
Identifying Patterns in Combat that are Predictive of
Success in MOBA Games

Pu Yang
North Carolina State

University
Raleigh, NC 27695-8206
pyang3@ncsu.edu

Brent Harrison
North Carolina State

University
Raleigh, NC 27695-8206
beharri5@ncsu.edu

David L. Roberts
North Carolina State

University
Raleigh, NC 27695-8206

robertsd@csc.ncsu.edu

ABSTRACT
Multiplayer Online Battle Arena (MOBA) games rely pri-
marily on combat to determine the ultimate outcome of the
game. Combat in these types of games is highly-dynamic
and can be difficult for novice players to learn. Typically,
mastery of combat requires that players obtain expert knowl-
edge through practice, which can be difficult to concisely
describe. In this paper, we present a data-driven approach
for discovering patterns in combat tactics that are common
among winning teams in MOBA games. We model combat
as a sequence of graphs and extract patterns that predict
successful outcomes not just of combat, but of the entire
game. To identify those patterns, we attribute features to
these graphs using well known graph metrics. These features
allow us to describe, in meaningful terms, how different com-
bat tactics contribute to team success. We also present an
evaluation of our methodology on the popular MOBA game,
DotA 2 (Defense of the Ancients 2). Experiments show that
extracted patterns achieve an 80% prediction accuracy when
testing on new game logs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.1 [Artificial
Intelligence]: Applications and Expert Systems—Games

General Terms
Model Development

Keywords
Tactics, Multiplayer Online Battle Arena (MOBA) Game,
Sequence of Graphs, Decision Tree

1. INTRODUCTION
Multiplayer online battle arena (MOBA) games are a sub-
genre of real-time strategy games in which two teams, typ-
ically consisting of five players each, compete against each
other with each player controlling a single character. Con-
trary to real-time strategy games, there is no unit or build-

ing construction in a MOBA game, so much of the strategy
revolves around individual character development and coop-
erative team play in combat. In MOBA games, team-based
combat is highly dynamic and difficult to master. That be-
ing said, success in combat is often the key to victory in
MOBA games. In order to become skilled at combat, players
must obtain a vast amount of tactical knowledge as well as
invest a large amount of time and effort into practicing [38,
39].

In this paper, we present a data-driven method for identi-
fying patterns in combat which lead to successful game out-
comes. We first analyze game logs from professional com-
petitions. We then model combat as a sequence of graphs
that each represent how players involved in the combat in-
teracted with each other at different times during the game.
These interactions include such actions as dealing damage to
enemies and healing or protecting allies. There are several
benefits of using a graph representation to describe combat.
The most important of these is that the graph representation
allows us to use several well established metrics that usually
describe graphs to describe combat (e.g. vertex in-degree
and out-degree [35]). After we extract potential features of
combat by computing a set of graph metrics, we use feature
selection to identify a set of predictive features and then use
them to build a decision tree that predicts the outcome of
a game. From this decision tree, we generate a set of rules
describing how combat should play out at different times
in order for the game to end in victory. Finally, we use
these rules to search for frequent subgraphs in the original
sequence of graphs in order to identify patterns in combat
that are predictive of success.

To characterize the practicality and accuracy of our method,
we tested it on the popular MOBA game DotA 2. Game logs
of DotA 2 were used both to train our model and to mea-
sure its accuracy. An evaluation of the results verified that
the identified patterns in combat are predictive of successful
game outcomes. Accordingly, our contributions are:

1. Modeling highly-dynamic combat tactics as sequences
of graphs, which makes the characteristics of combat
easy to capture.

2. Translating the rules generated by a decision tree into
combat patterns that are predictive of success, which
make combat rules easier to understand.

2. BACKGROUND
In MOBA games, there are generally two types of com-
bat: farming and ganking. Farming refers to the act of
killing weaker, computer-controlled units known as creeps.
By killing creeps, players gain gold which can then be used to
purchase upgrades for their character that will make them
stronger. Ganking (gang-killing) is the act of a player or
group of players moving around the map and killing enemy
players. Like farming, ganking is used as a way to gather
gold and experience which will make characters stronger as
the game goes on. Ganking has the added effect of hindering
the growth of enemy players. This makes ganks extremely
important since they can be used to give your team a large
advantage at any stage of the game.

