Al-based Games: Contrabot and What Did You Do?

Michael Cook
Comp. Creativity Group
Goldsmiths, Uni. London
_ London, UK
mike@gamesbyangelina.org

Gillian Smith
Northeastern University

Mirjam P. Eladhari
Otter Play

. Sliema, Malta

info@otter-play.com

Tommy Thompson
Department of Computing and

Adam M. Smith
Department of Computational
Media
University of California, Santa
Cruz
Santa Cruz, CA
adam@adamsmith.as

Julian Togelius
Department of Computer

Playable Innovative Mathematics Science and Engineering
Technologies Lab University of Derby New York University
Boston, MA, 02115 Derby, UK New York, NY 11201

gillian@ccs.neu.edu

ABSTRACT

Al-based games foreground interaction with an artificial in-
telligence system as the core of gameplay. We present Al-
based games—CONTRABOT and WHAT DID You Do?—that
use machine learning for novel play experiences.

1. INTRODUCTION

Game designs typically use artificial intelligence (AI) as a
tool to create a desired experience. Al-based games have re-
cently emerged as an alternative paradigm that foregrounds
interaction with an Al system or agent as the core com-
ponent of a game [1, 2]. Example Al-based games include
Black € White (about teaching an Al avatar), Spy Party
(about mimicking AI routines), and The Sims (about guid-
ing simple Al ‘pets’). This abstract discusses two prototype
Al-based games—CONTRABOT and WHAT DID You Do?—
that explore interacting with machine learning algorithms
as a core gameplay loop.

2. CONTRABOT

ConTrRABOT' (Figure 1) is a game based on agents that
learn abstract codes with gameplay based on understanding,
playing against, and deceiving a machine learning system.
Players act as a smuggler trying to label boxes to commu-
nicate with a contact on the other side of a customs check-
point. The smuggler is trying to learn the code players use to
indicate a box is contraband—but an inspector is randomly
checking the same boxes.

"https://github. com/gamesbyangelina/contrabot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).

tommy@t2thompson.com

julian@togelius.com

Figure 1: CONTRABOT interface: player input code on the
left; inspector learned code in the middle; smuggler learned
code on the right. Agent memories are shown as the set of
smaller codes along the right of the larger central codes.

The game mechanics revolve around how the smuggler and
inspector agents learn to check codes based on codes they
have seen. These agents have two main processes: learning
codes and matching new codes against their learned code.
Both agents generalize patterns from example codes in their
memory—using a form of least general generalization—to
then try to match new codes to these learned patterns.
The inspector has a larger memory than the smuggler and
gameplay is based on reverse-engineering how learning works
to take advantage of the smuggler forgetting old patterns
more quickly than the inspector. The generalization process
is simple: agents compare all codes seen, memorize exact
matches for black or white tiles, and generalize to gray tiles
if a position has been occupied by both colors. Despite this
simplicity, the design allows many difficulty levels and risk-
reward considerations for players based on the size of the
codes used and agent memory capacities.

We designed CONTRABOT gameplay around risk-reward
considerations for the player. Both agents start with an
empty learned code and empty memory. The smuggler learns
from the first crate inspected and only retains a memory of
the four most recent codes inspected. The inspector ini-
tially only has a random chance to inspect creates; after
the inspector chooses to check a crate it begins learning
and can either randomly check crates or check crates due



Figure 2: WHAT DID You Do? interface: game world on
the grid; rules learned by the child on right pane.

to matching. The inspector has an infinite memory, mean-
ing the inspector will eventually learn a code that matches
any new code (this ends the game). As both agents learn
codes, gameplay centers on creating new codes that the in-
spector will not check (modulo random checks), but that the
smuggler will check. The number of crates the player passes
to the smuggler serves as a score as the game will eventually
end once the inspector learns to match all crates. While
simple, this design highlights how understanding the ways
a machine learning algorithm works can be the core part of
playing and succeeding at a game: in this case mastering
the code learning algorithm to both avoid failure (inspector
checks) and achieve success (smuggler checks).

