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Introduction

'W ireless Communication is one of the most vibrant areas in the com-
munication field today. This is due to a confluence of several factors.
First, there has been an explosive increase in demand for wireless multime-
dia services. Second the dramatic progress in micro-processor technology has
enabled small-area and low-power implementation of sophisticate signal pro-
cessing algorithms and coding techniques.

The design of a wireless communication system differs notably from wired
system design due to the nature of the wireless channel, which is an unpre-
dictable and difficult communication medium. A frequently occurring prob-
lem with electromagnetic wave propagation in such a medium is the signal
multipath. Signal multipath occurs when the transmitted signal arrives at the
receiver via multiple propagation paths with different delays and it commonly
results in intersymbol interference (ISI). Moreover, a signal that propagates
through a wireless channel may experience random fluctuations in time if the
transmitter, the receiver, or surrounding objects are moving, due to changing
reflections and attenuation. Thus, the characteristics of the channel appear to
change randomly with time, adding further complexity to the design of reliable
communication systems.

In addition, the increasing demand for wireless communications is making
the radio spectrum a scarce resource that has to be managed as efficiently as
possible since it must be allocated to many different applications and systems.

In this thesis, we focus on the physical layer strategies that allow the ef-
fectiveness sharing of the available resources. In the first part of this thesis,
we consider narrowband systems, namely systems in which the performances
are significantly limited by intersymbol interference (ISI) because of the time
dispersive nature of the wireless channel. The second part focuses on wide-
band systems that use DS-CDMA or MC-CDMA techniques, for which the
principal cause of performance degradation is the interference due to multiple
access (MAI). The common elements among these topics is the signal process-

XV



XVi Introduction

ing technique used to recovery the information data:\ilely-Linear(WL)
technique.

More specifically, in the first part, starting from the basic concepts related

to the multiple access techniques, we present the general framework of the
equalization problem in a digital communication system and we explain why
it is mandatory. In this context, we also introduce the WL receiver technigue,
since when the transmitted symbol sequencienisroper or noncircular[1]
(as it happens in many modulation schemes of practical interest) it is well-
known [2, 3] that a better estimate of the transmitted symbols can be obtained
by resorting to widely-linear (WL) estimators, which augment the degrees-of-
freedom at the equalizer designer’s disposal.

Successively we consider one of the earliest blind channel equalization
technique: the Godard or constant modulus (CM) algorithipo] 6]. This
technique is blind since it does not utilize training sequences to cancel or
reduce the intersymbol interference (ISI) introduced by frequency-selective
transmission channels, avoiding so to waste the available bandwidth resources.
The CM cost function exhibits a multimodal surface whose characteristics al-
low one to gain important insights about the expected behaviors of the equal-
izer. Therefore, detailed studies of the stationary points of the CM cost func-
tion are conducted in the letterature. Such studies have shown that, in the
absence of noise and when the symbol sequenceispeer[7] random pro-
cess, all the local minima of the L-CM cost function are global ones, allowing
one to exactly suppress the ISI. Nevertheless, in this thesis we show that if the
symbol sequence is an improper random process, as it happens in many cases
of practical interest, the L-CM equalizer is not able to fully suppress the ISI.
The reason for such a behavior is the presence of undesired local minima of
the L-CM cost function, which have been analytically determined.

Moreover, we have already underline that when the transmitted symbol
sequence is improper, widely-linear (WL) equalizers outperform linear ones.
As a consequence, we provide a general and unified framewptf {o de-
sign WL equalizers for both real- and complex-valued improper modulations,
by deriving the conditions assuring perfect symbol recovery in the absence
of noise and providing some insights into the synthesis and analysis of blind
WL-CM equalizers. Specifically, since also the WL-CM cost function exhibits
undesired global minima we propose to resort to a constrained WL-CM equal-
izer assuring perfect symbol recovery in the absence of noise.

In the second part of this thesis, we focus on wideband systems as DS-
CDMA and MC-CDMA ones. During the last two decades, a great bulk of
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research activities has been devoted to multiuser detection (MUD) for both
direct-sequence (DS} {] and multicarrier (MC) [1] code-division multiple-
access systems, since it allows one to achieve a dramatic performance im-
provement over simpler single-user detection schemes in those environments
where the multiple-access interference (MAI) is the predominant performance-
limiting factor.

With reference to a DS-CDMA system, we present a performance analysis
of L and WL receivers based on the minimum output energy criterion (MOE),
both in the known-channel caséZ 13] and in the unknown channel case
[14]. Specifically, we start carrying out a detailed study of the conditions on
channel and codes that assure perfect MAI suppression in absence of noise for
WL-MOE in both underloaded and overloaded downlink configurations, since
there was a lack of this issue in the letterature. Moreover, the ideal implemen-
tation of the L-MOE and WL-MOE receivers requires perfect knowledge of
two quantities 15]: the autocorrelation matrixACM) of the received signal,
and thereceived signaturef each user to be demodulated. These two quanti-
ties can be estimated in practice from a finite number of samples at the receiver.
Since the received signature is a distorted version of the transmitted one due to
the effects of the unknown channel response, the channel estimation (CE) is a
necessary step for the implementation of both the L- and WL-MOE receivers.
To gain more insight about these points, at first we evaluate the performance
degradation due to finite-sample ACM estimation in the known-channel case.
In particular this analysis is carried out with reference to two different data-
estimated implementations of the L-MOE and WL-MOE receivers: the SMI
(sample matrix inversion) receiver (referred to as L-SMI and WL-SMI), which
employs a sample estimate of the data autocorrelation matrix, and the SUB
(subspace) receiver (referred to as L-SUB and WL-SUB), which exploits the
properties of the eigenvalue decomposition (EVD) of the data autocorrelation
matrix to reduce the effects of estimation errors. The results of this analy-
sis are easily interpretable formulas, which allow one to obtain clear insights
about the effects of different parameters on performances. Moreover, the re-
sults of the analysis shows that the WL-MOE receiver is more sensitive than its
linear counterpart to finite sample-size effects associated to ACM estimation,
and it generally requires subspace-based implementation to achieve in practice
the performance gains predicted by theory.

Successively, we extend 4] the previous analysis incorporating the ef-
fects due to CE on the synthesis of the L- and WL-MOE receivers. The con-
ventional method for CE is to periodically transmit training sequences of data
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that are knowra priori to the receiver. However, such a scheme might lead

to a significant waste of power and bandwidth resources in mobile commu-
nication systems, especially when channel conditions require the use of long
training sequences and/or frequent repetition of training. Consequently, the
past few decades have witnessed a huge number of contributions in the area
of blind CE approaches. Blind CE approaches relying on second-order statis-
tics (SOS) of the received data are particularly attractive since they require far
fewer samples than traditional methods based on higher-order statisijcs [
Among existing SOS-based approaches, the subspace CE method is one of
the most studied blind algorithm for its robustness and our analysis is devel-
oped with reference to this method. We derive easily interpretable formulas
that with reference to subspace-based receivers implementations, show that
for moderate-to-high values of the SNR, the errors in estimating the L-SUB-
CE and WL-SUB-CE receivers are essentially due to ACM estimation. This
is not true for the L-SMI-CE and WL-SMI-CE receivers, for which CE errors
undesirably combine with ACM errors. Therefore, when considering finite
sample-size implementation, the blind WL-MOE receiver is able to assure a
significant performance gain (for low-to-moderate values of the SNR) with re-
spect to its linear counterpart only when it is built by resorting to the more
sophisticated subspace-based implementation. In this case, for a given chan-
nel length, it allows one to work with an increased number of users, making so
it a viable choice in heavily-congested DS-CDMA networks.

Finally, in the last part of this thesis we deal with MC-CDMA wireless
networks employindrequency-domain spreadiriiecause, at high data-rates
(of the order of several hundred megabits/s), the common single-carrier DS-
CDMA technology becomes impractical, due to both severe multipath-induced
intersymbol interference (I1SI) and synchronization difficulties. In particular,
the analysis of L and WL multiuser detection for both CP- and ZP-based
configurations is carried oufL], 18]. The problem is to derive mathemati-
cal conditions that guarantee perfect symbol recovery in the absence of noise
for either CP-based or ZP-based MC-CDMA downlink transmissions, which
employ frequency-domain symbol-spreading. This issue is important also for
the synthesis of MMSE receivers, since the performances of MMSE detectors
strongly depend on the existence of the corresponding ZF solutions. The con-
ditions that we derive are channel-independent and are expressed in terms of
relatively simple system design constraints, regarding the maximum number
of allowable users and their spreading sequences. Specifically, with reference
to FIR L-MUD receiving structures, it is known in letterature that perfect sym-
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bol recovery is guaranteed in a ZP-based downlink, for any FIR channel of
order smaller that the cyclic prefix length, as long as the number of users is
smaller than the number of subcarriers (underloaded systems) and the code
vectors are linearly independent. In general, a similar feature does not hold
for CP-based transmissions. Thus, we show that universal L-ZF-MUD can be
guaranteed even for the underloaded CP-MC-CDMA downlink, provided that
the spreading codes are judiciously designed. On the other hand, a detailed
study of the conditions assuring FIR WL-MUD perfect symbol recovery in
both CP- and ZP-based systems is lacking. Consequently, we show also that,
if appropriate complex-valued spreading codes are employed, universal WL-
ZF multiuser detectors can be designed even for overloaded CP-MC-CDMA
and ZP-MC-CDMA systems.

The outline of the thesis is the following:

Chapter 1 presents the general framework. We introduce the strategies
for allocating the available resources among users sharing a common wireless
communication channel.

Chapter 2 addresses the basic concepts associated with equalizer de-
sign, a fundamental step to introduce the Widely-Linear processing on which
this thesis is based.

Chapter 3 addresses the constant modulus (CM) criterion applied to
narrowband systems. More in detail, we analyze the CM-cost function under
the general assumptions that improper modulation schemes are employed.
Such an analysis allows one to determine a broad family of undesired minima
of the L-CM cost function, which do not lead to perfect symbol recovery in
the absence of noise. Successively we deal with the problem of designing WL
equalizers for both real- and complex-valued improper modulation schemes,
by proposing a constrained widely-linear constant modulus equalizer able to
recover perfectly the symbols in the absence of noise.

Chapter 4 establishes finite-sample performance results for WL- mul-
tiuser receivers in DS-CDMA systems, as well as their comparison with
conventional L- ones. Specifically, the analysis is carried out with reference
to Minimum Output-Energy (MOE) criterion: first we compare the ideal
signal-to-interference-plus-noise-ratio (SINR) performances of the WL-MOE
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and L-MOE receivers and then the SINR degradation of the data-estimated
WL-MOE receivers is accurately evaluated and compared with that of its
linear counterpart both in the perfectly-known and unknown channel cases.

Chapter 5 focuses on multiuser detection for MC-CDMA systems em-
ploying cyclic-prefixed (CP) or zero-padded (ZP) transmission techniques.
For both systems, we consider the linear and the widely-linear receiving
structures, showing that, under certain assumptions, L-FIR and WL-FIR
universal zero-forcing (ZF) multiuser detectors can be synthesized. Thus,
in the absence of noise, it is assured a perfect symbol recovery for each
user, regardless of the underlying frequency-selective channel. Finally, some
spreading code examples satisfying the design rules are provided as well.



Chapter 1

Multiple Access Systems

n this chapter we shortly describe the strategies for allocating the avail-
I able resources among users sharing a common wireless communication
channel. In particular we focus our attention only on the so-called channel-
partitioning access methods, in which a fixed allocation of the channel re-
sources, frequency, time or spreading code are implemented. The three basic
fixed-assignment multiple access methods are TDMA, FDMA and CDMA.
The choice of an access method has a great impact on the performances and
QOS provided by a communication channel.

1.1 Multiple User Environments

A multiuser system is any system in which the available system resources must
be divided among different users. This means that several users may access a
common channel to communicate with other users. Since the users are not nec-
essarily in a common location the term multiple access is used. The strategies
for allocating the available resources among users sharing a common commu-
nication channel depend on the traffic properties, on the network topologies,
and on the channel characteristid®,[20, 21, 22]. We will concentrate on

the physical layer strategies that allow the sharing of the available resources
with acceptable performance. A multiuser channel is any channel that must be
shared among multiple users. There are two different types of multiuser chan-
nels: theuplink channel and thdownlinkchannel. A downlink channel, also
called a broadcast channel or forward channel, has one transmitter sending to
many receivers. Since the signals transmitted to all users originate from the
downlink transmitter, the transmitted signal is the sum of signals transmitted

1



2 CHAPTER 1. MULTIPLE ACCESS SYSTEMS

to all users. Thus, the total signaling dimensions and power of the transmitted
signal must be divided among the different users. Synchronization of the dif-
ferent users is relatively easy in the downlink since all signals originate from
the same transmitter, although multipath in the channel can destroy synchro-
nization. Another important characteristic of the downlink is that both signal
and interference are distorted by the same channel. In particulathiser's
signal and all interfering signals pass through#ktieuser’s channel to arrive at
thekth user’s receiver. This is a fundamental difference between the uplink and
the downlink, since in the uplink signals from different users are distorted by
different channels. Examples of wireless downlinks include all radio and tele-
vision broadcasting, the transmission link from a satellite to multiple ground
stations, and the transmission link from a base station to the mobile terminals
in a cellular system.

An uplink channel, also called reverse channel, has many transmitters
sending signals to one receiver, where each signal must be within the the
total system bandwidth. However, in contrast to the downlink, in the up-
link each user has an individual power constraint associated with its trans-
mitted signal. In addition, since the signals are sent from different transmit-
ters, these transmitters must coordinate themselves if signal synchronization is
required. Moreover, the signals of the different users in the uplink are trans-
mitted through different channels. Examples of wireless uplinks include lap-
top wireless LAN cards transmitting to a wireless LAN access point, trans-
missions from ground stations to a satellite, and transmissions from mobile
terminals to a base station in cellular systems. Most communication systems
are bi-directional, and hence consist of both uplinks and downlinks. The ra-
dio transceiver that sends to users over a downlink channel and receives from
these users over an uplink channel is often refered to as an access point or base
station. It is generally not possible for radios to receive and transmit on the
same frequency band due to the interference that results. Thus, bi-directional
systems must separate the uplink and downlink channels, typically using time
or frequency dimensions. This separation is called duplexing. In particu-
lar, time-division duplexing (TDD) assigns orthogonal timeslots to a given
user for receiving from an access point and transmitting to the access point,
and frequency-division duplexing (FDD) assigns separate frequency bands for
transmitting to and receiving from the access point. An advantage of TDD is
that bi-directional channels are typically symmetrical in their channel gains,
so channel measurements made in one direction can be used to estimate the
channel in the other direction. This is not necessarily the case for FDD in
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frequency-selective fading: if the frequencies assigned to each direction are
separated by more than the coherence bandwidth of the multipath wireless
channel, then these channels will exhibit independent fading.

1.2 Multiple Access Techniques for narrowband and
wideband systems

In this section we describe the basic properties of the different access tech-
nigues following the lines outlined in P, 21, 22, 23]. The multiple access in
a communication system, is done by dividing the signaling dimensions along
the time, frequency and/or code space axes. Efficient allocation of signaling
dimensions between users is a key design aspect of both uplink and downlink
channels, since bandwidth is usually scarce and/or very expensive. In gen-
eral, applications with continuous transmission and delay constraints require
channel-partitioning access methods. This would be the case, for example,
with digitized voice traffic, data file transfer or fax-simile transmission. Typi-
cal access methods in this context are time-division, frequency-division, code-
division, or hybrid combinations of these techniques. However, if the transmis-
sion to be transmitted is intermittent or bursty in nature, channel-partitioning
access methods can result in communication resources being wasted for much
of the duration of the connection. Random access methods, using some form
of random channel allocation which does not guarantee channel access, pro-
vide a more efficient and flexible way of managing channel access for com-
municating short bursty messages. In general, the choice of whether to use
channel-partitioning or random access, and which specific fixed or random
access technique to apply, will depend on the system applications, the traffic
characteristics of the users in the system, the performance requirements, and
the characteristics of the channel and other interfering systems operating in the
same bandwidth. In the sequel we do not analyze random access techniques.
In addition to time and bandwidth, another resource available in wireless
systems is space. For example, if one transmitter-receiver pair is sufficiently
far away from another, then the mutual interference between them is attenu-
ated enough so as to be negligible. Thus, wireless resources can be utilized
more efficiently by employing spatial reuse, which forms the basis for cellu-
lar communication systems. On the other hand directional antennas add an
additional angular dimension which can also be used to channelize the sig-
nal space: this technique is called space-division multiple access (SDMA). In
the following subsections, we shortly describe time-division multiple access
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Figure 1.1: The three basic channel-partitioning techniques

(TDMA), frequency-division multiple access (FDMA) and code-division mul-
tiple access (CDMA) (for details about CDMA technique see chaf)tehat
are pictorially represented in Figutel

1.2.1 Frequency Division Multiple Access (FDMA)

FDMA is the simplest and oldest form of multiplexing. In FDMA systems,

the band available for the service is divided into several hon-overlapping sub-
channels and each user is assigned a different frequency channel. Once as-
signed, a sub-channel is held by a user until the user transmits. The princi-
ple at the base of this technique is that even if the total system bandwidth is



1.2. MULTIPLE ACCESS TECHNIQUES 5

large and therefore subject to frequency-selective fading, dividing the avail-
able bandwidth into subchannels under the assumption that the subchannels
are sufficiently narrowband, they will not experience frequency-selective fad-
ing. Between two adjacent sub-channels there is typically a guard interval to
compensate for imperfect filters, adjacent channel interference, and spectral
spreading due to Doppler and therefore to facilitate the separation of different
user signals at the receiver. To limit the waste of resources due to the insertion
of the guard bands, it is necessary to have a good frequency synchronization.
Moreover, it is difficult to assign multiple channels to the same user under
FDMA, since this requires the receivers to simultaneously demodulate signals
received over multiple frequency channels.

1.2.2 Time Division Multiple Access (TDMA)

In a TDMA system, a number of users share the same frequency band by tak-
ing assigned turns in using the channel. Therefore, with this technique, the
system dimensions are divided along the time axis into nonoverlapping chan-
nels, and each user is assigned a different cyclically-repeating time slot. These
TDMA channels occupy the entire system bandwidth, as opposed to FDMA,
where each user gets only a portion of the bandwidth. Therefore, in a FDMA
system, each subchannel is typically flat-fading, which implies that it is not
needed an equalization filter at the receiver. Conversely, the TDMA channel
is typically frequency-selective, and thus the receiver must implement some
form of equalization. The time slots are also organized in frames, where each
frame contains the time slot for a certain number of users plus overhead bits
carrying signaling information. With TDMA a transmit controller assigns time
slots to users and an assigned time slot is held by a user until the user releases
it. At the receiving end, a receiver station synchronizes to the TDMA signal
frame and extracts the time slot designated for that user. This modus operandi
implies that transmission is not continuous for any user. Therefore, digital
transmission techniques which allow for buffering are required. The fact that
transmission is not continuous simplifies overhead functions such as channel
estimation, since these functions can be done during the time slots occupied by
other users. TDMA also has the advantage that it is simple to assign multiple
channels to a single user by simply assigning him multiple time slots, in or-
der to provide for example different transmission rates to different users. This
is particularly useful for networks supporting multimedia applications, where
different media require different rates.

The heart of a TDMA system is synchronization that is necessary to main-
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tain orthogonal time slots in the received signals (not needed for FDMA sys-
tems). For example multipath channels can destroy time-division orthogonal-
ity in both uplinks and downlinks if the multipath delays are a significant frac-
tion of a time slot. However, also for flat-fading channels, the synchronization
is needed al least for uplink channels. In fact, in the uplink channel the users
transmit over different channels with different respective delays. To maintain
orthogonal time slots in the received signals, the different uplink transmitters
must be synchronized. Therefore, between any two adjacent time slots often
there are time guard intervals.

Moreover, we can underline that TDMA and FDMA have a different be-
havior respect to the interference. In fact, in a FDMA system narrowband
interference affects only one subchannel, whereas in TDMA, the same inter-
ference affects all the channels. At the same time, whereas all the power of the
narrowband interference acts over one subchannel, in a TDMA system the in-
terference power is split among all the subchannels and then each subchannel
has to cope only with a portion of the interference power. Hence, TDMA is
more robust to narrowband interference than FDMA. Conversely, by dual argu-
ments, if the interference is impulsive in time, it is better to use FDMA rather
than TDMA. Finally we remark that TDMA, in combination with FDMA, is
used in the GSM, PDC, IS-54, and 1S-136 digital cellular phone standards.

1.2.3 Code Division Multiple Access (CDMA)

FDMA and TDMA strategies assign to different users only portions of the
available frequency or time. A different philosophy is followed by CDMA
methods where, in principle, every user can get the whole bandwidth and the
whole time. Specifically, in CDMA, which we will review with more details

in Chapter4, the information signals of different users are modulated by or-
thogonal or non-orthogonal spreading codes. The resulting spread signals si-
multaneously occupy the same time and bandwidth. The receiver uses the
spreading code structure to separate out the different users. It is simple to
allocate multiple channels to one user with CDMA by assigning to that user
multiple codes. These characteristics can be utilized for example in a cellu-
lar system to improve the handoff procedure. Specifically in cellular systems,
when a mobile passes from one cell to the next, it has to switch the link from
the old base station to the new one. This procedure is known as handoff. In 2G
systems, where adjacent cells transmit over nonoverlapping frequency bands,
the handoff is hard, meaning that the receiver has to switch from the frequency
band to the other, as it crosses the boundary from one cell to the next. Con-
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versely, adjacent cells in a CDMA cellular network use the same frequency
band. Hence, when a mobile moves from one cell to the next, it can commu-
nicate with both cells and even combine the two signals advantageously. Only
when a reliable link has been established with the new station does the mobile
user stop communicating with the previous station. This technique is called
soft handoff. Turning to the analysis of CDMA systems, we note that down-
links typically use orthogonal spreading codes such as Walsh-Hadamard codes,
although the orthogonality can be degraded by multipath. Uplinks generally
use non-orthogonal codes due to the difficulty of user synchronization and the
complexity of maintaining code orthogonality in uplinks with multipath.

One of the main advantages of CDMA with respect to TDMA and TDMA
is that little dynamic coordination of users in time or frequency is required,
since the users can be separated by the code properties alone. In addition, since
TDMA and FDMA carve up the signaling dimensions orthogonally, there is a
hard limit on how many orthogonal channels can be obtained. This is also
true for CDMA using orthogonal codes. However, if non-orthogonal codes are
used, there is no hard limit on the number of channels that can be obtained.
However, because non-orthogonal codes cause mutual interference between
users, the more users that simultaneously share the system bandwidth using
non-orthogonal codes, the higher the level of interference, which degrades the
performance of all the users. Moreover since the CDMA waveforms occupy
the whole spectrum and time available for transmission, the transmission is
inherently robust against selective fading and against narrowband interference.
In fact, as we will see in the chaptér CDMA is built on Spread Spectrum
technique that is able to mitigate the performance degradation due to inter-
symbol and narrowband interference.

Nevertheless, the advantages that we have underline are paid for the in-
creased complexity at the receiver. In addition since CDMA systems are in-
herently affected by multi-access interference, it is particularly important to
adapt the power used on each link in order to limit the detrimental effects of
mutual interference. A typical problem is the so-calleghr-far effectthat
arises in the uplink because the channel gain between a user’s transmitter and
the receiver is different for different users. Specifically, users near to a base
station or an access point, can create a huge interference toward users access-
ing the same station from the boundary of the cell. To cope with this problem
and try to maximize the number of users accessing the system with satisfying
QoS, itis necessary to implement a power control (i.e., a feedback mechanism
that forces the users to adapt their transmission power depending on the dis-
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tance to the base station). Thus, power control is used such that the received
signal power of all users is roughly the same. This form of power control,
which essentially inverts any attenuation and/or fading on the channel, causes
each interferer to contribute an equal amount of power, thereby eliminating
the near-far effect. CDMA systems can also use a multiuser detector (MUD)
to reduce interference between users. We will see in chaptensi5 some
results with reference to these arguments. Finally we note that CDMA is used
for multiple access in the 1S-95/cdmaOne digital cellular standards, with or-
thgonal spreading codes on the downlink and a combination of orthogonal and
non-orthogonal codes on the uplink . It is also used in the W-CDMA and
cdma2000 digital cellular standards .

Now some important remarks are needed. TDMA and FDMA techniques
are more appropriate for narrowband systems because user transmissions are
restricted to separate narrowband channels. In this scenario a multiuser system
is simplified and can be approximated by a collection of point-to-padm-
interfering links and physical-layer issues are essentially point-to point ones.
Therefore the design complexity of the multiple access and interference man-
agement are simplified. From this perspective, the description and analysis of
a narrowband system is the same for uplink and downlink. On the other hand,
the philosophy of a CDMA system is different because all transmission are
spread to the entire bandwidth and are hemickezband As a consequence, the
multiple access and interference management strategies are different, in the
sense that all users share all degrees of freedom and therefore interfere with
each other: the system iisterference-limitedather thardegree-of-freedom-
limited.



Chapter 2

Linear and Widely Linear
Equalizers

n this chapter we introduce the basic concepts associated with equalizer de-
I sign considering a single-input/single-output (SISO) system model. This
model, in fact, is the basic mathematical model adopted in the design of com-
munication systems. Successively we describe the basic characteristics of the
widely linear (WL) processing and we compare it with the standard linear
equalization method.

2.1 Introduction

The wireless radio channel poses a severe challenge as a medium for reliable
high-speed communication. It is not only susceptible to noise, interference,
and other channel impediments, but these impediments change over time in
unpredictable ways due to user movemeri][ Therefore, wireless channels
may exhibit frequency selective fading and Doppler shift. Frequency-selective
fading gives rise to intersymbol interference (ISI), which can cause an irre-
ducible error floor when the modulation symbol time is on the same order as
the channel delay spread. Doppler causes spectral broadening, which leads
to adjacent channel interference. In this chapter we focus only on the effects
of frequency-selective fading neglecting Doppler effects, following the lines
outlined in [L9].

In a broad sense, equalization defines any signal processing technique used
at the receiver to alleviate the ISI problem caused by delay spread. Signal pro-
cessing can also be used at the transmitter to make the signal less susceptible

9
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to delay spread: spread spectrum and multicarrier modulation fall in this cate-
gory of transmitter signal processing techniques. We will examine these meth-
ods in chapterg and5 with reference to CDMA systems. Equalizer design
must typically balance ISI mitigation with noise enhancement, since both the
signal and the noise pass through the equalizer, which can increase the noise
power. Equalization techniques fall into two broad categories: linear and non-
linear. The linear techniques are generally the simplest to implement. On the
other hand, nonlinear equalizers suffer less from noise enhancement than linear
equalizers, but typically entail higher complexity. Among nonlinear equaliza-
tion techniques, decision-feedback equalization (DFE) is the most common,
since it is fairly simple to implement and generally performs well. Moreover,
among nonlinear equalization technigues, the optimal equalization technique
is maximum likelihood sequence estimation (MLSE). Unfortunately, the com-
plexity of this technique grows exponentially with the length of the channel,
and is therefore impractical for most channels of interest. Linear and nonlin-
ear equalizers are typically implemented using a transversal or lattice structure.
We focalize on the transversal structure, that is, a filter with N - 1 delay ele-
ments and N taps with tunable complex weights.

Most equalizers are implemented digitally after A/D conversion, since
such filters are small, cheap, easily tuneable, and very power efficient. This
chapter mainly focuses on digital equalizer implementations and moreover,
our analysis of equalization is based on the equivalent lowpass representation
of bandpass systems.

2.2 Preliminaries

Let consider the block diagram in figugel of an equivalent lowpass end-to-

end system with a digital equalizer. The information symf@) is passed
through a pulse shape filtex(¢) that improves the spectral properties of the
transmitted signal. This pulse shape is under the control of the system designer.
Then the signal waveform is transmitted over the ISI channel with impulse
responsg(t), whose effects are outside the designer’s control and generally
have a random nature. At the receiver front-end white Gaussian ngises

added to the received signal for a resulting signak)

ua(t) = s(t) x x(t) * g(t) + n(t) (2.1)

with s(t) = 3", s(n)d(t — nT's), the pulse train of information symbols.
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Figure 2.1: End-to-end system (equivalent lowpass representation

In order to obtain a digital version of the received signal, at fitg)
passes through an analog matched filtgK(¢) to obtain output,(t), which
is then sampled via an A/D converter. The purpose of the matched filter is to
maximize the signal-to-noise ratio (SNR) of the signal before sampling and
subsequent processing. We note that in AWGN the SNR of the received signal
is maximized prior to sampling by using a filter that is matched to the pulse
shape. This result indicates that SNR prior to sampling is maximized by pass-
ing u,(t) through a filter matched to(t) * g(¢), so ideally we would have
xm(t) = x(t) * g(t). However, since in general the channel impulse response
g(t) is time-varying and analog filters are not easily tuneable, it is generally not
possible to have,, (t) = z(t) * g(t). However,x,,(t) is chosen in such a way
that good performances are assured. Ofigf¥) is matched to the transmitted
pulse shape(t), which is the optimal pulse shape when the channel is ideal,
i.e, g(t) = d(t), but this design is clearly suboptimal wheft) # §(¢). The
fact thatz,, (¢) cannot be matched tat) x g(¢) can result in significant perfor-
mance degradation and also makes the receiver extremely sensitive to timing
error. These problems are somewhat mitigated by samplitg at a rate
much faster than the symbol rate and designing the equalizer for this oversam-
pled signal. This process is called fractionally-spaced equalization for which
we will see an application in chaptér The equalizer output then provides
an estimate of the transmitted symbol. This estimate is then passed through a
decision device that rounds the equalizer output to a symbol in the alphabet of
possible transmitted symbols.

Let ¢, (t) denote the combined baseband impulse response of the transmit-
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ter, channel, and matched filter:

4

cq(t)

Then the matched filter output is given by

x(t) * g(t) * x, (—t). (2.2)

—00

ra(t) = s(t) * ca(t) + wa(t) = > s(k)ealt — kT:) + wa(t)  (2.3)

k=—o0

wherew, (t) = n(t) *z},(—t) is the equivalent baseband noise at the equalizer
input andTs is the symbol time. If we let(k) = c,(kTs) denote samples of
cq(t) everyT, seconds then sampling(t) everyT seconds yields the discrete
time signal-(k) = r,(kT's) given by

“+o0 —+00

r(k) = Y s(n)ca(kTs — nTy) + wa(kTe) = > s(n)e(k — n) + n(k)
= s(k)c(0) + > s(n)e(k — n) + n(k) (2.4)
n#k

where the first term in4.4) is the desired data bit, the second term is the ISI,

and the third term is the sampled baseband noigg 2 wq (kTs). We see
from (2.4) that we get zero ISl if(k—n) = 0forn # k,i.e.c(n) = §(n)c(0).
In this case Z.4) reduces to

r(k) = s(k)c(0) + n(k) (2.5)

If the combined baseband impulse response of the transmitter, channel, and
matched filter, also called composite channel impulse respoy(g¢spansl.
symbol periods, i.eq,(t) = 0fort ¢ [0, L. Ts ), after sampling-,(¢) at baud
ratel/Ty, the expression of theth (k € Z) received time-discrete signalk)
is given by
L.—1
r(k) =Y c(n) s(k —n) + n(k). (2.6)

n=0

We underline that the baud-rate sampling has a single-input/single-output
(SISO) nature; instead, as we will in chapBthe fractionally-spaced equal-
izers have a single-input/multi-output (SIMO) nature.
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2.3 Linear Equalizers

In this section we assume a linear equalizer implemented vid. atap
transversal filter (where the equalizer length is expressed in symbol intervals).
The length of the equalizek, is typically dictated by implementation con-
siderations, since a large. usually entails higher complexity. For a given
equalizer sizd.. the equalizer design must specify the tap weights for a given
channel frequency response (note that in the hypothesis of time-varying chan-
nel the equalization design must also specify the algorithm for updating these
tap weights as the channel varies). Recall that our performance metric in wire-
less systems is the probability of error, so for a given channel the optimal
choice of equalizer coefficients would be the coefficients that minimize proba-
bility of error. Unfortunately it is extremely difficult to optimize the equalizer
coefficients with respect to this criterion. Therefore we must use an indirect
optimization that balances I1SI mitigation with the prevention of noise enhance-
ment. We now describe two linear equalizers: the Zero Forcing (ZF) equalizer
and the Minimum Mean Square Error (MMSE) equalizer. The former equal-
izer cancels all ISI, but can lead to considerable noise enhancement. The latter
technique minimizes the expected mean squared error between the transmit-
ted symbol and the symbol detected at the equalizer output, thereby providing
a better balance between ISI mitigation and noise enhancement. Because of
this more favorable balance, MMSE equalizers tend to have better BER per-
formance than equalizers using the ZF algorithm.

Since we are considering linear equalizers, their outgi is a linear
combination of the input samplegk). Moreover, we have assumed that a
linear equalizer is implemented via dn-tap transversal filter, therefore, to
compensate for ISI and noise, namely, to produce a reliable estimate of the
symbols(k) a linear equalizer has to jointly elabordigconsecutive symbols,

y(k) =Y frr(k—j). 2.7)

We can note that the equalizer could introduce a equalization delay, but for no-
tational simplicity we neglect it. In the chaptgwe take in account a possible
equalization delay. If we defingk) 2 [r(k),r(k—1),...,7(k—L.4+1)]T €
Cle andf = [fo, f1,..., fr._1]T € Cke collects all the equalizer's parame-
ters, we can rewrite the input-output relationship of an L-FIR equalizé&} (
as

y(k) = tHr(k). (2.8)



14 CHAPTER 2. LINEAR AND WIDELY LINEAR EQUALIZERS

Accounting for @.6), the vecton(k) can be expressed as
r(k) = Bs(k) +n(k), (2.9)

wheres(k) 2 [s(k), s(k — 1), ..., s(k — K +1)]” € CK, with K £ L. +
L. — 1, whereas

[c(0) ... e(L.—1) 0 0
0 ¢0) . c(Le—1) 0
B2 | : : : € CLxK  (2.10)
L0 0 «0) o eLe—1))

is a Toeplitz matrix and, finallyn (k) 2

DT € Cle,

We remark that the vectdr can be chosen on the base of different cri-
terions, such as, for example, ZF or MMSE criterions that we describe in the
following. To simplify the analysis of this criterions we suppose th@t) € C
is a sequence of i.i.doroperor circular [l] zero-mean random variables, sta-
tistically independent of(n), with varianceo? 2 E[|n(k)[?)]. We can, for
example, suppose that the receiver is equipped with a noise-whitening filter.
No specific assumption is introduce for the symbpigk)} because we will
see in the SectioA.4 how this choice will influence the equalization design.

[n(k), n(k — 1), ..., n(k — Le +

2.3.1 Linear ZF Equalizers

The idea of the ZF (zero-forcing) criterion is to set to zero the I1SI contribution,
as suggested by the name. Therefore the equalizer ayltpushould be equal
to the symbol that is transmitted

y(k) = s(k). (2.11)

In the absence of noise, imposing the zero-forcing condifiahl], accounting
for equationsZ.9) and @.8), leads to the linear equation system

fiB=el o Bif=e, (2.12)

wheree; 2 [1,0,...,0]7 € RE. Nevertheless the ZF equalizer is not im-
plementable as a finite impulse response (FIR) filter, in factd defines a
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linear equation system with a number of equations smaller than the number of
unknown quantities, therefore the system has no solution. In fact in the baud-
spaced case the column dimensiorBodlways exceed the row dimension

Le<K=L.+L.—1. (2.13)

We will see in the sectiofd.3 of the chaptef that if we adopt a fractionally-
spaced equalizer the ZF equalizer can be implemented as a finite impulse re-
sponse (FIR) filter. An alternative proof of the fact that a baud-spaced ZF
equalizer cannot be implemented as a FIR filter, can be conducted considering
that the system(12) is consistent if and only if (iff) 4]

BB e; = e, (2.14)

where(.)~ denotes theg 1} —inverse of the matri8% . If the channel matrix

B is full-column rank, i.e., rani3) = K, it results thatB?(B7)~ = I

and, then, this system turns out to be consistent. Nevertheless the full-column
rank requirement implies th# must have at least as many as rows as columns,
which in the baud-spaced case is never satisfied because the column dimension
of B always exceed the row dimension. Moreover, we note that the ZF equal-
izer can lead to considerable noise enhancement (sgdqdr details). This
motivates an equalizer design that better optimizes between ISI mitigation and
noise enhancement. One such equalizer is the MMSE equalizer, described in
the next subsection.

2.3.2 Linear MMSE Equalizer

In MMSE (minimum-mean-square error) equalization the goal of the equalizer
design is to minimize the average mean square error between the transmitted
symbol s(k) and its estimatey(k) at the output of the equalizer. In other
words the vectof is chosen to minimize iy (k) — s(k)|?]. Thus, we want to
minimize the mean square error:

J(£) 2 Elly(k) — s(k)|}] = £ Ren £ + E[|s(k)[2] — 2Re(f"r,) (2.15)

whereR,. 2 Efr(k)rf (k)] € CLexl« is the autocorrelation matrix af(k)

andr, 2 E[r(k)s*(k)] € CEe*1, It can be shownl9, 25] that the solution
of this minimization problem is given by

flmmse = Ry 15 (2.16)
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Figure 2.2: Widely-Linear processing scheme

Note that solving fof| .mmse requires the data autocorrelation matrix inver-
sion. Thus, the complexity of this computation is quite high, typically on the
order of L2 to L? operations. Substituting(16) in (2.15 we obtain the mini-
mum mean square error

AN _
Jummse = J(fLmmse) = E[|s(k) 2] — rf R r, (2.17)

It is possible to show a classical result of the estimation theory that is the
estimatey(k)opt that minimize the MS error is the regression or the conditional
expectation value [5(k)|r(k)]. Moreover in [L9, 25] it is underlined that the
MMSE infinite length equalizer is identical to the ZF filter except for the noise
term, so in the absence of noise the two equalizers are equivalent.

2.4 Widely linear processing

In this section, based oi], we present widely-linear processing, the core of
this thesis. In particular, we report here the results?pthjat show that when
the data are not proper][but are improper J] the widely-linear processing
outperforms the linear one.

In the previous subsectidh3.2we have underlined that the estimate that
minimize the MS error is the regression or the conditional expectation value.
In classical estimation theory this result is usually proven wi{én andr (k)
are real. However, it remains valid when these quantities are complex valued
if we redefine correctly the regression concept. Specifically, we observe that
if s(k) andr(k) are real the regression is linear. For complex data this is no
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longer true because the regression must be linear batfkinandr(k)* and
is calledwidely linear(WL). More specifically, we have seen that in L-MSE
criterion the estimate2(8) is found by processing it with2(16). We report
(2.9) here

y(k) = flr(k), (2.18)

and we note thaj(k) is a scalar product, therefoggk) is a linear function of
the vectorr(k), as defined in classical linear algebra. Consider now the scalar
ywi (k) defined by

ywi (k) = £{'e (k) + £57c" (k) (2.19)

wheref; andf, are two complex vector, see figlte. This is the general form
of “linear” regression for complex random variables. It is clear ihatk) is
not a linear function ot (k). However, the moment of ordér of yy (k) is
completely defined from the moments of ordeof r(k) andr*(k), which
characterizes a form of linearity. This is whg.19 is called awide sense
linear or widely linearfilter or system.