As mentioned earlier, MOBA games are typically played
with two teams of five players. Each of these players fills
a specific role on their team. There are many different roles
that a player can have, which include:

• Carry: Carrys are capable of doing a large amount of
damage once they have had a chance to develop. This
means that they require protection early in the game
but are responsible for most of the damage done later
in the game.

• Initiator: Initiators are characters that usually start
large combats by doing large area-of-effect damage or
using abilities that can affect the positioning of the
enemy team.

• Disabler: Disablers have the ability to hinder the
functionality of the enemy team by disabling them or
controlling them in some way.

• Tank: The Tank has the ability to absorb large amounts
of damage. This enables other members of the team
to live longer in combat.

• Ganker: The Ganker has the ability to deal a large
amount of damage quickly. Their main goal is to quickly
kill enemies so that combat ends as fast as possible.

3. RELATED WORK
Since MOBA games are relatively new, there has been very
little analysis done on them. To our knowledge, there has
been no attempt to analyze combat in MOBA games up
until this point.

Nataliia et al. [25] used game logs and player communities to
analyze the factors of team success in a MOBA game. Tin-
nawat et al. [24] analyzed two MOBA games and showed a
relation between MOBA games and leadership development.
They pointed out that different roles take different types of
leadership. The difference between these works and our own
is that we are trying to address what specific, in-game be-
haviors contribute to the success or failure of a team.

While there has been relatively little analysis done on MOBA
games, there has been much research done on real-time strat-
egy (RTS) games which are closely related to MOBA games.
Typically, these analyses fall into one of two categories:
strategy modeling or tactics modeling. Strategy modeling

Game Logs Sequences of
Graphs

Features

Patterns in Combat
that are Predictive of

Success

Rules in Combat
that are Predictive

of Success

modeling combats

measuring graph metrics

feature selection
&

decision tree

finding common graph structures

Figure 1: An overview of our methodology. Com-
bat is modeled as a sequence of graphs. Then graph
metrics are collected. The features are downselected
and used to train a decision tree. Combat rules are
then extracted from the tree. Finally, these rules are
translated to combat patterns using frequent sub-
graph mining.

usually involves trying to achieve the more general goal of
determining the best way to spend resources. Questions
such as “What buildings should I construct?” and “What
units should I produce?” are common with these types
of analyses. Examples of these types of analyses include
those done by Sailer et al. [29], who discovered enemy and
friendly strategies by predefining a set of strategies and sim-
ulating each step using a Monte Carlo method. In addition
to Monte Carlo methods, Hidden Markov Models [10], deci-
sion trees [36], and Bayesian Networks [33] have been used
to model and predict player strategies in RTS games. Our
work is different from these works in that we aim to model
behavior at the level of individual combats rather than at
the level of team strategy.

More closely related to our work is the work that has been
done on tactics modeling. Tactics modeling consists of try-
ing to model how individual units should be used and how
combats can be won. There have been several methods used
for tactics modeling in the past. These methods include rein-
forcement learning [37, 26, 31, 19], case-based reasoning [3],
Bayesian Networks [32], MDPs [15], and Monte Carlo sim-
ulation [7, 4]. While we seek to solve a similar problem,
the choice of game genre changes the problem completely.
These analyses were performed on RTS games in which one
player played against one other player. In this scenario, one
does not need to take into account complex team behaviors
during combat. This makes the MOBA environment more
complex and more difficult to model than that of a tradi-
tional RTS game.

4. METHODOLOGY
Our approach for extracting combat patterns that are pre-
dictive of success consists of the following steps:

1. Game logs are analyzed and combats are modeled as
sequences of graphs.

T1_R3 DEATH

T2_R3

T1_R2

T1_R4
T1_R5

T2_R1

T2_R2

T1_R1

T2_R5

T2_R1

T1_R3 DEATH

T2_R3

T1_R2

T1_R4
T1_R5

T2_R1

T2_R2

T1_R1

T2_R5

T2_R1

time window 1 time window 2

....

....

