
A Software Studies Approach to Interpreting Passage

Dylan Lederle-Ensign
Center for Games and

Playable Media
UC Santa Cruz

dlederle@soe.ucsc.edu

William Robinson
Concordia University

Technoculture, Art and Games
(Research Centre

william.robinson@concordia.edu

Johnathan Pagnutti
Center for Games and

Playable Media
UC Santa Cruz

jpagnutt@soe.ucsc.edu

Michael Mateas
Center for Games and

Playable Media
UC Santa Cruz

michaelm@soe.ucsc.edu

ABSTRACT
The following paper argues for the value of critically ana-
lyzing game code, demonstrating two potential methodolo-
gies. These draw from literary theory and software studies
to reach hermeneutic readings of procedures. We use Ja-
son Rohrer’s Passage as a case study to demonstrate these
methods. Passage is one of the most frequently studied, dis-
cussed and taught works in game studies. However, many
critics take for granted the claims that Rohrer makes in his
creator’s statement [16] regarding the game’s message. This
paper seeks to complicate several of these claims, particu-
larly regarding the balance between marriage or exploration,
and their rewards.

We explain in detail the steps we undertook to investi-
gate the game’s code. First, a technique of closely playing
the game, following a theorycrafting approach [15], was de-
ployed to make sense of four particularly opaque lines of
code. By combining close play with close readings of the
code, not only did we solve a previously unconsidered puz-
zle, but added additional richness to existing interpretations
of Rohrer’s work. Second, we produced modified versions
of the game, following what McGann and Samuels call the
critical practice of deformance [12]. We replayed these dis-
torted version’s of the game in order to enlarge our consid-
erations for its design. In doing so, we came to understand
the rhetorical emphases placed by Rohrer and the shifts that
small changes could have. Both of these techniques were
used in our interpretation of Passage, and we present them
as methods which other scholars can build on and use with
other open-source games.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games

General Terms
Game studies, Software studies

Keywords
Passage, Jason Rohrer, Critical Code Studies

1. INTRODUCTION
Despite Game Studies’ interest in digital games, the field has
paid comparatively little attention to the algorithms under-
lying the medium. The following paper argues for the value
of game code analysis and works towards potential method-
ologies. Platform studies has by necessity done some of this
work in its appeals to analyzing game hardware and soft-
ware along with the affordances and constraints they place
on media (see Montfort and Bogost 2009 [13]; Salter and
Murray 2014 [17]). Rather than a focus on platforms, how-
ever, this paper explores the meaning of code in the con-
text of a game whose processes and mechanics are intended
to be read metaphorically (Bogost 2007 [2]; Treanor and
Mateas 2010 [22]). Where analyses focusing on operational
logics focus on the abstract processes underlying represen-
tation, (Mateas and Wardrip-Fruin 2009, [11], Fox Harrell
2013 [7]), in this paper we focus on a detailed code-level
analysis. Code-level readings of games do exist (Sample
2013 [18], Marino 2006 [10]), but these have tended to
focus on comments and variable names, rather than ana-
lyzing the relationship between the code-level expression of
process and player interpretation. Drawing from works in
software studies (Fuller 2008 [5]) and game studies, we ar-
gue that appeals to code may offer insights into the devel-
opment process, and can clarify ambiguities about a game’s
procedures. Specifically, we engage in a code-level analysis of
Jason Rohrer’s art-game Passage (2007) to understand the
relationship between code-level development decisions and
player interpretation. Despite having been theorized by mul-
tiple game scholars (for instance: Parker 2012 [14]; Bogost
2008 [3]; Whalen 2012 [24]), the fact that Passage’s code
is open-source has never been called into question, never

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).

mind examined. While its code is not representational in
the same ways as its output, it does hold meaning that is
detectable upon a procedurally literate inspection. What is
more, as an artwork with its computational underpinnings
left intentionally accessible for public consumption, it is not
unreasonable to consider it in this way.

Given the scope of this paper and the fact that Passage
has thousands of lines of code, only two portions of Rohrer’s
work will be discussed here. The first relates to the hidden
contents of in-game chests. We use this portion to illustrate
our use of Close Code Playing and the ways in which it re-
lates to Rohrer’s use of scoring in Passage . In his creator
statement, Rohrer discusses the game’s metaphoric chests,
suggesting that ”not every pursuit leads to a reward—most
of them are empty.”Rohrer continues the metaphor, explain-
ing that these chests are marked with a sequence of gems
and that ”During your lifetime, you can learn to read these
sequences and only spend your precious time opening worth-
while treasure chests.” Current writing on Passage has not
addressed this puzzle, which we solved using a combination
of close inspection of the code and iterative playing for data
mining similar to theorycrafters (see Paul 2011 [15]).

