
TESI DI DOTTORATO
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Introduction

W ireless Communication is one of the most vibrant areas in the com-
munication field today. This is due to a confluence of several factors.

First, there has been an explosive increase in demand for wireless multime-
dia services. Second the dramatic progress in micro-processor technology has
enabled small-area and low-power implementation of sophisticate signal pro-
cessing algorithms and coding techniques.

The design of a wireless communication system differs notably from wired
system design due to the nature of the wireless channel, which is an unpre-
dictable and difficult communication medium. A frequently occurring prob-
lem with electromagnetic wave propagation in such a medium is the signal
multipath. Signal multipath occurs when the transmitted signal arrives at the
receiver via multiple propagation paths with different delays and it commonly
results in intersymbol interference (ISI). Moreover, a signal that propagates
through a wireless channel may experience random fluctuations in time if the
transmitter, the receiver, or surrounding objects are moving, due to changing
reflections and attenuation. Thus, the characteristics of the channel appear to
change randomly with time, adding further complexity to the design of reliable
communication systems.

In addition, the increasing demand for wireless communications is making
the radio spectrum a scarce resource that has to be managed as efficiently as
possible since it must be allocated to many different applications and systems.

In this thesis, we focus on the physical layer strategies that allow the ef-
fectiveness sharing of the available resources. In the first part of this thesis,
we consider narrowband systems, namely systems in which the performances
are significantly limited by intersymbol interference (ISI) because of the time
dispersive nature of the wireless channel. The second part focuses on wide-
band systems that use DS-CDMA or MC-CDMA techniques, for which the
principal cause of performance degradation is the interference due to multiple
access (MAI). The common elements among these topics is the signal process-
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xvi Introduction

ing technique used to recovery the information data: theWidely-Linear(WL)
technique.

More specifically, in the first part, starting from the basic concepts related
to the multiple access techniques, we present the general framework of the
equalization problem in a digital communication system and we explain why
it is mandatory. In this context, we also introduce the WL receiver technique,
since when the transmitted symbol sequence isimproper or noncircular[1]
(as it happens in many modulation schemes of practical interest) it is well-
known [2, 3] that a better estimate of the transmitted symbols can be obtained
by resorting to widely-linear (WL) estimators, which augment the degrees-of-
freedom at the equalizer designer’s disposal.

Successively we consider one of the earliest blind channel equalization
technique: the Godard or constant modulus (CM) algorithm [4, 5, 6]. This
technique is blind since it does not utilize training sequences to cancel or
reduce the intersymbol interference (ISI) introduced by frequency-selective
transmission channels, avoiding so to waste the available bandwidth resources.
The CM cost function exhibits a multimodal surface whose characteristics al-
low one to gain important insights about the expected behaviors of the equal-
izer. Therefore, detailed studies of the stationary points of the CM cost func-
tion are conducted in the letterature. Such studies have shown that, in the
absence of noise and when the symbol sequence is aproper [7] random pro-
cess, all the local minima of the L-CM cost function are global ones, allowing
one to exactly suppress the ISI. Nevertheless, in this thesis we show that if the
symbol sequence is an improper random process, as it happens in many cases
of practical interest, the L-CM equalizer is not able to fully suppress the ISI.
The reason for such a behavior is the presence of undesired local minima of
the L-CM cost function, which have been analytically determined.

Moreover, we have already underline that when the transmitted symbol
sequence is improper, widely-linear (WL) equalizers outperform linear ones.
As a consequence, we provide a general and unified framework [8, 9] to de-
sign WL equalizers for both real- and complex-valued improper modulations,
by deriving the conditions assuring perfect symbol recovery in the absence
of noise and providing some insights into the synthesis and analysis of blind
WL-CM equalizers. Specifically, since also the WL-CM cost function exhibits
undesired global minima we propose to resort to a constrained WL-CM equal-
izer assuring perfect symbol recovery in the absence of noise.

In the second part of this thesis, we focus on wideband systems as DS-
CDMA and MC-CDMA ones. During the last two decades, a great bulk of
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research activities has been devoted to multiuser detection (MUD) for both
direct-sequence (DS) [10] and multicarrier (MC) [11] code-division multiple-
access systems, since it allows one to achieve a dramatic performance im-
provement over simpler single-user detection schemes in those environments
where the multiple-access interference (MAI) is the predominant performance-
limiting factor.

With reference to a DS-CDMA system, we present a performance analysis
of L and WL receivers based on the minimum output energy criterion (MOE),
both in the known-channel case [12, 13] and in the unknown channel case
[14]. Specifically, we start carrying out a detailed study of the conditions on
channel and codes that assure perfect MAI suppression in absence of noise for
WL-MOE in both underloaded and overloaded downlink configurations, since
there was a lack of this issue in the letterature. Moreover, the ideal implemen-
tation of the L-MOE and WL-MOE receivers requires perfect knowledge of
two quantities [15]: the autocorrelation matrix(ACM) of the received signal,
and thereceived signatureof each user to be demodulated. These two quanti-
ties can be estimated in practice from a finite number of samples at the receiver.
Since the received signature is a distorted version of the transmitted one due to
the effects of the unknown channel response, the channel estimation (CE) is a
necessary step for the implementation of both the L- and WL-MOE receivers.
To gain more insight about these points, at first we evaluate the performance
degradation due to finite-sample ACM estimation in the known-channel case.
In particular this analysis is carried out with reference to two different data-
estimated implementations of the L-MOE and WL-MOE receivers: the SMI
(sample matrix inversion) receiver (referred to as L-SMI and WL-SMI), which
employs a sample estimate of the data autocorrelation matrix, and the SUB
(subspace) receiver (referred to as L-SUB and WL-SUB), which exploits the
properties of the eigenvalue decomposition (EVD) of the data autocorrelation
matrix to reduce the effects of estimation errors. The results of this analy-
sis are easily interpretable formulas, which allow one to obtain clear insights
about the effects of different parameters on performances. Moreover, the re-
sults of the analysis shows that the WL-MOE receiver is more sensitive than its
linear counterpart to finite sample-size effects associated to ACM estimation,
and it generally requires subspace-based implementation to achieve in practice
the performance gains predicted by theory.

Successively, we extend [14] the previous analysis incorporating the ef-
fects due to CE on the synthesis of the L- and WL-MOE receivers. The con-
ventional method for CE is to periodically transmit training sequences of data
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that are knowna priori to the receiver. However, such a scheme might lead
to a significant waste of power and bandwidth resources in mobile commu-
nication systems, especially when channel conditions require the use of long
training sequences and/or frequent repetition of training. Consequently, the
past few decades have witnessed a huge number of contributions in the area
of blind CE approaches. Blind CE approaches relying on second-order statis-
tics (SOS) of the received data are particularly attractive since they require far
fewer samples than traditional methods based on higher-order statistics [16].
Among existing SOS-based approaches, the subspace CE method is one of
the most studied blind algorithm for its robustness and our analysis is devel-
oped with reference to this method. We derive easily interpretable formulas
that with reference to subspace-based receivers implementations, show that
for moderate-to-high values of the SNR, the errors in estimating the L-SUB-
CE and WL-SUB-CE receivers are essentially due to ACM estimation. This
is not true for the L-SMI-CE and WL-SMI-CE receivers, for which CE errors
undesirably combine with ACM errors. Therefore, when considering finite
sample-size implementation, the blind WL-MOE receiver is able to assure a
significant performance gain (for low-to-moderate values of the SNR) with re-
spect to its linear counterpart only when it is built by resorting to the more
sophisticated subspace-based implementation. In this case, for a given chan-
nel length, it allows one to work with an increased number of users, making so
it a viable choice in heavily-congested DS-CDMA networks.

Finally, in the last part of this thesis we deal with MC-CDMA wireless
networks employingfrequency-domain spreadingbecause, at high data-rates
(of the order of several hundred megabits/s), the common single-carrier DS-
CDMA technology becomes impractical, due to both severe multipath-induced
intersymbol interference (ISI) and synchronization difficulties. In particular,
the analysis of L and WL multiuser detection for both CP- and ZP-based
configurations is carried out [17, 18]. The problem is to derive mathemati-
cal conditions that guarantee perfect symbol recovery in the absence of noise
for either CP-based or ZP-based MC-CDMA downlink transmissions, which
employ frequency-domain symbol-spreading. This issue is important also for
the synthesis of MMSE receivers, since the performances of MMSE detectors
strongly depend on the existence of the corresponding ZF solutions. The con-
ditions that we derive are channel-independent and are expressed in terms of
relatively simple system design constraints, regarding the maximum number
of allowable users and their spreading sequences. Specifically, with reference
to FIR L-MUD receiving structures, it is known in letterature that perfect sym-
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bol recovery is guaranteed in a ZP-based downlink, for any FIR channel of
order smaller that the cyclic prefix length, as long as the number of users is
smaller than the number of subcarriers (underloaded systems) and the code
vectors are linearly independent. In general, a similar feature does not hold
for CP-based transmissions. Thus, we show that universal L-ZF-MUD can be
guaranteed even for the underloaded CP-MC-CDMA downlink, provided that
the spreading codes are judiciously designed. On the other hand, a detailed
study of the conditions assuring FIR WL-MUD perfect symbol recovery in
both CP- and ZP-based systems is lacking. Consequently, we show also that,
if appropriate complex-valued spreading codes are employed, universal WL-
ZF multiuser detectors can be designed even for overloaded CP-MC-CDMA
and ZP-MC-CDMA systems.

The outline of the thesis is the following:

Chapter 1 presents the general framework. We introduce the strategies
for allocating the available resources among users sharing a common wireless
communication channel.

Chapter 2 addresses the basic concepts associated with equalizer de-
sign, a fundamental step to introduce the Widely-Linear processing on which
this thesis is based.

Chapter 3 addresses the constant modulus (CM) criterion applied to
narrowband systems. More in detail, we analyze the CM-cost function under
the general assumptions that improper modulation schemes are employed.
Such an analysis allows one to determine a broad family of undesired minima
of the L-CM cost function, which do not lead to perfect symbol recovery in
the absence of noise. Successively we deal with the problem of designing WL
equalizers for both real- and complex-valued improper modulation schemes,
by proposing a constrained widely-linear constant modulus equalizer able to
recover perfectly the symbols in the absence of noise.

Chapter 4 establishes finite-sample performance results for WL- mul-
tiuser receivers in DS-CDMA systems, as well as their comparison with
conventional L- ones. Specifically, the analysis is carried out with reference
to Minimum Output-Energy (MOE) criterion: first we compare the ideal
signal-to-interference-plus-noise-ratio (SINR) performances of the WL-MOE
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and L-MOE receivers and then the SINR degradation of the data-estimated
WL-MOE receivers is accurately evaluated and compared with that of its
linear counterpart both in the perfectly-known and unknown channel cases.

Chapter 5 focuses on multiuser detection for MC-CDMA systems em-
ploying cyclic-prefixed (CP) or zero-padded (ZP) transmission techniques.
For both systems, we consider the linear and the widely-linear receiving
structures, showing that, under certain assumptions, L-FIR and WL-FIR
universal zero-forcing (ZF) multiuser detectors can be synthesized. Thus,
in the absence of noise, it is assured a perfect symbol recovery for each
user, regardless of the underlying frequency-selective channel. Finally, some
spreading code examples satisfying the design rules are provided as well.



Chapter 1

Multiple Access Systems

I n this chapter we shortly describe the strategies for allocating the avail-
able resources among users sharing a common wireless communication

channel. In particular we focus our attention only on the so-called channel-
partitioning access methods, in which a fixed allocation of the channel re-
sources, frequency, time or spreading code are implemented. The three basic
fixed-assignment multiple access methods are TDMA, FDMA and CDMA.
The choice of an access method has a great impact on the performances and
QOS provided by a communication channel.

1.1 Multiple User Environments

A multiuser system is any system in which the available system resources must
be divided among different users. This means that several users may access a
common channel to communicate with other users. Since the users are not nec-
essarily in a common location the term multiple access is used. The strategies
for allocating the available resources among users sharing a common commu-
nication channel depend on the traffic properties, on the network topologies,
and on the channel characteristics [19, 20, 21, 22]. We will concentrate on
the physical layer strategies that allow the sharing of the available resources
with acceptable performance. A multiuser channel is any channel that must be
shared among multiple users. There are two different types of multiuser chan-
nels: theuplink channel and thedownlinkchannel. A downlink channel, also
called a broadcast channel or forward channel, has one transmitter sending to
many receivers. Since the signals transmitted to all users originate from the
downlink transmitter, the transmitted signal is the sum of signals transmitted

1



2 CHAPTER 1. MULTIPLE ACCESS SYSTEMS

to all users. Thus, the total signaling dimensions and power of the transmitted
signal must be divided among the different users. Synchronization of the dif-
ferent users is relatively easy in the downlink since all signals originate from
the same transmitter, although multipath in the channel can destroy synchro-
nization. Another important characteristic of the downlink is that both signal
and interference are distorted by the same channel. In particular, thekth user’s
signal and all interfering signals pass through thekth user’s channel to arrive at
thekth user’s receiver. This is a fundamental difference between the uplink and
the downlink, since in the uplink signals from different users are distorted by
different channels. Examples of wireless downlinks include all radio and tele-
vision broadcasting, the transmission link from a satellite to multiple ground
stations, and the transmission link from a base station to the mobile terminals
in a cellular system.

An uplink channel, also called reverse channel, has many transmitters
sending signals to one receiver, where each signal must be within the the
total system bandwidth. However, in contrast to the downlink, in the up-
link each user has an individual power constraint associated with its trans-
mitted signal. In addition, since the signals are sent from different transmit-
ters, these transmitters must coordinate themselves if signal synchronization is
required. Moreover, the signals of the different users in the uplink are trans-
mitted through different channels. Examples of wireless uplinks include lap-
top wireless LAN cards transmitting to a wireless LAN access point, trans-
missions from ground stations to a satellite, and transmissions from mobile
terminals to a base station in cellular systems. Most communication systems
are bi-directional, and hence consist of both uplinks and downlinks. The ra-
dio transceiver that sends to users over a downlink channel and receives from
these users over an uplink channel is often refered to as an access point or base
station. It is generally not possible for radios to receive and transmit on the
same frequency band due to the interference that results. Thus, bi-directional
systems must separate the uplink and downlink channels, typically using time
or frequency dimensions. This separation is called duplexing. In particu-
lar, time-division duplexing (TDD) assigns orthogonal timeslots to a given
user for receiving from an access point and transmitting to the access point,
and frequency-division duplexing (FDD) assigns separate frequency bands for
transmitting to and receiving from the access point. An advantage of TDD is
that bi-directional channels are typically symmetrical in their channel gains,
so channel measurements made in one direction can be used to estimate the
channel in the other direction. This is not necessarily the case for FDD in
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frequency-selective fading: if the frequencies assigned to each direction are
separated by more than the coherence bandwidth of the multipath wireless
channel, then these channels will exhibit independent fading.

1.2 Multiple Access Techniques for narrowband and
wideband systems

In this section we describe the basic properties of the different access tech-
niques following the lines outlined in [19, 21, 22, 23]. The multiple access in
a communication system, is done by dividing the signaling dimensions along
the time, frequency and/or code space axes. Efficient allocation of signaling
dimensions between users is a key design aspect of both uplink and downlink
channels, since bandwidth is usually scarce and/or very expensive. In gen-
eral, applications with continuous transmission and delay constraints require
channel-partitioning access methods. This would be the case, for example,
with digitized voice traffic, data file transfer or fax-simile transmission. Typi-
cal access methods in this context are time-division, frequency-division, code-
division, or hybrid combinations of these techniques. However, if the transmis-
sion to be transmitted is intermittent or bursty in nature, channel-partitioning
access methods can result in communication resources being wasted for much
of the duration of the connection. Random access methods, using some form
of random channel allocation which does not guarantee channel access, pro-
vide a more efficient and flexible way of managing channel access for com-
municating short bursty messages. In general, the choice of whether to use
channel-partitioning or random access, and which specific fixed or random
access technique to apply, will depend on the system applications, the traffic
characteristics of the users in the system, the performance requirements, and
the characteristics of the channel and other interfering systems operating in the
same bandwidth. In the sequel we do not analyze random access techniques.

In addition to time and bandwidth, another resource available in wireless
systems is space. For example, if one transmitter-receiver pair is sufficiently
far away from another, then the mutual interference between them is attenu-
ated enough so as to be negligible. Thus, wireless resources can be utilized
more efficiently by employing spatial reuse, which forms the basis for cellu-
lar communication systems. On the other hand directional antennas add an
additional angular dimension which can also be used to channelize the sig-
nal space: this technique is called space-division multiple access (SDMA). In
the following subsections, we shortly describe time-division multiple access
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Figure 1.1: The three basic channel-partitioning techniques

(TDMA), frequency-division multiple access (FDMA) and code-division mul-
tiple access (CDMA) (for details about CDMA technique see chapter4), that
are pictorially represented in Figure1.1.

1.2.1 Frequency Division Multiple Access (FDMA)

FDMA is the simplest and oldest form of multiplexing. In FDMA systems,
the band available for the service is divided into several non-overlapping sub-
channels and each user is assigned a different frequency channel. Once as-
signed, a sub-channel is held by a user until the user transmits. The princi-
ple at the base of this technique is that even if the total system bandwidth is
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large and therefore subject to frequency-selective fading, dividing the avail-
able bandwidth into subchannels under the assumption that the subchannels
are sufficiently narrowband, they will not experience frequency-selective fad-
ing. Between two adjacent sub-channels there is typically a guard interval to
compensate for imperfect filters, adjacent channel interference, and spectral
spreading due to Doppler and therefore to facilitate the separation of different
user signals at the receiver. To limit the waste of resources due to the insertion
of the guard bands, it is necessary to have a good frequency synchronization.
Moreover, it is difficult to assign multiple channels to the same user under
FDMA, since this requires the receivers to simultaneously demodulate signals
received over multiple frequency channels.

1.2.2 Time Division Multiple Access (TDMA)

In a TDMA system, a number of users share the same frequency band by tak-
ing assigned turns in using the channel. Therefore, with this technique, the
system dimensions are divided along the time axis into nonoverlapping chan-
nels, and each user is assigned a different cyclically-repeating time slot. These
TDMA channels occupy the entire system bandwidth, as opposed to FDMA,
where each user gets only a portion of the bandwidth. Therefore, in a FDMA
system, each subchannel is typically flat-fading, which implies that it is not
needed an equalization filter at the receiver. Conversely, the TDMA channel
is typically frequency-selective, and thus the receiver must implement some
form of equalization. The time slots are also organized in frames, where each
frame contains the time slot for a certain number of users plus overhead bits
carrying signaling information. With TDMA a transmit controller assigns time
slots to users and an assigned time slot is held by a user until the user releases
it. At the receiving end, a receiver station synchronizes to the TDMA signal
frame and extracts the time slot designated for that user. This modus operandi
implies that transmission is not continuous for any user. Therefore, digital
transmission techniques which allow for buffering are required. The fact that
transmission is not continuous simplifies overhead functions such as channel
estimation, since these functions can be done during the time slots occupied by
other users. TDMA also has the advantage that it is simple to assign multiple
channels to a single user by simply assigning him multiple time slots, in or-
der to provide for example different transmission rates to different users. This
is particularly useful for networks supporting multimedia applications, where
different media require different rates.

The heart of a TDMA system is synchronization that is necessary to main-
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tain orthogonal time slots in the received signals (not needed for FDMA sys-
tems). For example multipath channels can destroy time-division orthogonal-
ity in both uplinks and downlinks if the multipath delays are a significant frac-
tion of a time slot. However, also for flat-fading channels, the synchronization
is needed al least for uplink channels. In fact, in the uplink channel the users
transmit over different channels with different respective delays. To maintain
orthogonal time slots in the received signals, the different uplink transmitters
must be synchronized. Therefore, between any two adjacent time slots often
there are time guard intervals.

Moreover, we can underline that TDMA and FDMA have a different be-
havior respect to the interference. In fact, in a FDMA system narrowband
interference affects only one subchannel, whereas in TDMA, the same inter-
ference affects all the channels. At the same time, whereas all the power of the
narrowband interference acts over one subchannel, in a TDMA system the in-
terference power is split among all the subchannels and then each subchannel
has to cope only with a portion of the interference power. Hence, TDMA is
more robust to narrowband interference than FDMA. Conversely, by dual argu-
ments, if the interference is impulsive in time, it is better to use FDMA rather
than TDMA. Finally we remark that TDMA, in combination with FDMA, is
used in the GSM, PDC, IS-54, and IS-136 digital cellular phone standards.

1.2.3 Code Division Multiple Access (CDMA)

FDMA and TDMA strategies assign to different users only portions of the
available frequency or time. A different philosophy is followed by CDMA
methods where, in principle, every user can get the whole bandwidth and the
whole time. Specifically, in CDMA, which we will review with more details
in Chapter4, the information signals of different users are modulated by or-
thogonal or non-orthogonal spreading codes. The resulting spread signals si-
multaneously occupy the same time and bandwidth. The receiver uses the
spreading code structure to separate out the different users. It is simple to
allocate multiple channels to one user with CDMA by assigning to that user
multiple codes. These characteristics can be utilized for example in a cellu-
lar system to improve the handoff procedure. Specifically in cellular systems,
when a mobile passes from one cell to the next, it has to switch the link from
the old base station to the new one. This procedure is known as handoff. In 2G
systems, where adjacent cells transmit over nonoverlapping frequency bands,
the handoff is hard, meaning that the receiver has to switch from the frequency
band to the other, as it crosses the boundary from one cell to the next. Con-
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versely, adjacent cells in a CDMA cellular network use the same frequency
band. Hence, when a mobile moves from one cell to the next, it can commu-
nicate with both cells and even combine the two signals advantageously. Only
when a reliable link has been established with the new station does the mobile
user stop communicating with the previous station. This technique is called
soft handoff. Turning to the analysis of CDMA systems, we note that down-
links typically use orthogonal spreading codes such as Walsh-Hadamard codes,
although the orthogonality can be degraded by multipath. Uplinks generally
use non-orthogonal codes due to the difficulty of user synchronization and the
complexity of maintaining code orthogonality in uplinks with multipath.

One of the main advantages of CDMA with respect to TDMA and TDMA
is that little dynamic coordination of users in time or frequency is required,
since the users can be separated by the code properties alone. In addition, since
TDMA and FDMA carve up the signaling dimensions orthogonally, there is a
hard limit on how many orthogonal channels can be obtained. This is also
true for CDMA using orthogonal codes. However, if non-orthogonal codes are
used, there is no hard limit on the number of channels that can be obtained.
However, because non-orthogonal codes cause mutual interference between
users, the more users that simultaneously share the system bandwidth using
non-orthogonal codes, the higher the level of interference, which degrades the
performance of all the users. Moreover since the CDMA waveforms occupy
the whole spectrum and time available for transmission, the transmission is
inherently robust against selective fading and against narrowband interference.
In fact, as we will see in the chapter4, CDMA is built on Spread Spectrum
technique that is able to mitigate the performance degradation due to inter-
symbol and narrowband interference.

Nevertheless, the advantages that we have underline are paid for the in-
creased complexity at the receiver. In addition since CDMA systems are in-
herently affected by multi-access interference, it is particularly important to
adapt the power used on each link in order to limit the detrimental effects of
mutual interference. A typical problem is the so-callednear-far effectthat
arises in the uplink because the channel gain between a user’s transmitter and
the receiver is different for different users. Specifically, users near to a base
station or an access point, can create a huge interference toward users access-
ing the same station from the boundary of the cell. To cope with this problem
and try to maximize the number of users accessing the system with satisfying
QoS, it is necessary to implement a power control (i.e., a feedback mechanism
that forces the users to adapt their transmission power depending on the dis-
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tance to the base station). Thus, power control is used such that the received
signal power of all users is roughly the same. This form of power control,
which essentially inverts any attenuation and/or fading on the channel, causes
each interferer to contribute an equal amount of power, thereby eliminating
the near-far effect. CDMA systems can also use a multiuser detector (MUD)
to reduce interference between users. We will see in chapters4 and5 some
results with reference to these arguments. Finally we note that CDMA is used
for multiple access in the IS-95/cdmaOne digital cellular standards, with or-
thgonal spreading codes on the downlink and a combination of orthogonal and
non-orthogonal codes on the uplink . It is also used in the W-CDMA and
cdma2000 digital cellular standards .

Now some important remarks are needed. TDMA and FDMA techniques
are more appropriate for narrowband systems because user transmissions are
restricted to separate narrowband channels. In this scenario a multiuser system
is simplified and can be approximated by a collection of point-to-pointnon-
interfering links and physical-layer issues are essentially point-to point ones.
Therefore the design complexity of the multiple access and interference man-
agement are simplified. From this perspective, the description and analysis of
a narrowband system is the same for uplink and downlink. On the other hand,
the philosophy of a CDMA system is different because all transmission are
spread to the entire bandwidth and are hencewideband. As a consequence, the
multiple access and interference management strategies are different, in the
sense that all users share all degrees of freedom and therefore interfere with
each other: the system isinterference-limitedrather thandegree-of-freedom-
limited.



Chapter 2

Linear and Widely Linear
Equalizers

I n this chapter we introduce the basic concepts associated with equalizer de-
sign considering a single-input/single-output (SISO) system model. This

model, in fact, is the basic mathematical model adopted in the design of com-
munication systems. Successively we describe the basic characteristics of the
widely linear (WL) processing and we compare it with the standard linear
equalization method.

2.1 Introduction

The wireless radio channel poses a severe challenge as a medium for reliable
high-speed communication. It is not only susceptible to noise, interference,
and other channel impediments, but these impediments change over time in
unpredictable ways due to user movement [19]. Therefore, wireless channels
may exhibit frequency selective fading and Doppler shift. Frequency-selective
fading gives rise to intersymbol interference (ISI), which can cause an irre-
ducible error floor when the modulation symbol time is on the same order as
the channel delay spread. Doppler causes spectral broadening, which leads
to adjacent channel interference. In this chapter we focus only on the effects
of frequency-selective fading neglecting Doppler effects, following the lines
outlined in [19].

In a broad sense, equalization defines any signal processing technique used
at the receiver to alleviate the ISI problem caused by delay spread. Signal pro-
cessing can also be used at the transmitter to make the signal less susceptible

9
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to delay spread: spread spectrum and multicarrier modulation fall in this cate-
gory of transmitter signal processing techniques. We will examine these meth-
ods in chapters4 and5 with reference to CDMA systems. Equalizer design
must typically balance ISI mitigation with noise enhancement, since both the
signal and the noise pass through the equalizer, which can increase the noise
power. Equalization techniques fall into two broad categories: linear and non-
linear. The linear techniques are generally the simplest to implement. On the
other hand, nonlinear equalizers suffer less from noise enhancement than linear
equalizers, but typically entail higher complexity. Among nonlinear equaliza-
tion techniques, decision-feedback equalization (DFE) is the most common,
since it is fairly simple to implement and generally performs well. Moreover,
among nonlinear equalization techniques, the optimal equalization technique
is maximum likelihood sequence estimation (MLSE). Unfortunately, the com-
plexity of this technique grows exponentially with the length of the channel,
and is therefore impractical for most channels of interest. Linear and nonlin-
ear equalizers are typically implemented using a transversal or lattice structure.
We focalize on the transversal structure, that is, a filter with N - 1 delay ele-
ments and N taps with tunable complex weights.

Most equalizers are implemented digitally after A/D conversion, since
such filters are small, cheap, easily tuneable, and very power efficient. This
chapter mainly focuses on digital equalizer implementations and moreover,
our analysis of equalization is based on the equivalent lowpass representation
of bandpass systems.

2.2 Preliminaries

Let consider the block diagram in figure2.1 of an equivalent lowpass end-to-
end system with a digital equalizer. The information symbols(k) is passed
through a pulse shape filterx(t) that improves the spectral properties of the
transmitted signal. This pulse shape is under the control of the system designer.
Then the signal waveform is transmitted over the ISI channel with impulse
responseg(t), whose effects are outside the designer’s control and generally
have a random nature. At the receiver front-end white Gaussian noisen(t) is
added to the received signal for a resulting signalua(t)

ua(t) = s(t) ∗ x(t) ∗ g(t) + n(t) (2.1)

with s(t) =
∑

n s(n)δ(t− nTs), the pulse train of information symbols.
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Figure 2.1: End-to-end system (equivalent lowpass representation

In order to obtain a digital version of the received signal, at firstua(t)
passes through an analog matched filterxm(t) to obtain outputra(t), which
is then sampled via an A/D converter. The purpose of the matched filter is to
maximize the signal-to-noise ratio (SNR) of the signal before sampling and
subsequent processing. We note that in AWGN the SNR of the received signal
is maximized prior to sampling by using a filter that is matched to the pulse
shape. This result indicates that SNR prior to sampling is maximized by pass-
ing ua(t) through a filter matched tox(t) ∗ g(t), so ideally we would have
xm(t) = x(t) ∗ g(t). However, since in general the channel impulse response
g(t) is time-varying and analog filters are not easily tuneable, it is generally not
possible to havexm(t) = x(t) ∗ g(t). However,xm(t) is chosen in such a way
that good performances are assured. Oftenxm(t) is matched to the transmitted
pulse shapex(t), which is the optimal pulse shape when the channel is ideal,
i.e, g(t) = δ(t), but this design is clearly suboptimal wheng(t) 6= δ(t). The
fact thatxm(t) cannot be matched tox(t)∗g(t) can result in significant perfor-
mance degradation and also makes the receiver extremely sensitive to timing
error. These problems are somewhat mitigated by samplingra(t) at a rate
much faster than the symbol rate and designing the equalizer for this oversam-
pled signal. This process is called fractionally-spaced equalization for which
we will see an application in chapter3. The equalizer output then provides
an estimate of the transmitted symbol. This estimate is then passed through a
decision device that rounds the equalizer output to a symbol in the alphabet of
possible transmitted symbols.

Let ca(t) denote the combined baseband impulse response of the transmit-
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ter, channel, and matched filter:

ca(t)
4
= x(t) ∗ g(t) ∗ x∗m(−t). (2.2)

Then the matched filter output is given by

ra(t) = s(t) ∗ ca(t) + wa(t) =
−∞∑

k=−∞
s(k)ca(t− kTs) + wa(t) (2.3)

wherewa(t) = n(t)∗x∗m(−t) is the equivalent baseband noise at the equalizer
input andTs is the symbol time. If we letc(k) = ca(kTs) denote samples of
ca(t) everyTs seconds then samplingra(t) everyTs seconds yields the discrete
time signalr(k) = ra(kTs) given by

r(k) =
+∞∑

n=−∞
s(n)ca(kTs − nTs) + wa(kTs) =

+∞∑
n=−∞

s(n)c(k − n) + n(k)

= s(k)c(0) +
∑

n 6=k

s(n)c(k − n) + n(k) (2.4)

where the first term in (2.4) is the desired data bit, the second term is the ISI,

and the third term is the sampled baseband noisen(k)
4
= wa(kTs). We see

from (2.4) that we get zero ISI ifc(k−n) = 0 for n 6= k, i.e. c(n) = δ(n)c(0).
In this case (2.4) reduces to

r(k) = s(k)c(0) + n(k) (2.5)

If the combined baseband impulse response of the transmitter, channel, and
matched filter, also called composite channel impulse response,ca(t) spansLc

symbol periods, i.e.,ca(t) = 0 for t 6∈ [ 0, Lc Ts ), after samplingra(t) at baud
rate1/Ts, the expression of thekth (k ∈ Z) received time-discrete signalr(k)
is given by

r(k) =
Lc−1∑

n=0

c(n) s(k − n) + n(k). (2.6)

We underline that the baud-rate sampling has a single-input/single-output
(SISO) nature; instead, as we will in chapter3, the fractionally-spaced equal-
izers have a single-input/multi-output (SIMO) nature.



2.3. LINEAR EQUALIZERS 13

2.3 Linear Equalizers

In this section we assume a linear equalizer implemented via anLe-tap
transversal filter (where the equalizer length is expressed in symbol intervals).
The length of the equalizerLe is typically dictated by implementation con-
siderations, since a largeLe usually entails higher complexity. For a given
equalizer sizeLe the equalizer design must specify the tap weights for a given
channel frequency response (note that in the hypothesis of time-varying chan-
nel the equalization design must also specify the algorithm for updating these
tap weights as the channel varies). Recall that our performance metric in wire-
less systems is the probability of error, so for a given channel the optimal
choice of equalizer coefficients would be the coefficients that minimize proba-
bility of error. Unfortunately it is extremely difficult to optimize the equalizer
coefficients with respect to this criterion. Therefore we must use an indirect
optimization that balances ISI mitigation with the prevention of noise enhance-
ment. We now describe two linear equalizers: the Zero Forcing (ZF) equalizer
and the Minimum Mean Square Error (MMSE) equalizer. The former equal-
izer cancels all ISI, but can lead to considerable noise enhancement. The latter
technique minimizes the expected mean squared error between the transmit-
ted symbol and the symbol detected at the equalizer output, thereby providing
a better balance between ISI mitigation and noise enhancement. Because of
this more favorable balance, MMSE equalizers tend to have better BER per-
formance than equalizers using the ZF algorithm.

Since we are considering linear equalizers, their outputy(k) is a linear
combination of the input samplesr(k). Moreover, we have assumed that a
linear equalizer is implemented via anLe-tap transversal filter, therefore, to
compensate for ISI and noise, namely, to produce a reliable estimate of the
symbols(k) a linear equalizer has to jointly elaborateLe consecutive symbols,

y(k) =
Le−1∑

j=0

f∗j r(k − j). (2.7)

We can note that the equalizer could introduce a equalization delay, but for no-
tational simplicity we neglect it. In the chapter3 we take in account a possible

equalization delay. If we definer(k)
4
= [r(k), r(k−1), . . . , r(k−Le +1)]T ∈

CLe andf = [f0, f1, . . . , fLe−1]T ∈ CLe collects all the equalizer’s parame-
ters, we can rewrite the input-output relationship of an L-FIR equalizer (2.7)
as

y(k) = fHr(k). (2.8)
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Accounting for (2.6), the vectorr(k) can be expressed as

r(k) = B s(k) + n(k) , (2.9)

wheres(k)
4
= [s(k), s(k − 1), . . . , s(k −K + 1)]T ∈ CK , with K

4
= Le +

Lc − 1, whereas

B 4
=




c(0) . . . c(Lc − 1) 0 0
0 c(0) . . . c(Lc − 1) 0
...

... . . .
...

...

0 0 c(0) . . . c(Lc − 1)



∈ CLe×K (2.10)

is a Toeplitz matrix and, finally,n(k)
4
= [n(k), n(k − 1), . . . , n(k − Le +

1)]T ∈ CLe .
We remark that the vectorf can be chosen on the base of different cri-

terions, such as, for example, ZF or MMSE criterions that we describe in the
following. To simplify the analysis of this criterions we suppose thatn(k) ∈ C
is a sequence of i.i.d.properor circular [1] zero-mean random variables, sta-

tistically independent ofs(n), with varianceσ2
n
4
= E[|n(k)|2]. We can, for

example, suppose that the receiver is equipped with a noise-whitening filter.
No specific assumption is introduce for the symbols{s(k)} because we will
see in the Section2.4how this choice will influence the equalization design.

2.3.1 Linear ZF Equalizers

The idea of the ZF (zero-forcing) criterion is to set to zero the ISI contribution,
as suggested by the name. Therefore the equalizer outputy(k) should be equal
to the symbol that is transmitted

y(k) = s(k). (2.11)

In the absence of noise, imposing the zero-forcing condition (2.11), accounting
for equations (2.9) and (2.8), leads to the linear equation system

fHB = eT
1 ⇔ BHf = e1, (2.12)

wheree1
4
= [1, 0, . . . , 0]T ∈ RK . Nevertheless the ZF equalizer is not im-

plementable as a finite impulse response (FIR) filter, in fact (2.12) defines a
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linear equation system with a number of equations smaller than the number of
unknown quantities, therefore the system has no solution. In fact in the baud-
spaced case the column dimension ofB always exceed the row dimension

Le < K = Le + Lc − 1. (2.13)

We will see in the section3.3 of the chapter3 that if we adopt a fractionally-
spaced equalizer the ZF equalizer can be implemented as a finite impulse re-
sponse (FIR) filter. An alternative proof of the fact that a baud-spaced ZF
equalizer cannot be implemented as a FIR filter, can be conducted considering
that the system (2.12) is consistent if and only if (iff) [24]

BH(BH)−e1 = e1, (2.14)

where(.)− denotes the{1}−inverse of the matrixBH . If the channel matrix
B is full-column rank, i.e., rank(B) = K, it results thatBH(BH)− = IK

and, then, this system turns out to be consistent. Nevertheless the full-column
rank requirement implies thatB must have at least as many as rows as columns,
which in the baud-spaced case is never satisfied because the column dimension
of B always exceed the row dimension. Moreover, we note that the ZF equal-
izer can lead to considerable noise enhancement (see [19] for details). This
motivates an equalizer design that better optimizes between ISI mitigation and
noise enhancement. One such equalizer is the MMSE equalizer, described in
the next subsection.

2.3.2 Linear MMSE Equalizer

In MMSE (minimum-mean-square error) equalization the goal of the equalizer
design is to minimize the average mean square error between the transmitted
symbol s(k) and its estimatey(k) at the output of the equalizer. In other
words the vectorf is chosen to minimize E[|y(k)− s(k)|2]. Thus, we want to
minimize the mean square error:

J(f)
4
= E[|y(k)− s(k)|2] = fH Rrr f + E[|s(k)|2]− 2Re(fHrs) (2.15)

whereRrr
4
= E[r(k) rH(k)] ∈ CLe×Le is the autocorrelation matrix ofr(k)

andrs
4
= E[ r(k) s∗(k) ] ∈ CLe×1. It can be shown [19, 25] that the solution

of this minimization problem is given by

fL-MMSE = R−1
rr rs (2.16)



16 CHAPTER 2. LINEAR AND WIDELY LINEAR EQUALIZERS

Figure 2.2: Widely-Linear processing scheme

Note that solving forfL-MMSE requires the data autocorrelation matrix inver-
sion. Thus, the complexity of this computation is quite high, typically on the
order ofL2

e to L3
e operations. Substituting (2.16) in (2.15) we obtain the mini-

mum mean square error

JL-MMSE
4
= J(fL-MMSE) = E[|s(k)|2]− rH

s R−1
rr rs (2.17)

It is possible to show a classical result of the estimation theory that is the
estimatey(k)opt that minimize the MS error is the regression or the conditional
expectation value E[s(k)|r(k)]. Moreover in [19, 25] it is underlined that the
MMSE infinite length equalizer is identical to the ZF filter except for the noise
term, so in the absence of noise the two equalizers are equivalent.

2.4 Widely linear processing

In this section, based on [2], we present widely-linear processing, the core of
this thesis. In particular, we report here the results of [2] that show that when
the data are not proper [7] but are improper [1] the widely-linear processing
outperforms the linear one.

In the previous subsection2.3.2we have underlined that the estimate that
minimize the MS error is the regression or the conditional expectation value.
In classical estimation theory this result is usually proven whens(k) andr(k)
are real. However, it remains valid when these quantities are complex valued
if we redefine correctly the regression concept. Specifically, we observe that
if s(k) andr(k) are real the regression is linear. For complex data this is no
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longer true because the regression must be linear both inr(k) andr(k)∗ and
is calledwidely linear(WL). More specifically, we have seen that in L-MSE
criterion the estimate (2.8) is found by processing it with (2.16). We report
(2.8) here

y(k) = fHr(k), (2.18)

and we note thaty(k) is a scalar product, thereforey(k) is a linear function of
the vectorr(k), as defined in classical linear algebra. Consider now the scalar
ywl(k) defined by

ywl(k) = fH
1 r(k) + fH

2 r∗(k) (2.19)

wheref1 andf2 are two complex vector, see figure2.2. This is the general form
of “linear” regression for complex random variables. It is clear thatywl(k) is
not a linear function ofr(k). However, the moment of orderk of ywl(k) is
completely defined from the moments of orderk of r(k) and r∗(k), which
characterizes a form of linearity. This is why (2.19) is called awide sense
linear or widely linearfilter or system.

To show that taking into account WL systems defined by (2.19) instead
of strictly linear ones defined by (2.8) can yield significant improvements in
estimation problems using complex data, we report here the results of [2]. The
problem of WL mean square estimation (WL-MMSE) is to find the vectorsf1

andf2 in such a way that the MSE between the estimandums(k) (or s(k −
d) if we consider a equalization delay) and the estimateywl(k), is minimum.
Preliminarily, we observe that the set of scalar complex random variables

z = aH x + bHx∗ (2.20)

wherea andb are two complex vector, constitutes a linear subspace over the

complex field. If we define a scalar product as< u1, u2 >
4
= E[u∗1 u2], this

linear subspace becomes a Hilbert subspace. Therefore, we can regard (2.19)
as the projection ofywl(k) onto this subspace and due to the orthogonality
principle, one has

( s(k) − ywl(k) ) ⊥ r(k); ( s(k) − ywl(k) ) ⊥ r∗(k). (2.21)

The symbol⊥ means that all the components ofr(k) or r∗(k) are orthogonal
to ( s(k) − ywl(k) ) under the previous scalar product. In agreement with the
definition of scalar product, (2.21) can be rewritten as

E[s∗(k) r(k)] = E[y∗wl(k) r(k)]; E[s∗(k) r∗(k)] = E[y∗wl(k) r∗(k)] (2.22)



18 CHAPTER 2. LINEAR AND WIDELY LINEAR EQUALIZERS

Substituting (2.19) in (2.22) one obtains:

Rrr f1 + Rrr∗ f2 = rs (2.23)

R∗
rr∗ f1 + R∗

rr f2 = r∗v (2.24)

whereRrr is the autocorrelation matrix that we have defined in (2.15), Rrr∗
4
=

E[r(k) rT (k)] is the pseudo-correlation matrix and finallyrs = E[s∗(k) r(k)]

is defined in (2.15) andrv
4
= E[s(k) r(k)]. From (2.23) and (2.24), we find the

solutions expressed as

f1 =
[
Rrr − Rrr∗ (R−1

rr )∗R∗
rr∗

]−1 [
rs − Rrr∗ (R−1

rr )∗ r∗v
]

(2.25)

f2 =
[
R∗

rr − R∗
rr∗ R−1

rr Rrr∗
]−1 [

r∗v − R∗
rr∗ R−1

rr rs

]
(2.26)

The corresponding MSE is obtained by substituting (2.19) in (2.15) with f1 and
f2 given by (2.25) and (2.26), or it is deduced from the projection theorem:

JWL-MMSE = E[|s(k)|2] − (fH
1 rs + fH

2 r∗v) (2.27)

Let us define the quantity∆J
4
= JL-MMSE − JWL-MMSE, that is equal to [2]

∆J =
[
r∗v − R∗

rr∗ R−1
rr rs

]H [
R∗

rr − R∗
rr∗ R−1

rr Rrr∗
]−1

[
r∗v − R∗

rr∗ R−1
rr rs

]
. (2.28)

∆J is always nonnegative because the matrix
[
R∗

rr − R∗
rr∗ R−1

rr Rrr∗
]

is
positive definite (see [2] for details) and it results∆J = 0 only when
r∗v − R∗

rr∗ R−1
rr rs = 0. Therefore the error that is obtained with a L-MMSE

(2.17) is greater then the errore that is obtained with a WL-MMSE (2.27) and
the advantage of the WL-MMSE procedure over the L-MMSE is characterized
by the quantity∆J .

Now we consider some case studies.

X Jointly Circular Case:

this situation is characterized by

Rrr∗ = 0; rv = 0 (2.29)

It immediately results from (2.26) and (2.25) that (2.29) implies

f1 = R−1
rr rs (2.30)

f2 = 0 (2.31)
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(2.30) is the same of (2.16). Thus, the assumption of joint circular-
ity [26] implies that the WL-MMSE (2.19) takes the form (2.8) and is
strictly linear. Moreover it results that∆J , given by (2.28), is equal to
zero. In conclusion, in the case of a joint circularity, the strictly lin-
ear system (2.8) is sufficient to reach the best performance. This is one
of the arguments justifying the interest of circularity. However, even if
circularity appears in many practical situations, there are cases where it
cannot be introduced, as we will see in the next chapters.

