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Summary

This PhD thesis involves the study of cloud computing infrastructures (from

the networking perspective) to assess the feasibility of applications gaining in-

creasing popularity over recent years, including multimedia and telemedicine

applications, demanding low, bounded latency and sufficient bandwidth. I also

focus on the case of telemedicine, where remote imaging applications (for ex-

ample, telepathology or telesurgery) need to achieve a low and stable latency

for the remote transmission of images, and also for the remote control of such

equipment. Another important use case for telemedicine is denoted as remote

computation, which involves the offloading of image processing to help diag-

nosis; also in this case, bandwidth and latency requirements should be enforced

to ensure timely results, although they are less strict compared to the previous

scenario.

Nowadays, the capability of gaining access to IT resources in a rapid and

on-demand fashion, according to a pay-as-you-go model, has made the cloud

computing a key-enabler for innovative multimedia and telemedicine services.

However, the partial obscurity of cloud performance, and also security con-

cerns are still hindering the adoption of cloud infrastructure. To ensure that

the requirements of applications running on the cloud are satisfied, there is

viii
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the need to design and evaluate proper methodologies, according to the metric

of interest. Moreover, some kinds of applications have specific requirements

that cannot be satisfied by the current cloud infrastructure. In particular, since

the cloud computing involves communication to remote servers, two problems

arise: firstly, the core network infrastructure can be overloaded, considering

the massive amount of data that has to flow through it to allow clients to reach

the datacenters; secondly, the latency resulting from this remote interaction

between clients and servers is increased. For these, and many other cases also

beyond the field of telemedicine, the Edge and Fog computing paradigms were

introduced. In these new paradigms, the IT resources are deployed not only in

the core cloud datacenters, but also at the edge of the network, either in the

telecom operator access network or even leveraging other users’ devices. The

proximity of resources to end-users allows to alleviate the burden on the core

network and at the same time to reduce latency towards users. Indeed, the

latency from users to remote cloud datacenters encompasses delays from the

access and core networks, as well as the intra-datacenter delay. Therefore, this

latency is expected to be higher than that required to interconnect users to edge

servers, which in the envisioned paradigm are deployed in the access network,

that is, nearby final users [120]. Therefore, the edge latency is expected to be

reduced to only a portion of the overall cloud delay. Moreover, the edge and

central resources can be used in conjunction, and therefore attention to core

cloud monitoring is of capital importance even when edge architectures will

have a widespread adoption, which is not the case yet. While a lot of research

work has been presented for monitoring several network-related metrics, such

as bandwidth, latency, jitter and packet loss, less attention was given to the

monitoring of latency in cloud and edge cloud infrastructures. In detail, while
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some works [116] target cloud-latency monitoring, the evaluation is lacking

a fine-grained analysis of latency considering spatial and temporal trends.

Furthermore, the widespread adoption of mobile devices, and the Internet of

Things paradigm further accelerate the shift towards the cloud paradigm for

the additional benefits it can provide in this context, allowing energy savings

and augmenting the computation capabilities of these devices, creating a new

scenario denoted as mobile cloud. This scenario poses additional challenges

for its bandwidth constraints, accentuating the need for tailored methodologies

that can ensure that the crucial requirements of the aforementioned applica-

tions can be met by the current infrastructure. In this sense, there is still a gap

of works monitoring bandwidth-related metrics in mobile networks, especially

when performing in-the-wild assessment targeting actual mobile networks and

operators. Moreover, even the few works testing real scenarios typically con-

sider only one provider in one country for a limited period of time [85, 103],

lacking an in-depth assessment of bandwidth variability over space and time.

In this thesis, I therefore consider monitoring methodologies for challeng-

ing scenarios, focusing on latency perceived by customers of public cloud

providers, and bandwidth in mobile broadband networks. Indeed, as described,

achieving low latency is a critical requirement for core cloud infrastructures,

while providing enough bandwidth is still challenging in mobile networks

compared to wired settings, even with the adoption of 4G mobile broadband

networks, expecting to overcome this issue only with the widespread avail-

ability of 5G connections (with half of total traffic expected to come from 5G

networks by 2026).

Therefore, in the research activities carried on during my PhD, I focused on

monitoring latency and bandwidth on cloud and mobile infrastructures, assess-



Summary xi

ing to which extent the current public cloud infrastructure and mobile network

make multimedia and telemedicine applications (as well as others having sim-

ilar requirements) feasible. In detail, the contributions presented in this thesis

are manifold:

• I have measured latency from the two main public cloud providers as

of today, namely AWS and Azure, during a 14 days experimental cam-

paign. Consequently, I have conducted an in-depth characterization of

cloud-to-user network latency, highlighting possible applications con-

cerning detection and troubleshooting of abnormal situation, and evi-

dencing the benefits of multi-cloud deployments.

• I have conducted an extensive campaign leveraging commercial mobile

broadband networks (3G/4G) supported by the MONROE platform, to

assess bandwidth leveraging active estimation methods, necessary on

uncontrolled network paths. In detail, I have assessed the use of avail-

able bandwidth metric (at network layer) as a proxy for transport-layer

achievable throughput, at a fraction of the probe (syntethic) traffic vol-

ume compared to achievable throughput measurements, and able to pro-

duce accurate and quick estimates.

• Consequently, I have evaluated a passive state-of-the-art method for

bandwidth estimation leveraging a Software Defined Network approach.

Considering again the MONROE platform, I have assessed the accuracy

of such method in-the-wild and characterized several factors that can

possibly impact it, including traffic rate, polling period and SDN con-

troller deployment with respect to the switch.

These contributions reflect into the thesis structure: considering the next
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Chapters, I first provide in Chapter 1 a background on the requirements of

multimedia and telemedicine applications, then highlighting how the charac-

teristics of cloud infrastructures and its variations can provide benefits to these

applications, but also focusing on possible obstacles limiting its adoption and

that thus require active investigation. Subsequently, in Chapter 2 I present an

extensive characterization of network latency as experienced by users of cloud

applications (denoted as cloud-to-user, or C2U, latency), while in Chapter 3

I assess active available bandwidth estimation in mobile broadband networks.

The aforementioned SDN-based, passive approach is instead presented and

discussed in Chapter 4. Finally, in the Conclusion Chapter I provide a final

discussion and trace possible opportunities for future work and investigation.



Chapter 1

Introduction and Background

In this chapter I provide general background and context to better understand

the contributions of the experimental work conducted and discussed in this the-

sis. First, in Sec. 1.1 I provide an overview of multimedia and telemedicine ap-

plications, focusing on their Quality of Service (QoS) requirements. Then, in

Sec. 1.2 I discuss cloud computing infrastructure and its evolution and exten-

sions over time, and how the aforementioned applications can benefit from the

adoption of these different paradigms. Finally, Sec. 1.3 details the challenges

that motivated the work in this thesis and the contributions that I present.

1.1 Features and QoS requirements of multimedia and

telemedicine applications

With the rapid growth of information and communication technologies, mul-

timedia applications, such as real-time video streaming, conferencing, video

on-demand, have seen a surge in popularity [5]. They all have in common

1
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bandwidth requirements, as video and image streaming at high quality requires

a significant amount of bandwidth [5]. In addition, real-time video streaming

services also have strict latency requirements, while other applications need

only one QoS metric to focus on. The latency requirements vary with the

specific class of applications, with real-time interactive ones being the most

demanding. Woods et al. [126] highlight that typically the time required by

a human being to respond to a stimulus is around 230 ms. However, these

requirements can vary according to the application, as there are example re-

quiring latency below 100 ms [78], or even stricter, as in the case of online

gaming [20]. Cloud gaming poses as a high-demanding application since it

requires both high-bandwidth for video streaming and low latency to ensure

interactivity. In this case, it is also interesting to note that latency requirements

vary with the individual ability, but values above 50 ms are clearly perceived

by most users [98].

In addition to these, future applications made possible by the rising ca-

pabilities of mobile networks also include AR/VR, autonomous vehicles and

smart cities services, where extremely low latency and high bandwidth are

necessary, making them some of the most demanding examples [78], even re-

quiring latency lower than 20 ms.

Similarly, several innovations were made possible also in the field of

medicine, allowing a whole new range of applications known as telemedicine.

Commonly, the term telemedicine refers to the delivery of healthcare and re-

lated services over long distances using communication technologies, in order

to allow information exchange for diagnosis, treatment, and prevention of dis-

ease, but also for scientific research and for teaching purposes [57]. For ex-

ample, patients in remote, rural areas can interact with a telemedicine system,
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providing their personal information and reporting symptoms. In this case, the

information are sent to a remote server, where an automated process assigns

the patient to a doctor, who can then provide a prescription or a diagnosis to the

patient remotely. The amount of computing and storage resources to deploy to

guarantee high availability and adequate response times are challenging, espe-

cially when deploying these healthcare services leveraging dedicated physical

systems. These issues perfectly fit the advantages provided by the adoption of

cloud computing, which has therefore received significant attention in litera-

ture [43]. According to this analysis, the typical use cases of telemedicine fall

within 6 categories [43]:

• Telemedicine/Teleconsultation;

• medical imaging;

• public health and patients’ self-management;

• hospital management/clinical information systems;

• therapy;

• secondary use of data.

According to the literature surveyed in the aforementioned analysis, the first

two are the most widespread applications, and indeed, the importance of

teleimaging based applications in medicine, such as telepathology and telera-

diology, has already been recognized for more than two decades [81, 123],

and they have received increasing attention recently [114], also thanks to the

emergence of new technologies and paradigms such as edge computing [102].
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Figure 1.1: Example of telepathology application for teaching pur-

poses realized by the University of Southern California, allowing stu-

dents from Chattanooga to remotely access and control a 4K micro-

scope (source [12]).

In detail, the telepathology application requires both consultation and com-

putationally expensive image processing tasks performed on the images com-

ing from slides under a microscope [6], and can be also leveraged for training

and education purposes [50]. An example of this service is shown in Fig. 1.1,

reporting the application for teaching purposes realized by Prof. Richard Wein-

berg at University of Southern California, to allow students from a high-school

in Chattanooga to remotely access and control a 4K microscope deployed in

the USC laboratories [12]. Similarly, another example of telepathology ap-

plication is shown in Fig. 1.2, illustrating the work conducted at Saint Louis

University and to which I have partially contributed during a visiting research

period. In this application, a microscope is controlled remotely through a com-

puter, which also acts as an edge server, able to execute processing tasks on the
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Figure 1.2: Edge computing application for telepathology at Saint

Louis University, USA. A microscope is controlled remotely through

a computer which also performs edge processing.

images coming from the slides, while remote pathologists and users can access

the microscope through a web application [102]. As for multimedia applica-

tions, different telemedicine applications also have different requirements, of-

ten stricter given the critical scenario. For example, storage and retrieval of

medical records is a less latency-sensitive application compared telepathology

or telesurgery, that instead require real-time audio and video transmission. In-

deed, telesurgery is negatively affected by low bandwidth, high delay, jitter and

packet loss [1], at the point that latency can affect its entire feasibility. Sim-

ilarly, telepathology also requires low, bounded latency and sufficient band-

width to allow image streaming. In detail, in the case of the remote imaging

use case, these requirements ensure that the microscope can be remotely con-

trolled in an effective manner providing a good image quality. High response

times impact on the capability of moving the slide and the microscope pre-

cisely, and low bandwidth compromises the image quality, possibly impacting

on the diagnosis itself. Instead, when images need to be processed remotely

(a use case also denoted as remote computation), low latency and high band-
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width are needed to reduce the time between the offloading and the return of

the computation results to the final user. This is a good example to remark

that, according to the application, the latency requirement is also linked to

the bandwidth, since transmission time of the application data is clearly influ-

enced by link capacity and spare bandwidth. Nanda and Fernandes [83] focus

on the QoS requirements of remote monitoring applications, enforcing conges-

tion control, admission control, setting up virtual circuits and traffic differen-

tiation at backbone network layer, with the adoption of data-link technologies

such as ATM, DiffServ in Ethernet networks (by properly setting the DSCP

values) and MPLS. These mechanisms allow to satisfy the high bandwidth and

low response times requirements.

Of course, in addition to latency and bandwidth, it should be noted that

(for example when storing health records), the communication has to deal with

the security requirements and keep the data strictly confidential, and different

solutions have been applied for this goal, covering network or higher levels of

the protocol stack to provide security, for example by using IPSec [1].

Considering the requirements of these applications and as already men-

tioned briefly, the adoption of cloud infrastructures offers novel possibilities

but also poses additional challenges, as detailed in the next section.

1.2 Cloud, mobile cloud and edge computing

1.2.1 Cloud computing

In 1961, Prof. John McCarthy said “Computing may someday be organized

as a public utility just as the telephone system is a public utility”. This vision

became reality with the advent of cloud computing, which has considerably
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Figure 1.3: NIST Cloud Computing reference architecture (source [70]).

increased its popularity over the last decade, providing users with access to all

sorts of resources over an Internet connection. According the National Institute

of Standards and Technology (NIST), cloud computing is defined as “a model

for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction”. [73]. Through its

adoption, capital expenditure is reduced, since the cost of buying, deploying

and maintaining these resources on premise is partially or completely elimi-

nated. In this way, users leverage computational, storage, network and several

other types of resources using their Internet connection, whose performance

therefore becomes a crucial element for the success of cloud applications.

NIST has also identified five essential characteristics, three service models,

and four deployment models for cloud computing. The five key features are

the following:
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• On-demand self-service. This means that human interaction with the

cloud provider should be minimal, and that customers can unilaterally

provision the different resources provided as services.

• Broad network access. All the resources are accessed through a stan-

dardized mechanism requiring a network connection.

• Resource pooling. A cloud provider serves multiple customers accord-

ing to a multi-tenant model, where physical resources are shared among

multiple users by means of virtualization technologies.

• Rapid elasticity. The requested resource can scale dynamically up and

down, even automatically, to adapt to user demands quickly.

• Measured service. In order to ensure the optimal use of resources, cloud

providers have metering capability, and offer a certain degree of visibil-

ity to customers.

Following a utility model, cloud resources are rented according to a pay-as-

you-go billing model, meaning that users are only charged for the actual time

spent using their resources.

The overall reference architecture of Cloud computing as envisioned by

NIST [70] is shown in Fig. 1.3. This figure also reports the three service

models originally identified, which are defined according to the abstraction

provided to the final user. Indeed, in the Software as a Service (SaaS) model,

customers use a software remotely, without having to physically install it on

their machine and having to comply with the software requirements. Typically,

instead, developers leverage the Platform as a Service (PaaS) model to build

and deploy their applications directly onto the cloud; in this case, cloud ser-
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vices provide a platform for software development and deployment using cloud

resources. Access to virtualized resources, such as virtual machines or storage,

can instead be acquired through the Infrastructure as a Service (IaaS) model.

This model is therefore mostly targeted at system administrators or users need-

ing a lower-layer abstraction of the cloud resources. In addition to these service

models, several others were proposed over the years, like Sensing-as-a-service

or models in the Internet of Things (and denoted as Cloud of Things) context

[130].

Starting from these service models, customers of a cloud provider can be-

come service providers themselves, building their services on top of the cloud

infrastructure and providing it to the final users. This kind of model is common

and adopted by several services today; considering for example Netflix as one

of the most notable example, leveraging the infrastructure provided by Ama-

zon Web Services (AWS), including for instance their storage options (like

S3), to deploy their Video On Demand service.

In addition to the service models, different deployments options also were

identified in the original cloud definition, regarding the way access to cloud re-

sources is given to external users. Specifically, cloud resources are commonly

used by customers leveraging public cloud providers, which make these re-

sources available to anyone via the renting model discussed before. Exam-

ples of cloud providers are AWS, Azure, Alibaba Cloud and Google Compute,

which also detain together the highest market share as of today [37]. However,

there are some alternative models; in some cases private cloud infrastructures

are built, typically by big enterprises that, for security reasons, want their data

to remain on their premises. In other cases multiple organizations with shared

concerns deploy their own cloud infrastructure, in which case the community
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cloud term is used. Combining these deployment options, hybrid deployment

models are also adopted, that is, using different cloud infrastructures linked

by (standardized or proprietary) technologies to enable data and application

portability.

Summarizing, despite the service models and the deployment options, the

access to resources (computational, storage, network) rented via the cloud in-

frastructure strongly relies on the performance of the Internet connection used

to link users to them. With the growth of demand, it is crucial to ensure that

user-perceived performances meet the service-level agreements (SLA) stipu-

lated between providers and customers. However, there is also a partial lack of

visibility into performance, as public cloud providers offer limited or qualita-

tive information into the performance provided by their resources [93], result-

ing in a possible unpredictability of the performances of applications deployed

on the cloud, both for network or provider related reasons. These add to other

concerns partially hindering the adoption of public cloud infrastructures, such

as privacy concerns or refrain from using vendor locked-in solutions. These

aspects motivate the focus on non-cooperative monitoring approaches, allow-

ing to gather visibility into cloud performance from an external, non-privileged

point of view.

1.2.2 Mobile cloud computing

The surge in the adoption of mobile devices, such as smartphones and tablets,

is evident as of today, and so is the volume of traffic generated by them, as

highlighted by the latest Ericsson Mobility report for 2020 [33]. While the

pandemic has slowed down the number of new subscriptions during 2020, the

mobile traffic volume has steadily increased, as shown in Fig. 1.4, also re-
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Figure 1.4: Mobile traffic growth and expected increase by 2026 (from

Ericsson Mobility Report data and forecasts for 2020).

porting that by 2026 54% of the mobile traffic is expected to be related to 5G

networks. Moreover, smartphones are responsible (in 95% of the cases) of this

traffic, currently made up for 66% by video traffic, a share that is expected to

increase to 77% by 2026.

While these devices are becoming widespread, the number and types of ap-

plications that can be run on them are limited by their computational resources

(even in the case of expensive high-end devices) and from energy consump-

tion constraints, as they are battery powered, and finally by reduced storage

capabilities. These limitations have led to the emergence of the mobile cloud

computing (or MCC) paradigm [124], which can be seen an extension of the

cloud computing model where the device leveraging the cloud resources, typ-

ically according to the PaaS or SaaS models, is a mobile one, which offloads

computational intensive tasks and the storage of massive amounts of data to

the cloud.
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This paradigm can bring several benefits, extending the battery life of the

mobile devices, improving their storage and computational capabilities, and al-

lowing to easily access data from multiple devices. Also, scalability is ensured,

allowing services to adapt to users demands, while reliability and availability

of data and application running in the cloud are improved compared to keep-

ing them on mobile devices, since in this case they are more likely to be lost.

The growing availability of mobile broadband technology, with 4G networks

already reaching significant capabilities, and extended speeds and coverage

expected by the 5G deployments with femtocells (expecting to contribute to

more than a half of the mobile network traffic by 2026), will give increasing

importance to this paradigm in the near future.

With the diffusion of mobile devices, especially with wireless sensors and

IoT devices, the mobile cloud computing paradigm has naturally found his way

into telemedicine applications as well. Indeed, while mobile devices are cur-

rently used for basic healthcare services, such as maintaining schedules, book-

ing appointments, interacting with nurses and doctors, accessing their records,

it is evident that several additional possibilities open up with the introduction

of the cloud paradigm to overcome the limitations in computational capacity

and power consumption. In detail, the integration of MCC and telemedicine

provides the availability of health applications and medical information any-

where and anytime, and significantly higher computing resources for more

complex monitoring and processing performed in real-time. For this reason,

the importance of mobile cloud computing for telemedicine has recognized

and described in previous works [39, 121]. For example, health monitoring

tasks [40], or social assistive robotics can benefit from the adoption of mobile

cloud computing, in this latter case leading to a novel service model denoted
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as Robot-as-a-Service (Raas) [15].

While the potential benefits are evident, as pointed out by previous work

[113, 121], one of the main obstacles for the widespread adoption of mobile

cloud computing in telemedicine is that mobile users, sensors or IoT devices

may experience congestion due to bandwidth congestion, network disconnec-

tion and signal attenuation, resulting in service interruption or delay in the

communication with the cloud. Moreover, as mobile devices are operated on

heterogeneous wireless networks, there can be large differences in the net-

work bandwidth capacity and communication quality, further accentuated by

the mobility aspect [113]. This poses once again serious attention to the band-

width and delay requirements, given the critical applications related to health-

care, and motivates the implementation of accurate monitoring methodologies.