The second section of code is responsible for the game’s
procedurally generated labyrinths. We use this portion,
combined with knowledge of the codebase gained from our
earlier code reading, to create small changes that noticeably
alter the game’s dynamics. We draw this critical practice
from literary criticism, much like the previous use of close
reading, but instead focus on what Jerome McGann and Lisa
Samuels dub ”Reading Backwards” or deformance. We ex-
amined the map generation by altering the code to produce
new playable versions of the game . We call this process of
code manipulation and recompilation for critical purposes
”procedural deformation”.

While both sections of code were selected because they are
illustrative of Rohrer’s style of coding, each also illustrates
a proposed methodology for game code studies: Close Code
Playing and Procedural Deformation.

This paper is divided into three sections. First, a brief
review of software studies literature as it relates to game
studies. Second, a close reading and explanation of salient
points in Passage’s code will be provided to give concrete
examples of the object in question. Third, the code will be
modified to create alternative instances of Passage, shedding
light on the space of possible interpretations of the game. As
it stands, game studies has largely ignored close analysis of
code, which is not surprising. After all, players rarely if ever
have access to it, and even if they did, it would be largely
meaningless. Beginning with the assumption that investi-
gating code may be fruitful, several avenues open up, none
of which this paper can map in any complete way. Instead,
we hope to demonstrate the game studies possibilities that
open up when engaging in a code-level analysis and offer
methodological directions for future work in this area.

1.1 Why Passage
In his creator’s statement, Jason Rohrer explains that one’s
life in Passage involves exploration and accumulation [16].
For scoring purposes, these goals are competing, because at-
tempting to excel at one will often be to the detriment of
the other. Several critics have lauded Rohrer for his elegant
ludic metaphor, particularly its balance and ”openness to
interpretation”. Felan Parker has explored this particular

reception in his essay ”An Art World for Art Games,” [14]
in which Passage is offered as a case study for the institu-
tionalization of games as art. Parker’s work painstakingly
explores the various actors such as the Kokoromi game col-
lective; the Gamma 256 event; the retro aesthetics of Pas-
sage; the auteurist stance taken by Rohrer in programming
everything himself; Rohrer’s artist statement; and the sets
of relevant critics. Despite this, Parker elides one of Pas-
sage’s most salient properties. It is an open source game.
In fact, it was the only open source game from the Gamma
256 gallery showing where it was launched. Not only does its
ontological status, as a freely available and remixable object,
change its social positioning and value, but it allows critics
and fans to inspect its code. It is an associated set of sig-
nifiers which not only complicate receptions of Passage, but
offer interesting readings in their own right. While Passage
is one of any number of games worth exploring, we selected it
for particular pragmatic reasons. Firstly, the game is open
source. This means that we have access for both reading
and re-compiling its code, without purchasing the rights to
what would otherwise be proprietary or simply unavailable.
Secondly, Passage is for better or worse a piece of the game
studies canon. Scholars such as Ian Bogost (2011) [4], Fox
Harrell (2013) [7], Felan parker (2012) [14], Mike Treanor
(2011) [21], John Sharp (2012) [19], and Alison Gazzard
(2013) [6] have all written about the game. Finally, Pas-
sageis relatively small, as far as game software goes. It is
possible to read all relevant lines of code, re-write some of
them several times and play the 5-minute game to comple-
tion in each new instance. Being able to map out the game’s
possibility space through algorithmic modification has been
fruitful and would otherwise be impossible with longer titles
requires hours if not days to play through.

2. SOFTWARE STUDIES IN GAME STUD-
IES

Software Studies is an emerging field in the humanities,
which focuses on software, its relation to culture, and how
it is situated in the world [5]. The Software Studies book
series from MIT Press declares that ”Software Studies uses
and develops cultural, theoretical, and practice-oriented ap-
proaches to make critical, historical, and experimental ac-
counts of (and invterventions via) the objects and processes
of software” [23]. Given that video games are software ob-
jects, this perspective is likely to reveal new opportunities
for critical interpretation. There have been software studies
of video games (Harrell 2013 [7], Sample 2013 [18], Kazemi
2014 [8]) but given the importance that software’s materi-
ality has for the play experience of video games, the inter-
section between software and game studies has been under-
explored and underdeveloped. Fully examining all of the
ways that a software studies approach can be applied to
games is a large project, beyond the scope of this paper. In-
stead, we will examine one strand of previous work on which
we build, critical code studies (Marino 2006 [10]), and un-
pack its promises and limitations.

Video games are made with code, but can reading this
code inform our critique? A critical code studies perspec-
tive takes the code as its subject, as an aesthetic object in its
own right. While this can be a productive approach, code
does not on its own stand in for a game. A code studies
perspective is only relevant to game studies when it is com-

bined with a detailed understanding of the play which that
particular code enables. In the same way that a game is not
solely its rules, the rules are not solely their code. The code
is, in some ways, far removed from any play experience we
might care about when the software is operated by a player.
However, particularly in proceduralist games, in which the
rules or procedures are a primary form of expression (Bo-
gost 2011 [4]), examining the code that defines these rules
can inform our critique.

