
Monte Carlo Tree Search for Simulated Car Racing

Jacob Fischer1, Nikolaj Falsted1, Mathias Vielwerth1,
Julian Togelius2, and Sebastian Risi1

1Center for Computer Games Research, IT University of Copenhagen, Denmark
2Department of Computer Science and Engineering, New York University, NY, USA

jaco@itu.dk,nifa@itu.dk,mvie@itu.dk,julian@togelius.com,sebr@itu.dk

ABSTRACT

Monte Carlo Tree Search (MCTS) has recently seen considerable

success in playing certain types of games, most of which are dis-

crete, fully observable zero-sum games. Consequently there is cur-

rently considerable interest within the research community in in-

vestigating what other games this algorithm might play well, and

how it can be modified to achieve this. In this paper, we investi-

gate the application of MCTS to simulated car racing, in particular

the open-source racing game TORCS. The presented approach is

based on the development of an efficient forward model and the

discretization of the action space. This combination allows the

controller to effectively search the tree of potential future states.

Results show that it is indeed possible to implement a competent

MCTS-based racing controller. The controller generalizes to most

road tracks as long as a warm-up period is provided.

1. INTRODUCTION
Monte Carlo Tree Search (MCTS) is a best-first search method

that builds a search tree iteratively, and makes decisions based on

the statistical analysis of simulated play-outs [4]. The most popu-

lar version of MCTS, Upper Confidence Bound on Trees (UCBT),

was first formulated in 2006 [11]. The algorithm has since received

significant attention for its ability to make educated guesses in sit-

uations with search spaces too large for exhaustive search meth-

ods. MCTS received its initial breakthrough displaying signifi-

cant potential in turn-based games such as Go [19] and Hex [1].

It has since been adapted to real-time applications as well, such

as Ms. Pac-Man [16], Super Mario Bros [9] or StarCraft [6, 10].

These adaptations are non-trivial, as these games carry a very dif-

ferent set of challenges, and have necessitated the development of

new modifications of the core MCTS algorithm.

Similarly, simulated car racing presents interesting challenges

to artificial intelligence (AI) methods. Additionally, for computer

controlled agents it is so far difficult to perform at a competitive

level. The reasons for this are manifold. Car racing domains are

characterized by a wide, continuous action space, real-time deci-

sion making, and the need for at least some level of foresight if

optimal play is desired.

Figure 1: MCTS Car Controller in TORCS. The lower

right window displays a graphical representation of the tree

search, with blue dots representing tree nodes superimposed

on a two-dimensional drawing of the track model. A video

of the developed MCTS TORCS controller can be seen here:

https://youtu.be/GbUMssvolvU.

As far as we are aware of, MCTS or similar tree search meth-

ods have not yet been applied to simulated car racing, which is not

surprising, given how different car racing is from the sequential,

discrete, zero-sum board games on which MCTS has shone in the

past. On the other hand, testing the limits of a method and adapting

it to a new problem, can bring important insights.

The Open Car Racing Simulator (TORCS) is a popular platform

for experimenting with different AI methods in car racing. A va-

riety of approaches have been developed [3, 5, 18, 8, 12] and a

scientific competition (the “Simulated Car Racing Championship”)

is held annually under IEEE auspices [14, 15]. This competition

provides a set of rules that levels the playing field between poten-

tial solutions, as well as a programmatic client-server framework

that enforces these rules.

Most prevalent in the competition are solutions involving artifi-

cial neural networks (ANNs), evolutionary algorithms or a combi-

nation of the two. Planning algorithms in general, but tree search

methods in particular seem very under-represented, making it an

ideal avenue to explore. Furthermore, ANN-based approaches of-

ten lack foresight, and creating a controller that generalizes across

different tracks can be difficult. A planning-based method is a nat-

ural candidate for approaching the problem from a different angle.

Given the lack of research on applying planning algorithms to

car racing, and drawing inspiration from the recent successes of

MCTS, this paper presents a TORCS controller that makes its de-

cisions exclusively based on tree search with simulated play-outs.

The goal of this article lies in examining the feasibility of MCTS

in TORCS. Our solution has been developed within the confines
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of the competition framework, partly for its convenience, but also

for the sake of comparing our results with results from previous

competitions as a general measure of utility.

2. RELATED WORK
Cardamone et al. [5] successfully applied a genetic algorithm to

find the optimal race line in TORCS from internal track file data. In

racing, a race line is a path along the track that a driver may follow

to complete it. This is used to great success, beating the heuristic

approach by “Simplix" [20], the best controller that was available

for TORCS in 2010. However, in the TORCS competition, the con-

trollers do not have direct access to the track files, thereby limiting

the application of Cardamone et al.’s approach. Their work does

however highlight the strength of a controller that is knowledge-

able about the shape of the track ahead of it, allowing it to optimize

the path it will follow.