These issues are often tackled by acting at the physical or data-link layers, for

example (especially in the case of IoT devices) employing different transmis-

sion technologies [75]. Furthermore, the delay between the mobile device

request and cloud service response can be significant, and is dependent on the

distance between the device and the cloud infrastructure, as well as the pro-

cessing capabilities on the Virtual Machines rented to host the telemedicine

application. Therefore, several efforts were put into analyzing the public cloud

infrastructures, as done for example by Haider et al. [48], who have character-

ized the performance of a telemedicine web service hosted on Amazon EC2

VMs under increasing workloads, assessing the conditions (in terms of re-

quests throughput) in which the infrastructure is able to provide low, guaran-

teed response times to telemedicine applications.

Finally, I recall that data security, privacy and confidentiality are all key

issues in this context. Although the study of security mechanisms for cloud
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computing applied to telemedicine is not the main focus of this thesis, I have

contributed to surveying the literature about Intrusion Detection Systems in

the Mobile Cloud context, also highlighting open research issues [105]. In

this case, indeed, there is a clear tradeoff between performance and security,

accentuated by the heterogeneous and wireless scenarios, and by the multi-

tenancy typical of cloud environments.

1.2.3 Fog/edge computing

In recent years, other trends have risen, with the goal of extending or com-

plementing the core and mobile cloud computing paradigms, particularly to

address the additional delay induced by the core cloud paradigm, constituting

an issue for latency-sensitive applications. Indeed, the offloading and the com-

munication with the core cloud introduce an additional delay, and also pose

additional load into the core network, possibly leading to congestion, up to

the point where the centralized model consisting of few large cloud datacen-

ters will not be able to provide enough bandwidth for novel and widespread

applications [12].

For these reasons, Satyanarayanan et al. [104] first proposed to deploy ad-

ditional computational resources, denoted as cloudlets, closer to the end-users,

that is at the edge of the network. In comparison with the core cloud, resources

deployed in a cloudlet are more limited in order to reduce the infrastructural ex-

penses, as this deployment is supposed to be much more capillar. The concept

of cloudlet was then refined and expanded by Verbelen et al. [120], consider-

ing to divide the applications running on the cloudlets into functional compo-

nents that can be individually executed at the edge network. The work also

focuses on the deployment aspect of the computational resource nearby the
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Figure 1.5: Cloudlets concept (source [104]).

mobile users, that can be for example colocated with the access point for WiFi

networks or in the Base Station in the case of cellular networks. In this envi-

sioned architecture, users can run custom Virtual Machines on the cloudlets,

offloading their applications similarly to the core cloud paradigm, but with a

reduced latency. This novel paradigm where computation is shifted closer to

users (by means of cloudlets) is denoted as fog/edge computing, to remark its

vicinity to end-users compared to cloud computing. I remark that while some

works interchangeably use the term fog or edge computing, others separate the

edge computing paradigm as one employing only local (edge) resources, and

using the fog term when both cloud and local resources used in conjunction

[51]. For example, the fog layer is often leveraged to perform preprocessing
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operation and alleviate the burden on the core cloud, as done in [26] consid-

ering data coming from wireless sensors; in other cases a decision is made

to execute tasks on the core or on the edge according to their requirements,

aiming at maximizing resource usage while satisfying user needs. Comparing

the latency experienced by final users in the cloud and edge paradigms, it can

be seen that the overall latency experienced when connecting to remote cloud

datacenters (that is, the cloud-to-user latency) includes propagation and trans-

mission delays from the user access network, as well as the core network and

the intra-datacenter network connecting the resources within the datacenter.

Therefore, cloud-to-user latency is expected to be higher than the edge-to-user

latency required to interconnect final users to their closest edge servers. In-

deed, in the envisioned paradigm the edge resources are deployed in the access

network (or within the base station in the case of mobile networks), and as such

are placed nearby final users [120]. These considerations remark that, even if

the edge computation time could be higher (since less resources are typically

deployed at the edge to reduce costs), the overall edge-to-user latency is ex-

pected to be reduced to only a portion of the cloud-to-user delay.

Thus, the edge paradigm represents an opportunity for different applica-

tion scenarios [106], for example in the smart home, smart city, video analyt-

ics domains; however, several new challenges also arise. Indeed, since less

resources are deployed at the edge, the choice of which tasks offload to the

edge and to the core cloud is not trivial and has attracted significant research

efforts, proposing solutions on how to concretely realize the edge cloud [12].

It is clear that the adoption of fog/edge computing paradigm and the dif-

fused deployment of cloudlets can provide benefits to telemedicine applica-

tions [57], by adding an intermediate layer between the mobile devices and the
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remote cloud servers to reduce the response time and allowing task offload-

ing and provisioning of computing resources. The recognized advantages of

fog computing in healthcare are well highlighted in [107], focusing on dis-

tributed computing and offloading from mobile devices to support analytics

while meeting the QoS requirements. Several kinds of application from those

introduced in Sec. 1.1 can benefit from this paradigm; for example Gia et al.

[40] leverage fog computing for feature extraction from ECG signals collected

via IoT devices, achieving low response times and bandwidth efficiency. Com-

pared to the other applications, telemedicine services leveraging the edge com-

puting paradigm face similar challenges, for example regarding resource and

VM placement, as discussed in [54], where authors focus on VM migration

strategies in mobility conditions in the case of healthcare data processing.

As the edge clouds can be interconnected to execute offloaded tasks, these

can be leveraged in conjunction to speed up the computation of offloaded tasks

(particularly if applications are functionally divided so that each edge is re-

sponsible for a single application task). Resource optimization also requires to

take into account different metrics, mainly latency, bandwidth, energy and cost

[106]. Indeed, to optimize latency, one should also consider that network band-

width impacts the transmission times of the workload to be executed remotely.

In addition, determining the amount of processing, storage, and network re-

sources to deploy at the edge is a difficult task, which also depends on the spe-

cific requirements on the applications that should be supported, and how they

vary over time. All of these complexities have made clear that resource man-

agement is a crucial aspect to take into account, fostering, from the network

management perspective, the rise of network programmability paradigms. In-

deed, this is why the recent the Network Function Virtualization (NFV) and
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Software Defined Network (SDN) paradigms have received increased atten-

tion in the edge cloud context, promising to make managements tasks easier

and automatic. Different solutions are proposed with the aid of such technolo-

gies, for example as done in [49] leveraging SDN, while several optimization

strategies are proposed and evaluated (often through simulation results) for re-

source management [51]. As mentioned, I have also leveraged SDN and eval-

uated a passive bandwidth estimation method, focusing on mobile scenarios

[4].

Therefore, even with the emergence of edge cloud, it is expected that edge

and core infrastructures will coexist, stressing the need not to overlook core

cloud performance as new datacenters are constantly built by providers, reach-

ing a significant coverage at the point that Mohan et al. [78] question the whole

need for third party edge providers.

Finally, the aforementioned challenges in fog environments are added to

the already discussed challenges of core cloud computing, for example regard-

ing security aspects, that once again should be taken into account.

Summarizing, the adoption of the cloud paradigm and its variants has

surely brought benefits for several applications, but has also opened a number

of new challenges, especially concerning network monitoring, as highlighted

in the next section.

1.3 Thesis contributions

I conclude this chapter presenting the main questions arising from the previ-

ous discussion, which guided the research activities presented in this thesis. As

seen, the introduction and the evolution of the cloud computing paradigm has
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made a whole new range of applications possible, and the evolution of cloud

and mobile networks will foster innovations also in the healthcare field, where

remote imaging and monitoring, just to name a few, are made possible and

effective. Among the several components interacting when providing these

services to final users, the network has a crucial role, and its performance,

measured using different metrics, has a direct impact on the QoS perceived

by customers. However, customers do not have accurate information about

this aspect, as providers typically expose only qualitative information about

expected performance, notwithstanding the critical importance for the appli-

cations of several metrics. Among these, the focus on latency and bandwidth

in this thesis is motivated by the scarcity of works specifically targeting the

cloud and mobile contexts, and the lack of real-world, in-the-wild experimen-

tation, that, I argue, cannot be overlooked when deploying crucial services (as

the telemedicine ones) onto the cloud. Therefore, to ensure that the require-

ments of applications running on the cloud are satisfied, there is the need to

design and evaluate proper methodologies, differently according to the metric

of interest.

Moreover, considering the widespread adoption of mobile devices and the

additional benefits that they gain when executing cloud applications (compared

to the local execution), the performance of the mobile access network has an

important role as well. Even over the next few years, 4G deployment will

still cover a large percentage of users, and thus its bandwidth limitations (w.r.t

to 5G and wired networks) must be taken into account, as performance un-

predictability is further accentuated by mobility related aspects [113, 121]. It

should be also noted that early performance assessment on the currently de-

ployed 5G infrastructures have shown small improvements compared to 4G in
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terms of latency [84], highlighting that the first, radio access hop constitutes

the bottleneck with around 30 ms of imposed latency.

In detail, some of the key research questions that arise are from the afore-

mentioned challenges are the following:

• Can the current cloud infrastructure support the requirements of latency-

sensitive cloud applications? How can providers and application de-

velopers accurately monitor latency and be ensured that latency experi-

enced by users is stable and within service requirements, for example

timely detecting anomalous events?

• Can mobile networks in the current state support the bandwidth require-

ments of demanding cloud applications? Which factors impact this met-

ric and how can it be monitored effectively?

• Considering the complexity of cloud network environments, where new

paradigms such as SDN have emerged to manage the network infras-

tructure efficiently, how can these be leveraged to monitor the network

and satisfy application requirements?

Based on these questions, in the research activities carried on during my

PhD, I have focused on monitoring latency and bandwidth on cloud and mobile

infrastructure respectively, assessing to which extent the current cloud infras-

tructure and the mobile network can meet the requirements of multimedia and

telemedicine applications, as well as others having similar requirements. In

detail, the contributions presented in this thesis are manifold:

• I have measured latency from the two main public cloud providers as

of today, namely AWS and Azure, during a 14 days experimental cam-
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paign. Consequently, I have conducted an in-depth characterization of

cloud-to-user network latency, also highlighting possible applications

concerning detection and troubleshooting of abnormal situation, and ev-

idencing the benefits of multi-cloud deployments.

• I have conducted an extensive campaign leveraging commercial mo-

bile broadband networks (3G/4G) supported by a research testbed (the

MONROE platform [7]), to assess active bandwidth estimation meth-

ods. In detail, I have assessed the use of the available bandwidth metric

(at network-layer) as a proxy for the transport-layer achievable through-

put, requiring a fraction of the traffic volume but still able to produce

accurate and quick bandwidth estimates.

• Consequently, I have evaluated a passive state-of-the-art method for

bandwidth estimation in Software Defined Network (once again lever-

aging the MONROE platform), assessing its accuracy in-the-wild and

characterizing several factors that can possibly impact it, including traf-

fic rate, polling period and SDN controller position with respect to the

switch.

The remainder of the thesis is organized as follows. First, Chapter 2

presents the investigation of C2U network latency leveraging multiple Van-

tage Points and testing different Cloud Regions of the two main public cloud

providers, AWS and Azure. Instead, in 3 I characterize the relationship be-

tween available bandwidth and TCP achievable throughput in mobile broad-

band networks, measured through active approaches. The passive approach

for bandwidth estimation leveraging the capabilities of Software Defined Net-

works is instead the focus of Chapter 4. Finally, in the Conclusion Chapter
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I provide final remarks to the activities here summarized, and I also outline

opportunities for further research and investigation.



Chapter 2

Cloud-to-user network latency

characterization and

application

As discussed in the previous section, the last years have seen an increased

adoption of services provided by public clouds, given the economical and tech-

nical benefits they provide [23].This heterogeneity of applications running in

the cloud has resulted in a wide variety of Quality-of-Service (QoS) require-

ments, with different metric requiring fine-grained characterization within the

cloud context. Consequently, a large body of literature has focused on perfor-

mance analysis (for example using analytical models [10]) of cloud computing

infrastructures, and on the capability of its computational resources to respond

to user requests guaranteeing low response times or providing acceptable level

of availability, i.e. within the Service Level Agreements.

In this context, both providers and customers showed a growing inter-

23
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est in measurement activities targeting cloud networks, which faces several

and major difficulties compared to traditional network monitoring. As stated

in the introduction chapter, one of the obstacles hindering cloud adoption is

that, although cloud networks are crucial to provide cloud services [65, 74],

cloud providers are often unable or not willing to provide guarantees or dis-

close details on network performance [77]. Therefore, non-cooperative ap-

proaches [67, 90] have emerged in last years. In contrast with cooperative

ones, these can integrate and expand the knowledge base that a provider is

able to gather ”from inside the datacenter”, i.e. only leveraging a privileged

view on a limited portion of the whole system. Indeed, non-cooperative ap-

proaches do not leverage privileged standpoints obtained from provider in or-

der to obtain visibility into the main components impacting the performance

of cloud-networks, namely:

• intra-datacenter networks, that is, the paths interconnecting computation

and storage resources within the same datacenter,

• inter-datacenter networks, or network paths connecting the resources of

the same public cloud provider located in geographically dispersed dat-

acenter, and

• cloud-to-user networks (C2U), that is, the set of paths interconnecting

users to the set of resources composing the cloud.

Among these three parts, cloud-to-user network is usually beyond direct con-

trol of both cloud providers and customers. For this reason, C2U network is

harder to be monitored and (in consequence) accurately predicted compared

to the intra- and the inter-datacenter networks [90, 94]. In addition, user-

perceived performance is also heavily impacted by their location with respect



CHAPTER 2. C2U NETWORK LATENCY CHARACTERIZATION 25

to the cloud resources, as the propagation delay in this case has a significant

impact on the overall latency. As described, to mitigate these issues providers

have typically focused on deploying more distributed datacenters in order to

the network distance between users and cloud resources.

The choice of focusing on C2U networks derives from its impact on per-

formance perceived by final users and the scarcity of available works. As

discussed previously, according to the specific applications, their requirements

involve the monitoring of different network metrics impacting the cloud perfor-

mance (i.e. throughput or bandwidth, delay, jitter). Among these, the latency

perceived by users is a critical parameter for several applications that require

low latency, low latency variation (or jitter), and also both in some cases. I

recall that examples of these applications include real-time video processing,

cloud gaming [22] or ultra-reliable and low-latency communications services

in 5G [63]. The importance of latency, which is the focus of this chapter,

is also testified by the large body of literature trying to address latency is-

sues. Briscoe et al. [18] present a detailed, comprehensive survey of literature

targeting latency reduction in Internet, reviewing approaches and techniques

designed in different parts of the network and at different layers of the pro-

tocol stack in order to reduce the overall latency. In detail, the work refines

the latency contributions discussed in Sec. 2.1 highlighting the structural de-

lays, the interaction between endpoints, delays related to transmission paths

and to link capacities, and finally the intra-end host delays. Concerning the

structural delays, as discussed in Sec. 1.2.3, edge-cloud architectures were in-

troduced and are increasingly being deployed by providers, moving additional

infrastructure and computing resources closer to the end-users to reduce the

overall latency. In the context of latency monitoring, the relative novelty of
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this paradigm, which is already gaining importance and is expected to grow in

the near future, remarks the need to develop monitoring strategies targeted at

C2U network performance. Moreover, I remark that edge-cloud architectures

(as explained in Sec. 1.2.3) are often used to integrate cloud-based services

rather than to replace them, and network paths towards cloud datacenter are

of critical importance in this paradigm as well. In this context, several works

investigate the coexistence of both paradigms: in fact, as the computational

resources available in the edge cloud are limited, only tasks whose latency re-

quirements cannot be satisfied by the core cloud alone should be offloaded to

the edge cloud, in order to save edge resources. Mohan et al. [78] even evaluate

to what extent the current and much more capillary deployment of public cloud

infrastructures (covering more users with reduced latency) actually needs the

support of edge infrastructures, and for which applications. This further mo-

tivates the need to monitor latency in the core cloud, even when edge cloud

architectures will have a higher deployment compared to their current state.

For all the above reasons, this chapter focuses on the characterization of

Cloud-to-user network latency, providing an extensive evaluation considering

25 geographically sparse source nodes (denoted as Vantage Points) and tar-

geting 4 Cloud Regions for the two main public cloud providers as of today,

namely AWS and Azure. The contributions in this chapter are presented as

follows. Having introduced and motivated the importance of latency, I provide

its formal definition and discuss the different contributions in Sec. 2.1, and

then review the literature targeting latency monitoring, with focus on the cloud

context, in Sec. 2.2. In Sec.2.3 I detail the experimental methodology carried

on to assess C2U network latency, detailing the data collection methodology

and providing background for the statistical tools leveraged in the evaluation.
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The experimental results are then detailed in Sec. 2.4, considering spatial and

temporal trends and comparing the two providers. Moreover, in Sec. 2.5 I

provide two example evaluations to show how the latency data can be lever-

aged to solve real problems. In detail, in Sec. 2.5.1, I present the design and

implementation of a badness event detection methodology, commenting the

results obtained, while Sec. 2.5.2 discusses how measurements from different

providers can be used to make informed decisions about multi-cloud deploy-

ments. Finally, concluding remarks to this chapter are given in Sec. 2.6, briefly

summarizing how the results discussed can be leveraged in the context of the

multimedia and telemedicine applications whose requirements are the focus of

this thesis.

2.1 Latency of Internet paths

Figure 2.1: Contributions to packet delay (source [64]).

In general, a packet traversing an Internet path is subjected to different

components to the overall delay [64], as reported in Fig. 2.1. In detail, the node

processing, the queuing, transmission delay, and finally the propagation
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along the physical medium impact on the final perceived latency.

The propagation delay is defined as the amount of time required for a

packet to travel from the sender to receiver point. It therefore depends on the

geographical distances between the two points and from the physical medium

characteristics. For example the propagation delay in optic fiber cable can be

around 0.7 times the speed of light. The queuing delay is the waiting time

for a packet within a router buffer before it is processed. The transmission

delay is the time required to push data onto the link, measured from the first

bit of data to the last bit. As such, the transmission delay is limited by the

link bandwidth. Finally, the processing delay depends of the operation per-

formed on the intermediate nodes, and thus includes routing delays to decide

where the packet should be forwarded, protocol delays (according to protocols

the packet is transporting), for each link of the path traversed. In addition to

the per-hop contributions, the protocol delays must be also accounted at the

end hosts, considering for example the delay of transport and application layer

protocols.

2.2 Latency monitoring in cloud networks

Following the increasing adoption of the cloud paradigm, seeing a huge gain in

popularity over the years 1, the performance evaluation of the cloud infrastruc-

ture has attracted the interest of the scientific community, assessing the trade-

offs between the multiple vantages of cloud computing (discussed in detail in

Sec. 1.2) and the obstacles limiting its adoption. To this goal, some works have

focused on understanding the implications of deploying specific applications
1Refer to previously cited Gartner report.
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Table 2.1: Work dealing with latency measurements in cloud net-

works, including the work detailed in this thesis.