There are many questions in game studies which cannot
be answered by code studies alone. Code level analysis is
useful for answering highly specific questions, particularly
about the construction of rules. This is understandably a
limited approach, from both directions. A well constructed
rule set should be understandable by an informed critic sim-
ply by playing, limiting the effectiveness of code reading.
Similarly, extracting the gameworld, its rules and dynamics,
from code is near impossible However, when there is ambi-
guity about the exact construction of a particular rule, code
level investigation can help resolve it. If the code of a game
is available, which is its own challenge, we encourage more
scholars to open their text editors and look at it.

3. INVESTIGATION OF PASSAGE
This section details extensively the methods we used to

study Passage. While the resulting readings of Passage con-
tribute to the critical discourse around the game, our focus
on method is intended to help researchers understand ways
they can incorporate software studies into their game studies
work.

3.1 Chest Puzzle
Close reading is a core methodology in literary criticism,
developed to analyze short passages of text. Particular em-
phasis is placed on word choice, localized meaning, syntax
or other structures relating to the immediate and the minute
detail. This method has been explicitly deployed in games
studies in order to unpack similarly small portions in game
play [1]. This was our first approach to Passage, particularly
because it appeared at first glance applicable to an opaque
element in the game. Rohrer, in his creator’s statement [16],
describes the chests that litter the playing field and how the
player comes to learn about their contents:

Over time, though, you can can learn which pur-
suits are likely to be rewarding. Each treasure
chest is marked with a sequence of gems on its
front, and this sequence indicates whether the
chest contains a reward. During your lifetime,
you can learn to read these sequences and only
spend your precious time opening worthwhile trea-
sure chests.

Critics of Passage take Rohrer’s statements for granted,
quoting them liberally without unpacking how his metaphors
are constructed. While accepting Rohrer’s own explanations
may not be problematic for the majority of the metaphori-
cal elements used in Passage, these chest puzzles are at no
point explained in Rohrer’s writing or discussed in the crit-
ical literature. Indeed, in our own playing, despite our best
intentions, we were never able to crack the chest codes and
save any reasonable amount of time. They appeared to be
random. We set out to find their solution. Our searching
led us to the following lines in game.cpp, the core game file:

514 // the gem that marks chests containing points
515 int specialGem = time(NULL) % 4;

Setting aside for the moment an explanation of what this
code means, let us continue following the places the variable
specialGem is used. Further down the same file, we find the
code that executes when the player touches a closed chest.
This is the only other place that specialGem appears in the
code:

1183 if(getChestCode((int)playerX,
(int)playerY) &

1184 0x01 << specialGem) {

Do you see the solution to the chest puzzle now? Of course
not. We will return to this point below, but these two snip-
pets of code begin to give a sense of the futility of isolated
code reading as a method for understanding the game ele-
ments they implement. These two lines leave us with many
more questions than answers. The answers to these ques-
tions are all in other parts of the code, and we can search
deeper to answer them. At this level of detail we still have
no clear solution to the chest puzzle.

The simplest elements in these two lines are the play-
erX and playerY parameters to the function getChestCode.
These indicate the position of the avatar within the grid of
the world, with (0,0) being the top left of the world. Next,
we need to understand what this function does. A search
within this file reveals nothing, but within the folder we can
find another file, map.cpp, which contains the function def-
inition:

191 unsigned char getChestCode(int inX, int inY)

This is the beginning of the function definition. There
are several clues here as to how it works, as well as several
glaring questions. First, following C language syntax, line
191 declares a function. It takes two integer parameters,
and whatever data it returns must have the type unsigned
char, or unsigned character. For our purposes, this means it
will return a single byte, which in this case is not actually
being used as a character. Recall that the output from this
function is being used to determine if there is treasure in the
chest at a particular (x,y) coordinate. Without any attempt
to understand the body of this function or how it calculates
this byte, we can return to game.cpp and try to decipher
some of the chest code.

We now understand line 1183 to mean the following: a
byte, presumably representing the gems at the front of a
chest, is calculated using the location of that chest. This
byte is then bitwise AND-ed (not logical AND) with an-
other byte (0x01) that has been left-shifted by specialGem.
This code is making use of a binary bit vector representation
of the chest puzzle, rather than higher-level representations
that might more typically be used, such as an array.

