
Specifying the Pedagogical Aspects of Narrative-Based

Digital Learning Games Using Annotations
Frederik Van Broeckhoven

Vrije Universiteit Brussel

Pleinlaan 2
B - 1050 Brussels, Belgium

Frederik.Van.Broeckhoven@vub.ac.be

Prof. Dr. Olga De Troyer

Vrije Universiteit Brussel
Pleinlaan 2

B - 1050 Brussels, Belgium

Olga.DeTroyer@vub.ac.be

ABSTRACT
In this paper, we present an extension of ATTAC-L, a domain

specific modeling language to model the narrative content

(“story”) of virtual experience scenarios or digital games.

ATTAC-L is specifically designed to allow the involvement of

non-technical people in the modeling process. However, as in

learning games (i.e. games with an educational purpose) giving

due consideration to the learning aspects is as important as to the

game aspects, ATTAC-L is extended to also allow the modeling

of the pedagogical aspects of the learning game. To realize this,

we opted for an annotation mechanism. In this way, the

educational or pedagogical aspects are specified on top of the

storyline model. This allows (and even gently forces) at the one

hand to integrate learning into the storyline, and on the other hand

it prevents that the specification of the two aspects (learning and

gaming) are entangled in the specification. It allows for a clear

separation between the narrative content and the educational

aspects in the story flow. This allows stakeholders to concentrate

either on the story flow, or on how the story flow will be used to

realize the pedagogical objectives of the game.

This paper explains the principles of the annotation technique,

and describes and illustrates the newly introduced modeling

concepts.

Categories and Subject Descriptors

• Software and its engineering~Domain specific languages

• Applied computing~E-learning

General Terms

Design, Human Factors, Languages.

Keywords

Domain Specific Modeling Language, Learning Games, Narrative

Content.

1. INTRODUCTION
Already over a timespan of numerous years, Game Based

Learning (GBL) has become an increasing popular learning

approach as it combines playful elements with learning. In various

domains, GBL has been recognized to be an efficient way to

submerge the player-learner in the pedagogical material in a

playful and motivating way [2].

Several authors argue that to exploit the power of games in GBL,

the game narrative and the learning should be tightly integrated

rather than one being just an add-on of the other one [2].

However, as a consequence and because a wide diversity of

educational curricula that can be offered in the form of GBL, the

respective games (here called educational games) must

specifically be developed to fit their purpose. Developing these

educational games often require the involvement of technical as

well as non-technical experts, e.g., pedagogical experts, domain

experts, educators. This creates the challenge to effectively

involve these non-technical people in the development process

without requiring them to deal with low-level implementation

details (e.g., programming concepts). In this paper, we

concentrate on supporting the involvement of non-technical

stakeholders during the design phase.

To support the involvement of non-technical people during

design, we propose the use of a Domain Specific Modeling

Language (DSML) for modeling the interactive story of the

educational game. Some authors also proposed the use of a

Domain Specific Modeling Languages to model (certain aspects

of) digital (educational) games [3][4][6][7][8]. However, there is

a strong call for tools focusing on designing game narratives and

integrating educational aspects [9], but research in this field with

respect to DSMLs is rather sparse. Often DSMLs are closely tied

to a game development framework (and still require non-technical

people to deal with the technical details of game development),

put hard restrictions on the type, audience or platforms of the

games that can be modeled or do not provide a way to specify the

educational aspects. Our work especially wants to deal with this

last aspect. For games with an educational purpose, giving due

consideration to the learning aspects is important to come to

learning games that are pedagogically sound.

2. RELATED WORK
WEEV (Writing Environment for Educational Video Games) [7]

also proposes a DSML to model the narrative content of

educational games. As a proof of concept, this DSML is added on

top of e-Adventure, a framework specifically designed for (non-

technically skilled) educators to develop educational games of the

point-and-click genre. Story modeling is based on an explicit

representation of the interactions between the player and the

virtual world by means of a state-transition diagram. To reduce de

overall complexity, WEEV has language constructs that helps

organizing the structure. Opposed to WEEV, which uses a state-

transition approach, we use a flow-based approach, a decision that

is based on the results of a user experiment [1]. Moreover, we

impose a strict separation between the narrative and the

pedagogical aspects, while in WEEV both aspects are interwoven.