To show that taking into account WL systems defined byL.9) instead
of strictly linear ones defined by (8) can yield significant improvements in
estimation problems using complex data, we report here the resulis dhe
problem of WL mean square estimation (WL-MMSE) is to find the vecfprs
andf, in such a way that the MSE between the estimand(k) (or s(k —
d) if we consider a equalization delay) and the estimgi€k), is minimum.
Preliminarily, we observe that the set of scalar complex random variables

z = all x + bfx* (2.20)

wherea andb are two complex vector, constitutes a linear subspace over the

complex field. If we define a scalar product-asui, us >é E[u] us], this
linear subspace becomes a Hilbert subspace. Therefore, we can 2dayd (
as the projection ofyy (k) onto this subspace and due to the orthogonality
principle, one has

(s(k) — ywi(k)) Lr(k); (s(k) — ywm(k)) L x*(k). (2.21)

The symboll means that all the componentsidk) or r*(k) are orthogonal
to (s(k) — ywi(k)) under the previous scalar product. In agreement with the
definition of scalar product2(21) can be rewritten as

Els*(k)r(k)] = Elgyw (k) r(k)];  E[s*(k)r* (k)] = Elyw (k) r* (k)] (2.22)
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Substituting 2.19 in (2.22) one obtains:

Ry f1 + Ryp f2 =14 (2.23)
R::r* f1 + R:r f2 = I‘z (2.24)

whereR,. is the autocorrelation matrix that we have define®ii 9, R - =

E[r(k)rT (k)] is the pseudo-correlation matrix and finally = E[s* (k) r(k)]
is defined in .15 andr, 2 E[s(k) r(k)]. From .23 and @.24), we find the
solutions expressed as

f1 = [Rer — Ry (R];})*R:;r*]‘1 [ty — R (R 1] (2.25)

fy = [Ri, — Ri Ry Repe] ' [rf — Ri Ryl 1y (2.26)

v

The corresponding MSE is obtained by substitutidd 9 in (2.15 with £ and
fo given by £.25 and @.26), or it is deduced from the projection theorem:

Jwivmse = E[|s(k)[?] — (FFr, + 5 17) (2.27)

Let us define the quantitx.J = JL-mmse — JwiL-mmse, that is equal to4]
AJ = [rf — R R ][R — Rip Ry Ry

[t} — Ri-Ry'ry]. (2.28)

rr*

positive definite (see?] for details) and it resultsAJ = 0 only when
r’ — R’ R, ry = 0. Therefore the error that is obtained with a L-MMSE
(2.17) is greater then the errore that is obtained with a WL-MMSET) and
the advantage of the WL-MMSE procedure over the L-MMSE is characterized
by the quantityAJ.

Now we consider some case studies.

AJ is always nonnegative because the mafii;, — R;.. Ry, Ryp+] is

v" Jointly Circular Case
this situation is characterized by

Ryy»=0; r,=0 (2.29)
It immediately results from2.26) and .25 that 2.29 implies
f1 =R !r, (2.30)

rr

f,=0 (2.31)
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(2.30 is the same of4.16. Thus, the assumption of joint circular-

ity [26] implies that the WL-MMSE 2.19 takes the formZ.8) and is
strictly linear. Moreover it results thak.J, given by .28, is equal to
zero. In conclusion, in the case of a joint circularity, the strictly lin-
ear system4.9) is sufficient to reach the best performance. This is one
of the arguments justifying the interest of circularity. However, even if
circularity appears in many practical situations, there are cases where it
cannot be introduced, as we will see in the next chapters.

v~ Circular observation

we suppose that circularity is only valid for the observation and is char-
acterized by
Ry =0, (2.32)

whereas no specific assumption is introduced for the estimandim
In this case it results tha? (26) and .25 become

f1 = R_'r, (2.33)

rr

f5 =R 'r, (2.34)

This means that the terfi¥ r(k) in (2.19 is the same as the one obtained
when using strictly linear estimatio .(L6).

Moreover, from 2.28) it results that
AJ=rIR!r, (2.35)

Thus, a nonzero vectar, necessarily implies an increment of the per-
formance of WL estimation compared with L one.

v’ Case of a Real Estimandus(k):

we suppose then thatk) is real whereas(k) is complex (this case ap-
pears in many situation, see chaptdor a thorough discussion). From
(2.26 and @.29, we find

f, =15 (2.36)

because it results that = r,. Substituting 2.36) in (2.19, we obtain
ywl (k) = 2Re(f{r(k)). (2.37)
Similarly, the estimation error takes the form

AJ = E[s(k)?] — 2Re(ffry). (2.38)
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The main property of the estimate.87) is that it is real, although there

is no reason for the strictly linear estimate to be real, which is not con-
venient when estimating a real quantity. The advantage of the structure
(2.19 with respect to?.8) is even more clear when the observatidh)

is circular. In fact, as seen in the case of Circular observation, the vector
f, is the same as the one that must be used to realize the L-MIMSE
Thus, by using this vector, the two estimatazs3[ and .19 become

y(k) = £1e(k); yw (k) = 2Re(f'r(k)) (2:39)
and the corresponding errois.17, (2.27), are
JL-MMSE = E[Sz(k‘)] — f{{I‘S; JWL-MMSE = E[SQ(k’)} — Qf{{rs (2.40)

The quantityfi’r, = fI’ R, f, is positive becausR,, is a Hermitian
matrix. In conclusion, the wide sense linear estimafot ) provides

a real estimate and a decrease of the error that is twice as great as the
strictly linear estimate, which in general is complex.

From these results, we conclude that widely linear systems can yield sig-
nificant improvements in estimation performance with respect to strictly linear
systems generally used, except when the circularity assumption is introduced.
In the next chapter we will exploit these results in the channel equalization
scenario.



Chapter 3

Constant Modulus Equalizers
for Narrowband Systems

n this chapter, the constant modulus (CM) cost function is analyzed under

the general assumptions that improper modulation schemes of practical
interest are employed and the baseband equivalent of the channel impulse re-
sponse is complex-valued. Preliminarily, this study is conducted with respect
to the linear finite-impulse (L-FIR) fractionally-spaced (FS) blind equalization
of FIR frequency- selective channels. The analysis allows one to determine a
broad family of undesired minima of the L-CM cost function, which do not
allow perfect symbol recovery in the absence of noise. The results developed
herein generalize and subsume as a particular case existing studies of the L-
CM cost function, which exclusively consider real-valued binary modulations.
Successively the chapter deals with the problem of designing widely-linear
(WL) fractionally-spaced (FS) equalizers for both real- and complex-valued
improper modulation schemes. Specifically, the synthesis of both WL-FS min-
imum mean-square error and zero-forcing equalizers is discussed, by deriving
the mathematical conditions assuring perfect symbol recovery in the absence
of noise. We also propose a constrained widely-linear constant modulus equal-
izer, able to recover perfectly the symbols in the absence of noise. The ef-
fectiveness of the proposed equalizers is corroborated by means of computer
simulation results.

21
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3.1 Introduction

In digital communications, blind channel equalization techniques allow one to
cancel or reduce the intersymbol interference (ISI) introduced by frequency-
selective transmission channels, without wasting the available bandwidth re-
sources due to transmission of training sequences. One of the earliest blind re-
ceivers, and perhaps the most widely used in practice, is based on the Godard
or constant modulus (CM) algorithrd,[5, 6]. In his original paper Godard
observed by simulations that receivers designed by minimizing the constant
modulus cost function, have MSE performance similar to those of nonblind
Wiener receivers. This striking observation provides strong support for using
CM blind receivers because they do not require the cooperation of the trans-
mitter and also achieve near optimal performance (in the sense of minimizing
mean square error of the estimate).

Most early detailed studies of the stationary points of the CM cost function
were conducted. These analysés,[28] have shown that, in the absence of
noise and under certain mathematical conditions, all the local minima of the
L-CM cost function are global ones and allow one to exactly suppress the ISI,
provided that the transmitted symbol sequenceiimaer[ 7] complex random
process.

On the other hand, in many cases of practical interest, the symbol sequence
is animproper[1] random process. In this case and when the channel impulse
response is complex-valued, the ISI suppression capabilities of L-CM equal-
izers turn out to be adversely affected. With reference to BPSK modulation
this weakness was evidenced Y], wherein it was pointed out that, besides
containing desired local minima, the infinite-length CM linear equalizer also
exhibitsundesiredylobal minima, which do not lead to perfect symbol recov-
ery in the absence of noise. However, the analysis carried otgjndannot
be directly extended to multidimensional real-valued modulations, as well as
to others improper complex-valued modulation schemes of practical interest.
Therefore, at the first in this chapter it is showii][how to improve and to
generalize the results of ], by determining a broad family of undesired local
minima of the L-CM cost function.

Moreover, we can observe that when the transmitted symbol sequence is
improper (see sectiah4), it is well-known [2, 3] that a better (in the sense of
second-order statistics) estimate of the transmitted symbols can be obtained by
resorting to widely-linear (WL) estimators, which jointly process the received
signal and its complex conjugate. As a consequence in this chapter, following
the lines outlined in{, 9], we provide a general and unified framework to de-
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sign WL equalizers for both real- and complex-valued improper modulations,
by deriving the conditions assuring perfect symbol recovery in the absence
of noise and providing some insights into the synthesis and analysis of blind
WL-CM equalizers.

Specifically, as confirmed by the simulation results, also the WL-CM cost
function exhibits undesired global minima which do not lead to perfect symbol
recovery in the absence of noise. To overcome this drawb&gck] propose
to resort to a constrained WL-CM equalizer assuring perfect symbol recovery
in the absence of noise. The proposed designs generalize and subsume as
a particular case some previously proposed WL equaliz&ts3] targeted
at real-valued modulations. The effectiveness of the proposed equalizers is
corroborated by means of computer simulation results.

3.2 Signal Model

Let us consider a digital communication system employing linear modulation
with symbol periodl’;. The complex envelope of the received continuous-time
signal, after filtering and ideal carrier-frequency recovering, can be expressed
as

(e 9]

Ta(t) = Z 5(q) ca(t — qTs) +wa(t), (3.1)

q=—00

where{s(n)},cz is the sequence of the transmitted symbaql$;) denotes the
compositeimpulse response (including transmitting filter, physical channel,
receiving filter, and timing offset) of the linear time-invariant signal channel
and, finally,w, (t) represents additive noise at the output of the receiving filter.
If the channel impulse responsg(t) spansL,. symbol periods, i.eg,(t) =0
fort ¢ [0,L.Ts), after sampling-,(¢t) at rateN/T,, with N > 1 being an
integer number, the expression of thé (k € Z) received data block(k) 2

O k), rO (&), ..., rN=D )T € N, with rO (k) £ ro(k Ty + (T,/N),

is given by

Lc—1
r(k) = > c(q)s(k—q) +w(k), 3.2)
q=0

wherec(k) 2 [cO(k), <D k), ..., N-D(k)]T e CN, with O (k) 2

co(kTs + £Ts/N) denoting the/th phase of the discrete-time chan-
nel ¢(n) 2 ca(nTs/N) and, similarly, the noise vectow (k) 2
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[wO (k), wM(k), ..., wN=D(k)]T € CN collects the noise phases
w®(k) 2 wa(kTy + ¢Ty/N), for £ € {0,1,...,N — 1}. Itis worth to
note that whenV = 1, the fractionally spaced mode}.¢) degenerates in the
common baud-spaced model.

To compensate for ISI and noise, namely, to produce a reliable estimate of
the symbok(k—d), with d denoting a suitablequalization delayan equalizer
has to jointly elaboraté,. consecutive symbols, by processing the input vector
2(k) 2 [vT(k),xT(k —1),...,v7(k — L. + 1)]T € CNL which, accounting
for (3.2), can be expressed as

2(k) = Cs(k) + v(k), (3.3)
wheres(k) 2 [s(k), s(k — 1), ..., s(k — K +1)]T € CX, with K £ L, +

L. — 1, whereas

—C(O) oo c(Le—1) Oy Oy
ON C(O) .. C(Lc — 1) ON
c2| . . . : e C(NLe)xK
| O Opn c(0) c(L. — 1)_
(3.4)

is a block Toeplitz matrix and, finally,v(k) 2 wl(k), wl'(k —
1), ..., wl(k — Lo +1)]7 € CNEe,

The following customary assumptions will be considered hereinafter:

Al) s(n) € C is a sequence of independent and identically distributed

(i.i.d.) zero-mean random variables, whose kurt@gié El|s(n)|*] —
2E(|s(n)[?] — |E[s2(n)]|* < 0.

A2) w(n) 2 wqe(nTs/N) € Cis a sequence of i.i.doroper[1] zero-mean

random variables, statistically independentof), with variancer? 2
Efjw(n)/?].

The conditionxs; < 0 imposes that the transmitted symbols are “sub-
Gaussian” §], which is the case commonly encountered in digital commu-
nications. Assumption A2 is surely satisfied if the continuous-time filter used
at the receiving side has (approximatively) a square root raised-cosine impulse
response and, more generally, A2 holds if a whitening matched-filter is em-
ployed at the receiver.
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3.3 Linear Constant Modulus Equalizer

Blind channel equalization consists of designing a linear FIR (L-FIR) equal-
izer, which is able to extract the desired symb@l — d) (with d denoting the
equalization delay) by jointly counteracting intersymbol interference (ISI) and
noise, without making use of training sequences. Denoting Initthe equal-
izer length (expressed in symbol intervals), the input-output relationship of an
L-FIR equalizer is
y(k) = £72(k), (3.5)

wheref € CV’e collects all the equalizer's parameters aié) is given by
(3.3.

The term perfect equalization means that the equalization oytpytis
equal to the symbol that is transmitted for some fixed suitable equalization
delayd, i.e.

y(k) = s(k —d), with d € {0,1,..., K —1}. (3.6)

In the absence of noise, imposing the so called “zero-forcing” (ZF) condition
y(k) = s(k — d) leads to the linear equation system

fic =el o Clf =e,, (3.7)

d

whereed 2 0,...,0,1,0,...,0/7 € RE, foranyd ¢ {0,1,..., K — 1}.
This system is consistent if and only if (iff}{]

c(c™) eq = ey, (3.8)

where(.)~ denotes the 1} —inverse of the matrbC*. If the channel matrix

C is full-column rank, i.e., rantC) = K, it results thalC(CH)~ = I and,

then, this system turns out to be consistent regardless of the equalization delay
d. In this case, theninimal normsolution, i.e., the solution of the constrained
optimization problem

fzr = arg min ||f||?, subjecttoC? f = ed, (3.9)
feCNLe
is given by (see, e.g.21])
fzr = C(CHC) ey (3.10)

Therefore, in the sequel, to guarantée §3] the existence of L-FIR zero-
forcing (ZF) designs fof, we assume that
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A3) Ciis full-column rank, i.e., ranfC) = K.

The full-column rank requirement] 33], implies thatC must have at
least as many as rows as columns, which in d&'s-spaced case results in
the following equalizer length requirement:

NL.>K = (N—1)L.> L.~ 1. (3.11)

Applying the same argument to a L- baud-spaced equali¥es(1), we un-
derstand that in this case the L-FIR-ZF solution does not exist because the
column dimension ofC always exceed the row dimension. Moreover, let
C9)(z) denote thez-transform of thefth channel phaséc®) (k)} 1<, for
¢ e {0,1,...,N — 1}, in [5], is underlined that to guarantee the full-column
rank requirement, the ponnomia{é(e)(z) share no common root, i.e., are
coprime.

To blindly suppress ISI and noise, one can resort to the constant modulus
(CM) criterion [4, 5], where the vectof is chosen such as to minimize the cost
function

Tem() 2 El(vs — [y(B)2)?], (3.12)

where, 2 E[|s(n)|*]/E[|s(n)|?] denotes the dispersion coefficient of the
transmitted symbol sequence. The cost functi®id) exhibits a multimodal
surface and its minimization does not lead to closed-form solutions. In prac-
tice, stochastic gradient descent (SGD) algorithms are commonly employed
to minimize Jem(f), by starting at some location on the surface and follow-
ing the trajectory of the steepest descent. Since the characteristics of the CM
cost function allow one to gain important insights about the expected behav-
iors of any SGD algorithm that attempts to minimiZg,(f), such as the pop-

ular CM algorithm (CMA) [], the derivation and classification of the sta-
tionary points of the cost functiorB(12 has received a great deal of atten-
tion as we have underlined in the introducti8ri. Moreover, again in the
introduction we have noted that there is a lack of detailed analysis of the
CM cost function 8.12 when the symbol sequence is an improper random
process, i.e., its conjugate correlation function does not vanish identically,
Rss+(n,m) 2 E[s(n) s(n — m)] # 0 for somen,m € Z. The simplest
examples of improper modulation formats are all the real-valued ones, such
as ASK, BPSK, differential BPSK (DBPSK), for which the conjugate corre-
lation function R+ (n, m) trivially boils down to the autocorrelation func-
tion Rys(n,m) 2 E[s(n) s*(n — m)], i.e. Res+(n,m) = Rys(n,m) for any

n,m € 7.
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In the literature, when real-valued modulations are considered, a common
assumptiond4, 35, 36, 6] is that the baseband channel impulse response (CIR)
and the additive noise are also real-valued: in this case, the CM cost surface
essentially exhibits the same characteristicé{ f) given by 3.12 when the
transmitted symbols are assumed to be proper complex, i.e, all the local min-
ima of Jom(f) are desired enabling perfect recovery of the transmitted symbols
in the absence of noise. A noticeable exceptior?ig, [wherein the transmis-
sion of BPSK symbols over a complex baseband channel is considered. In
this case, it was argued if{] that, besides containing desired local minima,
the infinite-length CM linear equalizer also exhihitsdesiredglobal minima,
which do not lead to perfect symbol recovery in the absence of noise. However,
the analysis carried out i2§] is exclusively targeted at a BPSK modulation
and cannot be directly extended to multidimensional real-valued modulations,
as well as to others improper complex-valued modulation schemes of practical
interest, such as offset QPSK (OQPSK), offset QAM (OQAM), MSK and its
variant Gaussian MSK. Therefore, on the basis of these considerations, with
reference to a complex-valued CIR, the aim of this section, following our paper
[30] is to provide an accurate derivations and classification of a broad family
of undesired local minima of.m(f) for a more general class of improper mod-
ulation schemes of practical interest. Hence the study of the stationary point
of (3.12 is herein carried out under the more general assumptions:

A4) besides fulfilling assumption Alg(n) is an improper [] random

process, with second-order moments 2 E[|s(n)|?] and ¢s(n) 2
E[s®(n)] # 0, Vn € Z, whose improper nature arises from the linear
dependence existing betwegm) and its conjugate versiot(n), i.e.,

s*(n) = &/ 7P s(n), ¥n € Z; (3.13)

A5) c(n) is acomplex-valuedhannel, that is, neithefz (n) norc;(n) vanish
identically.

A large number of digital modulation schemes satisfy assumption A4, in-
cluding ASK, BPSK, DBPSK, offset QPSK (OQPSK), offset QAM (OQAM),
MSK and its variant Gaussian MSK (GMSK) (se&[ 37] for a detailed dis-
cussion). Specifically, real modulation schemes, such as ASK and DBPSK,
fulfill assumption Al withg = 0, i.e., s*(n) = s(n), whereas for complex
modulation formats, such as OQPSK, OQAM, and MSK-type, it results that
B =1/2,i.e.,s%(n) = (—1)" s(n). Finally, assumption A5 is customary when
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one resorts to the equivalent lowpass representations of passband signals and
systems.

3.3.1 Analysis of the L-CM cost function

In the absence of noise, accounting 813 and invoking assumptions A1, A3,
A4 and A5, after tedious but straightforward algebraic manipulations (see also
[5]), it can be shown that minimization 0812 with respect td is equivalent

to the minimization with respect to tleembined channel-equalizeectorq 2
CHf = [q0,q1,...,qx-1)" € CK, of the cost function

Jem(a >éJcm<c (cfc)'q)

2
= K E Iqe\4+2( o2 [|al? ) ‘ o2q"J*q*
—_——

— 2, o7 |lal]* +42
——

E[ly(’f)|2] Ely?(k)] Elly(k)[?]
(3.14)
wheres, 2 E[|s(n)|4]— 252“ )12)—|E[s2(n)]]” = 02 (v,—302) < Oisthe
kurtosis ofs(n), whereas] 2 diag1, e~ 92”5,...,6 J2mBK-1)) ¢ CK*K jg

a diagonal unitary matrix, i.eJ,J* = J*J = Ix. More precisely, ifj € CKis

a local minimum of/gm(q), then, under assumption AB= C (CH#C)~'q+

fr, wheref, € CNEe is an arbitrary vector belonging to the null space of
CH, is a local minimum ofJem(f). Furthermore, observe that ||q||? in
(3.14) represents the mean-output-enerdyy&)|?] of the equalizer output
y(k) = q’s(k), whereas? g/ J*q* coincides with the second-order moment
E[y%(k)]. It is noteworthy that, compared with expressions of the CM cost
functions commonly encountered in the literature, 8ql4) is more general.
Specifically, when both the transmitted symbols and the CIR are real-valued
(ile., 5 = 0 andC € RWLe)xK) the cost function3.14) ends up to that
studied in B4, 35, 36, 6]. In fact, in this case, the combined channel-equalizer
vectorq turns out to be real-valued, too, i.e.,c R, and, consequently, the
second and third summand iB.{4) can be grouped together. Additionally, the
CM cost function 8.14) is different from that studied in?[7, 2€]. Indeed, in
these papers, it is assumed that the transmitted symbols are proper complex: in
this case, the kurtosis afn) assumes the form, = o2 (v, — 2 %) and, most
important, the third summand iB.(14) disappears, i.e.,[5 (k)] = 0, Vk € Z.
Henceforth, the basic difference betwegrif) and the expressions of the CM
cost functions considered i ], 28] and [34, 35, 36, 6] stems from the fact



3.3. LINEAR CONSTANT MODULUS EQUALIZER 29

that, under assumptions A4 and A5, the third summand.itd), which arises
as a consequence of the improper natur€aj, is nonzero and different from
the second one.

Avectorq € CX is a stationary point oﬂm(q) ifitis a solution ofg(q) 2
Ve[ Jem(@)] = Ok, whereVq-[Jem(q)] denotes the complex gradient of

Jem(q) with respect tay*. Accounting for 8.14), one obtains

A ~
g(a) = Vg+[Jem(a)]
=26, 2(@)q+40t al*q+ 20t (q"Tq) J*q" — 27,07 q (3.15)

with £(q) 2 diag|gol? a1, ..., lax_1]2] € REXEK. A stationary
point g is a local minimum of Jon(q) if the Hessian matrixH(q) 2
Vq {Vq* [Jem(q)] ¢ € CE*K is positive definite forq = g. Accounting
for (3.15, one has

H(a) = Vo { Vo lom(@)) } = 45, S(a) + 40 llal* L

+40tqq? +4023°q"qTI — 24,02 1 (3.16)

A useful property ot7cm(q) can be demonstrated. By virtue & {5, the cost
function 3.14) can be rewritten as

~ 1 .
Jem(q) = §qu(q) — s lall® + 2, (3.17)

where the identityy”3(q) q = Eﬁiﬁl |qe|* has been used. Thus,dfis a
stationary point of/cm(q), i.€.,8(q) = Ok, one obtains

jcm(q) =75 (Vs — Ug H§||2) ) (3.18)

which allows one to readily calculate the value of the CM cost function at any
stationary point. As a by-product, sin&em(q) is a nonnegative function, it
follows from (3.18 that the mean-output-energy corresponding to any station-
ary point cannot be greater than the dispersion constaat the transmitted
symbol sequence

Elly(k)?] = o2 llall* < 7 (3.19)

On the basis of3.15 and (3.16), the following Theorem provides a family of
local minima of the CM cost functiorB(14).
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Theorem 3.1 The CM cost functioii3.14) has local minima at the following
vectors:

Amin1 = el 0 €, whenag < < 203, (3.20)

- 0 [ e st

Amin2 = e’ - _:O_g ' |:ei1 —-J (_1) iz el mBiz—i1) ei2:| )
wheno? < s < 202, (3.21)

Amin3 = el? . [pel-1 —j (—1)&'171'2 o) B (iz—i1) ﬂ ei2:| :
whems = a;, (3.22)

ij
withe;, = [0,...,0,1,0,...,0]7 € RE, 0 € [0,27), li,s, € Zo iy # i €
{0,1,..., K —1}and0 < p < 1.

Proof: See Appendid.1.

Some comments are now in order. First of all, observe that when
dmin 1, the equalizer output is given by

y(k) = Qin1 s(k) = e s(k — i1) (3.23)

i.e., except for an arbitrary phase rotation, perfect symbol recovery is guaran-
teed: in this case, the CM behaves as a blind ZF equalizer, which completely
suppresses ISI. It is worth noting that, unlike the CM cost functions studied in
[27], [28], [6, 34, 35, 36], the function B.14) does not exhibit the ISI-free lo-
cal minima 8.20 when the transmitted symboién) are “Gaussian™{], i.e.,
ks = 0 & 75 = 302, or “super-Gaussian™], i.e., ks > 0 & v, > 302, as
well as whens(n) is sub-Gaussian witho? < ks < 0 & 202 < 45 < 302.
This is the reason we have assumed ih that the transmitted symbols
are sub-Gaussian. Additionally, observe that, accounting3Jdrg, it fol-
lows thatfcm(qmin’l) = 7s(7s — 02). In contrast, wherg = qyino OF
d = dmins, the equalizer output is contaminated by ISI, since a particular
linear combination of the two transmitted symbe(& — i1) ands(k — i2),
with iy #i2 € {0,1,..., K — 1}, is extracted in these cases.

Henceforth, different fromZ47], [2€)], [34]-[6], the cost function §.14)
exhibits local minima that do not lead to perfect ISI suppression, even in the
absence of noise.



3.3. LINEAR CONSTANT MODULUS EQUALIZER 31

In particular, it is worth noting that, when2o? < r, < —0? & 02 <
vs < 202, the CM cost function exhibits the undesired local minirB2().
In this case, relying on3(18), it results that

jcm(Qmin,z) = JNCm(qminJ) s/ (s + Ug)] < jcm(élmin,l)v
for 02 < v, < 202 (3.24)

which shows that, surprisingly enough, the ISI-free local mini®\a@ are
not global. On the other hand, when = —20% < v, = o2, a situation
occurring whers(n) is constant modulus, accounting f&.18), the value of
fcm(q) at the undesired local minim&?%) is given by

Jem(@ming) = 0, for 7, = o2, (3.25)

In this casejcm(qmin’l) turns out to be zero as well and, hence, both the de-
sired 3.20 and undesired3(22) local minima are global. It should be ob-
served that, by setting = 0, ¢;, ,, = 1 andp = cos(¢), with ¢ € [0,27),

the expression of the undesired local minin3a2@) ends up to that derived

in [29, eq. (15)] for the case of an infinite length CM equalizer, under the
simplifying assumption of BPSK symbols with unitary variance. Finally, it is
noteworthy that, with reference to real-valued symbols (7e= 0), it was
shown in 1] that the undesired minim&(21) and @.22) disappear by min-
imizing the CM cost function3.12), provided that the equalizer outpuytk)

is anot strictly linear function ofz(k), namely,y(k) = Re{f" z(k)}. More
generally, if the transmitted symbols are improper complex, one has to use
widely-linear equalizing structures , whereby the equalizer output is given by
y(k) = £H2(k) + gfz* (k) and the CM cost function is minimized with re-
spect to bottf andg, whereg € CV’« is not necessarily constrained to be
equal tof*. This issue is the topic of the next section.

3.3.2 Numerical Results

To corroborate our analysis, the results of a Monte Carlo computer simu-
lation are now presented. We consider both QPSK and OQPSK modula-
tions, with s(n) taking equiprobable values iftt1,+5}, and a noise vec-

tor v(k) in (3.3) modeled as a zero-mean complex proper white random

process, with autocorrelation matrRy. 2 E[v(k)vi(k)] = o2Ing,.
The signal-to-noise ratio (SNR) at the equalizer input is defined as ENR

[02/(N 02)] - kit I e(g) |* and is set t@5 dB. The received signal, (t)
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Figure 3.1: SINR versus number of iterations.

is fractionally sampled at rate/T; and theZ-transforms of the tward-order
polyphase componer#!) (q) are given byC' () (z) = (1—0.5¢7f1.e271) (1—
1.2e7%271), for ¢ € {0,1}, wheref,y = 0.7m, o9 = 010 + T,

011 =610+ 0.27mandby; = 62 + 0.2 7. The minimization of the CM cost
function 3.12) is adaptively carried out by resorting to the stochastic gradient
descent algorithm], wherey, = 02 = 1, L. = 5, double-spike initialization

is used and the step-size is continuously adjusted to achieve fast convergence
without compromising stability. For each of the* Monte Carlo trials carried

out, both the symbol and noise sequences are randomly and independently
generated. Figs.1reports the signal-to-interference-plus-noise ratio (SINR)

at the output of the CM equalizer as a function of the number of iterations,
when either QPSK or OQPSK modulations are employed at the transmitter;
for the sake of comparison, it is also reported the SINR (which is the same for
QPSK and OQPSK modulations) at the output of the minimal-norm L-FIR ZF
equalizer (synthesized by assuming perfect knowledg€)ofResults show
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that, whens(n) is a proper random sequence (QPSK) and, thus, all the local
minima of Jem(f) are desired, the performance of the CM equalizer rapidly
improves as the number of iterations increases and becomes comparable to
that of the ZF equalizer. In contrast, when the transmitted symbols are im-
proper (OQPSK), due to the presence of the undesired global migira3,(

the curve of the CM equalizer quickly saturates to a value that is significantly
less (of about0 dB) than the output SINR of the ZF equalizer.

3.4 Widely Linear Constant Modulus Equalizer

In this section, we present some results reportedjrd]. Specifically, we
provide a general and unified framework to design WL equalizers for both
real- and complex-valued improper modulations, by deriving the conditions
assuring perfect symbol recovery in the absence of noise and providing some
insights into the synthesis and analysis of blind WL-CM equalizers (it can
be noted that the theoretical analysis that we have presenté&dl ismHerein
omitted).

A brief characterization of the the second-order statistical properties of
z(k) [see B.3)] is now in order. Preliminarily, we observe that as a conse-
quence of equatiorB(13, the vectors(k)* can be expressed as

s*(k) = e 2Pk 3 s(k), (3.26)

whereJ = diagl,e 7270 ... ¢~7278(K-1)] is the diagonal unitary matrix
defined in equation3(14). Therefore, accounting for the equatidgh3) and
assumptions A4, A2, the second-order moment statistieg/ofare given by
both the autocorrelation matrix

R,, 2 Elz(k) 2" (k)] = 02 CCH + 02 Iny., (3.27)

and theconjugatecorrelation matrix

R, (k) 2 Elz(k) 27 (k)] = o2 e~ 270 ¢ 3*CT. (3.28)
SinceR .- (k) is nonvanishingyk € Z, the vector(k) is improper [L]. Addi-
tionally, observe that, for real modulation schemes (for witich 0), such as
ASK and DBPSK, the vectar(k) is wide-sense stationary (WSS), whereas for
complex modulation formats (for which = 1/2), such as OQPSK, OQAM,
and MSK-type, it results that(k) is wide-sense conjugate (second-order) cy-
clostationary $8] with period2.
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Sincez(k) is an improper vector, it is well-known (see sectihfor de-
tails) that, compared with L-FIR processing, a WL-FIR estimator, which is
linear both inz(k) and z*(k), can assure a better estimate of the symbol
s(k — d), withd € {0,1,..., K — 1} (a suitable equalization delay). The
weight vector of the resulting WL-FIR estimator depends on @i and
R..+ (k). Therefore, in this section to account for the (possible) time-varying
feature ofR ..+ (k), we consider a slight modification of the classical WL-FIR.
Specifically, we preliminarily derive the forms of the WL-MMSE and WL-ZF
equalizers, by gaining some new insights. Successively, using some of these
results, we analyze the WL-CM cost function and compare it with the L-CM
one.

3.4.1 WL-MMSE and WL-ZF Equalizers
Preliminarily, we observe that fron3 (26 it follows, accounting 8.3), that

z* (k) = e/ 2™k C* I s(k) + v* (k). (3.29)

Thus, the (possible) wide-sense conjugate cyclostationarity(/of can be
compensated by performing a derotatiomtfk) before constructing the WL-
FIR estimator, that is,

y(k) = £ila(k) + £5'2" (k) e~/ 27"

z(k ~H
B \_[f{{ fg], [z*(k) é—g‘mk] =1 z(k), (3.30)
?HE(ClX2NLe E(k)EC2NLe
where
z(k) = k VE) | = Esth) 50k 3.31
Z( )_ C*J S( )+ V*(k)e_ﬂ”ﬁk = S( )+V( ) ( . )
——r
€cC2NLexK e(k)eC2N Le

It is worth noting that the conventional linear estimaiok) = £z (k)
can be obtained from3(30 by settingf; = f € CN%e andfy = Onr,.

Let Jmsd) 2 E[jy(k) — s(k — d)|?], with d € {0,1,..., K — 1} a suitable
equalization delay, denote the mean-square error between the equalizer output
and the desired symbse(k — d), according to the MMSE criterion, the weight
vectorf is chosen as follows

?wl-mmseé [fl,wl—mmse] =arg min Jmse(?) = O'g ﬁ;zl C ey (3.32)

2 wi-mmse €cC2NLe
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d

wheree; 2 0,...,0,1,0,...,0]T € RX and the autocorrelation matrix of
the augmented vectalk) is given by

Ros 2 E[z2(k) 27 (k) = 02 CC" + 02 Loyy,. (3.33)

Moreover, by partitioningR,, andC according to the structure @k), re-
sorting to the inverse of a partitioned matrix and accounting for the expression
of R,,+(k), one has

f17w|_mmse: 0"3 [RZZ - O';L C J*CT(R;Z)ilc*J CH] -1
[C-0o2CI*CT(R},)'C* ] ey, (3.34)
fo wi-mmse = e~ 2mbd f?,wl-mmse- (3.35)

As it is apparent from3.35, a particular linear dependence must exist be-
tweenf27W|-mmseandf’{,w,_mmse As a side remark, observe that the WL-MMSE
equalizer given by3.32 generalizes and subsumes as a particular case the
WL-MMSE equalizer derived in3Z: more precisely, when real modula-
tion schemes, such as ASK and DBPSK, are employed at the transmitter and
N =1, i.e, the received signal,(¢) is sampled at the baud rate, the devised
WL-MMSE equalizer 8.32) boils down to that proposed iz }].

The performance of the WL-MMSE equalizex.82 strongly depends on
the existence of WL-ZF solutions, in the absence of noise. This important
issue is investigated now.

Following the same lines of the linear case (see se@iBrfor details)
it can be shown from3:30), that in the absence of noise, imposing the ZF

conditiony(k) = s(k — d) leads to the system of linear equatighsC —
el & ¢t = e4, Which is consistent if and only if (iﬁﬁH(éH)—ed =
ey (see P4)). If the augmented channel matri is full-column rank, i.e.,

~ . ~H ~H .

rankC) = K, itresults thalC (C )~ = Ix and, then, this system turns out
to be consistent regardless of the equalization déldy this case, theninimal
normsolution, i.e., the solution of the constrained optimization problem

Fuizf = arg min ||f|\2 , subject toéH? =ey, (3.36)
2

G(CQNLE
is given by (see, e.g.2[])

~ A (f1wi- ~H ~ ~H~. _
Fuar 2 L}»W'ﬂ — (@) ey=C(E"E) ey, (337)

2,wl-zf
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It is worth noting that, accounting for3(32 and for the limit formula for
the Moore-Penrose invers2], it can be verified thal‘imagu Jo2—0 Fwl-mmse =

~H = , . , .
(C )T eq = fuzf, that is, as the noise varianeg vanishes, the WL-MMSE
solution approaches to the ZF one. Henceforth, we can maintain that, similarly
to (3.39), resorting to the expression @f one has

fiwzt = C(CTC +J°CTC* ) ey, (3.38)
fowizt = C*J(CH C +I*CTC*I) ey, (3.39)

from which we desume that the following relation holds
fowlzt = eJ 2mpd fiw|_zf (3.40)

between the subvectofs .+ andfs .+ in (3.37). The following Theorem
(whose proof is omitted), provides the mathematical conditions assuring the
existence of WL-ZF solutions, i.e., conditions assuring that the augmented
channel matrixC is full-column rank.

Theorem 3.2 Let C(¥)(z) denote theZ-transform of the/th channel phase
{cO(k)}reyt, fore € {0,1,..., N —1}, and assume that at least one polyno-
mial {C (O)(2)}),! is of maximum ordef,.— 1. Then, matri>xC is full-column
rank if the following conditions hold:

Cl) 2NL.>K = Lo + Lo — 1;
C2) the 2N polynomials C(z) and C)(z*e=727%), for ¢ €
{0,1,..., N — 1}, are coprime.

Some interesting remark are now in order. First, as regards condition C1,
observe that, unlike L-FIR-ZF equalization, WL-FIR-ZF solutions might ex-
ist not only when fractionally sampling is performed at the receiver, but also
when the received signal,(¢) is sampled at the baud rate, i.éV, = 1;
in this case, condition C1 requires thitf > L. — 1 and condition C2 is
fulfilled if, Yq1,¢qo € {1,...,L. — 1}, there is no pain{,,,(,,) of zeros
of the Z-transform ofc(n) = c,(nTy) such that¢,, = ¢, e7?™. Sec-
ond, and most important, note that, in comparison with L-FIR-ZF fractionally
spaced equalization, condition C2 imposes a milder constraint on the chan-
nel phaseqc”) (k)}-;'. Indeed, whenV > 1, L-FIR-ZF solutions exist if
the N polynomials{C¥ ()} ;! are coprime (see sectich3 for detalils).

In contrast, Theoren3.2 states that WL-FIR-ZF solutions exist even when
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{CO(2)}), have a common zeray, i.e., CO(z) = CV(z) = ... =

CN=1 (%) = 0, provided that, the complex numbeyis not a common zero

of C)(z*e=7278),v¢ € {0,1,...,N — 1}, that is, there exists at least one
index ¢y € {0,1,...,N — 1} such thatC'%0) (2% ¢=727%) £ 0. As we will

see in Sectiol.4.2 conditions C1 and C2 also play a fundamental role for the
synthesis of CM-based WL equalizers and, thus, we assume hereinafter that
both of them are fulfilled.

As it is apparent from3.32 and @3.37), the synthesis of both WL-MMSE
and WL-ZF equalizers requires the explicit knowledge or estimation of the
channel vectorgc(k) é;gl, which areunknownat the receiver. To design a
blind ISI-resilient receiver for improper modulation formats, without requiring
any training sequence, we resort in the next section to the CM criterion.

3.4.2 Analysis of WL-CM cost function

With reference to the WL-FIR estimator given b%.30, one might attempt
to blindly choose the augmented weight vedidny minimizing theuncon-
strainedCM cost function

Jarem(®) 2 El(s — ly(R)?)?] (3.41)
where, 2 E[|s(k)|*] /o2 is again the dispersion constant.

Note that the classical L-FS-CM cost functiogn(f) (3.12 can be ob-
tained from 8.41) by setting in 8.30 f; = f € CVe andf, = Oy, . In the
section3.3we have shown that when noise is absent, the channel impulse re-
sponse is complex-valued (see A5), and the transmitted sub-Gaussian symbols
fulfill assumption A4, besides containing desired local minima, the function
Jem(f) also exhibitaundesiredylobal minima, namely, they do not lead to per-
fect source recovery.