X Circular observation:

we suppose that circularity is only valid for the observation and is char-
acterized by

Rrr∗ = 0, (2.32)

whereas no specific assumption is introduced for the estimandums(k).
In this case it results that (2.26) and (2.25) become

f1 = R−1
rr rs (2.33)

f∗2 = R−1
rr rv (2.34)

This means that the termfH
1 r(k) in (2.19) is the same as the one obtained

when using strictly linear estimation (2.16).

Moreover, from (2.28) it results that

∆J = rH
v R−1

rr rv (2.35)

Thus, a nonzero vectorrv necessarily implies an increment of the per-
formance of WL estimation compared with L one.

X Case of a Real Estimandums(k):

we suppose then thats(k) is real whereasr(k) is complex (this case ap-
pears in many situation, see chapter4 for a thorough discussion). From
(2.26) and (2.25), we find

f1 = f∗2 (2.36)

because it results thatrs = rv. Substituting (2.36) in (2.19), we obtain

ywl(k) = 2 Re(fH
1 r(k)). (2.37)

Similarly, the estimation error takes the form

∆J = E[s(k)2] − 2Re(fH
1 rs). (2.38)
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The main property of the estimate (2.37) is that it is real, although there
is no reason for the strictly linear estimate to be real, which is not con-
venient when estimating a real quantity. The advantage of the structure
(2.19) with respect to (2.8) is even more clear when the observationr(k)
is circular. In fact, as seen in the case of Circular observation, the vector
f1 is the same as the one that must be used to realize the L-MMSEf .
Thus, by using this vector, the two estimators (2.8) and (2.19) become

y(k) = fH
1 r(k); ywl(k) = 2 Re(fH

1 r(k)) (2.39)

and the corresponding errors (2.17), (2.27), are

JL-MMSE = E[s2(k)]− fH
1 rs; JWL-MMSE = E[s2(k)]− 2 fH

1 rs (2.40)

The quantityfH
1 rs = fH

1 Rrr f1 is positive becauseRrr is a Hermitian
matrix. In conclusion, the wide sense linear estimator (2.19) provides
a real estimate and a decrease of the error that is twice as great as the
strictly linear estimate, which in general is complex.

From these results, we conclude that widely linear systems can yield sig-
nificant improvements in estimation performance with respect to strictly linear
systems generally used, except when the circularity assumption is introduced.
In the next chapter we will exploit these results in the channel equalization
scenario.



Chapter 3

Constant Modulus Equalizers
for Narrowband Systems

I n this chapter, the constant modulus (CM) cost function is analyzed under
the general assumptions that improper modulation schemes of practical

interest are employed and the baseband equivalent of the channel impulse re-
sponse is complex-valued. Preliminarily, this study is conducted with respect
to the linear finite-impulse (L-FIR) fractionally-spaced (FS) blind equalization
of FIR frequency- selective channels. The analysis allows one to determine a
broad family of undesired minima of the L-CM cost function, which do not
allow perfect symbol recovery in the absence of noise. The results developed
herein generalize and subsume as a particular case existing studies of the L-
CM cost function, which exclusively consider real-valued binary modulations.
Successively the chapter deals with the problem of designing widely-linear
(WL) fractionally-spaced (FS) equalizers for both real- and complex-valued
improper modulation schemes. Specifically, the synthesis of both WL-FS min-
imum mean-square error and zero-forcing equalizers is discussed, by deriving
the mathematical conditions assuring perfect symbol recovery in the absence
of noise. We also propose a constrained widely-linear constant modulus equal-
izer, able to recover perfectly the symbols in the absence of noise. The ef-
fectiveness of the proposed equalizers is corroborated by means of computer
simulation results.

21
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3.1 Introduction

In digital communications, blind channel equalization techniques allow one to
cancel or reduce the intersymbol interference (ISI) introduced by frequency-
selective transmission channels, without wasting the available bandwidth re-
sources due to transmission of training sequences. One of the earliest blind re-
ceivers, and perhaps the most widely used in practice, is based on the Godard
or constant modulus (CM) algorithm [4, 5, 6]. In his original paper Godard
observed by simulations that receivers designed by minimizing the constant
modulus cost function, have MSE performance similar to those of nonblind
Wiener receivers. This striking observation provides strong support for using
CM blind receivers because they do not require the cooperation of the trans-
mitter and also achieve near optimal performance (in the sense of minimizing
mean square error of the estimate).

Most early detailed studies of the stationary points of the CM cost function
were conducted. These analyses [27, 28] have shown that, in the absence of
noise and under certain mathematical conditions, all the local minima of the
L-CM cost function are global ones and allow one to exactly suppress the ISI,
provided that the transmitted symbol sequence is aproper[7] complex random
process.

On the other hand, in many cases of practical interest, the symbol sequence
is animproper[1] random process. In this case and when the channel impulse
response is complex-valued, the ISI suppression capabilities of L-CM equal-
izers turn out to be adversely affected. With reference to BPSK modulation
this weakness was evidenced in [29], wherein it was pointed out that, besides
containing desired local minima, the infinite-length CM linear equalizer also
exhibitsundesiredglobal minima, which do not lead to perfect symbol recov-
ery in the absence of noise. However, the analysis carried out in [29], cannot
be directly extended to multidimensional real-valued modulations, as well as
to others improper complex-valued modulation schemes of practical interest.
Therefore, at the first in this chapter it is shown [30] how to improve and to
generalize the results of [29], by determining a broad family of undesired local
minima of the L-CM cost function.

Moreover, we can observe that when the transmitted symbol sequence is
improper (see section2.4), it is well-known [2, 3] that a better (in the sense of
second-order statistics) estimate of the transmitted symbols can be obtained by
resorting to widely-linear (WL) estimators, which jointly process the received
signal and its complex conjugate. As a consequence in this chapter, following
the lines outlined in [8, 9], we provide a general and unified framework to de-
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sign WL equalizers for both real- and complex-valued improper modulations,
by deriving the conditions assuring perfect symbol recovery in the absence
of noise and providing some insights into the synthesis and analysis of blind
WL-CM equalizers.

Specifically, as confirmed by the simulation results, also the WL-CM cost
function exhibits undesired global minima which do not lead to perfect symbol
recovery in the absence of noise. To overcome this drawback, [8, 9] propose
to resort to a constrained WL-CM equalizer assuring perfect symbol recovery
in the absence of noise. The proposed designs generalize and subsume as
a particular case some previously proposed WL equalizers [31, 32] targeted
at real-valued modulations. The effectiveness of the proposed equalizers is
corroborated by means of computer simulation results.

3.2 Signal Model

Let us consider a digital communication system employing linear modulation
with symbol periodTs. The complex envelope of the received continuous-time
signal, after filtering and ideal carrier-frequency recovering, can be expressed
as

ra(t) =
∞∑

q=−∞
s(q) ca(t− q Ts) + wa(t) , (3.1)

where{s(n)}n∈Z is the sequence of the transmitted symbols,ca(t) denotes the
compositeimpulse response (including transmitting filter, physical channel,
receiving filter, and timing offset) of the linear time-invariant signal channel
and, finally,wa(t) represents additive noise at the output of the receiving filter.
If the channel impulse responseca(t) spansLc symbol periods, i.e.,ca(t) = 0
for t 6∈ [ 0, Lc Ts ), after samplingra(t) at rateN/Ts, with N ≥ 1 being an

integer number, the expression of thekth (k ∈ Z) received data blockr(k)
4
=

[r(0)(k), r(1)(k), . . . , r(N−1)(k)]T ∈ CN , with r(`)(k)
4
= ra(k Ts + ` Ts/N),

is given by

r(k) =
Lc−1∑

q=0

c(q) s(k − q) + w(k) , (3.2)

wherec(k)
4
= [ c(0)(k), c(1)(k), . . . , c(N−1)(k) ]T ∈ CN , with c(`)(k)

4
=

ca(k Ts + ` Ts/N) denoting the `th phase of the discrete-time chan-

nel c(n)
4
= ca(nTs/N) and, similarly, the noise vectorw(k)

4
=
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[ w(0)(k), w(1)(k), . . . , w(N−1)(k) ]T ∈ CN collects the noise phases

w(`)(k)
4
= wa(k Ts + ` Ts/N), for ` ∈ {0, 1, . . . , N − 1}. It is worth to

note that whenN = 1, the fractionally spaced model (3.2) degenerates in the
common baud-spaced model.

To compensate for ISI and noise, namely, to produce a reliable estimate of
the symbols(k−d), with d denoting a suitableequalization delay, an equalizer
has to jointly elaborateLe consecutive symbols, by processing the input vector

z(k)
4
= [ rT (k), rT (k− 1), . . . , rT (k−Le + 1) ]T ∈ CNLe which, accounting

for (3.2), can be expressed as

z(k) = Cs(k) + v(k) , (3.3)

wheres(k)
4
= [s(k), s(k − 1), . . . , s(k −K + 1)]T ∈ CK , with K

4
= Le +

Lc − 1, whereas

C
4
=




c(0) . . . c(Lc − 1) 0N 0N

0N c(0) . . . c(Lc − 1) 0N
...

... . . .
...

...

0N 0N c(0) . . . c(Lc − 1)



∈ C(NLe)×K

(3.4)

is a block Toeplitz matrix and, finally,v(k)
4
= [wT (k), wT (k −

1), . . . , wT (k − Le + 1)]T ∈ CNLe .

The following customary assumptions will be considered hereinafter:

A1) s(n) ∈ C is a sequence of independent and identically distributed

(i.i.d.) zero-mean random variables, whose kurtosisκs
4
= E[|s(n)|4] −

2 E2[|s(n)|2]− ∣∣E[s2(n)]
∣∣2 < 0.

A2) w(n)
4
= wa(nTs/N) ∈ C is a sequence of i.i.d.proper [1] zero-mean

random variables, statistically independent ofs(n), with varianceσ2
w
4
=

E[|w(n)|2].
The conditionκs < 0 imposes that the transmitted symbols are “sub-
Gaussian” [5], which is the case commonly encountered in digital commu-
nications. Assumption A2 is surely satisfied if the continuous-time filter used
at the receiving side has (approximatively) a square root raised-cosine impulse
response and, more generally, A2 holds if a whitening matched-filter is em-
ployed at the receiver.
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3.3 Linear Constant Modulus Equalizer

Blind channel equalization consists of designing a linear FIR (L-FIR) equal-
izer, which is able to extract the desired symbols(k − d) (with d denoting the
equalization delay) by jointly counteracting intersymbol interference (ISI) and
noise, without making use of training sequences. Denoting withLe the equal-
izer length (expressed in symbol intervals), the input-output relationship of an
L-FIR equalizer is

y(k) = fHz(k), (3.5)

wheref ∈ CNLe collects all the equalizer’s parameters andz(k) is given by
(3.3).

The term perfect equalization means that the equalization outputy(k) is
equal to the symbol that is transmitted for some fixed suitable equalization
delayd, i.e.

y(k) = s(k − d), with d ∈ {0, 1, . . . , K − 1}. (3.6)

In the absence of noise, imposing the so called “zero-forcing” (ZF) condition
y(k) = s(k − d) leads to the linear equation system

fHC = eT
d ⇔ CHf = ed, (3.7)

whereed
4
= [

d︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ RK , for anyd ∈ {0, 1, . . . , K − 1}.

This system is consistent if and only if (iff) [24]

CH(CH)−ed = ed, (3.8)

where(.)− denotes the{1}−inverse of the matrixCH . If the channel matrix
C is full-column rank, i.e., rank(C) = K, it results thatCH(CH)− = IK and,
then, this system turns out to be consistent regardless of the equalization delay
d. In this case, theminimal normsolution, i.e., the solution of the constrained
optimization problem

fZF = arg min
f∈CNLe

‖f‖2 , subject toCH f = ed , (3.9)

is given by (see, e.g., [24])

fZF = C (CHC)−1ed. (3.10)

Therefore, in the sequel, to guarantee [5, 33] the existence of L-FIR zero-
forcing (ZF) designs forf , we assume that
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A3) C is full-column rank, i.e., rank(C) = K.

The full-column rank requirement [5, 33], implies thatC must have at
least as many as rows as columns, which in theN/Ts-spaced case results in
the following equalizer length requirement:

NLe ≥ K ⇒ (N − 1)Le ≥ Lc − 1. (3.11)

Applying the same argument to a L- baud-spaced equalizer (N = 1), we un-
derstand that in this case the L-FIR-ZF solution does not exist because the
column dimension ofC always exceed the row dimension. Moreover, let
C(`)(z) denote theZ-transform of thè th channel phase{c(`)(k)}Lc−1

k=0 , for
` ∈ {0, 1, . . . , N − 1}, in [5], is underlined that to guarantee the full-column
rank requirement, the polynomialsC(`)(z) share no common root, i.e., are
coprime.

To blindly suppress ISI and noise, one can resort to the constant modulus
(CM) criterion [4, 5], where the vectorf is chosen such as to minimize the cost
function

Jcm(f)
4
= E[(γs − |y(k)|2)2] , (3.12)

whereγs
4
= E[|s(n)|4]/E[|s(n)|2] denotes the dispersion coefficient of the

transmitted symbol sequence. The cost function (3.12) exhibits a multimodal
surface and its minimization does not lead to closed-form solutions. In prac-
tice, stochastic gradient descent (SGD) algorithms are commonly employed
to minimizeJcm(f), by starting at some location on the surface and follow-
ing the trajectory of the steepest descent. Since the characteristics of the CM
cost function allow one to gain important insights about the expected behav-
iors of any SGD algorithm that attempts to minimizeJcm(f), such as the pop-
ular CM algorithm (CMA) [5], the derivation and classification of the sta-
tionary points of the cost function (3.12) has received a great deal of atten-
tion as we have underlined in the introduction3.1. Moreover, again in the
introduction we have noted that there is a lack of detailed analysis of the
CM cost function (3.12) when the symbol sequence is an improper random
process, i.e., its conjugate correlation function does not vanish identically,

Rss∗(n,m)
4
= E[s(n) s(n − m)] 6= 0 for somen,m ∈ Z. The simplest

examples of improper modulation formats are all the real-valued ones, such
as ASK, BPSK, differential BPSK (DBPSK), for which the conjugate corre-
lation functionRss∗(n,m) trivially boils down to the autocorrelation func-

tion Rss(n,m)
4
= E[s(n) s∗(n − m)], i.e. Rss∗(n,m) = Rss(n,m) for any

n,m ∈ Z.
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In the literature, when real-valued modulations are considered, a common
assumption [34, 35, 36, 6] is that the baseband channel impulse response (CIR)
and the additive noise are also real-valued: in this case, the CM cost surface
essentially exhibits the same characteristics ofJcm(f) given by (3.12) when the
transmitted symbols are assumed to be proper complex, i.e, all the local min-
ima ofJcm(f) are desired enabling perfect recovery of the transmitted symbols
in the absence of noise. A noticeable exception is [29], wherein the transmis-
sion of BPSK symbols over a complex baseband channel is considered. In
this case, it was argued in [29] that, besides containing desired local minima,
the infinite-length CM linear equalizer also exhibitsundesiredglobal minima,
which do not lead to perfect symbol recovery in the absence of noise. However,
the analysis carried out in [29] is exclusively targeted at a BPSK modulation
and cannot be directly extended to multidimensional real-valued modulations,
as well as to others improper complex-valued modulation schemes of practical
interest, such as offset QPSK (OQPSK), offset QAM (OQAM), MSK and its
variant Gaussian MSK. Therefore, on the basis of these considerations, with
reference to a complex-valued CIR, the aim of this section, following our paper
[30] is to provide an accurate derivations and classification of a broad family
of undesired local minima ofJcm(f) for a more general class of improper mod-
ulation schemes of practical interest. Hence the study of the stationary point
of (3.12) is herein carried out under the more general assumptions:

A4) besides fulfilling assumption A1,s(n) is an improper [1] random

process, with second-order momentsσ2
s

4
= E[|s(n)|2] and ζs(n)

4
=

E[s2(n)] 6= 0, ∀n ∈ Z, whose improper nature arises from the linear
dependence existing betweens(n) and its conjugate versions∗(n), i.e.,

s∗(n) = ej 2πβn s(n), ∀n ∈ Z; (3.13)

A5) c(n) is acomplex-valuedchannel, that is, neithercR(n) norcI(n) vanish
identically.

A large number of digital modulation schemes satisfy assumption A4, in-
cluding ASK, BPSK, DBPSK, offset QPSK (OQPSK), offset QAM (OQAM),
MSK and its variant Gaussian MSK (GMSK) (see [32, 37] for a detailed dis-
cussion). Specifically, real modulation schemes, such as ASK and DBPSK,
fulfill assumption A1 withβ = 0, i.e., s∗(n) = s(n), whereas for complex
modulation formats, such as OQPSK, OQAM, and MSK-type, it results that
β = 1/2, i.e.,s∗(n) = (−1)n s(n). Finally, assumption A5 is customary when
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one resorts to the equivalent lowpass representations of passband signals and
systems.

3.3.1 Analysis of the L-CM cost function

In the absence of noise, accounting for (3.3) and invoking assumptions A1, A3,
A4 and A5, after tedious but straightforward algebraic manipulations (see also
[5]), it can be shown that minimization of (3.12) with respect tof is equivalent

to the minimization with respect to thecombined channel-equalizervectorq
4
=

CHf = [q0, q1, . . . , qK−1]T ∈ CK , of the cost function

J̃cm(q)
4
= Jcm(C (CHC)−1q)

= κs

K−1∑

`=0

|q`|4 + 2
(

σ2
s ‖q‖2

︸ ︷︷ ︸
E[|y(k)|2]

)2
+

∣∣∣σ2
s qHJ∗q∗︸ ︷︷ ︸
E[y2(k)]

∣∣∣
2
− 2 γs σ2

s ‖q‖2

︸ ︷︷ ︸
E[|y(k)|2]

+γ2
s

(3.14)

whereκs
4
= E[|s(n)|4]−2 E2[|s(n)|2]−∣∣E[s2(n)]

∣∣2 = σ2
s (γs−3σ2

s) < 0 is the

kurtosis ofs(n), whereasJ
4
= diag[1, e−j 2πβ, . . . , e−j 2πβ(K−1)] ∈ CK×K is

a diagonal unitary matrix, i.e.,JJ∗ = J∗J = IK . More precisely, ifq ∈ CK is
a local minimum ofJ̃cm(q), then, under assumption A3,f = C (CHC)−1q+
fN , wherefN ∈ CNLe is an arbitrary vector belonging to the null space of
CH , is a local minimum ofJcm(f). Furthermore, observe thatσ2

s ‖q‖2 in
(3.14) represents the mean-output-energy E[|y(k)|2] of the equalizer output
y(k) = qHs(k), whereasσ2

s qHJ∗q∗ coincides with the second-order moment
E[y2(k)]. It is noteworthy that, compared with expressions of the CM cost
functions commonly encountered in the literature, eq. (3.14) is more general.
Specifically, when both the transmitted symbols and the CIR are real-valued
(i.e., β = 0 andC ∈ R(NLe)×K), the cost function (3.14) ends up to that
studied in [34, 35, 36, 6]. In fact, in this case, the combined channel-equalizer
vectorq turns out to be real-valued, too, i.e.,q ∈ RK , and, consequently, the
second and third summand in (3.14) can be grouped together. Additionally, the
CM cost function (3.14) is different from that studied in [27, 28]. Indeed, in
these papers, it is assumed that the transmitted symbols are proper complex: in
this case, the kurtosis ofs(n) assumes the formκs = σ2

s (γs− 2σ2
s) and, most

important, the third summand in (3.14) disappears, i.e., E[y2(k)] = 0, ∀k ∈ Z.
Henceforth, the basic difference between (3.14) and the expressions of the CM
cost functions considered in [27, 28] and [34, 35, 36, 6] stems from the fact
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that, under assumptions A4 and A5, the third summand in (3.14), which arises
as a consequence of the improper nature ofs(n), is nonzero and different from
the second one.

A vectorq ∈ CK is a stationary point of̃Jcm(q) if it is a solution ofg̃(q)
4
=

∇q∗ [J̃cm(q)] = OK , where∇q∗ [J̃cm(q)] denotes the complex gradient of
J̃cm(q) with respect toq∗. Accounting for (3.14), one obtains

g̃(q)
4
= ∇q∗ [J̃cm(q)]

= 2 κs Σ̃(q)q + 4 σ4
s ‖q‖2 q + 2 σ4

s (qTJq)J∗q∗ − 2 γs σ2
s q (3.15)

with Σ̃(q)
4
= diag[|q0|2, |q1|2], . . . , |qK−1|2] ∈ RK×K . A stationary

point q is a local minimum ofJ̃cm(q) if the Hessian matrixH̃(q)
4
=

∇q

{
∇q∗ [J̃cm(q)]

}
∈ CK×K is positive definite forq = q. Accounting

for (3.15), one has

H̃(q)
4
= ∇q

{
∇q∗ [J̃cm(q)]

}
= 4κs Σ̃(q) + 4σ4

s ‖q‖2 IK

+ 4 σ4
s qqH + 4 σ4

s J∗q∗qTJ− 2 γs σ2
s IK (3.16)

A useful property ofJ̃cm(q) can be demonstrated. By virtue of (3.15), the cost
function (3.14) can be rewritten as

J̃cm(q) =
1
2

qH g̃(q)− γs σ2
s ‖q‖2 + γ2

s , (3.17)

where the identityqHΣ̃(q)q =
∑K−1

`=0 |q`|4 has been used. Thus, ifq is a
stationary point of̃Jcm(q), i.e.,g̃(q) = OK , one obtains

J̃cm(q) = γs (γs − σ2
s ‖q‖2) , (3.18)

which allows one to readily calculate the value of the CM cost function at any
stationary point. As a by-product, sincẽJcm(q) is a nonnegative function, it
follows from (3.18) that the mean-output-energy corresponding to any station-
ary point cannot be greater than the dispersion constantγs of the transmitted
symbol sequence

E[|y(k)|2] = σ2
s ‖q‖2 ≤ γs (3.19)

On the basis of (3.15) and (3.16), the following Theorem provides a family of
local minima of the CM cost function (3.14).
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Theorem 3.1 The CM cost function(3.14) has local minima at the following
vectors:

qmin,1 = ej θ ei1 , whenσ2
s ≤ γs < 2σ2

s , (3.20)

qmin,2 = ej θ

√
γs

γs + σ2
s

·
[
ei1 − j (−1)`i1,i2ej πβ(i2−i1) ei2

]
,

whenσ2
s < γs < 2σ2

s , (3.21)

qmin,3 = ej θ ·
[
ρ ei1 − j (−1)`i1,i2ej πβ(i2−i1)

√
1− ρ2 ei2

]
,

whenγs = σ2
s , (3.22)

with eij
4
= [

ij︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ RK , θ ∈ [0, 2π), `i1,i2 ∈ Z, i1 6= i2 ∈

{0, 1, . . . , K − 1} and0 < ρ < 1.

Proof: See AppendixA.1.

Some comments are now in order. First of all, observe that whenq =
qmin,1, the equalizer output is given by

y(k) = qH
min,1 s(k) = ej θs(k − i1) (3.23)

i.e., except for an arbitrary phase rotation, perfect symbol recovery is guaran-
teed: in this case, the CM behaves as a blind ZF equalizer, which completely
suppresses ISI. It is worth noting that, unlike the CM cost functions studied in
[27], [28], [6, 34, 35, 36], the function (3.14) does not exhibit the ISI-free lo-
cal minima (3.20) when the transmitted symbolss(n) are “Gaussian” [5], i.e.,
κs = 0 ⇔ γs = 3 σ2

s , or “super-Gaussian” [5], i.e., κs > 0 ⇔ γs > 3σ2
s , as

well as whens(n) is sub-Gaussian with−σ4
s ≤ κs < 0 ⇔ 2σ2

s ≤ γs < 3σ2
s .

This is the reason we have assumed in A1 that the transmitted symbols
are sub-Gaussian. Additionally, observe that, accounting for (3.18), it fol-
lows that J̃cm(qmin,1) = γs (γs − σ2

s). In contrast, whenq = qmin,2 or
q = qmin,3, the equalizer output is contaminated by ISI, since a particular
linear combination of the two transmitted symbolss(k − i1) ands(k − i2),
with i1 6= i2 ∈ {0, 1, . . . , K − 1}, is extracted in these cases.

Henceforth, different from [27], [28], [34]-[6], the cost function (3.14)
exhibits local minima that do not lead to perfect ISI suppression, even in the
absence of noise.
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In particular, it is worth noting that, when−2σ4
s < κs < −σ4

s ⇔ σ2
s <

γs < 2σ2
s , the CM cost function exhibits the undesired local minima (3.21).

In this case, relying on (3.18), it results that

J̃cm(qmin,2) = J̃cm(qmin,1) · [γs/(γs + σ2
s)] < J̃cm(qmin,1),

for σ2
s < γs < 2 σ2

s (3.24)

which shows that, surprisingly enough, the ISI-free local minima (3.20) are
not global. On the other hand, whenκs = −2σ4

s ⇔ γs = σ2
s , a situation

occurring whens(n) is constant modulus, accounting for (3.18), the value of
J̃cm(q) at the undesired local minima (??) is given by

J̃cm(qmin,3) = 0, for γs = σ2
s . (3.25)

In this case,J̃cm(qmin,1) turns out to be zero as well and, hence, both the de-
sired (3.20) and undesired (3.22) local minima are global. It should be ob-
served that, by settingβ = 0, `i1,i2 = 1 andρ = cos(φ), with φ ∈ [0, 2π),
the expression of the undesired local minima (3.22) ends up to that derived
in [29, eq. (15)] for the case of an infinite length CM equalizer, under the
simplifying assumption of BPSK symbols with unitary variance. Finally, it is
noteworthy that, with reference to real-valued symbols (i.e.,β = 0), it was
shown in [31] that the undesired minima (3.21) and (3.22) disappear by min-
imizing the CM cost function (3.12), provided that the equalizer outputy(k)
is anot strictly linear function ofz(k), namely,y(k) = Re{fH z(k)}. More
generally, if the transmitted symbols are improper complex, one has to use
widely-linear equalizing structures , whereby the equalizer output is given by
y(k) = fHz(k) + gHz∗(k) and the CM cost function is minimized with re-
spect to bothf andg, whereg ∈ CNLe is not necessarily constrained to be
equal tof∗. This issue is the topic of the next section.

3.3.2 Numerical Results

To corroborate our analysis, the results of a Monte Carlo computer simu-
lation are now presented. We consider both QPSK and OQPSK modula-
tions, with s(n) taking equiprobable values in{±1,±j}, and a noise vec-
tor v(k) in (3.3) modeled as a zero-mean complex proper white random

process, with autocorrelation matrixRvv
4
= E[v(k)vH(k)] = σ2

v INLe .

The signal-to-noise ratio (SNR) at the equalizer input is defined as SNR
4
=

[σ2
s/(N σ2

v)] ·
∑Lc−1

q=0 ‖ c(q) ‖2 and is set to25 dB. The received signalra(t)
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Figure 3.1: SINR versus number of iterations.

is fractionally sampled at rate2/Ts and theZ-transforms of the two3rd-order
polyphase components̃c (`)(q) are given byC̃ (`)(z) = (1−0.5 ej θ1,`z−1) (1−
1.2 ej θ2,`z−1), for ` ∈ {0, 1}, where θ1,0 = 0.7π, θ2,0 = θ1,0 + π,
θ1,1 = θ1,0 + 0.2π andθ2,1 = θ2,0 + 0.2π. The minimization of the CM cost
function (3.12) is adaptively carried out by resorting to the stochastic gradient
descent algorithm [5], whereγs = σ2

s = 1, Le = 5, double-spike initialization
is used and the step-size is continuously adjusted to achieve fast convergence
without compromising stability. For each of the103 Monte Carlo trials carried
out, both the symbol and noise sequences are randomly and independently
generated. Fig.5.1 reports the signal-to-interference-plus-noise ratio (SINR)
at the output of the CM equalizer as a function of the number of iterations,
when either QPSK or OQPSK modulations are employed at the transmitter;
for the sake of comparison, it is also reported the SINR (which is the same for
QPSK and OQPSK modulations) at the output of the minimal-norm L-FIR ZF
equalizer (synthesized by assuming perfect knowledge ofC). Results show
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that, whens(n) is a proper random sequence (QPSK) and, thus, all the local
minima of Jcm(f) are desired, the performance of the CM equalizer rapidly
improves as the number of iterations increases and becomes comparable to
that of the ZF equalizer. In contrast, when the transmitted symbols are im-
proper (OQPSK), due to the presence of the undesired global minima (3.22),
the curve of the CM equalizer quickly saturates to a value that is significantly
less (of about50 dB) than the output SINR of the ZF equalizer.

3.4 Widely Linear Constant Modulus Equalizer

In this section, we present some results reported in [8, 9]. Specifically, we
provide a general and unified framework to design WL equalizers for both
real- and complex-valued improper modulations, by deriving the conditions
assuring perfect symbol recovery in the absence of noise and providing some
insights into the synthesis and analysis of blind WL-CM equalizers (it can
be noted that the theoretical analysis that we have presented in [9] is herein
omitted).

A brief characterization of the the second-order statistical properties of
z(k) [see (3.3)] is now in order. Preliminarily, we observe that as a conse-
quence of equation (3.13), the vectors(k)∗ can be expressed as

s∗(k) = ej 2πβk J s(k), (3.26)

whereJ = diag[1, e−j 2πβ, . . . , e−j 2πβ(K−1)] is the diagonal unitary matrix
defined in equation (3.14). Therefore, accounting for the equation (3.3) and
assumptions A4, A2, the second-order moment statistics ofz(k) are given by
both the autocorrelation matrix

Rzz
4
= E[z(k) zH(k)] = σ2

s CCH + σ2
w INLe , (3.27)

and theconjugatecorrelation matrix

Rzz∗(k)
4
= E[z(k) zT (k)] = σ2

s e−j 2πβk CJ∗CT . (3.28)

SinceRzz∗(k) is nonvanishing,∀k ∈ Z, the vectorz(k) is improper [1]. Addi-
tionally, observe that, for real modulation schemes (for whichβ = 0), such as
ASK and DBPSK, the vectorz(k) is wide-sense stationary (WSS), whereas for
complex modulation formats (for whichβ = 1/2), such as OQPSK, OQAM,
and MSK-type, it results thatz(k) is wide-sense conjugate (second-order) cy-
clostationary [38] with period2.
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Sincez(k) is an improper vector, it is well-known (see section?? for de-
tails) that, compared with L-FIR processing, a WL-FIR estimator, which is
linear both inz(k) and z∗(k), can assure a better estimate of the symbol
s(k − d), with d ∈ {0, 1, . . . , K − 1} (a suitable equalization delay). The
weight vector of the resulting WL-FIR estimator depends on bothRzz and
Rzz∗(k). Therefore, in this section to account for the (possible) time-varying
feature ofRzz∗(k), we consider a slight modification of the classical WL-FIR.
Specifically, we preliminarily derive the forms of the WL-MMSE and WL-ZF
equalizers, by gaining some new insights. Successively, using some of these
results, we analyze the WL-CM cost function and compare it with the L-CM
one.

3.4.1 WL-MMSE and WL-ZF Equalizers

Preliminarily, we observe that from (3.26) it follows, accounting (3.3), that

z∗(k) = ej 2πβk C∗ J s(k) + v∗(k). (3.29)

Thus, the (possible) wide-sense conjugate cyclostationarity ofz(k) can be
compensated by performing a derotation ofz∗(k) before constructing the WL-
FIR estimator, that is,

y(k) = fH
1 z(k) + fH

2 z∗(k) e−j 2πβk

=
[
fH
1 fH

2

]
︸ ︷︷ ︸
efH∈C1×2NLe

[
z(k)

z∗(k) e−j 2πβk

]

︸ ︷︷ ︸
ez(k)∈C2NLe

= f̃
H
z̃(k) , (3.30)

where

z̃(k) =
[

C
C∗J

]

︸ ︷︷ ︸
eC∈C2NLe×K

s(k) +
[

v(k)
v∗(k) e−j 2πβk

]

︸ ︷︷ ︸
ev(k)∈C2NLe

= C̃ s(k) + ṽ(k) . (3.31)

It is worth noting that the conventional linear estimatory(k) = fHz(k)
can be obtained from (3.30) by settingf1 = f ∈ CNLe and f2 = 0NLe .

Let Jmse(f̃)
4
= E[|y(k) − s(k − d)|2], with d ∈ {0, 1, . . . ,K − 1} a suitable

equalization delay, denote the mean-square error between the equalizer output
and the desired symbols(k−d), according to the MMSE criterion, the weight
vectorf̃ is chosen as follows

f̃wl-mmse
4
=

[
f1,wl-mmse

f2,wl-mmse

]
= arg min

ef∈C2NLe

Jmse(f̃) = σ2
s R̃

−1

zz C̃ ed (3.32)
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whereed
4
= [

d︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ RK and the autocorrelation matrix of

the augmented vector̃z(k) is given by

R̃zz
4
= E[z̃(k) z̃H(k)] = σ2

s C̃ C̃
H

+ σ2
w I2NLe . (3.33)

Moreover, by partitioning̃Rzz andC̃ according to the structure of̃z(k), re-
sorting to the inverse of a partitioned matrix and accounting for the expression
of Rzz∗(k), one has

f1,wl-mmse= σ2
s

[
Rzz − σ4

s CJ∗CT (R∗
zz)

−1C∗JCH
]−1

[
C− σ2

s CJ∗CT (R∗
zz)

−1C∗ J
]
ed , (3.34)

f2,wl-mmse= e−j 2πβd f∗1,wl-mmse. (3.35)

As it is apparent from (3.35), a particular linear dependence must exist be-
tweenf2,wl-mmseandf∗1,wl-mmse. As a side remark, observe that the WL-MMSE
equalizer given by (3.32) generalizes and subsumes as a particular case the
WL-MMSE equalizer derived in [32]: more precisely, when real modula-
tion schemes, such as ASK and DBPSK, are employed at the transmitter and
N = 1, i.e., the received signalra(t) is sampled at the baud rate, the devised
WL-MMSE equalizer (3.32) boils down to that proposed in [32].

The performance of the WL-MMSE equalizer (3.32) strongly depends on
the existence of WL-ZF solutions, in the absence of noise. This important
issue is investigated now.

Following the same lines of the linear case (see section3.3 for details)
it can be shown from (3.30), that in the absence of noise, imposing the ZF

conditiony(k) = s(k − d) leads to the system of linear equationsf̃
H
C̃ =

eT
d ⇔ C̃

H
f̃ = ed, which is consistent if and only if (iff)̃C

H
(C̃

H
)−ed =

ed (see [24]). If the augmented channel matrix̃C is full-column rank, i.e.,

rank(C̃) = K, it results that̃C
H
(C̃

H
)− = IK and, then, this system turns out

to be consistent regardless of the equalization delayd. In this case, theminimal
normsolution, i.e., the solution of the constrained optimization problem

f̃wl-zf = arg min
ef∈C2NLe

‖f̃‖2 , subject toC̃
H

f̃ = ed , (3.36)

is given by (see, e.g., [24])

f̃wl-zf
4
=

[
f1,wl-zf

f2,wl-zf

]
= (C̃

H
)† ed = C̃ (C̃

H
C̃)−1ed . (3.37)



36 CHAPTER 3. CONSTANT MODULUS EQUALIZERS

It is worth noting that, accounting for (3.32) and for the limit formula for
the Moore-Penrose inverse [24], it can be verified thatlimσ2

w/σ2
s→0 f̃wl-mmse =

(C̃
H

)† ed = f̃wl-zf , that is, as the noise varianceσ2
w vanishes, the WL-MMSE

solution approaches to the ZF one. Henceforth, we can maintain that, similarly
to (3.35), resorting to the expression of̃C one has

f1,wl-zf = C (CH C + J∗CTC∗J)−1 ed , (3.38)

f2,wl-zf = C∗ J (CH C + J∗CTC∗J)−1 ed, (3.39)

from which we desume that the following relation holds

f2,wl-zf = e−j 2πβd f∗1,wl-zf (3.40)

between the subvectorsf1,wl-zf andf∗2,wl-zf in (3.37). The following Theorem
(whose proof is omitted), provides the mathematical conditions assuring the
existence of WL-ZF solutions, i.e., conditions assuring that the augmented
channel matrix̃C is full-column rank.

Theorem 3.2 Let C(`)(z) denote theZ-transform of thè th channel phase
{c(`)(k)}Lc−1

k=0 , for ` ∈ {0, 1, . . . , N−1}, and assume that at least one polyno-

mial{C (`)(z)}N−1
`=0 is of maximum orderLc−1. Then, matrix̃C is full-column

rank if the following conditions hold:

C1) 2N Le ≥ K = Le + Lc − 1;

C2) the 2N polynomials C(`)(z) and C(`)(z∗ e−j 2πβ), for ` ∈
{0, 1, . . . , N − 1}, are coprime.

Some interesting remark are now in order. First, as regards condition C1,
observe that, unlike L-FIR-ZF equalization, WL-FIR-ZF solutions might ex-
ist not only when fractionally sampling is performed at the receiver, but also
when the received signalra(t) is sampled at the baud rate, i.e.,N = 1;
in this case, condition C1 requires thatLe ≥ Lc − 1 and condition C2 is
fulfilled if, ∀q1, q2 ∈ {1, . . . , Lc − 1}, there is no pair(ζq1 , ζq2) of zeros
of the Z-transform ofc(n) = ca(nTs) such thatζq1 = ζ∗q2

e−j 2πβ . Sec-
ond, and most important, note that, in comparison with L-FIR-ZF fractionally
spaced equalization, condition C2 imposes a milder constraint on the chan-
nel phases{c(`)(k)}N−1

`=0 . Indeed, whenN > 1, L-FIR-ZF solutions exist if
the N polynomials{C(`)(z)}N−1

`=0 are coprime (see section3.3 for details).
In contrast, Theorem3.2 states that WL-FIR-ZF solutions exist even when
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{C(`)(z)}N−1
`=0 have a common zeroz0, i.e., C(0)(z0) = C(1)(z0) = . . . =

C(N−1)(z0) = 0, provided that, the complex numberz0 is not a common zero
of C(`)(z∗ e−j 2πβ), ∀` ∈ {0, 1, . . . , N − 1}, that is, there exists at least one
index `0 ∈ {0, 1, . . . , N − 1} such thatC(`0)(z∗0 e−j 2πβ) 6= 0. As we will
see in Section3.4.2, conditions C1 and C2 also play a fundamental role for the
synthesis of CM-based WL equalizers and, thus, we assume hereinafter that
both of them are fulfilled.

As it is apparent from (3.32) and (3.37), the synthesis of both WL-MMSE
and WL-ZF equalizers requires the explicit knowledge or estimation of the
channel vectors{c(k)}Lc−1

k=0 , which areunknownat the receiver. To design a
blind ISI-resilient receiver for improper modulation formats, without requiring
any training sequence, we resort in the next section to the CM criterion.

3.4.2 Analysis of WL-CM cost function

With reference to the WL-FIR estimator given by (3.30), one might attempt
to blindly choose the augmented weight vectorf̃ by minimizing theuncon-
strainedCM cost function

Jwl-cm(f̃)
4
= E[(γs − |y(k)|2)2] , (3.41)

whereγs
4
= E[|s(k)|4]/σ2

s is again the dispersion constant.
Note that the classical L-FS-CM cost functionJcm(f) (3.12) can be ob-

tained from (3.41) by setting in (3.30) f1 = f ∈ CNLe andf2 = 0NLe . In the
section3.3we have shown that when noise is absent, the channel impulse re-
sponse is complex-valued (see A5), and the transmitted sub-Gaussian symbols
fulfill assumption A4, besides containing desired local minima, the function
Jcm(f) also exhibitsundesiredglobal minima, namely, they do not lead to per-
fect source recovery.

On the basis of widely-linear filtering theory [2, 3, 1], it can be argued that
the presence of undesired global minima for the L-FS-CM cost function (3.12)
is a consequence of the fact that, when the transmitted symbol sequence is im-
proper, a linear estimator cannot take advantage of the additional information
available in the conjugate correlation matrix ofz(k). Consequently, it should
be concluded that the minimization of the WL-FS-CM cost function (3.41)
might lead to a blind receiver whose ISI suppression capabilities are close
to those of the WL-FS-MMSE equalizer given by (3.32) [or, in the absence
of noise, to those of the WL-FS-ZF equalizer given by (3.37)]. Interestingly
enough, as it is confirmed by the simulation results reported in Section5.5, this
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conclusion is not entirely true. Indeed, similarly toJcm(f), the cost function
Jwl-cm(f̃) exhibits undesired global minima, whose presence is basically due to
the fact that the vector̃fwl-cm corresponding to a local minimum ofJwl-cm(f̃)
might not exhibit the conjugate symmetry property (3.35) and (3.40), which
characterizes instead the WL-MMSE and WL-ZF equalizers. To overcome
this drawback, we propose to resort to the following constrained minimization
of Jwl-cm(f̃), by imposing in (3.30) that

f2 = e−j 2πβd f∗1, (3.42)

i.e., we consider the following optimization problem

f̃wl-ccm = arg min
ef∈C2NLe

Jwl-cm(f̃) , subject tof2 = e−j 2πβd f∗1 , (3.43)

which will be referred to as the WL-FS constrained CM (WL-FS-CCM) equal-
izer. Since CM equalizers do not have closed-form solutions, minimization of
(3.43) is adaptively carried out by resorting to the stochastic gradient descent

(SGD) algorithm. Specifically, let̃fwl-ccm(k)
4
= [fT

1,wl-ccm(k), fT
2,wl-ccm(k)]T ∈

C2NLe , with f2,wl-ccm(k) = e−j 2πβd f∗1,wl-ccm(k) ∈ CNLe , denote the estimate

of f̃wl-ccm at iterationk, starting from (3.43), one obtains the updating equation

f1,wl-ccm(k + 1) = f1,wl-ccm(k) + µ y∗wl-ccm(k)

· (γs − |ywl-ccm(k)|2) z(k) , (3.44)

where

ywl-ccm(k) = fH
1,wl-ccm(k) z(k) + fT

1,wl-ccm(k) z∗(k) e−j 2πβ(k−d) (3.45)

andµ > 0 denotes the step-size of the algorithm. It should be observed that,
when real modulation schemes, such as ASK and DBPSK, are employed at the
transmitter andN = 1, i.e., the received signalra(t) is sampled at the baud
rate, the proposed WL-FS-CCM equalizer (3.43) boils down to the single-axis
equalizer devised in [31]. The fact that the single-axis equalizer is actually a
WL equalizer was not recognized in [31]. The performances of the WL-FS-
CCM equalizer are studied in subection5.5through computer simulations.

3.4.3 Simulation results

In this section, we investigate the performances of both WL-BS (i.e.,N = 1)
andTs/2-spaced WL-FS equalizers (i.e.,N = 2). Specifically, we consid-
ered the following equalizers: WL-BS-MMSE, WL-BS-CM, WL-BS-CCM,
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WL-FS-MMSE, WL-FS-CM, WL-FS-CCM. For the sake of comparison, we
also considered the L-FS-MMSE and L-FS-CM equalizers1. All the MMSE
equalizers arenon-blind and are implemented in batch-mode, by assuming
perfect knowledge of the channel impulse response and by inverting the ap-
propriate sample correlation matrix, estimated overK symbol intervals; ad-
ditionally, for each MMSE equalizer, we chose the value of the equalization
delayd ∈ {0, 1, . . . ,K − 1} assuring the best performance. On the other
hand, all the CMblind equalizers are adaptively implemented by resorting
to the SGD algorithm [5], wherein the step-size is continuously adjusted to
achieve fast convergence without compromising stability. More specifically,
we setµ(k) = 0.01µmax(k), where, according to [39], µmax(k) is the max-
imum value of the step-size that assures SGD stability at iterationk, and can
be evaluated in real-time, since it depends only on the equalizer outputy(k)
andγs; moreover, we employed single- and double-spike initialization [5] for
baud- and fractionally-spaced CM equalizers, respectively. All the equalizers
under comparison jointly elaborateLe = 5 consecutive symbols.