By making use of such low-level programming, Rohrer
makes his work leaner at the cost of increasing its opac-
ity. While this might seem reasonable, the speed gained is
meaningless in the face of technologies available to Rohrer
even ten years prior. Programming this way demonstrates a
preference for ”coding to the metal”. Rohrer, in addition to
gaining the functional results he is after, is making a state-
ment akin to ”waste not, want not”. As mentioned earlier,

given that this code is open source, positioned as additional
available signifier for readings of Passage, it is not unrea-
sonable to associate this reading of Rohrer’s code with his
game’s larger message of living efficiently to maximize gains.
Setting this additional hermeneutic work aside, we can con-
tinue with the code to demonstrate how this interpretation
plays out.

In map.h, a header file that is used to declare functions or
constants used in map.cpp, we find the following constant
declarations:

// 8-bit binary indicating which of six external chest
gems are present

#define CHEST_RED_GEM 0x01
#define CHEST_GREEN_GEM 0x02
#define CHEST_ORANGE_GEM 0x04
#define CHEST_BLUE_GEM 0x08
#define CHEST_YELLOW_GEM 0x10
#define CHEST_MAGENTA_GEM 0x20

These constants are not used anywhere in the codebase.
They were likely used for debugging. CHEST RED GEM
is the byte 0000 0001, CHEST GREEN GEM is 0000 0010,
and so on. Each one moves the 1 further down the byte.
While initially opaque, it is a reasonable and elegant solution
upon closer inspection. To Rohrer, or others with experience
writing byte-manipulating C code, this is perhaps just as
natural an implementation as an array would be to someone
reared on higher level scripting languages.

Returning back to map.cpp and getChestCode, we find a
fifty line comment among the code, explaining in extensive
detail a latent bug, present all along, that was only discov-
ered when Passage was ported to iPhone. The function is
supposed to return a 6-bit string representing the gem puzzle
(which gems are present). Rohrer explains in the comment
that, while all six gems appeared, ”the 6-bit gem strings were
always of the form 00XXXX or 11XXXX where XXXX is a
random 4-bit sting (sic)...So, 2 of the gems were tied to-
gether in their on/off status, essentially turning 6 gems into
5.”

This is a very subtle bug, and only became evident when
switching to a different platform. The exact reason for the
bug has to do with the way platforms handle casting from
unsigned to signed integers, and is not particularly impor-
tant for our purposes here. After porting to the iPhone, it
resulted in a major bug in which ”half the treasure chests,
on average, had no gems at all.” The distribution of chest re-
wards is a key element in Passage’s procedural meaning, as
we will discuss further in the procedural deformation section.
Investigating this major bug seems to have led Rohrer to
understand the original bug with the gem strings. Rohrer’s
response to this discovery is fascinating:

Of course, a proper fix, as described above, would
go beyond just making it work on these plat-
forms, but would also change the behavior of the
game (those last two gems would no longer be
tied together in their on-off status).

After much deliberation, I came to the following
solution:

The following code emulates 2’s compliment cast-
ing, whether the platform does it or not, making
behavior on all platforms identical.

(And preserving the original bug!!)

In all distributed versions of Passage, this original bug
is preserved, tying the yellow and magenta gems together.
This example demonstrates several things which are criti-
cally relevant. First, its an example of the unexpected com-
plexity that underlies computational media. Glitches are
everywhere and they can be very difficult to notice, espe-
cially in single developer teams without extensive quality
assurance departments. These glitches may affect gameplay,
which can change player interpretations (Lederle-Ensign and
Wardrip-Fruin 2014 [9]). Second, Rohrer recognizes this and
demonstrates a concern with preserving gameplay elements
between Passage versions. While there is no evidence than
any player would notice this, as there is no record of players
discussing the chests, Rohrer considers them important. As
a ”proceduralist game” (see Bogost 2011 [4]; Treanor and
Mateas 2011 [21]) Passage’s processes must be consistent
across platforms to avoid a schism in interpretation. This is
a fact that Rohrer is not only aware of, but considers impor-
tant enough to code a workaround that preserves the ”bug”
across platforms.

Intriguingly, our solution to the chest puzzle was not found
in the code. Rather, our code level investigation pointed us
in the direction of an instrumental way of playing that led to
solving the puzzle. Even with a relatively clear understand-
ing of the way the puzzle was implemented, we continued to
miss the key. Our first attempt at solving the chest puzzle
through play led us to record each gem string and whether
or not the associated chest contained a star (and thus an in-
game of value 100 points). A half-dozen games were played
with the intent of getting the most possible chests to pro-
duce enough data for pattern recognition. The resulting
spreadsheet indicated that chest codes did not reliably indi-
cate the contents of a given chest because the same chests
would appear with and without stars inside. Upon inspect-
ing the game code, it became clear that there were in fact
five distinct sets of chest codes, one which would be ran-
domly chosen for a given playthrough. Recall:

515 int specialGem = time(NULL) % 4;

