reflect
the structure of real-world software source code in a game setting,
without showing the source code text to players. This goal created
a tension with the need to design a game that is a fun, engaging ex-
perience, which often requires simplification of the core activities
of the player. Another challenge is not knowing what is the solution
to a particular problem, and the resulting difficulty in providing
scoring feedback to the player. These design considerations are of
interest for crowd-sourcing games in general, and software engi-
neering games in particular.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Software/Program Verification
K.8.0 [Personal Computing] General – Games.

General Terms
Design, Human Factors, Verification

Keywords
Software verification game, game design, games with a purpose,
crowd-sourcing games, human computation, software engineering

1.	 INTRODUCTION
Formal software verification is a general approach for proving
whether a software system satisfies certain properties. Software
systems that are safety-critical, for example, want to prove that

the software will never enter an unsafe state. Software systems ex-
posed to the internet would like to prove they are free from security
vulnerabilities. The general approach used in formal verification is
to create a mathematical model of a software system, and then use
this model in conjunction with automated reasoning tools. If the
mathematical model is an accurate enough representation of the
functionality of the software system, the outputs of the automated
reasoning tools are then accurate statements about the software
system itself. At present, the process of creating these mathemati-
cal models of software system behavior is time consuming, and
requires a high degree of mathematical and computer science train-
ing. Worldwide, there are insufficient people with this training to
formally verify every software system that would benefit from this
approach. Due to the sophistication of the people involved, for-
mally verifying a software system is expensive.

The goal of the Crowd-sourced Help with Emergent Knowledge for
Optimized Formal Verification (CHEKOFV) project, a collabora-
tion between SRI International, the University of California Santa
Cruz, and CEA (Commissariat à l’énergie atomique et aux énergies
alternatives, the French Alternative Energies and Atomic Energy
Commission), is to create a game where a player’s in-game actions
contribute positively towards an ongoing formal software verifica-
tion. Our game, Xylem: The Code of Plants, is an iPad game where
players make mathematical observations about synthetic plants,
and thereby contribute to the formal modeling of a software sys-
tem. Specifically, flowers found on the plants represent the value
of variables found inside a source code loop (for, while, do), and
players are asked to find relationships that describe the number of
flowers. In so doing, players contribute to modeling the behavior of
the loop, what is known as a loop invariant. The goal of Xylem is
hence the crowd-sourcing of loop invariant expressions from non-
expert game players.

Designing the core gameplay mechanic of Xylem was an exercise
in taking a complicated task that requires a great deal of domain
knowledge (and likely a PhD) and converting it into a much sim-
pler job that requires none of this knowledge. In general, we want-
ed to soften the emphasis on math and create an experience that
would be inviting to a large number of people. At the same time,
we wanted players to be able to find a wide range of loop invariants
and have the ability to express them, which indicated maintaining
at least some of the “mathy” aspects of the game. The trick then
was to find a balance between these two design impulses: abstract
away as much of the “mathiness” as possible while maintaining
a core gameplay mechanic of finding mathematical patterns and
expressing them as math equations.

Center for Games and Playable Media
University of California, Santa Cruz

Santa Cruz, CA 95060
{hlogas, ejw, michaelm}@soe.ucsc.edu

This paper presents an overview of the key design challenges en-
countered in creating Xylem. A common thread running through
these issues is the tension between the need to accurately reflect
both the software system and the formal modeling task, versus
the need to create a fun and playable game. Another tension is not
knowing whether a given player response is correct, and the re-
lated challenge of not knowing the difficulty of a given challenge.
These factors—domain complexity, correctness determination, and
difficulty modeling—all distinguish Xylem from classical crowd-
sourcing games (or, games with a purpose), where these issues are
much less pronounced [10][11].

The paper begins with an overview of the game, and of the formal
verification process. It then presents a series of design issues com-
mon to all software verification games, followed by an exploration
of the most important issues encountered in the design of Xylem.
Related work and conclusions complete the discussion.

2.	 XYLEM: THE CODE OF PLANTS
The year is 1921, the beginning of a decade of adventure. You are
an esteemed botanist working at The University when IT happens.
A mysterious island has appeared out of nowhere in the Pacific
Ocean, an island reportedly filled with species of plants that have
never before been seen by humankind—some with special medici-
nal properties. Scientists and adventurers from all over the world
descend on the island, which has been dubbed Miraflora. All are
called by the promise of making their mark on the history of botany
and perhaps even striking it rich with the discovery of new valuable
species. Your employers instruct you to pack your bags and catch
the next boat out. The Green Rush is on.

Xylem: The Code of Plants is a logical induction puzzle game
where the player plays a botanist exploring and discovering new
forms of plant life on a mysterious island. Players observe patterns
in the way a plant grows, and then construct mathematical equa-
tions to express the observations they make.
In order to find a valid observation, players must first examine the
different growth phases (loop iterations) of a given plant species
by comparing samples (growth phases) of that species side by side

(see Figure 1). The quantities of each color flower can change from
growth phase to growth phase. The player’s job is to discover one
rule (the loop invariant) that describes the plant’s behavior in every
growth phase. This one rule must hold true for each growth phase
shown. Some sample rules include:

The number of blue flowers is always equal to the number of red
flowers +1.