Net Work Year Approach Metric Providers
Cloud

multiplicity

User/VP

multiplicity

Multiple

probing

methods

Probing

period

Open

Dataset

in
tr

a-
D

C

[96] 2018 NC OWD Azure, AWS, GC
2–10 VMs per CR

per provider
- N Var. Y

[97] 2017 NC* RTT Azure, AWS, GC 6 CRs, 4VMs per CR - N 1 min. N

[95] 2017 C; NC† OWD AWS, GC 4 CRs, 4VMs per CR - Y 1 sec. N

[46] 2015 C RTT Microsoft DC 5 CRs - N Var. N

[133] 2015 C RTT Microsoft DC 2 clusters - N - N

in
te

r-
D

C [35] 2019 NC RTT AWS, Azure 6–8 CRs per provider - N 5 min. N

[94] 2017 NC RTT AWS, Azure 4 CRs per provider - Y 5 min. Y

C
2U

[56] 2019 C RTT Azure -
O(100M)

clients
N Var. N

[80] 2018 NC RTT Azure, AWS 4 CRs 6 VPs Y 4 min. Y

[116] 2016 NC RTT Azure 2 CRs 5 VPs Y 3–4 min. Y

[118] 2016 NC RTT Azure, AWS 4 CRs 6 VPs Y 4 min. Y

[66] 2016 NC RTT 10 service provs. 10 hosts overall 2 VPs N - N

[79] 2015 NC RTT Azure 4 CRs 6 VPs Y 3 min. Y

[13] 2013 C‡ RT AWS - 1 VP N Var. N

[22] 2012 NC RTT AWS 3 CRs (US only)
≈2.5k

US users
N 30 min. N

this thesis 2021 NC RTT AWS, Azure 4 CRs 25 VPs Y 1 min. Y

Legend:

*: Requires access to Time Stamp Counter register, not always available; Net: intra-DC (intra-datacenter), inter-DC (inter-datacenter); C2U (cloud-to-user);

†: NC adoption results in higher variability due to virtualization layers; Approach: NC (non-cooperative), C (cooperative);

‡: Passive analyses, traffic captured at the PoP. Metric: RTT (round-trip time), OWD (one-way delay); RT (response time).

onto the cloud [117], while others have explored specific aspects of the cloud

ecosystem related to cloud networks [77]. Specifically, they take into account

their cost and the resulting performance and impact on user applications, with

a specific focus on latency-sensitive ones [44].

To briefly recall, the limited visibility into cloud networks derives from

the lack of monitoring into the network infrastructure itself and from the fact

that cloud providers generally do not disclose the proprietary performance-
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monitoring information about the state of their infrastructures. This has led to

the design of non-cooperative methodologies in order to investigate the per-

formance of cloud networks. These methodologies often take advantage of

active monitoring approaches, in contrast with cooperative ones, which use

privileged information and insider views only available to service providers or

traffic carriers. Moreover, as the cloud infrastructure is leveraged by diverse

applications with different goals and requirements, different portions of the

cloud network can have an impact on the user-perceived performance. Indeed,

different portions of the network can be identified according to paths connect-

ing cloud resources to (i) resources within the same datacenter, (ii) resources

in geographically distributed datacenters, and (iii) cloud users. These paths

are denoted as intra-datacenter, inter-datacenter, and cloud-to-user network,

respectively.

In the following subsections, I focus on monitoring and benchmarking of

cloud-network infrastructures, specifically taking into account studies leverag-

ing non-cooperative approaches to evaluate the latency experienced by end-

users when connecting to public clouds. Moreover, this analysis is divided

considering intra-datacenter (in Sec. 2.2.1) and inter-DC and C2U networks

(in Sec. 2.2.2) separately.

2.2.1 Monitoring latency in intra-datacenter networks (intra-DC)

Increases in network latency, packet loss, or reduction in bandwidth in intra-

DC networks, even in limited amount, reduce the Quality of Experience

perceived by final users, thus affecting both the user’s cost and the service

provider’s revenues [97]. Due to to their scale, the traffic volume they need to

handle, and diversity of faults, these networks present unique characteristics
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and require considerable effort to debug and troubleshoot, with proper tools

needed to monitor different metrics with considerable accuracy and fine gran-

ularity. Therefore, several efforts have been put into allowing the provider to

evaluate traffic patterns, packet drops, load imbalance [133], and especially

latency [46]. Non-cooperative approaches have been also evaluated, again

considering a wide range of metrics, including perceived network through-

put [67, 90, 91], available bandwidth [47], and latency. Focusing on latency,

ptpmesh ([95]) has been purposely designed to continuously measure the net-

work latency (in terms of one-way delay) and packet loss inside datacenters.

Leveraging the outcomes of this research, a characterization of the provider

intra-DC networks for different providers has been also provided [96].

In general, measuring intra-DC performance faces several and specific

challenges compared to other network environments. Indeed, computer and

network virtualization, leveraged in response to scale and efficiency con-

cerns of the providers [19], also impact on the results provided by monitoring

tools [47]. The virtualization layers indeed introduce non-negligible delays

and variability in the resulting performance, which are even emphasized in the

case of sub-ms latency and when proper hardware configuration is not made

available by the providers [96]. Moreover, different kinds of intra-DC paths

may exist, leading to severe performance discrepancies [90]. Unfortunately,

network topology information is usually kept confidential, even if it could be

used to improve monitoring and benchmarking [99]. Finally, the impact of the

management strategies implemented by providers should also be taken into ac-

count to understand performance variability [91].
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2.2.2 Monitoring latency in cloud WANs (inter-DC and C2U)

According to research trends and latest reports [24], the interest in monitoring

the performance and the QoS of the cloud wide-area networks is growing, for

what concerns both inter-DC and C2U networks. Indeed, providers have made

huge investments in specific technologies and cutting-edge solutions with the

goal of improving availability, manageability efficiency, and performance, for

example by deploying proprietary WANs [94], novel CDN solutions [92], or

complex overlay services [21].

In this context, several works focused on investigating the performance

of cloud WANs, considering throughput [35, 58, 92, 94], availability [132],

latency [35, 44, 58, 94], etc. In some cases, unexpected results were reported,

for example resulting from the fact that inter-datacenter connections do not

always benefit from proprietary links [94].

Concerning C2U latency, according to the surveyed literature, limited at-

tention was given to latency monitoring and analysis leveraging cooperative

approaches [13, 56]. In detail, Jin et al. [56] take advantage of data coming

directly from the Azure provider, consisting in Round Trip Times (RTTs) de-

rived from Transmission Control Protocol (TCP) handshakes. Using on this

information, active proving can be performed selectively, saving monitoring

resources, in order to locate issues and faults more precisely. Conversely,

Bermudez et al. [13] explore AWS traffic characteristics and response time

through a passive analysis performed from a privileged vantage point deployed

at the Point of Presence (PoP).

As data at this refined granularity is not publicly available, most of the

works focusing on C2U latency either exploit datasets and information not de-
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rived from cloud measurement or collect data via active probing. For example,

some works apply measurement-oriented approaches to evaluate the deploy-

ment of hypothetical cloud services in different geographical locations [122],

estimating the number of cloud infrastructures to deploy to meet application

requirements in terms of latency and throughput. Others analyze the currently

deployed datacenters, observing that it is sufficient to provide users around

the globe with the necessary quality of experience in terms of response times

(20–200ms) for interactive, latency-sensitive applications [44]. Instead, Choy

et al. [22] evaluate latency from 3 AWS datacenters towards thousands of users

(selected among active BitTorrent clients), focusing on endpoints located in

the US, to assess the feasibility of the cloud gaming application, as one of

the most demanding use cases requiring real-time interaction and high-quality

video streaming. As outcome of this analysis, authors highlight the need to

move the infrastructure towards the edge in order to satisfy the stringent re-

quirements of the considered scenario, also stressing on the importance of real

cloud measurements to investigate the characteristics of current infrastructures.

Laghari et al. [66] evaluate RTT values towards endpoints involving ten differ-

ent cloud and service providers (including Salesforce, Facebook, etc.) from

two VPs (located in China and Pakistan). Their experimentation also tests real

3G/ 4G broadband networks to collect latency measures. However, the results

analysis in this work only provides a simplistic characterization, reporting the

average response time and the Mean Opinion Score for the video platform test-

ing. Contributing to the effort of providing a public dataset for cloud latency

measurements, Tomanek et al. [116] present a platform for collecting latency

measurements from distributed source nodes, or Vantage Points (VPs), named

CLAudit (acronym for Cloud Latency Auditing platform), choosing Azure as
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provider. In detail, latency measured refers to C2U RTT, and is collected at

different TCP/IP-stack layers, adopting different probing methods. Develop-

ing on the collected data, the same authors present a detection methodology

for suspicious events [79]. This methodology considers the different contri-

butions to latency, and defines different metrics in order to pinpoint the cause

of anomalies and perform troubleshooting according to an event tree. In later

works, CLAudit was expanded to include additional measurements involving

the AWS provider; these data are then leveraged by Mulinka et al. [80] to

detect anomalies via unsupervised learning, comparing several clustering ap-

proaches and demonstrating an accuracy improvement over the metric-based

detection method previously presented in [79]. These additional data are also

leveraged by Uhlir et al. [118] to evaluate a benchmarking methodology to

compare cloud providers. This latter work is however focused on simple user-

defined metrics such as mean latency, standard deviation and coefficient of

variation. Moreover, this work does not provide an in-depth evaluation of the

methodology, but provides an example evaluation considering a restricted sce-

nario. Finally, the results from multiple source points are aggregated, therefore

not investigating outcomes related to specific VPs or geographical regions.

Moreover, more recent works (conducted after the experimental work pre-

sented in this thesis) have already proposed additional contributions. In detail,

Mohan et al. [78] explicitly address latency issues in current cloud infrastruc-

tures, which have reached a considerable deployment, experimentally evaluat-

ing which applications effectively require edge deployments. While the exper-

imental campaign conducted is massive, with 101 tested CRs from 7 providers,

and more than 3200 VPs tested with the aid of the RIPE atlas platform, cov-

ering different access technologies, the measurements (made publicly avail-
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able) are only conducted using the Ping tool and are collected every 3 hours.

Moreover, the overall characterization only focuses on the minimum latency

experienced by VPs in different continents, with the main goal of assessing

the feasibility of latency-sensitive applications using the current public cloud

deployments rather than providing a comprehensive C2U latency characteriza-

tion.

The results of the above analysis are summarized in Table 2.1, where I

highlight that I have reported the most relevant literature published prior to the

experimental work presented in this thesis and that has therefore influenced the

design of the experimental campaign described herein. For this reason, I have

not included in this table the work presented by Mohan et al. [78], which was

discussed in detail above.

From this analysis, it appears evident that most of the literature focusing

on C2U latency monitoring through non-cooperative approaches is based on

the data collected via CLAudit platform. However, each work focuses on a

specific subset of the whole data, for example considering different providers,

number of probe types, period between each measurement, number of VPs and

Cloud Regions (CRs). Compared to the works analyzing C2U latency via ac-

tive probing, the work detailed in this thesis considers the same number of CRs

and both AWS/Azure providers, but employs a higher number of VPs, i.e. 25

VPs as opposed to only 6 deployed by CLAudit, covering a larger geograph-

ical area. I highlight that number of nodes in the presented campaign would

be higher even if counting the secondary and backup nodes deployed in the

CLAudit platform, reaching a total of 15 VPs. Moreover, in addition to prob-

ing methods already included in previous analyses [79, 80, 116, 118], I also

consider HyperText Transfer Protocol (HTTP) and TCP measurements over
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non-standard ports, therefore investigating possible policies enforced basing

on the transport-layer port. Finally, I measure latency with a finer granularity

(1 min.) w.r.t. the aforementioned works.

2.3 Experimental methodology

This section focuses on the experimental methodology leveraged to character-

ize C2U latency. In detail, I first provide a description of the data collection

methodology in Sec. 2.3.1, discussing the experimental parameters described

earlier. Also, in Sec. 2.3.2 I also provide background to two statistical tests

that were leveraged in the experimental analyses to provide a statistically sig-

nificant comparison between providers, in terms of punctual latency values and

their variability.

2.3.1 Data collection

An experimental campaign was conducted in our research group to assess C2U

latency from several distributed source, for a total duration of 14 consecu-

tive days. Sources of measurements are denoted as Vantage Points (VPs),

while destination datacenters of cloud providers are indicated as Cloud Re-

gions (CRs). AWS and Azure are considered as cloud providers, since they re-

tain the majority of the current public cloud market share. A total of Vs = 25

VPs were tested, with 1 min period between consecutive probes. Moreover,

I included R = 4 distinct CRs for each provider, located in four continent

continents, leading to a total of 200 measured (VP,CR) pairs. I selected

the following regions, where both providers have deployed their infrastruc-

ture: Ireland (Europe), Virginia (North America), Sao Paulo (South
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Figure 2.2: Geographical distribution of VPs and CRs in the experi-

mental campaign. Red star markers denote the 4 CRs, while the circle

markers represent the VPs, colored according to the geographical re-

gion they belong to. Orange marker = EU region. Grey marker = North

America region. Green marker = South America region. Blue marker

= Asia Pacific region.

America), and Singapore (Asia-Pacific). The geographical distribution of

the VPs and CRs considered for the experimental campaign is visualized in

Fig. 2.2, where red star markers represent the CRs placed by each provider,

while circle markers indicate the VPs 2, colored according to the geographical

region they belong to, as detailed in the legend and further discussed in the

experimental results.

In addition, I leverage different probing methods to measure latency at
2VPs were geolocated through their domain names
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different layers of the protocol stack, including:

• HTTP probing

• TCP probing

• ICMP probing

For the first two methods, I also sent probes towards two distinct transport-

layer ports, port 80 (which is commonly associated with HTTP) and the non-

standard port 54321. I remark that the choice of multiple ports represents a

novelty compared to the other methodologies presented before, and whose im-

pact is experimentally evaluated in the following sections. Finally, I employ

another HTTP probing method, denoted as HTTP DB, that includes a database

query to a MySQL database local to the webserver, posing an additional over-

head to the overall latency. Therefore, I test a total of 6 different probing con-

figurations; among these, however, it should be noted that ICMP probing was

not suitable for Azure datacenter due to traffic-filtering policies enforced by

the provider at the time of the experimental campaign. Considering the prob-

ing period and the and the duration of the campaign, each series is composed

by approximately 14k samples. However, all the probing methods included

in the campaign are subject to errors (for example, connection reset, port un-

reachable, timeout), which may be the result of the VP, the CR, or the network

infrastructure connecting them. These error values result in invalid samples

for the time-series, which are marked with the None label in the dataset. In

our characterization and evaluation, I properly take into account these missing

values, as described later.

Focusing on the technical and implementation aspects, I leveraged the

HPing3 software tool for ICMP and TCP probing methods; HTTPing was in-



CHAPTER 2. C2U NETWORK LATENCY CHARACTERIZATION 39

stead used in the case of HTTP and HTTP DB probing. Both tools are publicly

available under Linux environments.

Finally, in order to foster reproducibility [11] and research about cloud

performance assessment, the dataset is publicly available at [25].

2.3.2 Statistical tests for evaluation

Before discussing the results of the experimental campaign, I provide back-

ground for two statistical tests employed with the aim of providing a

statistically-sound analysis. Indeed, to compare results across providers with

statistical significance, I employ the Wilcoxon signed-rank test [125], which

is a non-parametric hypothesis test used to compare whether the mean ranks

of two populations ({xi}Ni=1 and {yi}Ni=1, respectively) differ. The statistic is

calculated as follows: (a) let N̄ ≤ N be the number of pairs s.t. |yi − xi| 6= 0;

(b) the non-zero pairs are given a rank Ri according to the increasing order of

|yi − xi| (that means that smallest |yi − xi| gets Ri = 1); (c) pairs with the

same |yi − xi| are given the average of the ranks they span. Given this, the

statistic returned by the test is computed as:

Wwil ,
N̄∑
i=1

[sign(yi − xi) · Ri] (2.1)

Wwil is then compared to a suitable threshold (defined according to the de-

sired p-value). In detail, for the providers’ comparison discussed in the next

Sections, I use Wwil to compare whether statistically-significant different la-

tency values between Azure and AWS time series are observed on a given pair.

When there is a statistical significant difference, the sign of the statistic allows

to discriminate the best performing provider, providing lower latency.
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I instead leverage the Levene’s test [38] to assess significant difference

between variability in latency experienced by the two providers. This hypoth-

esis test allows to assess the equality of variances among K populations. To

evaluate the statistic, I denote with Ni be the number of samples of ith pop-

ulation and let N ,
∑K

i=1Ni. The score of jth sample within ith group is

denoted as Zij , and defined as the unsigned residual of the mean, the me-

dian or the trimmed mean, according to the chosen metric. Moreover, hav-

ing defined the per-group and overall score means as Z̄i , 1
Ni

∑Ni
j=1 Zij and

Z̄ , 1
N

∑K
i=1

∑Ni
j=1 Zij , respectively, the statistic is finally evaluated as:

Wlev ,
(N −K)

K − 1

∑K
i=1Ni (Z̄i − Z̄)2∑K

i=1

∑Ni
j=1(Zij − Z̄i)2

(2.2)

The computed statistic is again compared to a threshold variable with the de-

sired p-value to finally determine the test outcome. In the experimental results,

I leverageWlev to compare latency variability as experienced by AWS or Azure

on a specific (VP,CR) pair. As for the Wilcoxon test, the choice of Levene’s

test is also guided by taking into account its robustness, and for this reason I

have not employed other tests (as the Bartlett’s test) for the considered latency

variability comparison.

2.4 Experimental results

In the following, I provide an in-depth view into the experimental results ob-

tained after the experimental campaign detailed previously. A first overall view

of the results in given in Sec. 2.4.1, considering spatial and temporal trends

allowed by the geographical sparse distributions of VPs and fine-grained sam-

pling of the latency dataset collected. Also, the multiplicity of probing meth-
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ods and their impact on the latency characterization is discussed in Sec. 2.4.2.

Finally, the impact of human-related time patterns on latency values is ana-

lyzed in detail in Sec. 2.4.3, focusing on hourly, daily and weekly patterns

observed during the 14 days campaign.

2.4.1 Characterization of spatial and temporal latency trends

In this section, I first provide a high-level view of the C2U latency results,

considering each (VP,CR) pair separately. Complementary to this spatial

analysis, I also investigate performance variability over time, thus providing

two complementary views of C2U results, for a more complete characteriza-

tion. Differently from previous works [116], that provided an an high-level

characterization using minimum and median values, I investigate results more

in detail and thoroughly. I also underline that in this characterization I do not

filter out latency samples related to badness events according to the methodol-

ogy introduced previously, since the goal is to provide a comprehensive view.

Accordingly, Figs. 2.3a and 2.3b report the average latency (over the 14-

day campaign) experienced from each VP when targeting the four CRs for

AWS and Azure, respectively, and considering TCP probing on standard port

80, delegating an analysis of the impact of probing methods to a later section.

In this analysis, VPs located in the same geographical region are grouped to-

gether, according to the categorization shown in Fig. 2.2. It can be seen that

latency values, as expected, grow with the distance between the VP and the

CR, as lower values are reported along paths connecting VPs and datacenters

within the same geographic region. The main reason for this is the propa-

gation delay (as discussed in Sec. 2.1 when presenting the different latency

contributions), that linearly increases with the distance between source and
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398.9 254.6 170.0 15.4
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(a) AWS, detailed view.
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(b) Azure, detailed view.

Figure 2.3: Average latency [ms] (14-day span, TCP probing method,

port 80). (a) and (b) report detailed results considering each (VP,CR)

pair for AWS and Azure, respectively.



CHAPTER 2. C2U NETWORK LATENCY CHARACTERIZATION 43

Sin
ga

po
re
Ire

lan
d

Virg
inia

Sa
o P

au
lo

AP

EU

NA

SA

AVG

98.7 250.8 197.2 297.8

358.7 58.4 125.5 251.1

242.4 135.2 48.4 174.4

398.9 254.6 170.0 15.4

274.7 174.8 135.3 184.7

0 100 200 300 400 500

(c) AWS, per-region aggregated

view.

Sin
ga

po
re
Ire

lan
d

Virg
inia

Sa
o P

au
lo

136.9 256.2 193.8 309.8

335.8 54.4 118.2 227.4

211.9 131.0 56.0 175.9

351.6 229.3 153.1 17.3

259.1 167.7 130.3 182.6

0 100 200 300 400 500

(d) Azure, per-region aggre-

gated view.

Figure 2.3: Average latency [ms] (14-day span, TCP probing method,

port 80) (cont.) . (c) and (d) report results aggregated (average) by VP

region for AWS and Azure, respectively. AVG reports the CR-average.

destination. However, it is interesting to note that this result does not always

hold in inter-DC networks [94] or when considering other network metrics in

the cloud context, such as network throughput [92], for which distance is not

the main factor affecting the measurements. From these results it is also evi-

dent that VPs in the same geographical region may exhibit different behavior,

thus highlighting the benefits of having fine-grained spatially distributed VPs

in our experimental campaign.