The ”% 4” creates five possible permutations, something
we had initially missed. The time function returns the cur-
rent time (in milliseconds) and is executed when the game
starts, making any prediction of which gem will be ”special”
impossible. By playing several games and attempting to
create enough data to perform pattern recognition, we in-
advertently produced contradictory data. By this point, we
began to doubt the efficacy of Rohrer’s design, as we asked
ourselves how anyone could possibly find enough patterning
in the modicum of chests available in a given play through to
act any differently. We restarted the empirical data collec-
tion, this time clearly denoting which playthrough a given
code was found in. After eight playthroughs the spread-
sheet remained opaque. The sheet was then color coded for
clarity, at which point the answer to our question became
intelligible. Not only was this practice aligned with close
reading, but also theorycrafting. Chris Paul has written
on the topic in his essay ”Optimizing Play,” [15] whereby
players in a given game community explore the hypothetical
code of games through empirical experimentation. Not only
are these players interested in how a game works, but do so
in order to play the game more effectively.

In a given playthrough, only a single gem matters. For ex-

ample, in one game, all chests with a green gem will contain
stars, and any without the gem will not. This is what the
code refers to as a ”special” gem; it denotes the chests that
contain rewards. After understanding the solution and re-
viewing the code which implemented it, we were astonished
we had missed it the first time through. Once again, this
points to the difficulty of understanding code in isolation
from the associated game processes.

Having understood the chest codes, we began playing once
more, attempting to reach higher scores. The results were
remarkable, with large increases in final scoring. The se-
mantic content of the game changed at this point. It was
no longer possible to reach comparable scores with a spouse
than without. In Passage there is a suggested goal made
available by the presence of the high score. We have already
discussed how Rohrer emphasizes efficiency in this respect.
Given that the game is about living life, the suggestion read
here is that not all lives are equally successful, particularly
because Rohrer has taken the time to abstractly represent
things numerically, where this number refers us to the high
scores of game culture (i.e. that which is desirable). When
one plays Passage and attempts to reach a high score, it
appears at first that both paths, choosing a wife or going
after chests alone, lead to similar outcomes (about 700-1000
points). Harrell has argued that this form of balancing leads
to a very similar claim to Robert Frost’s metaphoric The
Road Not Taken, where the paths ”both equally lay” [7].
Rohrer’s simulation of life becomes a game by directing us
to achieve a high score, leading us to realize that there are
equally good lives to lead and that neither is preferable.

While this reading of Passage is somewhat unromantic,
as we have Rohrer contemplating life having not married
his wife, and realizing it would be about equally valuable,
it is not complete. Instead he hides this fact in plain sight,
appearing content to have selected company for his life’s
journey. He suppresses his anxious feelings of thwarted po-
tential, allowing only those who, like him perhaps, obsessed
with code, design and puzzles to see how limited he feels.
His memento mori is cryptically tragic.

3.2 Map Generation
Passage represents life’s challenges with a maze...The
world in Passage is infinite.

-Jason Rohrer’s creator’s statement [16]

Our next question was about Passage’s map. Following
Rohrer’s claims of infinity, it appears to be procedurally gen-
erated. What procedure produced this map? What is the
maze like? How are the chests placed? These questions lead
to the deeper question of how we can understand and cri-
tique a generative process when only experiencing a small
slice of its output. In this section we will build towards that
question by exploring Passage’s map generation code.

The first thing we noticed, before even looking at the
code, is the image file ”tileSet.png” (Figure 1) within the
gamma256/gameSource directory. This is where the tex-
tures for the world are stored, and a quick play through the
game confirms that the top row of tiles are the floors for
each section of the passage world, and each column corre-
sponds to a column of game world. These textures are not
procedurally generated. Instead, they were pre-authored,
presumably by Rohrer, and are applied to level geometry
after it is generated by some process.

Figure 1: tileSet.png

The next step in determining how the level geometry is
generated leads us to map.cpp. Its header file shows two
functions that may be the answer to our questions: isBlocked
and isChest. Both take an (X,Y) pair and return a charac-
ter. To figure out why they return characters and what they
mean, we must look at the context in which these functions
are used. A clearer understanding of the purpose of the
function can help answer questions about why it was imple-
mented in a particular way.

In this case, isBlocked is primarily used in another file,
World.cpp. This file contains extensive graphics operations
which build the screen in memory before sending it to a
library that displays it on hardware. As you might expect
from the name, this function is being used to determine
if a particular tile should render as an empty space, or as
a wall. Returning to its implementation, we can begin to
understand the way Passage generates maps. The private
function isBlockedGrid, where the work is done, begins with
a couple of basic conditional checks.