The input streams(n) is drawn from an OQPSK constellation and the ad-
ditive noisew(n) is a complex proper Gaussian process. The signal-to-noise

ratio (SNR) at the equalizer input is defined as SNR
4
= (σ2

s/σ2
w)‖c‖2 and

both the symbol and noise sequences are randomly and independently gener-
ated at the start of each Monte Carlo run. Since BS and FS equalizers employ
different discrete-time channels, we considered for all the receivers the same
continuous-time channelca(t), which spansLc = 3 symbol periods; more

precisely, we started from theTs/2-sampled version ofca(t), i.e., c(n)
4
=

ca(nTs/2), for n ∈ {0, 1, . . . , 2Lc − 1}, which can be expressed in terms of

the two polyphase componentsc(0)(k)
4
= c(2k) andc(1)(k)

4
= c̃(2k + 1), for

k ∈ {0, 1, . . . , Lc − 1}. Thus, we obtain the unique symbol-spaced channel
for BS methods asc(n) = c̃ (0)(n), n ∈ {0, 1, . . . , Lc − 1}. The two channels
c̃ (`)(n), for ` = 0, 1, are assigned in terms of theirZ-transforms:

C̃ (`)(z) = (1− 0.5 ej θ1,`z−1) (1− 1.2 ej θ2,`z−1) , (3.46)

whereθ1,0 = 0.5π + γ, θ2,0 = θ1,0 + π, θ1,1 = θ1,0 + γ andθ2,1 = θ2,0 + γ,
and the angular separationγ is fixed to0.2π so as to assure the existence of
ZF solutions for all the methods under comparison. As performance measure,
we evaluated the average bit-error-rate (ABER) and, denoting withq`, for ` ∈

1Linear baud-spaced equalizers were not considered since, at symbol spacingTs, L-FIR-ZF
solutions do not exist as we have noted in the section3.3.
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Figure 3.2: ABER versus SNR.

{0, 1, . . . , K − 1}, the `th entry of the combined channel-equalizer impulse

responsẽq
4
= C̃

H
f̃ ∈ CK , we also resorted to the residual ISI expressed in dB

ISI [dB]
4
= 10 log10

(∑K−1
`=0 |q̃`|2 −max̀ |q̃`|2

max̀ |q̃`|2
)

. (3.47)

Note that (3.47) only quantifies the ISI suppression capability of the equalizer
and does not take into account noise enhancement at its output. For each of
the104 Monte Carlo trials carried out, after estimating the receiver weights on
the basis of the given data record of lengthK, an independent record of1000
symbols was considered to evaluate the ABER.

In the first experiment, we evaluated the ABER performances of the con-
sidered equalizers as a function of the SNR, withK = 500 symbols. Results
of Fig. 3.2show that the performances of the L-FS-CM, WL-BS-CM and WL-
FS-CM blind equalizers are significantly worse than those of the correspond-
ing non-blind MMSE equalizers. In particular, it is worth noting that both the
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Figure 3.3: ISI versus sample sizeK (in symbols).

WL-FS-MMSE and WL-BS-MMSE equalizers remarkably outperform the L-
FS-MMSE equalizer for all the considered values of the SNR. On the other
hand, as it has been previously claimed, the proposed WL-FS-CCM and WL-
BS-CCM blind equalizers perform better than their unconstrained WL-BS-CM
and WL-FS-CM counterparts, for all the considered values of the SNR. Inter-
estingly, the WL-FS-CCM and WL-BS-CCM equalizers also outperform the
L-FS-MMSE one and, as the SNR increases, their ABER curves approach
those of their corresponding WL-MMSE equalizers. As a side remark about
Fig. 3.2, observe that, for the considered sample size, the ABER performances
of the WL-BS-CCM and WL-BS-MMSE equalizers are superior to those of
their corresponding WL-FS-CCM and WL-FS-MMSE counterparts. This be-
havior stems from the fact that, for the WL-FS-CCM and WL-FS-MMSE
equalizers, one has to estimate2N Le (complex) parameters, whose number
is doubled with respect to the number of parameters that must be estimated for
the WL-BS-CCM and WL-BS-MMSE equalizers; strictly speaking, reducing
the number of parameters to be adapted allows one to reduce the performance
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degradation due to the finite sample-size.
In the second experiment, the ISI suppression capabilities of the considered

equalizers were studied as a function of the sample sizeK, with SNR= 20 dB.
It can be seen from Fig.3.3 that, due to the presence of undesired global min-
ima, the performances of the WL-FS-CM, L-FS-CM and WL-BS-CM equal-
izers do not significantly improve asK grows. In contrast, the ISI suppression
capabilities of both the WL-FS-CCM and WL-BS-CCM equalizers rapidly im-
prove asK increases. Remarkably, the ISI suppression capabilities of both
WL-FS-CCM and WL-BS-CCM equalizers turn out to be better than those of
all the MMSE equalizers, for all the considered values ofK.



Chapter 4

Equalization Techniques for
DS-CDMA Systems

I n this chapter we present the general concepts regarding DS-CDMA sys-
tems and with reference to Minimum Output Energy Criterion (MOE)

we present a theoretical performance analysis of WL multiuser receivers for
direct-sequence code-division multiple-access (DS-CDMA) systems, as well
as a performance comparison with the conventional linear (L) systems. Re-
ceivers based on the minimum output-energy (MOE) criterion are consid-
ered, since they offer a good tradeoff between performance and complexity
and, moreover, lend to some simplifications in the analysis. After compar-
ing the ideal signal-to-interference-plus-noise-ratio (SINR) performances of
the WL-MOE and L-MOE receivers, the chapter presents finite-sample per-
formance results for two typical data-estimated implementations. Specifically,
by adopting a first-order perturbative approach, the SINR degradation of the
data-estimated WL-MOE receivers is accurately evaluated and compared with
that of its linear counterpart. Simulation results are provided to validate and
complement the theoretical analysis.

4.1 Introduction

The Code Division Multiple Access (CDMA) is a multiple access technique
based on spread-spectrum modulation method. Spread-Spectrum systems have
a long story in military and civilian wireless communications and have been
developed since about the mid-1950’s [40, 41, 42, 20, 19]. Spread Spectrum
is a transmission technique in which the transmitted signal exhibits a band-

43
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width in excess of the minimum necessary to send the information. The band
spread is accomplished by means of a code which is independent of the data.
At the receiver side we need to despreading the transmitted signal to data re-
covery. For this purpose the received signal is correlated with a synchronized
copy of the spreading code. These features distinguish spread-spectrum mod-
ulation from other signaling techniques that increase the transmit bandwidth
above the minimum required for data transmission, for example frequency
modulation and block and convolution coding. An interesting tradeoff arises
as to whether, given a specific spreading bandwidth, it is more beneficial to
use coding or spread spectrum. The answer depends on the requirements of
the system design [19, 43]. In [40] it is shown that there are many reasons
for spreading the spectrum, and if properly performed, a multiplicity of ben-
efits can accrue simultaneously. Some of these are: antijamming, antiinter-
ference, low interception probability, multiple user random access communi-
cations with selective addressing capability, high resolution ranging, accurate
universal timing. Therefore Spread-spectrum can be very useful in solving
a wide range of communications problems. The amount of performance im-
provement that is achieved through the use of spread spectrum is often related
to theprocessing gainof the spread-spectrum system. That is, processing gain
is often defined as the difference between system performance using spread-
spectrum techniques and system performance not using spread-spectrum tech-
niques. Processing gain is approximately the ratio of the spread bandwidth
to information rate. The means by which the spectrum is spread is crucial.
Several of the techniques are referred to as “direct-sequence” (DS) modulation
in which a fast pseudorandomly generated sequence causes phase transition
in the carrier containing data, whereas others are called “frequency hopping”
(FH) ones, in which the carrier is frequency shifted in a pseudorandom way.
Hybrid combinations of these techniques are frequently used. In the sequel,
we consider DS-CDMA systems for their valuable properties, among which
the narrowband interference and multipath rejecting.

4.2 CDMA Signal Model

In DS-CDMA, each user possess its own code which is used to modulate its
data signal.The transmitted signals for all users are superimposed in time and
frequency. The performances of this strategy are related to the correlation
properties of the used spreading codes [40, 42, 20, 19]. In particular the au-
tocorrelation function of the spreading code determines its multipath rejec-
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tion properties. The cross-correlation properties of different spreading codes
determine the amount of interference among users. The lower is the cross-
correlation, the lower is the interference among users. A code set is orthogo-
nal if the cross-correlation between the spreading codes of all user are equal
to zero; in such a case the codes are able to eliminate interferences. A set of
spreading code that does not satisfy this cross-correlation property, is called
a non-orthogonal code set. Therefore, when orthogonal spreading codes are
used, the other-user interference, called multiple-access interference (MAI),
does not affect the post-despreading functions at all. Unfortunately, the multi-
path fading channels distort the signal in such a manner that the orthogonality
present at the transmitter is loss at the receiver side. Further, in some applica-
tions orthogonal spreading codes are not even used. In these cases the perfor-
mance is a function of the cross-correlation properties of the codes as well as
of the channel properties. These partial correlations will eventually limit the
total number of users that can simultaneously access the system.

Let us consider a DS-CDMA channel that is shared byJ simultaneously
users [44, 45, 25]. Each user is assigned a signature waveformsj(t) of duration
T , whereT is the information symbol interval. The signature waveform may
be expressed as

sj(t) =
N−1∑

n=0

cj(n)pTc(t− nTc), 0 ≤ t ≤ T (4.1)

where{cj(n)}N−1
n=0 is the code sequence associated tojth user consisting ofN

chips andTc is the chip interval. Therefore, we can note that Direct-Sequence
refers to a specific approach to construct spread-spectrum waveforms in which
the normalized chip waveforms{pTc} of durationTc = T/N , are delayed
versions of each others. With more details the chip waveformpTc is orthogonal
to any version of itself delayed by an integer multiple ofTc. The signature
waveforms are normalized so as to have unit energy. The equivalent lowpass
transmitted signal due to thejth user can be expressed as

xj(t) =
+∞∑

i=−∞
bj(i)sj(t− iT − τj) (4.2)

where{bj(i)} andτj denote, respectively, the symbol stream and transmission
delay of thejth user with0 ≤ τj < T . We can note that this model is ap-
propriate when we employ short spreading codes. The signature waveforms
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propagate through their respective time invariant multipath channels whose
impulse responses are:

gj(t) =
Mj−1∑

m=0

ξm,jδ(t− τm,j), with j ∈ {1, 2, . . . , J} (4.3)

whereMj denotes the number of paths,{ξm,j} the complex-valued path gains
and{τm,j} the path delays. We assume, without loss in generality, that the
delays related to LOS path are equal to zero for all users,τ0,j = 0, j ∈
{1, 2, . . . , J}. In this way the transmission delays{τj} must be considered to
evaluate the asynchronisms between users.

Therefore, at the receiver, the received signal due to thejth users, recalling
(4.2), (4.1) and (4.3), is given by

uj(t) = xj(t) ∗ gj(t) =
Mj−1∑

m=0

ξm,jxj(t− τm,j)

=
+∞∑

i=−∞
bj(i)

Mj−1∑

m=0

ξm,jsj(t− iT − τj − τm,j)

=
+∞∑

i=−∞
bj(i)

Mj−1∑

m=0

ξm,j

N−1∑

n=0

cj(n) pTc(t− iT − nTc− τj − τm,j)

=
+∞∑

i=−∞
bj(i)

N−1∑

n=0

cj(n) g(t− iT − nTc− τj) (4.4)

wheregj(t) =
∑Mj−1

m=0 ξm,jpTc(t − τm,j) is the convolution between chip
waveform and thejth complex channel impulse responsegj(t). The total re-
ceived signal at the receiver is the superposition of the data signals of theJ
users plus the additive white Gaussian noise, given by

ua(t) =
J∑

j=1

uj(t) + na(t) (4.5)

wherena(t) is a zero mean complex white Gaussian noise with power spectral
densityσ2. The signal model given by (4.4)−(4.5) represents a dispersive
asynchronous CDMA channel, which is typical for the uplink channel (i.e.,
mobile to base station) of a CDMA network. The downlink channel (i.e., base
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station to mobile) of a CDMA network is a special case of this model, where
the data signals of theJ users are synchronous, i.e.,τ1 = τ2 = · · · = τJ = 0
and they propagate through a single dispersive channel, i.e.,g1(t) = g2(t) =
· · · = gJ(t). Since the signal processing required for interference suppression
is digitally performed, we resort to a discrete time model obtained by chip
matched filtering the received signal and sampling at a chip rate. Therefore at
the output of the chip matched filter, the received signal can be expressed as

r(t) = ua(t) ∗ p∗Tc
(−t)

=
J∑

j=1

+∞∑

i=−∞
bj(i)

N−1∑

n=0

cj(n) gj(t− iT − nTc− τj) ∗ p∗Tc
(−t)

+ na(t) ∗ p∗Tc
(−t)

=
J∑

j=1

+∞∑

i=−∞
bj(i)

N−1∑

n=0

cj(n) fa,j(t− iT − nTc− τj) + v(t)

=
J∑

j=1

+∞∑

i=−∞
bj(i)ϕa,j(t− iT − τj) + v(t), (4.6)

wherefa,j(t) = gj(t) ∗ p∗Tc
(−t) is the composite channel impulse response

that includes the transmitted, the received filter and the channel impulse re-
sponse;ϕa,j(t) =

∑N−1
n=0 cj(n) fa,j(t−nTc) is the composite received signal

waveform of thejth user, encompassing spreading code and channel prop-
agation effects andv(t) is the noise process after the convolution with the
chip-matched filter. We assume that the delaysτj are not necessarily integer
multiple of Tc therefore they are constituted by a integer part and by a frac-
tionally part,τj = (βj + ξj)Tc, with βj ∈ [0, 1, . . . , N) andξj ∈ [0, 1). At
the output of the sampler, the resulting discrete-time signal during thelth chip
period of thekth symbol interval recalling (4.6), is given by

rl(k)
4
= r(kT + lTc)

=
J∑

j=1

+∞∑

i=−∞
bj(i)

N−1∑

n=0

cj(n) fa,j(kT + lTc − iT − nTc− (βj + ξj)Tc)

+ v(kT + lTc)

=
J∑

j=1

+∞∑

i=−∞
bj(i)ϕl,j(k − i− βj) + vl(k) (4.7)
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whereϕl,j(k) =
∑N−1

n=0 cj(n) fl,j(k−n) with fl,j(k) = fa,j(kT +lTc−ξjTc)
andvl(k) = v(kT + lTc). If we define in (4.7) ϕl,j(k) = ϕl,j(k− βj), we can
write (4.7) in this way:

rl(k) =
J∑

j=1

+∞∑

i=−∞
bj(i)ψl,j(k − i) + vl(k). (4.8)

We can collect the N samples of the received signal to obtain the vector model:

r(k) =
J∑

j=1

+∞∑

i=−∞
bj(i)ϕj(k − i) + v(k), (4.9)

where we have definedr(k)
4
= [r0(k), r1(k), . . . , rN−1(k)]T ,

ϕj(k)
4
= [ϕ0,j(k), ϕ1,j(k), . . . , ϕN−1,j(k)]T and v(k)

4
=

[v0(k), v1(k), . . . , vN−1(k)]T .
The model (4.9) can be simplified if we assume that the channel is syn-

chronous and that the intersymbol interference (ISI) can be neglected. In the
sequel, we consider a synchronous DS-CDMA system withJ users, employing
short codes with1/Tc = N/T chip/symbol and transmitting over channels that
introduce interchip interference and negligible intersymbol interference [42].
It is noteworthy that synchronous transmissions and negligible intersymbol in-
terference (ISI) are assumed only for the sake of simplicity and the analysis,
that we develop in the next sections, can be readily generalized to other sce-
narios (e.g., asynchronous users and/or channels with ISI). For instance, in a
asynchronous system withJa users, can be described by a synchronous model
with J ≤ 2Ja equivalent users (see [46] for further details). Therefore (4.9)
can written as:

r(k) =
J∑

j=1

ϕj bj(k) + v(k) =
J∑

j=1

αj ψj bj(k) + v(k)

= ΨAb(k) + v(k) = Φb(k) + v(k) , (4.10)

where, with reference to the thejth user, we have indicate withψj ∈ CN the
unit-normsignature (encompassing spreading code and channel propagation
effects). As a consequence,αj > 0 is the received amplitude, accounting
for transmitted energy and channel propagation loss. Moreover, in (4.10), we

have definedΨ
4
= [ψ1,ψ2, . . . ,ψJ ] ∈ CN×J , A

4
= diag(α1, α2, . . . , αJ) ∈
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RJ×J , Φ
4
= ΨA ∈ CN×J , andb(k)

4
= [b1(k), b2(k), . . . , bJ(k)]T ∈ CJ .

Finally, we recall thatcj
4
= [cj(0), cj(1), . . . , cj(N − 1)]T ∈ CN denotes1 the

spreading code vector of thejth user andgj(n) is the channel impulse response

of lengthLj ¿ N (Lj > 1), with gj
4
= [gj(0), gj(1), . . . , gj(Lj−1)]T ∈ CLj

being the correspondingunit-normchannel vector. Under the assumption that
gj(n) has orderLj ¿ N , the signatureψj in (4.10) can be modeled [15] as

ψj = Gj cj , (4.11)

where Gj ∈ CN×N is the Toeplitz lower triangular matrix having
[gj(0), 0, . . . , 0]T as first row and[gj(0), gj(1), . . . , gj(Lj − 1), 0, . . . , 0]T as
first column. It is worth noticing that the signatureψj in (4.10) can be modeled
also as

ψj = Cj gj , (4.12)

whereCj ∈ CN ×Lj is the Toeplitz matrix having[cj(0), 0, . . . , 0]T as first
row and [cj(0), cj(1), . . . , cj(N − 1)]T as first column. Throughout this
chapter, we will rely on these assumptions:

(a1) b(k) is a binary2 real zero-mean random vector, whose entries are
independent and identically distributed (i.i.d.) random variables assuming
equiprobable values inB = {−1, 1}, with b(k1) and b(k2) statistically
independent fork1 6= k2;

(a2) v(k) is a complex properzero-mean Gaussian random vector, inde-
pendent ofb(k), havingRvv = σ2

v IN andRvv∗ = ON×N , with v(k1) and
v(k2) statistically independent of each other fork1 6= k2.

4.3 Multiuser Detection

A DSSS receiver that exploits the structure of multiuser interference in signal
detection is called a multiuser detector (MUD) [48, 10, 25, 19]. During the last
two decades, starting from the seminal works of Verdú [48, 10], a great bulk

1 The codecj accounts also for possible precoding phases, whose role in downlink is dis-
cussed in the subsection4.4.1

2This assumptions is not crucial, but simplifies the analysis. Our derivations can be readly
extended to the case where the entries ofb(k) assume values in an arbitrary real set, or even
when the entries ofb(k) are not real but obey the more general conjugate symmetry [47] prop-
erty
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of research activities has been devoted to multiuser detection (MUD), as an ef-
fective way to counteract the multiple-access interference (MAI), which is the
predominant source of performance degradation in nonorthogonal DS-CDMA
systems. Verd́u’s solution involves a bank of single-user matched filters fol-
lowed by a Viterbi algorithm. The complexity of this procedure is exponential
in the number of users. The complexity of MUD can be decreased at the ex-
pense of optimality . The simplest suboptimum detector is the conventional
single-user detector in which the receiver for each user is constituted by a de-
modulator that correlates the received signal with the signature sequence of the
user and passes the correlator output to the detector which makes a decision
based on the single correlator output. Thus the conventional detector neglects
the presence of the other users of the channel, or, equivalently assumes that
the aggregate noise plus interference is white and gaussian. If the signature are
orthogonal, the interference from the other users vanishes and the conventional
single-user detector is optimum [48, 10, 25, 19]. On the other hand, if one or
more of the other signature sequences are not orthogonal to the user signature
sequence, the interference from the other users does not vanish and it can be-
came excessive if the power level of the signal of one or more of the other users
is sufficiently larger than the power level of the user of interest. This situation
is generally callednear-far problemin multiuser communications and neces-
sities some type of power control for conventional detector. In asynchronous
transmission, the conventional detector is more vulnerable to interference from
other users because it is not possible to design signature sequences for any pair
of users that are orthogonal for all time offsets. Consequently interference
from other users is unavoidable with the conventional single-user detection. In
such a case, thenear-far problem, resulting from unequal power in the signals
transmitted by the various users is particulary serious. The practical solution
generally requires a power adjustment method that is controlled by the receiver
via separate communication channel that all users are continuously monitoring.
If a separate communication channel is not available, it is possible to employ
a suboptimum multiuser detectors. Suboptimal MUDs fall into two broad cat-
egories: linear and nonlinear. Linear MUDs apply a linear operator or filter
to the output of the matched filter bank. These linear detectors have complex-
ity that is linear in the number of users, a significant complexity improvement
over the optimal detector. Among linear MUD techniques, decorrelating re-
ceiver [49], the minimum mean-square-error (MMSE) [46] one, and the min-
imum output-energy (MOE) [15] one, have been investigated in depth, since
they offer convenient tradeoffs between performance, complexity, robustness,
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amount ofa priori information, and ease of adaptive implementation. Nonlin-
ear MUDs have somewhat larger complexity than the linear detectors but also
much better performance, although not necessarily in all cases, especially with
very limited or no coding. The most common nonlinear MUD techniques are
multistage detection, decision-feedback detection, and successive interference
cancelation. Linear multiuser detectors can be implemented in a decentralized
fashion where only the user or users of interest need be demodulated [45].
Therefore generally, they require the only knowledge of the interest user’s
spreading sequence. In this thesis we focalize our attention on L-MUD tech-
niques. In particulary, we can note that most L-MUD techniques assume that
the complex enveloper(t) of the received signal is modeled as aproper ran-
dom process, exploiting hence only the information contained in its statistical

autocorrelation functionRrr(t, τ)
4
= E[r(t) r∗(t − τ)]. When, however, the

DS-CDMA signal and/or the disturbance areimproper, well-established re-
sults in detection and estimation theory, as shown in section2.4, state that lin-
ear receivers can be outperformed bywidely-linear(WL) ones, which jointly
elaborate the received signalr(t) and its complex conjugater∗(t), in order
to exploit also the information contained in their statisticalcross-correlation

functionRrr∗(t, τ)
4
= E[r(t) r(t− τ)]. Motivated from previous observations,

in recent years several papers [3, 50, 51, 52] proposed different WL-MUD
techniques for DS-CDMA systems with improper signals and/or disturbances,
by extending concepts from the classical L-MUD theory. In particular, WL
versions of the major L-MUD receivers have been proposed and studied, such
as the WL decorrelating receiver [51, 53], the WL-MMSE one [3, 50, 54], the
WL-MOE one [52, 53], and the min/max WL-MOE one [55]. In the sequel,
we focalize our attention on the minimum output energy criterion (MOE).

4.3.1 Minimum Output Energy Criterion (MOE): Linear and
Widely-Linear receivers

The main goal of this section is to derive the WL-MOE receiver as a partic-
ular solution of the maximum SINR criterion. We start by reviewing briefly
the L-MOE receiver, not only to put the necessary bases for our subsequent
derivations, but also to comment on possible inconsistencies concerning the
“correct” definition of the SINR to be used for linear receivers, when real sym-
bols are employed.

In order to recoverbj(k) by a linear receiver, it is useful to rewrite (4.10)
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as follows:

r(k) = φj bj(k) + Φj bj(k) + v(k) = φj bj(k) + pj(k) , (4.13)

where φj ∈ CN is the jth column of the composite matrixΦ, whereas
bj(k) ∈ RJ−1 denotes the vector that includes all the elements ofb(k)
except for thejth entry bj(k), Φj ∈ CN×(J−1) denotes the matrix that
includes all the columns ofΦ except for thejth columnφj , and, finally,

pj(k)
4
= Φj bj(k) + v(k) ∈ CN is the interference-plus-noise (disturbance)

vector. Accounting for (4.13), the output of a linear receiver can be expressed
as

yj(k) = wH
j r(k) = wH

j φj bj(k) + wH
j pj(k) . (4.14)

The L-MOE receiver [15] is the solution of the following constrained opti-
mization problem:

wj,L-MOE = argmin
wj∈CN

E[|yj(k)|2] subject towH
j φj = 1 , (4.15)

which can be solved by Lagrange optimization, yielding the two equivalent3

expressions

wj,L-MOE = (φH
j R−1

rr φj)
−1 R−1

rr φj = (φH
j R−1

pjpj
φj)

−1 R−1
pjpj

φj , (4.16)

where the second equality follows by applying the matrix inversion lemma4 to
the autocorrelation matrixRrr = φjφ

H
j + Rpjpj

∈ CN×N .
It can be easily shown that, among all linear receivers, the L-MOE one

maximizes the SINR at its output, which, accounting for (4.14), can be defined
as

SINR(wj)
4
=

E[|wH
j φj bj(k)|2]

E[|wH
j pj(k)|2] =

|wH
j φj |2

wH
j Rpjpj

wj
=
|(R1/2

pjpj
wj)H(R−1/2

pjpj
φj)|2

‖R1/2
pjpj

wj‖2
.

(4.17)

Indeed, by using the Cauchy-Schwartz’s inequality5, any receiver maximizing
(4.17) is given bywj,max-SINR = γj R−1

pjpj
φj , whereγj ∈ C − {0} is an

3 The advantage of usingRrr instead ofRpjpj
in (4.16) is that the former can be estimated

from received data.
4Given the vectorsx,y ∈ Cn and the nonsingular matrixX ∈ Cn×n, the matrix inversion

lemma states that(X + xyH)−1 = X−1 − (1 + yH X−1 x)−1X−1 xyH X−1.
5Given the vectorsx,y ∈ Cn, the Cauchy-Schwartz’s inequality states that|xHy|2 ≤

‖x‖2‖y‖2, where the upper bound is achieved byy = γ x, with γ ∈ C.
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arbitrary (nonnull) complex scalar. Hence, the L-MOE receiver is obtained by
settingγj = (φH

j R−1
pjpj

φj)−1, and the maximum value of (4.17) is

SINRj,max
4
= SINR(wj,L-MOE) =

1
wH

j,L-MOE Rpjpj
wj,L-MOE

= φH
j R−1

pjpj
φj .

(4.18)

On the other hand, the output of a widely-linear receiver can be expressed
as [12, 2] as

yj(k) = fH
j,1 r(k) + fH

j,2 r∗(k) = fH
j z(k) , (4.19)

wheref j
4
= [fT

j,1, f
T
j,2]

T ∈ C2N andz(k)
4
= [rT (k), rH(k)]T ∈ C2N is the

augmentedreceived vector. According to (4.10), vectorz(k) can be expressed
as

z(k) = Hb(k) + d(k) , (4.20)

with H
4
= [ΦT ,ΦH ]T ∈ C2N×J andd(k)

4
= [vT (k),vH(k)]T ∈ C2N , where,

for (a2), the noised(k) is animproperGaussian random vector, withRdd =
σ2

v I2N andRdd∗ = σ2
v J2N , where

J2N
4
=

[
ON×N IN

IN ON×N

]
∈ R2N×2N (4.21)

is a block permutation matrix [56].
Accounting for (4.20), eq. (4.19) can be equivalently written as

yj(k) = fH
j hj bj(k) + fH

j [Hj bj(k) + d(k)] = fH
j hj bj(k) + fH

j qj(k) ,
(4.22)

wherehj
4
= [φT

j ,φH
j ]T ∈ C2N , with φj ∈ CN being thejth column of the

matrix Φ, whereasHj
4
= [ΦT

j ,ΦH
j ]T ∈ C2N×(J−1), with Φj ∈ CN×(J−1)

denoting the matrix that includes all the columns ofΦ except for thejth col-
umn φj , bj(k) ∈ RJ−1 denotes the vector that includes all the elements of

b(k) except for thejth entrybj(k), andqj(k)
4
= Hj bj(k) + d(k) ∈ C2N is

the augmented disturbance (interference-plus-noise) vector.
To establish a general framework encompassing both linear and WL re-

ceivers, we refer to the scheme in Fig.4.1, wherein linear receivers can be
obtained by settingf j,2 = 0N in (4.19), and the Re[·] operation is needed only
whenyj(k) is complex, as it happens for linear receivers, or even for WL ones
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Figure 4.1: The WL processing scheme.

possibly not satisfying the CS constraint(f j,1 = f∗j,2 is referred to asconjugate
symmetry(CS) property). It should be observed that the L-MOE receiver max-
imizes theSINR given by (4.17), which is evaluatedbeforethe Re[·] block.
Since, by virtue of(a1), bj(k) is real-valued, an appropriate performance mea-
sure for thejth user is the output SINR (after the Re[·] block) [57, 58] defined
as

SINR(f j) =
E2{Re[yj(k)] | bj(k)}
Var{Re[yj(k)] | bj(k)} . (4.23)

Indeed, if the disturbance contributionfH
j qj(k) at the receiver output can

be approximated as a Gaussian random variable6, maximizing (4.23) w.r.t f j

amounts to minimizing the error probabilityPe,j
4
= Pr{b̂j(k) 6= bj(k)} ≈

Q(
√

SINR(f j)), where Q(x)
4
= (1/

√
2π)

∫ +∞
x e−u2/2 du denotes theQ

function. Definition (4.23) of the SINR is quite general and allows for rela-
tively simple calculations whenhj and/orf j are estimated from data as we
will see in the next section. In the particular case where bothf j andhj are
perfectly known, it can be shown that (4.23) reduces to

SINR(f j) =
Re2[fH

j hj ]

E{Re2[fH
j qj(k)]} , (4.24)

which can be employed also whenf j is estimated from a finite sample-size,
under the assumption that the channel is exactly known. Since maximization

6WhenN andJ are large enough, this assumption is well-satisfied for maximum-SINR
equalizers (see, e.g, [59]).
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of (4.24), due to the presence of the Re[·] operator, is not as standard as maxi-
mizing (4.17), we discuss it briefly in the following Lemma.

Lemma 4.1 Any WL receiver(4.19) maximizing(4.24) can be expressed as

f j,max-SINR= ξj R−1
qjqj

hj + f j,a , (4.25)

and f j,a is an arbitrary antisymmetric vector, i.e.,f j,a ∈ A 4
= {f =

[fT
1 , fT

2 ]T ∈ C2N | f1 = −f∗2 ∈ CN}. The resulting maximumSINR is given
by

SINRj,max
4
= SINR(f j,max-SINR) = hH

j R−1
qjqj

hj . (4.26)

Proof. See AppendixB.1.
Note that the maximum SINR solution (4.25) differs from that of the linear
case for the fact that the scalarξj must be real and for the presence of the
antisymmetric vectorf j,a. Moreover, in AppendixB.1 it is also shown that the
value of SINR (4.24) does not depend onξj ∈ R−{0} and onf j,a. Hence, we
can chooseξj such thatfH

j,max-SINRhj = 1 andf j,a = 02N , which leads to the
WL-MOE receiver:

f j,WL-MOE = (hH
j R−1

zz hj)−1 R−1
zz hj = (hH

j R−1
qjqj

hj)−1 R−1
qjqj

hj , (4.27)

where the second equality7 follows by applying the matrix inversion lemma
(see footnote4) to the autocorrelation matrixRzz = hjhH

j + Rqjqj
∈

C2 N×2 N . By reasoning as in the proof of Lemma4.1, it can be shown that
(4.27) is obtained equivalently as the unique solution of the following WL-
MOE criterion:

f j,WL-MOE = argmin
f j∈C2N

E{Re2[yj(k)]} subject tofH
j hj = 1 . (4.28)

The ideal implementations of the L-MOE and WL-MOE receivers require
perfect knowledge of two quantities: theautocorrelation matrix(ACM) of the
received signal, and thereceived signature(possibly distorted by the channel)
of each user to be demodulated. These two quantities can be estimated in prac-
tice from a finite number of samples at the receiver. In particular, we can note
that when we consider a multipath channel, due to the effects of the unknown

7 The advantage of usingRzz instead ofRqjqj
in (4.27) is that the former can be estimated

from received data.



56 CHAPTER 4. EQUALIZATION FOR DS-CDMA SYSTEMS

channel response, the received signature is a distorted version of the transmit-
ted one, making channel estimation (CE) a necessary step to implement both
the L- and WL-MOE receivers. In such a scenario, we will show in the section
4.5 that the performances of the L- and WL-MOE receivers are affected by
imperfect ACM estimation and by inaccurate CE.

4.3.2 Blind channel estimation: Subspace method

The conventional method for CE is to periodically transmit training sequences
of data that are knowna priori to the receiver. However, such a scheme might
lead to a significant waste of power and bandwidth resources in mobile com-
munication systems, especially when channel conditions require the use of
long training sequences and/or frequent repetition of training. Consequently,
the past few decades have witnessed a huge number of contributions in the
area ofblind CE approaches, which only exploit the knowledge of the spread-
ing code of the desired user, without requiring any training, and allow one to
demodulate the desired transmission without any knowledge of the channels
and spreading sequences of the other users. Blind CE approaches relying on
second-order statistics (SOS) of the received data are particularly attractive
since they require fewer samples than those necessary fo traditional methods
based on higher-order statistics [16]. Among existing SOS-based approaches,
the subspace CE method first proposed in [60] is one of the most studied blind
algorithm for DS-CDMA systems for the following reasons: (i) except for the
subspace swap phenomenon, which occurs only for low values of the SNR well
below the range of practical interest, it is very robust to noise [61]; (ii) it pro-
vides unique channel identification in closed form under mild conditions [62];
(iii) it is a method that not only provides a blind channel estimator but also a
robust multiuser detector in the meantime [63]; (iv) it can be optimally com-
bined with training-based approaches (so-called semi-blind methods) [64]; (v)
it is amenable of a low-complexity and fast recursive implementation [65]. On
the other hand, the main drawbacks of the subspace-based algorithm are the
performance degradation when the number of active users is comparable to
the code length and the requirement for accurate rank estimation of the ACM
of the noise-free received signal. Under the assumption that the transmitted
symbols are improper and the noise is proper, the former shortcoming can be
overcame by resorting to a generalized subspace-based method, which allows
one to enlarge the dimension of the observation space. More precisely, a gen-
eralized subspace-based approach exploits the channel information contained
in bothRrr(t, τ) andRrr∗(t, τ), by jointly processingr(t) and its conjugate
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versionr∗(t). Originally, such an estimation approach was proposed in [37]–
[66] to improve channel identification in many application fields, including
multicarrier CDMA and single-carrier DS-CDMA systems. To face up to the
latter disadvantage, one can use conventional rank estimation techniques as the
Akaike information criterion [67] and the minimum description length method
[68], or, alternatively, a subspace tracking procedure with successive cancel-
lation techniques [69]. In this subsection we describe, with reference to the
L-MOE receiver, the multiuser CE procedure proposed in [61], whereby the
impulse response of the desired user is obtained fromRrr(t, τ) by processing
the received signalr(t). On the other hand, as regards the WL-MOE receiver,
the generalized subspace-based method of [66] is consider.

In the sequel we assume that the following conditions hold:
(c1) whenJ ≤ N (underloaded systems), the matrixΦ is full-column rank,
i.e., rank(Φ) = J . In section4.4.1we will show that, in the downlink case,
wherein all the user signals propagate through a common multipath channel,
the linear independence of the codesc1, c2, . . . , cJ is a necessary and suffi-
cient condition to ensure the rank condition(c1). It is noteworthy that, ifΦ
is full-column rank, the augmented matrixH is full-column rank, too, i.e.,
rank(H) = J . In other words, in underloaded environments, condition(c1)
additionally assures the full-column rank property ofH. However, the matrix
H can be full-column rank even whenN < J ≤ 2N (overloaded systems),
whereinΦ is inherently rank-deficient. Thus, in addition to condition(c1), we
assume hereinafter that:
(c2)whenN < J ≤ 2N , the matrixH is full-column rank, i.e., rank(H) = J .
With reference to the downlink scenario, fulfillment of condition(c2) is thor-
oughly discussed in Theorem4.1.

Under assumptions(a1) and(a2), the autocorrelation matrix of the obser-
vation vectorRrr assumes the form

Rrr = ΦΦH + σ2
v IN (4.29)

. The correlation matrix can also expressed in term of its eigenvector decom-
position being a unitarily diagonalizable matrix [56]; therefore there exists a
unitary matrixV such that

Rrr = VΥVH , (4.30)

whereΥ ∈ CN×N is a diagonal matrix of the eigenvalues{ςj}N
j=1 in a nonin-

creasing order ofRrr and the columns ofV ∈ CN×N are the corresponding
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eigenvectors. Moreover, we can recall that the matrixRrr is positive semidef-
inite, hermitian matrix, therefore [56] its eigenvalues{ςj}N

j=1 are all real and
non-negative. Recalling the eigenvalue definition,

Rrr aj = ςj aj (4.31)

and substituting (4.29) in (4.31), we obtain

(ΦΦH + σ2
v IN )aj = ςj aj (4.32)

. From (4.32) we conclude that

ςj = µj + σ2
v j ∈ {1, 2, . . . , N} (4.33)

where{µj} are the eigenvalues of the matrixΦΦH .
Nevertheless, by virtue of conditions(c1), the matrixΦΦH has onlyJ

nonzero eigenvaluesµ1 ≥ µ2 · · · ≥ µJ > 0, therefore

ςj =

{
µj + σ2

v ifj ∈ {1, 2, . . . , J}
σ2

v ifj ∈ {J + 1, J + 2, . . . , N} (4.34)

Thus the eigenvalues can be separated into two distinct groups: the signal
eigenvalues and the noise eigenvalues, respectively represent by the matrices

Υs
4
= diag[µ1, µ2 · · · , µJ ] ∈ RJ×J (4.35)

Υn
4
= diag[σv, σv · · · , σv] = σ2

vIN−J ∈ R(N−J)×(N−J). (4.36)

Accordingly, the eigenvectors can be separated into the signal and noise eigen-
vectors. In detail, denote the unit-norm eigenvectors associated with the
signal eigenvalues byu1,u2, . . . ,uJ and denote those corresponding to the
noise eigenvalues byuJ+1,uJ+2, . . . ,uN we can define the matrixesVs =
[u1,u2, . . . ,uJ ] ∈ CN×J andVn = [uJ+1,uJ+2, . . . ,uN ] ∈ CN×(N−J).
With these notations, the EVD in (4.30) can be expressed as

Rrr = VsΥsVH
s + VnΥnVH

n (4.37)

It easy to see thatR(Φ) = R(Vs), as a consequence the columns of the matrix
Φ and the signal eigenvectors span the same space so-calledsignal subspace.
Instead the noise eigenvectors (the columns ofVn) span the so-callednoise
subspacethat is the orthogonal complement of the signal subspace. If the noise
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subspace is the orthogonal complement of the signal subspace, the columns of
Φ are orthogonal to any vectors in the noise space, in fact from (4.32), recalling
(4.34), we obtain

ΦΦH uj = 0 if j ∈ {J + 1, J + 2, . . . , N}. (4.38)

NeverthelessΦΦH uj is a linear combination (with coefficients equal to
ΦH uj) of the columns of the matrixΦ that are linear independent because
Φ is full-column rank (assumption(c1)). Therefore any their linear combina-
tion is equal to zero if and only if the coefficients are equal to zero:

ΦH uj = uH
j Φ = 0 if j ∈ {J + 1, J + 2, . . . , N}. (4.39)

In this way we have proved that

Span[Φ] = Span[Vs] ⊥ Span[Vn].

The blind Subspace method exploits this property, derived from the special
structure ofRrr, to estimate the channel parameters [61]. The equation (4.39),
recalling (4.10) and (4.12), can also be expressed as

VH
n φj = VH

n Cj gj = 0N−J , ∀j ∈ {1, ...., J}. (4.40)

Assuming that the receiver has the only knowledge of the transmitted signature
cj , the matrixCj in (4.40) is known. Eq. (4.40) uniquely characterizes the
channel coefficients for each user iff the following condition is satisfied:(c4)
the null space ofVH

n Cj has dimension one or, equivalently,8 rank(VH
n Cj) =

Lj − 1. A discussion about condition(c4) is made in [61]. If condition (c4)
is satisfied, then an arbitrary unit-norm vectorg

′
j ∈ CLj satisfies (4.40) iff

g
′
j = ei ϑj gj , with ϑj ∈ [0, 2π) and∀j ∈ {1, 2, . . . , J}. It is noteworthy that

fulfillment of condition (c4) requires that the number of rows of the matrix
VH

n Cj ∈ C(N−J)×Lj must be greater than or equal to its number of columns,
i.e., N − J ≥ Lj ⇐⇒ J ≤ N − Lj , and, hence, from the point of view9

of the jth user, the maximum numberJmax,L = N − Lj of users that can
be supported by the system is smaller than the numberN of users when the

8The dimension of the null space ofVH
n Cj ∈ C(N−J)×Lj is equal toLj − rank(VH

n Cj).
9In order to meaningfully define the maximum number of users that can be supported by the

system, we could consider the worst case, i.e., setL the maximum number of users that can be

supported by the system is given byLmax
4
= max1≤j≤J Lj as the maximum channel length,

obtaining thusJ ≤ (N − Lmax).
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channel is assumed to be perfectly known (see subsection4.4). WhenRrr

(and henceVn) is estimated from a finite sample size, a channel estimateĝj

can be obtained by solving (4.40) in the least-squares sense:

ĝj = argmin
x∈CLj

‖V̂H

n Cj x‖2

= argmin
x∈CLj

(
xH CH

j V̂n V̂
H

n Cj x
)

, subject to‖x‖2 = 1 , (4.41)

where the matrix̂Vn ∈ CN×(N−J) is the sample estimate ofVn. The solution
[56] of (4.41) is the eigenvector associated with the smallest eigenvalue of the

matrixQ̂j,L
4
= CH

j V̂n V̂
H

n Cj ∈ CLj×Lj .
We can follow the same analysis also for the WL receiver. In this case

under assumptions(a1)and(a2), the matrixRzz assumes the form

Rzz = HHH + σ2
v I2N . (4.42)

Moreover, by virtue of conditions(c1) and (c2), the matrixHHH has only
J nonzero eigenvaluesλ1 ≥ λ2 · · · ≥ λJ > 0. Resorting to the eigenvalue
decomposition, the matrixRzz can be also expressed as

Rzz = UsΛsUH
s + UnΛnUH

n , (4.43)

whereUs ∈ C2N×J collects the eigenvectors associated with theJ largest
eigenvalues ofRzz, whose columns span thesignal subspace, i.e., the sub-

spaceR(H), Λs
4
= diag(λ1 + σ2

v , λ2 + σ2
v , . . . , λJ + σ2

v) ∈ RJ×J , Λn =
σ2

v I2N−J ∈ R2N−J×2N−J , and, finally,Un ∈ C2N×(2N−J) collects the
eigenvectors associated with the eigenvalueσ2

v , whose columns span thenoise
subspace, i.e., the subspaceR⊥(H) in C2N . Also in this case, blind subspace-
based CE can be accomplished by exploiting the orthogonality between the
signal spaceR(H) and the noise subspaceR⊥(H) ≡ R(Un), obtaining thus,
∀j ∈ {1, ...., J},

UH
n hj = 02N−J . (4.44)

As regardshj , we preliminarily observe that, according to (4.10) and (4.12),
thejth columnφj of the matrixΦ assumes the form

φj = αj Cj gj (4.45)
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and, consequently, one has

hj =
[
φj

φ∗j

]
= αj

[
Cj ON×Lj

ON×Lj C∗
j

]

︸ ︷︷ ︸
Cj∈C2 N×2 Lj

[
gj

g∗j

]

= αj

√
2︸ ︷︷ ︸

eαj

Cj
1√
2

[
ILj i ILj

ILj −i ILj

]

︸ ︷︷ ︸
Tj∈C2Lj×2Lj

[
gj,R

gj,I

]

︸ ︷︷ ︸
%j ∈R2Lj

= α̃j Cj Tj %j , (4.46)

whereTj is a unitary matrix, i.e.,Tj TH
j = TH

j Tj = I2 Lj . Substituting
(4.46) in (4.44), we obtain:

UH
n hj = UH

n Cj Tj %j = 02N−J , ∀j ∈ {1, ...., J}. (4.47)

The unknown vector%j can be obtained as the solution of the linear system
(4.47), provided that this systemuniquelycharacterizes the channel coeffi-
cients for each user, i.e., an arbitrary unit-norm vectorg

′
j ∈ CLj (with cor-

responding%
′
j ∈ R2Lj ), satisfies (4.47) if and only if (iff) g

′
j = ei ψj gj , with

ψj ∈ [0, 2π) and∀j ∈ {1, 2, . . . , J}. It is clear that (4.47) has a unique so-
lution (up to a scaling factor) iff the following condition is satisfied:(c3) the
null space ofUH

n Cj Tj has dimension one or, equivalently,10 rank(UH
n Cj) =

2Lj − 1. A reformulation of condition(c3) is given in [66]. It can be read-
ily proven that, under(c3), the following two statements are equivalent: (i)
the unit-norm vectorg

′
j ∈ CLj is a solution of (4.47); (ii) g

′
j = ±gj , i.e.,

ψj = nπ, with n ∈ Z. In other words, differently from conventional subspace-
based multiuser CE [61], where the estimated channel might differ from the
true one by an unknownrotationei ψj , in generalized subspace-based CE based
on (4.47) the residual channel ambiguity is limited to a possiblesign inversion.
It is important to observe that condition(c3)necessarily imposes that the num-
ber of rows of the matrixUH

n Cj Tj ∈ C(2N−J)×2Lj be greater than or equal
to its number of columns, i.e.,2N −J ≥ 2Lj ⇐⇒ J ≤ 2(N −Lj). Thereby,
it follows that, from the point of view11 of thejth user, the maximum number

10The dimension of the null space ofUH
n Cj Tj ∈ C(2N−J)×2Lj is equal to2 Lj −

rank(UH
n Cj Tj). Moreover, sinceTj is unitary and, hence, nonsingular, it results that

rank(UH
n Cj Tj) = rank(UH

n Cj).
11Following footnote9 the maximum number of users that can be supported by the system is

given byJ ≤ 2(N − Lmax).
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Jmax,WL = 2(N − Lj) of users supported by the system is smaller than the
maximum number2N of users when the channel is assumed to be perfectly
known (see subsection4.4). In the following, we assume that condition(c3)
is satisfied. In practice, however, eq. (4.47) cannot be satisfied exactly when
Rzz (and henceUn) is estimated from a finite sample size. In this case, a

channel estimatê%j
4
= [ĝT

j,R, (ĝT
j,I]

T can still be obtained by solving (4.47) in
the least-squares sense, that is, as

%̂j = argmin
x∈R2Lj

‖ÛH

n Cj Tj x‖2

= argmin
x∈R2Lj

(
xH TH

j CH
j Ûn Û

H

n Cj Tj x
)

, subject to‖x‖2 = 1,

(4.48)

whose solution [56] is given by the eigenvector associated with the small-

est eigenvalue of the matrixTH
j Q̂j,WL Tj ∈ C2Lj×2Lj , with Q̂j,WL

4
=

CH
j Ûn Û

H

n Cj ∈ C2Lj×2Lj .