In addition, Figs. 2.3c and 2.3d report an aggregated view of the previous

results, obtained by averaging VP results according to the geographic zones

associated to the four CRs, with an additional last row (“AVG”) reporting the

CR-average. In addition to the expected lower values on the main diagonal,



CHAPTER 2. C2U NETWORK LATENCY CHARACTERIZATION 44

0 25 50 75 100
D95 5 [ms]

0

0.2

0.4

0.6

0.8

1

EC
DF

Singapore
Ireland
Virginia
Sao Paulo

(a) AWS.

0 25 50 75 100
D95 5 [ms]

0

0.2

0.4

0.6

0.8

1

EC
DF

Singapore
Ireland
Virginia
Sao Paulo

(b) Azure.

Figure 2.4: Variability in terms ofD95−5 = 95thpctl−5thpctl. Mark-

ers highlight the average of each distribution.

On average, Virginia shows lower variability, while AWS in Singapore

reports a higher (and therefore worse) variability consistently com-

pared to the other CRs.

that correspond to latency measured within the same region, it can be seen how

the Singapore is the CR with highest average latency for both providers,

with the VPs in SA representing the worst case. Instead, VPs deployed in

Virginia report the lowest latency on average for both providers. These

result already provide preliminary guidelines to cloud customers wanting to

deploy their applications on the cloud. Indeed supposing to leverage a single

CR to reduce expenses, while considering potential users scattered around the

globe, the choice of the Virginia region would be the optimal one in terms

of average latency.

Considering a temporal analysis, Figs. 2.4a and 2.4b quantify the latency

variability over time for AWS and Azure, respectively, considering to this goal
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the difference between the 95th and the 5th percentile of the latency distribu-

tion for each (VP,CR) pair (denoted as D95−5). The choice of this metric

takes into account the spread between high measured values (possibly caused

by congestion events, suboptimal routing, etc.) and low ones, as experienced

by geographically-spread VPs when connecting to the considered CRs during

the 14-day campaign. Moreover, the choice of the 95th and 5th percentiles

(instead of max(·) and min(·) values, respectively) to filter-out outliers, which

can be observed during high load network conditions. Both figures report the

empirical CDFs (ECDF) of D95−5 values corresponding to the four CRs.

In detail, the figures allow to draw the following observations: (i) con-

sidering the per-CR breakdown, D95−5 is lower than 25 ms on median (resp.

lower than 50 ms on average); (ii) the distribution of D95−5 shows long tails,

with measured values higher than 100 ms for both providers; (iii) in more de-

tail, the variability experienced by VPs in Ireland and Virginia regions

is lower, on average, compared to that of Singapore and Sao Paulo,

for both providers. While this discrepancy is almost negligible for Azure

(e.g. +7.5% D95−5 for Singapore, w.r.t. Virginia, on average), this

phenomenon is more evident for AWS (e.g. +175% D95−5 for Singapore,

w.r.t. Virginia, on average). Finally, I also highlight that in most cases,

variability for most (VP,CR) pairs is limited, with few notable exceptions

evidencing the dependence from the CRs and the providers. These results

about tail latency and variability are in line with those found by Tomanek et al.

[116]. A detailed analysis has also revealed that part of the variability experi-

enced derives from intermittent spikes that are observed for several (VP,CR)

pairs, which, moreover, do not appear to follow a specific pattern. Since a

decreased probing frequency reduces the possibility of observing these tran-
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sient behavior, I claim that a higher sampling frequency contributes to a better

characterization.

Finally, it should be noted that the proposed analysis is not designed to

evaluate the trade-off between cloud costs and performance in terms of latency,

since, unlike other network performance metrics (e.g. bandwidth [91, 94]) or

cloud services (e.g. CDNs [92]), cloud customers are not expected to experi-

ence better latency when paying higher costs for the IaaS under evaluation. As

highlighted previously, indeed, the C2U latency values are heavily dependent

on the distance between VP and CR, rather than on the specific rented service

(virtual machines, in this analysis).

2.4.2 Impact of probing methods

Previously, I have introduced the different active-probing methods used to

measure C2U latency, covering different layers of the stack and also requir-

ing different configurations at server side. Since these methods can lead to

different latency estimates, here I assess the concordance of latency values and

their variation across different probing methods. In the next Section 2.5.1, I

introduce and discuss the detection of badness event, following the work con-

ducted in [86], also evaluating the difference in detecting anomalies varying

the probing method as well.

In the following, my goal is to assess whether distinct probing methods,

reporting statistically different latency values when evaluated on the same

(VP,CR) pair at the same time interval. Therefore, I leverage the Wilcoxon

signed-rank test Wwil, used to compare the 14-day time series, leading to the

following results. Considering the comparison between (a) TCP on port 80

vs. 54321, (b) HTTP 80 vs. 54321, (c) HTTP vs HTTP DB and (d) ICMP vs
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TCP 80 for any (VP,CR) pair and both providers (when applicable), I ob-

served statistically-significant differences between the considered time series.

It should be noted that in the third comparison (c) this discrepancy is aligned to

the different operations performed by the methods, since HTTP DB performs

an additional query and therefore poses the additional latency of intra-DC net-

work and processing time at the auxiliary server, and indeed it reported on

average a≈ 9 ms higher compared to standard HTTP considering all the pairs.

However, in the other comparisons, there is no clear pattern emerging from

this analysis in terms of which probing method performs best, although there

is always one measuring a consistently-higher latency for each (VP,CR) pair.

These results further motivate to need to take into account multiple meth-

ods when designing non-cooperative methodologies for monitoring public-

cloud networks. Indeed, in the worst case (that is, when averaging over each

time-series), these methods can differ up to 198 ms. This difference is evi-

dent in the case of the AP01 VP, where a TCP proxy was detected on the path

towards the cloud, causing measurements over the standard 80 to be heav-

ily underestimated, since, across all VPs and CRs, the reported RTT values

are around 1 ms. Instead, RTT samples collected using the non-standard port

54321 appeared more realistic and variable according to the distance between

VP and CR. Instead, for HTTP no relevant difference was reported between

these two ports; this can be easily explained considering that, in this case, la-

tency measures the response time of the requested page, which is sent from the

web-server at the intended destination and cannot be sent by the intermediate

proxy.

Focusing on ICMP, the results are in line with what those reported in [132]

regarding service availability measurements: despite being vastly utilized, as it
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does not require specific instrumentation server-side, ICMP results can differ

from those obtained at upper-layer protocols, leading to either an underestima-

tion or (more often, in this case) an overestimation of values.

(a) Number of (dis)agreements considering punctual latency. Disagree-

ments are observed only in about 3% of the cases.

(b) Number of (dis)agreements considering standard deviation. Com-

pared to punctual latency, more disagreements are observed (12.5% of

the cases).

Figure 2.5: Number of (dis)agreements between pairs of different

probing methods about best provider across different protocols in the

four CRs, considering (a) punctual latency and (b) latency variability

(in terms of standard deviation) as the relevant metric.

Next, I investigate the impact of the probing method in determining the

best-performing provider both in terms of punctual latency and its variation,

measured through standard deviation and assessing the statistical difference

in these two cases leveraging the Wilcoxon signed-rank test and Levene tests

respectively. The results, aggregated by CR, are shown in Fig. 2.5, reporting
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the number of agreements and disagreements between probing-method pairs

considering the outcomes of the statistical tests, with Wilcoxon signed-rank

test in Fig. 2.5a and Levene test in Fig. 2.5b. I remark that in some cases the

bars do not sum to 25 VPs, because in these instances the test returns a non

statistically-significant discrepancy between providers. From Fig. 2.5a, it can

be observed that disagreements are observed only in 13 out of 400 cases (i.e.≈
3%). Instead Fig. 2.5b shows that, considering standard deviation, a higher

number of disagreements is recorded (with 50 over 400 cases, or 12.5%); the

highest number of disagreements concerns the comparisons between TCP80

and HTTP80, and between HTTP80 and HTTP DB, both reporting 13 cases.

To conclude, these analyses demonstrate that, with the exception of few

cases, generally the outcomes of provider comparison are not impacted by the

choice of the probing method.

2.4.3 Hourly, daily and weekly patterns

In this section I report the analysis of latency over different time patterns from

those considered previously. Indeed, in different contexts it is reported that

traffic exhibits different patterns, reflecting human activity, so that increased

traffic is observed from industrial areas during work hours and weekdays com-

pared to nights and weekends [88]. It is therefore worth investigating if these

patterns (typically referred to traffic volume) also reflect into latency experi-

enced by users, which, as highlighted in Sec. 2.1 is impacted by link capacity

(and thus spare bandwidth) and queuing delay.

Therefore, in this section I analyze results considering three different time

patterns: hourly, daily and weekly. In detail, for hourly granularity, I consider 6

time ranges of 4 hours each (starting from 12 am), and aggregate all the latency
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Figure 2.6: Evolution of mean latency values (in [ms]) considering

hourly patterns. Figures focus on the Ireland region for both providers.

Mean values are stable across different hour ranges, for all Vantage

Points and for both providers.

measurements collected over the 14 days campaign according to the hour range

during which they were collected. Similarly, for daily patterns I aggregate

measurements for each day of the campaign. I remark that the campaign lasted

for around 14 days, going from June 1st to June 16th (partially covering the

first and the last day). Finally, for the assessment of weekly patterns I aggregate

latency samples according to the day of the week when they were collected.

As measurements were collected for approximately two weeks, this means that

each weekday was covered twice during the whole campaign.
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Figure 2.7: Evolution of mean latency values (in [ms]) considering

daily patterns. Figures focus on the Ireland region for both providers.

Mean values are usually stable across the different days, with ex-

ceptions related to EU05 and EU06 Vantage Points considering both

providers.

Considering the results obtained after this aggregation, I report the evolu-

tion of mean latency values according to the time patterns in the heatmaps in

Figs. 2.6-2.8 for hourly, daily and weekly patterns respectively. Moreover, I

highlight that, among the 4 CRs, I focus on results from Ireland region for both

providers, since results for the remaining CRs were analogous.

According to Fig.2.6, hourly patterns do not emerge, for both providers.

Indeed, the difference between each consecutive time interval appears negligi-

ble, despite the VP or the geographic region they belong to.

While for daily patterns generally the same observations generally hold,
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(b) Azure.

Figure 2.8: Evolution of mean latency values (in [ms]) considering

weekly patterns. Figures focus on the Ireland region for both providers.

Mean values appear to be stable also across different days of the week,

for all Vantage Points and both providers.

there are a few exceptions related to specific VPs. For example, latency mea-

sured by EU05, EU06 and NA02 shows a sudden drop after June 6th, 11th and

8th respectively. It is also interesting to note that 2 of these VPs are located

in Europe. In these cases, the synthetic latency value averaged over the whole

14 days campaign provides a less meaningful value, as it is averaged over an

almost equal amount of lower and higher values.

Finally, weekly patterns reported in Fig. 2.8 are in line with those regarding

daily patterns, since there are no evident differences according to the day of

the week, with the only exception of a small decrease in latency for EU05 on
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Tuesday.

Similarly, I have also considered the comparison of the two providers, us-

ing the Wilcoxon signed rank test to evaluate statistically significant difference

from samples aggregated over the aforementioned patterns. The results, not

shown for brevity, show with a 99% confidence that in most cases the best

performing provider does not vary with the considered pattern. The only ex-

ceptions that appear are limited to the specific VPs discussed before.

Therefore, this analysis highlights that, unlike other metrics, latency ap-

pears to be less affected by patterns related to human activity. These results are

helpful in designing monitoring methodology, since providers and customers

do not have to worry about monitoring the cloud infrastructure in specific time

intervals, and their results can be confidently applied to other days or hour

ranges without loss of generality.

2.5 Application scenarios

In this additional section I focus on two example evaluation of how C2U la-

tency measured through the proposed methodology can provide concrete bene-

fits to cloud providers and application developers, considering two application

scenarios, namely the detection of anomalous latency events (in Sec. 2.5.1),

and the deployment of multi-cloud applications (in Sec. 2.5.2), which lever-

age more than one provider, assessing the conditions where this deployment

provides latency reduction.
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Figure 2.9: Badness [%] in 30 min buckets (14-day span, TCP probing

method, port 80). (a) and (b) report detailed results at (VP,CR) pair

granularity for AWS and Azure, respectively. Differently, (c) reports

the [%] difference heatmap. AVG reports either the CR- or VP-average.

Average badness may differ depending on the VP or CR. However, no

clear patterns emerge.

2.5.1 Badness events detection

Here, I provide an assessment of badness events for each (VP,CR) pair. I

highlight that the methodology for badness events here described was inspired

by one specific work [56], although there are different proposals [116] for
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anomaly detection and interpretation. In detail, the duration of a bucket is

denoted as Tbu, the number of corresponding samples as Nbu, and the vector

of latency values associated to the bucket as xbu. Accordingly, each bucket is

marked as “bad” (i.e. latency is higher than what would be expected under

typical conditions) if the statistic

λ(xbu) > γbu, (2.3)

also denoting using the summarizing function λ(·), exceeds the “badness base-

line”, namely a threshold separating bad and normal latency levels. For this

λ(·) function, several choices are possible. In the following work, based on

the characterization provided in [86], I adopt: (i) the median as a robust in-

dicator of typical latency values within a bucket, and (ii) the 75th percentile

of the time series values as threshold value within each bucket, constituting a

data-driven threshold to compare with the median value and detect abnormal

values.

Naturally, according to the scenario a different function or threshold can

be chosen, for example using provider-specified (fixed) values [56]. Both of

the cited methodologies rely on the tuning of some parameters (window size,

threshold for detecting events), but I have chosen the first as reference since it

was deemed to be more flexible and suitable for this evaluation scenario.

Specifically, in the experiments shown hereafter, I considered two applica-

tion scenarios. First, in Sec. 2.5.1, the badness threshold is computed in an

offline fashion, considering the time series in its entirety, performing a post-

mortem characterization of these events. Then, in Sec. 2.5.1, I consider a real-

istic setup by considering an online calculation which can be used to detect ab-

normal events in real time. In this online scenario, the badness threshold is first



CHAPTER 2. C2U NETWORK LATENCY CHARACTERIZATION 56

initialized using the first two days of observations, for each (VP,CR), and

then updating γbu when new samples are added. Moreover, samples marked as

bad within the buckets are removed when learning the normal behaviour.

Finally, in both experimental analysis, a duration of Tbu = 30 min for

each bucket is chosen, with the goal of aggregating enough samples to pro-

vide statistically-significant results while keeping the duration short enough to

provide the capability of timely detect anomalous events ongoing.

Offline badness events characterization

In the following, I report the results of the offline evaluation, including in

Figs. 2.9a and 2.9b the percentage of bad buckets over the 14-day campaign

from each VP when targeting the four CRs for AWS and Azure, respectively,

and considering TCP probing on port 80. As in previous results, VPs located

in the same geographical region are grouped together.

Overall, the average badness percentages for the two providers are simi-

lar, with 7.9% and 8.2% for AWS and Azure respectively, while results on a

(VP,CR) basis show peculiar patterns. These results imply that badness events

appear to be related to the VP or the destination area (or both), and generally

cannot be ascribed to the provider infrastructure itself. Considering a per-VP

view of the results, more occurrences of badness events are observed from

EU01 and EU06 toward all the four CRs, for both providers. Differently, for

NA03 (the VP reporting the highest overall average percentage toward all the

CRs) and NA05 a similar behavior is reported only in the case of Azure. In-

stead, considering a per-CR aggregation, different behaviors can be observed

according to the CR, although the relative ranking is the same observed for

both providers, with Singapore, Sao Paulo, Ireland, Virginia) in
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Table 2.2: Empirical conditional probability [%] of badness events.

X =

BAZ ¬BAZ

Pr(BAWS|X) 11.45 8.24

Pr(¬BAWS|X) 88.55 91.76

(a) AWS.

X =

BAWS ¬BAWS

Pr(BAZ|X) 11.83 8.51

Pr(¬BAZ|X) 88.17 91.49

(b) Azure.

decreasing order. The highest badness percentage is experienced by NA10

when targeting AWS Ireland CR; however, such result is scattered as it

corresponds to neither aggregations over VPs nor over CRs.

Considering a comparison between the two providers, Fig. 2.9c reports

the difference between the AWS and Azure for each (VP,CR) pair. The

figure does not highlight specific patterns, again showing peculiarities only on

selected pairs. For instance, the highest badness increase incurred by Azure

(compared to AWS) is observed for NA10 and AP06 toward Ireland and

Singapore CRs, respectively. Instead, the highest badness increase incurred

by AWS (compared to Azure) is observed for NA03 toward Ireland and

Sao Paulo.

Still considering an offline characterization of badness events, I now fo-

cus on the severity of such events, assessing their correlation over time. To

this goal, Figs. 2.10a and 2.10b report the empirical probability mass function

(EPMF) of the badness persistence, that is, the duration of a badness event in

multiples of Tbu = 30 min buckets, for AWS and Azure respectively. In each

figure I report four EPMFs, aggregating badness persistence samples over the

VPs for each CR. Results show that the distribution of the persistence of bad
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(a) Badness events persistence for AWS. (b) Badness events persistence for Azure.

Figure 2.10: Persistence of badness events for both providers. The two

empirical PMFs report the number of consecutive buckets reporting a

badness event over the whole 14-day campaign and all VPs targeting

a specific CR. Black vertical lines report the 90th percentile of each

distribution. For both providers, badness events are mostly short-lived

(less than 1.5 hours), with few exceptions of events lasting more than

15 hours, reported especially for AWS.

buckets is similar across CRs and providers, showing an expected decreasing

trend with the increasing persistence. Around 60% of the badness events lasts

only for one bucket (that is, for a 30m duration), while the 90th percentile

is almost always bounded within 3 h, with the only exception represented by

Sao Paulo region for AWS, where 10% of values are above the 4 h thresh-

old approximately. These findings about short-lived anomalous events are in

line with those highlighted in previous works [56, 116]. Moreover, there are

some sporadic cases where badness events show high persistence (between 12

and 20h), appearing for different CRs in the case of AWS, and only for the

Virginia region in the case of Azure.
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Finally, I analyze the correlation of badness events between providers,

thus considering the incidence of a badness event of one provider on the

other considering the same (VP,CR) pair and the same time span. Con-

sidering a specific (VP,CR) pair, I denote with BAWS and BAZ the binary

(i.e. ∈ {0, 1}) a badness event for AWS and Azure, respectively, for the same

30 min bucket. I then consider the two empirical conditional probabilities,

denoted as Pr(BAZ|BAWS) and Pr(BAWS|BAZ), assessing how much badness

events from one provider reflects into anomalous behavior for the other one

as well. These results are reported in Tabs. 2.3a and 2.3b, where the condi-

tional probability is averaged over all the (VP,CR) pairs. From the tables,

it appears that, when a badness event is detected for a provider, the probabil-

ity that the same happens for the other one is lower than 12%. Instead, when

one provider does not experience anomalous events, the probability that there

is a badness event for the other one is slightly higher than 8%. Therefore, it

appears that BAWS and BAZ are loosely correlated.

To underline the importance of the fine probing frequency adopted in this

characterization, it should be noted that if a 3 times higher probing period

was used, (with one sample every 3 minutes), the percentage of badness events

detected would increase from 8% to 12%. Moreover, the percentage difference

between coarser (3 x probing period) and finer granularity is higher than 10%

for three (VP,CR) pairs, witnessing the importance of an increased sampling

frequency to provide a comprehensive characterization without overestimating

occurrence of anomalies.

Complementing this badness event detection analysis, I also evaluated the

impact of the multiple probing methods leveraged in the campaign, assessing

the agreement between different methods in detecting anomalous events. The
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Figure 2.11: ECDF reporting the agreement percentage in detecting

badness events across probing-methods pairs. Each value of the ECDF

reports the agreement related to a (VP,CR) pair, considering the en-

tire time series. In all cases, agreement is above 67%. Still, the median

agreement between TCP and ICMP is the lowest.

results of this analysis are shown in Fig. 2.11, reporting the ECDF of percent-

age agreement in detecting badness events across probing methods. I highlight

that the analyses take into account the agreement between TCP and HTTP (port

80) for both providers while the one between TCP and ICMP only for AWS,

based on measure availability. Instead, results considering non-standard ports

are omitted for brevity, since they do not differ significantly from those shown.