93 char isBlockedGrid(int inGridX, int inGridY, char
inDoNotRecurse) {

94
95 // wall along far left and top
96 if(inGridX <=0 || inGridY <= 0) {
97 return true;
98 }
99
100 // empty passage at top
101 if(inGridY <= 1) {
102 return false;
103 }

A return value of true means there is a wall, and line 96
draws one along the top and side border. Line 101 ensures
that the first row of the Passage grid is left blank, which the
comment implies is another meaning of the title. These two
lines ensure the world conforms to Rohrer’s level design, re-
gardless of any randomness. The core of the map algorithm
can be found a little further down.

Figure 2: Zoomed out picture of one map

122 // blocks get denser as y increases
123 double threshold = 1 - inGridY / 20.0;
124
125 double randValue = noise3d(inGridX, inGridY,

seed);
126 char returnValue = randValue > threshold;

A threshold is defined, scaling in direct relation to the
depth in the world. Then a random value is calculated,
using noise3d. Finally, if this random value is larger than
the threshold, then this grid square has a block in it. This
is almost the entirety of the maze generation, apart from
another function that fills in squares which are surrounded
on all sides. This method of maze generation does no pre-
calculation. It is simply a way of filtering and constraining
random numbers. The final piece of the map generation is
the chest placement. It is very similar to wall placement, as
we see in the function isChest:

165 // chests get denser as y increases
166 // no chests where gridY < 5
167 // even less dense than blocks
168 double threshold = 1 - (gridY - 5) / 200.0;
169
170 // use different seed than for blocks
171 double randValue = noise3d(73642 * gridX, 283277

* gridY, seed * 987423);
172 char returnValue = randValue > threshold;

The first three lines of comments explain the differences in
threshold calculation, but the core method is the same. Now
we understand the way Passage maps are generated. Every-
thing becomes increasingly dense as you descend deeper into
the world. As Rohrer explains in his statement, ”As you go
deeper into the maze to the south, the path becomes more
convoluted, though an obstacle-free route is always available
to the north. However, treasure chests are more and more
common as you go deeper into the maze.” Figure 2, from a
modified version of Passage that displays a larger view of
the world, is another example of what one fully rendered
world looks like.

With this understanding of the basic map algorithm, the
only remaining question is how Rohrer generates the random

Figure 3: Sample output of Passage’s noise function,
using X, Y, and a random seed, shaded according to
value (0.0 - 1.0)

numbers, or noise, that form the basis of the map. Noise
functions are a way of calculating pseudo random numbers.
See Figure 3. The main source of this noise is the function
noise3d, defined within landscape.cpp. At the top of this
file, we find the following block comment:

1 /*
2 * Modification History
3 *
4 * 2006-September-26 Jason Rohrer
5 * Switched to cosine interpolation.
6 * Added optimizations discovered with profiler.

Reduced running time by 18%.
7 */

As indicated, a profiler is a tool that helps identify perfor-
mance bottlenecks in running code, and is used as a way of
identifying places to optimize. This does not at all fit with
the style of the rest of the Passage codebase, which has no
indications that it has been highly optimized. Tellingly, the
date listed here is nearly a year before the announcement of
the Kokoromi event Gamma256, where Passage debuted in
November of 2007. While it’s possible that Passage was in
development before the announcement (Tigsource Forums
2007), it seems unlikely for several reasons. First, this file is
called landscape.cpp, and has a main function of the same
name, however this function is never called anywhere in the
codebase. There are actually five functions defined in the
file, but only one is used. While unused code is not unusual,
and could represent an alternate approach to map genera-
tion, an identical file appears in his 2007 game Cultivation.
Indeed, this is an example of code reuse between projects.
While we feel an intertextual analysis of Rohrer’s code would
be worthwhile in exploring the circulation of code, it is be-
yond the scope of this work.

There are three places where noise3d is used in Passage,
all within the same map.cpp file we have been looking at.
The first use is within isBlockedGrid, as noted above, which
determines if an (x, y) location has a wall on it. The second
use is within isChest, while the third is within getChest-
Code. All three uses pass in the (x,y) pair and a seed based
on current system time. While isBlockedGrid uses these val-

ues directly, the other two scale them based on apparently
arbitrarily chosen numbers. Noise functions are not truly
random, and typically have patterns. Figure 3 below shows
the output of noise3d across a space larger than the Passage
map, when plotted without any scalars. There are clear
patterns. When plotted with the scalar numbers used in the
chest generation functions there are still patterns, but they
differ. In a sense, tuning these numbers and adjusting the
pattern of random noise is a level design task. However, we
currently have no information as to how these numbers were
chosen.