4.4 Ideal Performance of L-MOE and WL-MOE re-
ceivers

In this section, following the analysis that we have developed in [12], we com-
pare the SINR performances of theidealWL-MOE and the L-MOE receivers,
i.e., those receivers whose synthesis is based on perfect knowledge of both the
SOS of the received signal and the channel impulse response. Preliminarily, we
observe that, recently, with reference to DS-CDMA systems employing BPSK
modulation, a few contributions addressing the theoretical performance anal-
ysis of WL-MUD techniques appeared in the literature. In [54], the asymp-
totic (in the number of users) performance analysis of the WL decorrelating
and WL-MMSE receivers was carried out, by extending to the WL framework
classical analysis tools already developed by Tse and Hanly [70] for L-MUD
techniques (a similar study was proposed in [71]). A non-asymptotic perfor-
mance analysis was instead considered in [72], which provides an algebraic
proof that WL-MUD receivers outperform L-MUD ones, and explicitly as-
sesses the expected performance gain in the two-users case. The common
conclusion of these studies (see also [73]) is that the performance advantage
of WL-MUD receivers over L-MUD ones is twofold:the input SNR is dou-
bled and the number of effective interferers is halved.As a consequence, for



4.4. IDEAL L-MOE AND WL-MOE RECEIVERS 63

a fixed processing gainN , the number of users that can be accommodated by
a DS-CDMA system employing WL-MUD is doubled [54, 71, 72] compared
to L-MUD. In other words, unlike L-MUD, WL-MUD can be successfully
employed not only when the number of usersJ is smaller than or equal to
N (underloaded system), but also whenN < J ≤ 2N (overloaded system).
However, none of the aforementioned papers on WL-MUD carried out a de-
tailed study of the conditions on channel and codes that assure perfect MAI
suppression in absence of noise. Thus, in this subsection, following our paper
[12], we provide conditions on the spreading codes, which guarantee complete
MAI rejection for WL-MOE in both underloaded and overloaded downlink
configurations. We will show that in the limiting case of vanishingly small
noise, i.e., asσ2

v → 0, the performance comparison between the L-MOE and
WL-MOE receivers heavily depends on the rank properties ofΦ andH, re-
spectively.

In order to carry out a meaningful performance comparison between lin-
ear and WL receivers, we evaluate for both receivers the SINRafter the Re[·]
block, given by (4.24). Since the WL-MOE receiver maximizes such a SINR
(see Lemma 1), one simply has:

SINRj,WL-MOE
4
= SINR(f j,WL-MOE) = hH

j R−1
qjqj

hj . (4.49)

Instead, observe that evaluating the SINR given by (4.24) for the L-MOE re-
ceiver leads to a result generally different from (4.18). By observing that the
L-MOE receiver can be viewed as a WL receiver with augmented weight vec-

tor f j,L-MOE
4
= [wT

j,L-MOE,0T
N ]T , recalling thatwH

j,L-MOE φj = 1, and applying
the straightforward identity Re2[z] = 1

2{|z|2 + Re[z 2]}, ∀z ∈ C, the SINR
(4.24) for the L-MOE receiver can be written as

SINRj,L-MOE
4
= SINR(f j,L-MOE) =

1
E{Re2[wH

j,L-MOEpj(k)]}

=
2

wH
j,L-MOERpjpj

wj,L-MOE + Re[wH
j,L-MOERpjp

∗
j
w∗

j,L-MOE]
. (4.50)

On one hand, since the WL-MOE is a maximum-SINR receiver, it results that
SINRj,L-MOE ≤ SINRj,WL-MOE. On the other hand, since Re2[z] ≤ |z|2, ∀z ∈
C, accounting for (4.18), one has SINRj,L-MOE ≥ SINRj,max. Overall, we
maintain that

SINRj,WL-MOE ≥ SINRj,L-MOE ≥ SINRj,max . (4.51)
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Although the first inequality in (4.51) concisely states that the performance
of the WL-MOE receiver is not worse than that of its linear counterpart, it
does not allow us to quantify the relative performance gain. Indeed, no clear
insight on the performance comparison between the WL-MOE and L-MOE
receivers can be drawn out from the SINR formulas (4.49) and (4.50). To
overcome this conceptual difficulty, we carry out in the next subsection the
performance comparison in the high-SNR regime, by deriving the analytical
expressions of SINRj,WL-MOE and SINRj,L-MOE as the noise varianceσ2

v ap-
proaches zero. It should be observed that, more generally, the results reported
in Subsection4.4.1 turn out to be useful in all those situations wherein the
DS-CDMA signal dominates the background noise, which is a common oc-
currence in many practical environments.

4.4.1 Analysis in the High-SNR Regime

The discussion carried out in this subsection is mainly based on some mathe-
matical results whose proofs are reported in AppendixB.2.

As we have recalled in the note1 in the section5.2 the code vectorcj ac-
counts also for possible precoding phases whose role in downlink is discussed
in this section. Therefore we modify the system model (4.10) introducing these
precoding phases:

r(k) =
J∑

j=1

αj ei θjψj bj(k) +v(k) = ΨAΘb(k) +v(k) = Φb(k) +v(k) ,

(4.52)
where, with reference to thejth user,θj ∈ [0, 2π) is a precoding phase which
is deliberately introduced at the transmitter and whose role will be clear in the

sequel. Moreover, in (4.52), we have definedΘ
4
= diag(ei θ1 , ei θ2 , . . . , ei θJ ) ∈

CJ×J , and consequently we have redefine withΦ the matrixΦ
4
= ΨAΘ ∈

CN×J . The other parameters in (4.52) are the same of those in (4.10).
First of all, let us start from linear processing. In the AppendixB.2 it is

shown that, in the high-SNR regime, the L-MOE receiver is able to achieve
perfect MAI suppression foreachactive user, that is,limσ2

v→0 SINRj,L-MOE =
limσ2

v→0 SINRj,max = +∞, ∀j ∈ {1, 2, . . . , J}, if and only if (iff) the matrix
Φ is full-column rank, i.e., rank(Φ) = J . Moreover, in such a case, it results
that

lim
σ2

v→0

SINRj,L-MOE

SINRj,max
= 2 , ∀j ∈ {1, 2, . . . , J} , (4.53)
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which shows that, as intuitively expected, since the Re[·] block in Fig.4.1dis-
cards one-half of the noise-plus-MAI power inyj(k), SINRj,L-MOE is asymp-
totically greater thanSINRj,max of exactly3 dB. Note that this simple result
holds only when rank(Φ) = J . If the matrixΦ is not full-column rank, the
L-MOE receiver is unable to perfectly suppress the MAI, even in the absence
of noise; in this case, bothSINRj,max and SINRj,L-MOE assume finite values,
which depend onφj and the eigenstructure of the MAI autocorrelation matrix

Φj ΦH
j . Therefore, the assumption rank(Φ) = J is crucial and deserves a

brief comment. By virtue of nonsingularity of the diagonal matricesA andΘ,
it follows that rank(Φ) = rank(ΨAΘ) = rank(Ψ). Henceforth, the matrix
Φ is full-column rank iff the signaturesψ1, ψ2, . . . , ψJ are linearly indepen-
dent, a condition which can be fulfilled only if the number of usersJ is smaller
than or equal to the processing gainN (underloaded systems). It is notewor-
thy that the linear independence of the signaturesψ1,ψ2, . . . ,ψJ depends on
both the spreading codes and the channel impulse responses of all the active
users. Thus, in general, it is difficult to give easily interpretable conditions
assuring thatΨ is full-column rank. A substantial simplification occurs in the
downlink, wherein all the user signals propagate through a common multipath
channel, i.e.,gj(n) = g(n), with orderLj = Lg, for each user. In this case,
the signatureψj given by (4.11) becomesψj = Gcj , where the common
Toeplitz channel matrixG = Gj turns out to be nonsingular under the mild
assumption thatg(0) 6= 0, which is assumed to hold hereinafter. Accounting
for this model, the matrixΨ becomes

Ψ = G [c1, c2, . . . , cJ ]︸ ︷︷ ︸
C∈CN×J

= GC , (4.54)

which, by virtue of nonsingularity ofG, implies that rank(Φ) = rank(Ψ) =
rank(C). Consequently, in the downlink scenario, the linear independence of
the spreading vectorsc1, c2, . . . , cJ is a necessary and sufficient condition
for assuring the full-column rank property ofΦ and, hence, allowing the L-
MOE receiver to completely reject the MAI in the high-SNR region. Let us
focus attention on the performance comparison between the L-MOE and WL-
MOE receivers. As a first result, it is shown in AppendixB.2 that, if Φ (or,
equivalently,Ψ) is full-column rank, then

lim
σ2

v→0

SINRj,WL-MOE

SINRj,L-MOE
=
‖φj‖2 − Re[φH

j Φj ]{Re[ΦH
j Φj ]}−1Re[ΦH

j φj ]

‖φj‖2 − φH
j Φj(Φ

H
j Φj)−1ΦH

j φj

,

(4.55)
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which, in addition to (4.51), evidences that, sincelimσ2
v→0 SINRj,L-MOE =

+∞ when rank(Φ) = J , the WL-MOE receiver also suppresses the MAI
exactly in the high-SNR regime, i.e.,limσ2

v→0 SINRj,WL-MOE = +∞, ∀j ∈
{1, 2, . . . , J}. Remarkably, it is apparent from (4.55) that, if

Re[φH
j Φj ] {Re[ΦH

j Φj ]}−1 Re[ΦH
j φj ] = φH

j Φj (ΦH
j Φj)−1 ΦH

j φj , (4.56)

we have:

lim
σ2

v→0

SINRj,WL-MOE

SINRj,L-MOE
= 1 , (4.57)

which renders the L-MOE and WL-MOE receivers perfectly equivalent in
terms of SINR, asσ2

v → 0. In other words, ifΦ is full-column rank (as
may be the case in underloaded systems) and condition (4.56) is fulfilled, WL
processing does not improve upon conventional linear processing in the high-
SNR region. It is interesting to observe that, for instance, condition (4.56) is
trivially satisfied if φj andΦj are real (i.e., matrixΦ is real), or when the
user signatures are orthogonal12, i.e.,ψH

j1ψj2 = 0, ∀j1 6= j2 ∈ {1, 2, . . . , J},
independently of matricesA andΘ [see (4.52)]. To gain further insight about
(4.55), we consider the two-users case (i.e.,J = 2), and, without loss of gen-
erality, we assume that the desired user is the first one (i.e.,j = 1). In this
case, eq. (4.55) simplifies to

lim
σ2

v→0

SINR1,WL-MOE

SINR1,L-MOE
=

1− |ρ|2 cos2(∆θ − ∠ρ)
1− |ρ|2 , (4.58)

which suggests that the performance advantage of the WL-MOE receiver over
the L-MOE one depends on the magnitude|ρ| and phase∠ρ of the correlation

coefficientρ
4
= ψH

1 ψ2 between the two signaturesψ1 andψ2, as well as on

the phase difference∆θ
4
= θ1 − θ2. This is in accordance with the results

derived in [72] in terms of near-far resistance. Specifically, for a given value
of 0 < |ρ| < 1, the largest performance gap between WL-MOE and L-MOE
receivers is obtained when∆θ−∠ρ = π/2+hπ, with h ∈ Z, whereas the two
receivers achieve the same performance when∆θ −∠ρ = hπ, independently
of the value of|ρ|. On the other hand, for a given value of∆θ − ∠ρ 6= hπ,
the performance gain of the WL-MOE receiver over the L-MOE one increases

12As a matter of fact, if the user signatures are orthogonal, under assumptions(a1) and(a2),
the single-user detector, which simply matches the received vectorr(k) to φj , is indeed the
optimal (in the minimum-error-probability sense) receiver.
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without bounds, as the magnitude ofρ approaches unity, i.e., the user signa-
tures are maximally correlated.

As a second result, it is evidenced in AppendixB.2 that, contrary to the
L-MOE receiver, the WL-MOE one is able to ensure perfect MAI suppres-
sion in the high-SNR regime, even when the number of usersJ exceeds the
processing gainN (overloaded systems). Indeed, it is shown that, more gener-
ally, limσ2

v→0 SINRj,WL-MOE = +∞, ∀j ∈ {1, 2, . . . , J}, iff H is full-column
rank. If Φ is full-column rank (a condition that can hold only when the sys-
tem is underloaded), thenH is full-column rank, too. However, the matrixH
can be full-column rank even whenN < J ≤ 2N , whereinΦ is structurally
rank-deficient; in this overloaded environment, it results that

lim
σ2

v→0

SINRj,WL-MOE

SINRj,L-MOE
= +∞ , ∀j ∈ {1, 2, . . . , J} . (4.59)

In other words, provided that rank(H) = J , the performance gap between
the WL-MOE and L-MOE receivers becomes arbitrarily large for vanishingly
small noise, whenN < J ≤ 2N . This fact strongly motivates us to provide
conditions assuring thatH be full-column rank in overloaded scenarios. To
this aim, we provide the following Theorem, by focusing attention directly on
the downlink scenario in an effort to give simple and insightful conditions.

Theorem 4.1 WhenN < J ≤ 2N , the code matrix can be decomposed

as C = Cleft [IN ,Π], whereCleft
4
= [c1, c2, . . . , cN ] ∈ CN×N is non-

singular andΠ ∈ CN×(J−N) is a tall matrix. In this overloaded sce-
nario, under the assumption thatΨ exhibits the form given by(4.54), the
matrix H is full-column rank iffΠ∗ − (Θ2

1)
∗ΠΘ2

2 ∈ CN×(J−N) is full-

column rank, whereΘ1
4
= diag(ei θ1 , ei θ2 , . . . , ei θN ) ∈ CN×N and Θ2

4
=

diag(ei θN+1 , ei θN+2 , . . . , ei θJ ) ∈ C(J−N)×(J−N).

Proof. See AppendixB.3.
Theorem4.1 deserves some interesting comments, aimed at clarifying in

particular the role of the precoding phases in (4.52), which are at the de-
signer’s disposal. First of all, it is apparent that the full-column rank prop-
erty of H does not depend on the channel impulse response13, but depends
on both the spreading codes of all the active users and their precoding phases

13In the uplink scenario, the full-column rank property ofH and, thus, the performance of the
WL-MOE receiver, depends not only on the precoding phases, but also on the channel impulse
responses of all the active users.
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θ1, θ2, . . . , θJ . To this respect, it is interesting to investigate how such phases
influence the full-column rank property ofH in overloaded systems, focusing
attention to the case wherein Walsh-Hadamard (WH) spreading codes are em-
ployed. To do this, without loss of generality, assume thatcN+j = cj , for
j ∈ {1, 2, . . . , J − N}, and letCleft denote the common Hadamard matrix
of orderN . In this case, it is easily verified thatΠ = [e1, e2, . . . , eJ−N ],
with ej denoting thejth column ofIN . Thus, if WH spreading vectors are
used, the matrixΠ is real-valued (i.e.,Π = Π∗) and, moreover, one has

(Θ2
1)
∗Π = Π (Θ2

1,red)
∗, whereΘ1,red

4
= diag(ei θ1 , ei θ2 , . . . , ei θJ−N ) ∈

C(J−N)×(J−N). In light of these observations, by additionally remember-
ing thatΠ is full-column rank, it follows that rank[Π∗ − (Θ2

1)
∗ΠΘ2

2] =
rank{Π [IJ−N − (Θ2

1,red)
∗Θ2

2]} = rank[IJ−N − (Θ2
1,red)

∗Θ2
2]. Since the ma-

trix IJ−N − (Θ2
1,red)

∗Θ2
2 is diagonal with diagonal entries1 − ei 2 (θN+j−θj),

∀j ∈ {1, 2, . . . , J −N}, by virtue of Theorem4.1, it can be stated that, when
N < J ≤ 2N , the augmented matrixH is full-column rank iff

θN+j − θj 6= hπ, ∀j ∈ {1, 2, . . . , J −N} andh ∈ Z . (4.60)

As an immediate implication of (4.60), it is worth pointing out that, if no pre-
coding is performed at the transmitter, i.e.,θ1 = θ2 = · · · = θJ , and com-
mon WH spreading codes are employed, the WL-MOE receiver is unable to
achieve perfect MAI suppression in overloaded systems, even in the absence
of noise. Henceforth, in order to allow WL-MUD to successfully work in
an overloaded downlink, while employing WH spreading sequences, incorpo-
ration of precoding phases is crucial. This is the reason which motivates to
introduce the phasesθ1, θ2, . . . , θJ in (4.10). It is worthwhile to observe that
condition (4.60) does not uniquely specify the precoding phases and, thus, dif-
ferent choices can be pursued. To corroborate the previous considerations, let
us provide a numerical example.

Example 4.1 : Consider a DS-CDMA downlink withα1 = α2 = · · · =
αJ = 1 and processing gainN = 16, and without loss of generality, assume
that the desired user is the first one (i.e.,j = 1). The SNR, which is defined as
1/σ2

v , is set to15 dB, and the signatures are generated according to (4.54). The
system uses unit-norm WH vector codes and operates over a channel of order
Lg = 5, whose tapsg(0), g(1), . . . , g(5) are modeled as i.i.d. complex proper
zero-mean Gaussian random variables, normalized so that‖ψj‖2 = 1, ∀j ∈
{1, 2, . . . , J}. Fig. 4.2 reports the ideal SINR performance of the WL-MOE
receiver as a function of the number of usersJ , ranging from an underloaded
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Figure 4.2: Average SINR values of the WL-MOE receiver versusJ
for different precoding techniques (SNR= 15 dB).

(1 < J ≤ N ) system to an overloaded (N < J ≤ 2N ) one. Specifically,
we report SINR1,WL-MOE [see (4.49)] in two different situations: in the former
one, there is no precoding at the transmitter, i.e.,θ1 = θ2 = · · · = θJ = 0
(referred to as “without precoding”); in the latter one, we use a precoding
strategy fulfilling (4.60), by settingθ1 = θ2 = · · · = θN = 0 andθN+1 =
θN+2 = · · · = θ2N = π/4 (referred to as “with precoding”). The results of
Fig. 4.2are obtained by carrying out104 independent Monte Carlo trials, with
each run using only a different channel realization. It can be observed that, if
WH spreading sequences are employed and condition (4.60) is not accounted
for, the WL-MOE receiver does not work at all, when the system becomes
overloaded. In contrast, the proposed precoding strategy allows the WL-MOE
receiver to achieve satisfactory performances even whenN < J ≤ 2N .
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4.5 Finite-sample theoretical performance comparison
between L-MOE and WL-MOE receivers

In this section we provide the finite-sample theoretical performance analysis of
the L-MOE and WL-MOE receivers and in the known-channel case (see sub-
section4.5.1) and in unknown-channel case (see subsection4.5.3), following
our papers [12, 13] and [14] respectively.

As we have note in the subsection4.3.1, the ideal implementation of the
L-MOE and WL-MOE receivers requires perfect knowledge of two quantities:
theautocorrelation matrix(ACM) of the received signal, and thereceived sig-
natureof each user to be demodulated. These two quantities can be estimated
in practice from a finite number of samples at the receiver. In partuculary, due
to the effects of the unknown channel response, the received signature is a dis-
torted version of the transmitted one, making channel estimation (CE) a nec-
essary step to implement both the L- and WL-MOE receivers. A theoretical
performance analysis of the data-aided WL-MMSE and WL-MOE receivers
was provided in [74], when the receivers are adaptively implemented by means
of the least-mean square (LMS) algorithm, by evaluating the output signal-to-
interference-plus-noise ratio (SINR). However, the SINR analysis carried out
in [74] considers steady-state performances, i.e., when the sample size is in-
finite, and, thus, does not allow to evaluate the performance of the receivers
as a function of the number of samples. This issue is important from a prac-
tical point of view because, especially when short sample-sizes are employed,
the data-estimated versions of the WL-MUD receivers exhibit a severe perfor-
mance degradation with respect to their ideal counterparts, reducing thus the
expected performance gain over L-MUD receivers.

To gain more insight about these points, by applying a first-order pertur-
bative approach at the first, we evaluate in the subsection4.5.1 the perfor-
mance degradation due to finite-sample ACM estimation in the known-channel
case. In particular this analysis is carried out with reference two different data-
estimated implementations of the L-MOE and WL-MOE receivers: the SMI
(sample matrix inversion) receiver (and L-SMI and WL-SMI), which employs
a sample estimate of the data autocorrelation matrix, and the SUB (subspace)
receiver (and L-SUB and WL-SUB), which exploits the properties of the eigen-
value decomposition (EVD) of the data autocorrelation matrix to reduce the ef-
fects of estimation errors. As we will see in the subsection4.5.1we will derive
easily interpretable formulas, which allow one to obtain clear insights about
the effects of different parameters on performances. Moreover, the results of
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the analysis will show that the WL-MOE receiver is more sensitive than its
linear counterpart to finite sample-size effects associated to ACM estimation,
and it generally requires subspace-based implementation to achieve in practice
the performance gains predicted by theory.

Successively, in the subsection4.5.3, the first-order perturbation analy-
sis developed in subsection4.5.1is extended to incorporate the effects due to
subspace-based blind CE (see subsection4.3.2) on the synthesis of the L- and
WL-MOE receivers. It is worthwhile to note that, when the desired channel
vector has been estimated through the subspace method and, hence, the sub-
space decomposition of the ACM is already available, it is preferable from a
computational viewpoint to implement the L- and WL-SUB receivers rather
than their SMI counterparts, since they do not require direct ACM inversion.
Notwithstanding this, we have chosen to carry out also the performance analy-
sis of the SMI versions of the receivers with CE since, in this way, an interest-
ing comparison with the SUB versions of the receivers, as well as with the SMI
versions when the channel is assumed known, can be established. In particu-
lar, we will derive easily interpretable formulas, supported by computer sim-
ulation. Moreover, in the subsection (4.5.3) we will show that with reference
to subspace-based receivers implementations, for moderate-to-high values of
the SNR, errors in estimating the L-SUB-CE and WL-SUB-CE receivers are
essentially due to ACM estimation. This is not true for the L-SMI-CE and WL-
SMI-CE receivers, for which CE errors undesirably combine with ACM errors
(signature mismatch phenomenon). Therefore, we will conclude that when
considering finite sample-size implementation, the blind WL-MOE receiver
is able to assure a significant performance gain (for low-to-moderate values of
the SNR) with respect to its linear counterpart only when it is built by resorting
to the more sophisticated subspace-based implementation. In this case, for a
given channel length, it allows one to work with an increased number of users
J , which makes it a viable choice in heavily-congested DS-CDMA networks.

4.5.1 Finite-sample performances of the L-MOE and WL-MOE
receivers with known channel

WL-MOE performance analysis

Let us start from the WL-MOE receiver. Preliminarily, we observe that an
equivalent form of the WL-MOE receiver (4.27) can be obtained by exploiting
the eigenvalue decomposition (EVD) ofRzz (4.43). To this end, it is required
that the augmented matrixH is full-column rank (an issue that has been dis-
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cussed in subsection4.4.1for downlink scenario), which necessarily requires
that

J ≤ 2N. (4.61)

As a matter of fact, this assumption (4.61) is not required for the WL-SMI
receiver and it is necessary only for the WL-SUB one. However, since the
WL-MOE receiver is not able to ensure perfect MAI suppression, for each user,
whenH is rank-deficient (see subsection4.4.1) , we maintain the assumption
rank(H) = J for both the two data-estimated WL receivers. By substituting
the EVD of Rzz in (4.27) and exploiting the orthogonality between signal
and noise subspaces, one obtains thesubspace-based formof the WL-MOE
receiver as follows

f j,WL-MOE = (hH
j UsΛ−1

s UH
s hj)−1UsΛ−1

s UH
s hj , for J ≤ 2N. (4.62)

Implementation of the WL-MOE receiver defined by (4.27) or (4.62) requires
estimation from the received data ofRzz in (4.27) or its EVD in (4.62). Under
mild conditions, a consistent estimateR̂zz of Rzz is the sample ACM obtained
as

R̂zz =
1
K

K∑

k=1

z(k) zH(k) , (4.63)

whereK denotes the estimation sample size. Applying the EVD toR̂zz, one
obtains the decomposition

R̂zz = ÛsΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n , (4.64)

where the matriceŝUs ∈ C2N×J , Ûn ∈ C2N×(2N−J), Λ̂s ∈ RJ×J , and
Λ̂n ∈ R2N×2N are estimates of the matrices in (4.43) Us, Un, Λs, andΛn =
σ2

v I2N , respectively. By substituting in (4.27) and (4.62), the sample ACM
(4.63) and its EVD (4.64) respectively, the WL-SMI and WL-SUB receivers
are given by

f j,WL-SMI
4
= (hH

j R̂
−1

zz hj)−1 R̂
−1

zz hj . (4.65)

f j,WL-SUB
4
= (hH

j Ûs Λ̂
−1

s Û
H

s hj)−1 Ûs Λ̂
−1

s Û
H

s hj . (4.66)

It is worth noting that the weight vectorf j,WL-SUB is not equal tof j,WL-SMI ,

sinceÛ
H

n hj 6= 02N−J due to the finite-sample-size effects. This implies that
the two receivers WL-SMI and WL-SUB might exhibit different SINR perfor-
mances.
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To carry out the performance analysis for WL-SMI and WL-SUB in an uni-
fied framework, let us denote witĥf j any data-estimated WL-MOE receiver,
i.e, f̂ j = f j,WL-SMI or f̂ j = f j,WL-SUB, and setf j = f j,WL-MOE for simplicity,
wheref j,WL-MOE is given by (4.27) or (4.62). Adopting a perturbation perspec-
tive, the vector̂f j can be expressed as

f̂ j = f j + δf j , (4.67)

whereδf j is asmall(i.e.,‖δf j‖ ¿ 1) zero-mean perturbation term. Since any
data-estimated version of the WL-MOE receiver must satisfy the constraint

f̂
H

j hj = 1, it results thatδfH
j hj = 0, thus the SINR (4.24) for the data-

estimated receivers can be written as

SINR(f̂ j) =
1

Ebf j ,qj

{
Re2 [̂f

H

j qj(k)]
} , (4.68)

where the symbol Ebf j ,qj
[ · ] denotesjoint average w.r.t tôf j andqj(k) of the

quantity in brackets. A simplifying and reasonable assumption [75] is that f̂ j

is independent fromqj(k). In this case, by accounting for the CS property of

f̂ j , substituting (4.67) into (4.68), performing the average w.r.t toqj(k), and
recalling that, due to assumptions(a1)and(a2), the vectorqj(k) is zero-mean,
one has:

SINR(f̂ j) =
1

fH
j Rqjqj

f j + Eδf j [δf
H
j Rqjqj

δf j ]
, (4.69)

where only the average w.r.t toδf j must be evaluated. To perform this calcu-
lation, we need explicit expressions for the perturbationδf j of the WL-SMI
and WL-SUB receivers, which are provided by the following Lemma.

Lemma 4.2 Let denote with≈ first-order equality14, assume thatH is full-
column rank and let̂Rzz be estimated by(4.63). Thefirst-orderperturbation
term of the WL-SMI and WL-SUB receivers can be expressed as

δf j ≈ −Γj,WL r̂qjbj , (4.70)

where r̂qjbj

4
= 1

K

∑K−1
k=0 qj(k) bj(k) is the sample estimate of the cross-

correlation between the disturbance vectorqj(k) and the desired symbol

14 First-order equality means that, as the sample sizeK approaches infinity, we neglect all
the summands that tend to zero faster than the norm of the corresponding perturbation term.
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bj(k), and

Γj,WL =

{
Pj,WL R−1

qjqj
(WL-SMI)

Pj,WL R−1
qjqj

− γj,WL Un UH
n (WL-SUB)

(4.71)

with Pj,WL
4
= I2N − (hH

j R−1
qjqj

hj)−1 R−1
qjqj

hj hH
j ∈ CN×N de-

noting an oblique projection matrix [75], and γj,WL
4
= σ−2

v +

(hH
j R−1

zz hj)−1hH
j Us Ω−1

WLUH
s R−1

zz hj , whereΩWL
4
= Λs − σ2

v IJ ∈ RJ×J .

Proof. See AppendixB.4.
It should be observed that Lemma4.2provides a compact characterization of
the perturbation terms, obtained under the simplifying assumption [75] that the
predominant error in estimatingRzz is due tôrqjbj (see AppendixB.4 for de-
tails). This approximation will allows us to obtain simple yet accurate results,
which will be validated in subsection4.5.2. Accounting for Lemma4.2, the
average in (4.69) can be expressed as (we drop the subscriptδf j in Eδf j

[·] for
notational simplicity)

E[δfH
j Rqjqj

δf j ] = E[r̂H
qjbj

ΓH
j,WL Rqjqj

Γj,WL r̂qjbj
]

= trace{ΓH
j,WL Rqjqj

Γj,WL E[r̂qjbj r̂H
qjbj

]}, (4.72)

where, by accounting for assumptions(a1)and(a2), one has:

E[r̂qjbj
r̂H
qjbj

] =
1

K2

K∑

k,h=1

E[qj(k) bj(k) bj(h)qH
j (h)]

=
1

K2

K∑

k,h=1

E[qj(k)qH
j (h)] E[bj(k) bj(h)]

=
1

K2

K∑

k,h=1

E[qj(k)qH
j (h)] δk−h (4.73)

=
1

K2

K∑

k=1

E[qj(k)qH(k)] =
1
K

Rqjqj
. (4.74)

By substituting (4.74) in (4.125), the result back in (4.69), and recalling that
fH
j Rqjqj

f j = SINR−1
j,WL-MOE, where SINRj,WL-MOE is given by (4.49), we get
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SINR(f̂ j) =
SINRj,WL-MOE

1 +
trace(ΓH

j,WL Rqjqj Γj,WL Rqjqj )

K SINRj,WL-MOE

. (4.75)

The final result is obtained by evaluating the trace(·) term in (4.75), on the
basis of theΓj,WL expressions given in Lemma4.2. To do this, it is convenient
to consider the SMI and SUB cases separately. With reference to the WL-
SMI receiver, sinceΓj,WL = Pj,WL R−1

qjqj
, by using the properties of the trace

operator, after some algebraic manipulations, one obtains:

trace(ΓH
j,WLRqjqj

Γj,WL Rqjqj
) =

trace(Pj,WL PH
j,WL)

K
=

2N − 1
K

, (4.76)

which can be substituted in (4.75), thus leading to

SINRj,WL-SMI
4
= SINR(f j,WL-SMI) =

SINRj,WL-MOE

1 + 2 N−1
K SINRj,WL-MOE

. (4.77)

As regards the WL-SUB receiver, sinceΓj,WL = Pj,WL R−1
qjqj

−
γj,WL Un UH

n , by using again the properties of the trace operator and observ-
ing thatUH

n hj = 02N−J , after some algebra, one has:

trace(ΓH
j,WLRqjqj

Γj,WL Rqjqj
)

= 2N − 1− (γ∗j,WL σ2
v + γj,WL σ2

v − |γj,WL σ2
v |2)(2N − J)

= (J − 1) + (2N − J) |1− γj,WL σ2
v |2 . (4.78)

After substituting (4.78) into (4.75), one gets:

SINRj,WL-SUB
4
= SINR(f j,WL-SUB)

=
SINRj,WL-MOE

1 + (J−1)+(2 N−J) |1−γj,WL σ2
v |2

K SINRj,WL-MOE

. (4.79)

The expression (4.79) for the WL-SUB receiver can be further simplified by
observing that, forσ2

v → 0, one hasγj,WL σ2
v → 1, hence the trace in (4.78)

reduces toJ − 1. By accounting for this observation, for moderate-to-high
values of the SNR, eq. (4.79) can be approximatively written as

SINRj,WL-SUB =
SINRj,WL-MOE

1 + J−1
K SINRj,WL-MOE

. (4.80)
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It is worth noting that, despite of the apparent similarity between (4.77)–(4.80)
and the SINR formulas reported in [74, eqs. (14) and (25)], our results are
not directly comparable with those of [74]. Indeed, the results of [74] re-
port the SINR performances of the LMS-based adaptive implementation of the
WL-MMSE and WL-MOE receivers only forK → +∞ (steady-state per-
formances); in this latter case the performance penalty paid by the WL-MUD
receivers with respect to their ideal counterparts is exclusively due to gradient-
noise effects.

L-MOE performance analysis

The finite-sample performance analysis of the L-MOE receivers is now in or-
der. Similarly to the WL-MOE receiver, under condition(c1), the L-MOE one
(4.16) can be equivalently represented in subspace-based form by exploiting
the eigenvalue decomposition (EVD) ofRrr (4.37). To this end, it is required
that the matrixΦ is full-column rank (an issue that has been discussed in sub-
section4.4.1for downlink scenario), which necessarily requires that15

J ≤ N. (4.81)

By substituting the EVD ofRrr in (4.16) and exploiting the orthogonality
between signal and noise subspaces, one obtains thesubspace-based formof
the L-MOE receiver as follows

wj,L-SUB
4
= (φH

j Vs Υ−1
s VH

s φj)
−1 Vs Υ−1

s VH
s φj . (4.82)

As in the WL case, implementation of the L-MOE receiver defined by (4.16) or
(4.82) requires estimation from the received data ofRrr in (4.16) or its EVD in
(4.82). Under mild conditions, a consistent estimateR̂rr of Rrr is the sample
ACM obtained as

R̂rr =
1
K

K∑

k=1

r(k) rH(k) . (4.83)

whereK denotes the estimation sample size. Applying the EVD toR̂rr, one
obtains the decomposition

R̂rr = V̂sΥ̂sV̂
H

s + V̂nΥ̂nV̂
H

n , (4.84)

15As we have noted in the WL case, this assumption (4.81) is not required for the L-SMI
receiver and it is necessary only for the L-SUB one. However, since the L-MOE receiver is
not able to ensure perfect MAI suppression, for each user, whenΦ is rank-deficient (see sub-
section4.4.1) , we maintain the assumption rank(Φ) = J for both the two data-estimated L
receivers.
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where the matriceŝVs ∈ CN×J , V̂n ∈ CN×(N−J), Υ̂s ∈ RJ×J , andΥ̂n ∈
RN×N are estimates of the matrices in (4.37) Vs, Vn, Υs, andΥn = σ2

v IN ,
respectively. By substituting in (4.16) and (4.82), the sample ACM (4.83) and
its EVD (4.84) respectively, the L-SMI and L-SUB receivers are given by

wj,L-SMI
4
= (φH

j R̂
−1

rr φj)
−1 R̂

−1

rr φj (4.85)

wj,L-SUB
4
= (φH

j V̂s Υ̂
−1

s V̂
H

s φj)
−1 V̂s Υ̂

−1

s V̂
H

s φj , (4.86)

As for Wl receivers, while (4.16) (4.82) are perfectly equivalent, their esti-
mated counterparts (4.85) and (4.86) are different.

In order to carry out the performance analysis of the L-SMI and L-SUB
receivers, it should be stressed that, since the relevant SINR is the one after
the Re[·] part, one cannot simply apply results available in the literature (e.g.,
[76]), since they refer to the SINR evaluated before the Re[·] part.

From a unified perspective, let us denote withŵj any data-estimated L-
MOE receiver, i.e,̂wj = wj,L-SMI or ŵj = wj,L-SUB, and setwj = wj,L-MOE

for simplicity. Adopting a perturbation approach, the vectorŵj can be ex-
pressed as

ŵj = wj + δwj , (4.87)

whereδwj is asmall(in the Frobenius norm sense) zero-mean additive pertur-
bation. Since any data-estimated version of the L-MOE receiver must satisfy
the constraint̂wH

j φj = 1, it results thatδwH
j φj = 0. Thus, using the identity

Re2[z] = 1
2{|z|2 +Re[z 2]}, ∀z ∈ C, the SINR (4.24) for data-estimated linear

receivers becomes

SINR(ŵj) =
2

Ebwj ,pj

{
|ŵH

j pj(k)|2
}

+ Ebwj ,pj

{
Re[(ŵH

j pj(k))2]
} . (4.88)

Similarly to the WL case, we assume thatŵj is independent frompj(k). In
this case, by substituting (4.87) into (4.88), performing the average w.r.t to
pj(k), and recalling that, due to assumptions(a1) and(a2), the vectorpj(k)
is zero-mean, one has

SINR(ŵj)−1 =
1
2

{
wH

j Rpjpj
wj + Eδwj

[δwH
j Rpjpj

δwj ]

+Re[wH
j Rpjp

∗
j
w∗

j ] + Re{Eδwj [δw
H
j Rpjp

∗
j
δw∗

j ]}
}

. (4.89)

The characterization of the perturbation termδwj is given by the following
Lemma.
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Lemma 4.3 Assume thatΦ is full-column rank and let̂Rrr be estimated by
(4.83). Thefirst-orderperturbation term of the L-SMI and L-SUB receivers
can be expressed as

δwj = −Γj,L r̂pjbj , (4.90)

wherer̂pjbj

4
= 1

K

∑K
k=1 pj(k) bj(k) is the sample cross-correlation between

the interference and the desired signal, and

Γj,L =

{
Pj,L R−1

pjpj
, (L-SMI)

Pj,L R−1
pjpj

− γj,LVn VH
n , (L-SUB)

(4.91)

with Pj,L
4
= IN − (φH

j R−1
pjpj

φj)−1R−1
pjpj

φj φH
j =

IN − (φH
j R−1

rr φj)−1R−1
rr φj φH

j and γj,L
4
= σ−2

v +

(φH
j R−1

rr φj)−1φH
j Vs Ω−1

L VH
s R−1

rr φj , whereΩL
4
= Υs − σ2

v IJ ∈ RJ×J .

Proof. The proof is omitted since it is similar to that of Lemma4.2.
By virtue of Lemma4.3, we are now able to evaluate the averages in (4.89).

Specifically, dropping the subscriptδwj in Eδwj [·] for notational simplicity,
we have:

E[δwH
j Rpjpj

δwj ] = trace{ΓH
j,L Rpjpj

Γj,L E[r̂pjbj
r̂H
pjbj

]}

=
1
K

trace(ΓH
j,L Rpjpj

Γj,L Rpjpj
) , (4.92)

E[δwH
j Rpjp

∗
j
δw∗

j ] = trace{ΓH
j,LRpjp

∗
j
Γ∗j,L E[r̂∗pjbj

r̂H
pjbj

]}

=
1
K

trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
) . (4.93)

By substituting (4.92) and (4.93) into (4.89), and recalling the equa-
tion (4.50), that here we report for simplicity SINRj,L-MOE

−1 =
(wH

j Rpjpj
wj + Re[wH

j Rpjp
∗
j
w∗

j ])/2, we get:

SINR(ŵj)−1 = SINR−1
j,L-MOE ·

{
1 +

1
2K

[
trace(ΓH

j,L Rpjpj
Γj,L Rpjpj

)

+ Re[trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
)]

]
SINRj,L-MOE

}
. (4.94)
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Along the same lines of the WL case, it can be shown that

trace(ΓH
j,L Rpjpj

Γj,L Rpjpj
) =

{
N − 1 , (L-SMI)

J − 1 + (N − J)|1− γj,L σ2
v |2 (L-SUB).

(4.95)
On the other hand, evaluation of the term trace(ΓH

j,L Rpjp
∗
j
Γ∗j,L R∗

pjp
∗
j
) is

more complicated and, for its calculation, it is convenient to consider the
SMI and SUB cases separately. With reference to the L-SMI receiver, since
Γj,L = Pj,L R−1

pjpj
, after simple algebra, one obtains

trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
) = trace[R−1

pjpj
PH

j,L Rpjp
∗
j
P∗

j,L (R∗
pjpj

)−1 R∗
pjp

∗
j
]

= trace[Pj,L R−1
pjpj

Rpjp
∗
j
(Pj,L R−1

pjpj
Rpjp

∗
j
)∗]

= trace[Pj,L R−1
rr Rrr∗ (Pj,L R−1

rr Rrr∗)∗], (4.96)

where we used the identitiesPj,L R−1
pjpj

= R−1
pjpj

PH
j,L and

Pj,L R−1
pjpj

Rpjp
∗
j

= Pj,L R−1
rr Rrr∗ . To obtain a more manageable ex-

pression of trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
), we consider its asymptotic value

asσ2
v → 0, i.e., in the high-SNR regime. By accounting for the expression

of Pj,L given by Lemma4.3, recalling that, under assumptions(a1) and(a2),
Rrr = ΦΦH + σ2

v IN (see equation4.29), andRrr∗ = ΦΦT , and resorting
to the limit formula for the Moore-Penrose inverse [24], one has

lim
σ2

v→0
Pj,L R−1

rr Rrr∗

= lim
σ2

v→0

{[
IN − (ΦΦH + σ2

vIN )−1Φ1j φH
j

φH
j (ΦΦH + σ2

vI)−1Φ1j

]
(ΦΦH + σ2

v IN )−1ΦΦT

}

=

[
IN − (ΦH)†1j φH

j

φH
j (ΦH)† 1j

]
(ΦH)†ΦT =

[
IN − (ΦH)†1j 1T

j ΦH
]

(ΦH)†ΦT

= (ΦH)† Sj ΦT (4.97)

where1j
4
= [

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ RJ×1 andSj

4
= IJ − 1j 1T

j ∈ RJ×J .
Accounting for (4.97), the asymptotic value of (4.96) is given by

lim
σ2

v→0
trace(ΓH

j,L Rpjp
∗
j
Γ∗j,L R∗

pjp
∗
j
) = trace

[
Sj ΦT (ΦT )† Sj

]

= trace
[
ΦT (ΦT )† Sj

]
= J − 1 . (4.98)
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As regards the L-SUB receiver, sinceΓj,L = Pj,L R−1
pjpj

− γj,L Vn VH
n , re-

calling thatRpjp
∗
j

= Φj ΦT
j , and observing thatVH

n Φj = O(N−J)×(J−1), it
follows that

trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
)

= trace[R−1
pjpj

PH
j,L Φj ΦT

j P∗
j,L (R∗

pjpj
)−1 Φ∗

j ΦH
j ]

= trace[R−1
pjpj

PH
j,LRpjp

∗
j
P∗

j,L (R∗
pjpj

)−1R∗
pjp

∗
j
] (4.99)

which turns out to be exactly equal to (4.96).
By substituting (4.95) and (4.98) into (4.94), one gets:

SINRj,L-SMI
4
= SINR(wj,L-SMI) =

SINRj,L-MOE

1 + N+J−2
2 K SINRj,L-MOE

, (4.100)

SINRj,L-SUB
4
= SINR(wj,L-SUB) =

SINRj,L-MOE

1 + 2 (J−1)+(N−J)|1−γj,Lσ2
v |

2 K SINRj,L-MOE

.