The number of blue flowers + the number of red flowers is always
equal to 9.

The number of blue flowers is always equal to the growth phase
number + 5.

Once the player has discovered a solution that holds true for each
growth phase, their task is to construct a mathematical equation
that describes the pattern. The player is provided with a set of tool
tiles that can be dragged into a central workspace to form these
equations. Tools include flowers which represent variables, math-
ematical operators, a tool which describes the growth phase (or it-
eration count of the loop) and “bonus” tiles (numbers that describe
the loop at time zero). Additionally, parentheses are provided so
that players can construct more complicated equations.

While solving puzzles, players also explore the strange island of
Miraflora and begin to expose her secrets (see Figure 2). Pushing
deeper into the island is a parallel collaborative experience. Each
region of the island contains harder and harder problems. In order
for a player to access interior regions the entire player base must
collectively solve a certain number of problems in earlier areas.
The number of problems solved in a particular region, as well as the
number left to solve before the next region is unlocked, is shown to
players via the island map screen.

As players complete puzzles and push towards the next island re-
gion, they occasionally discover collectible “secrets” of the island.
These secrets are given to players as an occasional surprise when
they solve problems. The secrets come in the form of text passages
that offer a window into the history of the island. There are com-
mon, uncommon and rare unlockable secrets, and the intention is
that there are enough of them that in order to put together all the

FloCom screen, map of Miraflora

Figure 1. The main gameplay screen (FloraPhase Compara-
tor), showing a plant with two flowers, in two successive growth
phases. This represents a software loop with two variables, with
values (1, 2) in the first loop iteration, and (6, 30) in the second.

Figure 2. A map of the island of Miraflora. Tutorials are pre-
sented in the Base Camp region, and Poppy Cove is the first
region of open gameplay. The figure shows that 451 of the 1,000
total problems in Poppy Cove have been solved by all players.

pieces of the fictional puzzle, players will need to collaborate on the
game’s web-site and share what they have learned.

3.	 FORMAL SOFTWARE VERIFICATION
The central goal of Xylem is to ask human game players to help
solve open problems in formal software verification. Specifically,
Xylem players work in concert with the game’s mechanics to per-
form a task called loop invariant synthesis. We chose not to bur-
den players with knowledge of the underlying scientific task, but
understanding the game’s design constraints requires a working
knowledge of software verification, loop invariant synthesis, and
the particular ways in which Xylem’s approach differs from tradi-
tional automated techniques for this task.

Formal software verification is the use of tools such as proof as-
sistants and model checkers to automatically or semi-automatically
verify properties of a computer program under consideration. De-
velopers may want to prove safety properties (whether the program
behaves badly when given certain inputs) as well as correctness
properties (whether the program performs its intended function).
These properties are described by experts using some formalism
(e.g. statements in first-order logic), and program verification tools
attempt to prove these statements using the semantics of the pro-
gramming language.

The basic technique of formal software verification is, following
Hoare [7], to work towards a proof of the property by using each
statement of the program as a step towards proving the property.
If we want to prove that the variable X is always less than ten (an
invariant which the program should ensure), we must start from the
beginning of the program and prove that no individual statement
increases the value of X beyond ten. If, during this proof, we hap-
pen upon a conditional statement where either branch could apply
given what we know of the program’s possible inputs, we must
prove that no matter which branch is taken, X remains less than
ten. Since the branches may have different outcomes, we must fork
our proof to handle both possible worlds. Language features like
general recursion or while loops complicate this analysis: it can-
not be known in advance how many times an arbitrary loop might
execute due to the undecidability of the Halting Problem, and since
each iteration may require a forking proof, we quickly come upon a
potentially infinite (and thus invalid) proof structure.

Program verifiers work around this pitfall by using annotations
called loop invariants. Loop invariants are statements which must
hold every time a loop is entered, either on the initial run or on
subsequent iterations up to the loop’s termination. If we have some
property which is always true whenever the loop is entered, then it
no longer matters (for the purposes of a proof) how many times the
loop is run: the property—and more importantly, its logical conse-
quences—will always hold by induction [6]. To put it another way,
a loop invariant collapses a loop into a single statement, like finding
a closed-form solution to a differential equation.

As an example, consider a loop L which, on each iteration, decre-
ments the variable X from before. We know that X will always leave
L with a value smaller than (or equal to) the one it entered with; that
is one invariant (written X <= X0, if we use X0 to indicate the initial
value of X on first entering L). Now, if we can prove that X is less
than ten upon entering L, then it will remain less than ten no matter
how many times L executes.