Overall, the agreement reported settles around (78, 97) %. In detail, higher

levels of agreement are observed between TCP and HTTP (in most cases, not

depending on the specific provider) with an average agreement around 93–

94%. Instead, the average agreement between TCP and ICMP is around 82%,

therefore reporting lower values. When looking at per (VP,CR) pair detailed

results (which are not shown explicitly), it can be seen that the agreement per-
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centages vary slightly with the VP but are not significantly impacted by the

specific CR, with the sole exception of few cases related to TCP versus ICMP

comparison.

The results about offline detection of badness events denoted the impor-

tance of the choice of the parameters for the experimental campaign, allowing

to assess possible differences pertaining to VPs, CRs, providers and probing

methods. Naturally, this characterization was performed post-mortem, lever-

aging all the knowledge acquired during the 14 days campaign. An online

detection analysis is instead reported in the next section, demonstrating a pos-

sible application scenario for the proposed methodology.

Online badness events detection

In the following, I instead focus on the online detection of badness events,

that can provide a tool to detect anomalous events and means to perform a

root cause analysis to detect the source of such events. Although I explicitly

report the results of the proposed analysis focusing on measurements collected

using TCP protocol on standard port, the same methodology can be applied

and extended to multi-protocol measurements to more accurately detect the

causes of degradation, and of course can be complemented by providers using

measurements collected via cooperative approaches to obtain a comprehensive

view.

To report the results of this analysis, Figs. 2.12a and 2.12b report a dash-

board for badness events detection, where the blue and orange vertical bars

report badness events (bad buckets) for Azure and AWS pairs respectively.

The last row instead reports the average view, with a dashed line reporting the

outcome of a “majority voting” imputation statistic (i.e. 0.5 threshold). While
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(a) Online badness events (marked as blue lines) from all the VPs

towards Azure datacenter in Sao Paulo. On July 8th, all VPs

report badness events towards this CR, hinting a possible issue in

the datacenter or in its proximity.

(b) Online badness events from VP EU05 towards all the CRs for

both Azure and AWS (blue and orange lines respectively). Starting

from July 8th, this VP reports badness events towards all CRs and

for both providers, therefore indicating a likely issue in the VP or

in its proximity.

Figure 2.12: Online badness events at different aggregation. The last

row reports the average of the above ones, while dashed lines indicate

the 0.5 threshold for majority-voting.
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this dashboard can be enriched using additional context information [56], it

can provide early hints to troubleshoot cloud networks in case of performance

degradation.

The two figures provide two different and complementary views of the

badness events. Indeed, Fig. 2.12a highlights the correlation of badness events

related to all the VPs, focusing on the Sao Paulo region for Azure. In this view,

high latency values in the black box, which can be seen to occur between 7–9th

June, indicate badness events observed by the majority of VPs, highlighting

degradation events whose cause can be ascribed to the specific provider CR

(for example due to overhead on the specific datacenter or on the related access

network).

Instead, Fig. 2.12b reports a VP-based view, showing the badness events

focusing on the EU06 VP towards the four CRs of both providers. As can be

seen, high and long-lasting values occur from 8th June in the summary view,

indicating badness events involving all the paths departing from this VP, and

for which, therefore, the providers cannot be blamed. In this case, the user

access network is likely to be the cause of the performance issue.

These views provide an example of how the dashboard can be used to

obtain a real-time view of performance degradation events of C2U network

considering the different VPs and CRs. Based on these results, it can also be

expected that an increased number of deployed VPs can increase the accuracy

in highlighting root causes for badness events. These outcomes can be there-

fore used to highlight causes and to design solutions to reduce the impact of

badness events on user-perceived performance, for example leveraging multi-

cloud deployments as discussed in Section 2.5.2.
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2.5.2 Multi-cloud deployments

The adoption of multi-cloud architectures by enterprises (that is, renting ser-

vices from two or more cloud providers at the same time) has steadily increased

over the last years, mainly because multi-cloud deployments offer more flex-

ibility and increase reliability, also allowing to reduce costs by switching be-

tween the two providers [61].

In the following section, I evaluate the potential gains that customers could

achieve when adopting multi-cloud architectures in terms of reduced network

latency [127]. To this goal, I evaluate the C2U latency reduction comparing

with two baseline cases: (i) the adoption of one cloud provider for all the users,

considering for this case the provider reporting lower latency on average, on a

global scale, and therefore Azure according to previous results. This baseline

is denoted as Lsingle; (ii) the adoption of the best-performing provider consid-

ering each (VP,CR) pair. In this case, for each (VP,CR) pair, I consider to

statically adopt the provider with better performance on average, based on the

results already discussed. This second baseline is denoted as Lbest).

These two baselines are compared to the performance obtained with an

ideal multi-cloud architecture, considering at each instant in time the provider

reporting the best performance (denoted as LMC). This ideal case is repre-

sentative of an architecture where either (a) the best performing provider is

predicted and selected over time, or (b) resources are duplicated and redun-

dancy is properly managed.

Figs. 2.13a and 2.13b report the results concerning the two baselines, fo-

cusing on TCP probing on the standard port 80. The former reports for each

(VP,CR) the relative improvement with respect toLsingle, (i.e. Lsingle−LMC

Lsingle
×
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(a) Relative improvement over Lsingle.
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(b) Relative improvement over Lbest.

Figure 2.13: Gains achievable with multi-cloud deployments w.r.t. the

globally-better provider (a) and the locally-better provider (b). Results

show that up to 70% (resp. 10%) relative improvement can be achieved

over baseline in (a) (resp. baseline in (b)).

100), while the latter includes the relative improvement with respect to Lbest,

(i.e. Lbest−LMC
Lbest

× 100). The results show how multi-cloud deployments

achieve better performance compared to both cases. In detail, performance

improves more than 5% in 7% of the cases, with a maximum relative im-

provement of 21.3% when compared to the locally-better provider. Instead,

compared to the deployment relying on the globally best performing provider,

latency improves more than 5% in 29% of the cases, and up to 70.8%.

2.6 Remarks and discussion

To conclude this chapter I provide some final remarks and highlight the main

outcomes of the C2U latency characterization provided herein. In detail, I
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have assessed C2U latency with a multidimensional dataset covering different

VPs, CRs, providers, and different probing methods, collected with a fine-

grained period. The analysis has shown the importance of taking into account

a multiplicity of factors to properly assess latency experienced by final users,

highlighting benefits for cloud providers and customers developing their appli-

cations on top of the cloud infrastructure.

Moreover, I have also focused on the application scenarios, showing how

the collected measurements can provide valuable insight into cloud perfor-

mance, which remains obscure although its importance for the applications is

critical. Considering the requirements of telemedicine applications presented

in Chapter 1, I have discussed how latency is critical for several applications.

Indeed, focusing on badness events, for remote imaging transient spikes or

prolonged periods of higher latency directly impact the QoS, impacting the

video quality and the real-time control of devices, as in the case of telepathol-

ogy and telesurgery. Similarly, the multi-cloud deployments can be leveraged

to minimize latency when badness events are experienced, or leveraged in con-

junction to increase reliability, another crucial requirements for telemedicine

applications.

From the results shown in this chapter, it can be highlighted that the cloud

infrastructures tested can effectively support these applications in several sce-

narios. Of course, as I am not considering application-layer delays (apart from

the case of HTTP probing, which however requires a low computational ef-

forts), the latency values reported can be considered as upper bounds to assess

the feasibility of an application.

For example, considering a threshold of 100 milliseconds, that can can be

considered acceptable for a human controlled application considering the typ-
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ical human-interaction times [78], it can be seen that all the (VP,CR) pairs

in Europe and North America report latency below this value when consid-

ering the nearest datacenter (i.e. the intra-region case). Also, the single VP

leveraged in South America reports low latency towards the Sao Paulo region,

since they are located nearby. Instead, only half of the VPs located in the Asia-

Pacific region report a latency lower than 100 ms towards the Singapore CR

(the nearest one), for both providers. In these cases, the feasibility of applica-

tions requiring real-time human interaction would be compromised. Instead,

considering even stricter requirements, as a 50 ms threshold, which is typi-

cally required for interactive video streaming application (cloud gaming [98],

but also telepathology in the telemedicine field), for each provider only 3 intra-

region (VP,CR) pairs in Europe report latency within this threshold, while

this number raises to 5 (VP,CR) pairs considering VPs in North America

and the Virginia CR. These results give additional insights to providers, with

a view of areas where infrastructural investments are required to enable novel

applications.

In the case of mobile applications, even when the cloud infrastructure

meets their requirements in terms of latency, the bandwidth limitations of these

networks require additional investigations, as deepened in the next chapter.



Chapter 3

Active available bandwidth

estimation in mobile networks

In this chapter I remark the importance of bandwidth-related metrics, partic-

ularly in mobile networks, considering two metrics which have received con-

siderable attention in literature, namely available bandwidth and achievable

throughput. The first is a network-layer metric independent from above pro-

tocol, characterizing the spare capacity of a path (or link), while the second

is a transport-layer one, therefore dependent on the mechanisms implemented

at this level. In detail, I establish a relationship between these two metrics

performing an experimental campaign leveraging the European MONROE

testbed, with the goal of assessing to feasibility of applications with band-

width and latency requirements on the current mobile network infrastructure.

This work complements what was done with latency, considering bandwidth

as another relevant metric for several applications, and currently deployed mo-

bile networks as a more challenging scenario compared to traditional home

68
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networks, since both wired or wireless (i.e. WiFi) technologies can offer today

a significant amount of bandwidth.

Indeed, Mobile Broadband Networks (MBB) are spreading their cover-

age worldwide, also reaching high speed, satisfying the need for anywhere and

anytime high bandwidth access to the Internet [14]. With the increased capabil-

ities of the cellular networks, new kind of services are made available to users,

and new usage patterns emerge. Moreover, Wi-Fi services are widespread and

multi-homed devices are common nowadays, offering the possibility of using

WiFi together with one or even two SIMs to leverage cellular networks. In

some cases, multi-carrier access is also available with a single SIM card [69].

The support of multiple heterogeneous network access providers is also speci-

fied in 5G goals [9].

In the case of multiple network paths to choose from, with possibly sig-

nificant differences in performance, key factors include latency, as discussed,

and throughput of each path, with variable priority depending on the specific

service. In the case of throughput, one way to assess this metric involves per-

forming a data transfer of a suitable duration, and derive the average goodput,

i.e. the number of application-layer bits per unit of time, excluding the proto-

col overhead. Although simple, this method has different drawbacks: first, the

choice of transport-layer (or application-layer) protocol, the transfer duration,

which have been shown to impact the results [55]. Moreover, these kinds of

measurements are costly in terms of generated traffic volume (especially when

speed can exceed tens of Mbps), a decisive factor for mobile networks where

there is usually a data cap.

For these reasons, the choice of available bandwidth as a network layer

metric can be more suitable. This metric characterizes a path considering its
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spare capacity, and is less volume intrusive compared to the previous methods;

moreover, it is independent from above layers, and therefore can be considered

an ideal choice to characterize the network path. However, from the surveyed

literature it is evident that most of the available bandwidth estimation tools are

designed for wired networks scenarios, and only few tools consider wireless

and mobile scenarios, that present specific challenges given their characteris-

tics at the physical and medium-access control layers. For example, the capac-

ity of wireless links can vary quickly according to the radio channel conditions.

For these reason, the estimation of available bandwidth in mobile broadband

networks is of high interest and presents several challenges which are still a

research topic.

As briefly introduced earlier, in the work presented in this chapter, I as-

sess two alternative metrics for bandwidth, namely available bandwidth and

TCP achievable throughput, evaluating the use of the first (a network layer

metric) as a proxy for the second (a transport layer, protocol specific metric),

bringing a considerable saving in the generated traffic volume, which is a rel-

evant aspect in mobile scenarios. To this goal, I assessed the performance of

a recent publicly available estimation tool, named Yaz [109]. I remark that,

since this tool was designed for wired networks, I implemented some changes

in order to take into account packet reordering, which I found to be common

in my experiments using mobile networks, thus designing a novel version of

the tool targeting mobile scenarios. The modified tool is also made publicly

available [76]. I conducted an extensive experimental evaluation leveraging a

real 3G/4G testbed deployed in different European countries, the MONROE

platform [115]. Leveraging nodes from this platform, I tested actual providers

using commercial data plans, in the wild, running measurements in the uplink
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direction towards a measurement server hosted in our laboratory in Naples.

The available bandwidth estimates obtained in such way are compared to TCP

throughput measurements performed in the same conditions, highlighting the

relationship between these two different metrics, and also taking into account

the intrusiveness in terms of generated traffic volume and time to generate

these estimates. I then focus on the conditions in which available bandwidth

can be used as a proxy for achievable throughput, being accurate while keeping

the amount of traffic required significantly lower. I also focus on the possible

enforcement of policies by mobile network operators and how they impact the

difference between the two estimated metrics. I underline that, in this sense,

there are no previous works that have considered the relationship between these

two metrics and how available bandwidth can be leveraged to support band-

width estimation at a lower cost in terms of traffic volume. Finally, I remark

that the dataset obtained considering both estimates (in terms of log files) is

made publicly available [28], and that also the experiment code (as a Docker

container image) is available [29], in addition to the modified version of Yaz

discussed earlier.

The rest of the chapter is structured as follows. In Sec. 3.1, I first provide

background with the definitions of the bandwidth related metrics considered in

this chapter, and introduce the MONROE testbed leveraged during the experi-

mental activities. Then, in Sec. 3.2 I survey the literature about active available

bandwidth estimation tools. In Sec. 3.3 I detail the methodology used to per-

form the measurements on the MONROE platform, and in Sec. 3.4 I discuss

the results in detail, assessing the relationship between achievable throughput

and available bandwidth in mobile networks. Finally, Sec. 3.5 concludes this

first chapter dedicated to available bandwidth, highlighting the connection with
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latency and bandwidth sensitive applications which are the core of this thesis.

3.1 Background

Throughput and Available Bandwidth A number of different metrics exist

for bandwidth, for example related to the layer of the stack they refer to. In

general, network throughput refers to the amount of information transferred

from a source to a destination over a time interval. Considering the TCP/IP

protocol stack, the application-layer throughput is limited upper-bounded by

the network-layer throughput, and also depends on the transport protocol

adopted. In the work presented in this thesis, I have focused my experiments

on TCP achievable throughput, although, as discussed later, I have surveyed

works using both UDP and TCP throughput. I remark that instead available

bandwidth, as mentioned, is instead a network-layer metric (and therefore in-

dependent from the transport protocol adopted) which measures the average

unused capacity of a hop during a considered time interval, and thus can be

obtained from the hop capacity subtracting the throughput flowing into that

interval.

Formally, the available bandwidth is first defined on each link of a network

path. For each time instant, the i-th link is either inactive or transmitting at its

full capacity, so the average utilization of the link i in the time interval (t−τ, t)
is

ūi(t− τ, t) ≡
1

τ

∫ t

t−τ
ui(x)dx

where τ is the averaging timescale. The amount of traffic that is transferred

over the link during the time interval (t− τ, t) is denoted as li(t− τ, t) and is

equal to
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li(t− τ, t) = Ci · τ · ūi(t− τ, t)

The available bandwidth in the time interval (t−τ, t) for the i-th link, with

capacity Ci, is

ai(t−τ, t) ≡
1

τ

∫ t

t−τ
Ci(1−ui(x))dx = Ci(1−ūi(t−τ, t)) = Ci−

li(t− τ, t)
τ

.

This definition is then extended to a whole path by taking the minimum

available bandwidth of all the links composing the path, and can be considered

as the maximum network-layer throughput that can be imposed on that path

without affecting the other flows sharing part of it. The knowledge of available

bandwidth allows to impose traffic on a path without causing congestion, thus

resulting in bounded delays (in metaphor, it flows effortlessly as in an unloaded

network). All applications sensitive to jitter (e.g. interactive applications, me-

dia streaming) or to throughput (e.g. bulk transfer) would benefit from the

knowledge of the available bandwidth, for a number of uses, including for ex-

ample server selection, overlay network routing, buffer dimensioning, media

codec selection.

Both throughput and available bandwidth can be estimated both through

active and passive measurement approaches. For available bandwidth estima-

tion using active approaches, several tools have been proposed in literature,

which can be broadly categorized into two approaches, that I briefly discuss.

The Probe Gap Model (PGM) [52] approach uses probe packet pairs or packet

trains to determine the available bandwidth. It uses these pairs by noting the

difference between their network entry time gap, and their network exit time

gap. The difference between these two gaps is the time the bottleneck link
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required to service any non probing traffic (i.e. cross-traffic) on the bottleneck

hop. Therefore, the information about cross traffic rate can be used to estimate

the available bandwidth [111].

In the second approach, namely Probe Rate Model [41], a train of packets

is sent leveraging the concept of self-induced congestion [129] to determine

the available bandwidth of the network path. Each packet train is forwarded

through the network at a particular rate. The rate increases until particular self-

induced characteristics are observed from the packet train such as a diversion

from the initial packet train transmission rate. Each of these approaches has its

advantages and drawbacks, and none of them is better than the others in all the

possible application scenarios.

In this chapter, I focus on active approaches based on the Probe Gab model,

leveraging tools which send trains of packets, organized as fleets, into the net-

work and measuring their gaps to determine network congestion and thus de-

rive the available bandwidth. Instead, I refer to the next chapter 4 for the

discussion and the evaluation of a passive methodology.

MONROE platform [7] As mentioned in the introduction to this chapter,

I leveraged a research testbed for the experimental evaluation carried on in

this chapter and in Chapter 4 for bandwidth estimation on mobile broadband

networks. This platform, named MONROE, was developed within the scope

of an European project whose objective is to provide an open platform for

independent, large-scale monitoring and assessment of performance of MBB

networks in heterogeneous environments. While a deep discussion of the plat-

form can be found in [7], its main components are the following: (i) distributed

standardized hardware appliances (MONROE nodes, also referred to as mobile
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nodes in the following) running the experiment software; (ii) the software—-

core components and user-defined experiments—running on MONROE nodes

in virtualized environments; (iii) the management system, allowing users to

access, schedule experiments, and import data; (iv) a database holding experi-

mental results.

Notably to the experiments performed in this chapter are the virtualized

environments, in the form of Docker containers, used to run the experiments,

and the monitoring system integrated into the platform, which periodically col-

lects metadata within the experiments, for example relative to mobile network

condition (signal strength, frequency used, etc...).

3.2 Reviewing bandwidth estimation using active ap-

proaches

Several available bandwidth estimation tools have been developed over the

years, mainly targeting wired networks, providing an assessment of their

performances in different scenarios. The list of the most popular and used

tools include, for example, Pathload [55], Yaz [109] (a calibrated version of

Pathload aiming at improving the accuracy), pathChirp [101], ASSOLO [41],

SPRUCE [112], Traceband [45]. These tools were introduced and evaluated

mostly focusing on wired scenarios and on different conditions. For example,

the authors of Traceband [45] compared its performance with that of Spruce

and Pathload on a real network using different traffic patterns, showing that

Traceband is faster and less intrusive than the others, and also achieving an

accuracy comparable to that Pathload.

In other works, on the other hand, authors focus on providing a detailed
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comparison of different state-of-the-art tools known tools, without presenting

new ones, trying to provide a unified framework for the assessment of available

bandwidth estimation tools. For example, Goldoni et al. [42] compared the ac-

curacy, the intrusiveness, and the convergence time of nine of the most wide

spread tools on a real testbed with 100Mbps links, and with both constant bit

rate (CBR) and Poisson cross-traffic. Other works [108]-[82] evaluated such

performance on very high speed networks. Authors in [16] have also shown

that the combined use of different techniques can increase the estimation ac-

curacy.

The first available bandwidth estimation tool specifically designed for WiFi

networks was WBest [68], following which other more recent proposals were

developed targeting wireless scenarios, including WiFi and cellular networks.