(4.101)

The expression (4.101), as in the WL case, can be further simplified by observ-
ing that, forσ2

v → 0 one hasγj,Lσ2
v → 1, hence the trace in (4.95) reduces to

J − 1. By accounting for this observation, for moderate-to-hight values of the
SNR, (4.101) can be approximatively written as

SINRj,L-SUB
4
= SINR(wj,L-SUB) =

SINRj,L-MOE

1 + J−1
K SINRj,L-MOE

. (4.102)

Equations (4.77), (4.80), (4.100) and (4.102) allow one to easily compare
the finite-sample performances of WL-MOE and L-MOE receivers. By com-
paring (4.80) and (4.102) for the subspace receivers, since SINRj,WL-MOE ≥
SINRj,L-MOE by (4.51), it turns out that SINRj,WL-SUB ≥ SINRj,L-SUB for any
value ofK and forJ ≤ N . A similar conclusion does not hold for the SMI
receivers. Indeed, it can be easily proven that, forJ < N it results that
SINRj,WL-SMI ≥ SINRj,L-SMI only for K ≥ Kmin, where

Kmin
4
=

3N − J

2 (SINR−1
j,L-MOE − SINR−1

j,WL-MOE)
> 0 (4.103)

is a threshold sample-size. In other words, it can be inferred that, in under-
loaded scenarios, the WL-SMI receiver assures the expected performance ad-
vantage over the L-SMI one only if a sufficient number of samples are pro-
cessed. This loss of performance is due to the increase of the dimension of the
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autocorrelation matrix to be estimated fromN to 2N , which entails a dimin-
ished estimation accuracy, requiring hence a larger number of data samples for
achieving a satisfactory performance, without resorting to subspace concepts.

Another interesting conclusion that can be drawn from (4.77) through
(4.102) is that all finite-sample receivers exhibit a SINR saturation effect, i.e.,
a bit-error-rate (BER) floor, for vanishingly small noise. Indeed, whenσ2

v → 0
andH is full-column rank (J ≤ 2N ), it has been shown in Subsection4.4.1
that SINRj,WL-MOE grows without bound. Thus, accounting for (4.77) and
(4.80), we get:

lim
σ2

v→0
SINRj,WL-SMI =

K

2N − 1
, lim

σ2
v→0

SINRj,WL-SUB =
K

J − 1
, (4.104)

which show that, in the high-SNR regime, the performance of the WL-SMI
receiver does not depend on the number of usersJ , whereas the asymptotic
value of SINRj,WL-SUB is independent of the processing gainN . As regards
the linear receivers, ifσ2

v → 0 andΦ is full-column rank (J ≤ N ), then
SINRj,L-MOE → +∞ (see Subsection4.4.1), which, accounting for (4.100)
and (4.102), implies that

lim
σ2

v→0
SINRj,L-SMI =

2K

N + J − 2
, lim

σ2
v→0

SINRj,L-SUB =
K

J − 1
. (4.105)

It can be seen that, while the WL-SUB and L-SUB receivers exhibit the same
asymptotic SINR (forJ ≤ N ), the L-SMI receiver forJ < N exhibits a
better saturation SINR compared with the WL-SMI receiver, for any value of
the sample sizeK. In conclusion, we can state that the advantages of WL
receivers could be lost by employing simple estimation methods such as the
SMI, whereas it is mandatory to resort to more sophisticated subspace-based
methods based on EVD. It is worthwhile to note that in this latter case WL
processing incurs an increased computational complexity compared with linear
one, due to the increased dimension of the augmented correlation matrix, with
respect to the conventional data autocorrelation matrix.

4.5.2 Numerical results

Herein, we present the results of Monte Carlo computer simulations and com-
pare them with the analytical results derived in subsection4.5.1 [see (4.77),
(4.80), (4.100) and (4.102)]. Specifically, in all the experiments, the same
simulation setting considered in Example 1 is adopted (downlink scenario and
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Figure 4.3: Average SINR versus SNR (J = 10 users andK = 500
symbols).

N = 16), with θ1 = θ2 = · · · = θN = 0 and θN+1 = θN+2 = · · · =
θ2N = π/4 (we recall that this precoding strategy assures the full-column
rank property of the augmented matrixH in overloaded scenarios). In addi-
tion, the symbol vectorb(k) and the additive noise vectorv(k) are generated
according to assumptions(a1) and(a2). For the sake of comparison, we con-
sider both SMI- and SUB-based data-estimated versions of the L-MOE and
WL-MOE receivers (wherein the channel impulse response is assumed to be
exactly known), as well as their exact counterparts (wherein, besides the chan-
nel impulse response, perfect knowledge of the autocorrelation matricesRrr

andRzz is assumed). Finally, as performance measure, in addition to the SINR
given by (4.24) and averaged over104 Monte Carlo runs, we resort to the av-
erage BER at the output of the considered receivers. More specifically, after
estimating the receiver weight vectors on the basis of the given data recordK,
for each run (wherein, besides the channel impulse response, independent sets
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Figure 4.4: Average BER versus SNR (J = 10 users andK = 500 symbols).

of noise and data sequences are randomly generated), an independent record
of Kber = 103 symbols is considered to evaluate the BER.

Experiment 4.1 :
In this experiment, we evaluate both the (average) SINR and BER per-

formances of the considered receivers as a function of the SNR. The number
of users is set equal toJ = 10 (underloaded system) and the sample size is
kept fixed toK = 500 symbols. Let us first consider the SINR performances,
which are reported in Fig.4.3. It can be seen that the analytical expressions
(4.77), (4.80), (4.100) and (4.102) for the data-estimated linear and WL re-
ceivers agree very well with their corresponding simulation results, for all
values of the SNR. In particular, in this underloaded scenario, while the L-
SUB and WL-SUB receivers perform comparably, the WL-SMI receiver pays
a significant performance loss with respect to the L-SMI one. Indeed, in the
high-SNR region, the difference between the saturation values of SINR1,L-SMI

and SINR1,WL-SMI is about4 dB, which is in good agreement with (4.104)
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Figure 4.5: Average SINR versus number of users (K = 500 symbols
and SNR= 15 dB).

and (4.105). The unsatisfactory performance of the WL-SMI receiver is also
apparent from Fig.4.4, which depicts the BER curves of the data-estimated
receivers under comparison. It is evident that the curves of the WL-SUB, L-
SUB and L-SMI receivers go down very quickly as the SNR increases, thus
assuring a huge performance gain with respect to the WL-SMI receiver, which
instead exhibits a marked BER floor.

Experiment 4.2 :
Fig. 4.5reports the SINR as a function of the number of usersJ . The SNR

is set equal to15 dB andK = 500 symbols are considered.
Besides confirming the very good agreement between analytical and ex-

perimental results for all the data-estimated receivers, results of Fig.4.5show
that the performances of all the linear receivers worsen very quickly when the
system tends to be overloaded, i.e.,J approachesN = 16. Beyond this value,
the WL receivers assure a significant performance gain with respect to their
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Figure 4.6: Average SINR versus sample sizeK (J = 14 users and
SNR= 15 dB).

corresponding linear counterparts. Loosely speaking, this indicates the ability
of the WL-MOE receiver to accommodate twice the number of users of the
L-MOE receiver.

Experiment 4.3 : In this last experiment, we report the SINR performances
of the considered data-estimated receivers as a function of the sample sizeK.
The SNR is set equal to15 dB andJ = 14 users (underloaded system) are
considered. It can be observed from Fig.4.6 that the accuracy of the formulas
(4.77), (4.80), (4.100) and (4.102) improves asK increases. Additionally, it
is worth observing that the WL-SUB receiver outperforms the L-SUB one, for
all the considered values ofK. In contrast, the WL-SMI receiver performs
worse than its corresponding linear counterpart, by approaching the curve of
the L-SMI receiver only when the sample sizeK is as large as1500 symbols,
which agrees very well with the valueKmin = 1686 predicted by (4.103).
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4.5.3 Performance analysis of WL-MOE and L-MOE receivers
with channel estimation

In this subsection, the first-order perturbation analysis carried out in subsection
4.5.1 is extended to incorporate the effects of errors due to subspace-based
blind CE on the synthesis of the L- and WL-MOE receivers. As we have noted
in the section4.5, when and the autocorrelation matrix and the channel are
estimated from data, as performance measure we consider the SINR defined in
(4.23) because it is quite general. In the previous subsections, instead, we have
consider the SINR defined in (4.24) because, it can be shown that the SINR
(4.23) reduces to the SINR (4.24) and in the ideal case (ACM and channel
perfectly known) and when only the ACM is estimated from a finite sample-
size, under the assumption that the channel is exactly known.

Performance analysis of WL-MOE with channel estimation

Let us start with WL-MOE receiver. Preliminarily, in the subsection4.3.2we
have described the subspace-based channel estimation. In particular, with ref-
erence to WL-MOE receiver, we have shown that the unknown vector%j can
be obtained as solution of the linear system (4.47), provided that this system
uniquely characterizes the channel coefficients for each users. To this end it is
required that the condition(c3) is satisfied (see subsection4.3.2for details).
This condition, from the point of view of thejth user, necessarily imposes
that the maximum number of users supported by the system is smaller than the
maximum number (see eq. (4.61)) 2N of users of the known-channel case

Jmax,WL = 2 (N − Lj) ≤ 2N. (4.106)

Moreover, in the subsection4.3.2, we have shown that whenRzz is estimated
from a finite sample size, a channel estimate can be obtained as in (4.107), that
we report here for completeness:

%̂j = argmin
x∈R2Lj

‖ÛH

n Cj Tj x‖2

= argmin
x∈R2Lj

(
xH TH

j CH
j Ûn Û

H

n Cj Tj x
)

, subject to‖x‖2 = 1 ,

(4.107)

whose solution [56] is given by the eigenvector associated with the small-

est eigenvalue of the matrixTH
j Q̂j,WL Tj ∈ C2Lj×2Lj , with Q̂j,WL

4
=
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CH
j Ûn Û

H

n Cj ∈ C2Lj×2Lj . By substituting (4.107) in (4.46) the resulting
estimate of the received signature is

ĥj = α̃j Cj Tj %̂j (4.108)

To obtain the WL-SMI and WL-SUB receivers with channel estimation, it is
necessary to substitute in (4.65) and (4.66), (4.108):

f j,WL-SMI-CE
4
= (ĥ

H

j R̂
−1

zz ĥj)−1 R̂
−1

zz ĥj , (4.109)

f j,WL-SUB-CE
4
= (ĥ

H

j Ûs Λ̂
−1

s Û
H

s ĥj)−1 Ûs Λ̂
−1

s Û
H

s ĥj . (4.110)

A remark is in order about knowledge of the real scalarα̃j and of the sign
inversion inherent to channel estimate%̂j , which are needed to correctly write

the estimated signaturêhj . These parameters cannot be estimated by means
of blind techniques based on second-order statistics; in practice, they can be
recovered resorting to automatic gain control and differential modulation or,
more robustly, by using a few training symbols. It should be noted, however,
that their possible inaccurate knowledge merely introduce areal multiplicative
factor in the expressions of WL-SMI-CE and WL-SUB-CE receivers, which
does not affect SINR calculation based on (4.23). Therefore, to simplify mat-
ters, we assume in the sequel that they are are known exactly.

As in the subsection4.5.1, we adopt a first-order perturbative approach
[76, 77] to model all estimation errors. In the following, in order to carry out
the analysis in an unified framework, we denote withf̂ j any data-estimated
WL-MOE receiver, i.e,̂f j = f j,WL-SMI-CE or f̂ j = f j,WL-SUB-CE, and setf j =
f j,WL-MOE, wheref j,WL-MOE is the ideal WL-MOE receiver given by (4.27) or
(4.62). When̂f j is employed, accounting for (4.22), it can be shown that (4.23)
can be expanded as

SINR(f̂ j) =
E2{Re[̂f

H

j hj ]}
E{Re2 [̂f

H

j qj(k)]}+ Var{Re[̂f
H

j hj ]}
. (4.111)

Sincêf j , hj andqj(k) exhibit the CS property, the real parts in (4.111) can be
omitted, thus yielding

SINR(f̂ j) =
E2 [̂f

H

j hj ]

E{|̂fH

j qj(k)|2}+ Var[̂f
H

j hj ]
. (4.112)
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Following the perturbative approach, the vectorsf̂ j and ĥj are expressed as
f̂ j = f j + δf j andĥj = hj + δhj , respectively, whereδf j andδhj aresmall
(i.e.,‖δf j‖ ¿ 1 and‖δhj‖ ¿ 1) andzero-meanCS perturbation terms. Thus,

we havêf
H

j hj = fH
j hj +δfH

j hj = 1+δfH
j hj , since, from (4.28), fH

j hj = 1.

The term Var[̂f
H

j hj ] in (4.112) is equal to

Var[̂f
H

j hj ] = Eδf j [(f̂
H

j hj)2]− E2
δf j

[̂f
H

j hj ]. (4.113)

Moreover, denoting with Eδf j [·] the average with respect to (w.r.t.)δf j ,
sinceδf j is zero-mean andδfH

j hj is a real-valued scalar, it turns out that

Eδf j [̂f
H

j hj ] = 1 (see subsection4.5.1) and that

Eδf j [(f̂
H

j hj)2] = Eδf j [1 + 2δfH
j hj + (δfH

j hj)2]

= 1 + Eδf j [|δfH
j hj |2] = 1 + Eδf j [δf

H
j hjhH

j δf j ] (4.114)

Therefore, (4.113) can be simplify

Var[̂f
H

j hj ] = Eδf j [δf
H
j hjhH

j δf j ]. (4.115)

By substituting it in (4.112) leads to:

SINR(f̂ j) =
1

Ebf jqj
[̂f

H

j qj(k)qH
j (k)f̂ j ] + Eδf j [δf

H
j hjhH

j δf j ]
, (4.116)

where Ebf jqj
[·] denotes joint average w.r.t.̂f j and qj(k). Under the sim-

plifying and reasonable assumption [75] that f̂ j is independent ofqj(k),

Ebf jqj
[̂f

H

j qj(k)qH
j (k)f̂ j ] = Ebf j

{f̂H

j Eqj
[qj(k)qH

j (k)]̂f j} = Ebf j
[̂f

H

j Rqjqj
f̂ j ],

which, accounting for̂f j = f j + δf j and E[δf j ] = 0 leads to

Ebf jqj
[̂f

H

j qj(k)qH
j (k)f̂ j ] = Ebf j

[̂f
H

j Rqjqj
f̂ j ] = fH

j Rqjqj
f j+Eδf j [δf

H
j Rqjqj

δf j ].
(4.117)

By substituting (4.117) into (4.116), one has

SINR(f̂ j) =
1

fH
j Rqjqj

f j + Eδf j
[δfH

j Rqjqj
δf j ] + Eδf j

[δfH
j hjhH

j δf j ]
.

(4.118)
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Since Eδf j
[δfH

j Rqjqj
δf j ]+Eδf j

[δfH
j hjhH

j δf j ] = Eδf j
[δfH

j Rzzδf j ], noting

also that, according to (4.49), fH
j Rqjqj

f j = (SINRj,WL-MOE)−1 we obtain the
compact expression

SINR(f̂ j) =
SINRj,WL-MOE

1 + SINRj,WL-MOE Eδf j [δf
H
j Rzz δf j ]

, (4.119)

where only the average w.r.t.δf j is left to be evaluated. To proceed further,
explicit expressions for the perturbationδf j are needed for both the WL-SMI-
CE and WL-SUB-CE receivers.

Lemma 4.4 Let≈ denotefirst-order equality, the first-order perturbation term
of the WL-SMI-CE and WL-SUB-CE receivers can be expressed as

δf j ≈ −Γj,WL r̂qjbj︸ ︷︷ ︸
δf

(1)
j

+∆j,WLδhj︸ ︷︷ ︸
δf

(2)
j

= δf (1)
j + δf (2)

j (4.120)

where r̂qjbj

4
= 1

K

∑K−1
k=0 qj(k) bj(k) ∈ C2N is the sample estimate of the

cross-correlation between the disturbance vectorqj(k) and the desired symbol
bj(k), whereas

Γj,WL
4
=

{
Pj,WL R−1

qjqj
, (WL-SMI-CE)

Pj,WL R−1
qjqj

− γj,WL UnUH
n , (WL-SUB-CE)

(4.121)

∆j,WL
4
=

{
(hH

j R−1
zz hj)−1R−1

zz − 2 f j fH
j , (WL-SMI-CE)

(hH
j R−1

zz hj)−1UsΛ−1
s UH

s − 2 f j fH
j , (WL-SUB-CE)

(4.122)

with Pj,WL
4
= I2N − (hH

j R−1
qjqj

hj)−1 R−1
qjqj

hj hH
j = I2N − f j hH

j ∈
C2N×2N denoting an oblique projection matrix [75] and γj,WL

4
= σ−2

v +
(hH

j R−1
zz hj)−1hH

j Us Ω−1
WLUH

s R−1
zz hj > 0, while the diagonal matrix

ΩWL
4
= diag(λ1, λ2, . . . , λJ) ∈ RJ×J collects the nonzero eigenvalues of

HHH .

Proof: See AppendixB.5.
It should be noted that the quantitiesPj,WL , γj,WL andΩWL are already

defined in Lemma4.2, nevertheless they are here report for completeness.
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Moreover we emphasize thatδf (1)
j andδf (2)

j represent the perturbations due to
estimation ofRzz andhj , respectively; indeed, a comparison shows that the

expression ofδf (1)
j is the same as that reported in Lemma4.2. In order to char-

acterize the perturbation termδf (2)
j , it is necessary to evaluate the perturbation

δhj associated to the subspace-based CE procedure given by (4.107).

Lemma 4.5 Given the estimatêhj = α̃j Cj Tj %̂j of the signaturehj , where
the channel estimatê%j is the solution of(4.107), the perturbationδhj can be
expressed as

δhj ≈ Πj,WL r̂qjbj , (4.123)

whereΠj,WL
4
= (hH

j Us Ω−1
WLUH

s hj) Cj Q†
j,WLCH

j Un UH
n ∈ C2N×2N , with

ΩWL and r̂qjbj
defined in Lemma4.4, and Qj,WL

4
= CH

j Un UH
n Cj ∈

C2Lj×2Lj .

Proof: See AppendixB.6.

Accounting for (4.123) and Lemma4.4, the overall perturbation of the
WL-SMI-CE and WL-SUB-CE weight vectors can be expressed as alinear
function of r̂qjbj , as summarized by the following Lemma:

Lemma 4.6 The first-order overall perturbation termδf j = δf (1)
j + δf (2)

j

of the WL-SMI-CE and WL-SUB-CE receivers can be expressed in a unified
manner as

δf j ≈ Σj,WL r̂qjbj , (4.124)

whereΣj,WL
4
= −Γj,WL + ∆j,WLΠj,WL ∈ C2N×2N , with Γj,WL ∈ C2N×2N ,

∆j,WL ∈ C2N×2N and r̂qjbj
given by Lemma4.4, whereasΠj,WL ∈ C2N×2N

has been defined in Lemma4.5.

It should be observed that Lemma4.6 provides a compact characterization
of the overall perturbationδf j , which is obtained under the simplifying as-
sumption [75] that the error in estimatingRzz is mainly due to the term̂rqjbj .
Equipped with such a nice result, we are now in the position to evaluate the
average Eδf j [δf

H
j Rzz δf j ] at the denominator of (4.119). Dropping the sub-

script δf j in Eδf j
[·] for notational simplicity, by accounting for (4.124) and
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using the trace identity, we have

E[δfH
j Rzz δf j ] = E[r̂H

qjbj
ΣH

j,WL Rzz Σj,WL r̂qjbj ]

= trace
{
ΣH

j,WL Rzz Σj,WL E[r̂qjbj r̂H
qjbj

]
}

=
1
K

trace
{
ΣH

j,WL Rzz Σj,WL Rqjqj

}
, (4.125)

where, moreover, we have used the equality (4.74) E[r̂qjbj r̂H
qjbj

] = 1
K Rqjqj

.
Therefore, by substituting (4.125) in (4.119), we get

SINR(f̂ j) =
SINRj,WL-MOE

1 +
trace(ΣH

j,WL Rzz Σj,WL Rqjqj )

K SINRj,WL-MOE

. (4.126)

The final result is obtained by evaluating the trace term in (4.126), on the basis
of the different expressions forΣj,WL given by Lemmas4.4–4.6. In order to
do this, it is convenient to consider the SMI and SUB cases separately. With
reference to the WL-SMI-CE receiver, it is shown in AppendixB.7 that

trace(ΣH
j,WL Rzz Σj,WL Rqjqj

) = (2N − 1)− 2 ζj,WL(2 Lj − 1)

+ ζ2
j,WL σ2

v trace(R−1
zz Cj Q†

j,WL CH
j ), (4.127)

whereζj,WL
4
= (hH

j R−1
zz hj)−1 hH

j Us Ω−1
WL UH

s hj > 0. Instead, as regards
the WL-SUB-CE receiver, it is shown in AppendixB.7 that

trace(ΣH
j,WL Rzz Σj,WL Rqjqj

) = (J − 1) + (2N − J)|1− γj,WL σ2
v |2

− ζ2
j,WL(2 Lj − 1) + ζ2

j,WL σ2
v trace(R−1

zz Cj Q†
j,WL CH

j ) . (4.128)

The trace expressions (4.127) and (4.128) are still too complicated to allow for
a simple discussion, but they can be considerably simplified in the high-SNR
region, i.e., by studying their behavior asσ2

v → 0. Let us first examine the
trace term, which is present in both (4.127) and (4.128). One has

σ2
v trace(R−1

zz Cj Q†
j,WL CH

j ) = σ2
v trace[

(
UsΛ−1

s UH
s + σ−2

v UnUH
n

)

Cj Q†
j,WL CH

j ] = σ2
v trace(UsΛ−1

s UH
s Cj Q†

j,WL CH
j )

+ trace(UnUH
n Cj Q†

j,WL CH
j ). (4.129)
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Therefore, forσ2
v → 0, observing thatΛ−1

s → Ω−1
WL and using also the trace

properties, one has

lim
σ2

v→0
σ2

v trace(R−1
zz Cj Q†

j,WL CH
j ) = trace(Q†

j,WL CH
j Un UH

n Cj︸ ︷︷ ︸
Qj,WL

) = 2Lj−1,

(4.130)
where we refer to AppendixB.7 for a formal proof of the result
trace(Q†

j,WLQj,WL) = 2Lj − 1. In addition, asσ2
v → 0, it can be easily

checked thatγj,WL σ2
v → 1 and ζj,WL → 1. Consequently, accounting for

(4.126)–(4.128) and (4.130), the SINR behavior in the high-SNR region of the
WL-SMI-CE and WL-SUB-CE receivers is (approximately) governed by

SINRj,WL-SMI-CE
4
= SINR(f j,WL-SMI-CE) =

SINRj,WL-MOE

1 + 2(N−Lj)
K SINRj,WL-MOE

,

(4.131)

SINRj,WL-SUB-CE
4
= SINR(f j,WL-SUB-CE) =

SINRj,WL-MOE

1 + J−1
K SINRj,WL-MOE

,

(4.132)

which are directly comparable to (4.77) and (4.80). Our simulation results
show that (4.131) and (4.132) accurately predict the SINR performances of the
WL-SMI-CE and WL-SUB-CE receivers not only in the high-SNR regime,
but also for moderate values of the SNR, wherein many systems of practical
interest are envisioned to operate. A first exam of the obtained expression
shows that, forK → +∞, both receivers attain the maximum SINR equal
to SINRj,WL-MOE. A more interesting comparison is between (4.131)–(4.132)
and the corresponding ones (4.77)–(4.80) derived in subsection4.5.1 in the
known-channel case.

For the WL-SUB receiver, such a comparison shows that the SINR when
the channel is estimated is the same as that obtained when the channel is
known, namely, for moderate-to-high values of the SNR, the WL-SUB-CE re-
ceiver (approximately) pays about no penalty w.r.t. its counterpart employing
the exact channel. Such a result indirectly shows the reliability of the consid-
ered subspace-based CE procedure, which simultaneously exploits the channel
information contained in bothRrr andRrr∗ by jointly processing the received
vectorr(k) and its conjugate versionr∗(k).

Surprisingly enough, the SINR of the WL-SMI-CE turns out to be even
better than that of the corresponding WL-SMI receiver with known channel:
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as a matter of fact, this phenomenon is well-known in the array processing lit-
erature (see e.g. [78, 79, 80]), where it is sometimes referred to assignature
mismatch, and its effects vanish only whenK → +∞. Indeed, the noise-
subspace estimated from the sample ACM̂Rzz is not orthogonal to the true
signaturehj , i.e., Ûn hj 6= 02N−J ; therefore, in the high-SNR regime, the
noise subspace eigenvalues are significantly smaller than the signal subspace
eigenvalues and, consequently, when the WL-SMI receiver (4.65) is imple-
mented, the component ofhj in the estimated noise subspace is greatly am-

plified when evaluatinĝR
−1

zz hj , thus introducing measurement noise at the
output of the receiver, at the expense of the desired signal component. Instead,
the signature mismatch effects are alleviated in the WL-SUB receiver (4.66)
(and, similarly, in its estimated version) and the WL-SMI-CE receiver (4.109),
since, in the former case, the known signaturehj is preliminarily projected
on the signal subspace of the sample ACM, whereas, in the latter one, the
estimated signaturêhj is orthogonal to the estimated noise subspace by con-
struction. A clear geometric interpretation of this phenomenon is reported in
[79, Fig. 17]. As a by-product, eqs. (4.77), (4.80), (4.131) and (4.132) provide
the SINR assessment of the signature mismatch problem, thereby showing the
simplicity and insightfulness of our SINR formulas. For a finite sample-size
K, indeed, accounting for (4.77) and (4.131), the SINR degradation due to
signature mismatch in the high-SNR region is given by

lim
σ2

v→0

SINRj,WL-SMI

SINRj,WL-SMI-CE
=

2(N − Lj)
2 N − 1

< 1 , (4.133)

which increases with the channel length. Another interesting conclusion that
can be drawn from (4.131) and (4.132) is that, not differently from the case
where the channel is known (see subsection4.5.1), the data-estimated receivers
exhibit a SINR saturation effect, for vanishingly small noise. Indeed, when
σ2

v → 0 andH is full-column rank (J ≤ 2N ), it has been shown in subsection
4.4.1that SINRj,WL-MOE grows without bound. Thus, forJ ≤ 2(N − Lj) <
2N (this inequality is due to (4.106)) , accounting for (4.131) and (4.132), we
get

lim
σ2

v→0
SINRj,WL-SMI-CE =

K

2(N − Lj)
, (4.134)

lim
σ2

v→0
SINRj,WL-SUB-CE =

K

J − 1
, (4.135)

which show that, in the high-SNR regime, the performance of the WL-SMI-
CE receiver does not depend on the number of usersJ , but it depends on the
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processing gainN as well as on the channel lengthLj of userj, whereas the
performance of the WL-SUB-CE receiver is independent of both the process-
ing gainN and the channel lengthLj , while depending on the number of users
J .

Performance analysis of L-MOE with channel estimation

As done in subsection4.5.1 in the case of known channel, it is interesting
to compare the SINR performances of the data-estimated WL-MOE receivers
with CE based on (4.107) against the data-estimated L-MOE receivers with
CE based on (4.41).

Preliminarily, it is worthwhile to note that, although a similar perturba-
tive performance analysis was addressed in [81]–[76] for the blind L-MMSE
(minimum mean-square error) receiver, the analysis carried out in this sub-
section for the L-MOE receiver with blind CE allows a more direct and fruit-
ful comparison with the WL-MOE one and, moreover, leads to more easily
interpretable results (although slightly less accurate) than those obtained in
[81]–[76]. Moreover, we observe that the problem considered in this subsec-
tion exhibits interesting analogies with a well-studied topic in array process-
ing, since the L-MOE-based multiuser detector is mathematically equivalent
to the linear minimum variance (L-MV) beamformer [78], where in the latter
the role of the received signature is played by the array steering vector (SV).
Finite-sample performance analysis of the L-MV beamformer was carried out
in [78, 75, 82] for the SMI version, and in [80] for the subspace-based imple-
mentation (so called projection method). Specifically, in [75] only the effects
of ACM estimation were considered, whereas in [78, 80] the effects of ACM
estimation and SV perturbation wereseparatelystudied, and a complete anal-
ysis of thejoint effects of ACM estimation and SV perturbation was carried
out only in [82]. However, the latter analysis does not explicitly account for
the situation wherein the SV is blindly estimated from the received data and,
consequently, the SV perturbation depends in its turn on the accuracy in ACM
estimation, which is exactly the case of the subspace-based CE algorithms
considered herein.

It is now in order, to turn to the L-MOE receiver with CE. We have shown
that the unknown vectorgj can be obtained as solution of the linear system
(4.40), provided that this system uniquely characterizes the channel coeffi-
cients for each users. To this end it is required that the condition(c4) is satis-
fied (see subsection4.3.2for details). This condition, from the point of view of
thejth user, necessarily imposes that the maximum number of users supported
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by the system is smaller than the maximum number (see eq. (4.81)) N of users
of the known-channel case

Jmax,L = (N − Lj) ≤ N. (4.136)

Observe that the maximum number of allowable users for the linear case is
exactly one-half of the corresponding number for the WL case. In practice,
whenJ ≤ N −Lj both blind L and WL receivers can be utilized, whereas for
N−Lj < J ≤ 2(N−Lj) only the blind WL receivers can work (note that the
above limitations are mainly due to the considered blind channel identification
procedure). Moreover, in the subsection4.3.2, we have shown that whenRrr

is estimated from a finite sample size, a channel estimate can be obtained as in
(4.41), that we report here for completeness:

ĝj = argmin
x∈CLj

‖V̂H

n Cj x‖2

= argmin
x∈CLj

(
xH CH

j V̂n V̂
H

n Cj x
)

, subject to‖x‖2 = 1, (4.137)

whose solution [56] is given by the eigenvector associated with the smallest
eigenvalue of the matrix associated with the smallest eigenvalue of the matrix

Q̂j,L
4
= CH

j V̂n V̂
H

n Cj ∈ CLj×Lj . By substituting (4.137) in (4.12) the
resulting estimate of the received signature16 is

φ̂j = αj Cj ĝj (4.138)

To obtain the L-SMI and L-SUB receivers with channel estimation, it is nec-
essary to substitute (4.138) in (4.85) and in (4.86):

wj,L-SMI-CE
4
= (φ̂

H

j R̂
−1

rr φ̂j)
−1 R̂

−1

rr φ̂j , (L-SMI-CE)
(4.139)

wj,L-SUB-CE
4
= (φ̂

H

j V̂s Υ̂
−1

s V̂
H

s φ̂j)
−1 V̂s Υ̂

−1

s V̂
H

s φ̂j . (L-SUB-CE)
(4.140)

As for WL receivers, while (4.16) and (4.82) are perfectly equivalent, their
finite-sample counterparts given by (4.85)–(4.86) and (4.139)–(4.140) are dif-
ferent. The performance analysis of the L-SMI-CE and L-SUB-CE receivers is

16Along the same considerations done in the WL-case (see4.5.3) we assume that bothαj

and ϑj are known exactly (whereϑj is the phase ambiguity in the subspace-based channel
estimation (see subsection4.3.2))
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complicated from the fact that, again, the SINR (4.111) must be evaluated but,
differently from the WL ones, linear receivers do not exhibit the CS property,
since the L-MOE receiver can be viewed as a WL receiver with augmented

weight vectorf j,L-MOE
4
= [wT

j,L-MOE,0T
N ]T . Such an analysis is similar in

principle to the one carried out in [81]–[76] (as we have emphasized in the
introduction to the subsection), but the approach adopted here leads to more
easily interpretable results, which are directly comparable with those obtained
in the WL case, at the cost of a minimal loss in accuracy. Also in the L-case,
we adopt a first-order perturbative approach [76, 77] to model all estimation
errors.

In the following, in order to carry out the analysis in an unified framework,
we denote witĥwj anydata-estimated L-MOE receiver, i.e,ŵj = wj,L-SMI-CE

or ŵj = wj,L-SUB-CE, and setwj = wj,L-MOE for simplicity. When a linear
data-estimated receiver̂wj is employed [i.e.,f j,1 = ŵj and f j,2 = 0N in
(4.22)], eq. (4.23) assumes the form

SINR(ŵj) =
E2{Re[ŵH

j φj ]}
E{Re2[ŵH

j pj(k)]}+ Var{Re[ŵH
j φj ]}

. (4.141)

It is important to observe that, differently from the WL case, the real parts in
(4.141) cannot be omitted, sincêwH

j φj andŵH
j pj(k) are in general complex-

valued random variables. This fact significantly complicates the analysis with
respect to the WL case. Following the perturbative approach, the vectorsŵj

andφ̂j are expressed aŝwj = wj + δwj andφ̂j = φj + δφj , respectively,
whereδwj andδφj aresmall (i.e.,‖δwj‖ ¿ 1 and‖δφj‖ ¿ 1), zero-mean
perturbation terms. Let Eδwj [·] be the average w.r.t.δwj . The variance term
in (4.141) is equal, for definition, to

Var{Re[ŵH
j φj ]} = Eδwj [Re2{ŵH

j φj}]− E2
δwj

[Re{ŵH
j φj}]. (4.142)

Using the equality Re2(z) = 1
2 [|z|2 + Re(z 2)], ∀z ∈ C, the term

Eδwj [Re2{ŵH
j φj}] can be expressed as

2 Eδwj [Re2{ŵH
j φj}] = Eδwj [|ŵH

j φj |2] + Eδwj [Re{(ŵH
j φj)

2}] (4.143)

with Eδwj [|ŵH
j φj |2] = 1 + Eδwj [δw

H
j φj φH

j δwj ] and

Eδwj [Re{(ŵH
j φj)2}] = Re{Eδwj [(ŵ

H
j φj)2]} = 1 +

Re{Eδwj [δw
H
j φj φT

j δw∗
j ]}, sincewH

j φj = 1 by (4.16) andδwj is zero-

mean by assumption. Moreover, Eδwj
[Re{ŵH

j φj}] = Re{Eδwj
[ŵH

j φj ]} = 1
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(see subsection4.5.1). Consequently, by substituting these relations in
(4.142), it follows that

Var{Re[ŵH
j φj ]} =

1
2

Eδwj [δw
H
j φj φH

j δwj ]+
1
2

Re{Eδwj [δw
H
j φj φT

j δw∗
j ]}

(4.144)
Similarly to the WL case, we assume that the weight vectorŵj is independent
from the data vectorpj(k). Let Ebwjpj

[·] denote the joint average w.r.t.̂wj

andpj(k). Using again the identityRe2(z) = 1
2 [|z|2 + Re(z 2)], ∀z ∈ C,

performing the average w.r.t topj(k), and recalling that, due to assumptions

(a1)and(a2), the vectorpj(k) is zero-mean, the term Ebwj ,pj
{Re2[ŵH

j pj(k)]}
in (4.141) can be expressed as

Ebwj ,pj
{Re2[ŵH

j pj(k)]} =
Ebwj ,pj

{|ŵH
j pj(k)|2}+ Ebwj ,pj

{Re[(ŵH
j pj(k))2]}

2

=
wH

j Rpjpj
wj + Re(wH

j Rpjp
∗
j
w∗

j )

2

+
Eδwj

{δwH
j Rpjpj

δwj}+ Re{Eδwj
[δwH

j Rpjp
∗
j
δw∗

j ]}
2

(4.145)

Noticing thatRrr = φj φH
j + Rpjpj

andRrr∗ = φj φT
j + Rpjp

∗
j
, recalling

the equation (4.50), and substituting (4.144) and (4.145) in (4.141), we get

SINR(ŵj) =
SINRj,L-MOE

1 +
SINRj,L-MOE{trace(Rrr Rδwjδwj

)+Re[trace(Rrr∗ R∗
δwjδw∗

j
)]}

2

,

(4.146)
where only the average w.r.t.δwj is left to evaluated. To proceed further, ex-
plicit expressions for the perturbationδwj are needed for both the L-SMI-CE
and L-SUB-CE receivers. The following Lemma gives a first-order character-
ization of the perturbation vectorδwj :

Lemma 4.7 Let ≈ denote first-order equality, the first-order perturbation
term of the L-SMI-CE and L-SUB-CE receivers can be expressed as

δwj ≈ −Γj,L r̂pjbj︸ ︷︷ ︸
δw

(1)
j

+∆(1)
j,L δφj + ∆(2)

j,L δφ∗j︸ ︷︷ ︸
δw

(2)
j

= δw(1)
j + δw(2)

j (4.147)

where the random vector̂rpjbj

4
= 1

K

∑K
k=1 pj(k) bj(k) ∈ CN is the sample

estimate of the cross-correlation between the disturbance vectorpj(k) and the
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desired symbolbj(k), whereas

Γj,L
4
=

{
Pj,L R−1

pjpj
, (L-SMI-CE)

Pj,L R−1
pjpj

− γj,L VnVH
n , (L-SUB-CE)

(4.148)

∆(1)
j,L

4
=

{
(φH

j R−1
rr φj)−1 R−1

rr PH
j,L , (L-SMI-CE)

(φH
j R−1

rr φj)−1 Vs Υ−1
s VH

s PH
j,L , (L-SUB-CE)

(4.149)

and∆(2)
j,L

4
= −wj wT

j , with Pj,L
4
= IN − (φH

j R−1
pjpj

φj)−1 R−1
pjpj

φj φH
j =

IN − wj φH
j ∈ CN×N being an oblique projection matrix [75] and γj,L

4
=

σ−2
v + (φH

j R−1
rr φj)−1φH

j Vs Ω−1
L VH

s R−1
rr φj > 0, while the diagonal ma-

trix ΩL
4
= diag(µ1, µ2, . . . , µJ) ∈ RJ×J collects the nonzero eigenvalues of

ΦΦH .

Proof: The proof can be conducted along the same lines of AppendicesB.5
with the additional complication that, contrary tofH

j andδhj , wH
j andφ̂j do

not exhibit the CS property.

It should be noted that the quantitiesPj,L , γj,L andΩL are already defined
in Lemma4.3, nevertheless they are here report for completeness. Moreover
we emphasize thatδw(1)

j andδw(2)
j represent the perturbations due to estima-

tion of Rrr andφj , respectively; indeed, a comparison shows that the expres-

sion ofδw(1)
j is the same as that reported in Lemma4.3. In order to charac-

terize the perturbation termδw(2)
j , it is necessary to evaluate the perturbation

δφj associated to the subspace-based CE procedure given by (4.137).

Lemma 4.8 Given the estimatêφj = φj + δφj = αj Cj ĝj of the signature
φj , where the channel estimatêgj is the solution of(4.137), the perturbation
δφj can be expressed as

δφj ≈ Πj,L r̂pjbj , (4.150)

where Πj,L
4
= (φH

j Vs Ω−1
L VH

s φj)Cj Q†
j,L CH

j Vn VH
n ∈

CN×N UH
s hj)Cj Q†

j,WLCH
j Un UH

n ∈ C2N×2N , with ΩL and r̂pjbj

defined in Lemma4.7, andQj,L
4
= CH

j Vn VH
n Cj ∈ CLj×Lj .
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Proof: The Proof can be conducted along the same lines of AppendixB.6.

Accounting for (4.150) and Lemma4.7, the overall perturbation of the L-
SMI-CE and L-SUB-CE weight vectors can be expressed similarly to the WL
case, as alinear function of r̂qjbj = [r̂T

pjbj
, r̂H

pjbj
]T , as summarized by the

following Lemma:

Lemma 4.9 The first-order overall perturbation termδwj = δw(1)
j + δw(2)

j

of the L-SMI-CE and L-SUB-CE receivers can be expressed in a unified man-
ner as

δwj ≈ Σj,L r̂qjbj , (4.151)

whereΣj,L
4
= [Σ(1)

j,L ,Σ(2)
j,L ], with Σ(1)

j,L
4
= −Γj,L + ∆(1)

j,L Πj,L ∈ CN×N and

Σ(2)
j,L

4
= ∆(2)

j,L Π∗
j,L ∈ CN×N . Πj,L ∈ CN×N and∆j,L ∈ CN×N are given by

Lemma4.7andΠj,L ∈ CN×N has been defined in Lemma4.8.

It should be observed that Lemma4.9 provides a compact characterization of
the overall perturbationδwj , which is obtained under the simplifying assump-
tion [75] that the error in estimatingRrr is mainly due to the term̂rpjbj . In
particular by substituting eq. (4.151) in (4.146), the SINR assumes the form

SINR(ŵj) = SINRj,L-MOE

1+
SINRj,L-MOE{trace(Rrr Σj,L Rqjqj ΣH

j,L)+Re[trace(Rrr∗ Σ∗
j,L JRqjqj ΣH

j,L)]}
2K

,

(4.152)
where, by virtue of assumptions(a1)and(a2), we have used (see4.5.1for de-
tails) the fact that E[r̂qjbj

r̂H
qjbj

] = 1
K Rqjqj

and E[r̂qjbj
r̂T
qjbj

] = 1
K JR∗

qjqj
,

with J
4
=

[
[ON×N , IN ]T , [IN ,ON×N ]T

]T
. The matrixRqjqj

has a particu-
lar block structure where the lower-right blockR∗

pjpj
is the conjugate of the

upper-left oneRpjpj
, and the lower-left blockR∗

pjp
∗
j

is the conjugate of the

upper-right oneRpjp
∗
j
. Moreover, sinceRpjpj

= Φj ΦH
j + σ2

v IN , Rpjp
∗
j

=

Φj ΦT
j andVH

n Φj = O(N−J)×(J−1), one hasΠ∗
j,L R∗

pjp
∗
j

= ON×N and

Π∗
j,L R∗

pjpj
= σ2

v Π∗
j,L and, hence,Σ(2)

j,L R∗
pjp

∗
j

= Rpjp
∗
j
(Σ(2)

j,L)H = ON×N

andΣ(2)
j,L R∗

pjpj
= σ2

v Σ(2)
j,L . By exploiting the block structure ofRqjqj

and
Σj,L , it follows that

trace(Rrr Σj,L Rqjqj
ΣH

j,L)

= trace[(Σ(1)
j,L)HRrr Σ(1)

j,L Rpjpj
] + σ2

v trace[(Σ(2)
j,L)HRrr Σ(2)

j,L ]. (4.153)
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Using the expressions of∆(2)
j,L and Πj,L , after simple manipulations, we

get trace[(Σ(2)
j,L)HRrr Σ(2)

j,L ] = ζ2
j,L trace[R−1

rr (φj wH
j ) (Cj Q†

j,L CH
j )], where

ζj,L
4
= (φH

j R−1
rr φj)−1 φH

j Vs Ω−1
L VH

s φj > 0. Therefore, proceeding sim-
ilarly to the WL case (see AppendixB.7) and accounting for (4.95), it can be
verified that, with reference to the L-SMI-CE receiver, the first trace term in
(4.152) is given by

trace(Rrr Σj,L Rpjpj
ΣH

j,L)

= (N − 1)− 2 ζj,L(Lj − 1) + ζ2
j,L σ2

v trace(R−1
rr Cj Q†

j,L CH
j ) , (4.154)

whereas, for the L-SUB-CE receiver, one obtains

trace(Rrr Σj,L Rpjpj
ΣH

j,L) = (J − 1) + (N − J)|1− γj,L σ2
v |2

− ζ2
j,L(Lj − 1) + ζ2

j,L σ2
v trace(R−1

rr Cj Q†
j,L CH

j ) . (4.155)

As regards the other trace term in (4.152), proceeding as done for the first one,
it can be shown that

trace(Rrr∗ Σ∗
j,L JRqjqj

ΣH
j,L) = trace[(Σ(1)

j,L)H Rrr∗ (Σ(1)
j,L)∗R∗

pjp
∗
j
]

+ 2 trace[(Σ(2)
j,L)HRrr∗ (Σ(1)

j,L)∗R∗
pjpj

]. (4.156)

Since, in addition toΠ∗
j,L R∗

pjp
∗
j

= ON×N , the fact thatVH
n Φj =

O(N−J)×(J−1) also implies that(Σ(1)
j,L)∗R∗

pjp
∗
j

= −Γj,L R∗
pjp

∗
j
, by resorting

to the properties of the trace operator, one has

trace[(Σ(1)
j,L)H Rrr∗ (Σ(1)

j,L)∗R∗
pjp

∗
j
]

= trace(ΓH
j,L Rrr∗ Γ∗j,L R∗

pjp
∗
j
)− trace(ΠH

j,L ∆(1)
j,L Rrr∗ Γ∗j,L R∗

pjp
∗
j
)

= trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
)− trace(∆(1)

j,L Rrr∗ Γ∗j,L R∗
pjp

∗
j
ΠH

j,L)

= trace(ΓH
j,L Rpjp

∗
j
Γ∗j,L R∗

pjp
∗
j
) , (4.157)

where it is verified thatΓH
j,L Rrr∗ = ΓH

j,L Rpjp
∗
j

andR∗
pjp

∗
j
ΠH

j,L = ON×N .