On the basis of widely-linear filtering theory,[3, 1], it can be argued that
the presence of undesired global minima for the L-FS-CM cost funcsidr?)(
is a consequence of the fact that, when the transmitted symbol sequence is im-
proper, a linear estimator cannot take advantage of the additional information
available in the conjugate correlation matrixagk). Consequently, it should
be concluded that the minimization of the WL-FS-CM cost functignil)
might lead to a blind receiver whose ISI suppression capabilities are close
to those of the WL-FS-MMSE equalizer given by.§2 [or, in the absence
of noise, to those of the WL-FS-ZF equalizer given By3()]. Interestingly
enough, as itis confirmed by the simulation results reported in Seetpthis
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conclusion is not entirely true. Indeed, similarly fgm(f), the cost function
JW|_Cm(f) exhibits undesired global minima, whose presence is basically due to
the fact that the vectd?w|_0m corresponding to a local minimum d‘r,\,|_cm(f)
might not exhibit the conjugate symmetry properdy3® and (.40, which
characterizes instead the WL-MMSE and WL-ZF equalizers. To overcome
this drawback, we propose to resort to the following constrained minimization
of Jui.em(F), by imposing in 8.30) that

fy = e 2mBdr (3.42)
i.e., we consider the following optimization problem
’fw|.ccm — al"g mln Jw|-cm(’f\:) B SUbJeCt t(fQ — eij 2Tl'ﬂd fT B (343)
€cC2NLe

which will be referred to as the WL-FS constrained CM (WL-FS-CCM) equal-
izer. Since CM equalizers do not have closed-form solutions, minimization of
(3.43 is adaptively carried out by resorting to the stochastic gradient descent
(SGD) algorithm. Specifically, lefr.com(k) = [F] wicem(F), £5 wicem(B)]T €
C?VEe, with £3 wi.cem(k) = e 7724 £ cem(k) € CVLe, denote the estimate

of fui-cem at iterationk, starting from 8.43, one obtains the updating equation

fl,wl-ccm(k? + 1) = fl,wl-ccm(k) + Ny\TvI-ccm(k)
(v = lywroom(k)[) 2 (k) ,  (3.44)

where

Ywi-cem(k) = ffwl-ccm(k) z(k) + f{wl-ccm(k) z" (k) e~ 2mBlk=d) (3.45)

andu > 0 denotes the step-size of the algorithm. It should be observed that,
when real modulation schemes, such as ASK and DBPSK, are employed at the
transmitter andV = 1, i.e., the received signal,(¢) is sampled at the baud
rate, the proposed WL-FS-CCM equalizér43 boils down to the single-axis
equalizer devised in3[l]. The fact that the single-axis equalizer is actually a
WL equalizer was not recognized ifill. The performances of the WL-FS-
CCM equalizer are studied in subectior through computer simulations.

3.4.3 Simulation results

In this section, we investigate the performances of both WL-BS (Ve= 1)
andT;/2-spaced WL-FS equalizers (i.€\, = 2). Specifically, we consid-
ered the following equalizers: WL-BS-MMSE, WL-BS-CM, WL-BS-CCM,
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WL-FS-MMSE, WL-FS-CM, WL-FS-CCM. For the sake of comparison, we
also considered the L-FS-MMSE and L-FS-CM equalize®ll the MMSE
equalizers areon-blind and are implemented in batch-mode, by assuming
perfect knowledge of the channel impulse response and by inverting the ap-
propriate sample correlation matrix, estimated okesymbol intervals; ad-
ditionally, for each MMSE equalizer, we chose the value of the equalization
delayd € {0,1,..., K — 1} assuring the best performance. On the other
hand, all the CMblind equalizers are adaptively implemented by resorting
to the SGD algorithm®], wherein the step-size is continuously adjusted to
achieve fast convergence without compromising stability. More specifically,
we setu(k) = 0.01 umax(k), where, according to3P], pmax(k) is the max-
imum value of the step-size that assures SGD stability at iteratiamd can
be evaluated in real-time, since it depends only on the equalizer output
and~,; moreover, we employed single- and double-spike initializatigridr
baud- and fractionally-spaced CM equalizers, respectively. All the equalizers
under comparison jointly elaborale = 5 consecutive symbols.

The input streans(n) is drawn from an OQPSK constellation and the ad-
ditive noisew(n) is a complex proper Gaussian process. The signal-to-noise

ratio (SNR) at the equalizer input is defined as S@?(a?/gfy)ﬂcﬂz and

both the symbol and noise sequences are randomly and independently gener-
ated at the start of each Monte Carlo run. Since BS and FS equalizers employ

different discrete-time channels, we considered for all the receivers the same

continuous-time channel,(¢), which spans.. = 3 symbol periods; more

precisely, we started from the;/2-sampled version of,(¢), i.e., ¢(n) 2
co(nTs/2), forn € {0,1,...,2 L. — 1}, which can be expressed in terms of
the two polyphase component®) (k) 2 ¢(2k) andc(V (k) 2 &2k + 1), for

k € {0,1,...,L. — 1}. Thus, we obtain the unique symbol-spaced channel
for BS methods ag(n) = ¢ (n),n € {0,1,..., L. — 1}. The two channels
¢ (n), for ¢ = 0, 1, are assigned in terms of thedr-transforms:

COE) = (1-05e/ ) (1-126%027"),  (3.46)

whereHLO =051+ 7,020=010+m 011 =010+ and92,1 =620+,

and the angular separationis fixed t00.2 7= so as to assure the existence of
ZF solutions for all the methods under comparison. As performance measure,
we evaluated the average bit-error-rate (ABER) and, denotingquifior ¢ €

!Linear baud-spaced equalizers were not considered since, at symbol spadifgIR-ZF
solutions do not exist as we have noted in the se@ién
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Figure 3.2: ABER versus SNR.
{0,1,..., K — 1}, the /th entry of the combined channel-equalizer impulse

~ ~H~ . .
responsey 2"t € CX, we also resorted to the residual ISI expressed in dB

K—-1 |~ 2 ~ 19
E — ma
51168 =10 log10< = gﬂx«@? = ) | 247

Note that 8.47) only quantifies the ISI suppression capability of the equalizer
and does not take into account noise enhancement at its output. For each of
the 10* Monte Carlo trials carried out, after estimating the receiver weights on
the basis of the given data record of lengfh an independent record ©600
symbols was considered to evaluate the ABER.

In the first experiment, we evaluated the ABER performances of the con-
sidered equalizers as a function of the SNR, with= 500 symbols. Results
of Fig. 3.2show that the performances of the L-FS-CM, WL-BS-CM and WL-
FS-CM blind equalizers are significantly worse than those of the correspond-
ing non-blind MMSE equalizers. In particular, it is worth noting that both the



3.4. WIDELY LINEAR CONSTANT MODULUS EQUALIZER 41

15

_15 & 7
< WL-FS-CM
-5~ L-FS-CM

—-25¢ -©- WL-BS-CM 1

~%- L-FS-MMSE
—k— WL-BS-MMSE i

ISI[dB]

B WL-FS-MMSE
| = WL-FS-CCM
-45 g WeoBSTCOM 7

-65

=75

100 200 300 400 500 600 700 800 900 1000
sample size (in symbols)

Figure 3.3: ISI versus sample siz& (in symbols).

WL-FS-MMSE and WL-BS-MMSE equalizers remarkably outperform the L-
FS-MMSE equalizer for all the considered values of the SNR. On the other
hand, as it has been previously claimed, the proposed WL-FS-CCM and WL-
BS-CCM blind equalizers perform better than their unconstrained WL-BS-CM
and WL-FS-CM counterparts, for all the considered values of the SNR. Inter-
estingly, the WL-FS-CCM and WL-BS-CCM equalizers also outperform the
L-FS-MMSE one and, as the SNR increases, their ABER curves approach
those of their corresponding WL-MMSE equalizers. As a side remark about
Fig. 3.2, observe that, for the considered sample size, the ABER performances
of the WL-BS-CCM and WL-BS-MMSE equalizers are superior to those of
their corresponding WL-FS-CCM and WL-FS-MMSE counterparts. This be-
havior stems from the fact that, for the WL-FS-CCM and WL-FS-MMSE
equalizers, one has to estim&té&’ L. (complex) parameters, whose number

is doubled with respect to the number of parameters that must be estimated for
the WL-BS-CCM and WL-BS-MMSE equalizers; strictly speaking, reducing
the number of parameters to be adapted allows one to reduce the performance
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degradation due to the finite sample-size.

In the second experiment, the ISI suppression capabilities of the considered
equalizers were studied as a function of the samplefsiagith SNR = 20 dB.
It can be seen from Fig.3that, due to the presence of undesired global min-
ima, the performances of the WL-FS-CM, L-FS-CM and WL-BS-CM equal-
izers do not significantly improve ds grows. In contrast, the ISI suppression
capabilities of both the WL-FS-CCM and WL-BS-CCM equalizers rapidly im-
prove asK increases. Remarkably, the ISI suppression capabilities of both
WL-FS-CCM and WL-BS-CCM equalizers turn out to be better than those of
all the MMSE equalizers, for all the considered valuegof



Chapter 4

Equalization Technigues for
DS-CDMA Systems

n this chapter we present the general concepts regarding DS-CDMA sys-

tems and with reference to Minimum Output Energy Criterion (MOE)
we present a theoretical performance analysis of WL multiuser receivers for
direct-sequence code-division multiple-access (DS-CDMA) systems, as well
as a performance comparison with the conventional linear (L) systems. Re-
ceivers based on the minimum output-energy (MOE) criterion are consid-
ered, since they offer a good tradeoff between performance and complexity
and, moreover, lend to some simplifications in the analysis. After compar-
ing the ideal signal-to-interference-plus-noise-ratio (SINR) performances of
the WL-MOE and L-MOE receivers, the chapter presents finite-sample per-
formance results for two typical data-estimated implementations. Specifically,
by adopting a first-order perturbative approach, the SINR degradation of the
data-estimated WL-MOE receivers is accurately evaluated and compared with
that of its linear counterpart. Simulation results are provided to validate and
complement the theoretical analysis.

4.1 Introduction

The Code Division Multiple Access (CDMA) is a multiple access technique
based on spread-spectrum modulation method. Spread-Spectrum systems have
a long story in military and civilian wireless communications and have been
developed since about the mi@50’s [40, 41, 42, 20, 19]. Spread Spectrum

is a transmission technique in which the transmitted signal exhibits a band-

43
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width in excess of the minimum necessary to send the information. The band
spread is accomplished by means of a code which is independent of the data.
At the receiver side we need to despreading the transmitted signal to data re-
covery. For this purpose the received signal is correlated with a synchronized
copy of the spreading code. These features distinguish spread-spectrum mod-
ulation from other signaling techniques that increase the transmit bandwidth
above the minimum required for data transmission, for example frequency
modulation and block and convolution coding. An interesting tradeoff arises
as to whether, given a specific spreading bandwidth, it is more beneficial to
use coding or spread spectrum. The answer depends on the requirements of
the system designLp, 43]. In [40] it is shown that there are many reasons

for spreading the spectrum, and if properly performed, a multiplicity of ben-
efits can accrue simultaneously. Some of these are: antijamming, antiinter-
ference, low interception probability, multiple user random access communi-
cations with selective addressing capability, high resolution ranging, accurate
universal timing. Therefore Spread-spectrum can be very useful in solving
a wide range of communications problems. The amount of performance im-
provement that is achieved through the use of spread spectrum is often related
to theprocessing gaimf the spread-spectrum system. That is, processing gain

is often defined as the difference between system performance using spread-
spectrum techniques and system performance not using spread-spectrum tech-
nigues. Processing gain is approximately the ratio of the spread bandwidth
to information rate. The means by which the spectrum is spread is crucial.
Several of the techniques are referred to as “direct-sequence” (DS) modulation
in which a fast pseudorandomly generated sequence causes phase transition
in the carrier containing data, whereas others are called “frequency hopping”
(FH) ones, in which the carrier is frequency shifted in a pseudorandom way.
Hybrid combinations of these techniques are frequently used. In the sequel,
we consider DS-CDMA systems for their valuable properties, among which
the narrowband interference and multipath rejecting.

4.2 CDMA Signal Model

In DS-CDMA, each user possess its own code which is used to modulate its
data signal.The transmitted signals for all users are superimposed in time and
frequency. The performances of this strategy are related to the correlation
properties of the used spreading codé€s [12, 20, 19). In particular the au-
tocorrelation function of the spreading code determines its multipath rejec-
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tion properties. The cross-correlation properties of different spreading codes
determine the amount of interference among users. The lower is the cross-
correlation, the lower is the interference among users. A code set is orthogo-
nal if the cross-correlation between the spreading codes of all user are equal
to zero; in such a case the codes are able to eliminate interferences. A set of
spreading code that does not satisfy this cross-correlation property, is called
a non-orthogonal code set. Therefore, when orthogonal spreading codes are
used, the other-user interference, called multiple-access interference (MAI),
does not affect the post-despreading functions at all. Unfortunately, the multi-
path fading channels distort the signal in such a manner that the orthogonality
present at the transmitter is loss at the receiver side. Further, in some applica-
tions orthogonal spreading codes are not even used. In these cases the perfor-
mance is a function of the cross-correlation properties of the codes as well as
of the channel properties. These partial correlations will eventually limit the
total number of users that can simultaneously access the system.

Let us consider a DS-CDMA channel that is shared/bsimultaneously
users {14, 45, 25]. Each user is assigned a signature wavefgy(t) of duration
T, whereT is the information symbol interval. The signature waveform may
be expressed as

N-1

si(t) =Y cj(n)pr.(t—nT.), 0<t<T (4.1)
n=0

where{c;(n)}Y= is the code sequence associategtbouser consisting o

chips andI, is the chip interval. Therefore, we can note that Direct-Sequence
refers to a specific approach to construct spread-spectrum waveforms in which
the normalized chip waveform&y.} of duration7, = T/N, are delayed
versions of each others. With more details the chip wavefgfnis orthogonal

to any version of itself delayed by an integer multipleZof The signature
waveforms are normalized so as to have unit energy. The equivalent lowpass
transmitted signal due to thih user can be expressed as

+oo
wi(t) = > by(i)s;(t —iT — 7)) (4.2)

1=—00

where{b; (i)} andr; denote, respectively, the symbol stream and transmission
delay of thejth user with0 < 7; < T. We can note that this model is ap-
propriate when we employ short spreading codes. The signature waveforms
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propagate through their respective time invariant multipath channels whose
impulse responses are:

M;—1

= ) &m0t —Timy), Withje{1,2,...,J} (4.3)

where)/; denotes the number of patHsg,,, ; } the complex-valued path gains
and {7, ;} the path delays. We assume, without loss in generality, that the
delays related to LOS path are equal to zero for all userg,= 0, j €
{1,2,...,J}. In this way the transmission delays;} must be considered to
evaluate the asynchronisms between users.

Therefore, at the receiver, the received signal due tgtthasers, recalling
(4.2), (4.1) and @.3), is given by

u;(t) = ) * g;(t Z Emj @5 (t = Tm,j)
M]
= Z b Z §mjs] iT—Tj —de‘)
M] 1 N—1
= Z b;( Z fmuz (n)pr.(t —iT —nTc— 1 — T j)
i=—00 n=0
+o00 N—-1
= Z b;( Z cj(n)g(t —iT —nTc— ;) (4.4)
1=—00 n=0

whereg;(t) = Z%Q)lfm,jpn(t — Tm,;) IS the convolution between chip
waveform and thgth complex channel impulse respongét). The total re-
ceived signal at the receiver is the superposition of the data signals df the
users plus the additive white Gaussian noise, given by

Z wi(t) + ng(t (4.5)

wheren,(t) is a zero mean complex white Gaussian noise with power spectral
densityo?. The signal model given by4(4)—(4.5) represents a dispersive
asynchronous CDMA channel, which is typical for the uplink channel (i.e.,
mobile to base station) of a CDMA network. The downlink channel (i.e., base
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station to mobile) of a CDMA network is a special case of this model, where
the data signals of thé users are synchronous, i.e,,= o =---=7; =0
and they propagate through a single dispersive channelgi(@), = g2(t) =

-~ = g;(t). Since the signal processing required for interference suppression
is digitally performed, we resort to a discrete time model obtained by chip
matched filtering the received signal and sampling at a chip rate. Therefore at
the output of the chip matched filter, the received signal can be expressed as

r(t) = ua(t) * pr. (=)

J H4oo N-1

_Zzb Z n)g;(t —iT —nTc—1;) * pr.(—t)
j=14i=—o00 n=0

+ nq(t )*PT (—t)

J oo N-—

_ZZb Z n) faj(t —iT —nTc—1;) + v(t)
j=li=—0o0 n=0
J +oo

—ZZZ) )@a,j(t — 1T — 1) + v(t), (4.6)

j=11=—00

where f, j(t) = g;(t) * pr. (—t) is the composite channel impulse response
that includes the transmitted, the received filter and the channel impulse re-
sponseip, ;(t) = Zn ‘0 cj(n) fa,j(t —nT'c) is the composite received signal
waveform of thejth user, encompassing spreading code and channel prop-
agation effects and(¢) is the noise process after the convolution with the
chip-matched filter. We assume that the delayare not necessarily integer
multiple of T, therefore they are constituted by a integer part and by a frac-
tionally part,7; = (5; + &)1, with 8; € [0,1,...,N) and¢; € [0,1). At

the output of the sampler, the resulting discrete-time signal duringhtahip
period of thekth symbol interval recalling4.6), is given by

(k) £ r(kT +IT,)

J 4o N-1
=33 b)Y ¢j(n) fa (kT +1T. —iT — nTc — (B; + &)Te)
j=1li=—o00 n=0
+ (kT +1T,)
+oo
=3 7 bRk =i B) + (k) @.7)
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wherep, ; (k) = S0 ¢j(n) fii(k—n) with fi;(k) = fo; (kT +1T.—&T)
andv;(k) = v(kT +1T¢). If we define in ¢.7) ¢, ;(k) = @, ;(k — B;), we can
write (4.7) in this way:

J +oo

=> > by (k — i) + wilk). (4.8)

j=1li=—o00

We can collect the N samples of the received signal to obtain the vector model:

J +oo
=33 bi()p;(k—i) + v(k), (4.9)

j=1i=—o0
where we have definedr(k) 2 [ro(k),ri(k), ..., rv—1(K)]T,
oik) = lpoi(k)erg(k) o eno(R)T and v(k) =

[Uo(k‘), Ul(k‘), e ,’L)N_l(ki)}T.

The model ¢.9) can be simplified if we assume that the channel is syn-
chronous and that the intersymbol interference (ISI) can be neglected. In the
sequel, we consider a synchronous DS-CDMA system Wiitkers, employing
short codes with /7. = N/T chip/symbol and transmitting over channels that
introduce interchip interference and negligible intersymbol interferefde [

It is noteworthy that synchronous transmissions and negligible intersymbol in-
terference (ISI) are assumed only for the sake of simplicity and the analysis,
that we develop in the next sections, can be readily generalized to other sce-
narios (e.g., asynchronous users and/or channels with ISI). For instance, in a
asynchronous system with, users, can be described by a synchronous model
with J < 2J, equivalent users (seé€d] for further details). Therefore4(9

can written as:

J
Zso] (k) =S~ ajap; bi(k) + v(k)

7j=1
- \IlAb(k:) +v(k) = ®b(k) + v(k), (4.10)

where, with reference to the thiéh user, we have indicate with; € CN the
unit-normsignature (encompassing spreading code and channel propagation
effects). As a consequence,; > 0 is the received amplitude, accounting

for transmitted energy and channel propagation loss. Moreovet, i6)( we

have defineds £ [1p,, s, ...,1,] € CN*/, A £ diagar, as,....ay) €
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R%7, & £ WA e CV</, andb(k) 2 [by(k),ba(k),...,bs(K)]T € C.
Finally, we recall that; 2 [c;(0),¢;(1),...,¢;(N —1)]T € CN denoteSthe
spreading code vector of thth user and;(n) is the channel impulse response
oflengthL; < N (L; > 1), with g; 2 [g;(0), ;(1),. .., g;(L; —1)]” € CLs
being the correspondingnit-normchannel vector. Under the assumption that
g;j(n) has order.; < N, the signaturep; in (4.10 can be modeled.[] as

P =Gjcy, (4.11)

where G; € CM*VN s the Toeplitz lower triangular matrix having
[95(0),0,...,0/T as first row andg;(0), g;(1), ..., g;(L; — 1),0,...,0] as
first column. Itis worth noticing that the signatutg in (4.10) can be modeled
also as

Y;=GC;g;, (4.12)
whereC; € CVN*Li is the Toeplitz matrix havinge;(0),0,...,0]T as first
row and [¢;(0),¢;j(1),...,¢;(N — 1)]T as first column. Throughout this

chapter, we will rely on these assumptions:

(al) b(k) is a binary real zero-mean random vector, whose entries are
independent and identically distributed (i.i.d.) random variables assuming
equiprobable values i8 = {—1,1}, with b(k;) and b(ky) statistically
independent fok; # ka;

(a2) v(k) is acomplex propezero-mean Gaussian random vector, inde-
pendent ob(k), havingRyy = 021y andRyy+ = Oy, With v(k;) and
v (ko) statistically independent of each other far# k.

4.3 Multiuser Detection

A DSSS receiver that exploits the structure of multiuser interference in signal
detection is called a multiuser detector (MURB[ 10, 25, 19]. During the last
two decades, starting from the seminal works of \eefd3, 10], a great bulk

! The codec; accounts also for possible precoding phases, whose role in downlink is dis-
cussed in the subsectidn4.1

2This assumptions is not crucial, but simplifies the analysis. Our derivations can be readly
extended to the case where the entrieb@#) assume values in an arbitrary real set, or even
when the entries db(k) are not real but obey the more general conjugate symméttypfop-
erty
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of research activities has been devoted to multiuser detection (MUD), as an ef-
fective way to counteract the multiple-access interference (MAI), which is the
predominant source of performance degradation in nonorthogonal DS-CDMA
systems. Verd's solution involves a bank of single-user matched filters fol-
lowed by a Viterbi algorithm. The complexity of this procedure is exponential

in the number of users. The complexity of MUD can be decreased at the ex-
pense of optimality . The simplest suboptimum detector is the conventional
single-user detector in which the receiver for each user is constituted by a de-
modulator that correlates the received signal with the signature sequence of the
user and passes the correlator output to the detector which makes a decision
based on the single correlator output. Thus the conventional detector neglects
the presence of the other users of the channel, or, equivalently assumes that
the aggregate noise plus interference is white and gaussian. If the signature are
orthogonal, the interference from the other users vanishes and the conventional
single-user detector is optimunid, 10, 25, 19). On the other hand, if one or
more of the other signature sequences are not orthogonal to the user signature
sequence, the interference from the other users does not vanish and it can be-
came excessive if the power level of the signal of one or more of the other users
is sufficiently larger than the power level of the user of interest. This situation

is generally calledhear-far problemin multiuser communications and neces-
sities some type of power control for conventional detector. In asynchronous
transmission, the conventional detector is more vulnerable to interference from
other users because it is not possible to design signature sequences for any pair
of users that are orthogonal for all time offsets. Consequently interference
from other users is unavoidable with the conventional single-user detection. In
such a case, theear-far problemresulting from unequal power in the signals
transmitted by the various users is particulary serious. The practical solution
generally requires a power adjustment method that is controlled by the receiver
via separate communication channel that all users are continuously monitoring.
If a separate communication channel is not available, it is possible to employ
a suboptimum multiuser detectors. Suboptimal MUDs fall into two broad cat-
egories: linear and nonlinear. Linear MUDs apply a linear operator or filter
to the output of the matched filter bank. These linear detectors have complex-
ity that is linear in the number of users, a significant complexity improvement
over the optimal detector. Among linear MUD techniques, decorrelating re-
ceiver [19], the minimum mean-square-error (MMSE)] one, and the min-

imum output-energy (MOE)1[5] one, have been investigated in depth, since
they offer convenient tradeoffs between performance, complexity, robustness,
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amount ofa priori information, and ease of adaptive implementation. Nonlin-
ear MUDs have somewhat larger complexity than the linear detectors but also
much better performance, although not necessarily in all cases, especially with
very limited or no coding. The most common nonlinear MUD techniques are
multistage detection, decision-feedback detection, and successive interference
cancelation. Linear multiuser detectors can be implemented in a decentralized
fashion where only the user or users of interest need be demodulafied [
Therefore generally, they require the only knowledge of the interest user's
spreading sequence. In this thesis we focalize our attention on L-MUD tech-
niques. In particulary, we can note that most L-MUD techniques assume that
the complex envelope(t) of the received signal is modeled apmperran-

dom process, exploiting hence only the information contained in its statistical

autocorrelation functio,, (¢, 7) 2 E[r(t) r*(t — 7)]. When, however, the
DS-CDMA signal and/or the disturbance dmeproper, well-established re-
sults in detection and estimation theory, as shown in segtigrstate that lin-
ear receivers can be outperformedvaygely-linear(WL) ones, which jointly
elaborate the received signalt) and its complex conjugate*(t), in order
to exploit also the information contained in their statisticadss-correlation

function R« (¢, ) 2 E[r(¢) r(t — 7)]. Motivated from previous observations,

in recent years several papefs b0, 51, 527] proposed different WL-MUD
techniques for DS-CDMA systems with improper signals and/or disturbances,
by extending concepts from the classical L-MUD theory. In particular, WL
versions of the major L-MUD receivers have been proposed and studied, such
as the WL decorrelating receiveiT, 53], the WL-MMSE one B, 50, 54], the

WL-MOE one B2, 53], and the min/max WL-MOE ones[]. In the sequel,
we focalize our attention on the minimum output energy criterion (MOE).

4.3.1 Minimum Output Energy Criterion (MOE): Linear and
Widely-Linear receivers

The main goal of this section is to derive the WL-MOE receiver as a partic-
ular solution of the maximum SINR criterion. We start by reviewing briefly
the L-MOE receiver, not only to put the necessary bases for our subsequent
derivations, but also to comment on possible inconsistencies concerning the
“correct” definition of the SINR to be used for linear receivers, when real sym-
bols are employed.

In order to recoveb; (k) by a linear receiver, it is useful to rewrité.(0
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as follows:
I‘(k) = ¢j bj(k) +6j Bj(k) + V(k) = ¢j b](k) + pj(k) R (4.13)

where ¢, € CV is the jth column of the composite matri$, whereas
b;(k) € R7~! denotes the vector that includes all the elementb@f)
except for thejth entry b;(k), ®; € CN*(/=1) denotes the matrix that
includes all the columns o except for thejth column ¢j, and, finally,

p; (k) 2 ®;b;(k) + v(k) € CV is the interference-plus-noise (disturbance)
vector. Accounting for4.13), the output of a linear receiver can be expressed
as

yi(k) = wi'r(k) = wi'e;b;(k) +wi'p; (k). (4.14)
The L-MOE receiver 1] is the solution of the following constrained opti-

mization problem:

w,1-moe = argmin E[|y;(k)[?] subject tOW]H ¢; =1, (4.15)
WjE(CN

which can be solved by Lagrange optimization, yielding the two equivélent
expressions

wL-MoE = (¢F R ;) ' Ryl b = (%HR;,jlpjfbj)_l R;,jlp], ®;, (4.16)

where the second equality follows by applying the matrix inversion lehima
the autocorrelation matriR ., = d)jqbf + Rpjpj e CVxN,

It can be easily shown that, among all linear receivers, the L-MOE one
maximizes the SINR at its output, which, accounting fbi.#), can be defined
as

1/2 ~1/2
SINR(w,) 4 E[’Wf‘ﬁj b;(k)I?] _ |WJH¢J"2 _ |(Rpépj WJ')H(Rpjéj ®;)I?
’ EHW?pj(k)P] Wpr].pj Wi HRIl)é%j w2
(4.17)

Indeed, by using the Cauchy-Schwartz’s inequaligny receiver maximizing
(4.17) is given by w; max-SINR = 7 R;jlpj ;, wherey; € C — {0} is an

3 The advantage of usirB... instead ofRp,p, in (4.16) is that the former can be estimated
from received data.

4Given the vectors, y € C" and the nonsingular matriX € C**", the matrix inversion
lemma states thgiX + xy™)™' = X' - (1 +y" X 'x) 7' X 'xyT X7,

°Given the vectorsc,y € C", the Cauchy-Schwartz’s inequality states thef y|?> <
lIx|I*lly|I?, where the upper bound is achievedyoy- v x, with v € C.
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arbitrary (nonnull) complex scalar. Hence, the L-MOE receiver is obtained by
settingy; = ((j)fR;jlpj ¢j)*1, and the maximum value oft(17) is

AN TNT=) 1 Hpy—1
= S|NR(W]',|__MOE) = —F = ¢j Rpp
W Rp.p. W, L-MOE I
7,L-MOE tp;p; W3,

SINRLmax ¢] :

J

(4.18)

On the other hand, the output of a widely-linear receiver can be expressed
as[l2 2] as
yj(k) = £Ih v(k) + £l v* (k) = £ 2(k) (4.19)
wheref; = [f7,, £7,]7 € €2V andz(k) = [fT(k),x! (k)7 € C2V is the
augmentedeceived vector. According tel(10), vectorz(k) can be expressed

as
z(k) = Hb(k) + d(k) , (4.20)

withH £ [®7, &H]7 ¢ C2V*7 andd(k) 2 [vT (k), v (k)]T € C2V, where,
for (a2), the noised (k) is animproperGaussian random vector, wilRgq =
02Ty andRgq- = 02 Jon, where

A Oy Iy INX2N
Jon = Iy Onxn eR (4.21)

is a block permutation matrixcp].
Accounting for ¢.20), eq. @.19 can be equivalently written as

yj(k) = £5hy b (k) + £ [FL; o (k) + d(k)] = £7h; b; (k) + £ q;(k)
(4.22)
whereh; 2 [T, ¢i1T € C*V, with ¢; € CV being thejth column of the

matrix &, wheread; 2 [Ef,if]T € CVxU=1 with ®; ¢ CV*/-1)
denoting the matrix that includes all the columnsioexcept for thejth col-
umn¢;, b;(k) € R’~! denotes the vector that includes all the elements of

b(k) except for thejth entryb; (k), andq (k) 2 H, b;(k) +d(k) € C*Nis
the augmented disturbance (interference-plus-noise) vector.

To establish a general framework encompassing both linear and WL re-
ceivers, we refer to the scheme in Figl, wherein linear receivers can be
obtained by settingj; » = Oy in (4.19, and the Rg] operation is needed only
wheny; (k) is complex, as it happens for linear receivers, or even for WL ones
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Yj(k) A
r(k) Re[] F—» sen[] —» bik)

I_> fj’2

Figure 4.1: The WL processing scheme.

possibly not satisfying the CS constraififg = £ , is referred to asonjugate
symmetry{CS) property). It should be observed that the L-MOE receiver max-
imizes theSINR given by ¢.17), which is evaluatedbeforethe Re-] block.
Since, by virtue ofal), b, (k) is real-valued, an appropriate performance mea-
sure for thejth user is the output SINR&fterthe Rg-] block) [57, 58] defined

as
E*{Rely; (k)] | b; (k)}
SINR(f;) = J J . (4.23)
530 = Var Rely, (0] 1y ()]
Indeed, if the disturbance contributicﬁﬁ q; (k) at the receiver output can
be approximated as a Gaussian random varffabiaximizing ¢.23 w.r.t f;
amounts to minimizing the error probability. ; 2 Pr{bj(k) # b;(k)} ~
Q(y/SINR(E))), where Q(z) = (1/v2r) [ ¢=*/2 du denotes theQ
function. Definition ¢.23 of the SINR is quite general and allows for rela-
tively simple calculations wheh; and/orf; are estimated from data as we
will see in the next section. In the particular case where lipthndh; are
perfectly known, it can be shown that.23 reduces to

SINR(f;) = ReZ[f Dy (4.24)
7 E{Re [ g ()]} '

which can be employed also whénis estimated from a finite sample-size,
under the assumption that the channel is exactly known. Since maximization

®When N andJ are large enough, this assumption is well-satisfied for maximum-SINR
equalizers (see, e.gh ).
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of (4.24), due to the presence of the Re@perator, is not as standard as maxi-
mizing (4.17), we discuss it briefly in the following Lemma.

Lemma 4.1 Any WL receivef4.19 maximizing(4.24) can be expressed as

f; max-sINR= & Rajlqj h; +f;., (4.25)
and f;, is an arbitrary antisymmetric vector, i.ef;, € A = {f =
[f7 £117 € C?N|f; = —f5 € CN}. The resulting maximurBINR is given
by

A _
SINR;j max = SINRf; max-siINR) = thqjlqj h;. (4.26)

Proof. See AppendiB.1.

Note that the maximum SINR solutiod.9 differs from that of the linear
case for the fact that the scalgy must be real and for the presence of the
antisymmetric vectof; ,. Moreover, in AppendiB.1itis also shown that the
value of SINR ¢.24) does not depend af) € R — {0} and onf ,. Hence, we
can choosg; such thaiffmax_s,Nth = 1 andf;, = 02y, which leads to the
WL-MOE receiver:

fjwimoe = (bR, hy) ™ Ry, hy = (h'Rg ' hy) ™' Rg g hy, (4.27)

where the second equalityollows by applying the matrix inversion lemma
(see footnoted) to the autocorrelation matriR,, = hjth + Rqq;, €
C2Nx2N By reasoning as in the proof of Lemmal, it can be shown that
(4.27) is obtained equivalently as the unique solution of the following WL-
MOE criterion:

f;wL-moe = argmin E{R€’[y;(k)]} subjecttof}'h; =1. (4.28)
fj eC2N

The ideal implementations of the L-MOE and WL-MOE receivers require
perfect knowledge of two quantities: thatocorrelation matri{ACM) of the
received signal, and threceived signaturépossibly distorted by the channel)
of each user to be demodulated. These two quantities can be estimated in prac-
tice from a finite number of samples at the receiver. In particular, we can note
that when we consider a multipath channel, due to the effects of the unknown

" The advantage of usir.,.. instead 0Rq,q; i (4.27) is that the former can be estimated
from received data.
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channel response, the received signature is a distorted version of the transmit-
ted one, making channel estimation (CE) a necessary step to implement both
the L- and WL-MOE receivers. In such a scenario, we will show in the section
4.5 that the performances of the L- and WL-MOE receivers are affected by
imperfect ACM estimation and by inaccurate CE.

4.3.2 Blind channel estimation: Subspace method

The conventional method for CE is to periodically transmit training sequences
of data that are knowa priori to the receiver. However, such a scheme might
lead to a significant waste of power and bandwidth resources in mobile com-
munication systems, especially when channel conditions require the use of
long training sequences and/or frequent repetition of training. Consequently,
the past few decades have witnessed a huge number of contributions in the
area ofblind CE approaches, which only exploit the knowledge of the spread-
ing code of the desired user, without requiring any training, and allow one to
demodulate the desired transmission without any knowledge of the channels
and spreading sequences of the other users. Blind CE approaches relying on
second-order statistics (SOS) of the received data are particularly attractive
since they require fewer samples than those necessary fo traditional methods
based on higher-order statisticss]. Among existing SOS-based approaches,
the subspace CE method first proposedbif] [s one of the most studied blind
algorithm for DS-CDMA systems for the following reasons: (i) except for the
subspace swap phenomenon, which occurs only for low values of the SNR well
below the range of practical interest, it is very robust to noisé [(ii) it pro-

vides unique channel identification in closed form under mild conditibfls [

(iii) it is a method that not only provides a blind channel estimator but also a
robust multiuser detector in the meantinie]f (iv) it can be optimally com-

bined with training-based approaches (so-called semi-blind meth@ds}\)

it is amenable of a low-complexity and fast recursive implementatiéh Pn

the other hand, the main drawbacks of the subspace-based algorithm are the
performance degradation when the number of active users is comparable to
the code length and the requirement for accurate rank estimation of the ACM
of the noise-free received signal. Under the assumption that the transmitted
symbols are improper and the noise is proper, the former shortcoming can be
overcame by resorting to a generalized subspace-based method, which allows
one to enlarge the dimension of the observation space. More precisely, a gen-
eralized subspace-based approach exploits the channel information contained
in both R,.,.(¢,7) and R,..- (¢, ), by jointly processing-(¢) and its conjugate
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versionr*(t). Originally, such an estimation approach was proposed if+-|
[66] to improve channel identification in many application fields, including
multicarrier CDMA and single-carrier DS-CDMA systems. To face up to the
latter disadvantage, one can use conventional rank estimation techniques as the
Akaike information criterion§ 7] and the minimum description length method
[64], or, alternatively, a subspace tracking procedure with successive cancel-
lation techniquesd]. In this subsection we describe, with reference to the
L-MOE receiver, the multiuser CE procedure proposedsiij,[whereby the
impulse response of the desired user is obtained fionit, 7) by processing
the received signal(t). On the other hand, as regards the WL-MOE receiver,
the generalized subspace-based method@}fi consider.

In the sequel we assume that the following conditions hold:
(cl)whenJ < N (underloaded systemghe matrix® is full-column rank,
i.e., rank®) = J. In sectiond.4.1we will show that, in the downlink case,
wherein all the user signals propagate through a common multipath channel,
the linear independence of the codgsc,,...,cy is a necessary and suffi-
cient condition to ensure the rank conditi(el). It is noteworthy that, if®
is full-column rank, the augmented mat# is full-column rank, too, i.e.,
rank H) = J. In other words, in underloaded environments, condiich)
additionally assures the full-column rank propertyHf However, the matrix
H can be full-column rank even whe¥ < J < 2 N (overloaded systefs
wherein® is inherently rank-deficient. Thus, in addition to condit{ot), we
assume hereinafter that:
(c2)whenN < J < 2 N, the matrixH is full-column rank, i.e., ranld) = J.
With reference to the downlink scenario, fulfilment of conditi@?) is thor-
oughly discussed in Theorefnl

Under assumption&@l) and(a2), the autocorrelation matrix of the obser-
vation vectorR ., assumes the form

Ry = @7 + 521y (4.29)

. The correlation matrix can also expressed in term of its eigenvector decom-
position being a unitarily diagonalizable matrixd]; therefore there exists a
unitary matrixV such that

Ry = VYV (4.30)

whereY e C"*" is a diagonal matrix of the eigenvalugsg } ", in a nonin-
creasing order aR., and the columns oV € CV*¥ are the corresponding
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eigenvectors. Moreover, we can recall that the ma®jx is positive semidef-
inite, hermitian matrix, therefore>f] its eigenvalueq; évzl are all real and
non-negative. Recalling the eigenvalue definition,

Rira; =gja; (4.31)
and substituting4.29 in (4.31), we obtain
(®®7 +021y)a; =g a, (4.32)
. From @.32 we conclude that
sj=pj+o> je{1,2,...,N} (4.33)

where{y;} are the eigenvalues of the matdx®*.
Nevertheless, by virtue of conditiorfsl), the matrix® ®’ has only.J
nonzero eigenvalugs, > pus --- > g > 0, therefore

+o2 ifje{1,2,...,J
gj:{lu’]+o-”u IJG{ ) < 9 } (434)

o2 ifje{J+1,J+2,...,N}

Thus the eigenvalues can be separated into two distinct groups: the signal
eigenvalues and the noise eigenvalues, respectively represent by the matrices

VAN
Y, = diady, po -, g € R (4.35)
Y, = diagoy,, oy -+ ,04] = agIN_J e RW—)x(N=J), (4.36)

Accordingly, the eigenvectors can be separated into the signal and noise eigen-
vectors. In detail, denote the unit-norm eigenvectors associated with the

signal eigenvalues bwi, us,...,u; and denote those corresponding to the
noise eigenvalues by 1, us2,...,uy we can define the matrixég, =
[ul, us, ... ,UJ] e CVxJ andV,, = [UJ+1, ujio,... 7U_N] S (CNX(N—J).