Loop invariants are extremely useful, but they have to be invent-

ed individually for each loop and, often, for each property to be
proved. Programmers or analysts generally provide these annota-
tions, but discovering these invariants automatically has long been
an area of active research (an excellent overview of early work here
can be found in [1]). There are two dimensions by which we can
classify automated approaches to generating (or synthesizing) loop
invariants. The first criterion is how the technique chooses which
invariants to synthesize: does it construct invariants top-down by
working from a property to be proved and testing hypotheses that
might justify the property against the loop’s behavior, or does it
build sets of invariants from the bottom up by summarizing the
loop’s activity? The second criterion is whether the approach works
with the program code and the language’s semantics, or whether it
works with concrete data from real program executions.
Top-down techniques are most applicable when the set of proper-
ties to be proved is known in advance, and bottom-up techniques
produce invariants that can be used to prove many different proper-
ties. The technique described by Chadha and Plaisted is top-down
and semantics-based [1]: it starts from a property to be proved and
justifies it by working backwards through the loop. This is the most
common quadrant for invariant synthesis techniques to inhabit. The
classic example of a bottom-up, data-driven approach is Daikon
[5], which uses analyst-provided templates to synthesize possible
invariants among the variables of interest, discarding the proposi-
tions that are not attested by concrete test cases.
One particular use case where bottom-up approaches excel—and
the case for which Xylem is intended—is in annotating large leg-
acy systems with loop invariants to help prove broad categories
of safety and security properties. Inductive program verification
as described above is an all-or-nothing proposition: every line and
loop must be provable, or the whole edifice collapses. Invariant
synthesis makes formal verification feasible for existing code: an-
notating a large and complex system with invariants from scratch is
a daunting proposition.

4.	 DESIGN ISSUES FOR FORMAL SOFT-
WARE VERIFICATION GAMES
Though Xylem focuses on supporting players in developing loop
invariants, other software verification games are also possible. For
example, the game Flow Jam focuses on “taint” analysis, such
as proving that all strings have been checked for security vulner-
abilities before being sent to a back-end database. Another game,
CircuitBot, focuses on pointer analysis (both games available at
verigames.com). Though these games all have different focus ar-
eas, they all have shared design concerns. Any attempt to create a
game for some aspect of formal verification needs to address the
following design issues, which are specific to this domain, though
they touch upon design concerns common to any crowd-sourced
game [10][11][2][9].

Representing Software. Players of a software verification game
must be able to understand some facet of the behavior of a piece of
source code. Since game worlds are visual, there must be some vi-
sual representation of the source code within the game. That is, any
software verification game must have a visualization of some part
of the behavior of software source code. With this visualization,
a player can develop an understanding about the behavior of the
software, and then take action within the game world. In a software
verification game, these game world actions contribute to verifica-
tion goals, such as describing loop invariants.

Defining What the Player Can Say About the Software. Through
their gameplay, players of software verification games make obser-
vations about the behavior of a piece of software. In Xylem, these
observations concern the behavior of a particular software loop. In
traditional formal verification, software engineers write statements
in a logical language, such as first order logic, to describe the soft-
ware. However, writing logical statements is not usually considered
to be fun. A key design issue is then how to give the player the tools
to state a wide range of interesting observations about the software,
while avoiding (or hiding) the full complexity of logical languages.

Rewarding the Player. Selection of a reward system is a complex
topic, involving both traditional motivation [11] and quality control
[9]. Ideally, a reward system provides positive reinforcement for
high quality responses, and this keeps players motivated. Tradition-
al computer games have well defined good and bad player behav-
iors, and it is easy to build reward systems around them. Software
verification games tend to have the property that it requires sub-
stantial computation, outside the game, to determine whether any
given player response is beneficial to the overall software verifica-
tion goals. In short, it takes a long time to know whether a player
submitted output is good and should be rewarded.

There are two components to determining if a player provided re-
sponse is beneficial. First, there may need to be a determination of
whether the player response is correct. In the case of loop invari-
ants, is it the case that a player correctly described the behavior of
the loop? The second issue is whether the player response helps
push forward the overall software verification goals. An example
using loop invariants highlights this second point.

In the case of loop invariants, a good loop invariant will allow an
automated analysis of the values of variables to provide more pre-
cise ranges on the value a particular program variable can have at
a given point. For example, with a given integer variable, z, before
the loop invariant from a player, its value might be analyzed as be-
ing between 0 and the maximum interger value. After receiving a
loop invariant, this range might now be refined to lie between 0 and
128. A more precise variable might then permit a proof to proceed.
If variable z is an array index, a[z], and the array a[] is 256 elements
long, then it is now possible to prove that z cannot cause an array
bounds exception. However, it is also possible that a player-provid-
ed loop invariant might not help refine the value of z at all; some
other part of the code might need to be described for this to happen.

5.	 XYLEM DESIGN ISSUES
Xylem has an unusual set of design goals because it is both a game
and a research effort in formal software verification. As a game, it
has to provide entertainment, in the form of enjoyable, interesting,
and playable experiences. However, as a science tool, it must en-
able, and encourage users to assist program verification through
game play. These goals are often in tension, and our efforts to navi-
gate the resulting constraints have shaped the structure of the game.