Moreover, observing thatRrr∗ = Φj ΦT
j is symmetric, substituting in the

second summand of (4.156), the expression ofΣ(1)
j,L , Σ(2)

j,L andwj [see (4.16)],
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one obtains

Re{trace[(Σ(2)
j,L)HRrr∗ (Σ(1)

j,L)∗R∗
pjpj

]} =

− σ2
v ζ2

j,L

φH
j R−1

rr φj

Re[φH
j R−1

rr Cj Q†
j,LC

H
j Pj,L R−1

rr Rrr∗(R−1
rr )∗φ∗j ], (4.158)

where we have also observed that, with reference to both L-SMI-CE and L-
SUB-CE receivers,Πj,L Rpjpj

ΓH
j,L Rrr∗ = Πj,L Rpjpj

R−1
pjpj

PH
j,L Rrr∗ =

Πj,L PH
j,L Rrr∗ = Πj,L Rrr∗ = ON×N , sinceΠj,L PH

j,L = Πj,L and more-

over, thatΠj,L Rpjpj
ΠH

j,L = σ2
v (φH

j Vs Ω−1
L VH

s φj)2 Cj Q†
j,L CH

j . The
evaluation of the trace terms at the last hand of (4.157) and (4.158) are com-
plicated and, to obtain manageable expressions, it is convenient to consider
their asymptotic values asσ2

v → 0. Using the limit formula for the generalized
inverse [24], one gets

lim
σ2

v→0
φH

j R−1
rr Cj Q+

j,L CH
j Pj,L R−1

rr Rrr∗ (R−1
rr )∗φ∗j

= 1T
j Φ†Cj Q+

j,L CH
j (ΦH)† (IJ − 1j 1T

j )1j = 0 , (4.159)

with 1j
4
= [

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0]T ∈ RJ×1, where we have observed that

Φ†Φ = IJ . Similarly, it can be verified thatlimσ2
v→0 (φH

j R−1
rr φj)−1 = 1

andlimσ2
v→0 ζj,L = 1. Henceforth, noticing that the trace term at the last hand

of (4.157) has been evaluated in subsection4.5.1 (see eq. (4.98)), account-
ing for (4.159), it can be shown that, with reference to both L-SMI-CE and
L-SUB-CE receivers, the real part of the trace term in (4.156) is given by

lim
σ2

v→0
Re[trace(Rrr∗ Σ∗

j,L JRqjqj
ΣH

j,L)]

= lim
σ2

v→0
Re[trace(ΓH

j,L Rpjp
∗
j
Γ∗j,L R∗

pjp
∗
j
)] = J − 1 . (4.160)

Finally, for σ2
v → 0, as in the WL case (see subsection4.5.3), one has

σ2
v trace(R−1

rr Cj Q†
j,L CH

j ) → Lj − 1, γj,L σ2
v → 1 and ζj,L → 1. Thus,

it follows from (4.154) and (4.155) that

lim
σ2

v→0
trace(Rrr Σj,L Rpjpj

ΣH
j,L) =

{
N − Lj , (L-SMI-CE)

J − 1 . (L-SUB-CE)
(4.161)

By substituting (4.160) and (4.161) into (4.152), we obtain that, in the high-
SNR regime, the output SINR of the L-SMI-CE and L-SUB-CE receivers can
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be approximately written as

SINRj,L-SMI-CE
4
= SINR(wj,L-SMI-CE) =

SINRj,L-MOE

1 + N+J−Lj−1
2K SINRj,L-MOE

,

(4.162)

SINRj,L-SUB-CE
4
= SINR(wj,L-SUB-CE) =

SINRj,L-MOE

1 + J−1
K SINRj,L-MOE

. (4.163)

Our simulation results show that the SINR performances of the L-SMI-CE
and L-SUB-CE receivers are accurately described by (4.162) and (4.163) even
when the SNR assumes moderate values. Due to the similarity between the
SINR expressions obtained for L and WL receivers, most observations regard-
ing the comparison between receivers with or without CE apply also in this
case. Summarizing, the SINR of the L-SUB-CE receiver turns out to be (ap-
proximately) equal to that of the L-SUB one (4.102). Moreover, due to the
mentioned signature mismatch problem [79], the SINR of the L-SMI receiver
with known channel (4.100) is worse than that of the corresponding L-SMI-CE
receiver: indeed, for a finite sample sizeK, in the high-SNR regime, it results
that

lim
σ2

v→0

SINRj,L-SMI

SINRj,L-SMI-CE
=

N + J − Lj − 1
N + J − 2

< 1 . (4.164)

Additionally, similarly to the the WL case, the data-estimated linear receivers
exhibit a SINR saturation effect, forσ2

v → 0. In this case, ifΦ is full-column
rank (J ≤ N ), it is readily verified that SINRj,L-MOE → +∞. Henceforth, for
J ≤ N − Lj < N , accounting for (4.162) and (4.163), one obtains

lim
σ2

v→0
SINRj,L-SMI-CE =

2K

N + J − Lj − 1
, (4.165)

lim
σ2

v→0
SINRj,L-SUB-CE =

K

J − 1
, (4.166)

which show that, in the high-SNR regime, the performance of the L-SMI-CE
receiver depends on the processing gainN and the number of usersJ , as well
as on the channel lengthLj of thejth user, whereas the performance of the L-
SUB-CE receiver is independent of both the processing gainN and the channel
lengthLj , while depending on the number of usersJ . At this point, we are
able to establish a direct comparison between blind L- and WL-MOE data-
estimated receivers, focusing our attention on the caseJ ≤ Jmax,L = N − Lj ,
wherein both blind L- and WL-MOE receivers can work [note indeed that
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the WL-MOE can accommodate up toJmax,WL = 2(N − Lj) users (see eq.
(4.106))]. By comparing (4.132) and (4.163) for the subspace-based receivers,
it turns out that SINRj,WL-SUB-CE ≥ SINRj,L-SUB-CE for any value ofK. In-
stead, for the SMI-based receivers [see (4.131) and (4.162)], it results that
SINRj,WL-SMI-CE ≥ SINRj,L-SMI-CE only whenK ≥ Kmin, where

Kmin
4
=

3(N − Lj)− J + 1
2(SINR−1

j,L-MOE − SINR−1
j,WL-MOE)

(4.167)

is a threshold sample size, that is, similarly to the known channel case, the
WL-SMI-CE receiver assures a performance advantage only by processing a
sufficient number of samples.17 Finally, for J ≤ N − Lj , as regards the
comparison between the saturation SINR (i.e., the SINR forσ2

v → 0) of blind
linear and WL receivers, it can be observed from (4.165) and (4.134) that the
value for the L-SMI-CE receiver is better than the corresponding value for
WL-SMI-CE, whereas, according to (4.166) and (4.135), the saturation SINRs
for the subspace-based receivers are exactly coincident.

4.5.4 Numerical results

In this section, Monte Carlo simulations are presented, aimed at validating and
extending our performance analysis. We consider a DS-CDMA system with
α1 = α2 = · · · = αJ = 1 andN = 16. TheJ users employ unit-norm (i.e.,
‖cj‖ = 1) random signaturescj , whose entries are i.i.d. random variables as-
suming equiprobable values in the complex set{±1/

√
2N,±i/

√
2N}, with

cj1 andcj2 statistically independent of each other forj1 6= j2 ∈ {1, 2, . . . , J}.
The channel lengths areLj = 5, ∀j ∈ {1, 2, . . . , J}, i.e., they are equal for all
the users, and, as in [66, 76], the entries of the unit-norm channel vectorsgj are
randomly and independently drawn with equal power from a zero-mean com-
plex circular (or proper) Gaussian process. The symbol and noise sequences
are generated according to assumptions(a1) and(a2), and the SNR is defined
as1/σ2

v . In each simulation, we carry out104 independent Monte Carlo runs,
with each run employing a different set of spreading sequences, channel vec-
tors, symbol sequences and noise. In all simulations, we assume that the users
have identical powers, i.e. there is perfect power control, and, without loss of
generality, that the desired user is the first one, i.e.,j = 1. Note that, in the
considered scenario, the maximum number of users that can be accommodated

17A comparison with eq. (4.103) shows that, in the estimated-channel case, the value ofKmin

is slightly lower.
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Figure 4.7: ASINR versus SNR for WL-MOE receivers (J = 10 users
andK = 500 symbols).

by the blind receivers with CE is equal toJmax,L = 11 for the L-MOE receivers
andJmax,WL = 22 for the WL-MOE receivers. To extensively compare WL-
MOE and L-MOE receivers, we assume thatJ satisfy the first, more stringent
condition, exception made for the second experiment, where we evaluate the
performances as a function ofJ .

Experiment 4.4 : in this experiment, we evaluate the average SINR (AS-
INR) as a function of SNR for the WL-MOE (Fig.4.7) and L-MOE (Fig.4.8)
receivers (both with and without CE), forJ = 10 users and a sample size
equal toK = 500 symbols. For the sake of comparison, we also report the
ASINR of the exact (i.e., data-independent) WL-MOE and L-MOE receivers
given by (4.27) and (4.16), respectively. All the curves show a good agree-
ment between simulation and analytical results. Looking in detail at Fig.4.7,
the simulation results confirm the theoretical prediction that the two subspace
versions of the WL-MOE receiver (with or without CE) exhibit practically
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Figure 4.8: ASINR versus SNR for L-MOE receivers (J = 10 users
andK = 500 symbols).

the same performances, whereas the WL-SMI-CE receiver performs slightly
better than the WL-SMI one (with known channel), since the latter is penal-
ized by the signature mismatch phenomenon; in particular, the asymptotic (for
SNR→ +∞) difference between the ASINR curves of the WL-SMI-CE and
WL-SMI receivers is about1.5 dB, which is in good agreement with the value
theoretically predicted by (4.133). Similar considerations apply to Fig.4.8,
where the asymptotic gain of the L-SMI-CE receiver over the L-SMI one (with
known channel) is about1 dB, as correctly predicted by (4.164). As regards
the comparison between WL-MOE and L-MOE receivers, results of Figs.4.7
and4.8allow us to extend an important conclusion done in the known-channel
case , relative to the underloaded case (i.e.,J ≤ N ): although the exact WL-
MOE receiver generally exhibits a SINR gain over the L-MOE one also when
J ≤ Jmax,L, in practice, due to SINR saturation effects, the subspace imple-
mentations of the WL-MOE and L-MOE receivers exhibit the same perfor-
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Figure 4.9: ASINR versus number of usersJ for WL-MOE receivers
(SNR =15 dB andK = 500 symbols).

mances, whereas the L-SMI receivers (both with and without CE) outperform
their WL-SMI counterparts.

Experiment 4.5 : in this experiment, we evaluate the ASINR as a function
of the number of usersJ for the WL-MOE (Fig.4.9) and L-MOE (Fig.4.10)
receivers (both with and without CE), for a sample size equal toK = 500
symbols and SNR =15 dB. Since the subspace-based CE procedure poses a
strict limit of Jmax,WL = 22 users for the WL-MOE receivers andJmax,L = 11
for the L-MOE receivers with CE, the performances of the receivers with CE
are not reported (i.e., the corresponding curves are truncated) for values of
J exceeding these limits. Besides confirming again a good agreement be-
tween simulation and analytical results, the curves for the WL-MOE receivers
(Fig. 4.9) show that the performance advantage of the WL-SUB receiver over
the WL-SMI one (both with and without CE) progressively decreases asJ in-
creases, becoming negligible in correspondence of aboutJ = 20 users for the
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Figure 4.10: ASINR versus number of usersJ for L-MOE receivers
(SNR =15 dB andK = 500 symbols).

receivers with CE, andJ = 30 users for the receivers with known channel. It
is worthwhile to observe, moreover, that whenJ approaches the upper limit
Jmax,WL = 22 for CE, the performances of the WL-MOE receivers with CE
degrade rapidly, suffering from a clear threshold effect. Similar considerations
apply to Fig.4.10, where, however, the ASINR curves of the L-MOE receivers
are more closely spaced and the performance advantage of the L-SUB receiver
over the L-SMI one becomes negligible in correspondence of aboutJ = 10
users for the receivers with CE, andJ = 14 users for the receivers with known
channel. A careful comparison between the performances of WL-MOE and
L-MOE receivers shows again that the largest advantage in using WL-MOE
receivers is obtained in the “overloaded” region, i.e., when11 ≤ J ≤ 22 for
the receivers with CE (where the L-MOE receivers cannot operate at all), and
when16 ≤ J ≤ 32 for the receivers with known channel (where the L-MOE
receivers, although capable of operating, exhibit poor performances).
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Figure 4.11: ASINR versus sample sizeK for WL-MOE receivers
(J = 10 users and SNR =20 dB).

Experiment 4.6 : in this last experiment, we report the ASINR as a function
of the sample sizeK for the WL-MOE (Fig.4.11) and L-MOE (Fig.4.12)
receivers (both with and without CE), forJ = 10 users and SNR =20 dB.
The ASINR values of the exact (i.e, data-independent) WL-MOE and L-MOE
receivers, in this scenario, are equal to21.5 and19.2 dB, respectively, and ob-
viously do not depend onK. The simulation and analytical results are again
in good agreement, and, as expected, the accuracy of the formulas (4.131)–
(4.132) and (4.162)–(4.163) improves asK increases. In particular, Fig.4.11
shows that the two versions of the WL-SUB receivers (with or without CE) ex-
hibit almost the same performances, outperforming the WL-SMI-CE receiver
by about2 dB, and the WL-SMI one (with known channel) by about3 dB,
for all considered values ofK. Instead, the ASINR curves of the L-MOE re-
ceivers (see Fig.4.12) are more closely spaced, exhibiting only marginal differ-
ences in performances between the various receivers. By comparing Figs.4.11
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Figure 4.12: ASINR versus sample sizeK for L-MOE receivers (J =
10 users and SNR =20 dB).

and4.12, it can be seen that the two WL-SUB receivers (with or without CE)
outperform the corresponding L-SUB ones, for all the considered values of
K. In contrast, the WL-SMI receiver (with known channel) again performs
worse than its linear counterpart for all values ofK (in this case the thresh-
old sample size (4.103) is Kmin = 3844, thus larger than the maximum value
of K = 2500 considered in the simulations), whereas the performances of
the WL-SMI-CE receiver approaches those of the L-SMI-CE one forK ap-
proaching2500, which agrees very well with the valueKmin = 2428 predicted
by (4.167).





Chapter 5

Equalization Techniques for
MC-CDMA Systems

This chapter focuses on multiuser detection for downlink MC-CDMA systems,
employing cyclic-prefixed (CP) or zero-padded (ZP) transmission techniques.
For both systems, we consider the linear and widely linear FIR receiving struc-
tures, showing that if the number of users does not exceed a given threshold
and their codes are appropriately designed, L-FIR and WL-FIR universal zero-
forcing (ZF) multiuser detectors can be synthesized. Thus in the absence of
noise, it is assured a perfect symbol recovery for each user, regardless of the
underlying frequency-selective channel. Moreover, some spreading code ex-
amples are provided, which satisfy the design rules. Finally, numerical sim-
ulations are carried out to show that the theoretical considerations developed
herein provide useful guidelines for practical MC-CDMA system designs.

5.1 Introduction

In the previous chapter4, we dealt with single-carrier DS-CDMA technology
which nevertheless, at high data-rates, becomes impractical, due to both severe
multipath-induced intersymbol interference (ISI) and synchronization difficul-
ties. Thus, we chose a multicarrier scheme to overcame these drawbacks, as
MC-CDMA technology [11, 83, 84]. Indeed MC-CDMA systems, employing
frequency-domain spreading[83], which consists of copying each informa-
tion symbol over theN subcarriers and multiplying it by a user-specific vector
code, achieve ISI mitigation more efficiently than DS-CDMA systems because
they transmit with a lower data-rate over multiple subcarriers.Moreover, due to

111
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the lowered symbol rate, the synchronization task is easier in MC-CDMA net-
works, compared with a DS-CDMA system with similar processing gain. Fur-
thermore, it has been shown in [85] that, at the expense of a reduced bandwidth
efficiency, MUD techniques offer higher near-far resistance in MC-CDMA
systems than in DS-CDMA ones.

Several MC-CDMA transmission schemes have been proposed in the lit-
erature, among which those based oncyclic prefix(CP) andzero padding(ZP)
precoding techniques, items of interest in this chapter. In conventional CP-
MC-CDMA systems, after multiplying each information symbol by a user-
specific vector code, the resulting vector is subject to inverse fast Fourier trans-
form (IFFT) and, finally, a CP of lengthLp larger than the channel orderL is
inserted; at the receiver, the CP is discarded and the remaining part of the MC-
CDMA symbol turns out to be free of interblock interference (IBI). Instead in
ZP-MC-CDMA systems, for achieving deterministic IBI cancellation, the CP
is replaced with ZP, by appendingLp > L zero symbols to each IFFT-precoded
symbol block; in this case, IBI suppression is obtained without discarding any
portion of the received signal. If the number of zero symbols is equal to the
CP length, then CP- and ZP-based systems exhibit the same spectral efficiency.
ZP precoding technique has been originally proposed [86] for OFDM systems
since, unlike CP-based transmissions, it enables L-FIR perfect symbol recov-
ery, even when the channel transfer function has nulls on (or close to) some
subcarriers. Compared with CP precoding, the price to pay for such a capabil-
ity is the slightly increased receiver complexity and the larger power amplifier
backoff.

It is worth to observe that many L- and WL-MUD techniques, which are
proposed in the DS-CDMA context4, can be readily adapted to MC-CDMA
systems. To suppress MAI with an affordable computational complexity and,
simultaneously, achieve close-to-optimality performance (in the minimum bit-
error-rate sense), one can resort to the FIR L-ZF (or linear decorrelating) and
linear minimum mean-square error (L-MMSE) receivers. In addition we have
underlined still in the previous chapters of this thesis (see section2.4 in the
chapter2 and chapters3,4 for more details) that by exploiting the possible im-
proper or noncircular nature of the transmitted symbols, improved MAI sup-
pression capabilities can be attained by adopting WL-FIR receiving structures,
such as the WL-ZF and WL-MMSE receivers.

With reference to FIR L-MUD receiving structures, it is known [84, 87]
that perfect symbol recovery is guaranteed in a ZP-based downlink, for any
FIR channel of orderL < Lp, as long as the number of users is smaller than
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the number of subcarriers (underloaded systems) and the code vectors are lin-
early independent. In general, a similar feature does not hold for CP-based
transmissions. Thus, we show in section5.3, following our paper [18], that
universal L-ZF-MUD can be guaranteed even for the underloaded CP-MC-
CDMA downlink, provided that the spreading codes are judiciously designed.
On the other hand, a detailed study of the conditions assuring FIR WL-MUD
perfect symbol recovery in both CP- and ZP-based systems is lacking. Conse-
quently, we also show5.4, following our papers [17, 18], that, if appropriate
complex-valued spreading codes are employed, universal WL-ZF multiuser
detectors can be designed even for overloaded CP-MC-CDMA and ZP-MC-
CDMA systems1.

5.2 Models for CP- and ZP-MC-CDMA systems

Let us consider the downlink of a MC-CDMA system employingN subcarri-
ers and accommodatingJ users. The information symbolbj(n) emitted by
the jth user in thenth (n ∈ Z) symbol interval multiplies thefrequency-

domainspreading codecj
4
= [c(0)

j , c
(1)
j , . . . , c

(N−1)
j ]T ∈ CN , with c

(m)
j 6= 0,

∀m ∈ {0, 1, . . . , N − 1} and∀j ∈ {1, 2, . . . , J}. The resultingN -length se-
quence is subject to the inverse discrete Fourier transform (IDFT), producing
thus the block

ũj(n) = WIDFT cj bj(n) ∈ CN , (5.1)

whereWIDFT ∈ CN×N denotes the IDFT matrix, with(m1,m2)th entry
1√
N

ei 2π
N

(m1−1) (m2−1), for m1,m2 ∈ {1, 2, . . . , N}, and its inverseWDFT
4
=

W−1
IDFT = WH

IDFT defines the discrete Fourier transform (DFT) matrix. The
equation (5.1) is different depending on if we adopt a CP- or ZP-linear precod-
ing strategies:

Cyclic prefixing: after computing the IDFT, a CP of lengthLp ¿ N is inserted
at the beginning of̃uj(n), obtaining thus the vector

ucp,j(n) = TcpWIDFT cj bj(n) , (5.2)

whereTcp
4
= [IT

cp, IN ]T ∈ RP×N andP
4
= Lp + N , with Icp ∈ RLp×N built

by drawing out the lastLp rows of the identity matrixIN .

1It is worthwhile to observe that overloaded systems are of practical interest [88], for exam-
ple, in bandwidth-efficient multiuser communication, where the bandwidth is at a premium.
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Zero padding: after computing the IDFT,Lp ¿ N trailing zeros are padded at
the end of̃uj(n), obtaining thus the vector

uzp,j(n) = TzpWIDFT cj bj(n) , (5.3)

whereTzp
4
= [IN ,ON×Lp]T ∈ RP×N .

In either cases, the blocksucp,j(n) anduzp,j(n) are subject to parallel-to-serial
conversion, and the resulting sequences feed a digital-to-analog converter, op-
erating at rate1/Tc = P/Ts, whereTs andTc denote the symbol and the sam-
pling period, respectively. In the downlink, all the users are synchronous and
propagate through a common frequency-selective channel that is modeled as
a linear time-invariant system, whose channel impulse responsegc(t) (includ-
ing transmitting filter, physical channel and receiving filter) iscomplex-valued,
that is, neitherRe{gc(t)} nor Im{gc(t)} vanish identically, and spansL + 1
sampling periods, i.e.,gc(t) ≡ 0, ∀t 6∈ [ 0, L Tc], wheregc(0), gc(LTc) 6= 0,
with L < P within one symbol interval. In this case, the discrete-time chan-

nel g(`)
4
= gc(` Tc) turns out to be a FIR filter of orderL, i.e., g(`) ≡ 0,

∀` 6∈ {0, 1, . . . , L}, with g(0), g(L) 6= 0. Furthermore, we assume that the
channel orderL is not exactly known, but is upper bounded byLp, i.e.,L < Lp.

In a CP-based system, the IBI is deterministically removed by discarding
the firstLp samples of eachP -dimensional received block. Indeed, after CP
removal, thekth (k ∈ Z) received symbol blockrcp(k) ∈ CN can be expressed
(see, e.g., [84, 86]) as

rcp(k) = ΘcpWIDFT C︸ ︷︷ ︸
Gcp∈CN×J

b(k) + vcp(k) = Gcpb(k) + vcp(k) , (5.4)

where Θcp ∈ CN×N is the circulant [56] matrix having Ωcpg as

its first column, with Ωcp
4
= [ILp,OLp×(N−Lp)]

T ∈ RN×Lp and

g
4
= [g(0), g(1), . . . , g(L), 0, . . . , 0]T ∈ CLp, the vector b(k)

4
=

[b1(k), b2(k), . . . , bJ(k)]T ∈ CJ collects the symbols transmitted by the users

as in the chapter4, C
4
= [c1, c2, . . . , cJ ] ∈ CN×J defines the frequency-

domaincode matrixand, finally, vectorvcp(k) ∈ CN accounts for thermal
noise.

In contrast, ZP-based precoding allows one to deterministically eliminate
the IBI by retaining all the samples of eachP -dimensional received block.
Specifically, in a ZP-based system, thekth received symbol blockrzp(k) ∈ CP
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is given by (see, e.g., [84, 86])

rzp(k) = ΘzpWIDFT C︸ ︷︷ ︸
Gzp∈CP×J

b(k) + vzp(k) = Gzpb(k) + vzp(k) , (5.5)

whereΘzp ∈ CP×N is the Toeplitz [56] matrix havingΩzpg as first column,

with Ωzp
4
= [ILp,OLp×(P−Lp)]

T ∈ RP×Lp, and [g(0), 0, . . . , 0] as first row,
whereasvzp(k) ∈ CP accounts for thermal noise. For the sake of conciseness,
we unify models (5.4) and (5.5) in the equivalent one

r(k) = G b(k) + v(k), with r(k),v(k) ∈ CR andG ∈ CR×J , (5.6)

where, for a CP-based system,r(k) = rcp(k), G = Gcp, v(k) = vcp(k),
with R = N , whereas, for a ZP-based system,r(k) = rzp(k), G = Gzp,
v(k) = vzp(k), with R = P . Hereinafter, we assume that:

a1) the transmitted symbolsbj(n) are modeled as mutually independent
zero-mean and independent identically-distributed (iid) random se-

quences, with second-order momentsσ2
b

4
= E[|bj(n)|2] > 0 and%b(n)

4
=

E[b2
j (n)];

a2) the noise vectorv(k) is a zero-mean wide-sense stationary complex
proper white random process, which is independent ofbj(n), ∀j ∈
{1, 2, . . . , J}, with autocorrelation matrixRvv

4
= E[v(k)vH(k)] =

σ2
v IR.

As regards assumption a1, we have still observed (see previous chapters) that,
there exists a large family of modulation schemes of practical interest, such as,
BPSK, DBPSK, M-ASK, OQPSK, OQAM, and binary CPM, MSK, GMSK,
which are improper, i.e.,%b(n) 6= 0, for anyn ∈ Z.

5.3 Perfect symbol recovery for L-MUD

In this section we consider, the problem of ZF detectability in FIR L-MUD,
which can be used for both CP- and ZP-based systems, employing either
proper or improper data symbols (although it is suboptimal in the latter case).
These theoretical aspects strongly affect both the synthesis and the perfor-
mance analysis of the L-ZF and L-MMSE multiuser detectors [45, 44].
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To detect the transmitted symbolbj(k) of the jth user from the received
vector (5.6), with j ∈ {1, 2, . . . , J}, with a FIR L-MUD, we apply the input-
output relationship that we have seen in chapter4

yj(k) = fH
j r(k), (5.7)

with fj ∈ CR (which is followed by a decision device). In the absence of noise,
the perfect or ZF symbol recovery conditionyj(k) = bj(k) leads to the system

of linear equationsGHfj = ej , whereej
4
= [0T

j−1, 1,0T
J−j ]

T ∈ RJ , which is
consistent (i.e., it admits at least one solution) for each user if and only if (iff)
thecompositechannel matrixG is full-column rank, i.e., rank(G) = J . Under
this assumption, theminimal norm[24] solution ofGHfj = ej is given by

fL-ZF,j = G (GHG)−1ej , (5.8)

which defines the L-ZF or linear decorrelating multiuser detector. In the pres-
ence of noise, the L-ZF receiver perfectly suppresses the MAI at the price of
noise enhancement. To better counteract the noise, one can resort to the L-
MMSE multiuser detector [45, 44], which is defined as

fL-MMSE,j = arg min
fj∈CR

E[|bj(k)− yj(k)|2] = σ2
b R−1

rr G ej , (5.9)

whereRrr
4
= E[r(k) rH(k)] ∈ CR×R is the autocorrelation matrix ofr(k)

which, accounting for (5.6), and invoking assumptions a1 and a2, is given by

Rrr = σ2
b G GH + σ2

v IR . (5.10)

If G is full-column rank, by resorting to the limit formula for the Moore-
Penrose inverse [24], it can be seen that

lim
σ2

v/σ2
b→0

fL-MMSE,j = lim
σ2

v/σ2
b→0

σ2
b (σ2

b G GH + σ2
v IR)−1 G ej

= G (GHG)−1ej = fL-ZF,j , (5.11)

∀j ∈ {1, 2, . . . , J}, i.e., the L-MMSE receiver boils down to the L-ZF one2. In
summary, the performance of the L-MMSE receiver in the high signal-to-noise

2 More generally, whenG is possibly rank-deficient, it results thatlimσ2
v/σ2

b
→0 fL-MMSE,j =

(GH)† ej
4
= fL-LS,j , i.e., the L-MMSE detector ends up to the minimal-norm least-squares

solution [24] of GHfj = ej [note that, whenG is full-column rank, one hasfL-LS,j = fL-ZF,j

from (5.8)].
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(SNR) region strongly depends on the existence of L-ZF solutions: indeed, if
G is not full-column rank, the performance curve of the L-MMSE multiuser
detector exhibits a marked bit-error-rate (BER) floor (see Section5.5), when
σ2

v/σ2
b → 0. Motivated by this fact, the first step of our study consists of

investigating whether the condition rank(G) = J is satisfied, regardless of the
frequency-selective channel.

As a matter of fact, for a ZP-based system [see (5.5)], the rank properties of
G = Gzp = ΘzpWIDFT C are easily characterized, since the Toeplitz matrix
Θzp is full-column rank for any FIR channel of orderL [84, 87, 89]. Indeed,
owing to nonsingularity ofWIDFT, it results that

rank(Gzp) = rank(C) (5.12)

As stated in [87], the composite channel matrixGzp is always full-column rank
and, thus, channel-irrespective L-FIR perfect symbol recovery is possible iff
the vectorsc1, c2, . . . , cJ are linearly independent, that is,C is full-column
rank. To this aim, one can for example use Walsh-Hadamard (WH) spreading
codes, which are widely used in CDMA systems. This issue is analyzed in
section4.4.1of the chapter4. It is worth noting that condition rank(C) = J
imposes that the number of users be smaller than or equal to the number of
subcarriers, i.e.,J ≤ N : strictly speaking, L-ZF-MUD is exclusively tar-
geted at underloaded systems. On the other hand, for a CP-based system [see
(5.4)], the linear independence of the code vectors is not sufficient to assure
that G = Gcp = ΘcpWIDFT C be always full-column rank since, unlike
Θzp, the circulant matrixΘcp turns out to be singular for some FIR chan-
nels. However, after characterizing the rank properties ofGcp, we show [18]
in Subsection5.3.1that, through appropriate design of user codes, the condi-
tion rank(Gcp) = J can be guaranteed regardless of the underlying frequency-
selective channel. Hence, channel-irrespective L-ZF-MUD is possible not only
in a ZP-based system, but also in a CP-based one.

5.3.1 Rank characterization ofGcp and universal code design for
L-ZF-MUD

With reference to a CP-based system, let us study the rank properties of
Gcp = ΘcpWIDFT C. Preliminarily, observe thatGcp is full-column rank
only if the numberJ of users is not larger than the number of subcarriers
N , i.e., J ≤ N . Thus, as for a ZP-based system, L-ZF-MUD is confined
only to underloaded CP-based systems. Furthermore, by resorting to standard
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eigenstructure concepts [84, 56], one hasΘcp = WIDFT ΓcpWDFT, where the

diagonal entries ofΓcp
4
= diag[γcp(0), γcp(1), . . . , γcp(N − 1)] ∈ CN×N are

the values of the channel transfer functionG(z)
4
=

∑L
`=0 g(`) z−` evaluated at

the subcarrierszm
4
= ei 2π

N
m, i.e.,γcp(m) = G(zm), ∀m ∈ {0, 1, . . . , N − 1}.

Henceforth, one obtains thatGcp = WIDFT ΓcpC and, sinceWIDFT is nonsin-
gular, it follows that

rank(Gcp) = rank(ΓcpC). (5.13)

The full-column rank property of matrixGcp is characterized by the following
Theorem [18].

Theorem 5.1 (Rank characterization ofGcp) If C is full-column rank and
the channel transfer functionG(z) has 0 ≤ Mz ≤ L distinct zeros at

zm1 = ei 2π
N

m1 , zm2 = ei 2π
N

m2 , . . . , zmMz
= ei 2π

N
mMz , with m1 6= m2 6=

· · · 6= mMz ∈ {0, 1, . . . , N − 1}, then the composite channel matrixGcp

is full-column rank iff [C,Sz] ∈ CN×(J+Mz) is full-column rank, where

Sz
4
= [1m1 ,1m2 , . . . ,1mMz

] ∈ RN×Mz is a full-column rank matrix, with
1m denoting the(m + 1)th column ofIN .

Proof: SeeC.1

Some remarks are now in order concerning immediate implications of The-
orem5.1.

Remark 1: Gcp may be rank deficient even ifc1, c2, . . . , cJ are linearly
independent (see proof inC.1), i.e.,C is full-column rank. However, ifG(z)
has no zeros (i.e.,Mz = 0) on the subcarriers{zm}N−1

m=0, that is,γcp(m) 6= 0,
∀m ∈ {0, 1, . . . , N − 1}, it results thatΓcp is nonsingular and, consequently,
rank(Gcp) = rank(C). In other words, for a CP-based system, only ifG(z)
has no zeros on the used subcarriers, the linear independence of the vectors
c1, c2, . . . , cJ becomes a necessaryand sufficient condition for assuring the
full-column rank property ofGcp. In this case, both CP-based and ZP-based
systems are able to support up toN active users.

Remark 2: Unlike conventional CP-OFDM systems [84], the presence of
channel zeros on some subcarriers does not prevent perfect symbol recovery.
This result stems from the fact that, in MC-CDMA systems with frequency-
domain spreading, each symbol is transmitted inparallel on all the subcarriers;
therefore, if them-th subcarrier is hit by a channel zero, i.e.,γcp(m) = 0, the
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transmitted symbolbj(k) can still be recovered from the other subcarriers. In
contrast, in CP-OFDM systems, wherein each subcarrier conveys a different
data symbol, ifG(z) exhibits a zero on a used subcarrier, the symbol transmit-
ted on that subcarrier is permanently lost [84, 90].

Remark 3: condition rank(Gcp) = J amounts to rank([C,Sz]) = J + Mz,
which necessarily requires thatJ ≤ N −Mz, with 0 < Mz ≤ L < Lp ¿ N .
Therefore, the number of active users that can be supported through L-ZF-
MUD is decremented by one unit for any additional zero on the subcarriers3.
In this case, the capacity (i.e. the maximum number of users that can be sup-
ported) of a CP-based downlink is smaller than that of a ZP-based system,
which is equal toN regardless of the channel-zero configuration. In the worst
case whenMz = L, i.e., all the channel zeros are located at the subcarriers,
the maximum number of allowable users in a CP-based downlink is equal to
N − L.

Theorem5.1 evidences that, in contrast with ZP-based systems, the full-
column rank property ofGcp depends not only on the linear independence of
c1, c2, . . . , cJ , but also on the presence of channel zeros located at the sub-
carriers{zm}N−1

m=0, whose numberMz and locationsm1,m2, . . . , mMz areun-
knownat the receiver. In other words, by imposing the unique constraint thatC
be full-column rank, perfect symbol recovery in a CP-based system explicitly
depends on the channel impulse response. However, the usefulness of Theo-
rem5.1goes beyond this aspect and, most importantly, it allows us to provide
universal code designs, assuring thatGcp is full-column rank foranypossible
configuration of the channel zeros. To this aim, on the basis of Theorem5.1,
observing that0 ≤ Mz ≤ L and any subset of linearly independent vectors is
constituted by linearly independent vectors, we can state the following univer-
sal design constraint for the user codes in a CP-based system:

Condition Dcp (Universal code design for L-ZF-MUD in CP-MC-CDMA):
Under the assumption thatC is full-column rank, no linear combination of
the columns ofC can be expressed as linear combinations of theL distinct
vectors1m1 ,1m2 , . . . ,1mL , for any{m1,m2, . . . , mL} ⊂ {0, 1, . . . , N − 1}.

3It is worth noting that, unlike L-ZF universal multiuser detectors, which do not exist for
J > N −Mz, the L-MMSE multiuser detector can still be synthesized in the presence of noise
even whenJ > N −Mz. However, as previously remarked, its performance is unsatisfactory
in this case (see also Section5.5). Thus,N−Mz also represents the maximum number of users
that a CP-based system can reliably manage when L-MMSE-MUD is employed at the receiver.
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Equivalently, require that

rank([C,Suniv]) = J +L, ∀{m1,m2, . . . , mL} ⊂ {0, . . . , N−1}, (5.14)

whereSuniv
4
= [1m1 ,1m2 , . . . ,1mL ] ∈ RN×L is a full-column rank matrix.

By virtue of Theorem5.1, the composite channel matrixGcp turns out
to be full-column rank forany FIR channel of orderL < Lp iff the code
design constraint Dcp is fulfilled. Observe that Dcp is stronger than condition
rank(C) = J . In fact, Dcp implies that rank(C) = J , whereas rank(C) = J
does not imply Dcp. It is also apparent from (5.14) that, since[C,Suniv] ∈
CN×(J+L), fulfillment of Dcp imposes that

J ≤ N − L, (5.15)

i,e, no more thanN − L users can be handled by a CP-based system. Fur-
thermore, it is worth noting that common WH spreading codes do not sat-
isfy (5.14). To show this, as a simple counterexample, consider the case of
two users (i.e.,J = 2), which employs the following8-length WH codes
c1 = [1,−1, 1,−1, 1,−1, 1,−1]T and c2 = [1, 1,−1,−1, 1, 1,−1,−1]T ,
obtained by picking the second and third columns of the Hadamard ma-
trix of order N = 8. In this case, it is easily verified thatc1 + c2 =
[2, 0, 0,−2, 2, 0, 0,−2]T . Hence, if the channel transfer functionG(z) has
Mz = 4 zeros on the subcarriersz0, z3, z4 andz7, the corresponding matrix
Gcp is not full-column rank, since a particular linear combination ofc1 andc2

can be expressed as the linear combination of the vectors10, 13, 14 and17:

c1 + c2 = 210 − 213 + 214 − 217. (5.16)

Hence, WH spreading codes do not guaranteeGcp to be full-column rank for
any FIR channel of orderL < Lp.

To design codes that instead fulfill Dcp, it is convenient to give an alterna-
tive interpretation of (5.14). Since it results [91] that

rank([C,Suniv]) = rank(Suniv) + rank[(IN − Suniv S−univ)C], (5.17)

with rank(Suniv) = L andS−univ = ST
univ [24], it follows that rank([C,Suniv]) =

J + L holds iff rank[(IN − Suniv ST
univ)C] = J . It can be verified by direct

inspection that all theL rows of the matrix(IN − Suniv ST
univ)C located in

the positionsm1 + 1,m2 + 1, . . . , mL + 1 are zero (all the entries are equal
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to zero), whereas theN − L remaining ones coincide with the corresponding
rows ofC. Consequently, the condition rank[(IN − Suniv ST

univ)C] = J , for
any{m1,m2, . . . , mL} ⊂ {0, 1, . . . , N−1}, is equivalent to state that, among
anyN − L rows ofC, a set ofJ ≤ N − L linearly independent rows can be
selected. More formally, Dcp can be equivalently restated as follows:

Reformulation of Condition Dcp: Let vector ωT
`

4
= [c(`)

1 , c
(`)
2 , . . . , c

(`)
J ] ∈

C1×J denote the(` + 1)th row of C, with ` ∈ {0, 1, . . . , N − 1}; for any
{m1,m2, . . . , mL} ⊂ {0, 1, . . . , N − 1}, there exists a subset ofJ ≤ N − L
distinct indices{`1, `2, . . . , `J} ⊂ {0, 1, . . . , N − 1} − {m1,m2, . . . , mL}
such that the vectorsω`1 , ω`2 , . . . ,ω`J

are linearly independent.

It is worthwhile to observe that condition Dcp does not uniquely specifyC
and, thus, different universal codes can be built. For instance, condition Dcp

can be accomplished by imposing that each row ofC be a Vandermonde-like
vector. Specifically, let us selectN ≥ J + L nonzero numbers{ρ`}N−1

`=0 and
build the code vectorscj as

cj =
1√
χj

[
ρj
0, ρ

j
1, . . . , ρ

j
N−1

]T
, ∀j ∈ {1, 2, . . . , J} , (5.18)

where the normalization by1/
√

χj has been introduced to ensure that‖cj‖2 =
1 for each user. Relying on the properties of Vandermonde vectors [56], it can
be easily verified that, provided that

ρ0 6= ρ1 6= . . . 6= ρN−1, (5.19)

anyJ rows ofC are linearly independent, thus satisfying Dcp. An advantage
of choosing the spreading vectors as in (5.18) is that, in this way, the code
matrix C is uniquely characterized only by theN parameters{ρ`}N−1

`=0 . For
example, such numbers can be chosen equispaced on the unit circle, by setting
ρ` = e−i 2π

N
`, ∀` ∈ {0, 1, . . . , N − 1}, thus obtaining

cj =
1√
N

[
1, e−i 2π

N
j , . . . , e−i 2π

N
(N−1) j

]T
, (5.20)

∀j ∈ {1, 2, . . . , J}. In this case, the spreading vectorcj turns out to be a
Vandermonde (VM) vector (up to the power-controlling constant1/

√
N ) and

the columns of the resulting code matrixC coincide with some columns of
theN -point DFT matrixWDFT. Obviously, since the VM code vectors (5.20)
are linearly independent by construction, they also guarantee the existence of
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L-ZF solutions for any FIR channel of orderL < Lp in underloaded ZP-based
systems.

Remark 4: Since the channel orderL is seldom known in practice, one
must resort to the upper boundL < Lp for synthesizingC, i.e, one should use
Lp instead ofL in condition Dcp. So doing, the allowable number of users must
obeyJ ≤ N −Lp, which is a more restrictive limit thanJ ≤ N −L. In other
words, requiring that the composite channel matrixGcp be full-column rank
for any FIR channel of orderL < Lp poses a stronger limitation on system
capacity.

5.4 Perfect symbol recovery for WL-MUD

In this section we extend the previous analysis to WL receivers, following our
papers [17, 18]. With reference to the unified model (5.6), when the infor-
mation symbols are improper, L-MUD does not fully exploit the second-order
statistics (SOS) of the received vectorr(k) because it does not take into ac-

count the conjugate autocorrelation matrixRrr∗(k)
4
= E[r(k) rT (k)] ∈ CR×R

(see chapter2 for more details). Invoking assumptions a1 and a2, we can write

Rrr∗(k) = %b(k) G GT . (5.21)

As we have underlined in the previous chapters (??), the symbolsbj(k) are
improper in a large number of digital modulation schemes (BPSK, DBPSK,
OQPSK, CPM, MSK, GMSK) and the improper nature ofbj(k) can be seen as
the consequence of a linear deterministic dependence existing betweenbj(k)
and its conjugate versionb∗j (k), i.e.,b∗j (k) = ei 2πξk bj(k), for anyk ∈ Z and
for any realization ofbj(k). To conveniently exploit the improper nature of
the transmitted symbols we must resort to WL-MUD structures (see chapter
2), which are characterized by the input-output relationship (4.19) that here is
reported for simplicity

wj(k) = fH
j,1 r(k) + fH

j,2 r∗(k) = f
H
j z̃(k), (5.22)

where f j
4
= [fT

j,1, f
T
j,2]

T ∈ C2R and the augmentedvector z̃(k)
4
=

[rT (k), rH(k)]T ∈ C2R is obtained by stackingr(k) and its complex conju-
gate versionr∗(k). Moreover, note that, with reference to the above-mentioned
improper modulations techniques, the following linear deterministic relation-
ship holds:b∗(k) = ei 2πξk b(k), for anyk ∈ Z which, substituted in (5.6),
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yields r∗(k) = ei 2πξk G∗ b(k) + v∗(k). The latter relation shows that the
(possible) conjugate cyclostationarity ofbj(k) can be deterministically com-
pensated for by performing aderotation[92] of r∗(k) before evaluating̃z(k),
that is, by considering the modified input-output relationship

wj(k) = fH
j,1 r(k) + fH

j,2 r∗(k) e−i 2πξk = f
H
j z(k) , (5.23)

where the augmented and derotated vectorz(k) ∈ C2R is given by

z(k)
4
=

[
r(k)

r∗(k) e−i 2πξk

]
=

[ G
G∗

]

︸ ︷︷ ︸
H∈C2R×J

b(k) +
[

v(k)
v∗(k) e−i 2πξk

]

︸ ︷︷ ︸
w(k)∈C2R

= Hb(k) + w(k) . (5.24)

Following the same lines that we have indicated in the previous chapters, in
the absence of noise, the ZF conditionwj(k) = bj(k) leads to the system of
linear equationsHH f j = ej , which is consistent for each user iff the aug-
mented channel matrixH is full-column rank, i.e., rank(H) = J ; under this
assumption, theminimal norm[24] solution ofHHf j = ej is

fWL-ZF,j = H (HHH)−1ej , (5.25)

which defines the WL-ZF or WL decorrelating multiuser detector. In the pres-
ence of noise, one can more suitably resort to the WL-MMSE multiuser detec-
tor [3, 50, 54], which is defined as

fWL-MMSE,j = arg min
f j∈CR

E[|bj(k)− wj(k)|2] = σ2
b R−1

zz H ej , (5.26)

whereRzz
4
= E[z(k) zH(k)] ∈ C2R×2R is the autocorrelation matrix ofz(k)

which, accounting for (5.24), and invoking assumptions a1 and a2, is given by

Rzz = σ2
b HHH + σ2

v I2R . (5.27)

Reasoning as in precedence for the L-MMSE multiuser detector, it is readily
seen that, ifH is full-column rank4, the WL-MMSE multiuser detector ends
up to the WL-ZF one in the limitσ2

v/σ2
b → 0.