Figure 2: An illustration of combats as a sequence
of graphs. Tx Ry means Role y in Team x. The death
vertex indicates that a specific role died. Edges in-
dicate that the roles have interacted in some way.
Interactions include dealing damage (if between en-
emies) and healing (if between teammates).

2. Metrics of each sequence of graphs are computed and
treated as features that describe combat.

3. We use feature selection to find features of combat that
are predictive of winning the game. These features are
used to train a decision tree to generate a set of combat
rules.

4. These rules are used to find common graph structures
that represent combat patterns that are predictive of
victory.

These steps are also shown in Figure 1.

4.1 Modeling Combat
Since time is an important aspect of combat in a MOBA
game, we have chosen to model combat using a sequence of
graphs in which each graph is used to represent at a certain
time during the game. The vertices in these graphs corre-
spond to the each of the five roles available on each team
(resulting in ten vertices). Edges between vertices indicate
that the roles interact in some way. There are two possible
interactions possible in this representation: a role on one
team doing damage to a role on the other team, or a role
one one team healing a role on the same team.

In addition to the ten vertices in the graph corresponding
to each role in the game for both teams, we introduce a
special vertex that corresponds to death. If a role dies during
combat, then an edge is added from that role to the death
vertex. This brings the total number of vertices in each
graph up to eleven.

In order to model a combat as a sequence of graphs, we need
to determine the period of time that each graph represents
by defining the size of a time window. There are tradeoffs
when choosing a window size. Choosing a small time win-
dow generates less complicated individual graphs but more
graphs since there are more time windows. On the other
hand, a larger time window creates more complicated indi-
vidual graphs but less of them to deal with. In this work,
we use a time window equal to nine minutes. This is be-
cause previous work has been done that involved dividing
the game into four phases [38]. In our dataset, the average
length of a game was 38 minutes. This means that an in-
dividual time window would contain roughly nine minutes

each. For the remainder of this paper, we will refer to each
of these time windows by the following names: the initial
phase, the developing phase, the enhancing phase, the final
phase.

Figure 2 shows an example of a sequence of graphs that
model a set of combats. In this figure, roles in the graph
are referred to by their team number and then their role
number. So, T1 R1 refers to Role 1 on Team 1. In the first
time window, we see directed edges that lead from T1 R3 to
T2 R3 and vice-versa. This indicates that these roles were
involved in a combat where they each did damage to each
other. Also shown in the figure is an edge from T2 R3 to
the death node, indicating that this player died. An edge
also exists between T1 R1 and T1 R5, which indicates that
T1 R1 healed T1 R5.

4.2 Computing Graph Metrics as Features
In order to discover patterns inside of combat, we need to
first find a set of features that we can use to characterize
combat. After modeling combat as a sequence of graphs, we
can find features by computing graph metrics on them.

The graph metrics we used are shown below.

In-degree : The number of edges pointing to this ver-
tex [13].

Out-degree : The number of edges that are drawn from
this vertex [13].

Closeness : A measure of how long it will take to spread
information from a vertex to all other vertices [13].

Betweenness : This quantifies the number of times a ver-
tex acts as a bridge along the shortest path between
two other vertices [5, 12].

Eigenvector Centrality : A measure of the influence of a
vertex in a graph [23].

Since there are 11 nodes (5 characters * 2 teams + death
node), a metric generates 11 features. If there are N parts
segmented by a predefined time window in a sequence of
graphs and there are a metrics, the total number of features
is 11 ∗ a ∗N .

4.3 Selecting Features
According to the above graph metrics, if there are 4 parts
segmented by a time window in the sequence of graphs, the
total number of features is 220 (11 vertices * 5 metrics *
4 windows = 220 features). Not all of these features are
predictive of a game win and there is no intuition as to which
features would be predictive of game outcomes beforehand.
Therefore, we need to perform feature selection before using
these features to train a decision tree.

Feature selection [34] identifies important features and re-
moves irrelevant, redundant, or noisy features in order to
reduce the dimensionality of the feature space. It can im-
prove efficiency, accuracy and comprehensibility of the mod-
els built by learning algorithms.

eigenvector centrality of team2_disabler
 in time window 3

eigenvector centrality of team2_initiator
 in time window 1

 closeness of team1_initiator
 in time window 1

team2 win (49/3)

team2 win (77/16)

<=0.180596 >0.180596

<=0.160636 >0.160636

Figure 3: An example decision tree for generating
combat rules. Tracing a path from the root node to
a leaf node will result a rule. In each leaf, the first
number is the total number of instances reaching
the leaf. The second number is the number of those
instances that are misclassified.