Quadflieg et al. created a model of the track solely from sensor

data [18], arguing that obtaining knowledge of the track can pave

the way for a wider application of planning algorithms. The track

construction algorithm in this paper takes inspiration from their ap-

proach, but to run the simulated MCTS play-outs, a more detailed

model than their method can provide becomes necessary.

Research into modeling a forward model has been done by Butz

et al. [3]. In their work, its application is directly in the sensor

space and not combined with a track model, which limits its use in

regards to planning, and in particular with regards to a tree search

in the space of the car’s planar positioning. However, it does make

for an interesting comparison between utilizing a learned forward

model and using a physics-based abstraction of the internal engine,

such as in this paper.

3. MCTS FOR SIMULATED CAR RACING
Monte Carlo Tree Search is a best-first tree search algorithm, in

which the search space is probed by stochastic sampling through

simulated play-outs. A node in the tree represents a state in the

search space, and one new node is added to the tree at every iter-

ation of the search. The search is anytime – it can be halted and

polled for an answer after any number of iterations. One itera-

tion involves four steps: tree policy, expansion, default policy and

backpropagation [4]. MCTS relies on a forward model of the game

mechanics to perform simulations. Sometimes the game itself pro-

vides this, in other cases, such as ours, the model is an external

approximation (see section 3.1).

During the tree policy step, child j is selected to maximize the

following formula:

UCBj = X̄j + CP ∗

√

2 ∗ ln(n)

nj

, (1)

where UCBj is called the Upper Confidence Bound for node j,

X̄j is the average value of node j, nj is the number of times node

j has been visited, and n is the total number of visits to the parent

node. The CP constant determines the weighting between explo-

ration (trying out a less-visited node) and exploitation (selecting a

so far seemingly promising node).

The node found with the tree policy is expanded by applying the

forward model one time-step. In the default policy step, a random

play-out is performed from the newly expanded node. In classic

MCTS, this simulation runs until a terminal state is reached. Our

solution contains a configurable limit on the number of time-steps a

simulation may run. Therefore the approach requires a heuristic for

evaluating the desirability of a given state at any time-step, which

is further detailed in Section 3.3. As MCTS is anytime, it can be

stopped at any point during the search. The longer it gets to run,

however, the more likely it is to converge on an optimal solution.

Applying MCTS to car racing, especially when part of the of-

ficial racing competition, brings its own challenges. The tick or

time step under the competition framework is a mere 20 millisec-

onds long [13]. This makes sure the car is updated with a relevant

view of the game world fairly often, but it also puts a limit on the

runtime of the decision-making algorithm. For this reason, the tree

search controller in this paper is designed to cache its search be-

tween ticks, making its decisions within an extended time interval.

The car controller records the current state at time t, and applies

the forward model once to obtain a state at time t + tstep, where

tstep is the configurable decision time step. While driving towards

this state in-game by repeatedly applying the best decision from the

previous search, the controller will utilize its time budget searching

for a decision from t+ tstep.

In addition, utilizing tree search is intended as a mechanism for

planning ahead, so it is natural that the presented approach involves

a longer period of time between the steps at which new decisions

are considered. In other words, a good decision should not have to

be reconsidered immediately.

It is also important to note that the MCTS controller has not been

augmented with special case handling such as ABS (anti-lock brak-

ing system), ESP (electronic stability program) or off track recov-

ery that could potentially increase its performance. This decision

stems from the goal to first have the MCTS controller stand on its

own in order to better assess its feasibility.

3.1 Simulation Framework
In order for MCTS to work, two things are needed: a forward

model capable of predicting future game states based on what ac-

tions are taken, and an evaluation function to probe the desirability

of a given game state. The TORCS competition framework only al-

lows access to data that is relative to the car’s position on the racing

track at any given time step, which is not sufficient for simulating

future time steps that require static knowledge of the track’s shape.

However, the rules of the competition [13] allow for a warm-up pe-

riod before the actual race begins. The presented approach takes

advantage of this warm-up period by driving the car slowly and

steadily around the track, recording sensor data for the construc-

tion of a track model.

This gives rise to a “simulation framework” consisting of three

components: the track model, the forward model and the evalua-

tion function. The track model is mapped out in Euclidean space,

allowing the forward model to be implemented with vector-based

calculations based on the laws of classical physics. We found this

approach to a forward model more tractable than one based directly

on the sensor data. Thus, two transformations are needed:

• Transformation from observed states in the sensor space to

states in Euclidean space, for use with the forward model

during simulations

• Transformation from states in Euclidean space back to the

sensor space at the end of simulations, for use with the eval-

uation function

The control flow for one iteration of the algorithm can be sum-

marized as follows:

1. Observe a state s in the sensor space

2. Transform s to the equivalent state σ represented in Euclidean

space



3. Perform Monte Carlo simulations on σ by repeatedly

applying the forward model

4. Transform σ back to a simulated state s′ represented in

sensor space

5. Evaluate s′ with the evaluation function

The forward model has been implemented by approximating the

relationship between the two dimensions of our action space and

the car’s position and velocity in Euclidean space, i.e. between

pressure on the gas pedal and acceleration, and between rotation

of the steering wheel and angular velocity. These functions have

been inferred through experimentation and regression analysis on

recorded sets of data.