4 More generally, whenH is possibly rank-deficient, thenlimσ2
v/σ2

b
→0 fWL-MMSE,j =

(HH)†ej
4
= fWL-LS,j , i.e., the WL-MMSE multiuser detector ends up to the minimal-norm

least-squares solution [24] of HHf j = ej [note that, whenH is full-column rank, one has
fWL-LS,j = fWL-ZF,j from (5.25)].
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Henceforth, similarly to the condition rank(G) = J for L-MUD, the full-
column rank property ofH not only assures the existence of WL-ZF solutions,
but also allows the WL-MMSE multiuser detector to satisfactorily work in the
high SNR region. Such a condition, i.e., rank(H) = J , is esplored in the
chapter4 with reference to a DS-CDMA system. The full column rank prop-
erty of H is thoroughly studied in Subsection5.4.1, with reference to both
CP- and ZP-based systems. In particular, by taking advantage of the results
derived in Section5.3, we will show that, if the user codes are judiciously
designed, the condition rank(H) = J can also be guaranteed when the num-
ber of users exceeds the number of subcarriers, regardless of the underlying
frequency-selective channel.

5.4.1 Rank characterization ofH and universal code design for
WL-ZF-MUD

From a unified perspective, observe that rank(H) = J iff the null spaces of the
matricesG andG∗ intersect only trivially, that is,N (G) ∩ N (G∗) = {0J}. It
can be easily verified that, ifG is full-column rank, which necessarily requires
that J ≤ N (underloaded systems), then this condition is trivially satisfied
and, hence, the augmented matrixH is full-column rank as well. Remarkably,
the converse statement is not true, that is,H may be full-column rank even
in overloaded MC-CDMA systems, i.e., when the numberJ of users is larger
then the numberN of subcarriers and, thus,G is inherently rank-deficient.
In the latter case, the code vectors{cj}J

j=1 cannotbe linearly independent,
thus giving rank(G) ≤ N , which in its turn implies that the dimension of the
subspaceN (G) is nonnull and is equal toJ − rank(G). Now, we analyze this
aspect separating ZP- and CP- cases.

ZP-based downlink

Let us consider a ZP-based system [see (5.5)], wherein G = Gzp =
ΘzpWIDFT C. In this case, the augmented channel matrixH assumes the
form

H = Hzp =
[Gzp

G∗zp

]
=

[
ΘzpWIDFT OP×N

OP×N Θ∗
zpW∗

IDFT

]

︸ ︷︷ ︸
Ξzp∈C2P×2N

[
C
C∗

]

︸ ︷︷ ︸
C∈C2N×J

= ΞzpC.

(5.28)
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It can be shown [56] that

rank(Ξzp) = rank(ΘzpWIDFT) + rank(Θ∗
zpW∗

IDFT) = 2N (5.29)

and, therefore
rank(Hzp) = rank(C). (5.30)

In other words, letcj
4
= [cT

j , cH
j ]T ∈ C2N define theaugmentedcode vector

of the jth user, forj ∈ {1, 2, . . . , J}, the matrixHzp is full-column rank iff
the code vectorsc1, c2, . . . , cJ are linearly independent. In other words, a nec-
essary and sufficient condition guaranteeing the existence of WL-ZF solutions
for ZP-based system is that the augmented code matrixC is full-column rank.
It is worthwhile to observe that the augmented code vectors{cj}J

j=1 can be
linearly independent even if the code vectorscj are linearly dependent, which
surely happens whenJ > N . In this regard, we provide the following Lemma.

Lemma 5.1 (Rank characterization ofC) If J ≤ 2N , then the augmented
frequency-domain code matrixC is full-column rank iff there are no conjugate
pairs of nonzero vectors belonging toN (C).

Proof: SeeC.2.

In underloaded scenarios, wherein the code vectorsc1, c2, . . . , cJ can be
linearly independent, it follows thatN (C) = {0J} and, thus, the augmented
matrix C turns out to be full-column rank, too. Therefore, from now on, we
focus attention on the more interesting overloaded environments, whereinN <
J ≤ 2N . In this case,C is a wide matrix and, assuming without loss of
generality that its firstN columnc1, c2, . . . , cN are linearly independent, its
remainingJ − N columnscN+1, cN+2, . . . , cJ can be expressed as a linear
combination of the firstN ones, thus obtaining the following decomposition

C = [Cleft Cleft Π] = Cleft [IN Π] , (5.31)

whereCleft
4
= [c1, c2, . . . , cN ] ∈ CN×N is nonsingular andΠ ∈ CN×(J−N)

is a tall matrix. Due to nonsingularity ofCleft, it follows thatN (C) =
N ([IN Π]). Furthermore, it can be verified that the general form of two vec-
torsα1, α2 ∈ CJ belonging toN ([IN Π]) and, thus, toN (C), is given by

α1 =
[ −Π
IJ−N

]
ϑ1 and α2 =

[ −Π
IJ−N

]
ϑ2 , (5.32)
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with arbitrary ϑ1,ϑ2 ∈ CJ−N . By virtue of Lemma5.1, the augmented
code matrixC is not full-column rank iff there exist at least two nonzero
vectorsϑ1 and ϑ2 such thatα1 = α∗2, which amounts toϑ1 = ϑ∗2 and
(Π − Π∗) ϑ1 = 0N . In its turn this second equation can be equivalently
written asIm{Π}ϑ1 = 0N . Therefore, if the imaginary part ofΠ is full-
column rank, thenα1 = α∗2 is satisfied iffα1 = α2 = 0J which, accounting
for Lemma5.1, assures that rank(C) = J . Summarizing this result, we can
state the following universal code design strategy for a ZP-based overloaded
system:

ConditionDzp (Universal code design for WL-ZF in ZP-MC-CDMA): Let

N < J ≤ 2N andCleft
4
= [c1, c2, . . . , cN ] ∈ CN×N be nonsingular, the code

matrix has the formC = Cleft [IN Π], whereΠ ∈ CN×(J−N) is a tall matrix,
whose imaginary partIm{Π} is full-column rank.

Some interesting remarks regarding fulfillment of conditionDzp can be
drawn at this point.

Remark 5: To begin with, observe that the code designDzp, which repre-
sents a necessary and sufficient condition in order to guarantee rank(C) = J ,
is universal, in the sense that it allowsHzp to be full-column rank foranyFIR
channel of orderL < Lp. If this universal code constraint is fulfilled, then
channel-irrespective WL-ZF-MUD is guaranteed up to2N users, which is ex-
actly the double of the number of users that can be managed in a ZP-based
system employing L-ZF-MUD.

Remark 6: If the spreading codes are real-valued, i.e.,C∗ = C, the matrix
Π is real-valued as well, i.e.,Im{Π} = ON×(J−N) and, consequently, condi-
tion Dzp is not satisfied. Thus, employing real-valued code vectors (e.g., WH
spreading) implies necessarily that, similarly to L-ZF-MUD, the existence of
WL-ZF solutions can be guaranteed only in underloaded MC-CDMA systems.
On the other hand, if complex-valued code vectors are employed, thenC can
be full-column rank even in overloaded systems, whereC is not full-column
rank.

Remark 7: Although they are complex-valued, the VM code vectors given
by (5.20) do not satisfyDzp whenN < J ≤ 2N : indeed, it is easily shown
that, in this case, the following decomposition holdsC = WDFT [IN J],

whereJ
4
= [11,12, . . . ,1J−N ] ∈ RN×(J−N) is real-valued and, in this case,

Im{Π} = Im{J} = ON×(J−N) is rank-deficient. Hence, the VM codes
(5.20) do not ensure channel-independent WL-ZF-MUD in an overloaded ZP-
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based downlink.

Besides allowing one to readily check whether a given set of spreading se-
quences assures the existence of WL-ZF solutions for any FIR channel of order
L < Lp, conditionDzp provides a direct procedure to build universal codes for
ZP-based overloaded systems. Among several options that can be pursued, we
devise here a simple universal code design relying on WH spreading. Specifi-
cally, letWN ∈ RN×N denote the common Hadamard matrix of orderN : in
underloaded scenarios, i.e., whenJ ≤ N , one can choose the spreading vec-
tors{cj}J

j=1 as the columns of1√
N

WN (the normalization by1/
√

N assures

that‖cj‖2 = 1 for each user); on the other hand, in an overloaded downlink,
whereinN < J ≤ 2N , the code matrixC can be chosen as follows

C =
1√
N

(
WN [IN iJ]

)
, (5.33)

which, as it is immediately seen, satisfies conditionDzp. In this way, the
spreading vectors of the firstN users have elements confined to the two values
{±1/

√
N}, whereas the entries of the code vectors of the remaining users take

on the two values{±i/
√

N}. In conclusion, we can state that the adoption of
the code matrix (5.33), which comes from a simple modification of the conven-
tional WH spreading technique, guarantees WL-ZF-MUD in both underloaded
and overloaded ZP-based downlink, for any FIR channel of orderL < Lp.

CP-based downlink

Let us consider a CP-based system [see (5.4)], whereinG = Gcp can be equiv-
alently expressed asGcp = WIDFT ΓcpC . In this case, one has

H = Hcp =
[Gcp

G∗cp

]
=

[
WIDFT ON×N

ON×N W∗
IDFT

]

︸ ︷︷ ︸
WIDFT∈C2N×2N

·
[

Γcp ON×N

ON×N Γ∗cp

]

︸ ︷︷ ︸
Γcp∈C2N×2N

[
C
C∗

]

︸ ︷︷ ︸
C∈C2N×J

= WIDFT ΓcpC . (5.34)

Since rank(WIDFT) = rank(WIDFT) + rank(W∗
IDFT) = 2N , it results that

rank(Hcp) = rank(ΓcpC) and, hence, we can directly investigate the rank
properties ofΓcpC. As a first remark, observe that, in order forΓcpC to
be full-column rank, the matrixC must necessarily be full-column rank, i.e.,
J ≤ 2N and rank(C) = J . Therefore, differently from the ZP case, lin-
ear independence of the augmented code vectorc1, c2, . . . , cJ is a necessary
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but not sufficient condition in order to have rank(Hcp) = J . Consequently,
to allow Hcp to be full-column rank even in overloaded scenarios, as a first
constraint on the user codes, we have to impose that the matrixC be synthe-
sized according toDzp, which represents a necessary and sufficient condition
in order to have rank(C) = J , whenN < J ≤ 2 N . This implies that any
spreading technique, which enables channel-irrespective WL perfect symbol
recovery for a CP-based downlink, can also be employed for the same purpose
in a ZP-based system. The full-column rank property of the matrixHcp is
characterized by the following Theorem.

Theorem 5.2 (Rank characterization ofHcp) If C is full-column rank and
the channel transfer functionG(z) has0 ≤ Mz ≤ L distinct zeros on the

subcarrierszm1 = ei 2π
N

m1 , zm2 = ei 2π
N

m2 , . . . , zmMz
= ei 2π

N
mMz , withm1 6=

m2 6= · · · 6= mMz ∈ {0, 1, . . . , N − 1}, then the augmented channel matrix
Hcp is full-column rank iff[C,Sz] ∈ C2N×(J+2Mz) is full-column rank, where

Sz
4
= diag[Sz,Sz] ∈ R2N×2Mz is full-column rank andSz ∈ RN×Mz has

been previously defined in Theorem5.1.

Proof: The proof is similar in spirit with that of Theorem5.1 and, thus, is
omitted.
Theorem5.2suggests the following two additional remarks:

Remark 8: As a first consequence, if the channel transfer functionG(z)
has no zeros on the subcarriers{zm}N−1

m=0, i.e., Mz = 0, then, similarly to
a ZP-based system, the linear independence of the augmented code vectors
c1, c2, . . . , cJ becomes a necessaryandsufficient condition for the existence
of WL-ZF solutions in a CP-based downlink. In this case, a CP-based down-
link can support up to2N active users, which is equal to the system capacity
of a ZP-based downlink employing WL-ZF-MUD. Instead, in the presence of
channel zeros on some subcarriers,Hcp can still be full-column rank. How-
ever, in this case, provided thatC is full-column rank, the existence of WL-ZF
solutions explicitly depends on the channel-zero configuration.

Remark 9: Most importantly, unlike the condition rank([C,Sz]) = J +Mz

of Theorem5.1(see also Remark 3), the condition rank([C,Sz]) = J + 2Mz

can be satisfied even when the number of users is larger than the number of
subcarriers. Specifically, rank([C,Sz]) = J + 2Mz necessarily requires that
2N ≥ J + 2Mz, that is, the numberJ of active users must not be larger
than 2 (N − Mz), with 0 < Mz ≤ L < Lp ¿ N . Hence, similarly to
a ZP-based system, WL-ZF-MUD allows a CP-based downlink to support a
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number of users that is exactly the double of the number of users that can be
accommodated when L-ZF-MUD is employed. However, in the latter case,
the allowable number of users is decremented bytwo units for any additional
zero on the subcarriers and is smaller than2N , which represents the system
capacity of a ZP-based system employing WL-ZF-MUD. In the worst case,
when all the channel zeros are located at the subcarriers, the maximum number
of allowable users in a CP-based downlink is2 (N − L).

Similarly to Theorem5.1, the most important implication of Theorem5.2
regards the fact that it enlightens how to single out universal code designs,
which assure thatHcp be full-column rank for any possible configuration of
the channel zeros. With this goal in mind, paralleling the arguments that led
to condition Dcp in Subsection5.3.1, the following code design represents a
necessary and sufficient condition ensuring thatHcp is full-column rank for
any possible configuration of the channel zeros:

ConditionDcp (Universal code design for WL-ZF in CP-MC-CDMA): De-

fine the full-column rank matrixSuniv
4
= diag[Suniv,Suniv] ∈ R2N×2L,

whereSuniv ∈ RN×L has been previously defined in condition Dcp, then,
∀{m1,m2, . . . , mL} ⊂ {0, 1, . . . , N − 1},

rank([C,Suniv]) = J + 2 L or, equivalently,

rank[(I2N − Suniv ST
univ)C] = J . (5.35)

The price to pay for imposing that the matrix[C,Suniv] ∈ C2N×(J+2L)

be full-column rank is a reduction of the system capacity (see Remark 9) be-
cause the universal code designDcp can be devised for a maximum number
of 2 (N − L) users. It should be observed thatDcp is stronger than condi-
tion Dzp: indeed,Dcp necessarily requires that rank(C) = J ; on the other
hand, rank(C) = J is not sufficient to assure fulfillment ofDcp. On the
other hand, it is noteworthy that, if condition Dcp is satisfied, which is pos-
sible as long asJ ≤ N − L, thenDcp is surely fulfilled, too. Therefore,
by imposing the unique constraint that theN parameters{ρ`}N−1

`=0 be dis-
tinct, the code vectors (5.18) guarantee, up toN − L users, the existence
of universal WL-ZF solutions. However, in its present form, conditionDcp

does not help us give a direct procedure for synthesizing universal spread-
ing codes whenN − L < J ≤ 2 (N − L). Nevertheless, taking into

account that the matrix(I2N − Suniv ST
univ)C ∈ C2N×J is obtained from

C by setting to zero all the entries of its2L rows located in the positions
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m1 + 1,m2 + 1, . . . , mL + 1,m1 + N + 1,m2 + N + 1, . . . , mL + N + 1,
with reference to the specific case whereinN − L < J ≤ 2 (N − L), we can
reformulate conditionDcp in this way:

Reformulated ConditionDcp when N − L < J ≤ 2 (N − L): Let

ωT
`

4
= [c(`)

1 , c
(`)
2 , . . . , c

(`)
J ] ∈ C1×J denote the(` + 1)th row of C, with

` ∈ {0, 1, . . . , N−1}; whenN−L < J ≤ 2 (N−L), for any subset of distinct
indices{`1, `2, . . . , `N−L} ⊂ {0, 1, . . . , N − 1}, there existsJ linearly inde-
pendent vectors from the total setω`1 ,ω`2 , . . . , ω`N−L

, ω∗`1 ,ω
∗
`2

, . . . , ω∗`N−L
.

Reformulation of conditionDcp allows one to readily check out that the
code vectors (5.18) can still fulfill Dcp when N − L < J ≤ 2 (N − L),
provided that, in addition toρ0 6= ρ1 6= · · · 6= ρN−1, further constraints on the
parameters{ρ`}N−1

`=0 are imposed. More precisely, relying on the properties
of Vandermonde vectors [56], it is not difficult to prove that conditionDcp is
surely satisfied if, besides requiring that the parameters{ρ`}N−1

`=0 be distinct,
one additionally imposes that

ρ`1 6= ρ∗`2 , ∀`1, `2 ∈ {0, 1, . . . , N − 1}, (5.36)

which means that the number{ρ`}N−1
`=0 must be complex-valued and cannot be

pairwise conjugate. Additionally, it can be immediately inferred that the VM
codes (5.20) cannot satisfy the code designDcp since, in this case, it turns out
thatρ` = ρ∗N−`, ∀` ∈ {0, 1, . . . , N − 1}. Furthermore, it can be verified by
direct inspection that the code matrix given by (5.33) does not satisfy condition
Dcp (see also Section5.5) and, thus, contrary to the ZP case, such a spreading
technique does not guarantee the existence of universal WL-ZF solutions in
CP-based systems.

To develop a family of codes fulfilling conditionDcp, we restrict our at-
tention to the spreading vectors (5.18) and, in particular, we start from the
N -point DFT codes (5.20), wherebyρ` = e−i 2π

N
`, ∀` ∈ {0, 1, . . . , N − 1}. To

obtain a set ofN complex-valued parameters{ρ`}N−1
`=0 equispaced on the unit

circle, which are not pairwise conjugate, it is sufficient to introduce a suitable

rotation by settingρ` = e−i( 2π
N

`−θ), ∀` ∈ {0, 1, . . . , N − 1} andθ ∈ (0, 2π),
thus getting the code vectors

cj =
1√
N

[
e−i(−θ) j , e−i( 2π

N
−θ) j , . . . , e−i( 2π

N
(N−1)−θ) j

]T
, (5.37)
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∀j ∈ {1, 2, . . . , J}, where, in order to fulfill the constraintρ`1 6= ρ∗`2 , ∀`1, `2 ∈
{0, 1, . . . , N − 1}, the angle rotationθ must obey the following condition:

θ 6= π

N
(`1 + `2) + h π, ∀`1, `2 ∈ {0, 1, . . . , N − 1} and ∀h ∈ Z. (5.38)

Note that the spreading vectors (5.37) differ from those in (5.20) only for the
multiplicative scalare−i(−θ) j . The code vectors (5.37) satisfy the condition
Dcp and, hence, they ensure universal WL perfect symbol recovery not only
whenJ ≤ N − L, but also whenN − L < J ≤ 2 (N − L), in both CP- and
ZP-based systems. Finally, observe that, whenL is replaced withLp, universal
WL-ZF-MUD is still possible in a CP-based system, with the difference that
perfect symbol recovery can be guaranteed to at most2 (N −Lp) users, whose
number, although does not depend on the channel order, is however smaller
than2 (N − L).

5.5 Numerical performance analysis

To corroborate our theoretical analysis, we resort to Monte Carlo computer
simulations in this section. Specifically, we consider that, without loss of gen-
erality, the desired user is the first one (j = 1) and, moreover, we assume that
g is exactly known at the receiver.

In all the experiments, the following simulation setting is adopted. The
CP- and ZP-based MC-CDMA systems employN = 16 subcarriers, with
Lp = 4 and OQPSK improper symbol modulation. Both systems use four
different frequency-domain spreading sequences: the common WH spreading
codes; the VM spreading vectors given by (5.20); the complex-valued WH
(CWH) code vectors given by (5.33); the rotated VM (RVM) code vectors
given by (5.37), with θ = π/32. The baseband discrete-time multipath channel
{g(`)}L

`=0 is a FIR filter of orderL = 3, whose transfer function is given by

G(z) = (1− ζ1 z−1) (1− ζ2 z−1) (1− ζ3 z−1) , (5.39)

where the group(ζ1, ζ2, ζ3) of its three zeros assumes a different configuration
in each Monte Carlo run. During the first16 runs, we setζ1 = ei 2π

N
m1 (one

zero on the subcarriers), where, in each run,m1 takes on a different value in
{0, 1, . . . , N − 1}, whereas the magnitudes and phases ofζ2 andζ3, which are
modeled as mutually independent random variables uniformly distributed over
the intervals(0, 2) and(0, 2π), respectively, are randomly and independently
generated from run to run. During the subsequent

(
16
2

)
= 120 runs, we set
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ζ1 = ei 2π
N

m1 andζ2 = ei 2π
N

m2 (two zeros on the subcarriers), where, in each
run, m1 andm2 take on a different value in{0, 1, . . . , N − 1}, with m1 6=
m2, whereas the magnitude and phase ofζ3, which are modeled as mutually
independent random variables uniformly distributed over the intervals(0, 2)
and(0, 2π), respectively, are randomly and independently generated from run
to run. During the last

(
16
3

)
= 560 runs, we setζ1 = ei 2π

N
m1 , ζ2 = ei 2π

N
m2

and ζ3 = ei 2π
N

m3 (three zeros on the subcarriers), where, in each run,m1,
m2 andm3 take on a different value in{0, 1, . . . , N − 1}, with m1 6= m2 6=
m3. In this way, one obtains16 + 120 + 560 = 696 independent channel
realizations. According to assumption A2, the entries of the noise vectorv(k)
[see eq. (5.6)] are modeled as zero-mean independent identically-distributed
(iid) complex circular Gaussian random variables, with varianceσ2

v , and the

SNR of the desired user is defined as SNR
4
= (σ2

b ‖c1‖2)/σ2
v (since‖cj‖2 = 1,

∀j ∈ {1, 2, . . . , J}, all the users undergo the same SNR).
For both CP- and ZP-based systems, employing the aforementioned four

different spreading sequences, we carried out a comparative performance study
of the L-ZF, L-MMSE, WL-ZF and WL-MMSE detectors5. At first sight,
it seems that the synthesis of the L-ZF detector given by (5.8), which does
not depend on the statistics of the received data, requires knowledge of the
spreading codes of all the active users, which is an unreasonable requirement
in the downlink. However, following the same lines of [44], this problem can
be circumvented by implementing the L-ZF detector by means of the following
SOS-basedsubspacerepresentation

fL-ZF,1 = Vs (Λs − σ2
v IJ)−1 VH

s Ξ1 g , (5.40)

whereVs ∈ CR×J collects the eigenvectors associated with theJ largest
eigenvalues ofRrr (arranged in descending order), which represents the di-

agonal entries ofΛs
4
= diag[λ1, λ2, . . . , λJ ] ∈ RJ×J , whereas: for a CP-

based system (R = N ), Ξ1 = Ξcp,1
4
= Φ̃cp,1 Ωcp ∈ CN×Lp is a known

full-column rank matrix, withΦ̃cp,1 ∈ CN×N being a nonsingular circu-

lant matrix, whose first column is given bỹc1
4
= WIDFT c1 ∈ CN ; for a

ZP-based system (R = P ), Ξ1 = Ξzp,1
4
= Φ̃zp,1 Ωzp ∈ CP×Lp, where

5In the sequel, for notational convenience, a particular detector, which operates in a system
employing a given set of spreading sequences, will be synthetically referred to through the
acronym of the detector followed by the acronym of the code enclosed in round brackets; for
example, the notation “L-ZF (WH)” means that the L-ZF detector is used at the receiver and, at
the same time, WH spreading codes are employed at the transmitter.
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Φ̃zp,1 ∈ CP×P is a known lower triangular Toeplitz [56] matrix having as first

column[c̃T
1 , 0, . . . , 0]T and as first row[c̃ (0)

1 , 0, . . . , 0]. In the subspace-based
form (5.40), apart fromg and the eigenstructure ofRrr (which can be con-
sistently estimated from the received data), the synthesis of the L-ZF detector
requires only knowledge of the desired code vectorc1. For a fair comparison,
we implemented the subspace-based version of the L-MMSE detector defined
in (5.9), which can be expressed as [44, 93] (see also chapter4 for more details)

fL-MMSE,1 = Vs Λ−1
s VH

s Ξ1 g . (5.41)

The derivations reported in [44, 93], which exclusively consider linear receiv-
ing structure, can be suitably extended to obtain the subspace versions of the
WL-ZF and WL-MMSE detectors given by (5.25) and (5.26), respectively,
thus obtaining (for the sake of brevity, we omit the mathematical details)

fWL-ZF,1 = Us (Σs − σ2
v IJ)−1 UH

s

[
Ξ1 g
Ξ∗1 g∗

]
, (5.42)

fWL-MMSE,1 = Us Σ−1
s UH

s

[
Ξ1 g
Ξ∗1 g∗

]
, (5.43)

whereUs ∈ C2R×J collects the eigenvectors associated with theJ largest

eigenvaluesµ1, µ2, . . . , µJ of Rzz (arranged in descending order) andΣs
4
=

diag[µ1, µ2, . . . , µJ ] ∈ RJ×J . In all the experiments, sample estimates of the
eigenvectors and eigenvalues (including the noise varianceσ2

v needed for the
synthesis of the ZF detectors) ofRrr andRzz were obtained in batch-mode
from the sample autocorrelation matricesR̂rr andR̂zz, respectively, by us-
ing a data record ofK = 500 symbols. Finally, as performance measure,
we resorted to the average BER (ABER) at the output of the considered re-
ceivers: after estimating the detector weight vectors on the basis of the given
data record, for each of the696 Monte Carlo run (wherein, besides the channel
impulse response, independent sets of noise and data sequences were randomly
generated), an independent record ofKaber = 105 symbols was considered to
evaluate the ABER.

Experiment 5.1 (ABER versus SNR): in the first group of experiments, we
evaluated the performances of the considered receivers as a function of the
SNR ranging from0 to 20 dB.

In the first two experiments, we preliminarily studied the performances of
the L-ZF and L-MMSE detectors: since linear receivers can work only when
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J ≤ N , we considered in these experiments underloaded CP- and ZP-based
systems, withJ = 10 active users. In Fig.5.1, we considered a CP-based sys-
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Figure 5.1: ABER versus SNR (CP-based downlink, underloaded sys-
tem withJ = 10 users, linear receiving structures).

tem employing either WH or VM spreading codes6. In this case, it is apparent
from Fig.5.1 that the performances of both the “L-ZF (WH)” and “L-MMSE
(WH)” detectors exhibit a marked floor in the high SNR region, which is the
natural consequence of the fact that, for a CP-based downlink, WH spread-
ing sequences do not ensure the existence of L-ZF solutions when the channel
transfer function exhibits zeros located on the subcarriers. On the other hand,
when VM codes are used, perfect symbol recovery in the absence of noise is
guaranteed regardless of the channel zero locations. In fact, as it is shown in

6The results regarding CWH code vectors are not reported since, for underloaded systems,
they end up to the WH spreading sequences; additionally, in the same scenario, we do not report
the results concerning the RVM spreading vectors since they are very similar to those presented
for the VM code vectors.
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Fig. 5.1, the curves of both the “L-ZF (VM)” and “L-MMSE (VM)” detectors
go down very quickly as the SNR increases, thus assuring a huge performance
gain with respect to the “L-ZF (WH)” and “L-MMSE (WH)” receivers. The
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Figure 5.2: ABER versus SNR (ZP-based downlink, underloaded sys-
tem withJ = 10 users, linear receiving structures).

results of Fig.5.2were instead obtained by considering a ZP-based downlink.
In this scenario, both WH and VM codes assure the existence of L-ZF solutions
for any FIR channel of orderL < Lp. Indeed, as it is apparent from Fig.5.2,
the performances of all the receivers under comparison rapidly improve for in-
creasing values of the SNR. As regards the L-ZF receivers, it is noteworthy that
the “L-ZF (WH)” detector performs better than the “L-ZF (VM)” one: specif-
ically, with respect to the “L-ZF (VM)” receiver, the “L-ZF (WH)” detector
saves about4 dB in transmitter power, for a target ABER of10−4. This means
that, in comparison with VM spreading, WH codes lead to a reduced noise
enhancement at the receiver output. Anyway, this performance gap is substan-
tially halved if one brings the same comparison between the performances of
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the “L-MMSE (WH)” and “L-MMSE (VM)” detectors.
In the following two experiments, we investigated the performances of the

WL-ZF and WL-MMSE detectors: since WL receivers can work even when
J > N , we simulated in these experiments overloaded CP- and ZP-based
systems withJ = 20 active users. With reference to a CP-based system, re-
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Figure 5.3: ABER versus SNR (CP-based downlink, overloaded sys-
tem withJ = 20 users, WL receiving structures).

sults of Fig.5.3show that the “WL-ZF (WH)”, “WL-MMSE (WH)”, “WL-ZF
(VM)” and “WL-MMSE (VM)” receivers do not work at all. As previously
pointed out in Remarks 6 and 7, these catastrophic performances arise since,
not only the WH spreading codes, but also the VM code vectors do not assure
the full-column rank property of the augmented code matrixC in overloaded
environments, which is a necessary condition for the existence of WL-ZF solu-
tions in CP-based systems. In addition, since the code matrix given by (5.33)
does not satisfy conditionDcp, the curves of both the “WL-ZF (CWH)” and
“WL-MMSE (CWH)” detectors exhibit an unacceptable floor for moderate-
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to-high values of the SNR. In contrast, it can be seen from the same figure
that the proposed RVM spreading vectors (5.37), which ensure the existence
of universal WL-ZF solutions in both CP- and ZP-based overloaded systems,
allow the “WL-ZF (RVM)” and “WL-MMSE (RVM)” receivers to work very
well. Fig. 5.4 reports the ABER curves of the receivers under comparison for
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Figure 5.4: ABER versus SNR (ZP-based downlink, overloaded sys-
tem withJ = 20 users, WL receiving structures).

a ZP-based system. We recall that, in this case, the full-column rank property
of C is a necessary and sufficient condition for the existence of WL-ZF solu-
tions. Indeed, besides corroborating the uselessness of the “WL-ZF (WH)”,
“WL-MMSE (WH)”, “WL-ZF (VM)” and “WL-MMSE (VM)” receivers in
the considered overloaded setting, results of Fig.5.4confirm that both the pro-
posed CWH and RVM code vectors ensure the existence of universal WL-ZF
solutions, by showing that the curves of the “WL-ZF (CWH)”, “WL-MMSE
(CWH)”, “WL-ZF (RVM)” and “WL-MMSE (RVM)” rapidly fall away as the
SNR goes up. In particular, as already evidenced in the linear case, due to
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noise amplification effects, the “WL-ZF (CWH)” and “WL-MMSE (CWH)”
detectors perform better than the corresponding counterparts “WL-ZF (RVM)”
and “WL-MMSE (RVM)”, expecially for low SNR values, by guaranteeing a
significant saving in transmitter power, for a given value of the ABER.

Experiment 5.2 (ABER versus number of users): in the second group of
experiments, the performances of the considered receivers were studied as a
function of the numberJ of active users, by setting SNR= 10 dB. As pre-
viously done, we investigated the performances of linear and WL receivers
separately.

Fig. 5.5 and Fig.5.6 report the performances of the L-ZF and L-MMSE
detectors, when they are employed in both CP- and ZP-based underloaded
systems, which use either WH or VM spreading sequences (the observation
made in footnote6 still applies to this case). With reference to a CP-based
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Figure 5.5: ABER versus numberJ of users (CP-based downlink,
SNR= 10 dB, linear receiving structures).

system, results of Fig.5.5shows that, as long as the number of users is less than
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Figure 5.6: ABER versus numberJ of users (ZP-based downlink,
SNR= 10 dB, linear receiving structures).

the thresholdN − L = 13 (see Remarks 3 and 4), the “L-ZF (VM)” and “L-
MMSE (VM)” detectors significantly outperform their “L-ZF (WH)” and “L-
MMSE (WH)” corresponding counterparts. However, as soon as the number of
active users gets overJ = 13, in which case universal perfect symbol recovery
in the absence of noise cannot be guaranteed, the performances of both the “L-
ZF (VM)” and “L-MMSE (VM)” detectors rapidly deteriorate as the system
load grows, by approaching the curves of the “L-ZF (WH)” and “L-MMSE
(WH)” receivers. On the other hand, it can be seen from Fig.5.6 that, for a
ZP-based downlink, wherein the linear independence of the code vectors is a
sufficient and necessary condition for assuring up toN users the existence of
universal ZF solutions, all the receivers under comparison enable to achieve
a greater system capacity than a CP-based system. In particular, according
with the results of Fig.5.2, the WH spreading sequences allow both the “L-ZF
(WH)” and “L-MMSE (WH)” detectors to outperform their “L-ZF (VM)” and
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“L-MMSE (VM)” counterparts, respectively, for all the considered values ofJ .
It is worthwhile to note that, withJ = N = 16 users, the “L-MMSE (WH)”
detector is able to assure an ABER of about5 · 10−4 at its output, whereas
the “L-MMSE (VM)” one exhibits competitive performances, i.e., less than
5 · 10−4, only up to15 users.

In the last two experiments, we investigated the performances of the WL-
ZF and WL-MMSE detectors as a function of the numberJ of users, ranging
from an underloaded (J ≤ N ) to an overloaded (J > N ) system.
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Figure 5.7: ABER versus numberJ of users (CP-based downlink,
SNR= 10 dB, WL receiving structures).

For a CP-based downlink, it can be seen from Fig.5.7 that, paying no
attention to the uninteresting cases of WH and CWH spreading sequences,
which do not guarantee channel-irrespective perfect symbol recovery in both
underloaded and overloaded CP-based systems, the “WL-ZF (VM)” and “WL-
MMSE (VM)” detectors perform comparably to the “WL-ZF (RVM)” and
“WL-MMSE (RVM)” ones only for J = 12 active users. Beyond this value,
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Figure 5.8: ABER versus numberJ of users (ZP-based downlink,
SNR= 10 dB, WL linear receiving structures).

while the performances of the “WL-ZF (VM)” and “WL-MMSE (VM)” re-
ceivers get worse very quickly, both the “WL-ZF (RVM)” and “WL-MMSE
(RVM)” detectors still work satisfactorily up to2 (N − L) = 26 users (see
Remarks 9 and 11), by exhibiting ABER values less than or equal to10−2

and2 · 10−3, respectively. Beyond the thresholdJ = 26, whereupon the ex-
istence of universal WL-ZF solutions cannot be ensured, the performances of
the “WL-ZF (RVM)” and “WL-MMSE (RVM)” detectors rapidly worsen as
J increases, and became comparable to those of the “WL-ZF (CWH)” and
“WL-MMSE (CWH)” receivers. Finally, with reference to a ZP-based system,
the curves depicted in Fig.5.8evidence that the performances of the “WL-ZF
(WH)”, “WL-MMSE (WH)”, “WL-ZF (VM)” and “WL-MMSE (VM)” re-
ceivers are very poor when the system becomes overloaded. Furthermore, it is
apparent that the proposed RVM and CWH code vectors allow both the WL-ZF
and WL-MMSE receiver to manage a number of users which is significantly
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larger than the number of subcarriers. Remarkably, withJ = 2N = 32 users,
the “WL-MMSE (CWH)” detector is able to assure an ABER of4 · 10−4 at
its output, whereas the ABER performance of the “WL-MMSE (VM)” is be-
low 10−3 up to30 users. On the basis of these experiments, we maintain that,
among the different spreading techniques considered herein, the RVM code
vectors turn out to be the best choice for both underloaded and overloaded CP-
based systems, equipped with both linear and WL receiving structure, whereas
the CWH spreading vectors allow both linear and WL detectors to exhibit the
best performances in both underloaded and overloaded ZP-based systems.



Conclusions

In this thesis, the role of the Widely-Linear processing in the narrowband and
wideband systems has been proposed.

With reference to narrowband systems, we analyzed the constant modulus
cost function under the general assumptions that improper modulation schemes
of practical interest are employed and the baseband equivalent of the chan-
nel impulse response is complex-valued. This study allows one to determine
a broad family of undesired minima of the CM cost function, which do not
lead to perfect symbol recovery in the absence of noise. Successively, in this
contest, we applied widely-linear approach providing the mathematical condi-
tions assuring perfect symbol recovery in the absence of noise. Furthermore,
we enlightened that, similarly to the L-FS-CM equalizer, the performances of
WL-CM equalizers suffer from the presence of undesired global minima. To
overcome this drawback we proposed to resort to a constraint WL-CM equal-
izer.

In the context of wideband systems, with reference to DS-CDMA tech-
nique, we developed performance comparisons between ideal and data-
estimated WL-MOE and L-MOE receivers. With reference to the ideal im-
plementation, we investigated the relative performances of the WL-MOE and
L-MOE receivers in the high-SNR regime. In this case, we provided a nec-
essary and sufficient condition on the spreading codes, which allows the WL-
MOE receiver to achieve perfect MAI suppression even in overloaded down-
link configurations. As regards the data-estimated versions of the WL-MOE
and L-MOE receivers, we derived easily interpretable formulas, which allow
one to obtain clear insights about the effects of different parameters on perfor-
mances. In a nutshell, compared with the L-MOE one, the performance of the
WL-MOE receiver turns out to be more sensitive to finite-sample-size effects,
and the performance gains predicted by the theory can be achieve in practice
only by resorting to the more sophisticated subspace-based implementation.
Then, to assess of the effects of channel-estimation errors we have extended
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the previous analysis. Specifically, we presented a comprehensive performance
comparison between different versions of the L- and WL-MOE receivers with
blind CE, when both the ACM and the channel impulse response of the desired
user are estimated from a finite sample-size. This analysis allows to conclude
that with reference to their subspace-based implementations, for moderate-to-
high values of the SNR, errors in estimating the L-SUB-CE and WL-SUB-CE
receivers are essentially due to ACM estimation. The same is not true for
the L-SMI-CE and WL-SMI-CE receivers, implemented by using the sample
ACM directly, for which CE errors undesirably combine with ACM errors;
however, compared with the known-channel case, CE errors adversely affect
the SINR performances of L-SMI-CE and WL-SMI-CE receivers in a similar
way. Therefore, when considering finite sample-size implementation, the more
sophisticated subspace-based implementation is an effective method to assure
that the WL-MOE receiver (with or without CE) significantly outperform (for
low-to-moderate values of the SNR) its linear counterpart. In this case, for a
given channel length, the WL-MOE receiver allows one to work with an in-
creased number of users, which makes it a viable choice in heavily-congested
DS-CDMA networks.

Finally, in the last part of this thesis, we tackled the problem of deriving
mathematical conditions guaranteeing perfect symbol recovery in the absence
of noise for either CP-based or ZP-based MC-CDMA downlink transmissions,
which employ frequency-domain symbol-spreading. The conditions derived
are channel-independent and are expressed in terms of relatively simple sys-
tem design constraints, regarding the maximum number of allowable users
and their spreading sequences. Specifically, it was first shown that, similarly
to a ZP-based MC-CDMA downlink and differently from CP-OFDM systems,
L-ZF-MUD, which is confined only to underloaded systems and can be used
when transmitted symbols are either proper or improper, can be guaranteed
for a CP-based MC-CDMA downlink, even when the channel transfer func-
tion exhibits nulls on some used subcarriers. On the other hand, when the
information-bearing symbols are improper, it was further shown that, for both
CP- and ZP-based systems, WL-ZF-MUD allows one to successfully operate
even in overloaded scenarios, by doubling the system capacity, regardless of
the channel zero locations. However, such an increased throughput can be
achieved as long as appropriate complex-valued spreading codes are used.

Basing on the above results, the suggestions for future work are twofold.
As regard to narro- and wide-band systems, future work could include an ex-
tension of the performance analyses to time-variant channels, since in such an
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environment new issues arise in channel equalization. Moreover, more atten-
tion should be devoted to the role of widely linear processing in ultrawideband
systems, which represent a suitable technology to achieve high data rates in
wireless communications.





Appendix A

Constant Modulus Equalizers

A.1 Proof of Theorem3.1

We distinguish the following groups of stationary points.

G0. The only vector belonging to this group isq0 = OK , which trivially
fulfills g̃(q) = OK .

G1. In this group, there are all the vectors satisfyingg̃(q) = OK ensuring an
ISI-free equalizer output, that is, they exhibit only one nonzero entryqi1 , with
i1 ∈ {0, 1, . . . , K − 1}, i.e.,q = qi1 ei1 .

Vector q = qi1 ei1 satisfies g̃(q) = OK if and only if (iff)[
(κs + 3 σ4

s) |qi1 |2 − γs σ2
s

]
qi1 ej 2πβi1 = 0; sinceqi1 ej 2πβi1 6= 0 andκs =

γs σ2
s−3σ4

s , this equation is equivalent toγs σ2
s |qi1 |2−γs σ2

s = 0 ⇔ |qi1 | = 1.
Thus, the general expression of the vectors belonging to this group is

q1 = ej θ ei1 , with θ ∈ [0, 2π) and i1 ∈ {0, 1, . . . , K − 1}. (A.1)

G2. In this group, there are all the vectors satisfyingg̃(q) = OK leading to
an ISI-contaminated equalizer output, i.e., the number of their nonzero entries
is greater than one.

To prove the existence of undesired local minima, it is sufficient to focus at-
tention on those solutions of̃g(q) = OK possessing only two nonzero entries
qi1 andqi2 , with i1 6= i2 ∈ {0, 1, . . . ,K − 1}, i.e.,q = qi1 ei1 + qi2 ei2 . After
some algebraic manipulations, it can been seen thatq fulfills g̃(q) = OK iff
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the following system is satisfied:





[(κs + σ4
s) |qi1 |2 + 2 σ4

s (|qi1 |2 + |qi2 |2)− γs σ2
s ]|qi1 |2

+σ4
s (q∗i1 qi2)

2 ej 2πβ(i1−i2) = 0[
(κs + σ4

s) |qi2 |2 + 2 σ4
s (|qi1 |2 + |qi2 |2)− γs σ2

s

] |qi2 |2
+σ4

s (qi1 q∗i2)
2 e−j 2πβ(i1−i2) = 0

(A.2)

Since the quantities enclosed in square brackets are real-valued, fulfillment
of (A.2) requires that(qi1 q∗i2)

2 e−j 2πβ(i1−i2) be a real number, which happens
when

∠qi1 − ∠qi2 = π β (i1 − i2) + π `i1,i2 (A.3)

or when

∠qi1 − ∠qi2 = π β (i1 − i2) +
π

2
+ π `i1,i2 , (A.4)

with `i1,i2 ∈ Z.
In these cases, system (A.2) can be split up into the two different systems

{
γs |qi1 |2 + σ2

s δi1,i2 |qi2 |2 = γs

σ2
s δi1,i2 |qi1 |2 + γs |qi2 |2 = γs

, with δi1,i2 = 1, 3 , (A.5)

which involve only the magnitudes ofqi1 and qi2 . Specifically, it re-
sults thatδi1,i2 = 3 when(qi1 q∗i2)

2 e−j 2πβ(i1−i2) is positive, whereas one has
δi1,i2 = 1 when(qi1 q∗i2)

2 e−j 2πβ(i1−i2) is negative.
By resorting to the Cramer’s rule, it is easily seen that, ifγs 6= σ2

s δi1,i2 ,
the solution of system (A.5) is unique and is given by|qi1 |2 = |qi2 |2 =
γs/(γs + σ2

s δi1,i2). On the other hand, whenγs = σ2
s δi1,i2 , system (A.5)

admits an infinite number of solutions characterized by the relation|qi1 |2 +
|qi2 |2 = 1.