The GLiSMo language (Serious Game Logic and Structure

Modeling Language) [3] is specifically designed to model

teaching methods directly into the game logic of an educational

game. For this, it uses the concept of a serious game brick, a block

representing a single, atomic step that can be executed in the

context of an educational game-environment, either related to a

logical or a pedagogical functionality of the game. The bricks

have input- and output-ports and the overall game logic is

modeled by linking several bricks through these ports. This inter-

linking defines a temporal relationship and dataflow between the

bricks, giving the model a dataflow-based structure. An

abstraction mechanism is provided, i.e. a serious game composite,

which is used in the same way as a brick, but encapsulates one or

more inter-linked bricks, consequently providing a way to

organize more complex models. Our research, developed in

parallel, uses similar principles, but we opted for an explicit flow-

based structure that only requires defining temporal relationship

between game moves. Pedagogical aspects are expressed using

annotations, which allows for a better separation of concerns.

The StoryBricks framework [8] is an interactive story design

system. It provides a visual language based on the visual

programming language Scratch [6] designed by the MIT lab.

Without the need for programming skills, the users can edit the

characters in the game and the artificial intelligence of the game

that drives the characters. The users can setup characters by using

so-called story bricks to give them emotions, items, etc. The

bricks can also be used to specify what need to be done at certain

points in the game. This way, an interactive scenario is modeled

in an implicit way by defining a set of rules expressing which

events should be evoked under what conditions. This enables the

interaction between the characters in the game without the need

for it to be programmed explicitly. The StoryBricks approach

allows a great deal of flexibility in defining the rules that make up

the game logic, but a story cannot be modeled explicitly. Our user

experiment performed [1] shows that a rule-based approach would

be less suitable for our target group (social oriented stakeholders).

Our work has adopted the brick concept as basic building block

for our language from this framework, but in addition, it allows

modeling the story flow explicitly. Moreover, we provide a

mechanism to model the pedagogical aspects of games.

3. ATTAC-L: NARRATIVE MODELING
To model the narrative content of a learning game, we defined

ATTAC-L [1], a Domain Specific Modeling Language,

specifically designed to allow non-technical people to model the

narrative content of so-called virtual experience scenarios or

digital games with some form of interactive narration.

To make ATTAC-L usable for its target audience, i.e. social-

oriented non-technical people, it uses two important principles.

First, it uses a flow-based structure to represent the overall

narrative content. Each individual step, either to be performed by

the player or performed automatically by a Non Player Character

(NPC), is represented as a „game move‟, a concept adopted from

[5]. Game moves are directly or indirectly linked denoting their

relative time-relationships. By adopting concepts from UML

flow-chart modeling, ATTAC-L is capable of expressing various

forms of chronology between game moves: sequences (defining

which game move follows another one), choice (or branching,

defining alternative story flow paths), and concurrency (story flow

paths that are performed in parallel). On top of that, ATTAC-L

introduces extra control mechanisms to increase the

expressiveness: order independence (story flow paths that must all

be performed, but in any order), repetition and optionally.

Furthermore, the concept of scenario is used as an abstraction

mechanism to deal with the complexity of large models.

The second principle is the use of so-called bricks, a principle that

is adopted from the StoryBricks framework [8]. Bricks form the

atomic building blocks for a narrative model. Two types of bricks

are distinguished: (regular) bricks and control-bricks.

The regular bricks are used to construct game move statements, a

formal representation of a game move or a single action that can

be performed in the context of the game environment. A regular

brick is represented by a rectangular containing a word (denoting

its meaning) and corresponds to a smallest, meaningful unit that

exists in the context of a story: an act that can be performed, a

tangible object that can perform or undergo the act, a state, a

mood, etc... Game move statements are constructed by connecting

bricks to each other according to some rules. These rules are

based on the grammar of natural language. The result is a

construct that reads as a simple natural sentence and denotes a

game play action.

Control bricks can be used to combine game move statements

according to their relative time relationships. As stated earlier, we

use a flow-based structure to represent this time relationship, but

instead of using a graphical representation like in UML (which is

unknown to our target users) we decided to follow the same brick-

principle for expressing this control structure.

Figure 1 shows an example of a scenario (part of a story) modeled

in ATTAC-L. This simple example is about a player who is

instructed to find a correct tool for a woodcutting job. The player

gets instructions, goes to the place where he can find tools,

chooses one of two tools and gives it to his instructor.

Note that the interpretation of the acts, objects, moods,… in the

actual game is left to the code generation. For example, the player

grabbing something might be realized by letting the player

clicking on the corresponding game entity.