For example, Farshad et al. [34] propose an enhancement of WBest (named

WBest+) in WiFi networks, by evaluating the impact of 802.11n frame aggre-

gation on probe packets and adjust bandwidth estimation accordingly. Song

and Striegel [110] also leverage frame aggregation, improving accuracy by in-

ducing it on probe packets. As baseline to assess the accuracy of their work,

both consider UDP throughput, which is considered the ground truth for ca-

pacity, and the available bandwidth is estimated from it by subtracting the

amount of generated cross-traffic. As such, this evaluation is only possible in

fully-controlled scenarios, where the interfering traffic can be fully controlled

by the experimenter. The first available bandwidth proposal designed for LTE

networks is presented in [87], leveraging a curve-fitting approach to detect the

turning point in the received inter-packet spacing of the probe packets train.

An experimental evaluation is conducted over a Japanese commercial LTE net-

work, and FTP throughput is used as reference for comparison. Oshiba et al.
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[85] provide an assessment of the impact of LTE packet scheduler, introducing

a novel tool, named PathQuick3, which also leverages a curve fitting approach

to determine the transition point in a train of packets covering different rates.

In this case, packet trains are designed to have a fixed duration, keeping the

inter-packet time constant. Different data rates are instead obtained by chang-

ing the packet sizes. The experimental campaign is conducted on a commercial

LTE network in several areas of Tokyo, and the TCP throughput as measured

by speed test applications is used as reference to evaluate the error. The same

authors present a novel tool in [103], named PathML, leveraging four distinct

machine learning techniques, that are trained using the queuing delays mea-

sured receiver-side, with the goal of predicting the available bandwidth. The

experimental campaign is conducted similarly to the previous work, using TCP

throughput as reference and demonstrating an improvement over PathQuick3.

Summarizing, a first issue to be tackled for a proper available bandwidth

estimation is the choice of the right tool according to the scenario. Another im-

portant issue for the available bandwidth estimation is the fact that most of the

existing tools can provide accurate results only if properly used and calibrated.

This issue has been revealed and analyzed by different works in literature.

For example, in 2004 Paxon et al. [89] claimed that a better design stage of

measurement experiments is of great importance to avoid frequent mistakes,

mainly due to the imperfections of tools. The authors basically reported that a

calibration is usually needed to detect and correct possible errors. Other works

[8]-[111] analyzed commonly used tools on real testbeds and reported several

pitfalls in which they can typically end. Furthermore, from the discussion of

the literature provided above, it appears that there are several limitations in the

proposals designed for mobile 3G/4G networks. First, limitations can be found
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in the experimental campaigns, which are performed on commercial networks

but consider restricted scenarios, focusing on only one provider and one coun-

try. Often, TCP throughput is used as reference for available bandwidth; in

two out of three of the surveyed works this value is obtained through external

speed-test applications, which do not provide a full insight on how this value

is obtained. Therefore, there is no extended analysis of throughput, only using

a synthetic (for example, the mean) value. Notably, none of the tools designed

for cellular networks is made publicly available, limiting the reproducibility

of the experimental results presented or their application to different scenar-

ios. Finally, the experimental evaluations of these tools are focused on the

downlink direction only, meaning that traffic is sent from a remote host/server

to the mobile node, justified by the higher volume of traffic sent in this di-

rection. This leaves an uplink analysis missing, although nowadays there are

several applications requiring the transmission of data from a mobile device

to the remote server, especially in the IoT and the telemedicine field. Con-

sidering indeed the rise of Internet of Things (IoT), uplink traffic is expected

to continue to increase significantly, and therefore requires more attention on

its performance, also considering its reduced bandwidth with respect to down-

link. Therefore, I claim that such estimation is missing from the experimental

literature although the mobile scenario, as discussed in more detail in previous

chapters, is of practical and growing interest nowadays.

With the work conducted and summarized in the following sections, I ad-

dress all of the aforementioned shortcomings as follows:

• I adopt open source tools, and publicly release the source code when

making changes;
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• the experimental campaign is executed leveraging an open real-world

testbed (the MONROE platform);

• the effect of traffic policies enforced by operators on TCP throughput is

analyzed in detail;

• different Mobile Network Operators in different countries are analyzed,

highlighting the need for such diverse characterization in the results;

• I target the uplink direction, as it is more bandwidth limited direction

and was neglected in previous works;

• finally, I also discuss traffic volume and time required to generate avail-

able bandwidth estimates.

3.3 Methodology and preliminary experiments

In this section, I focus on the methodology employed for the experiments, pro-

viding a description of the tools employed and the scenarios considered. I also

discuss the results of some preliminary experiments that helped the design of

the subsequent campaigns. In detail, I have leveraged a research testbed pro-

vided within the scope of the MONROE project in order to assess the perfor-

mance of available bandwidth estimation tools in mobile scenarios, and com-

paring them with TCP achievable throughput measurements. Therefore, my

scope is on network and transport layer measurements, according to the con-

sidered scenario, which provides partial visibility on the lower layers and does

not allow changes in their configuration, similarly to most non-rooted com-

mercial smartphones. I decided the focus on the the uplink direction given the

scarcity of works targeting this direction. This means that traffic flows from
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Table 3.1: Details of the experimental campaigns performed for active

bandwidth monitoring.

The tools Yaz and D-ITG are adopted in all campaigns; in addition, the

Preliminary one also includes Pathload.

Campaign

Run

duration

(s)

Daily

exp.

Campaign

duration

(days)

Preliminary 60 1 8

Long-term 20 1 35

Additional 10 24 9

the mobile node towards a measurement server hosted in the research labora-

tory hosted in our University, connected to the Internet through a 100 Mbps

Ethernet LAN and the 1Gbps backbone of the Italian Research Network Con-

sortium (GARR) [36], pushing the bottleneck at the radio access link on the

mobile node.

At the transport layer, I focus once again on TCP as protocol given it

is widespread in 3G/4G networks [53], also keeping into account the lower

amount of generated traffic compared to UDP given the enforcing of flow con-

trol mechanisms. Indeed, although the link capacity does not differ from the

transport-layer protocol used, UDP traffic generated on the interface is ac-

counted by the platform, even if its rate exceeds the link capacity and is not

physically sent on the network.

Considering the hardware constraints of nodes employed in the MONROE

project I first assessed their traffic generation capability. Leveraging D-ITG as
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traffic generator [17, 31], I have therefore assessed that the nodes can saturate

the nominal uplink bandwidth of 3G/4G networks, obtaining rates higher than

100 Mbps, confirming that the virtualized configuration of MONROE nodes

does not hinder the experiments here described.

As additional step, I employed two available bandwidth estimation tools,

namely Yaz [109] and Pathload [55], with the goal of assess the one providing

available bandwidth estimation closer TCP achievable throughput measures,

obtained using D-ITG set to generate traffic at a rate higher than the mobile

link bandwidth. These tools are also chosen in continuity with previous works

performed in the context of the MONROE project [2, 3]. In these experiments,

I alternatively executed 4 consecutive runs of Yaz, Pathload (hereinafter ABW1

and ABW2), and D-ITG (TAT). This means that the order of execution of the es-

timates is as follow: ABW1–TAT–ABW2, followed by 5 minutes interval, then

ABW2–TAT–ABW1. In this way I try to counter possible bias of the results

according to the order of execution of the tools, while keeping the amount of

time between the available bandwidth and the throughput measurements con-

stant. The duration of each run during these preliminary tests was set to 60

seconds for Yaz and D-ITG, while Pathload does not employ a fixed duration,

since the probing process depends on the measured conditions of the network.

I ran these experiments once per day deploying nodes in the 4 countries pro-

vided by the MONROE testbed, namely Italy, Spain, Sweden, and Norway,

for a total of 8 consecutive days. Moreover, the tests were scheduled over the

night, in the 0–3 AM time slot (local time) in order to reduce cross traffic and

variability of network conditions. With one different operator per country, for

a total of 4, I underline that this is also a richer scenario that the ones con-

sidered in previous works. Finally, leveraging the platform capability, several
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metadata were collected, including GPS position, node CPU usage, and mo-

dem information such as signal quality indicators (such as RSSI and RSRP),

cell ID, and frequency band. These metadata were helpful to provide context

for the experimental results, for example allowing to distinguish 3G from 4G

connections, correlate measurements with signal strength and assess that CPU

was not a bottleneck for the running tests.

Figure 3.1: Results of the preliminary tests involving Yaz and

Pathload. The difference between available bandwidth and achievable

throughput depends on the country. Pathload shows higher variability

compared to Yaz.

These preliminary results are shown in Figure 3.1, reporting the measured
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TCP throughput and the corresponding estimated available bandwidth, each

point representing the average of the 4 runs of each test. From the results,

it can be observed that the results, in terms of difference between measured

throughput and available bandwidth, depend on the country (and the operator

in consequence). Moreover, I found that Pathload exhibits higher variability

when compared to Yaz in the same conditions, and also its estimates are far-

ther from the achieved TCP throughput. This is more evident in Italy and

Spain, where Pathload estimation of available bandwidth estimated are sig-

nificantly higher than the achievable throughput. The complete results also

highlight that the estimates do not depend on the order of execution of the

tools. Therefore, the results of this preliminary campaign were taken into ac-

count in designing the longer one, where I leveraged Yaz and D-ITG (therefore

discarding Pathload) for available bandwidth and achievable throughput tests

respectively, while remaining the other parameters unaltered for what concerns

the number of runs and the time window. Instead, the duration of each run was

reduced to 20 seconds, allowing to reduce the amount of generated traffic, but,

as highlighted by the preliminary campaign, without impacting the relationship

between available bandwidth and TCP throughput. Indeed, after such duration

TCP throughput has already extinguished possible transitory and is stable, and

Yaz can collect a sufficient number of estimates. I ran one daily experiment on

the same nodes deployed in the four countries listed before, for a total of 35

days, from February 17th to March 26th 2018, excluding the March 8th, 9th

and 23rd, due to platform maintenance.

Table 3.1 summarizes the details of the experimental campaigns whose

results are reported in this chapter. These include the preliminary one here

discussed, the longer one which was just briefly introduced, and an additional
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one as discussed in the following.

3.4 Experimental results

Figure 3.2: Comparison between Available Bandwidth and TCP

Achievable Throughput measurements, averaging over the 4 runs.

While the specific relationship between available bandwidth and

achievable throughput depends on the country, it is evident that avail-

able bandwidth can be used to approximate throughput.

In the following section, I report and discuss in detail the results of the

experimental campaigns introduced in the previous section, excluding the pre-

liminary campaign, whose results were already discussed and that guided the

following ones.
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(a) Spain. (b) Italy using LTE. (c) Italy using 3G.

Figure 3.3: Time series for TCP achievable throughput, including the

samples from all experiments. Time is calculated from the beginning

of the experiment, and the shaded area represents 95th percentile boot-

strapped confidence interval over the different runs.

3.4.1 Available bandwidth vs. achievable throughput estimates

First, Figure 3.2 reports the results for each day of experiments, where each

point represents the average of the 4 runs. The x-axis reports the achievable

throughput, while the y-axis the available bandwidth, and therefore the plot al-

lows to visualize the correlation between these two metrics as estimated by the

different operators on the different nodes. I also highlight that results for three

days for Spain and Norway are missing, due to traffic-cap thresholds (specific

for each node and operator) enforced on the MONROE platform and to which

experimenters are subjected to. Overall, it can be seen that each country re-

ports similar values across different tests, both in terms of achievable through-

put and available bandwidth. Indeed, I recall that the daily experiments are

performed over the night and with the goal of minimizing variability. The

only exception to this behavior, for both metrics, can be observed in Italy, as

two classes of values can be observed: lower ones, grouped around 7–8 Mbps

on the x-axis, and higher values, reporting around 30 Mbps measurements.
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Leveraging to the metadata collected by the platform during the experiments,

I underline that this behavior was caused by different access technologies em-

ployed by the node during the experiments, switching from a 4G network to

a 3G one for some experiments. In these groups two distinct relationships be-

tween throughput and available bandwidth can be observed: indeed, with the

lower average throughput provided by the 3G connectivity, Yaz reports overes-

timates, while the higher throughput obtained using LTE is underestimated by

the available bandwidth provided by the tool. I underline that this behavior for

larger throughput is also observed in Spain, with the tool reporting available

bandwidth estimates lower than TCP throughput in almost each run.

To better understand the reasons of this behavior, I analyzed the time series

of achieved TCP throughput on the receiver side, considering 100 ms intervals

and focusing on Spain and Italy as the two countries where this phenomenon

was observed principally. I report these time series for Spain in Figure 3.3a.

In this case, it can be seen that there is a consistent behavior across runs, with

throughput increasing steadily for about 10 seconds and then stabilizing. In-

stead, results for Italy with LTE are reported in Figure 3.3b, highlighting a sim-

ilar behavior, with throughput stabilizing after a shorter interval (around 5 sec-

onds), and with slightly lower underestimation of the achieved TCP through-

put.

Instead, the behavior in Italy when a 3G connectivity was employed are

shown in Figure 3.3c. This plot can provide an explanation of the underes-

timation provided by Yaz, since in this case throughput exhibits an opposite

behavior compared to previous cases, since it first increases until a peak value,

but then quickly decreases to a lower value, to which it stabilizes after around

10 seconds. This behavior was consistently observed over all runs involving
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(a) (b)

Figure 3.4: CDFs reporting the difference between TCP achievable

throughput and Available Bandwidth estimates ( (a) Relative and (b)

Absolute) in the 4 different countries.

3G networks, and I can therefore speculate it derives from a policy enforced

by the network operator. As a consequence, the estimated available bandwidth

is farther from the average achieved rate, but actually resembles more closely

the achieved throughput during the first part of the run. Considering the traffic

generated by the available bandwidth estimation tool, it consists of short-lived

UDP flows, with around 50 packets per flow, with the same destination port

and separated by around 500 milliseconds intervals, for a total duration equiv-

alent to that of the achieved throughput measurements. Rather than flow du-

ration, instead, the policy enforced by the operator may discriminate different

transport-layer protocols.

In order to quantify the relationship between average TCP Achievable
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Throughput (denoted as TAT ) and the Available Bandwidth (denoted as

ABw) estimates, I report in Figures 3.4a and 3.4b the cumulative distribu-

tion of their absolute Relative Difference (RD), which is defined as RD =

|TAT−ABw|
TAT and also considering the Absolute Difference, which is not nor-

malized on the average throughput.

From the figures, it can be seen that Yaz estimates considering Sweden

match more closely the throughput in terms of relative difference. In Norway,

instead, in some cases the achieved throughput is low (lying around 1 Mbps),

while the estimated bandwidth is around 2 Mbps, leading to a high, (almost

100%) relative difference. This explains why the absolute differences reported

for Norway are the lowest, but at the same time since the throughput is also

lower, the impact on the relative difference is significant. In this specific case,

however, the high relative error would not heavily affect applications that only

have bandwidth requirements in terms of a minimum threshold. Finally, I

underline that the absolute difference is higher in Spain, and this can be also

explained in terms of the throughput behavior reported earlier, exhibiting a

longer transient.

3.4.2 Generated traffic volume

Given the importance of traffic caps in Mobile Broadband Networks (where ex-

ceeding traffic is expensive), I aim to quantify the benefits introduced by using

available bandwidth tools, comparing their intrusiveness in terms of generated

traffic volume to that of tools measuring the achievable throughput.

I compare the traffic volume generate to estimate available bandwidth and

for achievable throughput estimation in Figure 3.5. In this plot, the diagonal

line represents equality; therefore, it can be seen that Yaz estimates always
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Table 3.2: Average traffic volume generated over 4 runs lasting 20

seconds each.

Country

Achievable

Throughput

(MB)

Available

Bandwidth

(MB)
Ratio

Italy 210.38 18.61 11.30

Norway 72.83 8.54 8.52

Spain 263.03 17.94 14.65

Sweden 149.57 15.54 9.62

require considerably less traffic to produce an estimate. Moreover, different

countries and operators can be grouped differently, and also the 3G/4G con-

nectivity in the case of Italy can be distinguished, according to what was dis-

cussed earlier. In detail, available bandwidth and achieved throughput volume

under 20 and 100 MB respectively are related to experiments employing 3G

connectivity.

Interestingly, it can be seen that as the network performance increases in

terms of achievable throughput, the traffic volume required by D-ITG for these

tests grows significantly faster than that generated by Yaz to estimate avail-

able bandwidth. Also, traffic generated for estimating the available bandwidth

ranges in a smaller interval (3–26 Mbps) and are therefore more stable and pre-

dictable compared to the volume generated by achievable throughput measure-

ments (ranging between 19–393 Mbps). I summarize these results in Table 3.2

reporting the average volumes of traffic generated for available bandwidth and
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Figure 3.5: Comparison between traffic volume generated for Avail-

able Bandwidth and Achievable Throughput estimations. Dashed line

represents equality.

achievable throughput, and also their ratio to ease the comparison. As can

be seen, in Spain available bandwidth measurement require almost 15× less

traffic compared to achievable throughput tests. This result further highlights

the benefits of estimating available bandwidth and using it to infer achievable

throughput, gaining increasing importance in future high-speed mobile net-

works, as for 5G networks targeting speeds over 1 Gbps.

3.4.3 Measurement latency

I recall that in order to obtain each available bandwidth estimation, a variable

number of streams is sent, terminating this iterative process when the differ-

ence between local and remote packet spacing is below a (configurable) thresh-
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Figure 3.6: Joint density distribution considering results versus

measurements latency for available bandwidth estimation in Spain.

Marginal distributions are also shown on each axis.

old. For this reason, the network condition encountered by the probing streams

impact the duration of the estimation process, i.e. the measurement latency. I

highlight that during the experiments it was observed that this latency depends

on the number of streams generated, according to a linear relationship. No ab-

normal behavior has been observed, for example related to the TCP connection

establishment or termination, used by the tool for the signaling channel. Mea-

surement latency impacts on the responsiveness of the estimation tool, but also

on the traffic volume generated, and therefore is a metric worth investigating.

Figure 3.6 reports the joint distribution of measurement latency and esti-

mated values for ABw as obtained in our 35 days campaign, focusing on Spain

as country for the peculiar patterns observed therein. Indeed, as can be see, in
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Table 3.3: Mean and standard deviation for measurement latency, for

each of the 4 countries tested.

Country Mean (s) Std (s)

Italy (LTE) 1.15 0.52

Italy (3G) 0.79 0.32

Norway 1.32 0.79

Spain 1.60 0.83

Sweden 1.41 0.80

this case the time to generate an estimate decreases for larger estimated ABw

values. Explanations for this behavior partially include the algorithm imple-

mented by the estimation tool, since the first streams are sent at a higher rate,

and thus more streams are needed to converge to a lower value of bandwidth;

in addition, this trend is also related to the available bandwidth variability over

time, which is higher in the case of poor network conditions.

In the other countries, the estimates report lower variability with some ex-

ceptions relative to few cases requiring more than 3–4 seconds when the esti-

mated value is low. Quantitative results about measurement latency for each

country are reported in Table 3.3. Overall, it can be seen that on average the

time required to generate an estimate with LTE ranges from 1.1 to 1.6 seconds

depending on the country, but the variability in terms of standard deviation is

not negligible, with up to 0.83 seconds of deviation from the mean.
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3.4.4 Measurement latency vs. accuracy

(a) Italy. (b) Spain.

(c) Sweden. (d) Norway.

Figure 3.7: Available bandwidth estimates boxplots, mean (grey dot-

ted line), and average TCP throughput (red dashed line) considering

different run duration. Boxplots report 5th, 25th, 50th (thick line),

75th, and 95th percentiles.

In the following section, I focus on the impact of the run duration on the

difference between available bandwidth estimation and achieved TCP through-

put. In the context of using available bandwidth as a proxy for TCP through-

put, I refer to the difference between these two metrics as accuracy. It could be

expected that an increased duration of measurement runs can provide higher

accuracy. Therefore, I leverage the collected measurements, consisting in 20
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second runs for both available bandwidth and achievable throughput, to val-

idate this assumption and evaluate the accuracy on shorter time scales. The

outcome of this analysis are reported in Figure 3.7, which includes the results

of each run and for each country, considering a duration of 5, 10, 15, and 20

seconds. For Italy, I restrict the analysis on experiments leveraging 4G net-

works.