There are two categories of feature selection methods: wrap-
per methods and filter methods. Wrapper methods employ
machine learning algorithms to evaluate features, while fil-
ter methods use the intrinsic properties of data to assess
features [22].

Since we have no prior knowledge as to the quality of any
of our features, we chose to use a wrapper feature selection
technique based on decision trees. This method begins with
an empty set of features and will add features to this set
as long as the prediction accuracy of a decision tree built
off of them increases. Once the decision tree has achieved a
certain accuracy threshold, the features used to train it are
returned as the selected features.

4.4 Generating Combat Rules
After obtaining a set of predictive combat features, we con-
struct a rule-based classifier using the selected features as
inputs. There are many rule-based classification algorithms
including IREP [14], RIPPER [9], CN2 [8], RISE [11], AQ
[20], ITRULE [30], and decision trees [27]. For the purposes
of this work, we have chosen to use decision trees to ex-
tract combat rules since it is easy to extract rules by simply
tracing a path from the root to the leaves.

We chose to use the C4.5 decision tree algorithm trained
on the set of predictive combat features extracted in the
previous section. The decision tree is meant to predict the
outcome of the game using these combat features. There-
fore, the rules generated from this tree are combat rules that
will ultimately result in a team winning or losing the game.

Figure 3 contains an example of three levels of a decision tree
our algorithm might identify. After we build a decision tree
model, tracing a path from the root to the leaves enables us
to obtain the rules that are predictive of team success. An
example combat rule that can be generated from this tree
is that if the eigenvector centrality of the team 2 disabler
is greater than 0.180596 then team 2 is likely to win. It is

important to note here that combat rules are in terms of
the graph metrics that were used to describe combat, which
makes them very difficult relate to in-game actions.

The tree generated by the C4.5 algorithm may have many
leaves, which means that there are many possible rules that
can be generated. While this is true, some of the branches
do not represent enough observational instances to be gen-
eralizable. To account for this, we use two criteria for iden-
tifying usable rules: confidence and support. Confidence is
the percentage of observational instances represented by the
node in the decision tree that are associated with a target
label. Support is the number of observational instances rep-
resented by the node in the tree. The higher the confidence,
the more accurate the rule is. The higher the support, the
more general the rule is. In this work, we used a confidence
threshold of 70% and support threshold of 30. This thresh-
old is based off of experiments done in previous work on
generating rules in MOBAs [38, 39].

4.5 Translating to Combat Patterns
After identifying combat rules that are predictive of success,
we translate the rules into patterns of specific behavior in
combat that are predictive of success by using frequent sub-
graph mining [18]. Frequent subgraph mining is the process
of identifying common substructures in a set of graphs. We
refer to the resulting frequent subgraphs as combat patterns.
The reason we do this is because the behavior patterns con-
tained in these graphs are easier to understand than the
combat rules generated earlier. The frequent subgraph min-
ing algorithm we use is detailed below.

Data: Cgs is a corpus of sequences of graphs.
Data: Ru is a combat rule.
Data: W is a set of time windows.
Result: Common graph structures
find subset Ss in Cgs which satisfies Ru;
foreach w in W do

find all condition nodes CN in Ru which are in w;
find common graph structures in Ss which involve all
condition nodes CN ;

end
Algorithm 1: The algorithm for finding frequent subgraphs
that satisfy combat rules.

The condition nodes in a rule consists of the first half of
conditions in the rule. For example, consider the rule “IF
eigenvector centrality of Disabler on team 2 in time window
3 > 0.180596 THEN team 2 win”. The condition node is
“eigenvector centrality of Disabler on team 2 in time win-
dow 3”. The a subgraph is considered frequent if the graph
structure exists in more than 75% of the set.

Figure 4 illustrates how to identify common graph struc-
tures. First, find all condition nodes in a combat rule. Sec-
ond, find the set of sequences of graphs satisfying the combat
rule in the corpus of sequences of graphs. Third, find com-
mon graph structures involving the condition nodes in the
set. The resulting common graph structures are a combat
pattern translated from the combat rule.