It is important to note that for the initial experiments in this pa-

per, data has only been collected on tarmac (regular road) tracks,

limiting the utility of our forward model on other track types, such

as hill and dirt tracks. We also lacked the means to collect accu-

rate deceleration data. How this may have affected the controller is

discussed in Section 5.

3.2 Action Space
An action in TORCS allows the control of a number of factors,

but we have limited these to acceleration, braking and steering.

Transmission is controlled by a deterministic algorithm based on

RPM, and acceleration/braking is further reduced to a single value

gas for simplicity, with a negative sign representing brake.

Thus an action is defined as the combination of only two val-

ues: one representing gas or brake pressure, and one describing

steering. Both are continuous values, and are discretized in the in-

terest of having as small a branching factor as possible. Both gas

pressure and steering are discretized into intervals of 0.2 and 0.1,

respectively, and only selection of neighboring values to the previ-

ous action are allowed. For example, with a current gas pressure

of 0.4 and an interval of 0.2, it will only be possible to take actions

with a gas pressure of either 0.2, 0.4 or 0.6.

While this method limits the possibility to make sudden and

drastic changes in action, the discretization allows for a finer ac-

tion granularity, reduces skidding (which is currently not part of

the forward model), while still maintaining a low branching factor.

Braking and steering at the same time are also not allowed, as this

combination almost always leads to skidding.

3.3 Evaluation Function
Equation 2 describes the formula for evaluating the desirability

of a given state. The state space does not contain successful termi-

nal states, since the benchmark is based on driving as far as possible

within an unlimited number of laps. Unsuccessful terminal states

(denoted by ⊥) occur when the car is outside the marked bound-

aries of the track:

k =
d− d0

1

2
amaxt2 + v0t

,

k⊥ = k
2
∗ P,

(2)

where d is the distance along the track line in the given state, d0
is the distance along the track in the state at the root of the search

tree, v0 is the velocity at the root, t is the time difference, k is the

value in a non-terminal state and k⊥ is the value in a terminal state.

P is a configurable constant between 0 and 1 (the penalty factor).

The denominator 1

2
amaxt

2+v0t describes the equation of motion.

Terminal states are penalized by being squared. Since values

themselves fall between 0 and 1 (ideally), this penalizes high-valued

Table 1: Average Transformation Error

Sensor Avg. discrepancy CG Speedway

Distance from start 0.053 m 2057.56 m

Track position 0.027 m 15 m

Angle to track 2.2 ∗ 10−5 radians N/A

Table 2: Simulation Framework Performance Impact

Measurement No. of iterations Fraction

Isolated tree search 1937.7 100%

Only transformation 1413.8 73%

Only forward step 1242.3 64%

Full framework 842.2 43%

terminal states less than low-valued ones. For configurability, this

is further modified by the parameter P .

A heuristic that normalizes the distance traveled along the track

line by the total length of the track is not ideal, since this yields

values that grow increasingly larger as the game progresses. The

CP constant of the UCT formula in Equation 1 has to be config-

ured based on the interval of the value range. Thus, the formula in

Equation 2 yields a value relative to the local outset of the search.

A value of zero means the car has been motionless for the full du-

ration of the time difference t between the local outset and the cur-

rent state. A value of one means the car has accelerated as much

as possible, following the track line perfectly for the full duration.

The intention is to have an admissible heuristic, i.e. bounded by the

maximum acceleration amax. However, since the distance is mea-

sured along the middle of the track, and not along the optimal race

line [2], we cannot make this claim.

4. RESULTS
In order to properly review the performance of the MCTS car

controller, it is important to first establish the impact of the sim-

ulation framework on the accuracy of the controller’s decision-

making. Table 1 shows that the transformations between states in

the sensor model and vector model are off by a slight margin of er-

ror. The second column displays the average discrepancy between

the input state and output state for the given sensor after two reflex-

ive transformations, measured every tick for five seconds, totaling

250 measurements. The third column displays the total dimensions

of the CG Speedway track for comparison. During tree search,

states are not transformed back and forth multiple times, so a dis-

crepancy of five centimeters is acceptable, and unlikely to be the

cause of suboptimal benchmarks of the controller as a whole.