Rohrer claims in his artist statement that, ”Passage repre-
sents life’s challenges with a maze”. However, we have shown
that there is no sophisticated maze generation in Passage.
The map only appears like a maze due to your limited view-
point. When the player viewpoint is widened (See Figure 4),
the lack of coherence in the map reveals it to be a product
of noise. With a familiar, optimized noise library at hand,
it was easier for Rohrer to generate the topography using
noise than to design a new PCG system to create the maze
or to hand author many mazes. Maze creation is done as
the player encounters it, with the underlying process being
semi-random walls that get denser as you go down. Procedu-
rally generating the maze also supports Rohrer’s rhetorical
purpose of representing infinite possibilities, or as Rohrer
claims in his statement, ”even if you spent your entire life-
time exploring, you’d never have a chance to see everything
that there is to see.” This concept of unlimited possibility is
common in many games that use PCG.

Gillian Smith has developed a critical framework for dis-
cussing game design aspects of PCG in games (Smith 2014 [20]),
Using this language Passage’s map generation is a constraint
based system, with fuzzy constraints (as noise follows trends,
not hard constraints). The map generator provides no way
for the player to interact with or control the generator and
indirectly changes player experience. The map generator
works on the subcomponent level, coloring tiles with a sprite
map. The map is generated online, as more of the ”maze” is
generated as the player explores it.

The qualities of the maze in Passage appear to lend them-
selves to the Searching a Vast World dynamic that Smith
identifies, however, that is only true if a player does not
care about score. Rohrer claims that score does not mat-
ter to Passage in his artist statement, however, the sheer
fact that score exists rewards particular kind of play. The
aesthetics of Passage change depending on how the players
feel about score, with the non-scorers focusing on discovery,
whereas the scorers focus on challenge.

This dichotomy is also reflected if players replay Passage.
There is some validity to claiming that Passage was meant
to be played only once, particularly given its original context
within an art gallery. There are no affordances for replaying
Passage– when the game ends, there is no replay button. To
play Passage again, you need to exit and restart the game.
When you just play once, score clearly doesn’t matter– score
isn’t saved in Passage, and there is no leaderboard to com-
pare your last run against. In this case, again, the map
generation is all about showing a vast world that you can
never explore all of. But, it is possible to play Passage more
than once– the game doesn’t destroy itself after all– and
score is the one thing you can use to mark your progress
and ”skill” at playing Passage against previous runs. In this
case, the fact that Passage never shows you the same map

Figure 4: Clear screen version of Passage with dis-
tortion effect removed, and taller field of view

twice and the chest puzzle solution changes with each new
playthrough, leans towards Passage being a game about re-
action. The ability to quickly solve the chest puzzle and
track successful paths through the maze lead to higher and
higher scores.

3.3 Procedural Deformation
We made several alternate versions of Passage, with changes

ranging from small changes to the weights of random num-
bers, to larger changes that expand the field of view and
expose the entire map clearly. While Rohrer characterizes
the map as a maze, it only functions as such when the player
has visual distortion and a restricted field of view. Reveal-
ing the full field of view removes the maze-ness of the game,
and exposes more of the underlying wall placement algo-
rithm. Similarly, modifying the weights with which walls
or chests are placed in the world can significantly alter the
game’s rhetoric. In an alternate version with denser chests,
exploring to the right becomes significantly less appealing,
as chests are much easier to discover. These deformations al-
low us to interrogate the values and parameters that Rohrer
chose, and lead to a deeper understanding of their rhetori-
cal purpose. This section describes several alternate versions
that we made and briefly discusses other potential uses for
procedural deformation.

The first change we made is the full view version (Figure
4). It reveals that the ”maze” is not actually a maze. The
walls do not consistently form connected paths and simply
become denser as we descend. More subtly, with the in-
creased field of view it is much easier to make ”correct” deci-
sions about chest pursuits, particularly when combined with
the solution to the chest puzzle. This allows an informed
player to reach much higher scores than previously possible,
and significantly changes the balance of the game.

A simpler change was to increase the speed of player move-
ment. The game still takes five minutes, but it is possible to
explore much more of the world in a given playthrough. It
is also much less costly to explore downwards, as recovering
from paths without chests is fast.

A rather extreme change we made was to decrease the
threshold with which walls are generated. At a low enough

point, this leads to a single clear path along the top of the
world. It eliminates all player choice, where your only op-
tions are to walk forward and die, or stay in one place and
die. Similarly, it is possible to modify the other thresholds
to create a map with no walls, a map filled with chests, or
a map without chests. These versions each have fairly pre-
dictable rhetorical effects, and essentially break any coherent
metaphor. Overall, these tweaks change the weighting on
the tension between getting married or not. These tweaks
also reveal extra rhetorical devices behind exploration– if
you remove the ability to explore, the game is suddenly
about being stuck on a single path and doing that same
thing until you die.

These simple modifications also give some insight into the
tuning process behind Rohrer’s map algorithm. With a few
simple parameters, vastly different play experiences can be
created. Using these as knobs, the designer can rapidly it-
erate until a suitable balance is found.