5. EXPERIMENTS

Table 1: The summary of role definitions and the formulas used to describe them. The Key Characteristic is
the unique characteristic identifying the role in game. Formula is the corresponding method used to identify
the role.

Role Key Characteristic Fomula

Carry gold-hungry, spends most of time farming in the
early game.

(FarmingTime/TotalTime) in the first half of the
game

Ganker killing as many heroes as possible in the early
game.

number of heroes killed in the first half of the game

Initiator often starting combat. the number of times the hero deals damage first
during combat

Disabler disabling and controlling other heroes. number of times the hero casts a detrimental in
combat

Tank sustaining large amounts of damage. number of items bought that increase defensive
characteristics

A Combat
Rule

A Corpus of
Sequences of

Graphs

Finding
Satisfied

Sequences of
Graphs

Common Graph
Structures

Finding
Condition

Nodes

Finding Common
Graph Structures

involving Condition
Nodes

condition
nodes

set of
rule-satisfied
sequences
of graphs

Figure 4: How to identify common graph structures.
First, find a set of sequences of graphs satisfying
a combat rule in a corpus of sequences of graphs.
Second, find common graph structures involving all
condition nodes in the set.

We tested our approach on game logs from DotA 2, a popular
MOBA game. In the following sections, we will discuss our
experimental methodology as well as the results of our study.

5.1 Data Collection
We collected a total of 407 DotA 2 competition game logs
from GosuGamers [2] and Getdotastats.com [1], which are
online communities for DotA 2 players. The game logs gath-
ered were generated by professional DotA 2 players.

5.2 Experimental Process
To obtain combat information, we used a DotA 2 Replay
Parser created by Bruno [6]. The parser takes a game log
and outputs a file containing all combat information. While
each entry in the file contains several fields, we are only
interested in the four fields below:

1. Replaytime: The time in that an event occurred.

2. Attacker: The unit that deals damage to opponents
or heals teammates.

3. Target: The unit the receives damage or is healed.

4. Type: An integer indicating the type of interaction
that occurred (damage, heal, beneficial spell, detri-
mental spell, and death).

As mentioned earlier, the characters in a MOBA can take on
one of five possible roles. Certain characters in these games
are better suited to certain roles. In DotA 2, a character can
take on many different roles. For example, a character called
“Night Stalker” can take on either the Tank or Initiator role.
In order to determine which role a character takes in a game
log, we examined the types of actions that each character
takes and used them to classify each character.

To determine a character’s role, we created a ranking based
on the rules in Table 1. The more times a character performs
actions that are related to a specific role, the more likely they
are to get classified as that role.

Once we have determined what each character’s role was,
we are able to use our technique to extract a set of combat
rules that are predictive of winning the game. For these
experiments, we used the NetworkX library [16] to build
the graph model and compute graph metrics. We used the
WEKA toolset [17] to perform our feature selection and to
build the decision tree model.

5.3 Results
We will discuss the results of each phase of our algorithm in
detail below.

5.3.1 Feature Selection
Recall that the first thing that we must do is to select a set of
graph metrics that are predictive of winning the game. The
set of features resulting from this process is listed below:

• Eigenvector centrality of the Disabler on Team 2 in the
enhancing phase

• Eigenvector centrality of the Initiator on Team 2 in the
initial phase

• Closeness of the Initiator on Team 1 in the initial phase

Table 2: The summary of identified rules in combat that are predictive of success in DotA 2. indeg, outdeg,
eige, and cls mean in-degree, out-degree, eigenvector centrality, and closeness respectively. There are four
time phases: initial (ini), developing (dev), enhancing (enh), and final (fin). Conf means confidence. Win
means the team wins the game. The numeric value in the IF statement is the decision boundary generated in
decision tree. m p teamX r means m of r in teamX in p phase. m ∈ {indeg, outdeg, eige, cls}. p ∈ {ini, dev, enh, fin}.
X ∈ {1, 2}. r ∈ {carry, initiator, ganker, disabler, tank}.