5.1	Audience
The idea of building a game for finding loop invariants is itself a bit
odd, as the problem is highly technical; it is commonly pursued by
people with deep expertise in formal logic and theorem proving. It
would be natural to design a logic-oriented puzzle game for players
with these skills, but we have chosen, instead, to cast Xylem as a
crowdsourced game, following the premise that group wisdom can

address seemingly intractable scientific problems (like folding pro-
teins [3]). This creates a challenge to represent the software veri-
fication task in an accessible form. We raised the bar even further
by attempting to attract the largest possible player audience. At the
same time, we knew that the audience wasn’t the market defini-
tion of “casual”, because the design we had in mind was going to
require more math than we thought the “casual” audience would
be comfortable with; we knew that we were not going to be able
to design a casual game break-out hit in the vein of Angry Birds or
Candy Crush Saga.

Instead of thinking in terms of casual and hard-core, we talked
about the game in terms of its “niche”. What we were producing
was a niche game, but our goal was to create what we called a “low
niche” experience. That is, a game that was not exactly casual, but
did appeal to a casual-type audience that is comfortable with math.
The direction we chose was one of a relaxed puzzle solving game,
and hence our challenge was to create a safe, comfortable space for
math puzzle play that would be accessible to as wide an audience
as possible. Considering activities such as crossword puzzles or
sudoku, we imagined a non-stressful but nonetheless brain exercis-
ing experience done in the evenings while relaxing in a comfortable
chair. An unwinding activity for someone who likes to stimulate
their brain.

This direction set the stage for nearly all of our design decisions.
The game should be untimed, easily picked up and put down again,
portable (for playing while in the easy chair), and the overall aes-
thetic should support an intriguing but relaxing atmosphere. Choos-
ing the visual metaphor of flowers gave the core gameplay a sense
of scientific discovery in the field and further helped us develop
our design direction. We built off this feeling of exploration and
discovery to construct the game fiction and supporting mechanics.

5.2	Representing the Software
Xylem is intended to assist the verification of software obtained
from multiple sources (public, private and governmental) where
source code privacy issues come into play. A commercial software
vendor would not want snippets of their code being shown to game
players, since a team of players might be able to reconstruct the
software system. In order to address those issues, we adopted the
rule that players cannot see the source code for the software under
analysis. This created a significant design challenge, as the player
must make meaningful observations about the behavior of loops in
a software system without ever seeing the source code!

This decision shaped the design around the goal of finding invari-
ants from simulated run-time data. That is, in the game, we present
the values that variables have inside a loop, across several itera-
tions of the loop. This approach stands in contrast to the predomi-
nant approach for deriving loop invariant expressions in which a
person examines the program source code, which is viewed as a
series of logical statements. The net result is that Xylem employs
a relatively unexplored solution path to the underlying technical
problem, in parallel with being a crowd sourced, quasi-casual
game. Our approach can be viewed as the human computation dual
to the machine driven approach used by Daikon [5], which employs
machine learning to determine invariants within a software system
from variable values derived from a run time execution (we note
that our loop variable values are computed statically, however).

The key insight that came out of early design meetings was that the

task of finding invariants could be cast as an inductive reasoning
task. That is, given some information (data produced by the loop in
question), the player can attempt to state what the rule is (the loop
invariant) that connects all the data. Other examples of games that
utilize inductive logic are Zendo and the card game Mao [8]. The
core mechanic that arose from this approach was one of comparing
different iterations of a loop and then expressing a mathematical
equation that describes a pattern that holds for every iteration.

To represent the software loops and their data, we wanted to find
a visual metaphor that mapped well to the domain, was appeal-
ing (or at least not off-putting) to a large number of people and
was also flexible enough to represent the range of programmatic
data structures that we knew we eventually would want the game to
support. Our research into the code visualization literature did not
yield any existing metaphor that can represent a wide range of data
structures; most visualizations focus on just a single data structure,
and do not have any kind of narrative theming, instead just showing
boxes and arrows. After a bit of experimentation (we initially con-
sidered a space theme with a tabular representation of the variable
values), we decided on plants as our visual metaphor.

The kingdom of plants fit all of our criteria. Plants are part of most
people’s everyday existence, and as living things have a certain
universal appeal. Plants grow and change over time, as does the
data produced by loops. Using features of a plant (number of flow-
ers, number of petals on each flower, number of leaves, etc.) as
variables allowed players to observe a pronounced visual change
as they moved from iteration to iteration in the loop. The plant
kingdom is also startlingly diverse—a little bit of research quickly
turned up plant structures that would map quite easily to different
code data structures. Integers can be represented by the number of
flowers on the plant, roots with nodules can be used to represent ar-
rays, and trees map directly onto a plant’s structure. Plants also pro-
vide the opportunity to build a story and gameworld around them in
a richer way than boxes and arrows.