4. MODELING LEARNING
To model the pedagogical aspects of a learning game, we

opted for an annotation mechanism. In this way, the

pedagogical aspects are specified on top of the storyline

model. This allows (and even gently forces) at the one hand

to integrate the learning into the story, and on the other hand

it prevents that the specification of the two aspects (learning

and gaming) are entangled in the specification. It allows for

a clear separation between the narrative content and the

educational aspects related to the story flow. This allows

Figure 1: Example of a scenario modeled in ATTAC-L

stakeholders to concentrate either on the story flow, or on how the

story flow will be used to realize the pedagogical objectives of the

game.

Using annotations to model the educational aspects means that at

certain points in the storyline, extra contextual information (in the

form of annotations) are added, which define either pedagogical

objectives (e.g., knowledge acquisition) or strategies (e.g., “Trial-

and-Error” learning approach), or pedagogical actions that have to

be performed. These pedagogical actions might for instance

include, providing extra (learning) information, providing

assistance to the player, updating the knowledge level of the

player, changing roles (i.e. let the player „experience‟ the story

from another perspective), performing assessments, and provide

the possibility to rehearse or retry parts of the story. The

annotations not only specify the educational aspects of the game,

they also allow validating (at a later stage) that the specification

(story flow + annotations) satisfies the pedagogical objectives and

strategies specified. This will be done by verifying that the

necessarily pedagogical actions and game mechanics are provided

to guarantee (to a certain degree) that the pedagogical objectives

and strategies specified can be achieved (e.g., if a “Trial-and-

Error” learning approach is specified, the player should indeed

have the possibility to retry certain actions).

In what follows, we first introduce the general principles for the

concept of annotation (section 4.1). This is followed by a more

detailed description of some of the annotation types provided in

the current version of ATTAL-L. We provide examples of the two

major categories: annotations for expressing pedagogical actions

(section 4.2), and annotations for expressing the pedagogical

objectives and principles (section 4.3).

4.1 General Principles of the Annotations
An annotation is represented as a small square-like brick, called

annotation-brick (following the brick-principle of the ATTAC-L

language). The annotation-brick contains a symbol that denotes its

function, i.e. the type of the annotation, e.g., an information

annotation. Each annotation has a set of attributes that can be

given values to instantiate the annotation.

Annotations are attached to a game move or to a scenario.

Attaching an annotation to a scenario means that the annotation

(i.e. its function) applies to the encapsulated storyline part of the

scenario as a whole. Whether an annotation can be attached to a

scenario or/and a game move depends on its type.

As the amount of information to be specified for an annotation

can be quite vast, we opted for a text balloon to list the attributes

and to enter or edit their values. This balloon points to the

annotation-brick and can be show/hidden, because this detailed

information is not required to be visible all the time.

4.2 Pedagogical Actions
In this section, we provide examples of annotation types provided

for expressing pedagogical actions.

4.2.1 Changing Roles
An important aspect of game narration is the interaction or the

involvement of the player in shaping the plot of the story. The

original version of ATTAC-L was using a special brick „player‟ to

represented the player as an actor in the story. We decided to omit

this player-brick and instead provide an annotation type that

allows specifying player controls. This annotation type allows

specifying that the in-game character used by the player should be

changed. This concept gives more flexibility, as it allows

specifying that the player should be given the perspective of a

different character at a certain moment in the game (and possibly

for a short while). This is required to support, for instance an

intervention strategy, called changing perspective, used for

pedagogical objectives such as behavioral change, and used to let

the player experience the scenario from another perspective.

For specifying this player perspective, we have defined the

playable- () and not playable () annotation types. When

attached to a game move, the playable annotation has no

attributes; it only specifies that the associated game move should

be performed by the player, and consequently that, at that

moment, the character performing the game move is the player‟s

controlled character. When annotating a scenario, it has an

attribute „role‟ that states the character the player should control.

An example is given in Figure 2. To (temporarily) disable the

player‟s controls, the not playable annotation (without attributes)

can be used in a similar way.

4.2.2 Providing Information
At certain points in the storyline, it could be necessary to give the

user some extra information, ranging from instructions to play the

game to (extra) course material. To indicate this, the game moves

where this extra information should be presented can be annotated

with the inform- () annotation. Its single attribute „what‟

defines the material to be presented to the user (and also its form).

The information will be shown to the player right before the game

move is performed. An example is given in Figure 3.

4.2.3 Providing Assistance
Sometimes, a player might need guidance in making the right

decision. For example, when the player is confronted with a

choice and has difficulties with making the choice (note that in

this case, the game must be able to detect whether the player has

difficulties). This might be when the player is taking too long to

decide or when he is taking the wrong decision systematically.

Also, assistance can exist in the form of emphasizing a certain

entity in the game environment to draw the user‟s attention.