ID Conf Patterns

1 85% IF eige enh team2 disabler <= 0.18 & eige int team2 initiator <= 0.16 & cls int team1 initiator <= 0.32
& indeg dev team1 ganker <= 0.1 THEN team1 win

2 85% IF eige enh team2 disabler <= 0.18 & eige int team2 initiator <= 0.16 & cls int team1 initiator <= 0.32
& indeg dev team1 ganker > 0.1 & cls dev team2 tank <= 0.15 THEN team2 win

3 91% IF eige enh team2 disabler <= 0.18 & eige int team2 initiator <= 0.16 & cls int team1 initiator <= 0.32
& indeg dev team1 ganker > 0.1 & cls dev team2 tank > 0.15 & outdeg dev team2 carry <= 0.2 THEN
team1 win

4 97% IF eige enh team2 disabler <= 0.18 & eige int team2 initiator <= 0.16 & cls int team1 initiator > 0.32
THEN team1 win

5 79% IF eige enh team2 disabler <= 0.18 & eige int team2 initiator > 0.16 THEN team2 win
6 94% IF eige enh team2 disabler > 0.18 THEN team2 win

• In-degree of the Ganker on Team 1 in the developing
phase

• Closeness of the Tank on Team 2 in the developing
phase

• Out-degree of the Carry on Team 2 in the developing
phase.

There are many interesting things to note about this set
of features. First, betweeness is not a predictive feature.
This tells us that indirect relationships among the roles do
not have a major effect on a game’s outcome. This means
that the important features of combat are all focused on the
immediate relationships between roles. Second, there are
no features that take place in the final phase of the game.
This means that advantages gained earlier in the game are
not likely to be overcome by the opposing team late in the
game. Finally, all five roles are included in the selected
features. This shows that all roles on a team can contribute
to the team’s overall success.

5.3.2 Extracting Rules From the Decision Tree
Once we have selected a set of features, we use them as an
input into the C4.5 algorithm for creating decision trees.
To evaluate the resulting tree, and therefore the rules that
are generated from the tree, we performed a 10-fold cross-
validation measuring how well the decision tree was able to
predict the outcome of the game. Table 3 shows a summary
of these results. As you can see in the table, we achieve high
accuracy using classification accuracy, sensitivity, specificity,
and the area under the ROC curve.

After we have created the tree, we extract combat rules using
the method described in Section 4.4. A summary of these
rules can be found in Table 2.

5.3.3 Frequent Subgraph Mining
After identifying the set of combat rules that are predictive
of success (seen in Table 2), we translate the patterns back

Table 3: Evaluation metrics for 10-fold cross-
validation. Classification accuracy (CA), Sensitivity
(Sens), Specificity (Spec), and Area under the ROC
curve (AUC).

CA Sens Spec AUC

0.8 0.803 0.8 0.83

into specific combat patterns using frequent subgraph min-
ing. Due to paper length, we will only consider the first
rule as an example of how these graphs can be interpreted.
The frequent graph structures corresponding to rule 1 can
be seen in Figure 5.

In Figure 5, the combat behavior for rule 1 is shown. Dur-
ing the initial phase of the game team 1’s Initiator should
start the combat before team 2’s Initiator to gain the advan-
tage in combat. In addition to this, the team 1’s Initiator
also needs to kill team 2’s Initiator. Additionally, team 1’s
Initiator needs to control and disable team 2’s Ganker. In
other words, team 1’s Initiator needs to prevent team 2’s
Ganker from killing team 1’s Carry since team 1’s Carry is
very weak in the early phases of the game. During the de-
veloping phase, team 1’s Ganker should dominate the game
by attempting to kill every role available on team 2 except
for the Tank. This makes sense because a team’s Tank is
designed to absorb a large amount of damage. This means
any attempts to kill the Tank would likely be unsuccessful
and would only serve to waste time. During the enhanc-
ing phase, the enemy Disabler poses the biggest threat since
they can easily inhibit the killing power of the Carry. As a
result, team 1’s Ganker and carry should target the Disabler
first to ensure that they can continue to do damage through-
out combat. During the final phase of the game, there are
no patterns. This means that by this point in the game,
it is likely too late to perform any actions that will have a
considerable impact on the outcome of the game.