5.3	(Not-Quite) Casual Math - Describing Loop
Invariants
Stormbound (see verigames.com) also uses loop invariants as the
foundation of its gameplay but abstracts out all math and num-
bers, asking players instead to choose from a pre-defined palette
of common patterns to describe the behavior of spatially-oriented
symbols. Although we could have taken a similar approach, it was
important to us to allow players to describe the patterns they dis-
covered in Xylem as mathematical equations. We knew this would
eliminate part of our potential audience (we would never be able to
call Xylem a true “casual” game, as the term is used in the game
industry), however we felt this approach was nonetheless produc-
tive for several key reasons.

Perhaps most importantly, direct equation building allows for a
wider range of invariants to be created and submitted. Each loop
may have more than one possible invariant, and each invariant col-
lected is useful to the backend processes that annotate the origi-
nating software. Allowing players to construct their own equations
opens up the flexibility to receive multiple solutions for each puzzle
while simultaneously taking advantage of the strengths of different
player skill levels and play styles. This creates a customized chal-
lenge for each player depending on their sophistication while tak-
ing best advantage of the strengths of crowdsourcing.

In addition to direct gameplay ramifications, focusing the main
game activity on building equations has some practical aspects as
well for possible future iterations. The framework is easily expand-
able in the future to include more tools if needed/desired. Several
tools have appeared in earlier versions of the game that were later
removed to avoid confusing players. However, allowing more so-
phisticated players to unlock specialized tools (such as the mathe-
matical logical construct implies) is a possibility for future updates.
The direct equation building approach also supports implementa-
tion of different data structures as game levels without having to
completely redesign parts of the game to deal with them.

A core tension of the game design is the desire to simultaneously
have a large range of players while also having a large expressive
range for their observations about loops. At times it seemed almost
a one-for-one trade off between appealing to our desired audience
and allowing for greater expressibility of the tool set. Early ver-
sions of the game, for example, included tools such as the math-
ematical symbol for the logical concept of “implies”. While this
would have allowed for a greater range of possible invariants that
could be constructed, taking the time to explain the concept of “im-
plies” to someone unfamiliar with it seemed like it would bog down
the game flow and create a mental stumbling block. Ultimately we
decided that losing this bit of expressivity was less important than
supporting a wider player base. Even so, Xylem still is sufficiently
mathy that it triggered math anxiety in some of our playtesters.

5.4	No Person is an Island: Cooperative Play on
Miraflora
We knew from the beginning that we wanted players to play this
game together, but sorting out exactly how was a long and involved
iterative process. To complicate matters, we had to be very careful
about not allowing players access to each others’ personal informa-
tion, due to privacy constraints from our research funding.

Given the audience we were after, and the emotional feel we want-
ed for the game, we opted for a collaborative scenario, but a very
light one. We wanted to create player investment by encouraging
the feeling that all players were working together towards some
greater goal. It was also important to us that players knew other
people were playing the same game at the same time as they were.
We wanted to support that feeling of being “alone together” which
we felt would be more enticing to our target audience than the feel-
ing of playing a single player game.

We also imagined an audience that would be drawn in further to
the fiction of the game, and we wanted to create an impetus for
players to interact on the forums (in addition to helping each other
with hard problems). We therefore created a complex backstory to
the island which is revealed in a semi-random manner one clue at
a time. Players can collect clues, compare them on the forums and
discuss theories. The intended effect is a meta-layer of collabora-
tion that occurs outside the game itself to reward and draw in the
core player base.

5.5	Rewarding the Player
Xylem posed an unusual problem when it came to offering players
feedback. Quite simply, the game has no way to gauge the util-
ity or strength of a player-provided invariant. There are no estab-
lished techniques for ranking the difficulty of an invariant-finding
problem, assessing the quality of a solution, measuring incremental

progress, or knowing when a problem is done. In this situation, the
task of designing game mechanics merges with basic research on
invariant discovery/analysis.

The only way to know for a certainty the usefulness of a given
invariant is to test it out on the original loop, in the context of a
larger verification problem being explored via the use of out-of-
game software verification tools. This suggests that the only way to
provide feedback to players is to have them submit their answers,
wait some indeterminable amount of time for a remote expert to
test out their solution, and then provide scoring based on this feed-
back. Games don’t tend to work that way. Players don’t complete
a level in Candy Crush Saga and then wait a day for their score.

Ultimately, we can only use what we know. We know that using as
many of the variables in the loop as possible is better than using
fewer. We also know that utilizing the data from the time zero itera-
tion from the loop generally resulted in better invariants (these be-
came represented as the blue “bonus” tiles in the game). We know
that—usually—stating that one thing in the invariant is equivalent
to another thing is stronger than saying that one thing is less than or
greater than the other thing. And we know that we want to encour-
age players to come up with a variety of invariants. With a lack of
solid answers for how to give players feedback, we built our scor-
ing system on these four considerations.