Based on the figure, different results can be highlighted according to the

country under analysis. In detail, in Italy, the duration has a small impact on

median value and variation of the available bandwidth estimates, while average

throughput increases over time, as discussed earlier, and the average value lies

below the estimated bandwidth during the first 5 seconds. In Spain, instead,

as reported in Fig. 3.7b, variation of available bandwidth estimates decreases

slightly after 5 seconds; at the same time, median estimation after 10 seconds

are farther from the average achieved rate, showing opposing trends. Results

for Norway (Fig. 3.7d) show a slight decrease in the variation for larger dura-

tion, while median value is stable and very close to the mean one, and about

2 Mbps above the average throughput. Instead, Sweden (Fig. 3.7c) is the only

country not reporting significant changes in median of variation of available

bandwidth according to the duration, while average throughput show slight

increases.

Considering these results, one not intuitive finding is that the duration of

a run does not necessarily improve accuracy in terms of relationship between

available bandwidth and achieved throughput. This is more evident in the cases

where throughput shows transient behavior, for example increasing for a non

negligible amount of time before stabilizing. In these cases, the accuracy is

higher when considering a 10-second interval. For this reason, estimates of
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available bandwidth can be effectively used as proxy for TCP throughput when

taking into account this transitory. When considering larger time intervals, one

possible solution to address the discrepancies reported in some countries and

operators would be to conduct a prior characterization of the time evolution of

throughput, and correct the subsequent available bandwidth estimates accord-

ing to these results.

3.4.5 Evaluating setup impact

Before delving into the details of the final experimental campaign conducted,

here I refer to the experimental results from the long-term campaign to high-

light some technical aspects regarding the tool used, Yaz, to further motivate

(a posteriori) its use, showing the advantages compared to Pathload. Indeed, I

report the stream compressions percentages, meaning, the number of streams

(i.e. a sequence of packets, where multiple streams sent in sequence are also

denoted as fleet) in which the mean spacing measured at the receiver side is

lower than the sent one. Indeed, from a technical standpoint Yaz also consid-

ers spacing compressions, in addition to expansion, as evidence of congestion

and adapts its behavior accordingly. Pathload, instead, does not employ such

mechanisms, meaning that when received spacings of packets for a stream are

lower than to transmitted ones, the tool considers the generated rate being be-

low the available bandwidth.

Table 3.4 reports the average percentage of streams which encountered

compression considering all the tests for each country. As can be seen, Spain

and Italy are the country with the highest percentage of compressed streams.

Recalling results of the preliminary experiments, I highlight that, not inciden-

tally, Pathload performed worse in these specific countries, producing overes-
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Table 3.4: Percentage of stream compressions during Yaz estimates in

different countries.

Country % of streams w. compressions

Norway 16.89

Spain 40.44

Italy-LTE 24.30

Italy-3G 29.09

Sweden 22.54

timates of the achievable throughput(in addition to high variability). I high-

light that indeed similar percentages of stream compressions were recorded

during the preliminary tests, with Spain reporting the highest percentage of

compressions, and at the same time obtaining the highest error (overestimat-

ing throughput) for Pathload.

In addition to evaluating Yaz compression mechanisms on Mobile Net-

works, I also took into account the virtualized setup in which the experiments

are executed on the MONROE platform, where each experiment must run

within a Docker container. Although containers are a lightweight form of vir-

tualization compared to full virtual machines, the limited hardware character-

istics of the node required a preliminary investigation of the traffic capability

in virtualized environments, as discussed in previous sections. Here, I quan-

tify the impact of this virtualized setup referring to the results of the long-term

campaign.

In detail, I focus on the capability of properly generating traffic accord-

ing to inter-packet spacings requested by the application, since this parame-
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Figure 3.8: Distribution of differences between local and target spacings.

ter is crucial for the execution flow of available bandwidth estimation tools,

therefore impacting on inter-arrival times and eventually on the bandwidth es-

timates. In Figure 3.8 I report the histogram of the differences between re-

quested packet spacings and the generated ones. These differences do not take

into account the additional overhead necessary on the host to transmit packets

from the container to the physical network. From Figure 3.8 it can be seen that

the difference is restricted to a very narrow range, with most of the differences

being under 10 microseconds. This means that the use of virtualization is not

expected to have a significant impact on the estimates, and that the variation of

the inter-arrival times observed on the receiver can be ascribed to the network

conditions, with the radio access network link representing the bottleneck in

the considered mobile scenario.
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3.4.6 Whole-day experiments

The results of the longer campaign, previously discussed, have highlighted

the need to observe TCP throughput in different conditions, in contrast with

the setup discussed before aiming at minimizing cross-traffic and variability.

Therefore, an additional campaign was designed in order to answer the follow-

ing questions:

• Does throughput behavior depend on specific countries or providers?

• Does this behavior depend on the hour of the day?

• Does this behavior depend on the day of the week?

In detail, in this additional campaign (also reported in previous Table 3.1)

I have performed one hourly test on two different nodes, running in sequence

achievable throughput and available bandwidth tests as in previous campaigns,

but reducing to duration of such tests to 10 seconds, according to results dis-

cussed in Sec. 3.4.4, primarily to reduce the volume of traffic generated with-

out impacting the results. These hourly experiments were executed for 9 days

(non-consecutive, but covering days for a whole week), over two nodes located

in Sweden, served by two different providers.

In Figure 3.9 I report the time-series of throughput and estimated available

bandwidth focusing on two out of the three days of the whole-day campaign

considering the two tested nodes. Results considering the first day are omitted

since they exhibit similar behaviors. Missing values in the figure appear due

to platform unavailability or deployment errors. The boxplots in the figures

report the distribution of throughput sampled every 100 ms on intervals of dif-

ferent duration, to highlight the possible impact of traffic policies enforced by
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(a) Day 2. Node 1, 0–10

seconds interval.

(b) Day 2. Node 1, 0–5

seconds interval.

(c) Day 2. Node 1, 9–10

seconds interval.

(d) Day 2. Node 2, 0–10

seconds interval.

(e) Day 2. Node 2, 0–5

seconds interval.

(f) Day 2. Node 2, 9–10

seconds interval.

(g) Day 3. Node 1, 0–10

seconds interval.

(h) Day 3. Node 1, 0–5

seconds interval.

(i) Day 3. Node 1, 9–10

seconds interval.

(j) Day 3. Node 2, 0–10

seconds interval.

(k) Day 3. Node 2, 0–5

seconds interval.

(l) Day 3. Node 2, 9–10

seconds interval.

Figure 3.9: Available bandwidth (dashed line) and TCP achievable

throughput (boxplots reporting 5th, 25th, 50th, 75th, and 95th per-

centiles), considering different duration for measurement intervals dur-

ing days 2 and 3 of the additional, whole-day experiments. Missing

boxplots indicate node unavailability.
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mobile operators during the first ten seconds of each throughput measurement,

as discussed earlier. Therefore, the smallest interval, between 9–10 seconds, is

related to the stable value reached after a transient phase.

Considering these results, higher variability appears for Node 1 (Fig 3.9g),

as measured by the inter-quartile range. Available bandwidth and achievable

throughput are close to 25 Mbps on average, considering the whole dura-

tion. Instead, Node 2 (Fig 3.9j) experiences limited variability, but also lower

throughput (5 Mbps on average).

Considering throughput variation over different time intervals, possibly

related to traffic policies, evaluation on shorter intervals for Node 1 exhibits

higher difference compared to 10-second measurements; instead, results for

Node 2 do not highlight major differences between intervals. This suggest

that, in presence of a behavior similar to Node 2 (i.e. enforced policies do

not limit throughput in the initial phase), available bandwidth tests on short

scales can provide accurate results in representing stable value of achievable

throughput. Instead, in the case of behaviors similar to that of Node 1, there is

a constant bias which has to be taken into account given the difference between

available bandwidth and throughput after the initial transitory period.

Comparing the two days of the campaign reported, it can be seen how

behavior for the two nodes is consistent, with higher stability for Node 2 and

higher, but also more variable, bandwidth reported for Node 1. Moreover,

specific patterns cannot be devised, looking for example at the different times

where spikes for Node 2 appear during the two days.

Therefore, considering the initial questions leading to the additional ex-

perimental campaign, results have highlighted that the throughput behavior

depends on the provider, but does not vary over time, meaning it does not ex-
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hibit behavior related to either the hour of the day or the day of the week.

This finding has a direct impact on the applications. For example, this means

that when characterizing throughput to correct available bandwidth estimates,

it can be reasonably expected that the specific time interval considered for the

experiments does not alter the accuracy of these measurements on different

ranges, having a general validity.

3.5 Remarks and discussion

In this chapter, I have considered active bandwidth estimation in mobile net-

works, which are typically more constrained compared to wired setups. Lever-

aging an European research testbed, I have conducted extensive experimenta-

tion, testing different operators in different countries over Europe. In detail,

I have considered two bandwidth related metrics, namely available bandwidth

and achievable throughput, and assessed the use of the first as a proxy for the

second, achieving comparable accuracy at a reduced cost in terms of generated

traffic volume.

The ability of accurately monitoring bandwidth is crucial considering the

QoS requirements of the applications considered in this thesis and detailed in

Chapter 1. For example, multimedia applications such as video streaming of-

ten adapt their behavior to match the network conditions, employing adaptive

bitrate strategies. This applies to several telemedicine applications as well, for

example in the case of remote imaging applications, where the bandwidth re-

quirement is essential to ensure high-quality images for diagnosis, or for the re-

mote computation use case to reduce the transfer time of images to the remote

servers. In non-real time use cases, bandwidth monitoring still helps ensuring



that the minimum bandwidth requirements are satisfied, allowing healthcare

services to operate reliably.

While the approach analyzed in this chapter aims at minimizing intrusive-

ness, it still works by injecting probe traffic into the monitored network (i.e.

traffic crafted with the only purpose of monitoring), and therefore classifies

as an active bandwidth estimation approach. In cases when fine-grained real-

time monitoring is required, passive approaches may be preferred as they do

not pose additional traffic into the network, which may possibly impact ap-

plication performance, especially in high load conditions. For this reason, the

next chapter is focused on a passive, SDN-based approach for bandwidth mon-

itoring.



Chapter 4

Passive bandwidth estimation in

mobile networks leveraging

SDN

After evaluating available bandwidth as a proxy for achievable throughput us-

ing active methods, in this chapter I introduce and evaluate the accuracy of a

passive (i.e. not intrusive) bandwidth estimation method developed previously

[72], which leverages the possibilities offered by the rising Software-Defined

Network architectures. To this goal, I have conducted an experimental cam-

paign on commercial mobile networks, leveraging the MONROE platform, as

in the case of active bandwidth estimation.

In the previous chapter, I have already highlighted the importance of mo-

bile networks and its performance for novel applications. The transition to-

wards the Fifth Generation of mobile communications (5G), which has already

begun, enables a fully mobile and connected society and brings several infras-

103
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tructural innovations [9]. Among the most important, a massive deployment

of Mobile Broad Band networks, far increasing the coverage already estab-

lished with 4G networks, which has less strict requirements on bandwidth and

latency. The benefits of this scenario also lead to an increased complexity of

the network architectures, in contrast with the need of quickly adapting them to

new emerging scenarios. For this reason increased importance was given to the

recent network implementation and management paradigm known as Software

Defined Networking (SDN), which has seen increasing adoption, especially in

the data center context for their fast-paced evolution [27].

However, the transition to 5G has given more importance to mobile ter-

minals that can become another application scenario benefiting from SDN.

MBB access (4G) networks already demonstrate cases of access sharing be-

tween multiple devices, for example mobile hotspots or mobile wireless router

(so-called Mi-Fi); at the same time, wireless networks can be used as a back-

haul for smart cities [59, 60], and even vehicles nowadays are equipped with

network applications for different goals, such as entertainment, traveling as-

sistance, comfort, or maintenance. All these cases scenarios can be modeled

as mobile nodes performing as gateways for different applications and devices

(each with different requirements), all sharing a common Radio Access Net-

work (RAN) when accessing the Internet.

This scenario can particularly benefit from the SDN paradigm, for its

main feature of flexibility and standardization, fostering new monitoring ap-

proaches. Still, its novelty and the application scenarios characterized by

resource-limited devices pose challenges and issues to the adoption of SDN

in MBB, which are an active research topic requiring experimental evalua-

tion and analysis leveraging realistic testbeds (or in-the-wild deployments).
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The possibilities for experimenters to access such testbeds was the goal of

the MONROE project, which, as discussed in the previous chapter, is an Euro-

pean Union’s Horizon 2020 funded research project, in which the SOMETIME

project was funded in our research group. The SOMETIME project (SOftware

defined network-based available Bandwidth MEasuremenT In MONROE) was

part of the 1st MONROE Open Call for Experiments. Leveraging the MBB ac-

cess networks offered by the platform, the SOMETIME experiment focused on

Available Bandwidth estimation in an SDN environment, testing commercial

4G connections.

In the work presented hereafter, I implement and evaluate a state-of-art

SDN-based approach proposed in [72] for monitoring available bandwidth and

throughput in the real-world MBB scenarios provided by the MONROE plat-

form. In detail, the investigated approach leverages the network abstractions

provided by the SDN southbound interface and in particular is designed to run

on the SDN controller, which queries all the switches deployed in the mobile

network periodically to collect counters and estimate bandwidth according to a

passive approach. I remark that this passive approach contrasts with the active,

and therefore intrusive and expensive one, evaluated in the previous section,

which however does not require infrastructural changes to deploy an SDN net-

work, and thus can be implemented quicker and with less expenses. Therefore,

the two approaches can be seen as complementary, as detailed in the conclud-

ing remarks of this chapter.

Summarizing, in the work described in this chapter, I conducted what was,

at the time of the experiments and to the best of my knowledge, the first exper-

imental evaluation of an SDN-based bandwidth estimation method in a com-

mercial MBB scenario, evaluating different setups, including a local and a
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remote SDN controller. These are compared with an analogous fully wired

setup, as shown in Figure 4.1 and detailed later. Considering the novelty of

the approach illustrated in this chapter, first, compared to [72], I target in-the-

wild mobile networks, while the cited work has only considered an emulated

SDN network for the evaluation of the same bandwidth estimation method

here considered. Instead, Van Adrichem et al. [119] have considered a phys-

ical setup leveraging a controlled testbed, thus ignoring the sources of inter-

ference of real networks. Moreover, they have also neglected the impact of

sampling frequency and controller position with respect to switch on the re-

sults, while I have instead included these as experimental parameters. Indeed,

I assess the accuracy of such monitoring approach when the polling period

of the queries made by the controller changes, in addition to the deployment

aspect represented by the SDN controller position, and the amount of traffic

to be monitored in terms of average throughput. From the results it appears

that high accuracy can be reached on average, with mean error close to zero

in all the investigated scenarios. While this is true considering the average

results, the polling period in particular influences the variability of punctual

measurements.

In the rest of the chapter, I first provide background for SDN in Section 4.1,

as it was not considered in the previous, active bandwidth estimation approach.

The working principle of this method is summarized in Section 4.2; within it I

also discuss the details of the experiment design and the measurement scenario.

Then, I report the experimental analysis in Section 4.3, discussing the main

outcomes. Finally, in Section 4.4 I provide concluding remarks to the passive

method and, more generally, to the bandwidth estimation approaches presented

in this thesis, considering advantages and disadvantages of both of them.
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(a) Wired LAN deployment.

(b) RAN/Internet-crossing deployment.

Figure 4.1: Details about the measurement setups considered for

SDN-based passive bandwidth estimation. The dashed blue lines re-

port the application traffic, while dotted-dashed green lines represent

the OpenFlow messages exchanged between the controller and the

switch, for both the local and remote controller deployments.

4.1 Background

Here I provide background to the working principle of the investigated ap-

proach, detailing the SDN paradigm. I instead refer to the previous Section 3.1
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to recall the available bandwidth and throughput definitions and for details

about the MONROE project providing the mobile network testbed for the ex-

periments here reported.

Figure 4.2: Architecture of Software Defined Networks (source [72]).

Software-Defined Networking Software-Defined Networking (SDN) is a

recent paradigm for network devices management, following previous works

dealing with active networks and network virtualization. The main concept

of SDN relies on the functional separation between control and data planes,

as shown in Fig. 4.2. In this view, the network devices implementing the

data plane are simple forwarding elements, and are named SDN switches or

simply switches, whose behavior is set according to forwarding rules installed

in their memory by an SDN controller, based on a set of fields in the packet
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headers. Thus, the control plane is moved onto the external, and logically

centralized controller. In this way, a unified behavior for the networking el-

ements is achieved, regardless the high-level function and the protocol layer

they act on (switches, routers, firewalls, etc.). The current importance to SDN

was reached after the introduction of OpenFlow [71] as a standard protocol for

controller-switch communication, denoted as southbound interface according

the OpenFlow terminology, as opposed to the northbound interface denoting

the communication between SDN controller and the application running on

top of it. More details about SDN can be found in [62]. Network monitoring

can benefit from SDN, as witnessed by several works. The most similar to the

scenario I detail here is proposed by Van Adrichem et al. [119], who consider

OpenFlow monitoring messages to calculate the flow throughput averaged on

the whole flow duration. Other works indirectly exploit the control commu-

nications to (passively) infer network metrics [131], or adopt sampling [100].

While I refer to [72] for more details on related works, which often consider

different metrics and adopt different approaches, up to my knowledge none of

these works has considered bandwidth measurement with OpenFlow on MBB

networks.

4.2 Methodology and setup

The measurement methodology, details about the experimental parameters

taken into account and the experimental setup considered are discussed in the

next Sections.
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Table 4.1: Mean and standard deviation (%) for ∆T relative error in

Wired-LAN deployment using local controller.

Requested bitrate (Mbps)
0.1 0.5 1 5 10 50

Period (s)

0.5 0.0078
± 0.4590

0.0076
± 0.3586

0.0064
± 0.5999

0.0035
± 0.6755

0.0056
± 1.6695

0.0039
± 1.9629

1 0.0079
± 0.2505

0.0070
± 0.2055

0.0067
± 0.3315

0.0050
± 0.4108

0.0070
± 1.2465

0.0045
± 1.3440

2 0.0072
± 0.1156

0.0067
± 0.1121

0.0068
± 0.1814

0.0054
± 0.2313

0.0078
± 0.7372

0.0070
± 0.5825

5 0.0060
± 0.0500

0.0065
± 0.0535

0.0064
± 0.0755

0.0064
± 0.1021

0.0076
± 0.3062

0.0111
± 0.3243

10 0.0062
± 0.0272

0.0062
± 0.0303

0.0062
± 0.0386

0.0066
± 0.0522

0.0068
± 0.1557

0.0116
± 0.1712

Table 4.2: Mean and standard deviation (%) for ∆T relative error in

Wired-LAN deployment using remote controller.

Requested bitrate (Mbps)
0.1 0.5 1 5 10 50

Period (s)

0.5 0.0059
± 0.1462

0.0106
± 0.0992

0.0100
± 0.1279

0.0066
± 0.1749

0.0110
± 0.2206

0.0071
± 0.2157

1 0.0069
± 0.0841

0.0086
± 0.0676

0.0091
± 0.0824

0.0080
± 0.0995

0.0104
± 0.1196

0.0073
± 0.1187

2 0.0080
± 0.0530

0.0077
± 0.0379

0.0081
± 0.0567

0.0081
± 0.0540

0.0101
± 0.0678

0.0093
± 0.0669

5 0.0066
± 0.0251

0.0071
± 0.0184

0.0073
± 0.0248

0.0066
± 0.0267

0.0086
± 0.0281

0.0061
± 0.0361

10 0.0052
± 0.0114

0.0049
± 0.0106

0.0053
± 0.0123

0.0043
± 0.0110

0.0067
± 0.0158

0.0035
± 0.0170

4.2.1 Measurement methodology

The measurement method under investigation is based on the API exposed by

SDN switches to collect information about the traffic flowing into the network.