6. FUTURE WORK

developinginitial enhancing �nal

team2_initiator

team2_initiator

team1_ganker

team1_ganker

death

team2_disabler

team1_carry

team2_carry

team2_disabler

team2_ganker

team1_initiator

team2_ganker

death

Figure 5: The graphic structures of combat pattern 1. teamx y means role y in team x. The black nodes are
condition nodes explained in Section 4.5.

There are three exciting avenues for future research. First,
our method has three free parameters: stopping criterion
during feature selection, rule support, and rule confidence.
One avenue of future research involves optimizing these pa-
rameters using an optimization technique such as genetic
algorithms [21] or randomized hill climbing [28]. This way,
we can ensure that there is a solid reasoning behind picking
a specific threshold value. Second, we would like to further
evaluate our combat rules and patterns by using expert play-
ers to provide insight into their validity. Third, we hope to
use the combat patterns that we discovered to implement a
system for assisting players during combats.

7. CONCLUSION
In this paper, we have introduced a data-driven approach
for discovering combat patterns of winning teams in MOBA
games. We first model combat as a sequence of graphs, and
then we then find potential features of combat by computing
graph metrics that describe this sequence of graphs. We then
select the best features using a wrapper feature selection
method. Using these features, we train a decision tree and
then extract combat rules from this decision tree. We then
use these combat rules to extract frequent subgraphs from
the sequences of graphs in order to identify combat patterns
that are predictive of winning the game. This technique can
be used to gain insight into how players should work together
to overcome obstacles in MOBA games and, perhaps, even
to teach newer players the skills required to be successful at
these types of games.

8. REFERENCES
[1] Getdotastats.com.

http://getdotastats.com/replays/.

[2] GosuGamers.
http://www.gosugamers.net/dota2/replays.

[3] D. W. Aha, M. Molineaux, and M. Ponsen. Learning
to win: Case-based plan selection in a real-time
strategy game. In in Proceedings of the Sixth
International Conference on Case-Based Reasoning,
pages 5–20. Springer, 2005.

[4] R.-K. Balla and A. Fern. Uct for tactical assault
planning in real-time strategy games. In Proceedings of
the 21st International Jont Conference on Artifical
Intelligence, IJCAI’09, pages 40–45, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[5] U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology,
25:163–177, 2001.

[6] Bruno. DotA 2 Replay Parser.
http://www.cyborgmatt.com/2013/01/

dota-2-replay-parser-bruno/.

[7] M. Chung, M. Buro, and J. Schaeffer. Monte carlo
planning in rts games. In IEEE Symposium on
Computational Intelligence and Games (CIG), pages
117–124, 2005.

[8] P. Clark and R. Boswell. Rule induction with CN2:
Some recent improvements. Machine
learning—EWSL-91, 1991.

[9] W. W. Cohen. Fast Effective Rule Induction. Machine
Learning: Proceedings of the Twelfth International
Conference (ML95), 1995.

[10] E. W. Dereszynski, J. Hostetler, A. Fern, T. G.
Dietterich, T.-T. Hoang, and M. Udarbe. Learning
probabilistic behavior models in real-time strategy
games. In V. Bulitko and M. O. Riedl, editors, AIIDE.
The AAAI Press, 2011.

[11] P. Domingos. The RISE system: Conquering without
separating. Tools with Artificial Intelligence, 1994.

[12] L. C. Freeman. A set of measures of centrality based
on betweenness. Sociometry, 40(1):35–41, Mar. 1977.

[13] L. C. Freeman. Centrality in social networks
conceptual clarification. Social Networks, page 215,
1978.

[14] J. Furnkranz and G. Widmer. Incremental reduced
error pruning. International Conference on Machine
Learning, 1994.

[15] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia.
Generalizing plans to new environments in relational
mdps. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence, IJCAI’03, pages
1003–1010, San Francisco, CA, USA, 2003. Morgan
Kaufmann Publishers Inc.

[16] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), pages 11–15,
Pasadena, CA USA, Aug 2008.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,

11(1):10–18, Nov. 2009.

[18] B. Harrison, J. C. Smith, S. G. Ware, H.-W. Chen,
W. Chen, , and A. Khatri. Frequent subgraph mining.
In N. F. Samatova, W. Hendrix, J. Jenkins,
K. Padmanabhan, , and A. Chakraborty, editors,
Practical Graph Mining With R. Oxford University
Press, CRC Press, 2013.