To support this, we have defined a set of annotations. An assist-

() annotation annotates a game move where assistance might

be needed. Its attributes specify the assistance the player will get,

in what form, and under what conditions (for example, when the

player has not yet reached a certain level of progress). A wrong

path– () annotation can be used to identify incorrect choices

that players may take. Both annotations are illustrated in Figure 4.

4.2.4 Other Annotation-types
More annotation-types are defined for pedagogical actions, e.g.,

for specifying emphasizing, a scoring-system (rewarding and

punishment), and a checkpoint-system (retry and rehearsal). Due

to space-considerations, we will not elaborate them.

4.3 Pedagogical Objectives and Principles
In this section, we present annotation types provided for

expressing pedagogical objectives and strategies. This concept is

still under development; therefore we will only describe it briefly.

4.3.1 Pedagogical Objectives
A (pedagogical) objective-annotation is used to explicitly relate

pedagogical objectives to scenarios. A pedagogical objective is

defined as the learning goals together with the expected learning

outcomes (obtained from playing the scenario). The information

in this annotation will be used to validate the model, i.e. to verify

that the listed objectives actually can be met in the specified

scenario-model, but it can also be linked with assessments or,

evaluations that check whether a learning goal is achieved.

4.3.2 Pedagogical Strategies
A pedagogical strategy refers to a concrete set of methods that can

be used to assure a certain degree of learning. A scenario can be

annotated with a (pedagogical) strategy-annotation to specify

which strategy is used in the scenario. Also this information can

be used to validate the model (i.e. verifying that the model is in

accordance to the strategy), but it can also be used to make

suggestions to the modeler e.g., on what pedagogical actions or

objectives (not) to use.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an extension of ATTAC-L, a domain

specific modeling language to allow the modeling of narrative

content for learning games, specifically designed for non-

technical people. The language combines the brick principle used

in StoryBricks with a flow based structure for the representation

of overall narrative model. The extension consists of an

annotation-system to specify educational aspects on

top of the storyline. This allows for a clear separation

of concerns.

The next step consists of further elaborating the

annotation types for expressing pedagogical

objectives and strategies, in order to provide more

support to the modeler. Possible types of learning

outcomes and strategies can be presented to the

modeler to select from, and for common pedagogical

strategies possible pedagogical actions can be

suggested. This requires a further investigation of

how principles used in education can be mapped onto

game mechanics. Other work is oriented towards the

validation of the model against the objectives and

strategies specified. Furthermore, a profound

evaluation of the complete ATTAC-L language is

planned. Tool support is currently already under

development.

6. ACKNOWLEDGEMENT
This research is funded by IWT (Institute for Science

and Technology) (www.iwt.be) (Friendly ATTAC

project).

7. REFERENCES
[1] Van Broeckhoven, F. and De Troyer, O. 2013.

ATTAC-L: A Modeling Language for

Educational Virtual Scenarios in the Context of

Preventing Cyber Bullying. 2013 IEEE 2nd

International Conference on Serious Games and

Applications for Health (SeGAH) (May 2013),

1–8.

[2] Dondlinger, M. 2007. Educational Video Game

Design: A Review of the Literature. Journal of

Applied Educational Technology. 4, 1 (2007),

21 – 31.

[3] Hirdes, E.M., Thillainathan, N. and Leimeister,

J.M. 2012. Towards Modeling Educational

Objectives in Serious Games.

[4] Kudo Programming Language:

http://research.microsoft.com/en-us/projects/kodu/.

Accessed: 2013-12-14.

[5] Lindley, C.A. 2005. Story and Narrative Structures in

Computer Games. Developing Interactive Narrative

Content. Bushoff and Brunhild, eds. High Text. 1–27.

[6] Maloney, J., Resnick, M., Rusk, N., Silverman, B. and

Eastmond, E. 2010. The Scratch Programming Language

and Environment. ACM Transactions on Computing

Education. 10, 4 (Nov. 2010), 1–15.

[7] Marchiori, E.J., del Blanco, Á., Torrente, J., Martinez-Ortiz,

I. and Fernández-Manjón, B. 2011. A Visual Language for

the Creation of Narrative Educational Games. Journal of

Visual Languages & Computing. 22, 6 (Dec. 2011), 443–

452.

[8] StoryBricks: http://www.storybricks.com. Accessed: 2013-

10-12.

[9] Zyda, M. 2005. From Visual Simulation to Virtual Reality

to Games. Computer. 38, 9 (Sep. 2005), 25–32.

Figure 2: Example use of the 'Playable' annotation

Figure 3: Example use of the 'Inform'-annotation

Figure 4: Example use of the 'Assist'-annotation