Table 2 gives an idea of how much the simulation framework

impacts the runtime performance of the tree search algorithm. The

number of iterations possible with a timeout of ten milliseconds

on an isolated tree search with no simulation framework being in-

voked are compared to the same benchmark with transformations

and/or forward stepping being applied in the search. Having the full

framework present cuts the number of iterations to 43% compared

to its absence.

Figure 2 shows how our own controller, labeled TORCS MCTS,

compares to the results of the car racing competitions held in 2008

[14] and 2009 [15]. For the competition, a set of three tracks is se-



Figure 2: Car racing competition results on tarmac roads from 2008 (left) and 2009 (right).
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lected and each controller is run ten times on each track for 10,000

game ticks. The median of the distance raced is then used as a

score. A video of the MCTS controller in TORCS can be seen

here: https://youtu.be/GbUMssvolvU.

In 2008, five controllers were submitted and trialed. Three of

these, namely Tan et al., Lucas, and Kinnaird-Heether et al. , had

major parts or even all of their controlling logic handwritten. Perez

et al. used a genetic algorithm, and Simmerson used NEAT. In

the 2009 competition, twelve controllers were submitted at various

stages, of which the five best controllers all had handwritten parts,

including one or more for crash recovery, ABS and ESP, which is

currently not part of the MCTS controller (Section 3).

The three selected tracks in the 2008 competition consist of one

hill track, one tarmac track, and one oval track. For the 2009 com-

petition, the tracks consist of one hill track, one dirt track and one

tarmac track. As our forward model is based on data from tarmac

tracks, we are unable to compete on dirt and hill tracks; our scores

were consistently lowest on these tracks. As there are no relevant

comparisons to make beyond this fact, these results were omitted

from Figure 2.

Compared to the 2008 controllers, the presented MCTS con-

troller makes first place on Street-1 and hits the top three on Speed-

way. The 2009 controllers drive significantly better, and the MCTS

controller only achieve scores comparable to the bottom three con-

trollers. Comparisons were not made with more recent competi-

tions due to their use of auto-generated tracks. The readily available

standard tracks of previous competitions thus provided the only re-

liable track-by-track benchmark.

5. DISCUSSION
The developed MCTS controller handles tarmac roads well, and

by fine-tuning the various parameters an increase in the controller’s

performance on the benchmarks was observed. The driving behav-

ior shows promising tendencies, such as accelerating on straight

sections and braking before turns.

The three tracks chosen for the competitions usually contain at

least one track that is either a dirt track or a hill track. A dirt track

has low traction, which causes high speed on acceleration to spin or

skid the car. A hill track has steep climbs and descends, making the

car accelerate slower or faster than on a flat track. Both these types

change the basic premises for how the car behaves on the track.

Since these variations are currently not part of the calculations in

the forward model, the MCTS controller is unable to race these

tracks at competitive speeds. In the future, changes to the forward

model together with tests of traction during the warm-up period

will likely significantly increase the performance on dirt and hill

tracks. Collecting more accurate data on acceleration, deceleration

and angular velocity, possibly in combination with a sophisticated

learning algorithm rather than regression analysis, could further im-

prove the performance of the controller.

As the number of actions was limited to discourage heavy brak-

ing and steering at the same time, bringing the car in a good po-

sition before a corner is crucial for competitive racing. If the car

is on the wrong side of the track before a corner, it has to change

positions before being able to hit the brake. This requirement can

lead to a variety of unforeseeable outcomes, from not taking the

corner optimally to not taking it at all. How the controller behaves

on a very sharp hairpin (turn 11) in the provided Street 1 track,

exemplifies this challenge. The speed of the car needs to be very

low, but the turn ends the longest straight segment of the track. The

time it takes to brake is therefore high, as the car enters the brak-

ing zone at high speed. If the car is not positioned well when the

search reaches the upcoming turn, it needs to adjust its position to

make a proper entry. The time it takes to make this adjustment pre-

vents a successful deceleration in time, and the car either comes to

a complete halt or leaves the road. We attribute this behavior to

the relatively low depth of the search tree. With a greater depth,

the controller might be able to predict that the turn is coming up

sooner, thus repositioning the car before entering the brake zone.

6. CONCLUSION
This paper presented an MCTS-based controller for the TORCS

racing game. The search is tuned to maximize the distance raced

within the allotted time. To perform simulations, a track model

was built and better driving capabilities were obtained by pruning

the action space and removing actions with outcomes known to be

undesirable. The MCTS controller handles tarmac tracks well, but

fails when driving on dirt or hill tracks. This discrepancy is to be

expected as the forward model is currently optimized for tarmac

roads. Compared to the results from the 2008 and 2009 car rac-

ing competitions, an MCTS-based approach may present a viable

option for controlling racing cars at competitive speeds.
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