In summary, the general expressions of the vectors belonging to this group
are given by

q2,1 = ej θ
√

γs/(γs + 3 σ2
s) · [ei1 + (−1)`i1,i2 ej πβ(i2−i1) ei2 ] (A.6)

and

q2,2 = ej θ
√

γs/(γs + σ2
s) · [ei1 − j (−1)`i1,i2ej πβ(i2−i1) ei2 ], (A.7)
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for σ2
s < γs < 3σ2

s , whereas, forγs = 3 σ2
s , one obtains

q2,3 = ej θ · [ρ ei1 + (−1)`i1,i2 ej πβ(i2−i1)
√

1− ρ2 ei2 ], for γs = 3 σ2
s

(A.8)
and, finally, forγs = σ2

s , one has

q2,4 = ej θ·[ρ ei1−j (−1)`i1,i2ej πβ(i2−i1)
√

1− ρ2 ei2 ], for γs = σ2
s (A.9)

with θ ∈ [0, 2π), `i1,i2 ∈ Z, i1 6= i2 ∈ {0, 1, . . . ,K − 1} and0 < ρ < 1.
At this point, to find the local minima of̃Jcm(q), we have to study the pos-

itive definiteness of̃H(q) given by (3.16), evaluated at each of the stationary
points previously derived.

G0. SinceH̃(q0) = −2 γs σ2
s IK , the cost functioñJcm(q) has a local maxi-

mum atq0 = OK .

G1. The matrix H̃(q1) turns out to be diagonal, with diagonal entries
{H̃(q1)}i1+1,i1+1 = 2 σ2

s γs and{H̃(q1)}i+1,i+1 = −2σ2
s (γs − 2σ2

s), for
i ∈ {0, 1, . . . , K − 1} − {i1}. Hence, ifγs ≥ 2σ2

s , the diagonal entries of
H̃(q1) take on both positive and negative values and, consequently, the vector
q1 is a saddle point. On the other hand, in accordance with assumption A1, if
γs < 2σ2

s , the diagonal entries of the diagonal matrixH̃(q1) are all positive
and, thus,J̃cm(q) has a local minimum atq1.

G2.
First, the matrixH̃(q2,1) is nonsingular, with diagonal entries

{H̃(q2,1)}i+1,i+1 = 2 γs (κs + 2 σ4
s)/(γs + 3 σ2

s), for i ∈ {i1, i2}, (A.10)

and

{H̃(q2,1)}i+1,i+1 = −2 γs (κs + 2 σ4
s)/(γs + 3 σ2

s),

for i ∈ {0, 1, . . . , K − 1} − {i1, i2}. (A.11)

It is apparent that, regardless ofκs, the matrixH̃(q2,1) cannot be positive
definite since its diagonal entries take on both positive and negative values
and, thus,J̃cm(q) has a saddle point atq2,1.

Second, it can be seen thatH̃(q2,2) turns out to be diagonal, with diagonal
entries

{H̃(q2,2)}i+1,i+1 = 2 γs σ2
s , for i ∈ {i1, i2}, (A.12)
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and

{H̃(q2,2)}i+1,i+1 = −2 γs κs/(γs + σ2
s), for i ∈ {0, 1, . . . ,K−1}−{i1, i2}.

(A.13)
If assumption A2 is fulfilled, i.e.,κs < 0, the diagonal matrixH̃(q2,2) is

positive definite since its diagonal entries are all positive and, hence,J̃cm(q)
has a local minimum atq2,2.

Third, it can be verified that̃H(q2,3) is diagonal, with diagonal entries

{H̃(q2,3)}i+1,i+1 = 6 σ4
s , for i ∈ {i1, i2}, (A.14)

{H̃(q2,3)}i+1,i+1 = −2σ4
s , for i ∈ {0, 1, . . . ,K − 1} − {i1, i2}. (A.15)

Since the diagonal entries of̃H(q2,3) assume both positive and negative val-

ues,J̃cm(q) has a saddle point atq2,3.

Finally, it results that̃H(q2,4) is a diagonal matrix, with positive diagonal
entries

{H̃(q2,4)}i+1,i+1 = 2 σ4
s , for i ∈ {0, 1, . . . , K − 1} (A.16)

and, thus,J̃cm(q) has a local minimum atq2,4.



Appendix B

Equalization Techniques for
DS-CDMA Systems

B.1 Proof of Lemma4.1

Any vectorf j ∈ C2N can be uniquely decomposed asf j = f j,s + f j,a, where

we defined thesymmetric partf j,s ∈ S 4
= {f = [fT

1 , fT
2 ]T ∈ C2N | f1 = f∗2 ∈

CN} and theantisymmetric partf j,a ∈ A 4
= {f = [fT

1 , fT
2 ]T ∈ C2N | f1 =

−f∗2 ∈ CN}. Since bothhj andqj(k) in (4.22) are symmetric, i.e., they
belong toS, one has Re[fH

j hj ] = fH
j,s hj and Re[fH

j qj(k)] = fH
j,s qj(k) in

(4.24), that is, the SINR (4.24) is not affected by the antisymmetric partf j,a.
Hence, the weight vectorf j,max-SINR maximizing SINR(f j) given by (4.24)
can equivalently be obtained by maximizing the following constrained cost
function:

SINR′(f j)
4
=

|fH
j hj |2

E[|fH
j qj(k)|2] =

|fH
j hj |2

fH
j Rqjqj

f j

, subject tof j ∈ S. (B.1)

Note that in general SINR(f j) 6= SINR′(f j), but they coincide forf j ∈ S.
The unconstrained maximization of SINR′(f j) leads [56] to the solution
f ′j,max-SINR= γj R−1

qjqj
hj , with γj ∈ C−{0}. At this point, we have to impose

that f ′j,max-SINR satisfies the constraintf ′j,max-SINR ∈ S. To this respect, it can
be verified thatR−1

qjqj
hj ∈ S, hence, fulfillment of the constraint is ensured

by imposing thatγj be real, i.e.,γj = γ∗j . In conclusion, we can state that
the general expression of the weight vectorf j,max-SINR maximizing SINR(f j)

151



152 APPENDIX B. EQUALIZATION FOR DS-CDMA SYSTEMS

is given byf j,max-SINR = ξj R−1
qjqj

hj , with ξj
4
= Re[γj ] ∈ R − {0}. The cor-

responding maximum value of SINR(f j) turns out to be SINR(f j,max-SINR) =
hH

j R−1
qjqj

hj .

B.2 Relationships betweenSINRj,max, SINRj,L-MOE and
SINRj,WL-MOE in the high-SNR regime

First of all, let us derive the expression ofSINRj,max [see (4.18)] in terms ofσ2
v .

Under assumptions(a1)–(a2), one hasRpjpj
= Φj ΦH

j + σ2
v IN . Hence, by

resorting to the EVD ofΦj ΦH
j , one obtainsRpjpj

= Vj,s Σj,s VH
j,s +σ2

v IN ,

whereVj,s ∈ CN×rj collects the eigenvectors associated with therj nonnull

eigenvaluesµj,1, µj,2, . . . , µj,rj of Φj ΦH
j (arranged in decreasing order), with

rj
4
= rank(Φj) ≤ min{N, J − 1} andΣj,s

4
= diag(µj,1, µj,2, . . . , µj,rj ) ∈

Rrj×rj . Relying on this decomposition and reasoning as in [94], the following
series expansion ofSINRj,max holds:

SINRj,max = φH
j R−1

pjpj
φj =

φH
j Vj,n VH

j,n φj

σ2
v

+φH
j Vj,s Σ−1

j,s VH
j,s φj+o(σ2

v),

(B.2)
whereVj,n ∈ CN×(N−rj) collects the eigenvectors ofΦj ΦH

j associated
with its N − rj null eigenvalues. Eq. (B.2) shows that, asσ2

v → 0,
SINRj,max → +∞ if and only if (iff) φH

j Vj,n VH
j,n φj 6= 0, which im-

plies thatφj 6∈ N (VH
j,n) ≡ R(Φj). It is noteworthy that this condition

holds, ∀j ∈ {1, 2, . . . , J}, iff the matrix Φ ∈ CN×J is full-column rank,
i.e., rank(Φ) = J , which imposes that the number of usersJ must be
smaller than or equal to the processing gainN (underloaded system). On the
other hand, whenφj belongs toR(Φj), it results thatlimσ2

v→0 SINRj,max =
φH

j Vj,s Σ−1
j,s VH

j,s φj , which evidences that, asσ2
v → 0, SINRj,max takes on a

finite value.

At this point, we are able to establish the relationship existing between
SINRj,max and SINRj,L-MOE [see (4.18) and (4.50)], in the limiting case of
vanishingly small noise. Preliminarily, we observe that, under assumptions

(a1)–(a2), one hasRpjp
∗
j

= Φj ΦT
j . By substituting (4.16) in (4.50) and
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accounting for (4.18), after some algebraic manipulations, one obtains

lim
σ2

v→0

SINRj,L-MOE

SINRj,max
=

2

1 + lim
σ2

v→0

Re
[
φH

j R−1
pjpj

Φj (Φ
H
j R−1

pjpj
)∗ φ∗j

]
SINRj,max

. (B.3)

By resorting to the limit formula for the Moore-Penrose inverse [24], it

can be seen thatlimσ2
v→0 R−1

pjpj
Φj = (ΦH

j )† and limσ2
v→0 ΦH

j R−1
pjpj

=

(Φj)†. Consequently, we getlimσ2
v→0 Re

[
φH

j R−1
pjpj

Φj (ΦH
j R−1

pjpj
)∗φ∗j

]
=

Re
[
φH

j (ΦH
j )† (Φ∗

j )
†φ∗j

]
, which can only assume finite values. Therefore,

based on the previous discussion regarding the asymptotic expression of
SINRj,max, by virtue of (B.2) and (B.3), we can conclude that, ifΦ is full-
column rank, then

lim
σ2

v→0

SINRj,L-MOE

SINRj,max
= 2 , ∀j ∈ {1, 2, . . . , J} , (B.4)

which additionally implies that, asσ2
v → 0, SINRj,L-MOE → +∞, ∀j ∈

{1, 2, . . . , J}.
Let us now derive the expression of SINRj,WL-MOE [see (4.49)] in terms of

σ2
v . Under assumptions(a1)–(a2), one hasRqjqj

= Hj HH
j + σ2

v I2N . Rea-

soning as previously done forSINRj,max, we express SINRj,WL-MOE explicitly
in terms ofσ2

v as follows:

SINRj,WL-MOE = hH
j R−1

qjqj
hj

=
hH

j Uj,n UH
j,n hj

σ2
v

+ hH
j Uj,s Λ−1

j,s UH
j,s hj + o(σ2

v), (B.5)

whereUj,s ∈ C2N×νj collects the eigenvectors associated with theνj nonnull

eigenvaluesλj,1, λj,2, . . . , λj,νj of Hj HH
j (arranged in decreasing order), with

νj
4
= rank(Hj) ≤ min{2N, J − 1} andΛj,s

4
= diag(λj,1, λj,2, . . . , λj,νj ) ∈

Rνj×νj , whereasUj,n ∈ C2N×(2N−νj) collects the eigenvectors ofHj HH
j

associated with its2N − νj null eigenvalues. It can be argued from (B.5)
that, asσ2

v → 0, SINRj,WL-MOE → +∞ iff hH
j Uj,n UH

j,n hj 6= 0, which
implies thathj 6∈ N (UH

j,n) ≡ R(Hj). On the other hand, whenhj belongs
toR(Hj), it results that, asσ2

v → 0, SINRj,WL-MOE takes on the finite value
hH

j Uj,s Λ−1
j,s UH

j,s hj . Therefore, since conditionhj 6∈ R(Hj) holds,∀j ∈
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{1, 2, . . . , J}, iff the augmented matrixH = [ΦT ,ΦH ]T ∈ C2N×J is full-
column rank, we maintain that, in the absence of noise, the WL-MOE receiver
is able to achieve perfect MAI suppression foreachactive user iff rank(H) =
J . The matrixH turns out to be full-column rank iff the null spaces of the
matricesΦ andΦ∗ intersect only trivially (see, e.g., [95]), that is,N (Φ) ∩
N (Φ∗) = {0J}. If Φ is full-column rank, which necessarily requires that
J ≤ N (underloaded system), this condition is trivially satisfied and, hence,
the augmented matrixH is full-column rank as well. However, the converse
statement is not true, that is,H may be full-column rank even whenN <
J ≤ 2N (overloaded system). To point out a first consequence of this result,
let us focus attention on the case whenN < J ≤ 2N . In this overloaded
scenario, the matrixΦ cannot be full-column rank and, thus, it results that, as
σ2

v → 0, SINRj,L-MOE takes on a finite value. In contrast, sinceH can still
be full-column rank in an overloaded system, relying on the results provided
before, we can infer that, ifH is full-column rank, then

lim
σ2

v→0

SINRj,WL-MOE

SINRj,L-MOE
= +∞ , (B.6)

∀j ∈ {1, 2, . . . , J}, with N < J ≤ 2N . Let us now consider an underloaded
scenario (J ≤ N ) and assume thatΦ is full-column rank. Since in this case
the matrixH is full-column rank, too, it follows that both SINRj,L-MOE and
SINRj,WL-MOE diverge, in the limiting case of vanishingly small noise, and

thus limσ2
v→0

SINRj,WL-MOE
SINRj,L-MOE

assumes an indeterminate form. To overcome this
mathematical difficulty, we preliminary develop the relationship existing be-
tween SINRj,WL-MOE andSINRj,max in the high-SNR regime, by resorting to
the series expansions (B.2) and (B.5). So doing, we get:

lim
σ2

v→0

SINRj,WL-MOE

SINRj,max
=

hH
j Uj,n UH

j,n hj

φH
j Vj,n VH

j,n φj

=
‖UH

j,n hj‖2

‖VH
j,n φj‖2

, (B.7)

where, since bothΦ andH are full-column rank, it follows that‖VH
j,n φj‖ 6= 0

and‖UH
j,n hj‖ 6= 0, ∀j ∈ {1, 2, . . . , J}. It is worth observing thatVj,n VH

j,n

andUj,n UH
j,n represent the orthogonal projections [24] onto the subspaces

R⊥(Φj) andR⊥(Hj), respectively, which can be equivalently expressed

[24] as Vj,n VH
j,n = IN − Φj (ΦH

j Φj)−1 ΦH
j and Uj,n UH

j,n = I2N −
Hj (HH

j Hj)−1 HH
j . By substituting this two relations in (B.7), and remem-

bering thatHj = [ΦT
j ,ΦH

j ]T and hj = [φT
j , φH

j ]T , after some algebraic
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manipulations, one has:

lim
σ2

v→0

SINRj,WL-MOE

SINRj,max
= 2 · ‖φj‖2 − Re[φH

j Φj ] {Re[ΦH
j Φj ]}−1 Re[ΦH

j φj ]

‖φj‖2 − φH
j Φj (ΦH

j Φj)−1 ΦH
j φj

.

(B.8)
Therefore, ifΦ is full-column rank, accounting for (B.4) and (B.8), we can
state that:

lim
σ2

v→0

SINRj,WL-MOE

SINRj,L-MOE
= lim

σ2
v→0

SINRj,WL-MOE

SINRj,max
· lim

σ2
v→0

SINRj,max

SINRj,L-MOE

=
‖φj‖2 − Re[φH

j Φj ] {Re[ΦH
j Φj ]}−1 Re[ΦH

j φj ]

‖φj‖2 − φH
j Φj (ΦH

j Φj)−1 ΦH
j φj

.

(B.9)

B.3 Proof of Theorem4.1

Accounting for (4.52) and (4.54), and exploiting the fact thatΘ∗Θ = IN , one
has:

H =
[

G ON×N

ON×N G∗

] [
C

C∗ (Θ2)∗

]
ΘA , (B.10)

which, as a consequence of the nonsingularity of matricesG, A and Θ,
implies that rank(H) = rank([CT , (CΘ2)H ]T ). In its turn, the matrix
[CT , (CΘ2)H ]T ∈ C2N×J is full-column rank iffN (C) ∩ N [C∗ (Θ2)∗] =
{0J}. At this point, let us characterize the null spaces ofC andC∗ (Θ2)∗,
whenN < J ≤ 2N . In this overloaded case, by assuming without loss of
generality that the firstN columnc1, c2, . . . , cN of C are linearly indepen-
dent, its remainingJ − N columnscN+1, cN+2, . . . , cJ can be expressed
as a linear combination of the firstN ones, thus obtaining the following de-

compositionC = Cleft [IN ,Π], whereCleft
4
= [c1, c2, . . . , cN ] ∈ CN×N is

nonsingular andΠ ∈ CN×(J−N) is a tall matrix. Due to nonsingularity of
Cleft, it follows thatN (C) = N ([IN ,Π]). Hence, it can be verified that the
general forms of a vectorα1 ∈ CJ belonging toN (C) and a vectorα2 ∈ CJ

belonging toN [C∗ (Θ2)∗] are given by

α1 =
[ −Π
IJ−N

]
ϑ1 and α2 = Θ2

[−Π∗

IJ−N

]
ϑ2 , (B.11)

with arbitrary ϑ1, ϑ2 ∈ CJ−N . By virtue of (B.11), the matrix H is
not full-column rank iff there exist at least two nonzero vectorsϑ1 and
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ϑ2 such thatα1 = α2, which amounts toΠϑ1 = Θ2
1 Π∗ϑ2 and

ϑ1 = Θ2
2 ϑ2, with Θ1

4
= diag(ei θ1 , ei θ2 , . . . , ei θN ) ∈ CN×N andΘ2

4
=

diag(ei θN+1 , ei θN+2 , . . . , ei θJ ) ∈ C(J−N)×(J−N). By substituting the sec-
ond relation in the first one and observing thatΘ2

1 is nonsingular, one ob-
tains [Π∗ − (Θ2

1)
∗ΠΘ2

2]ϑ2 = 0N , which shows that, if the matrixΠ∗ −
(Θ2

1)
∗ΠΘ2

2 ∈ CN×(J−N) is full-column rank, thenα1 = α2 is satisfied
iff ϑ1 = ϑ2 = 0J−N . This assures that rank(H) = J , since it means that
N (C) ∩N [C∗ (Θ2)∗] = {0J}.

B.4 Proof of Lemma4.2

First, let us consider the SMI implementation of the WL-MOE receiver. By
substituting (4.20) in (4.63), the sample autocorrelation matrix̂Rzz of the aug-
mented vectorz(k) can be expressed as

R̂zz = hj hH
j + hj r̂H

qjbj
+ r̂qjbjh

H
j + R̂qjqj

, (B.12)

where r̂qjbj

4
= 1

K

∑K−1
k=0 qj(k) bj(k) and R̂qjqj

4
= 1

K

∑K−1
k=0 qj(k)qH

j (k)
represent sample estimates of the cross-correlation between the disturbance
vector qj(k) and the desired symbolbj(k), and the autocorrelation matrix
of qj(k), respectively. It is shown in [75] that, for moderate-to-high val-
ues of the sample size, i.e.,K ≥ 6N , the predominant cause of SINR
degradation is represented byr̂qjbj and, thus, replacinĝRqjqj

with Rqjqj

in (B.12) has a very marginal effect on the SINR. Therefore, remember-
ing that Rzz = hjhH

j + Rqjqj
, eq. (B.12) can be rewritten aŝRzz =

Rzz + hj r̂H
qjbj

+ r̂qjbjh
H
j . Its inverse admits [24] the following first-order

approximationR̂
−1

zz ≈ R−1
zz −R−1

zz (hj r̂H
qjbj

+ r̂qjbjh
H
j )R−1

zz , which can be
substituted in (4.65), thus obtaining

f j,WL-SMI ≈ f j,WL-MOE−Pj,WL R−1
zz r̂qjbj︸ ︷︷ ︸

δf j,WL-SMI

= f j,WL-MOE+δf j,WL-SMI , (B.13)

with Pj,WL
4
= I2N − (hH

j R−1
zz hj)−1 R−1

zz hj hH
j = I2N −

(hH
j R−1

qjqj
hj)−1 R−1

qjqj
hj hH

j ∈ CN×N , where here and in the sequel
the symbol≈ denotesfirst-order equality, i.e., we neglect all the summands
that tend to zero, as the sample sizeK approaches infinity, faster than
the norm of the corresponding perturbation term. It is easily verified that
Pj,WL R−1

zz = Pj,WL R−1
qjqj

.
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At this point, we focus attention on the subspace implementation of the
WL-MOE receiver. Preliminary, we recall that the EVD ofR̂zz is given by
(4.64) that here is reported for simplicity

R̂zz = Ûs Λ̂s Û
H

s + Ûn Λ̂n Û
H

n , (B.14)

whereÛs, Λ̂s, Ûn andΛ̂n are sample estimates ofUs, Λs, Un andσ2
v IN ,

respectively. WhenRzz is estimated from the received data as in (4.63),
for a sufficiently large sample sizeK, the estimate can be decomposed as
R̂zz = Rzz + δRzz, whereδRzz is a small additive perturbation (in the
Frobenius norm sense). Consequently, the matricesÛs andΛ̂s can be written
[77, 76] asÛs = Us + δUs andΛ̂s = Λs + δΛs, whereδUs andδΛs rep-
resent the resulting perturbation in the estimated signal subspace, whose norm
is of the order of‖δRzz‖. It results [77, 76] that δUs ≈ UnUH

n δRzz Ω−1
WL ,

with ΩWL
4
= Λs− σ2

v IJ , andδΛs ≈ UH
s δRzz Us. By substituting the above

expressions of̂Us and Λ̂s in (4.66), and remembering thatPj,WL R−1
zz =

Pj,WL R−1
qjqj

, we get:

f j,WL-SUB ≈ f j,WL-MOE−
(
Pj,WL R−1

qjqj
− γj,WL UnUH

n

)
r̂qjbj︸ ︷︷ ︸

δf j,WL-SUB

= f j,WL-MOE + δf j,WL-SUB , (B.15)

whereγj,WL
4
= σ−2

v + (hH
j R−1

zz hj)−1hH
j Us Ω−1

WLU
H
s R−1

zz hj .

B.5 Proof of Lemma4.4

It is shown in the proof of the Lemma4.2 in B.4 that, for moderate-to-
high values of the sample size, i.e.,K ≥ 6N , the sample ACM given

by (4.63) can be decomposed aŝRzz = Rzz + δRzz, where δRzz
4
=

hj r̂H
qjbj

+ r̂qjbj
hH

j ∈ C2N×2N , with r̂qjbj

4
= 1

K

∑K−1
k=0 qj(k) bj(k). Con-

sequently, the inverse of the sample ACM admits the first-order approximation

R̂
−1

zz ≈ R−1
zz − R−1

zz δRzz R−1
zz , where in the sequel the symbol≈ denotes

first-order equality.
First, let us consider the SMI-CE implementation (4.109) of the WL-MOE

receiver. Substituting the previous approximation ofR̂
−1

zz and ĥj = hj +
δhj in (4.109), after some algebraic manipulations, one obtains the first-order
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approximation of the weight vector

f j,WL-SMI-CE ≈ f j,WL-MOE−Pj,WL R−1
zz δRzz f j,WL-MOE︸ ︷︷ ︸

δf
(1)
j,WL-SMI-CE

+ (hH
j R−1

zz hj)−1 R−1
zz δhj − 2Re(fH

j,WL-MOE δhj) f j,WL-MOE︸ ︷︷ ︸
δf

(2)
j,WL-SMI-CE

= f j,WL-MOE + δf (1)
j,WL-SMI-CE + δf (2)

j,WL-SMI-CE , (B.16)

with Pj,WL
4
= I2N − (hH

j R−1
zz hj)−1 R−1

zz hj hH
j = I2N −

(hH
j R−1

qjqj
hj)−1 R−1

qjqj
hj hH

j ∈ C2N×2N . Observe that, taking
into account (4.27), the matrix Pj,WL can be equivalently expressed
as Pj,WL = I2N − f j hH

j . Substituting the expression ofδRzz in

δf (1)
j,WL-SMI-CE, and observing thatPj,WL R−1

zz hj = 02N , hH
j f j,WL-MOE = 1

andPj,WL R−1
zz = Pj,WL R−1

qjqj
, one has

δf (1)
j,WL-SMI-CE = − Pj,WL R−1

qjqj︸ ︷︷ ︸
Γj,WL∈C2N×2N

r̂qjbj = −Γj,WL r̂qjbj . (B.17)

Since both fH
j,WL-MOE and δhj exhibit the CS property, the scalar

fH
j,WL-MOE δhj is real and, thus, Re(fH

j,WL-MOE δhj) f j,WL-MOE =
(fH

j,WL-MOE δhj) f j,WL-MOE = (f j,WL-MOE fH
j,WL-MOE) δhj . Consequently,

δf (2)
j,WL-SMI-CE =

[
(hH

j R−1
zz hj)−1 R−1

zz − 2 f j,WL-MOE fH
j,WL-MOE

]
︸ ︷︷ ︸

∆j,WL∈C2N×2N

δhj

= ∆j,WL δhj . (B.18)

At this point, we focus attention on the SUB-CE implementation (4.110)
of the WL-MOE receiver. When the EVD is applied to the sample ACMR̂zz

given by (4.63), for a sufficiently large sample sizeK, the matriceŝUs and
Λ̂s can be decomposed [76, 77] as Ûs = Us + δUs andΛ̂s = Λs + δΛs,
whereδUs andδΛs represent the resulting perturbation in the estimated signal
subspace, whose norm is of the order of‖δRzz‖. Moreover, it results [76,

77] that δUs ≈ UnUH
n δRzz Us Ω−1

WL , with ΩWL
4
= diag(λ1, λ2, . . . , λJ) ∈
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RJ×J , andδΛs ≈ UH
s δRzz Us. Consequently, we can write

Ûs Λ̂
−1

s Û
H

s ≈ Us Λ−1
s UH

s + Us Λ−1
s δUH

s +

−Us Λ−1
s δΛs Λ−1

s UH
s + δUs Λ−1

s UH
s . (B.19)

Observe that, sinceUH
n hj = 02N−J , one hasδUH

s hj = 0J . Hence, using
(B.19), accounting for the first-order perturbations ofUs andΛs, and remem-
bering that̂hj = hj + δhj , one obtains

ĥ
H

j Ûs Λ̂
−1

s Û
H

s ĥj ≈ hH
j Us Λ−1

s UH
s hj − hH

j Us Λ−1
s δΛs Λ−1

s UH
s hj

+ 2 Re[hH
j Us Λ−1

s UH
s δhj ] . (B.20)

Substituting (B.19) and (B.20) in (4.110), after some tedious but straightfor-
ward algebra, the first-order approximation of the weight vector can be con-
cisely written as

f j,WL-SUB-CE≈ f j,WL-MOE + δf (1)
j,WL-SUB-CE + δf (2)

j,WL-SUB-CE , (B.21)

where

δf (1)
j,WL-SUB-CE

4
= −{Pj,WLR−1

zz δRzz+

−Un UH
n δRzz

[
σ−2

v I2N + Us Ω−1
WL UH

s

]}f j,WL-MOE, (B.22)

δf (2)
j,WL-SUB-CE

4
= (hH

j R−1
zz hj)−1

[
R−1

zz − σ−2
v Un UH

n

]
+ δhj

− 2 Re(fH
j,WL-MOE δhj) f j,WL-MOE . (B.23)

Then, substituting the expression of the perturbationδRzz in (B.22), remem-
bering again thatUH

n hj = 02N−J , hH
j f j,WL-MOE = 1, Pj,WL R−1

zz hj = 02N

andPj,WL R−1
zz = Pj,WL R−1

qjqj
, one gets

δf (1)
j,WL-SUB-CE = −

(
Pj,WL R−1

qjqj
− γj,WL UnUH

n

)

︸ ︷︷ ︸
Γj,WL∈C2N×2N

r̂qjbj = −Γj,WL r̂qjbj ,

(B.24)

where γj,WL
4
= σ−2

v + (hH
j R−1

zz hj)−1hH
j Us Ω−1

WL UH
s R−1

zz hj .
Moreover, using again the fact that Re(fH

j,WL-MOE δhj) f j,WL-MOE =
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(f j,WL-MOE fH
j,WL-MOE) δhj and observing that, by virtue of the EVD proper-

ties,R−1
zz − σ−2

v Un UH
n = Us Λ−1

s UH
s , the perturbation term (B.23) can be

rewritten as

δf (2)
j,WL-SUB-CE =

[
(hH

j R−1
zz hj)−1 Us Λ−1

s UH
s − 2 f j,WL-MOE fH

j,WL-MOE

]
︸ ︷︷ ︸

∆j,WL∈C2N×2N

δhj

= ∆j,WL δhj . (B.25)

B.6 Proof of Lemma4.5

For a sufficiently large sample sizeK, when the EVD is applied tôRzz
4
=

Rzz + δRzz, where δRzz = hj r̂H
qjbj

+ r̂qjbjh
H
j ∈ C2N×2N , with

r̂qjbj

4
= 1

K

∑K−1
k=0 qj(k) bj(k), the matrixÛn can be decomposed [76, 77]

as Ûn = Un + δUn and the perturbation in the estimated noise sub-

space has the following formδUn ≈ −Us Ω−1
WL UH

s δRzz Un, with ΩWL
4
=

diag(λ1, λ2, . . . , λJ) ∈ RJ×J . By substituting the expression ofδRzz and
noticing thatUH

n hj = 02N−J , one obtains

δUn ≈ −Us Ω−1
WL UH

s hj r̂H
qjbj

Un . (B.26)

The perturbationδUn implies an error in the channel estimate%̂j given by
(4.107), which assumes the form̂%j = %j + δ%j , whereδ%j represents the

CE error. Remembering that̂hj = hj + δhj = α̃j Cj Tj %̂j is the estimate
of the signaturehj = α̃j Cj Tj %j , one easily getsδhj = α̃j Cj Tj δ%j .
According to (4.47), the channel vector%j is the unique eigenvector corre-

sponding to the null eigenvalue ofTH
j Qj,WL Tj ∈ C2Lj×2Lj , with Qj,WL

4
=

CH
j Un UH

n Cj ∈ C2Lj×2Lj . The sample estimatêQj,WL = CH
j Ûn Û

H

n Cj

of matrix Qj,WL can be decomposed aŝQj,WL = Qj,WL + δQj,WL where,
accounting for (B.26), the perturbationδQj,WL has the form

δQj,WL ≈ CH
j δUn UH

n Cj + CH
j Un δUH

n Cj

= −CH
j Us Ω−1

WL UH
s hj r̂H

qjbj
Un UH

n Cj

− CH
j Un UH

n r̂qjbj hH
j Us Ω−1

WL UH
s Cj . (B.27)

Based on (4.47), one hasTH
j Q̂j,WL Tj %̂j = TH

j (Qj,WL +δQj,WL)Tj (%j +
δ%j) ≈ TH

j Qj,WL Tj δ%j + TH
j δQj,WL Tj %j ≈ 02Lj , which implies
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that TH
j Qj,WL Tj δ%j ≈ −TH

j δQj,WL Tj %j , whose minimal-norm least-
squares solution [24] is given by

δ%j ≈ −(TH
j Qj,WL Tj)†TH

j δQj,WL Tj %j

= −TH
j Q†

j,WL Tj TH
j δQj,WL Tj %j = −TH

j Q†
j,WL δQj,WL Tj %j ,

(B.28)

since Tj is unitary. Substituting (B.27) in (B.28) and ob-
serving that, due to (4.47), UH

n Cj Tj %j = 02N−J , one has

δ%j ≈ TH
j Q†

j,WL CH
j Un UH

n r̂qjbj (hH
j Us Ω−1

WL UH
s Cj Tj %j),

from which we finally have δhj = α̃j Cj Tj δ%j =
(hH

j Us Ω−1
WL UH

s hj) Cj Q†
j,WL CH

j Un UH
n r̂qjbj .

B.7 Evaluation of trace(ΣH
j,WL Rzz Σj,WL Rqjqj

)

Initially, we will proceed in a unified manner by treating the SMI and SUB
cases jointly. SinceΣj,WL = −Γj,WL + ∆j,WL Πj,WL (see Lemma4.6), us-
ing the linearity property of the trace operator and observing that∆j,WL is
Hermitian (see Lemma4.4), we can write

trace(ΣH
j,WL Rzz Σj,WL Rqjqj

) = trace(ΓH
j,WL Rzz Γj,WL Rqjqj

)

−trace(ΠH
j,WL ∆j,WL Rzz Γj,WL Rqjqj

)−trace(ΓH
j,WL Rzz ∆j,WL Πj,WL Rqjqj

)

+ trace(ΠH
j,WL ∆j,WL Rzz ∆j,WL Πj,WL Rqjqj

) . (B.29)

By invoking the properties of the trace operator, it follows that

trace(ΓH
j,WL Rzz ∆j,WL Πj,WL Rqjqj

)

= trace∗(Rqjqj
ΠH

j,WL ∆j,WL Rzz Γj,WL)

= trace∗(ΠH
j,WL ∆j,WL Rzz Γj,WL Rqjqj

), (B.30)

which shows that the third summand in (B.29) is the conjugate version of
the second one. Moreover, remembering thatRzz = hj hH

j + Rqjqj

and UH
n hj = 02N−J , and accounting for the expressions ofΓj,WL (see

Lemma 4.4) and Πj,WL (see Lemma4.5), it can be directly verified that
Rzz Γj,WL = Rqjqj

Γj,WL andΠj,WL Rqjqj
= Πj,WL Rzz. Thus, the first

summand in (B.29) becomes trace(ΓH
j,WL Rqjqj

Γj,WL Rqjqj
), whereas the

fourth one reduces to trace[(∆j,WL Rzz ∆j,WL) (Πj,WL Rzz ΠH
j,WL)], where



162 APPENDIX B. EQUALIZATION FOR DS-CDMA SYSTEMS

we have also used the properties of the trace operator again. This last trace
can be further explicated by replacingΠj,WL with its expression given in
Lemma4.5: in particular, usingRzz = Us Λs UH

s +σ2
v Un UH

n , remembering
thatUH

n Un = I2N−J andUH
n Us = O(2N−J)×J , and observing that, on the

basis of the Moore-Penrose conditions [24], Q†
j,WL Qj,WL Q†

j,WL = Q†
j,WL ,

one has

Πj,WL Rzz ΠH
j,WL = σ2

v (hH
j Us Ω−1

WL UH
s hj)2 Cj Q†

j,WL CH
j . (B.31)

Consequently, taking in account (B.30)-(B.31) and substituting the expression
of Πj,WL in the second summand of (B.29), we get

trace(ΣH
j,WL Rzz Σj,WL Rqjqj

) = trace(ΓH
j,WL Rqjqj

Γj,WL Rqjqj
)

− 2 (hH
j Us Ω−1

WL UH
s hj) Re[trace(Un UH

n Cj Q†
j,WL CH

j ∆j,WL Rzz Γj,WL Rqjqj
)]

+ σ2
v (hH

j Us Ω−1
WL UH

s hj)2 trace[(∆j,WL Rzz ∆j,WL) (Cj Q†
j,WL CH

j )] .
(B.32)

At this point, we have to consider the SMI and SUB cases separately.
Let us start from the SMI case, for whichΓj,WL = Pj,WL R−1

qjqj
and

∆j,WL = (hH
j R−1

zz hj)−1R−1
zz − 2 f jfH

j . Recalling the equation (4.76)
in the subsection4.5.1, we know that trace(ΓH

j,WLRqjqj
Γj,WL Rqjqj

) =
2N − 1. As regards the second summand in (B.32), we observe
that ∆j,WL Rzz Γj,WL Rqjqj

= (hH
j R−1

zz hj)−1 (Pj,WL − f j hH
j )Pj,WL =

(hH
j R−1

zz hj)−1 Pj,WL , where the second equality follows by noticing that
hH

j Pj,WL = 0T
2N and P2

j,WL = Pj,WL . Henceforth, observing that
Pj,WL Un = Un and using the trace properties, the second summand in (B.32)
becomes

−2 ζj,WL Re[trace(Un UH
n Cj Q†

j,WL CH
j Pj,WL)]

= −2 ζj,WL Re[trace(Pj,WL Un UH
n Cj Q†

j,WL CH
j )]

= −2 ζj,WL Re[trace(Q†
j,WL CH

j Un UH
n Cj︸ ︷︷ ︸

Qj,WL

)] = −2 ζj,WL (2Lj − 1),

(B.33)

with ζj,WL
4
= (hH

j R−1
zz hj)−1 hH

j Us Ω−1
WL UH

s hj > 0, where the last equal-

ity comes from the fact thatQ†
j,WL Qj,WL is the orthogonal projector onto the
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subspaceR(QH
j,WL) ≡ R(Qj,WL) (Moore definition of the generalized inverse

[24]) and, hence,1

trace(Q†
j,WL Qj,WL) = rank(Qj,WL) = rank(UH

n Cj) = 2Lj − 1 (B.34)

where the last equality is justified because rank(UH
n Cj) = 2Lj − 1 by virtue

of condition (c3). Considering the third summand in (B.32), we note that
∆j,WL Rzz ∆j,WL = R−1

zz (Rzz ∆j,WL)2 = (hH
j R−1

zz hj)−2 R−1
zz (PH

j,WL −
hj fH

j )2 which, using the facts that(PH
j,WL)2 = PH

j,WL , PH
j,WL hj = 02N ,

fH
j PH

j,WL = 0T
2N andPH

j,WL + hj fH
j = I2N , ends up to∆j,WL Rzz ∆j,WL =

(hH
j R−1

zz hj)−2 R−1
zz . Consequently, the third summand in (B.32) assumes the

form
σ2

v ζ2
j,WL trace(R−1

zz Cj Q†
j,WL CH

j ). (B.35)

By substituting (B.35), (B.33) and (4.76) in (B.32), we have proven (4.127):

trace(ΣH
j,WL Rzz Σj,WL Rqjqj

) = (2N − 1)− 2 ζj,WL(2 Lj − 1)

+ ζ2
j,WL σ2

v trace(R−1
zz Cj Q†

j,WL CH
j ). (B.36)

Let us consider now the SUB case, wherein∆j,WL =
(hH

j R−1
zz hj)−1UsΛ−1

s UH
s − 2 f jfH

j and Γj,WL = Pj,WL R−1
qjqj

−
γj,WL UnUH

n , with γj,WL
4
= σ−2

v + (hH
j R−1

zz hj)−1hH
j Us Ω−1

WL UH
s R−1

zz hj .
In subsection4.5.1, we have shown equation (4.78) that we report here for
simplicity

trace(ΓH
j,WLRqjqj

Γj,WL Rqjqj
) = (J − 1) + (2N − J) |1− γj,WL σ2

v |2.
(B.37)

As to the second summand in (B.32), sinceRzz = hj hH
j + Rqjqj

=
Us Λs UH

s + σ2
v Un UH

n , with UH
n hj = 02N−J , UH

n Un = I2N−J ,
UH

s Us = IJ , UH
n Us = O(2N−J)×J andUn UH

n +Us UH
s = I2N , we obtain

thatΓj,WL Rqjqj
= Pj,WL − γj,WL UnUH

n Rzz = Pj,WL − γj,WL σ2
v UnUH

n

and∆j,WL Rzz = (hH
j R−1

zz hj)−1 (Pj,WL − f j hH
j −UnUH

n ). Consequently,
we get

∆j,WL Rzz Γj,WL Rqjqj
= (hH

j R−1
zz hj)−1 (Pj,WL −Un UH

n ) , (B.38)

where we have used the facts thatP2
j,WL = Pj,WL , hH

j Pj,WL = 0T
2N ,

UH
n Pj,WL = UH

n , hH
j Un = 0T

2N−J andPj,WL Un = Un. Therefore, ob-
serving again thatPj,WL Un = Un, UH

n Un = I2N−J and using the trace

1If χ is an eigenvalue of the orthogonal projectorQ†
j,WL Qj,WL , thenχ ∈ {0, 1}.
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properties, the second summand in (B.32) simplifies to

− 2 ζj,WLRe[trace(Un UH
n Cj Q†

j,WL CH
j Pj,WL)

− trace(Un UH
n Cj Q†

j,WL CH
j Un UH

n )] =

− 2 ζj,WL

{
Re

[
trace(Q†

j,WL Qj,WL)− trace(Q†
j,WL Qj,WL)

]}
= 0. (B.39)

With reference to the third summand in (B.32), we note that
∆j,WL Rzz ∆j,WL = R−1

zz (Rzz ∆j,WL)2 = (hH
j R−1

zz hj)−2 R−1
zz (PH

j,WL −
hj fH

j −UnUH
n )2 which, exploiting the EVDRzz = Us Λs UH

s +σ2
v Un UH

n

and its related properties (as done for the second summand), and using the
facts that (PH

j,WL)2 = PH
j,WL , fH

j PH
j,WL = 0T

2N , UH
n PH

j,WL = UH
n ,

PH
j,WL hj = 02N , UH

n hj = 02N−J , PH
j,WL Un = Un, fH

j Un = 0T
2N−J

and PH
j,WL + hj fH

j = I2N , boils down to ∆H
j,WL Rzz ∆j,WL =

(hH
j R−1

zz hj)−2 (R−1
zz − σ−2

v Un UH
n ). Consequently, the third summand in

(B.32) assumes the form

σ2
v ζ2

j,WL trace(R−1
zz Cj Q†

j,WL CH
j )− ζ2

j,WL trace(Un UH
n Cj Q†

j,WL CH
j )︸ ︷︷ ︸

trace(Q†
j,WL Qj,WL)

= σ2
v ζ2

j,WL trace(R−1
zz Cj Q†

j,WL CH
j )− ζ2

j,WL(2Lj − 1). (B.40)

Thus, by substituting (B.40), (B.39) and (B.37) in (B.32), we have proven
(4.128), too:

trace(ΣH
j,WL Rzz Σj,WL Rqjqj

) = (J − 1) + (2N − J)|1− γj,WL σ2
v |2

− ζ2
j,WL(2 Lj − 1) + ζ2

j,WL σ2
v trace(R−1

zz Cj Q†
j,WL CH

j ). (B.41)



Appendix C

Equalization Techniques for
MC-CDMA Systems

C.1 Proof of Theorem5.1

Let us consider the case when the channel transfer functionG(z) has
0 ≤ Mz ≤ L distinct zeros on the subcarrierszm1 = ei 2π

N
m1 , zm2 =

ei 2π
N

m2 , . . . , zmMz
= ei 2π

N
mMz , with m1 6= m2 6= · · · 6= mMz ∈

{0, 1, . . . , N − 1}. In this case, one has

γcp(m1) = γcp(m2) = · · · = γcp(mMz) = 0 (C.1)

and, thus, the diagonal matrixΓcp is singular with

rank(Γcp) = N −Mz. (C.2)

In its turn, this implies thatGcp may be rank deficient even if the code vectors
c1, c2, . . . , cJ are linearly independent, i.e.,C is full-column rank. Indeed,
under the assumptions thatJ ≤ N and rank(C) = J , the matrixΓcpC is
full-column rank iff [24]

N (Γcp) ∩R(C) = 0N . (C.3)

The null space ofΓcp can be readily characterized: an arbitrary vectorµ ∈ CN

belongs toN (Γcp) iff there exists a vectorβ ∈ CMz such thatµ = Sz β.
Hence, an arbitrary vectorµ ∈ N (Γcp) also belongs to the subspaceR(C)
iff there exists a vectorα ∈ CJ such thatSz β = Cα. As a consequence,
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conditionN (Γcp) ∩ R(C) = 0N holds iff the system of equationsCα −
Sz β = 0N admits the unique solutionα = 0J andβ = 0Mz . It can be
seen [56] that this happens iff the matrix[C,Sz] ∈ CN×(J+Mz) turns out to be
full-column rank.

C.2 Proof of Lemma5.1

Preliminarily, observe that rank(C) = J iff the null spaces ofC andC∗ in-
tersect only trivially, that is,N (C) ∩ N (C∗) = {0J}. An arbitrarynonzero
vectorα ∈ CJ belongs toN (C) iff Cα = 0N , from which, by conjugat-
ing, one obtainsC∗α∗ = 0N . The last two systems of equations show that
α ∈ N (C) iff α∗ ∈ N (C∗). Consequently, an arbitrary vectorα 6= 0J be-
longs toN (C) ∩ N (C∗) iff there exists a nonzero vectorβ ∈ CJ belonging
toN (C) such thatβ∗ = α.
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