With these notations, the EVD id (30 can be expressed as
Ry = V, X, VE v, 1, VI (4.37)

It easy to see tha& (®) = R(V;), as a consequence the columns of the matrix
® and the signal eigenvectors span the same space so-sigiied subspace
Instead the noise eigenvectors (the column¥/g) span the so-calledoise
subspacé¢hat is the orthogonal complement of the signal subspace. If the noise
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subspace is the orthogonal complement of the signal subspace, the columns of
® are orthogonal to any vectors in the noise space, in fact fio&2), recalling
(4.34), we obtain

®dTu;=0if jc{J+1,J+2,...,N}. (4.38)

Neverthelessp & u; is a linear combination (with coefficients equal to
@ u;) of the columns of the matri® that are linear independent because
® is full-column rank (assumptiofcl)). Therefore any their linear combina-
tion is equal to zero if and only if the coefficients are equal to zero:

Muj=uf®=01if je{J+1,J+2,... N} (4.39)
In this way we have proved that
Spari®] = SpaiV] L SpariV,,].

The blind Subspace method exploits this property, derived from the special
structure ofR,.;, to estimate the channel parametérq [ The equation4.39),
recalling ¢.10 and @.12), can also be expressed as

Viig,=VICigi=0n_;, Vjie{l,.. J} (4.40)

Assuming that the receiver has the only knowledge of the transmitted signature
c;, the matrixC; in (4.40 is known. Eq. ¢.40 uniquely characterizes the
channel coefficients for each user iff the following condition is satisf{ed)

the null space oVnH C; has dimension one or, equivalerﬁlpanl(VnH Cj) =

L; — 1. A discussion about conditioft4) is made in §1]. If condition (c4)

is satisfied, then an arbitrary unit-norm vecgér € Cli satisfies 4.40) iff

g, = ¢V g, withd; € [0,2r) andVj € {1,2,...,J}. Itis noteworthy that
fulfillment of condition (c4) requires that the number of rows of the matrix
Vi c; e cCW=7*Li must be greater than or equal to its number of columns,
e, N —-J >L; <= J < N — L;, and, hence, from the point of viéw

of the jth user, the maximum numbek,ax. = N — L; of users that can
be supported by the system is smaller than the number users when the

8The dimension of the null space 8 C; € CW~7*Li s equal toL; — rank VI C;).
%In order to meaningfully define the maximum number of users that can be supported by the
system, we could consider the worst case, i.e.Lstite maximum number of users that can be

supported by the system is given Byhax 2 maxi<,<Js L; as the maximum channel length,
obtaining thus/ < (N — Lmax)-
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channel is assumed to be perfectly known (see subseéti®dn When R,
(and henceV,) is estimated from a finite sample size, a channel estigate
can be obtained by solving 40 in the least-squares sense:

~ . oGH
g; = argmin ||V, C; x||?
xeChi
~ ~H .
= argmin (xH Cf V,V, C; x) , subjectto|x|?=1, (4.41)
xeChi

where the matri®,, € CN*(V=7) is the sample estimate ¥,,. The solution
[56] of (4.4]) is the eigenvector associated with the smallest eigenvalue of the
matrix @, £ C# V, V,, C; € CLixL.,

We can follow the same analysis also for the WL receiver. In this case
under assumption®&1) and(a2), the matrixR,, assumes the form

R,, = HH! + 52 1,y. (4.42)

Moreover, by virtue of conditiongc1) and (c2), the matrixH H” has only
J nonzero eigenvalueks;, > X\s --- > Ay > 0. Resorting to the eigenvalue
decomposition, the matriR.,, can be also expressed as

R, = UAUZ L U,A,UZ, (4.43)

whereU, € C?V*7 collects the eigenvectors associated with thiargest
eigenvalues oR,,, whose columns span thegnal subspacei.e., the sub-

spaceR(H), A = diag 1 + o2, X2 +02,..., A5 +02) € R A, =
02Ioy_y € RPN-IX2N=J and, finally, U, € C?N*2N-J) collects the
eigenvectors associated with the eigenvalfievhose columns span tmeise
subspacgi.e., the subspacg (H) in C2V. Also in this case, blind subspace-
based CE can be accomplished by exploiting the orthogonality between the
signal spac&® (H) and the noise subspa®-(H) = R(U,,), obtaining thus,
vVie{l,..,J},

Ul hj =09y . (4.44)

As regardsh;, we preliminarily observe that, according #.10 and @.12),
the jth columng, of the matrix® assumes the form
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and, consequently, one has

h: — ?; — o Cj Onxr, 8
o] " |Onxz; G g;

cje(C2N><2Lj

1 IL' ’iIL. :| |:gR:|

— Oé'\/§ C _ J =ty 75
- \V2 [ILJ' —ilr; | |8j1
Q;

TjE(CZLj ><2Lj Q]' €R2Lj

whereT; is aunitary matrix, i.e., T; Tf = Tij = I;,. Substituting
(4.46) in (4.44), we obtain:

Ul'h; =UJlC;Tj0; =0n_y, Vje{l,....,J}. (4.47)

The unknown vectop, can be obtained as the solution of the linear system
(4.47), provided that this systemniquely characterizes the channel coeffi-
cients for each user, i.e., an arbitrary unit-norm vegt’pre CL (with cor-
respondingg;- € R?L), satisfies 4.47) if and only if (iff) g; = e'¥i g, with

Y; € [0,2m) andVy € {1,2,...,J}. Itis clear that 4.47) has a unique so-
lution (up to a scaling factor) iff the following condition is satisfigd3) the

null space ofU% ¢, T, has dimension one or, equivalentitank U ¢;) =

2 L; — 1. A reformulation of conditior(c3) is given in [56]. It can be read-

ily proven that, undefc3), the following two statements are equivalent: (i)
the unit-norm vectog; € Cs is a solution of ¢.47; (i) g; = +g;, i.e.,

Y = nm, withn € Z. In other words, differently from conventional subspace-
based multiuser CES[], where the estimated channel might differ from the
true one by an unknowmtation e’ ¥i, in generalized subspace-based CE based
on (4.47) the residual channel ambiguity is limited to a poss#tm inversion

It is important to observe that conditi¢o3) necessarily imposes that the num-
ber of rows of the matritUZ ¢; T; € C2N~/)x2L; pe greater than or equal
to its number of columns, i.&2N —J > 2L; <= J < 2(N — L;). Thereby,

it follows that, from the point of view* of the jth user, the maximum number

®The dimension of the null space &’ C; T; € CEN~=D*2Li js equal t02 L; —

rank U ¢, T;). Moreover, sinceT; is unitary and, hence, nonsingular, it results that
rank UZ ¢; T;) = rank U ¢;).

Following footnoted the maximum number of users that can be supported by the system is
given by.J < 2(N — Limax).
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JmaxwL = 2(N — L;) of users supported by the system is smaller than the
maximum numbel N of users when the channel is assumed to be perfectly
known (see subsectioh4). In the following, we assume that conditi¢c3)

is satisfied. In practice, however, ed.47) cannot be satisfied exactly when
R, (and hencdl,,) is estimated from a finite sample size. In this case, a

channel estimatg, 2 8] r. (&]1]" can still be obtained by solvingt47) in
the least-squares sense, that is, as

~ o
0; = argmin |U,, C; T} x||?
xeR?"i
= argmin (XH Tf CJH uU,U, Cj T, X) , Subject tO”XH2 =1,
xeR?%i

(4.48)

whose solution §6] is given by the eigenvector associated with the small-
est eigenvalue of the matriS[‘jH @j,WL T; € C2Lix2Li| with QjWL =
ci U, T, ¢; c C2Lix2Ls,

4.4 |deal Performance of L-MOE and WL-MOE re-
ceivers

In this section, following the analysis that we have developed:if fve com-

pare the SINR performances of tideal WL-MOE and the L-MOE receivers,

i.e., those receivers whose synthesis is based on perfect knowledge of both the
SOS of the received signal and the channel impulse response. Preliminarily, we
observe that, recently, with reference to DS-CDMA systems employing BPSK
modulation, a few contributions addressing the theoretical performance anal-
ysis of WL-MUD techniques appeared in the literature. 3¢]] the asymp-

totic (in the number of users) performance analysis of the WL decorrelating
and WL-MMSE receivers was carried out, by extending to the WL framework
classical analysis tools already developed by Tse and Han)yi¢gr L-MUD
techniques (a similar study was proposedif]). A non-asymptotic perfor-
mance analysis was instead consideredif, [which provides an algebraic
proof that WL-MUD receivers outperform L-MUD ones, and explicitly as-
sesses the expected performance gain in the two-users case. The common
conclusion of these studies (see alsd]] is that the performance advantage

of WL-MUD receivers over L-MUD ones is twofoldthe input SNR is dou-

bled and the number of effective interferers is halvAd.a consequence, for
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a fixed processing gaiv, the number of users that can be accommodated by
a DS-CDMA system employing WL-MUD is doubled4, 71, 72] compared
to L-MUD. In other words, unlike L-MUD, WL-MUD can be successfully
employed not only when the number of usegrss smaller than or equal to
N (underloaded systembut also whenV < J < 2 N (overloaded system
However, none of the aforementioned papers on WL-MUD carried out a de-
tailed study of the conditions on channel and codes that assure perfect MAI
suppression in absence of noise. Thus, in this subsection, following our paper
[17], we provide conditions on the spreading codes, which guarantee complete
MAI rejection for WL-MOE in both underloaded and overloaded downlink
configurations. We will show that in the limiting case of vanishingly small
noise, i.e., asrg — 0, the performance comparison between the L-MOE and
WL-MOE receivers heavily depends on the rank propertie® &nd H, re-
spectively.

In order to carry out a meaningful performance comparison between lin-
ear and WL receivers, we evaluate for both receivers the Sif{diRthe Rég:]
block, given by £.24). Since the WL-MOE receiver maximizes such a SINR
(see Lemma 1), one simply has:

A _
SINR; wL-moe = SINR(f; wi-voe) = hY’ Roq by (4.49)

Instead, observe that evaluating the SINR given4$4) for the L-MOE re-
ceiver leads to a result generally different frofn1®. By observing that the
L-MOE receiver can be viewed as a WL receiver with augmented weight vec-
tor £ -moe = Wl moe,O§]", recalling thatw | \ioe é; = 1, and applying

the straightforward identity Réz] = 1{|z|> + Re[z?]}, Vz € C, the SINR
(4.24) for the L-MOE receiver can be written as

A 1
SINR; -moe = SINR(f; L-moE) =
! ! E{RE W _yoep; (k)]}
2
_ - . (4.50)
wa_MOERp].ijj,L-MOE + Re[WfL-MOERpjp; Wj,L-MOE]

On one hand, since the WL-MOE is a maximum-SINR receiver, it results that
SINRj,L-MOE < SINRj,WL-MOE- On the other hand, since F{e] < ‘2‘2, Vz €

C, accounting for 4.18, one has SINR .moe > SINR;max. Overall, we
maintain that

SINRj,WL-MOE > SINR]‘J_-MOE > SINRj,max- (4.51)
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Although the first inequality in4.51) concisely states that the performance
of the WL-MOE receiver is not worse than that of its linear counterpart, it
does not allow us to quantify the relative performance gain. Indeed, no clear
insight on the performance comparison between the WL-MOE and L-MOE
receivers can be drawn out from the SINR formuldsi9) and @.50. To
overcome this conceptual difficulty, we carry out in the next subsection the
performance comparison in the high-SNR regime, by deriving the analytical
expressions of SINRyvL-moe and SINR .moe as the noise variance? ap-
proaches zero. It should be observed that, more generally, the results reported
in Subsection.4.1turn out to be useful in all those situations wherein the
DS-CDMA signal dominates the background noise, which is a common oc-
currence in many practical environments.

4.4.1 Analysis in the High-SNR Regime

The discussion carried out in this subsection is mainly based on some mathe-
matical results whose proofs are reported in Appetdix

As we have recalled in the nolein the sectiorb.2the code vectoe; ac-
counts also for possible precoding phases whose role in downlink is discussed
in this section. Therefore we modify the system model() introducing these
precoding phases:

Zaj %i4pbi(k) +v(k) = WAOb(k) +v(k) = ®b(k) + v(k),

(4.52)
where, with reference to thgh userp; < [0,2 ) is a precoding phase which
is deliberately introduced at the transmitter and whose role will be clear in the

sequel. Moreover, ii(52), we have define® = diag(e’?1, e'%2, ... ¢'%)

C7*7, and consequently we have redefine witithe matrix® = ¥ A © €
CN*J. The other parameters i#.62) are the same of those in.(L0).

First of all, let us start from linear processing. In the ApperiliR it is
shown that, in the high-SNR regime, the L-MOE receiver is able to achieve
perfect MAI suppression fagachactive user, that islimag_)O SINR; L -moE =
lim,2_,o SINRjmax = 00, Vj € {1,2,...,J}, if and only if (iff) the matrix
® is full-column rank, i.e., ranl®) = J. Moreover, in such a case, it results
that

SINR; L-moE

=2, Vje{1,2,...,J}, 453
N SINR, o jedq } (4.53)
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which shows that, as intuitively expected, since thé |Réock in Fig.4.1dis-
cards one-half of the noise-plus-MAI powergn(k), SINR; | .moE iS asymp-
totically greater tharSINR; max Of exactly3 dB. Note that this simple result
holds only when ran{@®) = J. If the matrix ® is not full-column rank, the
L-MOE receiver is unable to perfectly suppress the MAI, even in the absence
of noise; in this case, bomj,max and SINR | .moe assume finite values,
which depend om; and the eigenstructure of the MAI autocorrelation matrix

P; Ef. Therefore, the assumption rgidk) = J is crucial and deserves a
brief comment. By virtue of nonsingularity of the diagonal matrideand®,

it follows that ranK®) = rank ¥ A ®) = rank¥). Henceforth, the matrix

® is full-column rank iff the signatureg,, 1, ..., ; are linearly indepen-
dent, a condition which can be fulfilled only if the number of uséis smaller

than or equal to the processing gaih(underloaded systems). It is notewor-
thy that the linear independence of the signatabesys,, . . ., 1 ; depends on
both the spreading codes and the channel impulse responses of all the active
users. Thus, in general, it is difficult to give easily interpretable conditions
assuring thaf® is full-column rank. A substantial simplification occurs in the
downlink, wherein all the user signals propagate through a common multipath
channel, i.e.gj(n) = g(n), with orderL; = L, for each user. In this case,
the signaturep, given by ¢.11) becomes),; = G c;, where the common
Toeplitz channel matrixG = G; turns out to be nonsingular under the mild
assumption thag(0) # 0, which is assumed to hold hereinafter. Accounting
for this model, the matrixt becomes

¥ =G [c},co,...,¢5] =GC, (4.54)
—_——
CeCNxJ

which, by virtue of nonsingularity o€, implies that rank®) = rank &) =
rank(C). Consequently, in the downlink scenario, the linear independence of
the spreading vectors;, co,...,c; is a necessary and sufficient condition
for assuring the full-column rank property @& and, hence, allowing the L-
MOE receiver to completely reject the MAI in the high-SNR region. Let us
focus attention on the performance comparison between the L-MOE and WL-
MOE receivers. As a first result, it is shown in Appendix that, if & (or,
equivalently,®) is full-column rank, then

_ —H— —H
L SINRwiwoe _ [151° — Rel)'®;]{ReT) 3]} 'Re®; )|
o2—0 SINR; | moE ;12 — ¢ @;(®; )18} ¢

)

(4.55)
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which, in addition to ¢.51), evidences that, sinckm,2_,q SINR; .-moE =
+oo when rank®) = J, the WL-MOE receiver also suppresses the MAI
exactly in the high-SNR regime, i.dimggﬂo SINR; wL-MoE = +00, Vj €
{1,2,...,J}. Remarkably, it is apparent from .65 that, if

Re¢!®;] {Re®; &;]} 'R, p;] = 1'®,; (B, ;)" B ¢, , (4.56)

we have:

SINR; wi-MoE

lim =1, (4.57)

02—0 SINRj,L—MOE
which renders the L-MOE and WL-MOE receivers perfectly equivalent in
terms of SINR, asff, — 0. In other words, if® is full-column rank (as
may be the case in underloaded systems) and cond#i6g) s fulfilled, WL
processing does not improve upon conventional linear processing in the high-
SNR region. It is interesting to observe that, for instance, conditidso) is
trivially satisfied if ¢, and ®; are real (i.e., matrx® is real), or when the
user signatures are orthogolf%’ai.e.,wﬁ%2 =0,Vj1 # jo € {1,2,...,J},
independently of matrice& and® [see ¢.52)]. To gain further insight about
(4.55, we consider the two-users case (i.t5 2), and, without loss of gen-
erality, we assume that the desired user is the first one {i.e.,1). In this
case, eq.4.59 simplifies to

1i SINRI,WL—MOE 1-— |p|2 COSQ(AQ — Zp)
m = ,
020 SINRy | -moE 1 —|p|?

(4.58)

which suggests that the performance advantage of the WL-MOE receiver over
the L-MOE one depends on the magnitugdeand phase’p of the correlation

- A .
coefficientp = w14p, between the two signatures, ands,, as well as on

the phase differencé&d = 01 — 05. This is in accordance with the results
derived in [/7] in terms of near-far resistance. Specifically, for a given value
of 0 < |p| < 1, the largest performance gap between WL-MOE and L-MOE
receivers is obtained whekd — Zp = w/2+ h 7, with h € Z, whereas the two
receivers achieve the same performance whén- /p = h 7, independently

of the value ofip|. On the other hand, for a given value& — Zp # h,

the performance gain of the WL-MOE receiver over the L-MOE one increases

12ps a matter of fact, if the user signatures are orthogonal, under assumatigmsd(a2),
the single-user detector, which simply matches the received ve@grto ¢, is indeed the
optimal (in the minimum-error-probability sense) receiver.
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without bounds, as the magnitude @hpproaches unity, i.e., the user sigha-
tures are maximally correlated.

As a second result, it is evidenced in Appen#ix that, contrary to the
L-MOE receiver, the WL-MOE one is able to ensure perfect MAI suppres-
sion in the high-SNR regime, even when the number of ugezgceeds the
processing gaitV (overloaded systems). Indeed, it is shown that, more gener-
ally, lim,2_,o SINR; wL-moE = +00, Vj € {1,2,...,J},iff His full-column
rank. If ® is full-column rank (a condition that can hold only when the sys-
tem is underloaded), thad is full-column rank, too. However, the matrH
can be full-column rank even wheéW < J < 2 N, wherein® is structurally
rank-deficient; in this overloaded environment, it results that

lim SINR; wiL-moE

= Vie{1,2,...,J}. 4.59
Hm SINR. L woe oo, Vje{l2....J} (4.59)

In other words, provided that ra(d) = J, the performance gap between
the WL-MOE and L-MOE receivers becomes arbitrarily large for vanishingly
small noise, wherV < J < 2 N. This fact strongly motivates us to provide
conditions assuring thaf be full-column rank in overloaded scenarios. To
this aim, we provide the following Theorem, by focusing attention directly on
the downlink scenario in an effort to give simple and insightful conditions.

Theorem 4.1 WhenN < J < 2N, the code matrix can be decomposed

as C = Cet Iy, II], where Cjert = [c1, C2,...,cy] € CVXN is non-
singular andII ¢ CN*(/=N) is a tall matrix. In this overloaded sce-
nario, under the assumption thal exhibits the form given b{4.54), the

matrix H is full-column rank iffIT* — (©2)*I1©®2 ¢ CN*(/-N) is full-

A e - A
column rank, wher®; = diag(e’?, %, ... ') ¢ CN*N and®, =

diag(e?n+1, etOnt2 eifr) ¢ C/-N)IX(J=N),

Proof. See AppendiB.3.

Theorem4.1 deserves some interesting comments, aimed at clarifying in
particular the role of the precoding phases 4n5¢), which are at the de-
signer’s disposal. First of all, it is apparent that the full-column rank prop-
erty of H does not depend on the channel impulse respgénbet depends
on both the spreading codes of all the active users and their precoding phases

BIn the uplink scenario, the full-column rank propertyldfand, thus, the performance of the
WL-MOE receiver, depends not only on the precoding phases, but also on the channel impulse
responses of all the active users.
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01,0-,...,0;. To this respect, it is interesting to investigate how such phases
influence the full-column rank property #f in overloaded systems, focusing
attention to the case wherein Walsh-Hadamard (WH) spreading codes are em-
ployed. To do this, without loss of generality, assume that; = c;, for

j € {1,2,...,J — N}, and letCiy denote the common Hadamard matrix
of order N. In this case, it is easily verified th&l = [e;,e2,...,ej_n],

with e; denoting thejth column ofIy. Thus, if WH spreading vectors are
used, the matrixI is real-valued (i.e.JI = II*) and, moreover, one has
(©1)*II = II(OF y)*, where® req 2 diagei®,ei®%, ... ¢tr-N) e
C/=N)x(J=N) n light of these observations, by additionally remember-
ing thatIT is full-column rank, it follows that rarflT* — (©2)*II1 ©3] =
rank{IL[I;_y — (07 o9 ©3]} = rankI;_y — (87 .9)* ©3]. Since the ma-

trix I,y — (O7 )" ©3 is diagonal with diagonal entrieis— ¢*2 Ov-+i=61),
Vje{l1,2,...,J — N}, by virtue of Theorem.1, it can be stated that, when

N < J <2 N, the augmented matrid is full-column rank iff

Ong;—0; #hm, Vje{l,2,....J—N}andh € Z. (4.60)

As an immediate implication o#(60), it is worth pointing out that, if no pre-
coding is performed at the transmitter, i.8,,= 65 = --- = 07, and com-

mon WH spreading codes are employed, the WL-MOE receiver is unable to
achieve perfect MAI suppression in overloaded systems, even in the absence
of noise. Henceforth, in order to allow WL-MUD to successfully work in

an overloaded downlink, while employing WH spreading sequences, incorpo-
ration of precoding phases is crucial. This is the reason which motivates to
introduce the phaseg, 6, ...,0; in (4.10. It is worthwhile to observe that
condition @.60 does not uniguely specify the precoding phases and, thus, dif-
ferent choices can be pursued. To corroborate the previous considerations, let
us provide a numerical example.

Example 4.1 : Consider a DS-CDMA downlink withyy = ay = --- =

ay = 1 and processing gaiiv = 16, and without loss of generality, assume
that the desired user is the first one (ije= 1). The SNR, which is defined as
1/02,is settol5 dB, and the signatures are generated according $g)( The
system uses unit-norm WH vector codes and operates over a channel of order
L, = 5, whose tapg(0), g(1),...,9(5) are modeled as i.i.d. complex proper
zero-mean Gaussian random variables, normalized sdthdf® = 1, Vj €
{1,2,...,J}. Fig.4.2reports the ideal SINR performance of the WL-MOE
receiver as a function of the number of usdrganging from an underloaded
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Figure 4.2: Average SINR values of the WL-MOE receiver versus
for different precoding techniques (SNR15 dB).

(I < J < N) system to an overloadedV( < J < 2 N) one. Specifically,

we report SINR wL-moe [see ¢.49)] in two different situations: in the former
one, there is no precoding at the transmitter, #e.= 65 = --- = 6; = 0
(referred to as “without precoding”); in the latter one, we use a precoding
strategy fulfilling @.60), by settingfy = 6, = --- = Oy = 0 andfy1 =

Onio = -+ = Oy = /4 (referred to as “with precoding”). The results of
Fig. 4.2are obtained by carrying oui9* independent Monte Carlo trials, with
each run using only a different channel realization. It can be observed that, if
WH spreading sequences are employed and condidigt)(is not accounted

for, the WL-MOE receiver does not work at all, when the system becomes
overloaded. In contrast, the proposed precoding strategy allows the WL-MOE
receiver to achieve satisfactory performances even viienJ < 2 N.
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4.5 Finite-sample theoretical performance comparison
between L-MOE and WL-MOE receivers

In this section we provide the finite-sample theoretical performance analysis of
the L-MOE and WL-MOE receivers and in the known-channel case (see sub-
section4.5.1) and in unknown-channel case (see subsectiér, following

our papers]2, 13] and [L4] respectively.

As we have note in the subsectidrB.], the ideal implementation of the
L-MOE and WL-MOE receivers requires perfect knowledge of two quantities:
theautocorrelation matriXxACM) of the received signal, and theceived sig-
natureof each user to be demodulated. These two quantities can be estimated
in practice from a finite number of samples at the receiver. In partuculary, due
to the effects of the unknown channel response, the received signature is a dis-
torted version of the transmitted one, making channel estimation (CE) a nec-
essary step to implement both the L- and WL-MOE receivers. A theoretical
performance analysis of the data-aided WL-MMSE and WL-MOE receivers
was provided inT4], when the receivers are adaptively implemented by means
of the least-mean square (LMS) algorithm, by evaluating the output signal-to-
interference-plus-noise ratio (SINR). However, the SINR analysis carried out
in [74] considers steady-state performances, i.e., when the sample size is in-
finite, and, thus, does not allow to evaluate the performance of the receivers
as a function of the number of samples. This issue is important from a prac-
tical point of view because, especially when short sample-sizes are employed,
the data-estimated versions of the WL-MUD receivers exhibit a severe perfor-
mance degradation with respect to their ideal counterparts, reducing thus the
expected performance gain over L-MUD receivers.

To gain more insight about these points, by applying a first-order pertur-
bative approach at the first, we evaluate in the subseetibri the perfor-
mance degradation due to finite-sample ACM estimation in the known-channel
case. In particular this analysis is carried out with reference two different data-
estimated implementations of the L-MOE and WL-MOE receivers: the SMI
(sample matrix inversion) receiver (and L-SMI and WL-SMI), which employs
a sample estimate of the data autocorrelation matrix, and the SUB (subspace)
receiver (and L-SUB and WL-SUB), which exploits the properties of the eigen-
value decomposition (EVD) of the data autocorrelation matrix to reduce the ef-
fects of estimation errors. As we will see in the subsectiégnlwe will derive
easily interpretable formulas, which allow one to obtain clear insights about
the effects of different parameters on performances. Moreover, the results of
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the analysis will show that the WL-MOE receiver is more sensitive than its
linear counterpart to finite sample-size effects associated to ACM estimation,
and it generally requires subspace-based implementation to achieve in practice
the performance gains predicted by theory.

Successively, in the subsectidnb.3 the first-order perturbation analy-
sis developed in subsectidn5.1is extended to incorporate the effects due to
subspace-based blind CE (see subsedidrd) on the synthesis of the L- and
WL-MOE receivers. It is worthwhile to note that, when the desired channel
vector has been estimated through the subspace method and, hence, the sub-
space decomposition of the ACM is already available, it is preferable from a
computational viewpoint to implement the L- and WL-SUB receivers rather
than their SMI counterparts, since they do not require direct ACM inversion.
Notwithstanding this, we have chosen to carry out also the performance analy-
sis of the SMI versions of the receivers with CE since, in this way, an interest-
ing comparison with the SUB versions of the receivers, as well as with the SMI
versions when the channel is assumed known, can be established. In particu-
lar, we will derive easily interpretable formulas, supported by computer sim-
ulation. Moreover, in the subsection.$.3 we will show that with reference
to subspace-based receivers implementations, for moderate-to-high values of
the SNR, errors in estimating the L-SUB-CE and WL-SUB-CE receivers are
essentially due to ACM estimation. This is not true for the L-SMI-CE and WL-
SMI-CE receivers, for which CE errors undesirably combine with ACM errors
(signature mismatch phenomenon). Therefore, we will conclude that when
considering finite sample-size implementation, the blind WL-MOE receiver
is able to assure a significant performance gain (for low-to-moderate values of
the SNR) with respect to its linear counterpart only when it is built by resorting
to the more sophisticated subspace-based implementation. In this case, for a
given channel length, it allows one to work with an increased number of users
J, which makes it a viable choice in heavily-congested DS-CDMA networks.

4.5.1 Finite-sample performances of the L-MOE and WL-MOE
receivers with known channel

WL-MOE performance analysis

Let us start from the WL-MOE receiver. Preliminarily, we observe that an
equivalent form of the WL-MOE receive#(27) can be obtained by exploiting
the eigenvalue decomposition (EVD) Bf,, (4.43. To this end, it is required
that the augmented matrH is full-column rank (an issue that has been dis-
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cussed in subsectioh4.1for downlink scenario), which necessarily requires
that
J <2N. (4.61)

As a matter of fact, this assumptiod.§1) is not required for the WL-SMI
receiver and it is necessary only for the WL-SUB one. However, since the
WL-MOE receiver is not able to ensure perfect MAI suppression, for each user,
whenH is rank-deficient (see subsectiént.l) , we maintain the assumption
rank H) = J for both the two data-estimated WL receivers. By substituting
the EVD of R,, in (4.27) and exploiting the orthogonality between signal
and noise subspaces, one obtainsghlespace-based forof the WL-MOE
receiver as follows

f;wimoe = (W UA'UMh)'UA' Ul by, for 7<2N. (4.62)

Implementation of the WL-MOE receiver defined by Z7) or (4.62 requires
estimation from the received datalf,, in (4.27) or its EVD in (4.62). Under
mild conditions, a consistent estim®eg,, of R, is the sample ACM obtained
as

ﬁ—lK k) 2 (k 4.63
zz—K;Z()Z ()a (4.63)

where K denotes the estimation sample size. Applying the EVIRg, one
obtains the decomposition

ﬁzz = ﬁsxsﬁf + ﬁnxnﬁfa (464)
where the matricetJ, € C2VN*J, U, € C2N*xC@N-J) A ¢ R/*/ and
A, € R2NVX2N gre estimates of the matrices 143 Uy, U, A,, andA,, =
o2 1,y, respectively. By substituting ind(27) and ¢.62), the sample ACM

(4.63 and its EVD @.64) respectively, the WL-SMI and WL-SUB receivers
are given by

A P P |
fiwesm = (hR,, hj) 'R, h;. (4.65)
fj,WL-SUB é (hjl ﬁs KS_I ﬁf hj)fl ﬁs Ks_l ﬁsH hj . (466)

It is worth noting that the weight vectdt; w,-sug is not equal tof ; wi-swmi,

sinceU,, h; # 0,x_; due to the finite-sample-size effects. This implies that
the two receivers WL-SMI and WL-SUB might exhibit different SINR perfor-
mances.
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To carry out the performance analysis for WL-SMI and WL-SUB in an uni-
fied framework, let us denote WitlAf} any data-estimated WL-MOE receiver,
i.e,?j = fj,WL-SMI or?j = fj,WL-SUBv and setfj = fj,WL-MOE for simplicity,
wheref ; wi-moE is given by ¢.27) or (4.62). Adopting a perturbation perspec-
tive, the vectofj can be expressed as

£, =f;+0of;, (4.67)

wheredf ; is asmall(i.e.,||0f ;|| < 1) zero-mean perturbation term. Since any
data-estimated version of the WL-MOE receiver must satisfy the constraint

~H .
f,h; = 1, it results thatsf/'h; = 0, thus the SINR 4.29) for the data-
estimated receivers can be written as

-~ 1
SINR(f;) = —7 : (4.68)
By, o, {REM a;(0)]}
where the symbol E -] denotegoint average w.r.t tcf andq, (k) of the

quantity in brackets. A S|mpI|fy|ng and reasonable assumptiGhif thatfj

is independent frona; (k). In this case, by accounting for the CS property of
?j, substituting 4.67) into (4.68), performing the average w.r.t tg;(k), and
recalling that, due to assumptiofzl) and(a2), the vectoiq; (k) is zero-mean,

one has:
1

1 Rq,q,f; + Esr, [6f] Ra,q,685]
where only the average w.r.t &if ; must be evaluated. To perform this calcu-

lation, we need explicit expressions for the perturbatién of the WL-SMI
and WL-SUB receivers, which are provided by the following Lemma.

SINR(f;) = (4.69)

Lemma 4.2 Let denote withx first-order equality®, assume thaH is full-
column rank and leR,, be estimated by.63. Thefirst-orderperturbation
term of the WL-SMI and WL-SUB receivers can be expressed as

(Sfj ~ _Fj,WL/qubj s (470)

whereTq , 2 e Zk 0 q]( )bj(k) is the sample estimate of the cross-
correlation between the disturbance vecigy(k) and the desired symbol

1 First-order equality means that, as the sample &izapproaches infinity, we neglect all
the summands that tend to zero faster than the norm of the corresponding perturbation term.
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b;(k), and

(4.71)

P.w R:L WL-SMI
I‘J;WL:{ IWE a9, ( )

PiwLRo g — viwe Uy U/l (WL-SUB)

. A Hp— _ — H

with Pjwe = oy — (b R hj)"'Rgly hjh! € CV*V de-
noting an oblique projection matrix 7F], and ~jwL 2 o;? +
(bl R, h;)"'hf'U, Qi UFR,, h;, whereQy, 2 Ay — 021, e RI¥.

Proof. See AppendiB.4.

It should be observed that Lemm& provides a compact characterization of
the perturbation terms, obtained under the simplifying assumpfigrnHat the
predominant error in estimatirig,, is due to?qu]. (see AppendixB.4 for de-
tails). This approximation will allows us to obtain simple yet accurate results,
which will be validated in subsectiofi5.2 Accounting for Lemmat.2, the
average in4.69 can be expressed as (we drop the subséfipin Es; ] for
notational simplicity)

~H ~
E[‘SfJH Rq;q, of;] = E[rquj 11fWL Rq;q; T'jwL rq]-bj]
= tr'a'cq:[‘fWL R‘Qij Fj,WL E[i‘\qj'bj /féibj]}u (472)

where, by accounting for assumptidiad) and(a2), one has:

K
Elfa,s, by, = 75 D Elay () by(h) by () ol (1)

k,h=1
| K
=77 Ela; (k) af (h)] E[b; (k) b;(h)]
k,h=1
1 K
- K2 Z Ela; (k) Qf(h)] Ok—h (4.73)
k,h=1
1 & " 1
= ﬁ Z E[qj (k) q (k)] = E RCquJ‘ . (474)

i
I

By substituting 4.74) in (4.129, the result back in4.69, and recalling that
fqujqj f; = SINR;\}VL_MOE, where SINRwi-moE is given by ¢.49, we get
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-~ SINR; wi-
SINR(E,) = j,WL-MOE

traceT' Xy, Rq.q; Tjw Raja;)
1 = 2 == SINR; wi-moE

(4.75)

The final result is obtained by evaluating the tragg¢erm in @.75, on the
basis of thel'; wL expressions given in Lemm#a2. To do this, it is convenient

to consider the SMI and SUB cases separately. With reference to the WL-
SMi receiver, sinc&;w. = P wL jolqj, by using the properties of the trace
operator, after some algebraic manipulations, one obtains:

tracdP;w. Py ) 2N —1
tracgTF\y Rq q, Tjwe Rq,q,) = ”K IR = S, (476)

which can be substituted id (75, thus leading to

SINR; wiL-moE

A
SINR; wi-smi = SINR(f; wi-smi) = - :
J J 1+ 20=L SINR; wi-moE

4.77)

As regards the WL-SUB receiver, sincEjw. = PjwL jolqj -

YiwL Uy, UX, by using again the properties of the trace operator and observ-
ing thath h; = 0,x_ 7, after some algebra, one has:

trvaFfWL Rq]' q; I‘]”WL quqj)
= 2N —1— (VjwLop + w0y — [ywe o) (2N = J)
=(J -1+ 2N =)l —vyjw o2 (4.78)

After substituting 4.78 into (4.79, one gets:
A
SINR; wi-sus = SINR(f; wL-sus)

_ SINR; wiL-moE
1 4+ U=D+C N*}? Lemenil SINR; wL-moE

(4.79)

The expression4( 79 for the WL-SUB receiver can be further simplified by
observing that, for2 — 0, one hasy;w. 2 — 1, hence the trace in(79
reduces taJ — 1. By accounting for this observation, for moderate-to-high
values of the SNR, eg4(79 can be approximatively written as

SINR; wL-moE
1+ 221 SINR; wi-moEe

SINRj,WL—SUB = (4.80)
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It is worth noting that, despite of the apparent similarity betwéerg—(4.80

and the SINR formulas reported iri4, egs. (14) and (25)], our results are
not directly comparable with those of4]. Indeed, the results of/}] re-

port the SINR performances of the LMS-based adaptive implementation of the
WL-MMSE and WL-MOE receivers only foiX — +oo (steady-state per-
formances); in this latter case the performance penalty paid by the WL-MUD
receivers with respect to their ideal counterparts is exclusively due to gradient-
noise effects.

L-MOE performance analysis

The finite-sample performance analysis of the L-MOE receivers is now in or-
der. Similarly to the WL-MOE receiver, under conditifrl), the L-MOE one
(4.16 can be equivalently represented in subspace-based form by exploiting
the eigenvalue decomposition (EVD) Bf.. (4.37). To this end, it is required

that the matrix® is full-column rank (an issue that has been discussed in sub-
sectiond.4.1for downlink scenario), which necessarily requires that

J < N. (4.81)

By substituting the EVD oR,, in (4.16 and exploiting the orthogonality
between signal and noise subspaces, one obtairsutispace-based forof
the L-MOE receiver as follows

AN _ _ _
wiLsug = (¢ V. X' VEg ) ' v, ' vie, . (4.82)

As in the WL case, implementation of the L-MOE receiver defineddbydj or
(4.82 requires estimation from the received dat®gf in (4.16 or its EVD in
(4.82. Under mild conditions, a consistent estimﬁ{e, of R, is the sample
ACM obtained as

ﬁ—lK k) rH (k 4.83
rr—K;r()r () (4.83)

where K denotes the estimation sample size. Applying the EVIRig, one
obtains the decomposition
~ ~ &~ ~H ~ ~ ~H
R, = VY, V, +V, Y,V

n o

(4.84)

15As we have noted in the WL case, this assumpti&®1) is not required for the L-SMI
receiver and it is necessary only for the L-SUB one. However, since the L-MOE receiver is
not able to ensure perfect MAI suppression, for each user, iihenrank-deficient (see sub-
section4.4.]) , we maintain the assumption rgik) = J for both the two data-estimated L
receivers.
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where the matrice¥, € CVx/, V,, € CN*N=9) ¥, € R/ andY, €
RV*N are estimates of the matrices h17) V, V., T, andY,, = 021y,
respectively. By substituting imt(16) and @#.82), the sample ACM4.83 and
its EVD (4.84) respectively, the L-SMI and L-SUB receivers are given by

A PO |

wiLsmi = (6] Ry, ¢,) 7' Ry, @ (4.85)
A & ol H 1 ao-1-~H

W, L-SUB = (¢]HV5 Y, V,¢,) 'V, X, V, ¢;, (4.86)

As for WI receivers, while 4.16) (4.82 are perfectly equivalent, their esti-
mated counterpartgl (85 and ¢@.86) are different.

In order to carry out the performance analysis of the L-SMI and L-SUB
receivers, it should be stressed that, since the relevant SINR is the one after
the Ré-] part, one cannot simply apply results available in the literature (e.g.,
[7€]), since they refer to the SINR evaluated before the|Rart.