Procedural deformation offers a small counter to the ”black
box” of computational media (Sample 2013 [18]). Rather
than written critiques of a simulation, we can produce al-
ternative versions and then play them. Game objects and
players together are what matter, not just rule sets. By im-
plementing an actually playable model rather than an un-
playable thought experiment, we can engage in deeper cri-
tique of the original games’ models and assumptions. While
games do not typically expose these features to the player,
imagining alternatives to the designer’s status quo can be
an important critical practice informing interpretation.

4. CONCLUSION
This paper contributes to the critical discourse surround-

ing the art game Passage. Our extensive investigation of its
codebase added new subtleties to our understanding of the
game, and complicated some of the creator’s stated claims.
Our combination of closely playing the game while closely
reading the source proved highly useful, and can be repli-
cated in other games. Our practice of procedural deforma-
tion, or modifying the game to induce rhetorical changes, is
likewise a useful tool for others seeking to undertake soft-
ware studies of games. Our hope is that the extensive detail
we have related is useful for others who wish to follow along,
and continue studying the software of games.

There are numerous further directions this study could go.
One could pursue further modifications of the game, per-
haps swapping around graphics as Zach Whalen has done
to unpack the cultural privilege that students bring to the
game [24]. Another could go beyond critiquing the map gen-
eration and produce an alternative approach to map genera-
tion, implementing, for example, true maze generation. Yet
another could undertake porting the game to another lan-
guage, as an exercise in exploring Rohrer’s distinctive style
of coding. Beyond Passage, all of Rohrer’s games are open
source. A comparative study could be done, tracing shared
code and uncovering further details about his development
practice.

5. REFERENCES
[1] J. Bizzocchi and J. Tanenbaum. Well Read. Well

Played, 3, 2011.

[2] I. Bogost. Persuasive Games: The Expressive Power
of Videogames. MIT Press, 2007.

[3] I. Bogost. Fine processing. In Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 5033 LNCS, pages 13–22,
2008.

[4] I. Bogost. How to Do Things with Videogames.
University of Minnesota Press, 2011.

[5] M. Fuller, editor. Software Studies: A Lexicon. 2008.

[6] A. Gazzard. Mazes in Videogames: meaning,
metaphor and design. McFarland, 2013.

[7] D. F. Harrell. Phantasmal Media: An Approach to
Imagination, Computation, and Expression. MIT
Press, 2013.

[8] D. Kazemi. Jagged Alliance 2. Boss Fight Books, 2014.

[9] D. Lederle-Ensign and N. Wardrip-Fruin. What is
Strafe Jumping ? idTech3 and the Game Engine as
Software Platform. In Proceedings of DiGRA, 2014.

[10] M. Marino. Critical Code Studies.
http://www.electronicbookreview.com/thread/

electropoetics/codology.

[11] M. Mateas and N. Wardrip-Fruin. Defining
Operational Logics. In Proceedings of DiGRA, 2009.

[12] J. McGann and L. Samuels. Deformance and
interpretations. New Literary History, 30(1):25–56,
1999.

[13] N. Montfort. Portal & Passage. Well Played, 1, 2009.

[14] F. Parker. An Art World for Artgames. Loading...,
7(11):41–60, 2012.

[15] C. A. Paul. Optimizing play: How theorycraft changes
gameplay and design. Game Studies, 11(2), 2011.

[16] J. Rohrer. What I was trying to do with Passage.
http://hcsoftware.sourceforge.net/passage/

statement.html.

[17] A. Salter and J. Murray. Flash: Building the
Interactive Web. 2014.

[18] M. L. Sample. Criminal Code: Procedural Logic and
Rhetorical Excess in Videogames. Digital Humanities
Quarterly, 007(1), 2013.

[19] J. Sharp. A curiously short history of game art. In
Proceedings of the International Conference on the
Foundations of Digital Games - FDG ’12, page 26,
2012.

[20] G. Smith. Understanding procedural content
generation. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems -
CHI ’14, pages 917–926, New York, New York, USA,
Apr. 2014. ACM Press.

[21] M. Treanor and M. Mateas. An Account of
Proceduralist Meaning. In Proceedings of DiGRA,
2011.

[22] M. Treanor, M. Mateas, and N. Wardrip-fruin.
Kaboom! is a Many-Splendored Thing : An
interpretation and design methodology for
message-driven games using graphical logics. In
Foundations of Digital Games, 2010.

[23] N. Wardrip-Fruin. Expressive Processing: Digital
Fictions, Computer Games, and Software Studies.
MIT Press, 2009.

[24] Z. Whalen. Using ”Passage” to Think about Cultural
Privilege. http://zachwhalen.net/posts/
using-passage-to-think-about-cultural-privilege.