Since we also didn’t know whether a solution with certain numbers
of variables or bonus tiles was even possible in a given problem,
we couldn’t simply give stars based on the number of variables or
bonus tiles used. Instead we used a model from SpaceChem. At the
completion of a level, SpaceChem shows the player a visualization
of how they have performed compared to other players of the same
level. We adapted this to Xylem by plotting out on a chart the num-
ber of variables and bonus tiles used by a player as compared to
other players of the same puzzle (see Figure 3). If a player has used
the same or greater number of variables (and, separately, bonus
tiles) than the highest number used so far by any player, then they
receive a star. In the same way, players are scored for bonus tiles.
Using an equals sign in a solution instead of an inequality gives the
player another star. In this way, a player can receive a score of up
to three stars per puzzle. Additionally, a special stamp is granted to
the player if they have created a “novel solution”. That is, a solution
that hasn’t yet been recorded for this particular puzzle.

Ulimately, we learned that this scoring approach is unsatisfactory
for players. Bonus tile stars were often felt to be artificial, reward-
ing players for unusual equations, not for truly useful ones. Some
useful equations only use a single variable, but these are scored
lower that multi-variable equations. Scoring did not reward sub-
mission of unique solutions, even though these are very useful for
the goal of developing invariants. To address these issues, future
versions of Xylem will adopt an approach used in other crowd-
sourcing games of having players rate the equations developed by
other players, thereby bringing human expertise to bear. This will
allow interesting and novel solutions to be rewarded, but at the cost
of some delay in the player receiving feedback on their submissions
(players will still be able to compare their equations to others right
away).

5.6	Problem Difficulty and Player Experience
Just as it is not possible to know the utility of an invariant, it is also
not possible to know the difficulty of a puzzle. This creates a major

design challenge: how to craft the difficulty curve for each player.

We examined several approaches to estimate puzzle difficulty. One
was to link the structure of a loop (visible to the front end) to diffi-
culty. More “guards” (conditionals in the loop) suggest more paths
and potential for a more logically complex invariant (if A then I1,
if B then I2). However, it is unclear if this is true in practice. A
second approach was to employ social ranking analogous to web-
page ranking in some search engines. If skilled players found a
problem hard, it must be hard. If novice players solved a problem,
it must be easy. This would be useful for serving up solved prob-
lems to new players in a sensible order, but the issue of ranking
new problems remains open. Additionally, there is no firm basis
for applying similarity metrics (associating loop features with loop
difficulty) to leverage social analyses. A third option was to employ
machine learning to classify problem difficulty from player ratings,
but again, this is stymied by a lack of understanding of the under-
lying feature base. All of these approaches represent research into
invariant-finding tasks; from the perspective of game design, it was
easier, and sufficient to employ heuristic measures.

The heuristic measure of difficulty was based on the experience of
team members playing pre-release versions of the game. We as-
sume that integer based problems are less difficult than array based
problems. We assume that working with more variables is harder
than working with fewer variables. We assume that working with
larger numbers is more difficult than working with smaller num-
bers. Based on these assumptions, difficulty profiles are assigned to
each problem and problems are grouped by difficulty into different
regions on the island. Unfortunately, offering players a smooth dif-
ficulty curve isn’t possible. Other factors—which are hard to test
for, especially on a large scale—can influence how difficult a given
problem is. Therefore, a player could breeze through the first three
problems in the “easy” region, then encounter a very hard prob-
lem followed up by another easy one. This does not support hand-
crafted difficulty curves, and occasionally causes player confusion
and frustration.

5.7	Teaching the Game
The tutorial of Xylem began after the theming and general concept

Figure 3. A representative scoring screen for one problem,
showing that the player matched all other players in number of
flower types used, but used fewer bonus tiles than top players.

of the game was pinned down. The task of onboarding new players
to the game proved to be a massive challenge: presenting a problem
this involved as an approachable, fun experience that is easy to
learn required much research, design, and iteration. The first ver-
sions of the tutorial existed as paper prototypes, with which the de-
signers were able to test different ideas quickly and efficiently with
many testers. Only through extensive testing and iteration were we
able to settle on a tutorial that effectively leads the player into the
game while teaching them the basic skills they need to know in or-
der to succeed. The tutorial design and polish took place in parallel
with the core game design, requiring as much design time and ef-
fort as the rest of the game combined. Early feedback from external
game players indicate that the tutorial does successfully train play-
ers to play the game, but is too long, a direct consequence of the
many game elements that need to be taught to the player.

5.8	Fictional Setting
From the start of game design activities, attracting and retaining
players was a key concern. One primary approach for retaining
these players is the inclusion of a rich narrative backstory in the
game. This narrative framing is designed to attract players who
might not otherwise give the game a chance while evoking a con-
nection to the experience offered them. The narrative needed broad
appeal without too many complicated narrative trappings that
would make the fiction harder to penetrate. An undercurrent of
mystery and intrigue was woven into the game to create an sense of
compulsion to the game while supporting the core gameplay.

Using plants as a gameplay metaphor had been decided on long be-
fore final decisions were made about theming for the game. Given
the nature of the gameplay (examining and stating observations of
plants) it made sense that the character would be a botanist of some
kind. Given that the game’s procedurally generated flowers did not
specifically map to existing plant species and that discovering new
things is more interesting than examining existing things, it made
sense that the player would be discovering new plant species that
had never been seen before. But still unanswered was the setting of
the game. Did it take place in space on a newly-discovered planet?
An alternative Victorian steampunk world? On Mars?