From a unified perspective, let us denote wikh any data-estimated L-
MOE receiver, i.eﬁ\vj = Wj |-sml Or ﬁ’j = W, | -SUB» and Seth = W, |-MOE
for simplicity. Adopting a perturbation approach, the vecsor can be ex-
pressed as

6\Vj =Wj + 5Wj y (487)

wheredw ; is asmall(in the Frobenius norm sense) zero-mean additive pertur-
bation. Since any data-estimated version of the L-MOE receiver must satisfy
the constrainﬁszcbj =1, it results thatiwfqu = 0. Thus, using the identity
Re[z] = 1{|z|?+Rez?%]}, Vz € C, the SINR ¢.24) for data-estimated linear
receivers becomes

2
B, p,{ []'D; (K)[2} + Ea, p, {RE(®] D, (k)2]}

Similarly to the WL case, we assume thaj is independent fronp,(£). In
this case, by substitutingt87) into (4.89, performing the average w.r.t to
p,(k), and recalling that, due to assumptidag) and(a2), the vectorp, ()

iS zero-mean, one has

SINR(W;) = . (4.88)

1
SINR(w;) ™! = 3 { HRyp b, W + Esw, [6W/ Ry . w;]

+REWI Ry, 1+ W] + Re{Esy, [0W! Ry, oo aw;]}} . (4.89)

The characterization of the perturbation tedw; is given by the following
Lemma.
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Lemma 4.3 Assume thafP is full-column rank and Ieﬁrr be estimated by
(4.83. Thefirst-orderperturbation term of the L-SMI and L-SUB receivers
can be expressed as

(SWJ' = —I‘j7|_ /fpjbj 5 (490)

- A . .
wherery, ;= Ly, p;(k) bj(k) is the sample cross-correlation between
the interference and the desired signal, and

P, R, L-SMI
Ty =4 " PP - ( ) (4.91)
PiLRy L, —7LVa Ve, (L-SUB)
. A _ _ _
Wlth Pj»'— = IN - (¢‘7LIRpglpj ¢]) 1Rpj1pj (bj ¢§—I =
_ _ _ AN _
In - (¢/R'¢) 'R, p; 0 and S

(R ,) 1@V, Q' VER, ¢, whereQ £ Y, — 021, € R/,

Proof. The proof is omitted since it is similar to that of Lem#a.

By virtue of Lemma4.3, we are now able to evaluate the averageg iag).
Specifically, dropping the subscriptv; in Esy,[-] for notational simplicity,
we have:

H H ~  ~H
E[dw; Rp,p, ow;| = trace[T'; Rpp, TjL E[rpjbj rpjbj]}

1
= Etrace{I‘fL Rpp, T Rpp,) (4.92)

% i~k ~H
E[‘SWfRPjPJ* owj| = trace[I‘f._Rpjp; L5 ElFp b, Tp 0,1}

1 * *
= - racel'j| Ry p: Tj) Ry, ) - (4.93)

By substituting 4.92 and @.93 into (4.89, and recalling the equa-

tion (4.50, that here we report for simplicity SINR-MOE_I =

(Wi'Rp p, Wj + REW' Ry, o= w3])/2, we get:

~ N _ 1
SINR(w;)~ ! = SlNRj,E-MOE . {1 tox [trace{I‘fL Rpp, It Rpp,)

+ ReftraceTZ| Ry, o T R;jp;)]} SINRLL_MOE} . (4.94)
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Along the same lines of the WL case, it can be shown that

N-1, (L-SMI)
trvaFfL Rp.p, I'jL Rpjpj) = J_1 219
L (N )1 ol? (LSUB)
(4.95)

On the other hand, evaluation of the term t@tg Rpp: Ij1 R;*)jp;) is
more complicated and, for its calculation, it is convenient to consider the
SMI and SUB cases separately. With reference to the L-SMI receiver, since
—1 . .
LL=Pj_ Rpjpj, after simple algebra, one obtains
H * * _ -1 H * * —1p*
trace T’ Rp pr IjL Rpjp;) = trace{Rpjpj PjL Rp p: Pj, (Rpjpj) Rpjp;]

-1 -1
= trace{Pj,L Rpjpj RPjP; (PJ'J- Rpjpj Rpjpj)*}

=tracd P;| R, Rers (P Ry R )], (4.96)

where we used the identitesP; R,, = R, P} and
VR VA ’
P; R;,jlpj Rpp: = PjL R, R.+. To obtain a more manageable ex-
pression of trao(eI‘fL Rp,p: 1T R;‘)jp*), we consider its asymptotic value
b b J
aso? — 0, i.e., in the high-SNR regime. By accounting for the expression
of P; given by Lemmat.3, recalling that, under assumptio(el) and(a2),
R.. = ® & + 521y (see equatiod.29, andR,- = ® ', and resorting
to the limit formula for the Moore-Penrose inverse], one has
lim P, Ry, Ryps

2
o5—0

= lim
02—0

. (@ @Y +02Iy) '@ 1, p)
N —
¢ (@7 + 020) 1P 1
H H
(‘I’ )le ¢j

(@ ®7 +o21y) '@ @T}

(@")ie” = [Ly - (@7)'1;1] 2" (@7)e”

M gH @),
= (®")'s; & (4.97)
j—1

wherel; 2 [0,...,0,1,0,...,0]” € R*L andS; 2 1, — 1;17 € R/,
Accounting for ¢.97), the asymptotic value of}(96) is given by

lim tracgT'}} Ry, p: T Ry, -) = trace|S; o7 (@7 Sj]

2
o5—0

= trace[<I>T(<I>T)T S]} =J—1. (4.98)
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As regards the L-SUB receiver, sinfg| = P R;,jlpj — %L Vn Vf, re-

calling thatRy, - = ®; EjT, and observing tha¥ [ @; = O(x_ ) (-1, it
follows that

tracTj| Ry pr T Ry, pe)
— -1 H 7 71 px * 1=+ =H
= trace{Rpjpj P ®;®; P}, (Rpjpj) D, D) |
_ —1 H * * —1p*

which turns out to be exactly equal t6.96).
By substituting 4.95 and @.99 into (4.94), one gets:

SINR; L -moE

VAN
SINR; | -smi = SINR(W, L.sm1) = , 4.100
\j,L-SMI ( 7,k M|) 1 T N_Z;'_i(_Q SINRij_MOE ( )
A S|NR'|_.|\/|OE
S|NR',|__SUB = S|NR(W ‘,L—SUB) = S : .
J J 1+ Q(J_1)+(N2—I;])|1—797L‘7%| SINRj,L—MOE
(4.101)

The expression(107), as in the WL case, can be further simplified by observ-
ing that, foro2 — 0 one hasy; .02 — 1, hence the trace in(95 reduces to

J — 1. By accounting for this observation, for moderate-to-hight values of the
SNR, @.10]) can be approximatively written as

SINR; | -moE

A
SlNR'7|__SUB = SINR(w j,L-SUB) = :
J (WiL-sus) = 3 + 2= SINR; L-moE

(4.102)

Equations 4.77), (4.80, (4.100 and @.102 allow one to easily compare
the finite-sample performances of WL-MOE and L-MOE receivers. By com-
paring ¢.80 and ¢@.102 for the subspace receivers, since SINRmoe >
S|NRj’|__|\/|oE by (4.5]), it turns out that SINBWL-SUB > SINRj,L-SUB for any
value of K and forJ < N. A similar conclusion does not hold for the SMI
receivers. Indeed, it can be easily proven that, foxx N it results that
SINRj,WL-SMI > S'NRjJ_.SN“ onIy for K > Knin, where

A 3N —-J
Kmin = o SINR T —SINR L
( \j,L-MOE . WL-MOE)

>0 (4.103)

is a threshold sample-size. In other words, it can be inferred that, in under-
loaded scenarios, the WL-SMI receiver assures the expected performance ad-
vantage over the L-SMI one only if a sufficient number of samples are pro-
cessed. This loss of performance is due to the increase of the dimension of the
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autocorrelation matrix to be estimated frawto 2 NV, which entails a dimin-

ished estimation accuracy, requiring hence a larger number of data samples for

achieving a satisfactory performance, without resorting to subspace concepts.
Another interesting conclusion that can be drawn frehv{) through

(4.102 is that all finite-sample receivers exhibit a SINR saturation effect, i.e.,

a bit-error-rate (BER) floor, for vanishingly small noise. Indeed, wihgn- 0

andH is full-column rank (/ < 2 N), it has been shown in Subsectiér.1

that SINR wL-moe grows without bound. Thus, accounting fet. 77 and

(4.80), we get:

K
lim SINR; wi- = — lim SINR; wi- = —
012}210 JWLSMI = 57 012)190 i WLSUB = 77 (4.104)

which show that, in the high-SNR regime, the performance of the WL-SMI
receiver does not depend on the number of udenwhereas the asymptotic
value of SINR wL-sug is independent of the processing gaéin As regards
the linear receivers, itrﬁ — 0 and ® is full-column rank (¢ < N), then
SINR; L.moe — +00 (see Subsectior.4.1), which, accounting for4.100

and @.102, implies that

Ulgiqo SINR; L.smi = NEJK—Q , UlgiToSINRj""SUB = % . (4.105)
It can be seen that, while the WL-SUB and L-SUB receivers exhibit the same
asymptotic SINR (forJ < N), the L-SMI receiver forJ < N exhibits a
better saturation SINR compared with the WL-SMI receiver, for any value of
the sample sizé<. In conclusion, we can state that the advantages of WL
receivers could be lost by employing simple estimation methods such as the
SMI, whereas it is mandatory to resort to more sophisticated subspace-based
methods based on EVD. It is worthwhile to note that in this latter case WL
processing incurs an increased computational complexity compared with linear
one, due to the increased dimension of the augmented correlation matrix, with
respect to the conventional data autocorrelation matrix.

4.5.2 Numerical results

Herein, we present the results of Monte Carlo computer simulations and com-
pare them with the analytical results derived in subsectiénl [see @.77),
(4.80, (4.100 and @.102]. Specifically, in all the experiments, the same
simulation setting considered in Example 1 is adopted (downlink scenario and
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Figure 4.3: Average SINR versus SNRJ/(= 10 users and< = 500
symbols).

N = 16), with 91 = 92 = ... = 9]\[ = Oand@N+1 = 9N+2 = - =

0oy = m/4 (we recall that this precoding strategy assures the full-column
rank property of the augmented matiik in overloaded scenarios). In addi-
tion, the symbol vectob(k) and the additive noise vecteir( k) are generated
according to assumptiorfal) and(a2). For the sake of comparison, we con-
sider both SMI- and SUB-based data-estimated versions of the L-MOE and
WL-MOE receivers (wherein the channel impulse response is assumed to be
exactly known), as well as their exact counterparts (wherein, besides the chan-
nel impulse response, perfect knowledge of the autocorrelation maRiges
andR, is assumed). Finally, as performance measure, in addition to the SINR
given by ¢.24) and averaged ovei0* Monte Carlo runs, we resort to the av-
erage BER at the output of the considered receivers. More specifically, after
estimating the receiver weight vectors on the basis of the given data r&Gord

for each run (wherein, besides the channel impulse response, independent sets
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Figure 4.4: Average BER versus SNR/(= 10 users and< = 500 symbols).

of noise and data sequences are randomly generated), an independent record
of Kper = 103 symbols is considered to evaluate the BER.

Experiment 4.1 :

In this experiment, we evaluate both the (average) SINR and BER per-
formances of the considered receivers as a function of the SNR. The number
of users is set equal td = 10 (underloaded system) and the sample size is
kept fixed toK = 500 symbols. Let us first consider the SINR performances,
which are reported in Figt.3. It can be seen that the analytical expressions
(4.77), (4.80, (4.100 and @.102 for the data-estimated linear and WL re-
ceivers agree very well with their corresponding simulation results, for all
values of the SNR. In particular, in this underloaded scenario, while the L-
SUB and WL-SUB receivers perform comparably, the WL-SMI receiver pays
a significant performance loss with respect to the L-SMI one. Indeed, in the
high-SNR region, the difference between the saturation values of SINGR
and SINR w_-smi is about4 dB, which is in good agreement with.(L04
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Figure 4.5: Average SINR versus number of usefs £ 500 symbols
and SNR= 15 dB).

and @.109. The unsatisfactory performance of the WL-SMI receiver is also
apparent from Fig4.4, which depicts the BER curves of the data-estimated
receivers under comparison. It is evident that the curves of the WL-SUB, L-
SUB and L-SMI receivers go down very quickly as the SNR increases, thus
assuring a huge performance gain with respect to the WL-SMI receiver, which
instead exhibits a marked BER floor

Experiment 4.2 :

Fig. 4.5reports the SINR as a function of the number of userghe SNR
is set equal td5 dB and K = 500 symbols are considered.

Besides confirming the very good agreement between analytical and ex-
perimental results for all the data-estimated receivers, results oft Fighow
that the performances of all the linear receivers worsen very quickly when the
system tends to be overloaded, i.eapproachesV = 16. Beyond this value,
the WL receivers assure a significant performance gain with respect to their
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Figure 4.6: Average SINR versus sample size(J = 14 users and
SNR= 15 dB).

corresponding linear counterparts. Loosely speaking, this indicates the ability
of the WL-MOE receiver to accommodate twice the number of users of the
L-MOE receiver

Experiment 4.3 : In this last experiment, we report the SINR performances
of the considered data-estimated receivers as a function of the sampl€.size
The SNR is set equal tt5 dB andJ = 14 users (underloaded system) are
considered. It can be observed from Fgsthat the accuracy of the formulas
(4.77), (4.80, (4.100 and @.102 improves ask increases. Additionally, it

is worth observing that the WL-SUB receiver outperforms the L-SUB one, for
all the considered values df. In contrast, the WL-SMI receiver performs
worse than its corresponding linear counterpart, by approaching the curve of
the L-SMI receiver only when the sample si&eis as large a3500 symbols,
which agrees very well with the valug,,,;, = 1686 predicted by 4.103.
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4.5.3 Performance analysis of WL-MOE and L-MOE receivers
with channel estimation

In this subsection, the first-order perturbation analysis carried out in subsection
4.5.1is extended to incorporate the effects of errors due to subspace-based
blind CE on the synthesis of the L- and WL-MOE receivers. As we have noted
in the sectiond.5, when and the autocorrelation matrix and the channel are
estimated from data, as performance measure we consider the SINR defined in
(4.23 because itis quite general. In the previous subsections, instead, we have
consider the SINR defined i 24) because, it can be shown that the SINR
(4.23 reduces to the SINR4(24) and in the ideal case (ACM and channel
perfectly known) and when only the ACM is estimated from a finite sample-
size, under the assumption that the channel is exactly known.

Performance analysis of WL-MOE with channel estimation

Let us start with WL-MOE receiver. Preliminarily, in the subsectioB.2we

have described the subspace-based channel estimation. In particular, with ref-
erence to WL-MOE receiver, we have shown that the unknown vegtean

be obtained as solution of the linear systehi{), provided that this system
uniguely characterizes the channel coefficients for each users. To this end it is
required that the conditio(c3) is satisfied (see subsectidr.2for details).

This condition, from the point of view of thg¢th user, necessarily imposes
that the maximum number of users supported by the system is smaller than the
maximum number (see eqt.61)) 2 NV of users of the known-channel case

Imaxwr =2 (N — L;j) <2N. (4.106)

Moreover, in the subsectioch3.2 we have shown that whéR,,, is estimated
from a finite sample size, a channel estimate can be obtained4a4 @) that
we report here for completeness:

~ .o H
5, = argmin [T ¢; T; x|
xeR?Ej

~ ~H :
= argmin (XH Tf Cf U,U, C; T, x) ,subject to|x||> =1,
xeR?Es
(4.107)
whose solution §6] is given by the eigenvector associated with the small-
. I A A A
est eigenvalue of the matnS[‘f Q;w T; € C2Lx2Li with Q;w. =
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~ ~H . . .
c/'U, U, ¢; e C*1i*2Li, By substituting 4.107) in (4.46 the resulting
estimate of the received signature is

~

h;=&;C;T; 8, (4.108)

To obtain the WL-SMI and WL-SUB receivers with channel estimation, it is
necessary to substitute in.65 and @.66), (4.109:

AN ~H ~—1~ 1+ ~—1=-~
f; wL-smi-ce = (hj R,, h)) 1 R,, h;, (4.109)
A ~H~ ~-1~H~ 1~ ~—1~H=c~
fiwesusce= (h; UsA, U, h))"'U,A, U, h;. (4.110)

A remark is in order about knowledge of the real scalarand of the sign
inversion inherent to channel estimatg which are needed to correctly write

the estimated signatunfey. These parameters cannot be estimated by means
of blind technigues based on second-order statistics; in practice, they can be
recovered resorting to automatic gain control and differential modulation or,
more robustly, by using a few training symbols. It should be noted, however,
that their possible inaccurate knowledge merely introdueakmultiplicative

factor in the expressions of WL-SMI-CE and WL-SUB-CE receivers, which
does not affect SINR calculation based dr?@. Therefore, to simplify mat-

ters, we assume in the sequel that they are are known exactly.

As in the subsectiod.5.1, we adopt a first-order perturbative approach
[76, 77] to model all estimation errors. In the following, in order to carry out
the analysis in an unified framework, we denote v@;hany data-estimated
WL-MOE receiver, i.efj = f; wL-smi-cE or?j = f; wL-sus-ce: and seff; =
f; wL-moe, wheref ; wi-mok is the ideal WL-MOE receiver given byt (27) or
(4.62. When?j is employed, accounting fo#(22), it can be shown thati(23
can be expanded as

_ E*{Rdf, h;]}
SINR(f;) = — — )
E{RE[f; q;(k)]} + Var{Re[f; h;]}

(4.111)

Since?j, h; andq; (k) exhibit the CS property, the real parts 111 can be
omitted, thus yielding

~H
Ez[fj h;]

SINR(f;) = — ——.
E{If; a;(k)[*} + Var[f; h;]

(4.112)
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Following the perturbative approach, the vectﬁjsand ﬁj are expressed as
f; = f; + 6f; andh; = h; + dh;, respectively, wheréf; anddh; aresmall
(i.e.,]|of || < 1and||éh;|| < 1) andzero-mearCS perturbation terms. Thus,

we have?fhj = f'h; + 6f'h; = 1+ 6f'h;, since, from .28, fi'h; = 1.
~H
The term Vajf; h;] in (4.112 is equal to
~H ~H ~H
Varlf; h;] = Ess,[(f; h;)?] — Eg [ hyl. (4.113)

Moreover, denoting with k [-] the average with respect to (w.r.t.yf;,
since &f; is zero-mean andf}'h; is a real-valued scalar, it turns out that

Est, [?fhj] — 1 (see subsectiof.5.1) and that
Ese, () 0y)?) = Eor, [1 + 25¢1Th + (6¢2'h)?
=1+ Esy, [|6f1'h)|*] = 1 4 Es¢, [6f'hhl 6F;]  (4.114)
Therefore, 4.113 can be simplify
Var(f; hy] = Ese, [6£/h;h! 6t ). (4.115)
By substituting it in ¢.112 leads to:

% 1
SINR(E;) = —— _ _—
Ep, o [F5 a;(F)af! ()E;] + Esr, [6F] b o1 ]

., (4.116)

where @_q_[-} denotes joint average w.r.tfj and q;(k). Under the sim-
JHg
plifying and reasonable assumption] that f; is independent ofy; (k),
~H -~ ~H ~ ~H ~
Eyq [T; a;(k)afl (W)E;] = Ep {T) Eq la;(h)a (k)]E;} = By [f; Rayq, )]
which, accounting fof ; = f; + 6f; and Béf;] = 0 leads to

~H -~ ~H ~
Equj [fj qg‘(k)Qf(k)fj] = Epj [fj ququj] = fqujquj+E5fj [5ff1quqj5fj]'
(4.117)
By substituting ¢.117 into (4.119, one has

1
1 Rq,q,j + Est, [6f] Ra,q,0f;] + Ese, [6f1 h;h} 6f;]
(4.118)

SINR(f;) =
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Since B, [6f} Rq,q,8f;] + Esr, [0 h;h{ 6f;] = Es¢,[6fF R,,6f,], noting
also that, according tal(49), f]Hququj = (SINR; wL-mog) ! We obtain the
compact expression

SINR; wL-MoE
1+ SINRJ’,WL_MOE ng]. [5f§[ R,. (5f]] ’

SINR(f;) = (4.119)

where only the average w.r.6f; is left to be evaluated. To proceed further,
explicit expressions for the perturbatiéfi; are needed for both the WL-SMI-
CE and WL-SUB-CE receivers.

Lemma 4.4 Let~ denotdirst-order equalitythe first-order perturbation term
of the WL-SMI-CE and WL-SUB-CE receivers can be expressed as

3t ~ —TjwLTq, + Ajwioh; = 6F1) + o (4.120)
—_—
5t &£\

wheret p, 2 £S5 a (k) bi(k) € C? is the sample estimate of the

cross-correlation between the disturbance veefgit) and the desired symbol
b;(k), whereas

Piw Rgy WL-SMI-CE
T = {7 "9 - ( ) (4.121)
Pijw Rg 'y —viwe U, Uy, (WL-SUB-CE)
Hp-1 —1p-1 H
Ay 2 105 R B) TR, — 26, £, (WL-SMI-CE) 1)
) (W Rh))"UATUE —2f; £7 (WL-SUB-CE)

. A _ _ _
with Pjw = Loy — (hf Rgly hy) ' Rgly hjhf = Ly — f;h] €

C2Nx2N denoting an oblique projection matrix’f] and ~; w. 2 o2 +
(b R h))"'hf U, Qy UYR,'h; > 0, while the diagonal matrix
QwL = diag(A1, Ao, ..., \s) € R7*/ collects the nonzero eigenvalues of
HH".

Proof. See AppendiB.5.
It should be noted that the quantiti®§ w., v;w. andQw, are already
defined in Lemma4.2, nevertheless they are here report for completeness.
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Moreover we emphasize thélf;-l) and5f§2) represent the perturbations due to

estimation ofR,, andh;, respectively; indeed, a comparison shows that the
expression oﬁfgl) is the same as that reported in Lem#ina In order to char-

acterize the perturbation ter&ff), it is necessary to evaluate the perturbation
oh; associated to the subspace-based CE procedure givenlioy)(

Lemma 4.5 Given the estimatﬁj = a; C; T; p; of the signaturéh;, where
the channel estimafg; is the solution of(4.107), the perturbatiorsh; can be
expressed as

5hj ~ Hj,WLi'\quj s (4.123)

whereILw. 2 (b U, @t U¥ hy)¢; @1, €2 U, U € C2V2N with

Qw. and Tq 5, defined in Lemmat.4, and Q;wi = cilu,ullc; €

(CQL]' ><2Lj .

Proof: See AppendiB.6.

Accounting for ¢.123 and Lemma4.4, the overall perturbation of the
WL-SMI-CE and WL-SUB-CE weight vectors can be expressed kasear
function of?quj, as summarized by the following Lemma:

Lemma 4.6 The first-order overall perturbation terrif; = 6f§1) + 6f§2)
of the WL-SMI-CE and WL-SUB-CE receivers can be expressed in a unified
manner as

5fj ~ Ej,WL?quj s (4.124)

A .
Wherezj,WL = _Fj,WL + Aj,WLHj,WL S (CZNXQN, with Fj,WL S CQNX2N,
Ajw € C*N*2N andty ;,; given by Lemma.4, whereadL;w € C*V*2V
has been defined in Lemm&b.

It should be observed that Lemmdat provides a compact characterization
of the overall perturbatiodf;, which is obtained under the simplifying as-
sumption [/5] that the error in estimatin® ., is mainly due to the terrﬁquj.
Equipped with such a nice result, we are now in the position to evaluate the
average by, [6ffRzz of ;] at the denominator o#(119. Dropping the sub-
script 6f; in Es¢.[-] for notational simplicity, by accounting fo# (124 and
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using the trace identity, we have
E[6f7R,, 6f;] = E[?({i_ b; Ziwi Rz 3 wi Tq ;]
— trace{ 3w Raz S EfFq s, ?ffj bj]}
1
- ?trace{EfWL Ruu 3w quqj} , (4.125)

~ oH 1 _ 1
where, moreover, we have used the equakity ) E[rq s, Tq 1,] = % Ra;q;-

Therefore, by substitutingt(129 in (4.119, we get

SINRE) - SINR; wi-moE : (4.126)
14 trace{E] WL Rzlz(E] WL quq]) S|NR] WL-MOE

The final result is obtained by evaluating the trace terrdinZ6, on the basis
of the different expressions fof; w. given by Lemmast.4-4.6. In order to
do this, it is convenient to consider the SMI and SUB cases separately. With
reference to the WL-SMI-CE receiver, it is shown in Appendix that
trace S\ Rz Zjwe Rayq,) = 2N —1) = 2w (2L, — 1)
+ Cj wL o2 traceR,,, C; Qj WLC ), (4.127)

where¢;w. 2 (h' R, h;)~'hi U, Q1 U h; > 0. Instead, as regards
the WL-SUB-CE receiver, it is shown in Appendi7 that

trace S\ Rz BjwL Rayq,) = (J — 1)+ 2N = J)|1 —yjw o0
—Cwi(2L; — 1) + G os tracdR,,' C; Q] w CI) . (4.128)
The trace expressiond.((27) and @.129 are still too complicated to allow for
a simple discussion, but they can be considerably simplified in the high-SNR
region, i.e., by studying their behavior a§ — 0. Let us first examine the
trace term, which is present in both.{27 and ¢.129. One has
ol tracdR,;} C; Q' CI) = ol tracd (U AU + 0,20, UN)
c; @l ¢l = oltracqU. AU ¢; 01\, )
+tracq U, UY ¢; @, cih). (4.129)
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Therefore, forag — 0, observing thaiAg1 — Q\j\,}_ and using also the trace
properties, one has

lim o7 tracdR,,' C; Q! ¢f) =tracqQ!,, ¢/ U, Ul ¢c;)=2L;-1,
———

02—0

QjwL

(4.130)

where we refer to AppendixB.7 for a formal proof of the result
trace(Q}yWL Q;wL) = 2L; — 1. In addition, ass? — 0, it can be easily
checked thaty;w. o2 — 1 and(;w. — 1. Consequently, accounting for
(4.126—(4.128 and @.130, the SINR behavior in the high-SNR region of the
WL-SMI-CE and WL-SUB-CE receivers is (approximately) governed by

SINR; wL-smi-ce = SINR(E; wiswi.ce) = = iI_NLI?’WL'MOE :
1+ =% SINR; wL-moE
(4.131)
SINR; wL-moE
1+ £=L SINR; wi-moe’
(4.132)

A
SINR; wi-sus-ce = SINR(f; wiL-sus-ce) =

which are directly comparable ta@l.(7) and @.80. Our simulation results
show that4.131) and @.132 accurately predict the SINR performances of the
WL-SMI-CE and WL-SUB-CE receivers not only in the high-SNR regime,
but also for moderate values of the SNR, wherein many systems of practical
interest are envisioned to operate. A first exam of the obtained expression
shows that, forK' — 400, both receivers attain the maximum SINR equal
to SINR; wL-moe. A more interesting comparison is betweénl@1)—(4.139

and the corresponding one$.77)—(4.80 derived in subsectiod.5.1in the
known-channel case.

For the WL-SUB receiver, such a comparison shows that the SINR when
the channel is estimated is the same as that obtained when the channel is
known, namely, for moderate-to-high values of the SNR, the WL-SUB-CE re-
ceiver (approximately) pays about no penalty w.r.t. its counterpart employing
the exact channel. Such a result indirectly shows the reliability of the consid-
ered subspace-based CE procedure, which simultaneously exploits the channel
information contained in botR ., andR...~ by jointly processing the received
vectorr (k) and its conjugate versiarft (k).

Surprisingly enough, the SINR of the WL-SMI-CE turns out to be even
better than that of the corresponding WL-SMI receiver with known channel:
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as a matter of fact, this phenomenon is well-known in the array processing lit-
erature (see e.g.7§, 79, 80]), where it is sometimes referred to signature
mismatch and its effects vanish only wheli — +o00. Indeed, the noise-
subspace estimated from the sample AR, is not orthogonal to the true
signatureh;, i.e., ﬁn h; # 0yn_7; therefore, in the high-SNR regime, the
noise subspace eigenvalues are significantly smaller than the signal subspace
eigenvalues and, consequently, when the WL-SMI receie&dd) is imple-
mented, the component &f; in the estimated noise subspace is greatly am-

plified when evaluatingﬁ;z1 h;, thus introducing measurement noise at the
output of the receiver, at the expense of the desired signal component. Instead,
the signature mismatch effects are alleviated in the WL-SUB receivéf)(

(and, similarly, in its estimated version) and the WL-SMI-CE receixet{9,

since, in the former case, the known signathreis preliminarily projected

on the signal subspace of the sample ACM, whereas, in the latter one, the
estimated signaturk; is orthogonal to the estimated noise subspace by con-
struction. A clear geometric interpretation of this phenomenon is reported in
[79, Fig. 17]. As a by-product, eqst.(77), (4.80), (4.137) and @.132 provide

the SINR assessment of the signature mismatch problem, thereby showing the
simplicity and insightfulness of our SINR formulas. For a finite sample-size
K, indeed, accounting ford(77) and @.131), the SINR degradation due to
signature mismatch in the high-SNR region is given by

1 SINRwisw _ 2(N — L))
02—0 SINRj,WL—SMI—CE 2N -1

which increases with the channel length. Another interesting conclusion that
can be drawn from4.131) and @.132 is that, not differently from the case
where the channel is known (see subseciidnl), the data-estimated receivers
exhibit a SINR saturation effect, for vanishingly small noise. Indeed, when
02 — 0 andH is full-column rank (/ < 2 N), it has been shown in subsection
4.4.1that SINR wL-moe grows without bound. Thus, fof < 2(V — Lj) <

2N (this inequality is due to4.10§) , accounting for4.131) and @.132), we

get

<1, (4.133)

K
lim SINR; wiL-sMI.cCE = ———— 4.134
ngr_l)lo WL-SMI-CE = 5 L) ( )
lim SINR; _ K (4.135)
ango jWL-SUB-CE = 7 » :

which show that, in the high-SNR regime, the performance of the WL-SMI-
CE receiver does not depend on the number of ugelsit it depends on the
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processing gaitV as well as on the channel length of userj, whereas the
performance of the WL-SUB-CE receiver is independent of both the process-
ing gainNand the channel length;, while depending on the number of users
J.

Performance analysis of L-MOE with channel estimation

As done in subsectiod.5.1in the case of known channel, it is interesting

to compare the SINR performances of the data-estimated WL-MOE receivers
with CE based on4.107) against the data-estimated L-MOE receivers with
CE based on4.41]).

Preliminarily, it is worthwhile to note that, although a similar perturba-
tive performance analysis was addressediH] 76] for the blind L-MMSE
(minimum mean-square error) receiver, the analysis carried out in this sub-
section for the L-MOE receiver with blind CE allows a more direct and fruit-
ful comparison with the WL-MOE one and, moreover, leads to more easily
interpretable results (although slightly less accurate) than those obtained in
[81]-[7€]. Moreover, we observe that the problem considered in this subsec-
tion exhibits interesting analogies with a well-studied topic in array process-
ing, since the L-MOE-based multiuser detector is mathematically equivalent
to the linear minimum variance (L-MV) beamformerd], where in the latter
the role of the received signature is played by the array steering vector (SV).
Finite-sample performance analysis of the L-MV beamformer was carried out
in [78, 75, 82] for the SMI version, and inf(] for the subspace-based imple-
mentation (so called projection method). Specifically,if] jonly the effects
of ACM estimation were considered, whereas i3, [8(] the effects of ACM
estimation and SV perturbation weseparatelystudied, and a complete anal-
ysis of thejoint effects of ACM estimation and SV perturbation was carried
out only in [32]. However, the latter analysis does not explicitly account for
the situation wherein the SV is blindly estimated from the received data and,
consequently, the SV perturbation depends in its turn on the accuracy in ACM
estimation, which is exactly the case of the subspace-based CE algorithms
considered herein.

It is now in order, to turn to the L-MOE receiver with CE. We have shown
that the unknown vectag, can be obtained as solution of the linear system
(4.40), provided that this system uniquely characterizes the channel coeffi-
cients for each users. To this end it is required that the conditidhis satis-
fied (see subsectioh3.2for details). This condition, from the point of view of
thejth user, necessarily imposes that the maximum number of users supported
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by the system is smaller than the maximum number (seede@)] N of users
of the known-channel case

Jmaxz, = (N — L;) < N. (4.136)

Observe that the maximum number of allowable users for the linear case is
exactly one-half of the corresponding number for the WL case. In practice,
whenJ < N — L; both blind L and WL receivers can be utilized, whereas for

N —L; < J < 2(N—Lj) only the blind WL receivers can work (note that the
above limitations are mainly due to the considered blind channel identification
procedure). Moreover, in the subsectib.2 we have shown that wheR,.,.

is estimated from a finite sample size, a channel estimate can be obtained as in
(4.41), that we report here for completeness:

~ G H
g; = argmin ||V, C; x|
xeCli
~ ~H .
= argmin (XH Cfl V,V, C; x> , subjectto|x|? =1, (4.137)
xeCli
whose solutionj6] is given by the eigenvector associated with the smallest

eigenvalue of the matrix associated with the smallest eigenvalue of the matrix
A

0, £ clV,V, C; € ClxLi. By substituting 4.137 in (4.12 the
resulting estimate of the received signatdiie

¢; = a; C;g; (4.138)

To obtain the L-SMI and L-SUB receivers with channel estimation, it is nec-
essary to substitutel (139 in (4.895 and in @.86):

A ~Hoa-1~ 41~
wiLsmice = (¢; Ry ¢;) 'Ry, ¢, (L-SMI-CE)
(4.139)
A ~H~ o1 ~HA~ 1o el ~HA~
wjLsusce= (¢; VX, V, ¢;) 'V, X, V  ¢,;. (L-SUB-CE)
(4.140)

As for WL receivers, while 4.16) and @.82 are perfectly equivalent, their
finite-sample counterparts given b4.85—(4.86 and @.139—(4.140Q are dif-
ferent. The performance analysis of the L-SMI-CE and L-SUB-CE receivers is

Along the same considerations done in the WL-case 4s&€) we assume that both;
andd; are known exactly (wheré; is the phase ambiguity in the subspace-based channel
estimation (see subsectidr3.2)
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complicated from the fact that, again, the SINRI(L]) must be evaluated but,
differently from the WL ones, linear receivers do not exhibit the CS property,
since the L-MOE receiver can be viewed as a WL receiver with augmented

weight vectorf; | yoe = (Wl moe: Ox]"- Such an analysis is similar in
principle to the one carried out irBf]-[76] (as we have emphasized in the
introduction to the subsection), but the approach adopted here leads to more
easily interpretable results, which are directly comparable with those obtained
in the WL case, at the cost of a minimal loss in accuracy. Also in the L-case,
we adopt a first-order perturbative approach, [/ 7] to model all estimation
errors.

In the following, in order to carry out the analysis in an unified framework,
we denote withw ; anydata-estimated L-MOE receiver, i®, = w; |-smi-cE
or w; = wj-sus-ce and setw; = w; .voe for simplicity. When a linear
data-estimated receivev; is employed [i.e.f;; = w; andf;> = Oy in
(4.22)], eq. @.23 assumes the form

E*{Re[W ;' ¢,]}

SINR(w;) = E{ReQ[vAvfpj(k)]} +Var{Re[VAVf¢j]} .

(4.141)

It is important to observe that, differently from the WL case, the real parts in
(4.147 cannot be omitted, sino@fqu andvAijpj(k) are in general complex-
valued random variables. This fact significantly complicates the analysis with
respect to the WL case. Following the perturbative approach, the vegiors
and$j are expressed ag; = w; + 0w and$j = ¢, + d¢;, respectively,
wheredw; andde; aresmall(i.e., [[dw;| < 1 and|/d¢;|| < 1), zero-mean
perturbation terms. Letd, [-] be the average w.r.dw;. The variance term

in (4.147) is equal, for definition, to

Var{ReWw] ¢;]} = Esw,[RE{W] ¢,}] — E,, [Re{w] ¢;}].  (4.142)

Using the equality Rez) = 3[[z|*> + Rez?)], V2 € C, the term
Esw; [Re2{vAv]H ¢;}] can be expressed as

2 Esw, [RE{W) ¢;}] = Esw, [IW) ¢;|°] + Esw,[Re{(W} ¢;)%}] (4.143)

with  Esw, (W1 ¢;/%] = 1 + Esw,[0wle; ¢ 6w,] and
Esw,[Re{(W] ¢,)}] = Re{Esw, (W] ¢,)]} = L+
Re{Esw, (6w ¢, ¢ w?]}, sincew!’ ¢; = 1 by (4.19 anddw; is zero-
mean by assumption. Moreoveis £ [Re{w! ¢,}] = Re{Esw, [W ]} = 1
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(see subsectiont.5.1). Consequently, by substituting these relations in
(4.142), it follows that

Var{ReW!' 6,1} = 1 Egw, [0l 6 6w,]+ 5 Re(Esw, [3wl' 6, 67 6w}
(4.144)
Similarly to the WL case, we assume that the weight vestprs independent
from the data vectop;(k). Let By, [-] denote the joint average w.r.;
andp;(k). Using again the identitRe®(z) = 1[|2> + Re(z?)], ¥z € C,
performing the average w.r.t {9;(k), and recalling that, due to assumptions
(al)and(a2), the vectomp; (k) is zero-mean, the termgg ;,. {ReQ[vAijpj(k)]}
in (4.147) can be expressed as

Ew, p, {W]'D;(k)|*} + Eu, p, {RE[(W]p;(K))’]}

Ew, p, {RE[W]'p;(F)]} =

2
_ wprjp]_ w; + Re(wprjp]*, w7)
2
H . H . *
N Esw; {0W; Rp p, 0w;} + Re{Esw; [0W; Rp p: owr]} (4.145)

2

Noticing thatR., = ¢; ¢ + Rp p, andRyr- = ¢; b7 + Ry, p:, recalling
the equation4.50), and substituting4.144 and @.145 in (4.141), we get

. SINR; | -moE
SINR(W)) = SR, (o (1808 er R o) + RT3 Rrre Ry 5]
1+ 5 S
(4.146)

where only the average w.rdw; is left to evaluated. To proceed further, ex-
plicit expressions for the perturbatidiw ; are needed for both the L-SMI-CE
and L-SUB-CE receivers. The following Lemma gives a first-order character-
ization of the perturbation vectdiw ;:

Lemma 4.7 Let ~ denote first-order equality, the first-order perturbation
term of the L-SMI-CE and L-SUB-CE receivers can be expressed as

dwj~ —TjLTpp, + AN 00, + AR 691 = swl!) + owl®  (4.147)

5w§-1) 5w;2)

o A .
where the random vectdy, ,, = K p,(k) bi(k) € CV is the sample
estimate of the cross-correlation between the disturbance vpeté) and the
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desired symbd;(k), whereas

PiLRyL, L-SMI-CE
R " ( ) (4.148)
PjLR; L. — %L VaVy, (L-SUB-CE)
o | (@] Ry &) R PHL, (L-SMI-CE)
AjL= Hp—1 4 \—1 I~ H pH (4.149)
(¢j Rrr ¢]) Vs Ts VS Pj,L s (L-SUB-CE)

2) A . yAN _ _ _
and Ag.’l_) = —wywlwith Py = Iy — (¢ Ry, ¢) ' Ry, o, 01

(>l

Iy — w; ¢i' € CV*N being an obligue projection matrix’f] and ;.
o2+ (PR ¢,) to V. VIR ¢; > 0, while the diagonal ma-

r

trix Qp 2 diag(p, p2, - - ., ) € R7*7 collects the nonzero eigenvalues of
o PH,

Proof: The proof can be conducted along the same lines of Appenéices
with the additional complication that, contraryﬁﬁ anddh;, wJH and¢; do
not exhibit the CS property.