3. WHAT DID YOU DO?

WaAT Db You Do?? (Figure 2) is a game based on
indirectly training and directly editing a child Al agent to
complete in-game tasks without the child dying along the
way. Players control a parent shrub attempting to raise
an Al-controlled child shrub in a simple environment. The
challenge derives from the child not being directly controlled
by the player: the child learns behavioral rules to mimic the
parent (player). The game is turn-based and takes place in
a grid world populated with helpful items (e.g., food) and
obstacles (e.g., impassable rivers and stones).

Players aim to navigate obstacles in the environment to
reach a destination with their child still alive. Navigation
includes fording impassable rivers by picking up stones and
dropping them into the river. Parents may pick up objects
or eat food to restore their energy level—depleting either the
parent or child energy fully ends the game. The environment
is also more hazardous to the child than the parent: children
may be crushed by dropping a stone on themselves after
attempting to carry it too long or may drown in rivers.

The child observes the parent and learns rules of the form
“when surrounded with certain objects, perform a given ac-
tion.” For example, the child could learn a rule that when
standing with a stone to the left and a pond behind, move
forward. Or if in front of a strawberry, pick it up. Rules
are re-learned every ten turns, and there is no limit to how
many rules can be learned—this depends only on how many

’https://github.com/gamesbyangelina/
whatareyoudoing

regularities the rule learning algorithm can find within the
recent history of what the parent has done. The rule learn-
ing algorithm is a simple brute force search for all rules that
can be constructed from recent activity; if using longer ac-
tion histories or more actions, this could be replaced with
the a priori rule learning algorithm.

We designed the rule learning system to play off food
scarcity in the environment and the available hazards to the
child. On any turn the player may remove rules from the
child’s mind by spending energy from the parent. Replac-
ing energy requires food, meaning any adjustments made
to keep the child from inadvertently harming itself come at
the cost of limited resources to stay alive. Thus, promising
courses of action can introduce trade-offs because the child is
watching and may learn the wrong things. For example, one
might want to approach a stone from the opposite direction
than what the shortest path would suggest, to avoid that
the child sees regularities. However, this takes more time
and allows the child to potentially learn other bad behavior
in the meantime. These trade-offs induce players to explic-
itly reason about how the child learns and how to manage
in-game resources around that learning.

4. DISCUSSION

These games raise interesting problems with presenting
machine learned knowledge to the player. In CONTRABOT
learned codes are color-coded and the history of examples
can be explicitly shown to the player for the smuggler (but
only partially shown for the inspector). Players can readily
learn the visual language of the game, but not understand
the gameplay implications of code choices. At the same time
the code language is very simple and can quickly become
boring. WHAT DID You Do07?’s learned partial rules may not
be thought of as ‘knowledge’ to a human player unfamiliar
with machine learning (such as what to do when a rock is to
your left, but not what to do in the general case of being ad-
jacent to rocks). This means that editing knowledge can be
exhausting, as there may be multiple cases that are all unde-
sirable (seeming to stem from the same original case to the
player), which need to be manually removed. The presenta-
tion of machine learned knowledge both in CONTRABOT and
WHAT ARE You DoOING? illustrates possibilities for using
these techniques in future game projects, and indicates the
richness of new ideas for Al-based games.

S. ADDITIONAL AUTHORS

Alex Zook (School of Interactive Computing, Georgia In-
stitute of Technology), a.zook@gatech.edu.

6. REFERENCES

[1] M. P. Eladhari, A. Sullivan, G. Smith, and J. McCoy.
Al-based game design: Enabling new playable
experiences. Technical report, University of California,
Santa Cruz, 2011.

[2] M. Treanor, A. Zook, M. P. Eladhari, J. Togelius,

G. Smith, M. Cook, T. Thompson, B. Magerko,
J. Levine, and A. Smith. Al-based game design
patterns. In 10th International Conference on the
Foundations of Digital Games, 2015.