All of these options were examined (and more) but were found
lacking for various reasons. Finally we hit on the idea of setting the
game in the early 1920’s, on a mysterious island that appears out
of no where. This time period was an important one for exploration
in the world, and at the same time the public’s imagination was full
of pulp adventure and lost lands. The game’s story of botanists
flocking to a newly discovered island fit with the themes of the time
period well. At the same time, this fictional framing did not require
too much backstory for players to potentially get mired in and since
the theme was not overtly science fiction or fantasy would appeal
to a much broader audience.

5.9	Aesthetic Experience
The game’s aesthetics were developed with the dual goals of creat-
ing a pleasant place for the player to spend their time and creating
consistency with the 1920’s theme. Because Xylem is meant to be
a slow, contemplative game (but with a hint of adventure), it was
important that the visuals and music fostered this atmosphere. A
great deal of research into map styles in the appropriate time pe-
riod was done by our artist before the specific watercolor look and

map orientation was decided upon. Likewise, our sound designer
researched silent adventure movies and period jazz and classical
music to develop the ambient music pieces that play on the map
screen and puzzle screens.

The photorealistic look of the game interface came about almost
as an accident. While developing the look for the opening screen
(when the player is about to disembark for the Island), the artist
arranged some items found around his house on a desk and took a
photo to show the direction he was considering. The team loved the
actual photo so much that it was further developed and used as an
in-game asset. At that point, we knew that we wanted a similar look
for the actual in-game UI. This direction adds to the first person im-
mersion of the game and, because of our artist’s skillful rendition of
the interface combined with the satisfying sound effects created by
our sound designer, helps create a very tactile feeling to the game
which encourages players to manipulate the playing pieces.

5.10 One for the Road
The decision to adopt the iPad as Xylem’s target platform again
goes back to considerations of chosen audience and how the game
would most likely be played. The iPad as a platform appeals to
a wide variety of people. According to one study, the majority of
tablet owners are between the ages of 35-44, and are spread equally
amongst the genders, whereas smartphones skew a bit younger.
Given the nature of the gameplay—contemplative, like working
a sudoku or crossword puzzle—we imagined players playing the
game while sitting somewhere comfortable for at least thirty min-
utes. More than either a smartphone or PC, the iPad has a form
factor that encourages this sort of behavior.

6.	 RELATED WORK
The game Xylem can be viewed through multiple lenses. First and
foremost, Xylem is a game that supports the crowd-sourced elicita-
tion of loop invariant statements. Design issues for crowd-sourcing
in general then apply to Xylem (see [11] for a survey). Since Xylem
is a crowd-sourcing game, it can viewed as a game with a purpose
(GWAP), and the discussion of design issues about such games is
relevant [10]. Since Xylem involves people performing work that
computers cannot, it can be viewed as a form of human computa-
tion (see [2] for design issues concerning motivation and evaluation
in this context). Since Xylem uses a game reward system to moti-
vate players, it is also a form of gamification [4]. We view Xylem
as involving a deeper use of game design that typical gamification
efforts, and as disguising the core activity more than typical human
computation tasks. However, all of these lenses provide insight.

Four other software verification games were created as part of the
DARPA Crowd-Sourced Formal Verification program: Storm-
bound, Flow Jam, Ghost Map, CircuitBot, and Ghost Map. These
web-based games are accessible via the Verigames web portal at
verigames.com. Stormbound shares similar goals to Xylem, in that
it also uses invariant finding of loops as a way to make progress on
formal software verification. However, instead of asking players to
identify patterns with mathematical equations, Stormbound pres-
ents them with a spatial interpretation of the loop data which is rep-
resented as icons (“sigils”) on a grid. The players’ job is to identify
and choose from a pre-defined selection common patterns among
the sigils. Players can also combine smaller statements into larger
ones by selecting a particular pattern and then selecting another.

Both Flow Jam and Ghost Map provide graphical representations
of data flow and control flow within software, and broadly focus
on ensuring a particular condition holds across a particular path.
Circuitbot focuses on pointer analysis.

Three games were particularly impactful on the design of Xylem.
FoldIt, developed by the University of Washington, is a game with
the aim of crowdsourcing protein folding [3]. While FoldIt’s con-
cept of “crowdsourcing for science” directly inspired the creation
of the gaming portions of the CSFV project, our goal was to better
maximize the “crowd” of our game by creating a more accessible
player experience. Dragon Box is a game that teaches algebra by
drawing players in with puzzles featuring cute dragon characters
instead of numbers. As players continue to play, the dragon char-
acters are slowly replaced with actual numbers and mathematical
symbols. The design of the game successfully makes algebra ac-
cessible and fun. Dragon Box served as a constant inspiration to us
in our goal of making Xylem more casual player friendly. The final
game, Zendo, designed by Kory Heath, is an inductive reasoning
puzzle game, which demonstrates that inductive reasoning can be
the core of a fun game.