It should be noted that the quantitiPg , ;. and€2_ are already defined
in Lemmad4.3, nevertheless they are here report for completeness. Moreover
we emphasize thaiwg.l) andéwf) represent the perturbations due to estima-
tion of Ry, and¢;, respectively; indeed, a comparison shows that the expres-
terize the perturbation tenihwf), it is necessary to evaluate the perturbation
d¢; associated to the subspace-based CE procedure givenlidy)(

sion ofdw; ’ is the same as that reported in Lem#éka In order to charac-

Lemma 4.8 Given the estimatéj = ¢; +0¢; = a; C; g, of the signature
¢;, where the channel estimagg is the solution of(4.137, the perturbation
d¢; can be expressed as

5¢j ~ Hj,L/I"\pjb (4.150)

j?
where IL; 2 (@ V.Q'VIg¢)C; 0l civ,VE ¢
CV*NUlhj)e; ol e U, Ul e V2N, with @ and T,
defined in Lemm&.7, and Q| 2 Ci'v,VliC;eChtixli



4.5. FINITE-SAMPLE PERFORMANCE 99

Proof: The Proof can be conducted along the same lines of Appéh@ix

Accounting for ¢.150 and Lemmai.7, the overall perturbation of the L-
SMI-CE and L-SUB-CE weight vectors can be expressed similarly to the WL
case, as #inear function of T, = [?gjbj,?gjbj}T, as summarized by the
following Lemma:

Lemma 4.9 The first-order overall perturbation terdw,; = 5w§~1) + 6w§2)
of the L-SMI-CE and L-SUB-CE receivers can be expressed in a unified man-
ner as

6W‘ ~ 2]' L?qu-) (4151)

wheres;, = (=), @], with =) 2 -1, + AT € VY and
522 A% e VYV I e VY andAyy € CNXN are given by
Lemma4.7andII;; € CV*V has been defined in Lemnis.

It should be observed that Lemmia provides a compact characterization of

the overall perturbatiofiw ;, which is obtained under the simplifying assump-

tion [75] that the error in estimatin®R,.. is mainly due to the terrﬁpjbj. In

particular by substituting eq4(157) in (4.146, the SINR assumes the form
SINR(W;) = SINR; L-moe

N SINR; | mOE {tracRer ;| Rqjq sz)+Re[trace(R”* =% JRq;q; zfl_)]} ’

" (4.152)
where, by virtue of assumptioifal) and(a2), we have used (sek5.1for de-

tails) the fact that g5, Tq s, ] = # Ra,q, @nd BFq b, Tq b)) = £ IRE o »

with J = [[ONX]V,IN] s [In, OnxN] ]T The matriqu a has a particu-
lar block structure where the lower-right bIoEk; P, is the conjugate of the
upper-left oneRyp, p and the lower-left bIocIR* p+ 1S the conjugate of the
upper-right oneR,, ,-. Moreover, sinc®p p, = <I>j EJH + oy In, Rp pr =
= FT b * *
‘i’j ‘I)j andVH (I)j = O(N_J)X(J 1), one hasl'Ij,L Rpjp; = Opnxn and
LRy p, = 00 I, and, henceE(z) R} p- = Rppr (2§2L))H = OnxN
and 2( )R* = o, EEL) By exploiting the block structure dR a;9; and
i, |t foIIows that

tracgRyr 3L Rq,q, /1)
= tracd(S\)) Ry S Ry | + 02 tracd(S\)) R ). (4.153)

7
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Using the expressions cA(Q) and IT;, , after simple manipulations, we
get trace(E( VIR, 2] 2 = C2Ltrace{Rr‘r (¢; wi) (C; Q;L Cih)], where

GL = (¢>H R.! ;)" ¢j V. Q LyvH ¢, > 0. Therefore, proceeding sim-
ilarly to the WL case (see Appendi 7) and accounting for4.95), it can be
verified that, with reference to the L-SMI-CE receiver, the first trace term in
(4.152 is given by

tracgRyr BjL Rp,p, T11)

=(N—1)—2GL(L; — 1) + ¢} ol tracdR,,' C; QF | CI) . (4.154)

whereas, for the L-SUB-CE receiver, one obtains

traceRyr 3L Rp,p, 1) = (J — 1) + (N = J)|1 — 55 o0
— (L - 1)+ (2 ol tracdR,, C; Qf CF) . (4.155)
As regards the other trace term h 152, proceeding as done for the first one,
it can be shown that
tracgRur+ % I Ra,q, 1) = tracd(SV )7 Ry (SR}, -]
)

+2 trace{(zj?L)H Rue (SRS L 1. (4.156)

Since, in addition toIl;; Ry, .- = Onxy, the fact thatvVi &; =
’ J
O(n—J)x(7-1) @lso implies tha(E;L)*R* = —I; R} by resorting

to the properties of the trace operator, one has

P;p;’

tracd(S\ ) Ry (S1))* R}, o]
* * 1 * *
= traCE(I‘jJ_ Rppe Iy Ry, o) — traceIT/ AY) R T Ry, o)
_ H * * (1) * H
= tI’aCE(I‘JJ_ Rpjp;f j,L Rpjp;) - traCdA‘y’L Rl‘l‘* . Rpjp;g Hj7|_)
H x
= tracgI';| Rp p: r; Rpjp;-) , (4.157)
where it is verified thal'/| Rev« = T'J1 Ry andRy, . I/} = Onuw.

Moreover, observing thaR,« = ®; <I>;-F is symmetric, substituting in the
second summand oft (156, the expression @?L) (2) . andw; [see ¢.16)],



4.5. FINITE-SAMPLE PERFORMANCE 101

one obtains

Re{tracé(£7)) " Rer- () RS, |, ]} =

P;P;

22
jL

TR,

where we have also observed that, with reference to both L- SMI—CE and L-
SUB-CE receiversIL;i Ry p T Ries = ILji Rp p Ry, P Repe =
H]LP R+ = ILjL Rypx = Onxn, sincel‘IJLPJL = II;, and more-

over, thatll;| Ry, » I = o2 (¢ V., ' VI ¢))2C; 0l CH. The
evaluation of the trace terms at the last hand401!6‘0 and @l 158 are com-
plicated and, to obtain manageable expressions, it is convenient to consider
their asymptotic values a§ — 0. Using the limit formula for the generalized
inverse P4], one gets

Re[p! R,'C; Q| CI'P;| R'Ru (R,!)"9)], (4.158)

Jmn, o] R,,' C; Q| CI'P;jL R, Rurs (R,)" ¢}

=1] ®'c; 9f, cff (@)1 (1,-1;1])1, =0, (4.159)

j—1
with 1; 210,...0,1,0,. 0T € R7¥1, where we have observed that
TP = 1. Slmllarly, it can be verified thalim,> ., (¢} R;,'¢;) 7"
andlim,2_,q ¢;L = 1. Henceforth, noticing that the trace term at the Iast hand
of (4.157 has been evaluated in subsectib.1 (see eq. 4.99), account-

ing for (4.159, it can be shown that, with reference to both L-SMI-CE and
L-SUB-CE receivers, the real part of the trace termdirif9 is given by

hm Re[trac€ R+ X7 J Rq,q; 251 )]

02—0
hmo ReftraceI'f| Ry p+ T Ry pr)]=J 1. (4.160)
Flnally, for a — 0, as in the WL case (see subsectiérs.3, one has
o2 tracdR,,! C; QT CH) — Lj —1,yjL02 — 1land¢. — 1. Thus,
it follows from (4 154 and @. 153 that

lim trac§R,; 3L Rp. ey E L) =

02—0

(4.161)

N—L;, (L-SMI-CE)
J—1. (L-SUB-CE)

By substituting 4.160 and @.16]) into (4.152, we obtain that, in the high-
SNR regime, the output SINR of the L-SMI-CE and L-SUB-CE receivers can
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be approximately written as

A SINR; | .
SINRj7L'SM|-CE = SINR(Wj,L-SMI-CE) = N+J—L~7]71L MOE ’
— 5 SINR; L-moE
(4.162)
A SINR; |-
SINR; -sus-ce = SINR(W;-sus-ce) = s HO (4.163)

1+ ZZLSINR; L-moE

Our simulation results show that the SINR performances of the L-SMI-CE
and L-SUB-CE receivers are accurately describeddb}f?d and @.163 even

when the SNR assumes moderate values. Due to the similarity between the
SINR expressions obtained for L and WL receivers, most observations regard-
ing the comparison between receivers with or without CE apply also in this
case. Summarizing, the SINR of the L-SUB-CE receiver turns out to be (ap-
proximately) equal to that of the L-SUB oné.{02. Moreover, due to the
mentioned signature mismatch problend]| the SINR of the L-SMI receiver

with known channel4.100 is worse than that of the corresponding L-SMI-CE
receiver: indeed, for a finite sample si&e in the high-SNR regime, it results
that

I S|NR]',|__SM| N+ J— Lj —1
1m =
02—0 SINR; L-smi-cE N+J-2

Additionally, similarly to the the WL case, the data-estimated linear receivers
exhibit a SINR saturation effect, fer2 — 0. In this case, if® is full-column

rank (J/ < N), itis readily verified that SINR .moe — +oc. Henceforth, for

J < N — L; < N, accounting for4.162 and ¢.163, one obtains

<1. (4.164)

2K
lim SINR; [ -sMmI-cE = 4.165
Uglglo i, L-SMI-CE Nt L, -1’ ( )
lim SINR; _ K (4.166)
03190 j.L-SUB-CE = 77 » :

which show that, in the high-SNR regime, the performance of the L-SMI-CE
receiver depends on the processing gsliand the number of userk as well

as on the channel lengily of the jth user, whereas the performance of the L-
SUB-CE receiver is independent of both the processing §aamd the channel
length L;, while depending on the number of usefs At this point, we are
able to establish a direct comparison between blind L- and WL-MOE data-
estimated receivers, focusing our attention on the daseJmax,. = N — L,
wherein both blind L- and WL-MOE receivers can work [note indeed that
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the WL-MOE can accommodate up #haxw. = 2(N — L;) users (see eq.
(4.109)]. By comparing ¢.132 and ¢@.163 for the subspace-based receivers,
it turns out that SINRWL—SUB—CE > SINRj,L—SUB—CE for any value ofK. In-
stead, for the SMI-based receivers [sdelB]) and @.162)], it results that
SINRj,WL—SMI—CE > S|NRj,|__5M|_CE only whenK > Kpnin, Where

A 3N—Lj)—J+1
= 1 1
Q(SlNRj,L—MOE - SINRj,WL—MOE)

Kmin (4.167)

is a threshold sample size, that is, similarly to the known channel case, the
WL-SMI-CE receiver assures a performance advantage only by processing a
sufficient number of samplés. Finally, for J < N — L;, as regards the
comparison between the saturation SINR (i.e., the SINR-for+ 0) of blind

linear and WL receivers, it can be observed frail63 and @.134) that the

value for the L-SMI-CE receiver is better than the corresponding value for
WL-SMI-CE, whereas, according td.(L66§ and @.139, the saturation SINRs

for the subspace-based receivers are exactly coincident.

45.4 Numerical results

In this section, Monte Carlo simulations are presented, aimed at validating and
extending our performance analysis. We consider a DS-CDMA system with
a1 =ag =---=ay=1andN = 16. TheJ users employ unit-norm (i.e.,

|lc;]| = 1) random signatures;, whose entries are i.i.d. random variables as-
suming equiprobable values in the complex &t /v2N, +i/v/2N}, with

c;, andcj, statistically independent of each other jor# jo € {1,2,...,J}.

The channel lengths afe; = 5, Vj € {1,2,...,J},i.e., they are equal for all

the users, and, as ia{, 7€], the entries of the unit-norm channel vectgrsare
randomly and independently drawn with equal power from a zero-mean com-
plex circular (or proper) Gaussian process. The symbol and noise sequences
are generated according to assumpti@iy and(a2), and the SNR is defined
asl/c2. In each simulation, we carry o6* independent Monte Carlo runs,

with each run employing a different set of spreading sequences, channel vec-
tors, symbol sequences and noise. In all simulations, we assume that the users
have identical powers, i.e. there is perfect power control, and, without loss of
generality, that the desired user is the first one, j.es 1. Note that, in the
considered scenario, the maximum number of users that can be accommodated

YA comparison with eg.4.103 shows that, in the estimated-channel case, the valtgef
is slightly lower.
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Figure 4.7: ASINR versus SNR for WL-MOE receiverd (= 10 users
and K = 500 symbols).

by the blind receivers with CE is equal f@ax . = 11 for the L-MOE receivers

and JmaxwL = 22 for the WL-MOE receivers. To extensively compare WL-
MOE and L-MOE receivers, we assume thasatisfy the first, more stringent
condition, exception made for the second experiment, where we evaluate the
performances as a function &f

Experiment 4.4 : in this experiment, we evaluate the average SINR (AS-
INR) as a function of SNR for the WL-MOE (Fid..7) and L-MOE (Fig.4.9)
receivers (both with and without CE), faF = 10 users and a sample size
equal toK = 500 symbols. For the sake of comparison, we also report the
ASINR of the exact (i.e., data-independent) WL-MOE and L-MOE receivers
given by @.27 and @.16), respectively. All the curves show a good agree-
ment between simulation and analytical results. Looking in detail at4~iy.

the simulation results confirm the theoretical prediction that the two subspace
versions of the WL-MOE receiver (with or without CE) exhibit practically
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Figure 4.8: ASINR versus SNR for L-MOE receiverd (= 10 users
and K = 500 symbols).

the same performances, whereas the WL-SMI-CE receiver performs slightly
better than the WL-SMI one (with known channel), since the latter is penal-
ized by the signature mismatch phenomenon; in particular, the asymptotic (for
SNR — +o0) difference between the ASINR curves of the WL-SMI-CE and
WL-SMI receivers is about.5 dB, which is in good agreement with the value
theoretically predicted by4(133. Similar considerations apply to Fig.8,
where the asymptotic gain of the L-SMI-CE receiver over the L-SMI one (with
known channel) is about dB, as correctly predicted byt (164. As regards

the comparison between WL-MOE and L-MOE receivers, results of Eigs.
and4.8allow us to extend an important conclusion done in the known-channel
case , relative to the underloaded case (iles; N): although the exact WL-
MOE receiver generally exhibits a SINR gain over the L-MOE one also when
J < JmaxL, in practice, due to SINR saturation effects, the subspace imple-
mentations of the WL-MOE and L-MOE receivers exhibit the same perfor-
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Figure 4.9: ASINR versus number of usessfor WL-MOE receivers
(SNR =15 dB andK = 500 symbols).

mances, whereas the L-SMI receivers (both with and without CE) outperform
their WL-SMI counterparts

Experiment 4.5 : in this experiment, we evaluate the ASINR as a function
of the number of userg for the WL-MOE (Fig.4.9) and L-MOE (Fig.4.10
receivers (both with and without CE), for a sample size equdl'te= 500
symbols and SNR #5 dB. Since the subspace-based CE procedure poses a
strict limit of JmaxwL = 22 users for the WL-MOE receivers ankhax = 11

for the L-MOE receivers with CE, the performances of the receivers with CE
are not reported (i.e., the corresponding curves are truncated) for values of
J exceeding these limits. Besides confirming again a good agreement be-
tween simulation and analytical results, the curves for the WL-MOE receivers
(Fig. 4.9) show that the performance advantage of the WL-SUB receiver over
the WL-SMI one (both with and without CE) progressively decreasekins
creases, becoming negligible in correspondence of abeut0 users for the
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Figure 4.10: ASINR versus number of usetsfor L-MOE receivers
(SNR =15 dB andK = 500 symbols).

receivers with CE, and = 30 users for the receivers with known channel. It

is worthwhile to observe, moreover, that whérapproaches the upper limit
JmaxwL = 22 for CE, the performances of the WL-MOE receivers with CE
degrade rapidly, suffering from a clear threshold effect. Similar considerations
apply to Fig.4.10 where, however, the ASINR curves of the L-MOE receivers
are more closely spaced and the performance advantage of the L-SUB receiver
over the L-SMI one becomes negligible in correspondence of about10
users for the receivers with CE, arid= 14 users for the receivers with known
channel. A careful comparison between the performances of WL-MOE and
L-MOE receivers shows again that the largest advantage in using WL-MOE
receivers is obtained in the “overloaded” region, i.e., wher< J < 22 for

the receivers with CE (where the L-MOE receivers cannot operate at all), and
when16 < J < 32 for the receivers with known channel (where the L-MOE
receivers, although capable of operating, exhibit poor performances)
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Figure 4.11: ASINR versus sample siz& for WL-MOE receivers
(J = 10 users and SNR 20 dB).

Experiment 4.6 : in this last experiment, we report the ASINR as a function
of the sample sizd( for the WL-MOE (Fig.4.11) and L-MOE (Fig.4.12
receivers (both with and without CE), fof = 10 users and SNR 20 dB.

The ASINR values of the exact (i.e, data-independent) WL-MOE and L-MOE
receivers, in this scenario, are equalios and19.2 dB, respectively, and ob-
viously do not depend of. The simulation and analytical results are again
in good agreement, and, as expected, the accuracy of the formdulas)¢
(4.132 and @.162—(4.163 improves ads increases. In particular, Fig.11
shows that the two versions of the WL-SUB receivers (with or without CE) ex-
hibit almost the same performances, outperforming the WL-SMI-CE receiver
by about2 dB, and the WL-SMI one (with known channel) by ab@utiB,

for all considered values dt’. Instead, the ASINR curves of the L-MOE re-
ceivers (see Figl.12 are more closely spaced, exhibiting only marginal differ-
ences in performances between the various receivers. By comparing Eigs.
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Figure 4.12: ASINR versus sample siz€ for L-MOE receivers { =
10 users and SNR 20 dB).

and4.12 it can be seen that the two WL-SUB receivers (with or without CE)
outperform the corresponding L-SUB ones, for all the considered values of
K. In contrast, the WL-SMI receiver (with known channel) again performs
worse than its linear counterpart for all values/f(in this case the thresh-
old sample size4.103 is Kmin = 3844, thus larger than the maximum value

of K = 2500 considered in the simulations), whereas the performances of
the WL-SMI-CE receiver approaches those of the L-SMI-CE onelfoap-
proaching500, which agrees very well with the valu€ni, = 2428 predicted

by (4.167).






Chapter 5

Equalization Technigues for
MC-CDMA Systems

This chapter focuses on multiuser detection for downlink MC-CDMA systems,
employing cyclic-prefixed (CP) or zero-padded (ZP) transmission technigues.
For both systems, we consider the linear and widely linear FIR receiving struc-
tures, showing that if the number of users does not exceed a given threshold
and their codes are appropriately designed, L-FIR and WL-FIR universal zero-
forcing (ZF) multiuser detectors can be synthesized. Thus in the absence of
noise, it is assured a perfect symbol recovery for each user, regardless of the
underlying frequency-selective channel. Moreover, some spreading code ex-
amples are provided, which satisfy the design rules. Finally, numerical sim-
ulations are carried out to show that the theoretical considerations developed
herein provide useful guidelines for practical MC-CDMA system designs.

5.1 Introduction

In the previous chaptet, we dealt with single-carrier DS-CDMA technology
which nevertheless, at high data-rates, becomes impractical, due to both severe
multipath-induced intersymbol interference (ISI) and synchronization difficul-
ties. Thus, we chose a multicarrier scheme to overcame these drawbacks, as
MC-CDMA technology [L1, 83, 84]. Indeed MC-CDMA systems, employing
frequency-domain spreadirf@3], which consists of copying each informa-

tion symbol over théV subcarriers and multiplying it by a user-specific vector
code, achieve ISI mitigation more efficiently than DS-CDMA systems because
they transmit with a lower data-rate over multiple subcarriers.Moreover, due to

111
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the lowered symbol rate, the synchronization task is easier in MC-CDMA net-
works, compared with a DS-CDMA system with similar processing gain. Fur-
thermore, it has been shown & that, at the expense of a reduced bandwidth
efficiency, MUD techniques offer higher near-far resistance in MC-CDMA
systems than in DS-CDMA ones.

Several MC-CDMA transmission schemes have been proposed in the lit-
erature, among which those basedcgalic prefix(CP) andzero paddindZP)
precoding techniques, items of interest in this chapter. In conventional CP-
MC-CDMA systems, after multiplying each information symbol by a user-
specific vector code, the resulting vector is subject to inverse fast Fourier trans-
form (IFFT) and, finally, a CP of lengthy, larger than the channel ordéris
inserted; at the receiver, the CP is discarded and the remaining part of the MC-
CDMA symbol turns out to be free of interblock interference (IBI). Instead in
ZP-MC-CDMA systems, for achieving deterministic IBI cancellation, the CP
is replaced with ZP, by appendidg > L zero symbols to each IFFT-precoded
symbol block; in this case, IBI suppression is obtained without discarding any
portion of the received signal. If the number of zero symbols is equal to the
CP length, then CP- and ZP-based systems exhibit the same spectral efficiency.
ZP precoding technique has been originally proposétifor OFDM systems
since, unlike CP-based transmissions, it enables L-FIR perfect symbol recov-
ery, even when the channel transfer function has nulls on (or close to) some
subcarriers. Compared with CP precoding, the price to pay for such a capabil-
ity is the slightly increased receiver complexity and the larger power amplifier
backoff.

It is worth to observe that many L- and WL-MUD techniques, which are
proposed in the DS-CDMA conteXt can be readily adapted to MC-CDMA
systems. To suppress MAI with an affordable computational complexity and,
simultaneously, achieve close-to-optimality performance (in the minimum bit-
error-rate sense), one can resort to the FIR L-ZF (or linear decorrelating) and
linear minimum mean-square error (L-MMSE) receivers. In addition we have
underlined still in the previous chapters of this thesis (see segtibim the
chapter2 and chapter8,4 for more details) that by exploiting the possible im-
proper or noncircular nature of the transmitted symbols, improved MAI sup-
pression capabilities can be attained by adopting WL-FIR receiving structures,
such as the WL-ZF and WL-MMSE receivers.

With reference to FIR L-MUD receiving structures, it is knowi,[ 87]
that perfect symbol recovery is guaranteed in a ZP-based downlink, for any
FIR channel of ordel. < Ly, as long as the number of users is smaller than
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the number of subcarrierarfderloaded systemand the code vectors are lin-
early independent. In general, a similar feature does not hold for CP-based
transmissions. Thus, we show in sect®f, following our paper [g], that
universal L-ZF-MUD can be guaranteed even for the underloaded CP-MC-
CDMA downlink, provided that the spreading codes are judiciously designed.
On the other hand, a detailed study of the conditions assuring FIR WL-MUD
perfect symbol recovery in both CP- and ZP-based systems is lacking. Conse-
quently, we also show.4, following our papers17, 18], that, if appropriate
complex-valued spreading codes are employed, universal WL-ZF multiuser
detectors can be designed even for overloaded CP-MC-CDMA and ZP-MC-
CDMA systems.

5.2 Models for CP- and ZP-MC-CDMA systems

Let us consider the downlink of a MC-CDMA system employiNgsubcarri-
ers and accommodating users. The information symbél(») emitted by
the jth user in thenth (n € 7Z) symbol interval multiplies thdrequency-
domainspreading code; = [c§-0),c§1), . ,c§-N*1)]T e CV, with c§m) £ 0,
vm € {0,1,...,N — 1} and¥j € {1,2,...,J}. The resultingV-length se-
qguence is subject to the inverse discrete Fourier transform (IDFT), producing
thus the block

ﬁj(n) = WipFT C; bj(n) € (CN, (5.1)

where Wiper € CV*N denotes the IDFT matrix, withimy, ms)th entry
L i (=D (ma=D) for my my € {1,2,..., N}, and its inverséVper =

VN y 1,172 g Ly ey ’ DFT
Wokr = Wi defines the discrete Fourier transform (DFT) matrix. The
equation §.1) is different depending on if we adopt a CP- or ZP-linear precod-
ing strategies:

Cyclic prefixing after computing the IDFT, a CP of lengthy < N is inserted

at the beginning ofi;(n), obtaining thus the vector

ucpj(n) = Tep Wiprr €5 bj(n) , (5.2)

whereT¢p 2 I In]T € RPN and P 2 Lp + N, with I, € REXN puilt

by drawing out the lask, rows of the identity matrid .

LIt is worthwhile to observe that overloaded systems are of practical int&@stdr exam-
ple, in bandwidth-efficient multiuser communication, where the bandwidth is at a premium.
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Zero padding after computing the IDFTL,, < N trailing zeros are padded at
the end ofa;(n), obtaining thus the vector

Uzp,j (n) = Tzp Wiprr Cj b (n), (5.3)

In either cases, the blockgy, ;(n) andu,p ; () are subject to parallel-to-serial
conversion, and the resulting sequences feed a digital-to-analog converter, op-
erating atratd /T, = P/T,, whereT andT, denote the symbol and the sam-
pling period, respectively. In the downlink, all the users are synchronous and
propagate through a common frequency-selective channel that is modeled as
a linear time-invariant system, whose channel impulse resppie(includ-

ing transmitting filter, physical channel and receiving filtegasnplex-valued

that is, neitheRe{g.(¢)} nor Im{g.(¢t)} vanish identically, and spans+ 1
sampling periods, i.eg.(t) = 0, Vt & [0, L T, whereg.(0), g.(L 1) # 0,

with L < P within one symbol interval. In this case, the discrete-time chan-
nel g(¢) 2 gc(¢T,) turns out to be a FIR filter of ordek, i.e., g(¢) = 0,

vl ¢ {0,1,...,L}, with g(0),g9(L) # 0. Furthermore, we assume that the
channel ordef. is not exactly known, butis upper boundedyy i.e.,L < Lj.

In a CP-based system, the IBI is deterministically removed by discarding
the first L, samples of eacli*-dimensional received block. Indeed, after CP
removal, thekth (k € Z) received symbol blockep(k) € CV can be expressed
(see, e.g.,44, 86]) as

rep(k) = ©cp Wiprr C b(k) + vep(k) = Gepb(k) + vep(k) (5.4)
gcpe(chJ

where ©¢, € CNM*N s the circulant §6] matrix having Q¢,g as

[4

its first column, with Q¢ = M, Orox(v—1y)]" € R¥*» and

g 2 [9(0).9(1),...,9(L),0,...,0]" € CIv, the vectorb(k) =
[b1(K), ba(K), ..., bs(k)]T € C’ collects the symbols transmitted by the users
as in the chapte#, C = [c1,Co,...,c5] € CN*J defines the frequency-
domaincode matrixand, finally, vectorvep(k) € CV accounts for thermal
noise.

In contrast, ZP-based precoding allows one to deterministically eliminate
the IBI by retaining all the samples of eaé¢hdimensional received block.
Specifically, in a ZP-based system, #tth received symbol block,p(k) € CP
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is given by (see, e.g.3, 86])

rzp(k) = ©zp Wiprr C b(k) + vzp(k) = Gzpb(k) + vzp(k) , (5-5)
— ——

ngCPXJ

where®,, € CP*¥ is the Toeplitz {6] matrix having€2,p g as first column,
with €, 2 ML, Opryx(p—ry)]" € RP*Fe, and[g(0),0,...,0] as first row,
whereasv,p(k) € CP accounts for thermal noise. For the sake of conciseness,
we unify models §.4) and 6.5) in the equivalent one

r(k) = Gb(k) + v(k), withr(k),v(k) € C*andg € C**’, (5.6)

where, for a CP-based systemik) = rep(k), G = Gep, v(k) = vep(k),
with R = N, whereas, for a ZP-based systerk) = ryp(k), G = Gzp,
v(k) = vzp(k), with R = P. Hereinafter, we assume that:

al) the transmitted symbolg;(n) are modeled as mutually independent
zero-mean and independent identically-distributed (iid) random se-

quences, with second-order momevﬁsé E[|bj(n)|?] > 0 andgy(n) 2
E[b? (n)];

a2) the noise vectow (k) is a zero-mean wide-sense stationary complex
proper white random process, which is independentbglfn), Vi €
{1,2,...,J}, with autocorrelation matriR,, 2 Elv(k)vi (k)] =
2
UUIR-

As regards assumption al, we have still observed (see previous chapters) that,
there exists a large family of modulation schemes of practical interest, such as,
BPSK, DBPSK, M-ASK, OQPSK, OQAM, and binary CPM, MSK, GMSK,
which are improper, i.egy(n) # 0, for anyn € Z.

5.3 Perfect symbol recovery for L-MUD

In this section we consider, the problem of ZF detectability in FIR L-MUD,
which can be used for both CP- and ZP-based systems, employing either
proper or improper data symbols (although it is suboptimal in the latter case).
These theoretical aspects strongly affect both the synthesis and the perfor-
mance analysis of the L-ZF and L-MMSE multiuser detectérs {4].
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To detect the transmitted symbigl(k) of the jth user from the received
vector 6.6), with j € {1,2,...,J}, with a FIR L-MUD, we apply the input-
output relationship that we have seen in chagter

yi(k) = £]'r(k), (5.7)

with f; € C (which is followed by a decision device). In the absence of noise,
the perfect or ZF symbol recovery conditign(k) = b;(k) leads to the system

of linear equationg*'; = e;, wheree; £ (07 ,,1,05_,]" € R/, which is
consistent (i.e., it admits at least one solution) for each user if and only if (iff)
the compositechannel matrixg is full-column rank, i.e., ranlg) = J. Under

this assumption, theinimal norm[24] solution ongfj = e, is given by
flzr; =6 (G7G) e, (5.8)

which defines the L-ZF or linear decorrelating multiuser detector. In the pres-
ence of noise, the L-ZF receiver perfectly suppresses the MAI at the price of
noise enhancement. To better counteract the noise, one can resort to the L-
MMSE multiuser detectord5, 44], which is defined as

fl-mvsg,; = arg fnelgcnR E[lb; (k) — y;(k)|*] = 0 Ry G e, (5.9)
J
whereR,, = E[r(k)rf(k)] € CE*E is the autocorrelation matrix af(k)
which, accounting forf.6), and invoking assumptions al and a2, is given by
Ry =02 GGH + 621 (5.10)

If G is full-column rank, by resorting to the limit formula for the Moore-
Penrose inversef], it can be seen that

. L 2/ 2maH | 27 1.
U%}LI?HO fi .mmsE,; = ag}ifg:o 0y, (07,GG" +0,1Ir) " Ge,
=G (G"G) ej =fizr;, (5.11)

vj € {1,2,...,J},i.e., the L-MMSE receiver boils down to the L-ZF cnén
summary, the performance of the L-MMSE receiver in the high signal-to-noise

2 More generally, wheW is possibly rank-deficient, it results tﬁémgz/agﬁo fi-mvsg,; =

(6N e 2 fis,j, i.e., the L-MMSE detector ends up to the minimal-norm least-squares
solution [24] of ngj = e; [note that, wherg is full-column rank, one hafi..s; = fizr ;
from (5.9)].
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(SNR) region strongly depends on the existence of L-ZF solutions: indeed, if
G is not full-column rank, the performance curve of the L-MMSE multiuser
detector exhibits a marked bit-error-rate (BER) floor (see Seé&ibp when
o2/o2 — 0. Motivated by this fact, the first step of our study consists of
investigating whether the condition raigk) = J is satisfied, regardless of the
frequency-selective channel.

As a matter of fact, for a ZP-based system [§e8)], the rank properties of
G = Gzp = O, Wprr C are easily characterized, since the Toeplitz matrix
©®; is full-column rank for any FIR channel of ordér[54, 87, 89]. Indeed,
owing to nonsingularity oW per, it results that

rank(G,p) = rank(C) (5.12)

As stated in § 7], the composite channel matidk, is always full-column rank

and, thus, channel-irrespective L-FIR perfect symbol recovery is possible iff
the vectorsey, co, ..., cy are linearly independent, that i€ is full-column

rank. To this aim, one can for example use Walsh-Hadamard (WH) spreading
codes, which are widely used in CDMA systems. This issue is analyzed in
section4.4.10of the chapter. It is worth noting that condition rarfkC) = J
imposes that the number of users be smaller than or equal to the number of
subcarriers, i.e.J < N: strictly speaking, L-ZF-MUD is exclusively tar-
geted at underloaded systems. On the other hand, for a CP-based system [see
(5.4)], the linear independence of the code vectors is not sufficient to assure
thatG = Gp = O Wiprr C be always full-column rank since, unlike
®,p, the circulant matrix®¢, turns out to be singular for some FIR chan-
nels. However, after characterizing the rank propertie§ gf we show [ 5]

in Subsectiorb.3.1that, through appropriate design of user codes, the condi-
tion rank G¢p) = J can be guaranteed regardless of the underlying frequency-
selective channel. Hence, channel-irrespective L-ZF-MUD is possible not only
in a ZP-based system, but also in a CP-based one.

5.3.1 Rank characterization ofG., and universal code design for
L-ZF-MUD

With reference to a CP-based system, let us study the rank properties of
Gep = OpWiprr C. Preliminarily, observe tha@c, is full-column rank

only if the numberJ of users is not larger than the number of subcarriers
N, ie.,J < N. Thus, as for a ZP-based system, L-ZF-MUD is confined
only to underloaded CP-based systems. Furthermore, by resorting to standard
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eigenstructure concepts/, 56], one ha®dcp = Wiprr I'cp Wprr, Where the
diagonal entries oF ¢p 2 diagvep(0), vep(1), - - -, Yep(N — 1)] € CV*V are
the values of the channel transfer functi@(r) 2 Zfzo g(¢) z~* evaluated at

the subcarriers,, = eizﬁwm, i.e.,vep(m) = G(zp,), Vm € {0,1,...,N —1}.
Henceforth, one obtains th@t, = W prr I'cp C and, sincéW per is nonsin-
gular, it follows that

rank(Gep) = rankI'cp C). (5.13)

The full-column rank property of matrig.p is characterized by the following
Theorem [&].

Theorem 5.1 (Rank characterization ofGp) If C is full-column rank and
the channel transfer functiod’(z) has0 < M, < L distinct zeros at
Zm, = ei%ﬂml,zm2 = ei%m2,...,zmMz = ei%rmMz, with my # mo #
- # my, € {0,1,...,N — 1}, then the composite channel mati,

is full-column rank iff[C,S,] € CN*(/+M:) js full-column rank, where

S. 2 Ly g, -y Ly, ] € RY*M= s a full-column rank matrix, with

1,,, denoting the(m + 1)th column ofl .

Proof: SeeC.1

Some remarks are now in order concerning immediate implications of The-
orem5.1

Remark 1 G, may be rank deficient even i, co, ..., c; are linearly
independent (see proof i0.1), i.e., C is full-column rank. However, it7(z)
has no zeros (i.eM, = 0) on the subcarrier§z,, }\ _}, that is,yep(m) # 0,
Vm € {0,1,...,N — 1}, it results thafl'¢, is nonsingular and, consequently,
rank(Gcp) = rank(C). In other words, for a CP-based system, onlyrifz)
has no zeros on the used subcarriers, the linear independence of the vectors
ci1, Co,...,cy becomes a necessampd sufficient condition for assuring the
full-column rank property ofjcp. In this case, both CP-based and ZP-based

systems are able to support upNoactive users.

Remark 2 Unlike conventional CP-OFDM system&4], the presence of
channel zeros on some subcarriers does not prevent perfect symbol recovery.
This result stems from the fact that, in MC-CDMA systems with frequency-
domain spreading, each symbol is transmitteplrallel on all the subcarriers;
therefore, if them-th subcarrier is hit by a channel zero, igp(m) = 0, the
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transmitted symbdb; (k) can still be recovered from the other subcarriers. In
contrast, in CP-OFDM systems, wherein each subcarrier conveys a different
data symbol, if7(z) exhibits a zero on a used subcarrier, the symbol transmit-
ted on that subcarrier is permanently Idst,[90).

Remark 3 condition rankG.p) = J amounts to ranKC, S..|) = J + M.,
which necessarily requires that< N — M, with0 < M, < L < L, < N.
Therefore, the number of active users that can be supported through L-ZF-
MUD is decremented by one unit for any additional zero on the subcatriers
In this case, the capacity (i.e. the maximum number of users that can be sup-
ported) of a CP-based downlink is smaller than that of a ZP-based system,
which is equal taV regardless of the channel-zero configuration. In the worst
case whenV/, = L, i.e., all the channel zeros are located at the subcarriers,
the maximum number of allowable users in a CP-based downlink is equal to
N — L.

Theoremb.1 evidences that, in contrast with ZP-based systems, the full-
column rank property o§ ., depends not only on the linear independence of

ci,co,...,Cy, but also on the presence of channel zeros located at the sub-
carriers{ z,, %;}) whose numbed/, and locationsn;, ma, ..., mys, areun-

knownat the receiver. In other words, by imposing the unique constrain€hat

be full-column rank, perfect symbol recovery in a CP-based system explicitly
depends on the channel impulse response. However, the usefulness of Theo-
remb5.1goes beyond this aspect and, most importantly, it allows us to provide
universal code designs, assuring t§a} is full-column rank forany possible
configuration of the channel zeros. To this aim, on the basis of Thebreém
observing that < M, < L and any subset of linearly independent vectors is
constituted by linearly independent vectors, we can state the following univer-
sal design constraint for the user codes in a CP-based system:

Condition D, (Universal code design for L-ZF-MUD in CP-MC-CDMA)
Under the assumption th&t is full-column rank, no linear combination of
the columns ofC can be expressed as linear combinations offthdistinct
vectorsl,,,, 1y, - - ., 1m, , forany{my,mo,...,mp} C {0,1,..., N — 1}.

31t is worth noting that, unlike L-ZF universal multiuser detectors, which do not exist for
J > N — M., the L-MMSE multiuser detector can still be synthesized in the presence of noise
even when/ > N — M. However, as previously remarked, its performance is unsatisfactory
in this case (see also Sectibry). Thus,N — M., also represents the maximum number of users
that a CP-based system can reliably manage when L-MMSE-MUD is employed at the receiver.
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Equivalently, require that

I’ank([c, Suniv]) — J"—L, \v/{ml,mQ, ceey mL} C {0, oo ,N— 1}, (514)

4

whereSuniv = [Lmys Ling, - - -, L, ] € RY*Lis a full-column rank matrix.

By virtue of Theorem5.1, the composite channel matrc, turns out
to be full-column rank forany FIR channel of ordel. < L, iff the code
design constraint g is fulfilled. Observe that E) is stronger than condition
rank C) = J. In fact, Dy implies that rankC) = J, whereas ranfC) = J
does not imply 3p. It is also apparent from5(14) that, since[C, Suniv] €
CN*(J+L) fulfillment of Dep imposes that

J<N-L, (5.15)

i,e, no more thanV — L users can be handled by a CP-based system. Fur-
thermore, it is worth noting that common WH spreading codes do not sat-
isfy (5.14). To show this, as a simple counterexample, consider the case of
two users (i.e.J = 2), which employs the followingg-length WH codes

ci = [1,-1,1,-1,1,-1,1,-1]T and ey = [1,1,-1,-1,1,1,—1,-1]7,
obtained by picking the second and third columns of the Hadamard ma-
trix of order N = 8. In this case, it is easily verified tha + co =
[2,0,0,-2,2,0,0,—2]T. Hence, if the channel transfer functigi(z) has

M, = 4 zeros on the subcarrietg, z3, z4 andzz, the corresponding matrix
Gep is not full-column rank, since a particular linear combinatior pandc,

can be expressed as the linear combination of the vet{ois;, 1, and15:

ci+co=219g—213+214—217. (5.16)

Hence, WH spreading codes do not guaragigeto be full-column rank for
any FIR channel of ordef < L.