[19] B. Marthi, S. Russel, and D. Latham. Writing
stratagus-playing agents in concurrent alisp. In
Workshop on Reasoning, Representation and Learning
in Computer Games, IJCAI-05, Edinburgh, Scotland,
2005.

[20] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac.
The multi-purpose incremental learning system AQ15
and its testing application to three medical domains.
Proc AAAI 1986, 1986.

[21] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA, 1998.

[22] L. C. Molina, L. Belanche, and À. Nebot. Feature
selection algorithms: A survey and experimental
evaluation. In Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on,
pages 306–313. IEEE, 2002.

[23] M. E. J. Newman. The structure and function of
complex networks. SIAM REVIEW, 45:167–256, 2003.

[24] T. Nuangjumnonga and H. Mitomo. Leadership
development through online gaming. 19th ITS
Biennial Conference, Bangkok 2012: Moving Forward
with Future Technologies - Opening a Platform for All
72527, International Telecommunications Society
(ITS), 2012.

[25] N. Pobiedina, J. Neidhardt, M. d. C.
Calatrava Moreno, and H. Werthner. Ranking factors
of team success. In Proceedings of the 22nd
International Conference on World Wide Web
Companion, WWW ’13 Companion, pages 1185–1194,
Republic and Canton of Geneva, Switzerland, 2013.

[26] M. Ponsen and I. P. H. M. Spronck. Improving
adaptive game ai with evolutionary learning. In
University of Wolverhampton, pages 389–396, 2004.

[27] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[28] S. Russell and P. Norvig. Artificial intelligence: a
modern approach (2nd edition). Prentice Hall, 2003.

[29] F. Sailer, M. Buro, and M. Lanctot. Adversarial
planning through strategy simulation. In IEEE
Symposium on Computational Intelligence and Games,
2007. CIG 2007, pages 80–87, 2007.

[30] P. Smyth and R. M. Goodman. An information
theoretic approach to rule induction from databases.
Knowledge and Data Engineering, IEEE Transactions
on, 4(4):301–316, 1992.

[31] P. Spronck, I. G. Sprinkhuizen-Kuyper, and E. O.
Postma. On-line adaptation of game opponent ai with
dynamic scripting. Int. J. Intell. Games and
Simulation, 3(1):45–53, 2004.

[32] M. Stanescu, S. P. Hernandez, G. Erickson,
R. Greiner, and M. Buro. Predicting army combat
outcomes in starcraft. In Ninth AAAI Conference on
Artificial Intelligence and Interactive Digital
Entertainment, 2013.

[33] G. Synnaeve and P. Bessiere. A bayesian model for
opening prediction in rts games with application to
starcraft. In Computational Intelligence and Games
(CIG), 2011 IEEE Conference on, pages 281–288,
2011.

[34] F. Tan. Improving feature selection techniques for
machine learning. 2007.

[35] S. G. Ware. An introduction to graph theory. In N. F.
Samatova, W. Hendrix, J. Jenkins, K. Padmanabhan,
, and A. Chakraborty, editors, Practical Graph Mining
With R. Oxford University Press, CRC Press, 2013.

[36] B. G. Weber and M. Mateas. A data mining approach
to strategy prediction. In IEEE Symposium on
Computational Intelligence and Games, 2009. CIG
2009, pages 140–147. IEEE, 2009.

[37] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Learning
and transferring roles in multi-agent reinforcement. In
Proc. AAAI-08 Workshop on Transfer Learning for
Complex Tasks, 2008.

[38] P. Yang and D. L. Roberts. Extracting
human-readable knowledge rules in complex
time-evolving environments. In Proceedings of The
2013 International Conference on Information and
Knowledge Engineering (IKE 13), Las Vegas, Nevada
USA, July 2013.

[39] P. Yang and D. L. Roberts. Knowledge discovery for
characterizing team success or failure in (a)rts games.
In Proceedings of the IEEE 2013 Conference on
Computational Intelligence in Games (IEEE CIG),
Niagara Falls, Canada, August 2013.