To this goal, the measurement application running on the top of the SDN con-

troller queries the switches at different time instants for their volume counters,

stored for each flow. Leveraging this counter, the controller obtains a global

view of the traffic volume crossing different links. Therefore, by evaluating the
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value of volume counters at two different points in time, the network through-

put Bi on the link can be estimated as

Bi =
Vi − Vi−1

Ti − Ti−1
=

∆Vi
∆Ti

(4.1)

where Vi and Ti are the data volume counter and the timestamp of the i-th

query respectively. If the capacity of each link of a path is known, the available

bandwidth on the link can be derived subtracting the estimated throughput

from the capacity, and on the path as the minimum value among the links.

Specifically, since the considered method employs OpenFlow as the most

widespread protocol for SDN, queries consist of FlowStats Request

messages, while FlowStats Reply messages report the volume counters

to the controller. For the detailed message exchange during the measurement

process I refer to [72]. According to the most recent standard version at the

time of experiments, (OF 1.5), it should be noted that OpenFlow does not store

the actual timestamp associated to volume counters in the messages. However,

reliable timestamps are crucial for the controller in order to reduce the error:

in fact, errors in evaluating ∆Ti may significantly impact the accuracy of the

throughput estimate. I also refer to [72] for a more comprehensive analysis

and also possible extensions to the OpenFlow protocol to solve this problem.

In the experimental work performed, I evaluate the impact of two important

parameters, related to the measurement process as well as to the deployment

of the network components: (i) the polling period and (ii) the position of the

controller with respect to the switch. The polling period represents the time

distance between two consecutive FlowStats Request messages: lower

periods allow to obtain finer granularity, but at the same time it amplifies the

impact of errors on measurement accuracy and uncertainties of the timestamp-
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ing process. Concerning the controller placement in the network, this can be

necessary for architectural and deployment constraints, and therefore I remark

that the impact of this parameter should be investigated in detail.

4.2.2 Experiment design

In the experimental campaign conducted I have considered the following val-

ues for the experimental variables introduced earlier: (i) local or remote place-

ment of the controller; (ii) 6 different rates for the constant bitrate traffic flows

generated by D-ITG [17, 31] (0.1 Mbit/s, 0.5 Mbit/s, 1 Mbit/s, 5 Mbit/s,

10 Mbit/s and 50 Mbit/s); (iii) and 5 different polling periods at which the

controller queries the information from the switch (0.5 s, 1 s, 2 s, 5 s, 10 s). I

underline that this extended set of parameters was not considered in the exper-

imental evaluation of any of the previously cited works, which adds to the fact

that I target in-the-wild mobile networks. Results shown in Section 4.3 are all

obtained starting from a polling period of 0.5 s. This choice is motivated by

a two-hour preliminary campaign where I evaluated different periodicity for

the controller queries, and chose to reconstruct results related to larger polling

periods by sampling the results obtained with the 0.5 s polling period with dif-

ferent rates (i.e. 1/2, 1/4, 1/10, 1/20). I remark that this design choice allows

to obtain a more fair comparison, without introducing additional bias by per-

forming additional experiments, due to for example network variability, since

the experiments are conducted on a commercial 4G network. For each sce-

nario presented the the obtained statistics refer to 100 samples. In these exper-

iments, the application on top of the controller monitored the throughput (us-

ing OpenFlow FlowStats Request/FlowStats Reply message ex-

change), while D-ITG was used to generate background traffic. Moreover,



CHAPTER 4. PASSIVE ABW ESTIMATION IN MBB WITH SDN 113

the traffic exchanged between the switch and the controller is captured on the

switch, in order to perform a comparison between the inter-departure times of

the replies sent by the switch (which constitute the ground truth when assess-

ing the accuracy), with the actual ∆T seen on the controller side, considering

the timestamps associated to the FlowStats Reply messages. The accu-

racy is then evaluated by considering the ∆T relative error as the difference

between the interval estimated by the controller minus the interval seen on the

switch, normalized to the ground truth (i.e. the interval on switch side). In the

next sections, I report this value in percentage. This error has a direct relation-

ship with the error in estimating network throughput. Indeed, throughput is

calculated considering difference in the counter values returned by the switch

divided by the time interval between the two replies. As there is no additional

error or degradation associated to the traffic counters, the only factor affecting

the accuracy is the timestamp error, and throughput and available bandwidth

are linearly (inversely) dependent on ∆T estimation error only, according to

equation 4.1.

4.2.3 Measurement scenario

I consider two different scenarios, the first one employing a wired connection

to a local server, and the other crossing the Radio Access Network to a remote

server, as shown in Figure 4.1. In both cases the end hosts are configured at the

same way, but are connected differently. In the first case, as seen in Figure 4.1a,

I leverage the the mobile node deployed in our laboratory at the University of

Napoli, which is directly connected to the measurement server through a 100

Mbps Ethernet LAN. In the second case, reported in Figure 4.1b, the measure-

ment server is the same as before, while I leverage to MONROE platform to
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Table 4.3: Hardware and software characteristics of the mobile node

and the measurement server.

HW/SW Measurement Mobile

spec. server node

CPU i7-4710MQ @ 2.50GHz x8 AMD G-T40E @ 1 GHz x2

RAM 12 GB DDR3 @ 1600 MHz 4 GB DDR3 @ 1066 MHz

NIC Gigabit Ethernet 3xGigabit Ethernet ports

4G — 3xZTE MF910 MiFi

OS Ubuntu 16.04 64 bit Debian-Jessie

Kernel 4.4.0-119-generic 4.9.0-6-amd64

gain access to a mobile node deployed in Karlstad (Sweden), connected to the

Internet through a 4G access network, served by Telia operator. In both cases:

(i) the software OpenFlow switch (namely Open vSwitch, or OVS for short)

is deployed onto the mobile node, and is configured to serve as gateway for

all the inbound and outbound traffic for the node; (ii) DITG [17, 32] is used

as synthetic traffic generator on the mobile node in order to generate constan-

t-bitrate traffic at the different rates reported earlier towards the measurement

server; (iii) Moreover, I have considered experiments with the SDN controller

(Ryu, an open-source controller written in Python) placed either on the mo-

bile node (I refer to this scenario as local controller) and on the measurement

server (remote controller scenario). As in all experiments running onto the

MONROE platform, the software on the mobile node runs inside a lightweight

virtualization environment in the form of a Docker container [30]. I also detail

the hardware and software characteristics of mobile node and measurement

server in Table 4.3.
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4.3 Experimental results

Considering the results for all the previously reported scenarios, it was as-

sessed that the relative error on ∆T is most of the time concentrated around

zero, and also reports a small variability, with a standard deviation is smaller

than 1%. I discuss these results more in detail, considering the wired and

the RAN scenarios separately. In the following I detail the results of the ex-

perimental campaigns, first for the wired-LAN deployment and then for the

RAN/Internet-crossing one, discussing edge cases.

Wired LAN deployment

Results for the wired LAN deployment are detailed in Tables 4.1 and 4.2 re-

porting mean and standard deviation of the relative error for local and remote

controller, respectively, and considering the different combinations of polling

period and traffic rate, as discussed before. For both the local and remote

controller the average relative error is always below 0.015%. Considering the

distribution, instead, as reported in Figure 4.3, a symmetric behavior can be

seen, with lower periods leading to higher variability, and reflected by an in-

creased standard deviation. A similar results is obtained when increasing the

traffic bitrate, particularly for the local controller. This likely happens because

of the resource sharing between the synthetic traffic generator and the local

controller that also runs on the switch, inside the Docker container.

RAN/Internet-crossing deployment

I now focus on the results considering the RAN deployment. Figure 4.4 re-

ports the relative error of ∆T , for different polling periods (on different rows)
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Figure 4.3: Probability density function (PDF) for the relative error in

the wired-LAN deployment, considering local and remote controller

deployment and different polling periods. Background D-ITG traffic

is generated at 50 Mbit/s. Results show that when using longer polling

periods the error distributions are more concentrated around the mean.

and considering again local and remote controller (left and right column, re-

spectively). The boxplots report 5th percentile, 25th percentile, median, 75th

percentile, and 95th percentile, while values below and above the 5th and 95th

percentiles are represented as outliers (black circles). In the case of the local

controller (Figs. 4.4a, 4.4c, 4.4e, 4.4g, 4.4i) there is a higher variability when

the rate of the requested traffic is higher; the only exception to this behavior is

represented by the lowest bitrate (0.1Mbps), which instead shows higher vari-
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(a) Polling period: 0.5 s.
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(b) Polling period: 0.5 s.
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(c) Polling period: 1 s.
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(d) Polling period: 1 s.
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(e) Polling period: 2 s.
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(f) Polling period: 2 s.
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(g) Polling period: 5 s.
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(h) Polling period: 5 s.
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(i) Polling period: 10 s.
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(j) Polling period: 10 s.

Figure 4.4: Relative error with different requested bitrates, in the case

of a local (left) and remote (right) controller in the RAN deployment.
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(a) Requested rate: 0.1 Mbps.
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(b) Requested rate: 0.1 Mbps.
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(c) Requested rate: 50 Mbps.
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(d) Requested rate: 50 Mbps.

Figure 4.5: Relative error with variable polling periods in the case of a

local (left) and remote (right) controller in the RAN deployment. The

range of the Y-axes is restricted so as to magnify the differences.

ability. For possible explanations for this behavior, I once again remark that

the experimental scenario includes a virtualized environment, that at the same

time runs the SDN controller, the switch, and the traffic generator, and each

of these can be therefore affected by scheduling policy, queuing of node-local

communications and issues related to the hypervisor and the physical hosts.

The results for the remote controller are instead shown in Figs. 4.4b, 4.4d,

4.4f, 4.4h, 4.4j. In this case, variability in terms of inter-quartile range ex-
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hibited by the boxplots is confined and does not vary significantly with the

increasing requested traffic rate. Again, one exception appears, but this time

related to the highest requested rate (50Mbps): in this case, it can be seen that

variability increases more than linearly with respect to the case of 10Mbps,

and also 5th and 95th percentiles are farther apart, crossing +5% and −10%

relative error levels when considering a 0.5 s period. The reason of this phe-

nomenon, which can be seen constantly across the different polling periods,

is that replies from switch to controller share the same link used by the back-

ground traffic to be monitored. Therefore, when a higher rate is requested,

the bandwidth of the radio link is saturated, and so the delays grow signif-

icantly, directly impacting the received timestamps which, as discussed, are

the main cause of error in estimating bandwidth with this approach. The satu-

rated link was also confirmed using the logs produced by D-ITG, which report

that, although the requested rate was indeed of 50 Mbps, the actual achieved

throughput was less than a half.

These results highlight that the deployment aspect of the controller indeed

impacts significantly on the accuracy when estimating bandwidth, especially

if switch and controller communication happens in-band (i.e. using the same

network to be monitored) and the load is higher.

A complementary view made to emphasize the effect of polling period

given a requested background traffic rate is given in Figs. 4.5a–4.5d. This

Figure only reports a representative subset of all the periods, since the ob-

served behavior was consistent in the remaining cases. It can be seen that the

error variability of the relative error decreases with the increasing polling pe-

riod, as expected and discussed earlier, for both local and remote controller.

Indeed, when using a higher polling period the uncertainty deriving from the
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timestamping process is averaged over a wider interval, and therefore becomes

negligible. The higher accuracy however is achieved by reducing the monitor-

ing frequency, and therefore impacts on the ability to quickly detect and re-

spond to sudden changes in the traffic volume, for example considering traffic

spikes which can appear especially in specific hours of the day. Moreover, a

higher polling period also requires less computational resources, and this as-

pect should be taken into account, especially in the case of the local controller,

as previous results have highlighted.

4.3.1 Results discussion

From the results shown in the previous sections, it appears that the passive

approach to measure bandwidth on an SDN switch co-located with a mobile

terminal is feasible, since it reports a mean relative error close to zero, and a

bounded standard deviation. Extending this analysis to the error distribution,

I remark that each punctual estimate suffers from an error, which can be more

significant in the case of high traffic rates and low polling period; this error

can be reduced leveraging multiple subsequent measurements, but losing the

ability to quickly respond to anomalous events.

I recall that in order to derive the available bandwidth, the link capacity of

the radio access link is needed. This information can be acquired through, for

example, device-provided link status data [128], or by active measurements

targeted at capacity estimation [3]. As seen when discussing active avail-

able bandwidth estimation methods, in both cases there are sources of error

which have to be taken into account. From throughput measurements, avail-

able bandwidth can be derived also by considering the nominal capacity of a

given transmission technology, which can be also obtained leveraging mobile
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device metadata [128], which were available on the MONROE platform. This

metadata of course only constitute an upper bound, and can be for example

used to enforce an optimistic admission control.

The experimental scenario here presented represents a more complex one,

with the OpenFlow switch located on the mobile node and acting as a gateway

for the radio access link, therefore representing the monitoring and manage-

ment point of the local network. The inbound and outbound traffic is emu-

lated using a synthetic network traffic generator, not lacking of generality for

the SDN-based measurement considered in this work. Indeed, the aggregate

volume of diverse traffic is accounted for at the same way, and without any

measurement error, by the SDN switch.

Instead, having the possibility to program the local SDN network behavior

in response to changes in the RAN link bandwidth allows for novel applica-

tions, including admission control and traffic engineering, taking into account

the bandwidth requirements of each application and programming the network

to satisfy them.

4.4 Remarks and discussion

In this chapter, I have detailed and shown the experimental results related to a

passive SDN-based approach for available bandwidth and throughput estima-

tion on 4G Mobile Broadband Networks. In detail, I have shown the sources

of inaccuracy and the main parameters affecting it, considering the of the con-

troller deployment (local to the mobile node, or remote deployed on the other

end of a path comprising a Radio Access link), and also the impact of variable

polling period and traffic conditions. These results were compared with a fully
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controlled setup where source and destination node are linked by a wired LAN

connection, to emphasize the effect of network conditions variability on the

bandwidth estimation approach.

The results have confirmed that indeed the approach is viable also in mo-

bile nodes accessing the network through a radio link, without requiring sig-

nificant resource to provide accurate results, and impacting the results only in

the specific case of the SDN controller deployed on the mobile node together

with the SDN switch and the traffic generator, all inside a Docker container.

In all the cases the relative error on the time interval estimation is close to

zero on average, and its variability in terms of standard deviation ranges be-

tween 1.31 and 8.65%, with highest values, as reported earlier, obtained when

the requested bitrate saturates the mobile link bandwidth and the controller

is remote. These results motivate possible further research, investigating for

example the impact of the path connecting switch and controller not only in

terms of bandwidth but also considering other QoS parameters as latency, jit-

ter, or packet loss, with the ultimate goal of developing a model that takes all

of these factors into account to improve the accuracy. Finally, considering both

the passive SDN based approach presented here and the active available band-

width estimation presented in Chapter 3, clearly both approaches have their

advantages and disadvantages. Indeed, the main disadvantage of the active

approaches lies in in their intrusiveness, as traffic injected into the monitored

network can possibly interfere with other applications; this is especially true

when the considered network is more constrained in terms of bandwidth, or

when the load is high. At the same time, the active approach described in

Chapter 3 does not require the deployment of an SDN network, being easier

to implement and evaluate on a wider range of scenarios. While passive ap-
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proaches can be applied also considering non-SDN setups, in these cases their

results depend on the traffic flowing into the network at a given time, as typi-

cally these approaches leverage existing traffic to infer the metrics of interest.

Similarly, the presented passive SDN-based approach is not intrusive, but

as shown it can suffer from accuracy errors that also depend on the traffic load

in the network. This aspect can be characterized before starting the measure-

ment application, but, especially in mobile networks, characterizing network

load can be harder. Therefore, a natural conclusion is that the two approaches

are not mutually exclusive, preferring one over another according to the spe-

cific scenario, but can also be used in conjunction. For example, depending

on the degree of accuracy required and from the load of the network, one can

choose to adopt an active probing approach to complement or replace passive

measurements.



Conclusions

In this thesis, I considered the demanding requirements of latency and band-

width sensitive applications, such as telemedicine ones, and the possibilities

offered by cloud computing infrastructures and mobile scenarios, that however

have also different drawbacks that need to be tackled, mainly concerning mon-

itoring network performance, a key element to ensure a widespread adoption.

These aspects were detailed in Chapter 1. Therefore, in the work presented I

focus on latency and bandwidth, two metrics whose predictable performance

is of paramount importance in this context, and which require the design and

the evaluation of proper monitoring methodologies.

To this goal, first, in Chapter 2, I conducted an in-the-wild assessment

of cloud-to-user network performance considering the two main public cloud

providers, AWS and Azure. Through a 14-days campaign leveraging 25 Van-

tage Points scattered all over the globe, and targeting 4 different Cloud Re-

gions for each provider, I provided a detailed characterization of latency in

this context. I also demonstrated how the results can support cloud providers

and customers in deploying their infrastructure and their applications, and help

them troubleshooting in case of anomalous events.

Then, in Chapter 3 I focused on active bandwidth estimation approaches in

124
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Mobile Broadband networks, leveraging a real testbed provided in the scope of

the MONROE project, and assessing in which conditions the available band-

width can be used effectively as a proxy for TCP throughput. Testing several

mobile network operators in 4 different countries, I found that available band-

width can provide good accuracy in estimating TCP throughput while requir-

ing a significant lower traffic volume. I also found that the accuracy is impacted

by traffic policies implemented by operators, especially when throughput ex-

hibits transient behavior. In this case, the available bandwidth is closer to

throughput during this transient phase, and therefore proper offset is needed to

estimate stable throughput.

Finally, in Chapter 4 I focused on a passive bandwidth estimation ap-

proach, leveraging the possibilities offered by the Software Defined Networks

paradigm. Again testing commercial Mobile Broadband networks, I assessed

the accuracy of such techniques when the traffic load on the network and the

polling period at which bandwidth is monitored vary, also the evaluating the

impact of the controller position on the results. As main findings, I found that

traffic load can visibly impact the estimates when the load is higher, polling pe-

riod is short and the controller communicates with the switch remotely through

an Internet connection including a mobile hop. The reason for this behavior is

the in-band communication between switch and controller suffering from the

high load. In all the other tested conditions the approach is feasible, with mean

error close to zero.

In addition to the results discussed, the work conducted has also traced the

way for future work, as detailed in the following.
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Extending the cloud latency dataset. While the collected dataset already

consists of a considerable number of Vantage Points, higher than other state-

of-the-art approaches having the same goals, additional data can be collected

to expand the overall dataset, providing more up-to-date samples, leveraging

additional Cloud Regions, and targeting the edge infrastructures being increas-

ingly deployed by several providers (for example considering the CloudFront

edge locations offered by AWS).

Prediction of cloud performance. With the collection of an extensive

dataset consisting in C2U network latency samples, possibilities open up to

leverage prediction techniques to forecast latency in the cloud scenario, al-

lowing to perform proactive management of the infrastructure. For example,

switching from one provider to another in multi-cloud deployments accord-

ing to which one is expected to provide better performance, or developing a

less-invasive probing process using adaptive probing techniques, thus saving

bandwidth and computational resources. To this goal, state-of-the-art deep

learning architectures can be leveraged, for example exploiting the capabilities

of recurrent architectures commonly used for time-series prediction, or eval-

uating transfer learning methodologies to exploit previously collected data or

also data concerning other Cloud Regions or different protocols, to help the

prediction in different (but related) contexts.

Hybrid bandwidth estimation approaches. I have separately evaluated an

active and a passive bandwidth estimation approach, and as they both have

their advantages and drawbacks, the design of an hybrid methodology could

exploit the benefits of both, for example leveraging passive approaches when
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the traffic load on the monitored network and the requested probing period

allow to achieve a good accuracy, using active approaches otherwise, or com-

bining the two techniques to achieve a higher accuracy.
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An experimental evaluation of the impact of heterogeneous scenarios

and virtualization on the available bandwidth estimation tools. In Mea-

surement and Networking (M&N), 2017 IEEE International Workshop

on, pages 1–6. IEEE, 2017.

[3] Giuseppe Aceto, Valerio Persico, Antonio Pescapé, and Giorgio Ven-
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