To design codes that instead fulfilkf) it is convenient to give an alterna-
tive interpretation of%.14). Since it results§1] that

rank([C, Suniv]) = rank(Suniv) + rank(Ix — SunivSni,) Cls (5.17)

with rank(Suny) = L andS_ . = ST [24], it follows that rankK[C, Syniv]) =

univ univ

J + L holds iff rank(Ixy — SunivS!.. ) C] = J. It can be verified by direct

univ

inspection that all thd. rows of the matrix(Ix — Suniv SuTniv) C located in

the positionsn; + 1,ms + 1,...,my, + 1 are zero (all the entries are equal
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to zero), whereas th& — L remaining ones coincide with the corresponding
rows of C. Consequently, the condition raiiky — Syniv Saniv) C| = J, for
any{mi,ma,...,mp} C {0,1,..., N —1}, is equivalent to state that, among
any N — L rows of C, asetofJ < N — L linearly independent rows can be

selected. More formally, £ can be equivalently restated as follows:

Reformulation of Condition B: Let vectorng 2 [cgf),cg‘”,...,cff)] IS

C'*/ denote the(¢ + 1)th row of C, with ¢ € {0,1,...,N — 1}, for any
{m1,ma,...,mp} C{0,1,..., N — 1}, there exists a subset gf< N — L
distinct indices{¢y, /s, ...,¢;} C {0,1,...,N — 1} — {my,mo,...,mp}
such that the vectoksy, , wy,, . .., w¢, are linearly independent.

It is worthwhile to observe that condition:pdoes not uniquely specii¢
and, thus, different universal codes can be built. For instance, condition D
can be accomplished by imposing that each roldie a Vandermonde-like
vector. Specifically, let us sele¢f > J + L nonzero number$pg}£’:51 and
build the code vectore; as

1 o 4T
J o J j :
c; = Oy Py e s Par , Vied{l,2,...,J}, (5.18)
j G Lo N-1

where the normalization b/, /x; has been introduced to ensure that||> =
1 for each user. Relying on the properties of Vandermonde vecidfsf can
be easily verified that, provided that

poF# P1LF - F PN-1, (5.19)

any J rows of C are linearly independent, thus satisfying,DAn advantage

of choosing the spreading vectors as il is that, in this way, the code
matrix C is uniquely characterized only by thé parameters{pg}f:‘ol. For
example, such numbers can be chosen equispaced on the unit circle, by setting
pr = e‘iQW”, V¢ € {0,1,..., N — 1}, thus obtaining

1 —i2r j —i2m (N-1)5]7
cj:—[l,e NI, et w 3} ) (5.20)
VN
Vj € {1,2,...,J}. In this case, the spreading vecior turns out to be a

Vandermonde (VM) vector (up to the power-controlling constight N') and

the columns of the resulting code matix coincide with some columns of

the N-point DFT matrixWpgr. Obviously, since the VM code vectors.20

are linearly independent by construction, they also guarantee the existence of
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L-ZF solutions for any FIR channel of ordér< Ly in underloaded ZP-based
systems.

Remark 4 Since the channel orddr is seldom known in practice, one
must resort to the upper bourid< L for synthesizingC, i.e, one should use
Ly instead ofL in condition D:p. So doing, the allowable number of users must
obeyJ < N — Ly, which is a more restrictive limit thas#i < N — L. In other
words, requiring that the composite channel ma@iy be full-column rank
for any FIR channel of ordel. < Ly poses a stronger limitation on system
capacity.

5.4 Perfect symbol recovery for WL-MUD

In this section we extend the previous analysis to WL receivers, following our
papers 17, 18. With reference to the unified modeb.€), when the infor-
mation symbols are improper, L-MUD does not fully exploit the second-order
statistics (SOS) of the received vecidi) because it does not take into ac-

count the conjugate autocorrelation mai« (k) = E[r(k) r” (k)] € CR*R
(see chaptez for more details). Invoking assumptions al and a2, we can write

R+ (k) = on(k) G gT. (5.21)

As we have underlined in the previous chapté&®),(the symbold; (k) are
improper in a large number of digital modulation schemes (BPSK, DBPSK,
OQPSK, CPM, MSK, GMSK) and the improper naturégfk) can be seen as

the consequence of a linear deterministic dependence existing bely(éen

and its conjugate versidij (k), i.e., b’ (k) = ¢'*™* b;(k), for anyk € Z and

for any realization ofb;(k). To conveniently exploit the improper nature of
the transmitted symbols we must resort to WL-MUD structures (see chapter
2), which are characterized by the input-output relationshifp9 that here is
reported for simplicity

w;(k) = £ v (k) + £ (k) = £ 7(k), (5.22)

where f; 2 (€5, £/,]7 € C*% and the augmentedvector z(k) 2
[v?(k), v (k)]T € C2! is obtained by stacking(k) and its complex conju-
gate versiom™* (k). Moreover, note that, with reference to the above-mentioned
improper modulations techniques, the following linear deterministic relation-

ship holds:b*(k) = €!2™* b(k), for anyk € Z which, substituted ing.6),



5.4. PERFECT SYMBOL RECOVERY FOR WL-MUD 123

yieldsr*(k) = e'2¢* G*b(k) + v*(k). The latter relation shows that the
(possible) conjugate cyclostationarity (k) can be deterministically com-
pensated for by performingaerotation[97] of r* (k) before evaluating(k),
that is, by considering the modified input-output relationship

wj(k) = £ v(k) + £f5r* (k) e 2™k = £

a(k), (5.23)

where the augmented and derotated vegté) ¢ C2 is given by
A r(k) |G v(k)
Z(k) - |: I'*(k‘) e—i27r§k :| - |:g*:| b(k) + |: V*(k‘) e—i27rfk
——

HeC2R*J w(k)eC2R
= Hb(k) + w(k). (5.24)

Following the same lines that we have indicated in the previous chapters, in
the absence of noise, the ZF condition(k) = b;(k) leads to the system of
linear equationst” f; = e;, which is consistent for each user iff the aug-
mented channel matri¥ is full-column rank, i.e., ran) = J; under this
assumption, theninimal norm[24] solution ofHHfj =ejis

fwizr; = H(HTH) e, (5.25)

which defines the WL-ZF or WL decorrelating multiuser detector. In the pres-
ence of noise, one can more suitably resort to the WL-MMSE multiuser detec-
tor [3, 50, 54], which is defined as

fwi-mmse j = arg?miéﬂR E[|b;(k) — w;(k)*) = o} Ry, He;,  (5.26)
j€

whereR,, = E[z(k) 2z (k)] € C?1P*2R is the autocorrelation matrix ef(k)
which, accounting forf.24), and invoking assumptions al and a2, is given by

Ry, = 0 HHY +02Tsp. (5.27)

Reasoning as in precedence for the L-MMSE multiuser detector, it is readily
seen that, ifH is full-column rank, the WL-MMSE multiuser detector ends
up to the WL-ZF one in the limit2 /o7 — 0.

4 More generally, wher{ is possibly rank-deficient, thehmgz/agH0 fwimmse,; =

(H)te; = fwiis,j, i-€., the WL-MMSE multiuser detector ends up to the minimal-norm
least-squares solutior2{] of HTf; = e; [note that, wherH is full-column rank, one has
fWL—LS,j = fWL.zpﬂj from (525)]
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Henceforth, similarly to the condition raf@®) = J for L-MUD, the full-
column rank property o not only assures the existence of WL-ZF solutions,
but also allows the WL-MMSE multiuser detector to satisfactorily work in the
high SNR region. Such a condition, i.e., rg®k) = J, is esplored in the
chapterd with reference to a DS-CDMA system. The full column rank prop-
erty of H is thoroughly studied in Subsectién4.l, with reference to both
CP- and ZP-based systems. In particular, by taking advantage of the results
derived in Sectiorb.3, we will show that, if the user codes are judiciously
designed, the condition ra(i) = .J can also be guaranteed when the num-
ber of users exceeds the number of subcarriers, regardless of the underlying
frequency-selective channel.

5.4.1 Rank characterization of’'H and universal code design for
WL-ZF-MUD

From a unified perspective, observe that @ik = .J iff the null spaces of the
matricesG andG* intersect only trivially, that isN (G) N AN(G*) = {0,}. It
can be easily verified that, § is full-column rank, which necessarily requires
thatJ < N (underloaded systems), then this condition is trivially satisfied
and, hence, the augmented mafixs full-column rank as well. Remarkably,
the converse statement is not true, thathismay be full-column rank even
in overloaded MC-CDMA systems, i.e., when the numbbef users is larger
then the numbelV of subcarriers and, thugj is inherently rank-deficient.
In the latter case, the code vectca[rq-};’:1 cannotbe linearly independent,
thus giving rankG) < N, which in its turn implies that the dimension of the
subspaceV(G) is nonnull and is equal td — rank(G). Now, we analyze this
aspect separating ZP- and CP- cases.

ZP-based downlink

Let us consider a ZP-based system [s&&)], wherein G = G, =
©,, Wiprr C. In this case, the augmented channel matixassumes the
form

|

- zZp é

gzp:| _ [eszIDFT Opxn ] {C}

H="Hxp= * * * *
2 [ zp Opxn ®szIDFT C

EszCQPXQN CeC2NxJ

(5.28)
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It can be shown46] that
rankEzp) = rank©z Wiprt) + rank©;, Wiper) = 2 N (5.29)

and, therefore

rank(Hzp) = rank(C). (5.30)
In other words, leg; 2 [c], cif]T" € C*V define theaugmentedtode vector
of the jth user, forj € {1,2,...,J}, the matrixH, is full-column rank iff
the code vectorg,, ¢, ..., ¢  are linearly independent. In other words, a nec-
essary and sufficient condition guaranteeing the existence of WL-ZF solutions
for ZP-based system is that the augmented code m@tis<full-column rank.
It is worthwhile to observe that the augmented code vec{t6;$3-’:1 can be
linearly independent even if the code vectoysare linearly dependent, which
surely happens wheh > N. In this regard, we provide the following Lemma.

Lemma 5.1 (Rank characterization ofC) If J < 2 N, then the augmented
frequency-domain code mati® is full-column rank iff there are no conjugate
pairs of nonzero vectors belonging.A6(C).

Proof: SeeC.2

In underloaded scenarios, wherein the code veetarss, ..., c; can be
linearly independent, it follows that'(C) = {0} and, thus, the augmented
matrix C turns out to be full-column rank, too. Therefore, from now on, we
focus attention on the more interesting overloaded environments, whérein
J < 2N. In this caseC is a wide matrix and, assuming without loss of
generality that its firstV columncy, co, ..., cy are linearly independent, its
remaining/ — N columnscy 1, cn+2,-..,Cy Can be expressed as a linear
combination of the firsfV ones, thus obtaining the following decomposition

C = [Ciert Ciert II] = Ciert [In IT], (5.31)

whereCest = [c1, €2, ...,cn] € CV*N is nonsingular andI € CN*(/=N)
is a tall matrix. Due to nonsingularity o, it follows that V' (C) =
N ([Iy II]). Furthermore, it can be verified that the general form of two vec-
torsay, a2 € C7 belonging toN ([T TI]) and, thus, toV(C), is given by

o] = -1 ’191 and Qg = - ’192, (532)
IJ_N IJ—N
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with arbitrary 9,9, € C/~V. By virtue of Lemma5.1, the augmented
code matrixC is not full-column rank iff there exist at least two nonzero
vectorsv; and ¥, such thata; = af, which amounts ta%; = ¢ and

(IT — II*)¥9; = Oy. Inits turn this second equation can be equivalently
written asIm{Il}¥; = Oy. Therefore, if the imaginary part df is full-
column rank, themx; = o is satisfied iffa; = ao = 0; which, accounting

for Lemmab.1, assures that ral(@) = J. Summarizing this result, we can
state the following universal code design strategy for a ZP-based overloaded
system:

Condition Dp (Universal code design for WL-ZF in ZP-MC-CDMA)et

N < J < 2N andCest = [c1,c2,...,cn] € CV*N be nonsingular, the code
matrix has the fornC = Cie [Iy IT], wherell € CV*(/=N) is a tall matrix,
whose imaginary paiim{IT} is full-column rank.

Some interesting remarks regarding fulfillment of conditdg, can be
drawn at this point.

Remark 5 To begin with, observe that the code desidy, which repre-
sents a necessary and sufficient condition in order to guarante@tpak.J,
is universal, in the sense that it allodt,,, to be full-column rank foanyFIR
channel of ordeil. < Ly. If this universal code constraint is fulfilled, then
channel-irrespective WL-ZF-MUD is guaranteed uR t¥ users, which is ex-
actly the double of the number of users that can be managed in a ZP-based
system employing L-ZF-MUD.

Remark 6 If the spreading codes are real-valued, K&:,= C, the matrix
ITis real-valued as well, i.elm{I1} = Oy ;—x) and, consequently, condi-
tion D4y is not satisfied. Thus, employing real-valued code vectors (e.g., WH
spreading) implies necessarily that, similarly to L-ZF-MUD, the existence of
WL-ZF solutions can be guaranteed only in underloaded MC-CDMA systems.
On the other hand, if complex-valued code vectors are employed Ghem
be full-column rank even in overloaded systems, whéris not full-column
rank.

Remark 7 Although they are complex-valued, the VM code vectors given
by (5.20 do not satisfyD,, whenN < J < 2 N: indeed, it is easily shown
that, in this case, the following decomposition hol@s = Wper [In J],

whereJ 2 [11,19,...,1;_y] € RNX(/=N) js real-valued and, in this case,
Im{IT} = Im{J} = Oy (s—n) is rank-deficient. Hence, the VM codes
(5.20 do not ensure channel-independent WL-ZF-MUD in an overloaded ZP-
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based downlink.

Besides allowing one to readily check whether a given set of spreading se-
guences assures the existence of WL-ZF solutions for any FIR channel of order
L < Ly, conditionD,p provides a direct procedure to build universal codes for
ZP-based overloaded systems. Among several options that can be pursued, we
devise here a simple universal code design relying on WH spreading. Specifi-
cally, letWy € RY*N denote the common Hadamard matrix of ordérin
underloaded scenarios, i.e., whén< N, one can choose the spreading vec-
tors{c;}7_, as the columns Oi/PlN Wy (the normalization byt //N assures

that||c;||> = 1 for each user); on the other hand, in an overloaded downlink,
whereinN < J < 2 N, the code matrixC can be chosen as follows

L
VN

which, as it is immediately seen, satisfies conditg. In this way, the
spreading vectors of the fir8f users have elements confined to the two values
{+1/V/N}, whereas the entries of the code vectors of the remaining users take
on the two value§4i/+/N}. In conclusion, we can state that the adoption of
the code matrixg.33, which comes from a simple modification of the conven-
tional WH spreading technique, guarantees WL-ZF-MUD in both underloaded
and overloaded ZP-based downlink, for any FIR channel of atderLy.

C=—(Wniy i3)), (5.33)

CP-based downlink

Let us consider a CP-based system [$e)], whereinG = G, can be equiv-
alently expressed &., = Wprr I'cp C . In this case, one has

H— Ho — |:gcp] _ [WIDFT ON><N:| _ [ Lep ON><N:| [C}
cp gzp ON><N WI*DFT ON><N sz C*
~——
WIDFT€C2NX2N fcpe(czNXQN CeC2NxJ
- W|DFT fcpé . (534)

Since rankWpger) = rank Wipgr) + rank Wiser) = 2 N, it results that
rankHcp) = rankT'¢p C) and, hence, we can directly investigate the rank
properties of'c, C. As a first remark, observe that, in order g, C to

be full-column rank, the matriC must necessarily be full-column rank, i.e.,
J < 2N and rankC) = J. Therefore, differently from the ZP case, lin-
ear independence of the augmented code ve&gtar, ..., c; iS a necessary
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but not sufficient condition in order to have rdf&.,) = J. Consequently,

to allow Hcp to be full-column rank even in overloaded scenarios, as a first
constraint on the user codes, we have to impose that the n@tix synthe-

sized according t®,p, which represents a necessary and sufficient condition
in order to have rar(lé) = J,whenN < J < 2N. This implies that any
spreading technique, which enables channel-irrespective WL perfect symbol
recovery for a CP-based downlink, can also be employed for the same purpose
in a ZP-based system. The full-column rank property of the mattiy is
characterized by the following Theorem.

Theorem 5.2 (Rank characterization ofHcp) If C is full-column rank and
the channel transfer functio&'(z) has0 < M, < L distinct zeros on the
subcarriersz,,, = '~ ™z, = eiN ™2 Zma, = 1N MM withmy #
ma # -+ # my, € {0,1,..., N — 1}, then the augmented channel matrix
Hepis full-column rank iffC, S, ] € C2V*(J+2Mz) js full-column rank, where

S. 2 diagls.,S.] € R2VN*2M: s full-column rank andS, € RV*M: has
been previously defined in Theorém.

Proof: The proof is similar in spirit with that of Theorefm 1 and, thus, is
omitted.
Theoremb.2 suggests the following two additional remarks:

Remark 8 As a first consequence, if the channel transfer funcfign)
has no zeros on the subcarrigrs, } 1, i.e., M, = 0, then, similarly to
a ZP-based system, the linear independence of the augmented code vectors
¢1,Co,...,Cy becomes a necessaapd sufficient condition for the existence
of WL-ZF solutions in a CP-based downlink. In this case, a CP-based down-
link can support up t@N active users, which is equal to the system capacity
of a ZP-based downlink employing WL-ZF-MUD. Instead, in the presence of
channel zeros on some subcarrigk,, can still be full-column rank. How-
ever, in this case, provided th@tis full-column rank, the existence of WL-ZF

solutions explicitly depends on the channel-zero configuration.

Remark 9 Most importantly, unlike the condition rafC, S.|) = J+ M,
of Theoremb.1 (see also Remark 3), the condition réf®, S.]) = J + 2 M,
can be satisfied even when the number of users is larger than the number of
subcarriers. Specifically, rafiC, S.]) = J + 2 M, necessarily requires that
2N > J + 2 M,, that is, the numbey of active users must not be larger
than2 (N — M), with0 < M, < L < L, < N. Hence, similarly to
a ZP-based system, WL-ZF-MUD allows a CP-based downlink to support a
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number of users that is exactly the double of the number of users that can be
accommodated when L-ZF-MUD is employed. However, in the latter case,
the allowable number of users is decrementedwWayunits for any additional

zero on the subcarriers and is smaller tRan, which represents the system
capacity of a ZP-based system employing WL-ZF-MUD. In the worst case,
when all the channel zeros are located at the subcarriers, the maximum number
of allowable users in a CP-based downlinRigVv — L).

Similarly to Theorenb.1, the most important implication of Theores2
regards the fact that it enlightens how to single out universal code designs,
which assure that{c, be full-column rank for any possible configuration of
the channel zeros. With this goal in mind, paralleling the arguments that led
to condition Qp in Subsectiorb.3.], the following code design represents a
necessary and sufficient condition ensuring thgy, is full-column rank for
any possible configuration of the channel zeros:

ConditionD, (Universal code design for WL-ZF in CP-MC-CDMA)e-

fine the full-column rank matrixS niv = diagSuniv; Suniv] € R2Vx2L
whereSyny € RY*L has been previously defined in conditiorpDthen,
V{my,mo,...,mp} C{0,1,...,N — 1},

rank([C, Suniv]) = J + 2L or, equivalently,
J— 7T P
rank (Iax — Suniv Suniv) Cl = J . (5.35)

The price to pay for imposing that the matfi€, Sy € C>V*(J+2L)
be full-column rank is a reduction of the system capacity (see Remark 9) be-
cause the universal code desiBg, can be devised for a maximum number
of 2(N — L) users. It should be observed tHag, is stronger than condi-
tion 5zp: indeed,ﬁCIO necessarily requires that ra(r@) = J; on the other
hand, rankC) = J is not sufficient to assure fulfilment dbc,. On the
other hand, it is noteworthy that, if condition,pis satisfied, which is pos-
sible as long ag/ < N — L, thenﬁcp is surely fulfilled, too. Therefore,
by imposing the unique constraint that the parameters{pg}f:f)l be dis-
tinct, the code vectors5(18 guarantee, up t&v — L users, the existence
of universal WL-ZF solutions. However, in its present form, conditiy
does not help us give a direct procedure for synthesizing universal spread-
ing codes whenV — L < J < 2(N — L). Nevertheless, taking into

account that the matriflon — SunivSuny) C € C2¥*J s obtained from
C by setting to zero all the entries of i%sL rows located in the positions
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mi+1me+1,....mr+1m +N+1meo+N+1,...,mp+ N +1,
with reference to the specific case wherdin- L < J <2 (N — L), we can
reformulate conditiolDc, in this way:

Reformulated ConditioD¢y when N — L < J < 2(N — L): Let

w} 2 [c@,cgf),...,cff)] € C™7 denote the(¢ + 1)th row of C, with
¢e{0,1,...,N—1};whenN—-L < J <2 (N-L), for any subset of distinct
indices{¢1,¢2,...,¢n_1} C{0,1,..., N — 1}, there exists/ linearly inde-
pendent vectors from the total set,, wy,, ..., wiy_,, W}, w},,- - NE N

Reformulation of conditiorDcp allows one to readily check out that the
code vectorsH.18 can still fulfill Bcp whenN — L < J < 2(N — L),
provided that, in addition tpy # p1 # - - - # pn_1, further constraints on the
parameters{pg}é\f:})1 are imposed. More precisely, relying on the properties
of Vandermonde vectors$:f], it is not difficult to prove that conditioly, is
surely satisfied if, besides requiring that the parame[tﬁ[}sﬁ’zgl be distinct,
one additionally imposes that

Py # nga Vi, by € {07 L...,N— 1}a (5.36)

which means that the numbgg, } ;' must be complex-valued and cannot be
pairwise conjugate. Additionally, it can be immediately inferred that the VM
codes §.20) cannot satisfy the code desifp since, in this case, it turns out
thatp, = pj_, V¢ € {0,1,..., N — 1}. Furthermore, it can be verified by
direct inspection that the code matrix given By33 does not satisfy condition

D¢p (see also Sectio.5) and, thus, contrary to the ZP case, such a spreading
technique does not guarantee the existence of universal WL-ZF solutions in
CP-based systems.

To develop a family of codes fulfilling conditioB¢,, we restrict our at-
tention to the spreading vectors.{8 and, in particular, we start from the
N-point DFT codesg.20), wherebyp, = e*i%”, vl e {0,1,...,N—1}.To
obtain a set ofV complex-valued paramete{;ag}é\’:j)1 equispaced on the unit
circle, which are not pairwise conjugate, it is sufficient to introduce a suitable
rotation by settingy, = e (% ©%) v € {0,1,..., N — 1} andd € (0,27),
thus getting the code vectors

[e—z‘(—en,e—i(%—e)j iz w-n-0)]" (5.37)
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Vj €{1,2,...,J}, where, in order to fulfill the constraipt, # pj ,Vl1, {2 €
{0,1,..., N — 1}, the angle rotatiod must obey the following condition:

0 + %(€1+€2)+hﬂ', Ve, ty €{0,1,...,N — 1} and Vh € Z. (5.38)

Note that the spreading vectots 7) differ from those in $.20) only for the
multiplicative scalare—*(—%)J. The code vectors5(37) satisfy the condition

D¢p and, hence, they ensure universal WL perfect symbol recovery not only
whenJ < N — L, butalsowhenV — L < J < 2(N — L), in both CP- and
ZP-based systems. Finally, observe that, whésreplaced with’, universal
WL-ZF-MUD is still possible in a CP-based system, with the difference that
perfect symbol recovery can be guaranteed to at h@¥t— L) users, whose
number, although does not depend on the channel order, is however smaller
than2 (N — L).

5.5 Numerical performance analysis

To corroborate our theoretical analysis, we resort to Monte Carlo computer
simulations in this section. Specifically, we consider that, without loss of gen-
erality, the desired user is the first oge=f 1) and, moreover, we assume that
g is exactly known at the receiver.

In all the experiments, the following simulation setting is adopted. The
CP- and ZP-based MC-CDMA systems empldy = 16 subcarriers, with
L, = 4 and OQPSK improper symbol modulation. Both systems use four
different frequency-domain spreading sequences: the common WH spreading
codes; the VM spreading vectors given By20; the complex-valued WH
(CWH) code vectors given by5(33; the rotated VM (RVM) code vectors
given by 6.37), with # = 7/32. The baseband discrete-time multipath channel
{g(0)}_, is a FIR filter of orderL = 3, whose transfer function is given by

Gz)=(1-CGz YA -Gz H1-Gz Y, (5.39)

where the grouf(i, (2, (3) of its three zeros assumes a different configuration
in each Monte Carlo run. During the fir6 runs, we set; = eI ™ (one

zero on the subcarriers), where, in each nun,takes on a different value in
{0,1,..., N — 1}, whereas the magnitudes and phases ahd(s, which are
modeled as mutually independent random variables uniformly distributed over
the intervalg(0, 2) and(0, 2 ), respectively, are randomly and independently
generated from run to run. During the subseql(éﬁ) = 120 runs, we set
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G = N ™ and(y = '¥ ™2 (two zeros on the subcarriers), where, in each
run, m; andms take on a different value ig0,1,..., N — 1}, with m; #

ms, Whereas the magnitude and phas€fwhich are modeled as mutually
independent random variables uniformly distributed over the inte(éai)
and(0, 2 ), respectively, are randomly and independently generated from run
to run. During the last’y) = 560 runs, we set; = eI ML () = N M2
and(s = i ™3 (three zeros on the subcarriers), where, in each nup,

mgy andms take on a different value if0, 1, ..., N — 1}, with m; # mqy #

ms. In this way, one obtain$6 + 120 + 560 = 696 independent channel
realizations. According to assumption A2, the entries of the noise ve¢kor
[see eq. %.6)] are modeled as zero-mean independent identically-distributed
(iid) complex circular Gaussian random variables, with variangeand the

SNR of the desired user is defined as SﬁF@af lle1]|?) /o2 (sincel|c;||? = 1,
Vi e {1,2,...,J}, all the users undergo the same SNR).

For both CP- and ZP-based systems, employing the aforementioned four
different spreading sequences, we carried out a comparative performance study
of the L-ZF, L-MMSE, WL-ZF and WL-MMSE detectots At first sight,
it seems that the synthesis of the L-ZF detector given%h§),(which does
not depend on the statistics of the received data, requires knowledge of the
spreading codes of all the active users, which is an unreasonable requirement
in the downlink. However, following the same lines &¢f]], this problem can
be circumvented by implementing the L-ZF detector by means of the following
SOS-basedubspaceepresentation

flzen =V (As—021) ' VIE g, (5.40)
whereV, € CF*7 collects the eigenvectors associated with théargest
eigenvalues oR,, (arranged in descending order), which represents the di-
agonal entries of\ 2 diagi, A, ..., As] € R7*/, whereas: for a CP-
based systemH = N), E1 = Eep: = ®cp1 Qep € CV*Ir is a known
full-column rank matrix, with®c,; € CY*Y being a nonsingular circu-
lant matrix, whose first column is given ly; = Wperc; € CV; for a
ZP-based systemR( = P), E; = g1 = ®,p1 Qp € CP*Lo, where

%In the sequel, for notational convenience, a particular detector, which operates in a system
employing a given set of spreading sequences, will be synthetically referred to through the
acronym of the detector followed by the acronym of the code enclosed in round brackets; for
example, the notation “L-ZF (WH)” means that the L-ZF detector is used at the receiver and, at
the same time, WH spreading codes are employed at the transmitter.
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®,,1 € CP* is a known lower triangular Toeplitz[] matrix having as first

column[e?’0,...,0]7 and as first rOV\[El(O), 0,...,0]. In the subspace-based
form (5.40, apart fromg and the eigenstructure &,, (which can be con-
sistently estimated from the received data), the synthesis of the L-ZF detector
requires only knowledge of the desired code vectorfor a fair comparison,

we implemented the subspace-based version of the L-MMSE detector defined
in (5.9), which can be expressed &sl] 93] (see also chapterfor more details)

fimmsel = Vs A VEE g, (5.41)

The derivations reported ir{, 93], which exclusively consider linear receiv-

ing structure, can be suitably extended to obtain the subspace versions of the
WL-ZF and WL-MMSE detectors given byb(25 and £.26), respectively,

thus obtaining (for the sake of brevity, we omit the mathematical details)

fwizr1 = U (B — 021;) ' UH [:};} ; (5.42)
=1
fw-mmse,1 = Us 2,1 U [;};] ; (5.43)
=1
whereU, e C2E*/ collects the eigenvectors associated with thiargest
eigenvaluesuy, uo, . .., uy of Ry, (arranged in descending order) aig =
diagp1, 2, . . ., ug] € R7*J. In all the experiments, sample estimates of the

eigenvectors and eigenvalues (including the noise variapceeeded for the
synthesis of the ZF detectors) Bf,, andR,, were obtained in batch-mode

from the sample autocorrelation matricﬁsr and f{zz, respectively, by us-

ing a data record oK = 500 symbols. Finally, as performance measure,

we resorted to the average BER (ABER) at the output of the considered re-
ceivers: after estimating the detector weight vectors on the basis of the given
data record, for each of tti®6 Monte Carlo run (wherein, besides the channel
impulse response, independent sets of noise and data sequences were randomly
generated), an independent recordi@f,e; = 10° symbols was considered to
evaluate the ABER.

Experiment 5.1 (ABER versus SNR): in the first group of experiments, we
evaluated the performances of the considered receivers as a function of the
SNR ranging frond to 20 dB.

In the first two experiments, we preliminarily studied the performances of
the L-ZF and L-MMSE detectors: since linear receivers can work only when
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J < N, we considered in these experiments underloaded CP- and ZP-based
systems, with/ = 10 active users. In Figh.1, we considered a CP-based sys-
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Figure 5.1: ABER versus SNR (CP-based downlink, underloaded sys-
tem with J = 10 users, linear receiving structures).

tem employing either WH or VM spreading cofe this case, it is apparent
from Fig. 5.1that the performances of both the “L-ZF (WH)” and “L-MMSE
(WH)” detectors exhibit a marked floor in the high SNR region, which is the
natural consequence of the fact that, for a CP-based downlink, WH spread-
ing sequences do not ensure the existence of L-ZF solutions when the channel
transfer function exhibits zeros located on the subcarriers. On the other hand,
when VM codes are used, perfect symbol recovery in the absence of noise is
guaranteed regardless of the channel zero locations. In fact, as it is shown in

®The results regarding CWH code vectors are not reported since, for underloaded systems,
they end up to the WH spreading sequences; additionally, in the same scenario, we do not report
the results concerning the RVM spreading vectors since they are very similar to those presented
for the VM code vectors.
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Fig. 5.1, the curves of both the “L-ZF (VM)” and “L-MMSE (VM)” detectors
go down very quickly as the SNR increases, thus assuring a huge performance
gain with respect to the “L-ZF (WH)” and “L-MMSE (WH)” receivers. The
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Figure 5.2: ABER versus SNR (ZP-based downlink, underloaded sys-
tem with J = 10 users, linear receiving structures).

results of Fig5.2were instead obtained by considering a ZP-based downlink.
In this scenario, both WH and VM codes assure the existence of L-ZF solutions
for any FIR channel of ordek < Ly. Indeed, as it is apparent from Fig.2,

the performances of all the receivers under comparison rapidly improve for in-
creasing values of the SNR. As regards the L-ZF receivers, it is noteworthy that
the “L-ZF (WH)” detector performs better than the “L-ZF (VM)” one: specif-
ically, with respect to the “L-ZF (VM)" receiver, the “L-ZF (WH)” detector
saves about dB in transmitter power, for a target ABER . This means

that, in comparison with VM spreading, WH codes lead to a reduced noise
enhancement at the receiver output. Anyway, this performance gap is substan-
tially halved if one brings the same comparison between the performances of
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the “L-MMSE (WH)” and “L-MMSE (VM)” detectors.

In the following two experiments, we investigated the performances of the
WL-ZF and WL-MMSE detectors: since WL receivers can work even when
J > N, we simulated in these experiments overloaded CP- and ZP-based
systems with/ = 20 active users. With reference to a CP-based system, re-
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Figure 5.3: ABER versus SNR (CP-based downlink, overloaded sys-
tem with J = 20 users, WL receiving structures).

sults of Fig.5.3show that the “WL-ZF (WH)”, “WL-MMSE (WH)", “WL-ZF

(VM)” and “WL-MMSE (VM)” receivers do not work at all. As previously
pointed out in Remarks 6 and 7, these catastrophic performances arise since,
not only the WH spreading codes, but also the VM code vectors do not assure
the full-column rank property of the augmented code maftii overloaded
environments, which is a necessary condition for the existence of WL-ZF solu-
tions in CP-based systems. In addition, since the code matrix giveh. ) (

does not satisfy conditioBcp, the curves of both the “WL-ZF (CWH)” and
“WL-MMSE (CWH)” detectors exhibit an unacceptable floor for moderate-
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to-high values of the SNR. In contrast, it can be seen from the same figure
that the proposed RVM spreading vectoss3(), which ensure the existence

of universal WL-ZF solutions in both CP- and ZP-based overloaded systems,
allow the “WL-ZF (RVM)” and “WL-MMSE (RVM)” receivers to work very
well. Fig.5.4reports the ABER curves of the receivers under comparison for
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Figure 5.4: ABER versus SNR (ZP-based downlink, overloaded sys-
tem with J = 20 users, WL receiving structures).

a ZP-based system. We recall that, in this case, the full-column rank property
of C is a necessary and sufficient condition for the existence of WL-ZF solu-
tions. Indeed, besides corroborating the uselessness of the “WL-ZF (WH)”,
“WL-MMSE (WH)", “WL-ZF (VM)” and “WL-MMSE (VM)” receivers in

the considered overloaded setting, results of Figconfirm that both the pro-
posed CWH and RVM code vectors ensure the existence of universal WL-ZF
solutions, by showing that the curves of the “WL-ZF (CWH)", “WL-MMSE
(CWH)”, "WL-ZF (RVM)” and “WL-MMSE (RVM)” rapidly fall away as the

SNR goes up. In particular, as already evidenced in the linear case, due to
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noise amplification effects, the “WL-ZF (CWH)” and “WL-MMSE (CWH)”
detectors perform better than the corresponding counterparts “WL-ZF (RVM)”
and “WL-MMSE (RVM)”, expecially for low SNR values, by guaranteeing a
significant saving in transmitter power, for a given value of the ABER

Experiment 5.2 (ABER versus number of users): in the second group of
experiments, the performances of the considered receivers were studied as a
function of the number of active users, by setting SNR 10 dB. As pre-
viously done, we investigated the performances of linear and WL receivers
separately.

Fig. 5.5 and Fig.5.6 report the performances of the L-ZF and L-MMSE
detectors, when they are employed in both CP- and ZP-based underloaded
systems, which use either WH or VM spreading sequences (the observation
made in footnotes still applies to this case). With reference to a CP-based
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10_ | |

Figure 5.5: ABER versus numbey of users (CP-based downlink,
SNR= 10 dB, linear receiving structures).

system, results of Figh.5shows that, as long as the number of users is less than
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Figure 5.6: ABER versus number of users (ZP-based downlink,
SNR= 10 dB, linear receiving structures).

the thresholdV — L = 13 (see Remarks 3 and 4), the “L-ZF (VM)” and “L-
MMSE (VM)” detectors significantly outperform their “L-ZF (WH)” and “L-
MMSE (WH)” corresponding counterparts. However, as soon as the number of
active users gets ovdr= 13, in which case universal perfect symbol recovery

in the absence of noise cannot be guaranteed, the performances of both the “L-
ZF (VM)” and “L-MMSE (VM)” detectors rapidly deteriorate as the system
load grows, by approaching the curves of the “L-ZF (WH)” and “L-MMSE
(WH)” receivers. On the other hand, it can be seen from Fi§that, for a
ZP-based downlink, wherein the linear independence of the code vectors is a
sufficient and necessary condition for assuring upVtasers the existence of
universal ZF solutions, all the receivers under comparison enable to achieve
a greater system capacity than a CP-based system. In particular, according
with the results of Fig5.2, the WH spreading sequences allow both the “L-ZF
(WH)" and “L-MMSE (WH)" detectors to outperform their “L-ZF (VM)” and
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“L-MMSE (VM)” counterparts, respectively, for all the considered valueg.of
It is worthwhile to note that, withf = N = 16 users, the “L-MMSE (WH)”"
detector is able to assure an ABER of abdut10~* at its output, whereas
the “L-MMSE (VM)” one exhibits competitive performances, i.e., less than
5-10~%, only up tol5 users.

In the last two experiments, we investigated the performances of the WL-
ZF and WL-MMSE detectors as a function of the numbeaf users, ranging
from an underloaded/( < N) to an overloadedf > ) system.
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Figure 5.7: ABER versus numbey of users (CP-based downlink,
SNR= 10 dB, WL receiving structures).

For a CP-based downlink, it can be seen from FEig.that, paying no
attention to the uninteresting cases of WH and CWH spreading sequences,
which do not guarantee channel-irrespective perfect symbol recovery in both
underloaded and overloaded CP-based systems, the “WL-ZF (VM)” and “WL-
MMSE (VM)” detectors perform comparably to the “WL-ZF (RVM)” and
“WL-MMSE (RVM)” ones only for J = 12 active users. Beyond this value,
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Figure 5.8: ABER versus number of users (ZP-based downlink,
SNR= 10 dB, WL linear receiving structures).

while the performances of the “WL-ZF (VM)” and “WL-MMSE (VM)” re-
ceivers get worse very quickly, both the “WL-ZF (RvM)” and “WL-MMSE
(RVM)” detectors still work satisfactorily up t@ (N — L) = 26 users (see
Remarks 9 and 11), by exhibiting ABER values less than or equaltd

and2 - 1073, respectively. Beyond the threshald= 26, whereupon the ex-
istence of universal WL-ZF solutions cannot be ensured, the performances of
the “WL-ZF (RVM)” and “WL-MMSE (RVM)” detectors rapidly worsen as

J increases, and became comparable to those of the “WL-ZF (CWH)" and
“WL-MMSE (CWH)” receivers. Finally, with reference to a ZP-based system,
the curves depicted in Fi§.8 evidence that the performances of the “WL-ZF
(WH)”, “WL-MMSE (WH)”, “WL-ZF (VM)" and “WL-MMSE (VM) re-
ceivers are very poor when the system becomes overloaded. Furthermore, itis
apparent that the proposed RVM and CWH code vectors allow both the WL-ZF
and WL-MMSE receiver to manage a number of users which is significantly
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larger than the number of subcarriers. Remarkably, With 2 N = 32 users,

the “WL-MMSE (CWH)” detector is able to assure an ABER4f 10~* at

its output, whereas the ABER performance of the “WL-MMSE (VM)” is be-
low 10~3 up to30 users. On the basis of these experiments, we maintain that,
among the different spreading techniques considered herein, the RVM code
vectors turn out to be the best choice for both underloaded and overloaded CP-
based systems, equipped with both linear and WL receiving structure, whereas
the CWH spreading vectors allow both linear and WL detectors to exhibit the
best performances in both underloaded and overloaded ZP-based systems



Conclusions

In this thesis, the role of the Widely-Linear processing in the narrowband and
wideband systems has been proposed.

With reference to narrowband systems, we analyzed the constant modulus
cost function under the general assumptions that improper modulation schemes
of practical interest are employed and the baseband equivalent of the chan-
nel impulse response is complex-valued. This study allows one to determine
a broad family of undesired minima of the CM cost function, which do not
lead to perfect symbol recovery in the absence of noise. Successively, in this
contest, we applied widely-linear approach providing the mathematical condi-
tions assuring perfect symbol recovery in the absence of noise. Furthermore,
we enlightened that, similarly to the L-FS-CM equalizer, the performances of
WL-CM equalizers suffer from the presence of undesired global minima. To
overcome this drawback we proposed to resort to a constraint WL-CM equal-
izer.