In the realm of techniques for finding loop invariants from vari-
able values, Daikon is an automated technique for bottom-up loop
invariant synthesis given only program data as input [5]. Daikon’s
invariant search uses a handful of a priori patterns, creating a trade-
off for Daikon: it gains computational tractability but sacrifices
completeness. Daikon also assumes that the test cases given by an-
alysts completely describe the program’s behavior. Moreover, the
tool cannot know in advance how useful or relevant the invariants
it finds might be (though it employs a variety of heuristics to cull
trivial invariants).

7.	 CONCLUSION
The design of Xylem presented a series of substantial challeng-
es. The problem domain is complex, and math-focused. It wasn’t
possible to know, a priori, the difficulty of problems, or whether a
player’s solution was useful. Though players need to make useful
statements about a software system, they could not see its source
code. This paper presents the range of design issues encountered in
creating Xylem, and our approach to resolving them. These issues
are relevant to the design of software verification games specifi-
cally, but are also of interest to designers of crowd-sourcing games
and software engineering games in general.

In the 3 months since its public release on December 4, 2013, Xy-
lem has been downloaded by over 1,400 people, and game players
have solved over 3,700 problems (created over 3,700 loop invariant
descriptions). After an initial peak of 240 unique active players per
week, Xylem settled down to a steady-state of 10-25 unique players
per week. We feel this is a modest start towards our goal of a robust
community of game players working together to model loop behav-
ior in a large software system. It also highlights the challenge of
creating crowdsourcing games for complex mathematical domains.

ACKNOWLEDGEMENTS
We gratefully acknowledge the contributions of our collaborators at
SRI and CEA, especially John Murray, Martin Schäf, Min Yin, Na-
tarajan Shankar, Sam Owre, Florent Kirchner, and Julien Signoles.

This material is based on research sponsored by DARPA under
agreement number FA8750-12-C-0225. The U.S. Government is

authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

GAMES REFERENCED
Angry Birds, Rovio Entertainment, 2009
Candy Crush Saga, King, 2012
Circuitbot, Left Brain Games, Texas Tech University, Kestrel, 2013
Dragon Box, WeWantToKnowAS, 2012
Flow Jam, Univ. of Washington, 2013
FoldIt, Univ. of Washington, 2008
Ghost Map, Raytheon BBN, 2013
SpaceChem, Zachatronics Industries, 2011
Stormbound, voidAlpha/Galois, 2013
Zendo, Kory Heath, 2001

REFERENCES
[1] Ritu Chadha, David A. Plaisted, On the Mechanical Derivation

of Loop Invariants, J. Symbolic Computation, 15(5-6), May–
June 1993, pp. 705-744.

[2] Methods for Engaging and Evaluating Users of Human Com-
putation Systems, in Jon Chamberlain, Udo Kruschwitz, Mas-
simo Poesio, P. Michelucci (ed.), Handbook of Human Com-
putation, Springer Science+Business Media New York 2013.

[3] Seth Cooper, Adrien Treuille, Janos Barbero, Andrew Leaver-
Fay, Kathleen Tuite, Firas Khatib, Alex Cho Snyder, Michael
Beenen, David Salesin, David Baker, Zoran Popović and
Foldit players. The challenge of Designing Scientific Discov-
ery Games. Proc. Foundations of Digital Games, 2010.

[4] Sebastian Deterding, Miguel Sicart, Lennart Nacke, Kenton
O’Hara, and Dan Dixon. Gamification. Using Game-design
Elements in Non-gaming Contexts. In CHI ‘11 Extended Abs.
on Human Factors in Computing Systems (CHI EA ‘11).

[5] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mc-
Camant, Carlos Pacheco, Matthew S. Tschantz, Chen Xiao.
The Daikon System for Dynamic Detection of Likely Invari-
ants. Science of Computer Programming 69 (2007) 35–45.

[6] Floyd, Robert W., Assigning Meanings to Programs. Mathemat-
ical Aspects of Computer Science 19, pp. 19-32 , 1967.

[7] C. A. R. Hoare. 1969. An axiomatic basis for computer pro-
gramming. Commun. ACM 12, 10 (October 1969), 576-580.

[8] Mao card game, Wikipedia, http://en.wikipedia.org/wiki/Mao_
(card_game)

[9] Alexander J. Quinn, Benjamin B. Bederson, Human Computa-
tion: A Survey and Taxonomy of a Growing Field, CHI 2011,
May 7–12, 2011, Vancouver, BC, Canada, 1403-1412.

[10] Luis von Ahn, Laura Dabbish, Designing Games with a Pur-
pose, Commun. ACM, August, 2008, Vol. 51, No. 8, pp. 58-67.

[11] Xu Yin, Wenjie Liu, Yafang Wang, Chenglei Yang and Lin Lu,
What? How? Where? A Survey of Crowdsourcing, Frontier
and Future Development of Information Technology in Medi-
cine and Education, Lecture Notes in Electrical Engineering
269, 2014.