In the context of wideband systems, with reference to DS-CDMA tech-
niqgue, we developed performance comparisons between ideal and data-
estimated WL-MOE and L-MOE receivers. With reference to the ideal im-
plementation, we investigated the relative performances of the WL-MOE and
L-MOE receivers in the high-SNR regime. In this case, we provided a nec-
essary and sufficient condition on the spreading codes, which allows the WL-
MOE receiver to achieve perfect MAI suppression even in overloaded down-
link configurations. As regards the data-estimated versions of the WL-MOE
and L-MOE receivers, we derived easily interpretable formulas, which allow
one to obtain clear insights about the effects of different parameters on perfor-
mances. In a nutshell, compared with the L-MOE one, the performance of the
WL-MOE receiver turns out to be more sensitive to finite-sample-size effects,
and the performance gains predicted by the theory can be achieve in practice
only by resorting to the more sophisticated subspace-based implementation.
Then, to assess of the effects of channel-estimation errors we have extended
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the previous analysis. Specifically, we presented a comprehensive performance
comparison between different versions of the L- and WL-MOE receivers with
blind CE, when both the ACM and the channel impulse response of the desired
user are estimated from a finite sample-size. This analysis allows to conclude
that with reference to their subspace-based implementations, for moderate-to-
high values of the SNR, errors in estimating the L-SUB-CE and WL-SUB-CE
receivers are essentially due to ACM estimation. The same is not true for
the L-SMI-CE and WL-SMI-CE receivers, implemented by using the sample
ACM directly, for which CE errors undesirably combine with ACM errors;
however, compared with the known-channel case, CE errors adversely affect
the SINR performances of L-SMI-CE and WL-SMI-CE receivers in a similar
way. Therefore, when considering finite sample-size implementation, the more
sophisticated subspace-based implementation is an effective method to assure
that the WL-MOE receiver (with or without CE) significantly outperform (for
low-to-moderate values of the SNR) its linear counterpart. In this case, for a
given channel length, the WL-MOE receiver allows one to work with an in-
creased number of users, which makes it a viable choice in heavily-congested
DS-CDMA networks.

Finally, in the last part of this thesis, we tackled the problem of deriving
mathematical conditions guaranteeing perfect symbol recovery in the absence
of noise for either CP-based or ZP-based MC-CDMA downlink transmissions,
which employ frequency-domain symbol-spreading. The conditions derived
are channel-independent and are expressed in terms of relatively simple sys-
tem design constraints, regarding the maximum number of allowable users
and their spreading sequences. Specifically, it was first shown that, similarly
to a ZP-based MC-CDMA downlink and differently from CP-OFDM systems,
L-ZF-MUD, which is confined only to underloaded systems and can be used
when transmitted symbols are either proper or improper, can be guaranteed
for a CP-based MC-CDMA downlink, even when the channel transfer func-
tion exhibits nulls on some used subcarriers. On the other hand, when the
information-bearing symbols are improper, it was further shown that, for both
CP- and ZP-based systems, WL-ZF-MUD allows one to successfully operate
even in overloaded scenarios, by doubling the system capacity, regardless of
the channel zero locations. However, such an increased throughput can be
achieved as long as appropriate complex-valued spreading codes are used.

Basing on the above results, the suggestions for future work are twofold.
As regard to narro- and wide-band systems, future work could include an ex-
tension of the performance analyses to time-variant channels, since in such an
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environment new issues arise in channel equalization. Moreover, more atten-
tion should be devoted to the role of widely linear processing in ultrawideband
systems, which represent a suitable technology to achieve high data rates in
wireless communications.






Appendix A

Constant Modulus Equalizers

A.1 Proof of Theorem3.1

We distinguish the following groups of stationary points.

GO0. The only vector belonging to this groupdg = O, which trivially
fulfills g(q) = Ok.

G1. In this group, there are all the vectors satisfyg{g)) = Ox ensuring an
ISI-free equalizer output, that is, they exhibit only one nonzero epfrywith
i1 €4{0,1,...,K —1},i.e.,q=7; e;,.
Vector q = ¢, e; satisfiesg(q) = Og if and only if (iff)
(ks +302) G, |* — 75 02] G;, € 2™ = 0; sinceq,, e/ 2™ £ 0 andk, =
o2—3 04, this equation is equivalenttg o2 [g,, |*—vs 02 = 0 & [g;,| = 1.
Thus, the general expression of the vectors belonging to this group is

q, =¢’%e;,, with 0 € [0,27) and iy € {0,1,...,K —1}.  (A.1)

G2. In this group, there are all the vectors satisfyigi(@) = Ox leading to
an ISI-contaminated equalizer output, i.e., the number of their nonzero entries
is greater than one.

To prove the existence of undesired local minima, it is sufficient to focus at-
tention on those solutions @flq) = O possessing only two nonzero entries
q;, andg,,, withi; # i, € {0,1,..., K —1},i.e.,q = q;, €, + G;, €;,. After
some algebraic manipulations, it can been seengHalfills g(q) = O iff
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the following system is satisfied:

(ks +09) [, 17 + 205 ([@, * + (@, ) — s 02113, 17
+08 (@, T5,)° €27 = 0

[(ks + 09) @5, I* + 205 (13,1 + 105, 1%) — 75 03] [,
+03 (a4, 4,)? 72T =0

(A.2)

Since the quantities enclosed in square brackets are real-valued, fulfillment
of (A.2) requires thatg;, 7;,)? e 7 >*#(1=%2) pe a real number, which happens
when

4@1 — 4@2 =7rp (il — iz) + 7['&'1@ (A3)
or when
. . ™
461’1 — Zqu =70 (Zl — Zg) + E + 7T£7;17'£27 (A.4)

with &'1712 € 7.
In these cases, systerh.?) can be split up into the two different systems
= |2 2 S+ la. 2 _
{% 190" 105 0ir i 183, ” = s with 0;, ;, = 1,3, (A5)

0-3 51’1#’2 Wzl |2 + Vs Wz’2|2 = Vs ’

which involve only the magnitudes af;, andg,,. Specifically, it re-
sults thats;, ;, = 3 when(g;, 7;,)? e 7 >#(1=%2) s positive, whereas one has
8iriy = 1 When(g;, g;,)? e 7 2™(1=2) s negative.

By resorting to the Cramer’s rule, it is easily seen thatif£ o2 6;, 45,
the solution of systemA(5) is unique and is given byg; |* = [g,,|* =
vs/(vs + 02 8i,.4,). On the other hand, whep, = 02 4;, 4, System QA.5)
admits an infinite number of solutions characterized by the relatigf? -+
@, * = 1.

In summary, the general expressions of the vectors belonging to this group
are given by

Gy = V) (s +302) - [ei, + (=1) iz /P ey ] (AB)

and

Goo = &0/ (vs + 02) - &5, — j (—1)fnized ™= g, 1 (A7)
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for o2 < 5 < 302, whereas, fory; = 32, one obtains

q2,3 = ej@ : [peil + (_l)gil’i2 ejﬂﬁ(m_il) vV1-— P2 eiz]v for Vs = 30_?
(A.8)
and, finally, fory, = o2, one has

Qo y = eje-[peil—j (—1)€i17i2ej”ﬁ(i2_i1) V1—p?e], fory, = ag (A.9)

with 6 € [0,27‘1’),&'172’2 €Z,i1 Fig € {0,1,...,K— 1} and0 < p < 1.

At this point, to find the local minima ofcm(q), we have to study the pos-
itive definiteness oﬂ(a) given by @3.16), evaluated at each of the stationary
points previously derived.

GO. Since’H(q,) = —2s 02 I, the cost function/em(q) has a local maxi-
mum atq, = Ox.

Gl. The matrix H(q;) turns out to be diagonal, with diagonal entries
{H@)}a+10+1 = 2077 and {H (@) }is1,i01 = 207 (35 — 207), for

i € {0,1,...,K — 1} — {i1}. Hence, ify, > 20?2, the diagonal entries of
‘H(q,) take on both positive and negative values and, consequently, the vector
q; is a saddle point. On the other hand, in accordance with assumption A1, if
vs < 202, the diagonal entries of the diagonal matt&(q;, ) are all positive

and, thus,Jcm(q) has a local minimum &;.

G2.
First, the matrixft(am) is nonsingular, with diagonal entries

{H (@) bitr,i41 = 279 (ks + 208) /(45 + 302), fori € {i1, iz}, (A.10)

and

{H (@) itrie1 = =27 (ks +208) /(75 + 302),
fori e {0,1,....K — 1} — {ir,iz}. (A.11)

It is apparent that, regardless ef, the matrix?ft(am) cannot be positive
definite since its diagonal entries take on both positive and negative values
and, thus,Jem(q) has a saddle point &b ;.

Second, it can be seen t#{(q;, ) turns out to be diagonal, with diagonal
entries

{H(@o2)}it1,im1 = 27s 02, fori € {iy, iz}, (A.12)
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and

{H(@2)}it1i01 = =27 Ko/ (s + 02), fori € {0,1,..., K—1}—{i1,is}.
_ (A13)
If assumption A2 is fulfilled, i.e.xs; < 0, the diagonal matridH(q, ,) is

positive definite since its diagonal entries are all positive and, hefag;gq)
has a local minimum &, ,.

Third, it can be verified thaﬂ(qlg) is diagonal, with diagonal entries

{ﬂ(an)}iH,iH =60,, forie {i,i}, (A.14)

{H(T3)}it1i401 = —202, fori € {0,1,...,K — 1} — {i1,i2}. (A.15)

Since the diagonal entries tﬁ(qw) assume both positive and negative val-
ues,Jem(q) has a saddle point &, 5.

Finally, it results thaf)tt(am) is a diagonal matrix, with positive diagonal
entries

{H (o) }it1,i41 = 202, fori € {0,1,...,K — 1} (A.16)

and, thus Jom(q) has a local minimum & 4-
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Equalization Technigues for
DS-CDMA Systems

B.1 Proof of Lemma4.1

Any vectorf; € C*V can be uniquely decomposedfgs= f; s + f; ., where

we defined thesymmetric parf; s € S 2 (=11 T cC?N|f, =1} ¢

CV} and theantisymmetric parf;, € A 2 {f = [f7 f1]7 € C2V |f, =

—f; € CV}. Since bothh; and q;(k) in (4.22 are symmetric, i.e., they
belong toS, one has R} h;] = £’ h; and Réf} q;(k)] = £}, q;(k) in
(4.24), that is, the SINR4.24) is not affected by the antisymmetric pdt,.
Hence, the weight vectdf; max-sing maximizing SINRf;) given by @.24)

can equivalently be obtained by maximizing the following constrained cost
function:

o 6Py

SINR/(f,) =
’ E[‘ff qj(k)P] fﬁququj

, Subjecttof; € S. (B.1)

Note that in general SIN@;) # SINR(f;), but they coincide fof; € S.
The unconstrained maximization of SINR;) leads [f] to the solution
£’ max-sine = 7j Rq,q, hj, With 7; € C—{0}. Atthis point, we have to impose
that f’; .x.sing Satisfies the constraifit ., sinr € S. To this respect, it can
be verified thaiRc‘ljlqjhj € S, hence, fulfillment of the constraint is ensured
by imposing thaty; be real, i.e.;y; = 7. In conclusion, we can state that
the general expression of the weight vediphax-sing maximizing SINRT ;)

151
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L _ . A
is given byf; max-sing = &; qulqjhj, with ¢; = Rely;] € R — {0}. The cor-
responding maximum value of SINR;) turns out to be SINK; max-sinr) =

Hp-1
hf'Ry’, h;.

B.2 Relationships betweerSINR; max, SINR; | .moe and
SINR; wi-moe in the high-SNR regime

First of all, let us derive the expression®INR; max[see ¢.18)] in terms ofa?.
Under assumption@1)a2), one haRp, . = ®; 5;1 + 02 1Iy. Hence, by
resorting to the EVD ofp; Ef, one obtainRy, . = Vs % Vi +02 Iy,
whereV, ; € CV*"i collects the eigenvectors associated withstheonnull
eigenvaluesi; 1, ij2, - - - , fjr; of ®; Ef (arranged in decreasing order), with
A — . Ay
i = rank(<I>j) < D’lln{N, J — 1} andZ}j,s = dlaEX[LjJ,,uj’z, R ,,uj,rj) S
R"*"i. Relying on this decomposition and reasoning a$)if, [the following
series expansion GINR; max holds:

H H
1 ¢j Vj,n Vj,n ¢j

P,P; ¢; = o2

SINR; max = &' R +¢[1V, s 21 VE ¢ +0(07),

(B.2)
where V;,, € CN*(N=") collects the eigenvectors @b, EJH associated
with its N — r; null eigenvalues. EQq.B2) shows that, asr> — 0,
SINRjmax — oo if and only if (iff) ¢§1Vm VI ¢, # 0, which im-
plies thatg;, ¢ N (V) = R(®;). It is noteworthy that this condition
holds,Vj € {1,2,...,.J}, iff the matrix ® ¢ CV*/ is full-column rank,
i.e., rank®) = J, which imposes that the number of usefsmust be
smaller than or equal to the processing g&irffunderloaded system). On the
other hand, Whemj belongs t07€($j), it results thallima%O SINR;j max =
®1'V;s 3. VL ¢;, which evidences that, @ — 0, SINR; max takes on a
finite value.

At this point, we are able to establish the relationship existing between
SINR; max and SINR (-moe [see €.18 and ¢@.50)], in the limiting case of
vanishingly small noise. Preliminarily, we observe that, under assumptions
(alHa2). one hasR,, p: = P; 5?. By substituting 4.16) in (4.50 and
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accounting for4.18), after some algebraic manipulations, one obtains

SINR; | . 2
lim j,L-MOE __ — —.  (B.3)
02—0 SlNRj’max 1+ lim Re[d)j joqu’j (®; R;jpj)* ¢j}
20 SINR; max

By resorting to the limit formula for the Moore-Penrose inversé][ it

can be seen thdim,:_, R;jlpjgj = (5?)T and lim,2_g EfR;jlpj =

(®;)T. Consequently, we géim,2_ Re[¢f R;jlpj@ @f R ) ¢t] =

P;P;
Re[qbf"(@?)T (®;)T ¢3], which can only assume finite values. Therefore,
based on the previous discussion regarding the asymptotic expression of
SINR; max by virtue of B.2) and B.3), we can conclude that, # is full-
column rank, then

SINR; | -moE _

im 2, Vjed{1,2,...,J}, B.4

which additionally implies that, as?, — 0, SINR; .m0 — +00, Vj €
{1,2,...,J}.
Let us now derive the expression of SINR -moe [see ¢.49)] in terms of
o,. Under assumption@1){a2), one haRq o, = H; ﬁf + 02 1I,y. Rea-
soning as previously done f&NR; max, We express SINRy.-moe explicitly
in terms ofo? as follows:
Hp-1
SINRjwi-voe = hi' Rg'y by
H H

2
0y

+hl'U;, Ajj; U hj+o(c2), (B.5)

v

whereU; ; € C2V*¥i collects the eigenvectors associated withithaonnull
eigenvalues,; 1, Aj2,..., \ju, of H; ﬁfl (arranged in decreasing order), with
Vj é rank(ﬁj) < min{2 N,J — 1} andAm é diag()\ﬂ, /\j,g, .. .,)\j7yj) S
R%>¥i, whereasU;,, € C2N*(2N-) collects the eigenvectors &, F1;
associated with it2 N — v; null eigenvalues. It can be argued froid.%)
that, aso? — 0, SINR;wi.moe — +oc iff hi'U;,, U h; # 0, which
implies thath; ¢ AV (UJ)) = R(H;). On the other hand, when; belongs
to R(H;), it results that, ag? — 0, SINR; wL-moE takes on the finite value
hi'U;, A; 1 U h;. Therefore, since conditioh; ¢ R(H;) holds,V; €

S
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{1,2,...,J}, iff the augmented matrifl = [®7, &7 ¢ C2V*/ is full-
column rank, we maintain that, in the absence of noise, the WL-MOE receiver
is able to achieve perfect MAI suppression éarchactive user iff rankH) =

J. The matrixH turns out to be full-column rank iff the null spaces of the
matrices® and ®* intersect only trivially (see, e.g.9f]), that is, N'(®) N
N(®*) = {0;}. If @ is full-column rank, which necessarily requires that
J < N (underloaded system), this condition is trivially satisfied and, hence,
the augmented matriM is full-column rank as well. However, the converse
statement is not true, that i may be full-column rank even wheN <

J < 2 N (overloaded system). To point out a first consequence of this result,
let us focus attention on the case wh¥nh< J < 2 N. In this overloaded
scenario, the matri® cannot be full-column rank and, thus, it results that, as
o2 — 0, SINR; L-moE takes on a finite value. In contrast, sinbecan still

be full-column rank in an overloaded system, relying on the results provided
before, we can infer that, H is full-column rank, then

SINR; wL-MoE

lim =400, (B.6)

02—0 SINRj,L-MOE
Vi e{1,2,...,J},with N < J < 2N. Letus now consider an underloaded
scenario J < N) and assume thab is full-column rank. Since in this case

the matrixH is full-column rank, too, it follows that both SINRmoe and
SINR; wL-moe diverge, in the limiting case of vanishingly small noise, and

thuslim,2 Sg'l\',fgiim assumes an indeterminate form. To overcome this
v g, L-
mathematical difficulty, we preliminary develop the relationship existing be-
tween SINRB wL-moe andSINR; max in the high-SNR regime, by resorting to

the series expansionB.Q) and B.5). So doing, we get:

. SINRjwiwoe _ B Ujn Uil by [[U7 byl (B.7)
012,_’0 SINRj7maX Q’);{ V]vn an (’i)] HVJL’[TL d)‘] H2 |

where, since bot® andH are full-column rank, it follows thdtvfn @il #0
and||UY, h;| #0,Vj € {1,2,...,J}. Itis worth observing thaV ; , VI
andU;, Ufn represent the orthogonal projections]] onto the subspaces
RL(®;) and R+(H;), respectively, which can be equivalently expressed
24 asV,;, VI = Iy - &;(3,®,)"'®, andU,, U = Ly -

H; (ﬁ]H ﬁj)—lﬁf. By substituting this two relations irB3(7), and remem-
bering thatH; = [Ef,ﬁf]T andh; = [¢],¢!"]T, after some algebraic
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manipulations, one has:

— —H— . _ —H
im SINR; wiL-MoE —9. H¢]H2 — Re[('b;](pj] {Re[q)j (I)j]} 1 Re[q)j ¢]]
= — _—_H— —H )
020  SINRjmax ;112 — &5 ®; (25 @) @5 &,

(B.8)
Therefore, if® is full-column rank, accounting for3(4) and @.8), we can
state that:

i SINRiwimoe _ . SINRjwimoe | SINRjmax
o2—0 SINR; | .moE 02—0 SINRjmax  ¢2—0 SINR; | -moE

_ 19,1~ Reg)'®,) {Re®,' 3]} ReB; 6]
16,112 — 611 ®; (@] 81 & ¢,

(B.9)

B.3 Proof of Theorem4.1

Accounting for @.52 and ¢@.54), and exploiting the fact th&* ® = I, one

has: o o c
NxN
H= [ONXN G ] [C* (92)*] A, (B.10)
which, as a consequence of the nonsingularity of matri@GesA and ©,
implies that rankH) = rank[CT,(C@®?)#]T). In its turn, the matrix
[CT,(C®*)H]T ¢ C?NV*/ s full-column rank iff A/(C) N N[C* (©%)*] =
{0;}. At this point, let us characterize the null spacesCoaind C* (©?%)*,
whenN < J < 2 N. In this overloaded case, by assuming without loss of
generality that the firsiV columncy, cs,...,cy of C are linearly indepen-
dent, its remaining/ — N columnscyyi, cy42,...,Cy Can be expressed
as a linear combination of the firdf ones, thus obtaining the following de-

compositionC = Cieft [Iyv, IT], whereCieft = [c1, ca,...,cn] € CNV*N s
nonsingular andI € CV*(/=N) is a tall matrix. Due to nonsingularity of
Clett, it follows that V' (C) = N ([Iy, II]). Hence, it can be verified that the
general forms of a vectax; € C’ belonging to\V(C) and a vector, € C’
belonging to\ [C* (©2)*] are given by

o = -1 Y1 and oy = 6?2 -1l Vs, (B.11)
| WA, I;_n

with arbitrary 9,9, € C’/~V. By virtue of (B.11), the matrixH is
not full-column rank iff there exist at least two nonzero vectdrs and
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¥, such thata; = a3, which amounts toIT¥; = ©?II*9, and
D1 = ©29,, with ©; = diage’®,¢i®%, ... ) ¢ CN*N and@, =
diag(e'On+1, etfn+2 . eif) e C/-N)x(J=N) = By substituting the sec-

ond relation in the first one and observing ti@¢ is nonsingular, one ob-
tains [IT* — (@2)* I ®3] ¥, = 0y, which shows that, if the matri¥T* —
(@)*11 032 ¢ CV*(/=N) s full-column rank, themy; = a is satisfied
iff ¥ = 92 = 0,;_n. This assures that ra(l) = J, since it means that
N(C)NN[C* (©%)] = {0,}.

B.4 Proof of Lemma4.2

First, let us consider the SMI implementation of the WL-MOE receiver. By
substituting 4.20 in (4.63), the sample autocorrelation mati,, of the aug-
mented vector (k) can be expressed as

R, =hhf' + 0T, +Fqh) + Rayq, (B.12)

whererg ;, = ¥ i q]( )bj(k) andRq,q, = ¥ o q;( )al (k)
represent sample estimates of the cross-correlation between the disturbance
vector q;(k) and the desired symbal;(k), and the autocorrelation matrix

of q;(k), respectively. It is shown in/[] that, for moderate-to-high val-

ues of the sample size, i.elf > 6N, the predominant cause of SINR
degradation is represented by, and, thus, replacin@qjqj with Rqq;

in (B.12) has a very marginal effect on the SINR. Therefore, remember-
ing thatR,, = hjh! + Rq,q, €. B.12) can be rewritten aR,, —

R,, + h; ?fi_bj + ?qujhf. Its inverse admits4] the following first-order

approximationf(1 ~ R, — R, (h;t] b, T Tqph MR, which can be
substituted in4.65), thus obtaining

fjwi-sm =~ fjwi-moe —Pjwi Ry, Tq; = fjwi-moe+6f;wi-swi, (B.13)

~
of j wiL-smi

with P 2 Ly — YRy h)'RyhhY = Ty —

(bl Rq o, )~ 'Ry, hjhil € CNXN, where here and in the sequel
the symboIN denotesglrst order equality i.e., we neglect all the summands
that tend to zero, as the sample si&e approaches infinity, faster than
the norm of the corresponding perturbation term. It is easily verified that
P;wL. R, =P;w R;jlqj
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At this point, we focus attention on the subspace implementation of the
WL-MOE receiver. Preliminary, we recall that the EVD Rf,, is given by
(4.64) that here is reported for simplicity

~ N~ o~ ~H o~ ~ ~H
R,, = U,A, U, +U,A, U, , (B.14)

Whereﬁs, Ks, fJn andf&n are sample estimates &f;, A,, U, ando? 1y,
respectively. WherR,, is estimated from the received data as #6(),

for a sufficiently large sample siz&, the estimate can be decomposed as
R.. = R,, + 0R,,, wheredR,, is a small additive perturbation (in the
Frobenius norm sense). Consequently, the matiiteand A, can be written

[77, 76 asUg; = Ug + dU; andA; = A + dA,, wheredU, andd A rep-

resent the resulting perturbation in the estimated signal subspace, whose norm
is of the order of|R|. It results [[7, 76] that §U ~ U, UZ6R,, Q. ,

with QwL = ASA— ag I I & anddA; ~ Uf 0R,, U;. By substituting the above
expressions olU; and A, in (4.66), and remembering tha® ; w_ R =
Pjw. Rg g, we get:

f;wi-sus ~ f; wL-MoE — (Pj,WL Ry q, = viwe UnUy ) Tqb,

of ; wL-sus

= f; wL-moE + 6f jwi-sus (B.15)

VAN _ _ _ _
wherey;wi = 0,2 + (hff R;, hj)"'h{'U, Oy U'R,'h;.

B.5 Proof of Lemma4.4

It is shown in the proof of the Lemm4.2 in B.4 that, for moderate-to-
high values of the sample size, i.d > 6N, the sample ACM given
by (4.63 can be decomposed zﬁzz = R,, + 0R,,, wheredR,, =

~ ~ o~ A _
hy Ty, + Tap,hff € CN2N with Tq p, = % 375" a;(k) bj(k). Con-
sequently, the inverse of the sample ACM admits the first-order approximation
R,, ~ R — R 6R,, R.!, where in the sequel the symbel denotes
first-order equality.

First, let us consider the SMI-CE implementatidnl(09 of the WL-MOE

receiver. Substituting the previous approximationfbjz1 and ﬂj = h; +
oh; in (4.109, after some algebraic manipulations, one obtains the first-order
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approximation of the weight vector

~ 1
f;wL-smi-ce ~ £ wL-moe —PjwL R, 0R; 5 wi-moE

(1)
OF ; wi-smice

+ (h{ R, hy) ™" R, 6h; — 2 Re(ff\y o 0hy) £ wi-moe

-~

(2)
5fj,WL-SMI-CE

1 2
= fjwi-moE + 6f§‘,\3VL-SMI-CE + 5f§,\)\/L-SM|-CE , (B.16)

with P 2 Ly — WRyh)'RhhY = Ty —
(hf Rq'q b)) 'Rqq hjhf’ € C*MN.  Observe that, taking
into account 420 the matrlx P;wL can be equivalently expressed
asPjw = Iy — fj h Substituting the expression afR,, in

afg',l\ZVL—SMI—CE' and observing thalP ; wi R} h; = 0qy, hffj,WL-MOE =1

andP; w RZ =P;wL Rq q;» one has

1 -1 = ~
5f§',\3VL—SMI—CE =—-Pjw Rq,-qj Tq,b; = —I'jwe Tq,b; - (B.17)
N———’

Fj,WL E(CQN X2N

Since bothf wi-moe and éh; exhibit the CS property, the scalar
ffWL-MOE 5h |S I’ea| and, thUS, Re(f],WL-MOE 6h]) 4,WL-MOE =
(f7wi-moe 0hy) 5 wi-moe = (Fjwi-moe f\wi-moe) 8h;. Consequently,

2 _ _ _
S wswice = [(hf Rz, hy) ' Ry, — 2£; wiwoe £wiwoe] by
A €C2NX2N

— AjwL 6h; . (B.18)

At this point, we focus attention on the SUB-CE implementati®i{0
of the WL-MOE receiver. When the EVD is applied to the sample_ ABY)
given by @.63), for a sufficiently large sample siz&, the matrlcesU and
A, can be decomposed(, 77] asU, = U, + 6U, andA, = A, + JA,,
whered U, andd A ; represent the resulting perturbation in the estimated signal
subspace, whose norm is of the order||6R,,||. Moreover, it results {6,

] thatdU, ~ U, UH8R,, U, Oy}, with Qu 2 diagihy, Aa,..., A)) €
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R7*/ andd A, ~ USR,, U,. Consequently, we can write

'O 2 U AT U U AT U
~ U AJYOA AU L su A UYL (B.19)

U, A

S S

Observe that, sinct¥ h; = 0,57, one hassUX h; = 0;. Hence, using

(B.19), accounting for the first-order perturbationstéf and A, and remem-

bering thath; = h; + éh;, one obtains

h, U,A, U, h;~h? UA; U b — b U A 6A, A, UF by
+2Rehl U, A UM 6hy] . (B.20)

Substituting B.19) and B.20) in (4.110, after some tedious but straightfor-

ward algebra, the first-order approximation of the weight vector can be con-
cisely written as

fjwL-sus-ce = fjwL-moE + 5f§',1\3VL-SUB-CE + 6f§‘,2\3VL—SUB—CE7 (B.21)
where
1 A _
0 fg‘,\BVL—SUB—CE = —{P;wLR,, 6R .+
—~ U, UZ6R,, [0,2 Loy + U, Q. U] wi-moe, (B.22)
5f§‘,2\3VL—SUB—CE = (bR, b))~ [R,) — 0,2 U, U] + 6h;
— 2Re(f\wi-moe 6h;) £ wi-MoE - (B.23)

Then, substituting the expression of the perturbadi®y,, in (B.22), remem-
bering again thaUnH h; = 02ny_ 7, hffj,WL-MOE =1,P;wL Rz_zl h; = 02y

-1 _p. —1
andP;w. R, =P;wL quqj, one gets

(1) _ A -1 , HY =  _ S
of ; wi-sus-ce = — (PiwL quq.,- —viwL UnUp' ) Tqpp; = —TiwL Tq;b; 5

~
Fj,WL e@QN X2N

(B.24)
A _ _ _ _
where Yj,WL - 0172 + (hf I{’zz1 h]) 1h§{U$ QWt U? Rzzl hj'

Moreover, using again the fact that ﬂﬁNL_MOEéhj)fj,WL-MOE =
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(fj,wL-mMoE ffWL_MOE) oh; and observing that, by virtue of the EVD proper-
ties,R,.! — 0,2U, UZ = U, A;1 U the perturbation term(23) can be
rewritten as

2 _ _ _
Ot sus.ce = (0 R hy) ™ UL AT U — 265 wiwoe £ o] oh;

A, w €C2Nx2N

— AjwL 6h; . (B.25)

B.6 Proof of Lemma4.5

For a sufficiently large sample siZg, When the EVD is applied R, 2

Ry, + 0Rzs, Where §R,, = hyTqy, + Tqphfl € CN2N, with
Tqp, = sz 0 q]( )bj(k), the matrixU,, can be decomposed{, 77]

as Un = U, + 6U, and the perturbation in the estimated noise sub-
space has the following fordiU,, ~ —U, Q| UZ6R,, U, with Qu, 2
diag\1, Ae, ..., A;) € R/*J. By substituting the expression 6R,, and
noticing thatU{f h; = 02x_ 7, One obtains

§U, ~ —U, Qi UMy Ty, U, (B.26)

The perturbatiodU,, implies an error in the channel estimag given by
(4.107), which assumes the for@, = o, + do;, whered; represents the
CE error. Remembering thgtj = h; + dh; = @;C; T; g, is the estimate
of the signatureh; = a;C; T; g;, one easily getdh; = «a;C; T;do;.

According to ¢.47), the channel vectop; is the unique eigenvector corre-
A

sponding to the null eigenvalue E[fjH QjwL T; € C*Hix2Li with Q;w =
cl'u, Ullc; e C?%sx?Li. The sample estima@;w. = ¢ U, U ¢
of matrix Q;w. can be decomposed @j,WL = Q;wL + 09, wL Where,
accounting for B.26), the perturbatiod Q ; wi has the form
sQ,wL ~ Ci U, Ul c; +clu, U]l ¢;
= —C]'U, @ Ul Ty, U, U C;
—CH'U, U} Tq 0, 0] U, Oy U C; (B.27)

Based on4.47), one ha§Ff Qj,WL T;0; = Tf (QjwL+0Q;w) T; (0,;+
6Qj) ~ Tf Qj,WL Tj 59]- + Tf[ 5Qj,WL Tj Q; ~ OQL]., which |mpI|es
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that TH Q;w. T; 60, ~ —T} 6Q;wL T; e;, whose minimal-norm least-
squares solutior’fd] is given by

do; ~ —(TF Qw. T;)' T/ 6Q;w. T; o;
H H H
=-T; Q},WL T;T;6Q;w Tje;=-T; Q},WL 0Q;w. Tjo;,

(B.28)
since T; is unitary. Substituting K.27) in (B.28) and ob-
serving that, due to 4(47, UijTj 2; = 0Oyy_,;, one has
do; ~ TH 9\, U, Uty ,, (W U, U C; T 0;),
from which we finally have é&h; = a;C;T;dp; =

(hfl U Q\7V|1_ Uf h;)C; Q;‘,WL Cf Uy, Uﬁ[ ?quj-

B.7 Evaluation oftrace(X !\ R.z Xjwi Ry q,)

Initially, we will proceed in a unified manner by treating the SMI and SUB
cases jointly. Sinc&,;w. = —LI';wL + A wL IL;w. (see Lemmat.6), us-
ing the linearity property of the trace operator and observing fajy,_ is
Hermitian (see Lemmad.4), we can write

trace =1y Rz Bjwi Ra,q,) = traceT [\ Ruz Tjwi Re,q,)
~trace(ITj iy AjwL Raz Tjwi Ra;q;)—tracT i Raz Ajwi Ihwe Ry,q,)
+ trace{HfWL Aj,WL R, Aj7W|_ Hj7W|_ quq].) . (B.29)

By invoking the properties of the trace operator, it follows that

tl’aCE{FfWL Rzz Aj,WL Hj,WL RCIij)
= trace (H]I_,IWL Aj,WL R, ]-‘j,WL qu‘qj')7 (B30)

which shows that the third summand iB.29) is the conjugate version of
the second one. Moreover, remembering tRgt, = h; hJH + Rq,q;

and Ufj h; = 0oy_;, and accounting for the expressions Bfw. (see
Lemma4.4) and IL; v (see Lemmad.5), it can be directly verified that
R,, Fj,WL = quqj Fj,WL and Hj,WL quqj = Hj7w|_ R,.. Thus, the first
summand in .29) becomes trad®& /iy, Rg;q, T'jwL Rq;q;), Whereas the
fourth one reduces to trage ; wi Rz, Ajwi) (IT;w Rz HfWL)], where
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we have also used the properties of the trace operator again. This last trace
can be further explicated by replacidd;w_ with its expression given in
Lemmad4.5: in particular, usin®R,, = U, A, U +52 U, UY remembering
thatU// U, = Ioy_; andU}/ U, = Oun_ )« s, and observing that, on the
basis of the Moore-Penrose conditions][ Q' Qjw. Qi = 2.
one has

ILw Ro, Iy = o2 (W U, Qyt U hy)?c; 0y, e (B.31)

Consequently, taking in accouriz.30)-(B.31) and substituting the expression
of IT; w in the second summand d3 29), we get

traCQZ:jT_,IWL RZZ Ej,WL qu'q]') = trvaI‘j}',IWL quqj I‘j7WL quqj)
—2 (b U, l UM hy) ReltracqU,, U ¢; Qf . € Ajwi Ryz Tjwi Ra,q, )]

+ 02 (WU, Qi U hj)? tracd(Ajwe Raz Ajwe) (€5 Q1 €]
(B.32)

At this point, we have to consider the SMI and SUB cases separately.

Let us start from the SMI case, for whidh,w. = Pjwe R;jlqj and
Ajwe = ('R 'h)7'R,,} — 2f;f/'. Recalling the equation4(76)
in the subsectiort.5.1, we know that trao(d‘fWLquqj FjwLRq,q;) =
2N — 1. As regards the second summand iB.32), we observe
that Ajwi Rez Tjwe Re,q, = (hFR'hy) ™ (Piwe — ;0] Pjw =
(thL‘TRZ‘Zlhj)*1 P;wL, where the second equality follows by noticing that
h/Pjw. = 0%, and P?,, = P,;w.. Henceforth, observing that
P;w. U,, = U, and using the trace properties, the second summarsi3a)(
becomes

—2(;wi RetracqU,, U ¢; Q1 ¢ Py )]
= —2(;wL ReltracgP,;w U, U ¢; 01, c1h))]

= —2(wL Retracd Q' €/ U, U €))] = —2Gw (2L; — 1),
—_———
Qi wL
(B.33)

with Cwe 2 (hi' R, h;)~' bl U, Oy UZ h; > 0, where the last equal-
ity comes from the fact tha@}’WL Q;wL is the orthogonal projector onto the
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subspacéz(QfWL) = R(Q;wL) (Moore definition of the generalized inverse
[24]) and, hencé,

tracg Q' QjwL) = rankQ;wi) = rank U ¢;) =2L; —1 (B.34)

where the last equality is justified because (@AK C;) =2L; — 1 by virtue
of condition (c3). Considering the third summand iB.32), we note that
Ajwi Raz Ajwi = Ry (Ra Ajw)” = (bfR,,'hy) Ry, (Pily —
h; £1)2 which, using the facts thaP’y, )2 = P, , Py h; = 0ay,
f1 Pl = 01y andP}ly, + h; 7 =Ty, ends up todjwi Rz Ajwe =
(hi'R_'h;)?R,,. Consequently, the third summand B.82) assumes the
form

o2 Ay tracdR,, C; QF I, (B.35)
By substituting B.35), (B.33) and @.76) in (B.32), we have proven4(127:

trace =y Rz Zjwi Ra,q,) = (2N —1) —2Gwi(2L; — 1)

+ G o2 traceR,, ¢; @y, i), (B.36)

Let us consider now the SUB case, whereid;w. =

(R )" UA'UY — 2f68 and Ty = P,wR7Y -
j tlzz ) s s J%g Js I q,49;

v UnUH with v 2 072 + (bR, h;)"'h'U, Oy UPR, h;.
In subsection.5.1, we have shown equatiod.79 that we report here for
simplicity
traCE(FfWLRqJ‘CIj I‘j1WL quqj) - (J - 1) + (2 N — J) ‘1 — Yj,wL 0-12)‘2‘
(B.37)
As to the second summand iB.62), sinceR,, = h; hf + Rq,q, =
Us; A, U + 02U, UH, with UPh; = 0oy_y, UFU, = Ly,
UlU, =1,, U U, = Ouy_jxsandU, UY+U, U = Iy, we obtain
thaII‘j,WL quqj = Pj,WL — Y4,wWL UnUnHRzz = Pj,WL — Vj,wWL 012; UnUg
andA;wL Rzz = (h'R'h;)~! (P;wL — £;hf — U, ULN). Consequently,
we get

Ajwi RuzTjwi Ry q, = (W'R,'hy) ™ (Pw — U, UY),  (B.38)
where we have used the facts tHaf,, = P;w., h/ Pjw. = 0I,

Ul Pjw. = U, b’ U, = 0l,_; andP,;w. U, = U,. Therefore, ob-
serving again thaP,;w_U,, = U,, U{j U, = I,y_; and using the trace

LIf y is an eigenvalue of the orthogonal projec@;\,\,L Q; w, theny € {0, 1}.
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properties, the second summandin3i2) simplifies to

—2¢;wLRdtracgU,, U ¢; Q]WL CiPjw)
— tracqU, U ¢; o, c/'U, UM =

—2GwL {Re [trace(QjWL QjwL) — trace(QjWL Qj,WL)]} =0. (B.39)

With reference to the third summand inB.82), we note that
Ajw Rz Ajwe = Ry, (Run Ajwi)® = (bR'hy)° Ry, (PHy —

h; £ — U, U/)2 which, exploiting the EVIR,, = U, A, U +02 U, U/

and its related properties (as done for the second summand), and using the
faCtS tha.t(P]\NL)2 — P_]WL' fHPJWL — OgN’ U P]WL — UH,

Pl hj = 02y, U'hy = 0on_y, PHy, U, = Uy, fHUn =0l ;

and P, + h; ff = Iyy, boils down to Ay R, Ajw =
(hi'R_'h;)~2 (R;zl — 0,20, U Consequently, the third summand in
(B.32) assumes the form

ol traceR,,! C; QF\y ) — 2y tracqU, UL ¢; @, ¢l

~~

trace(gjﬁv\”_ QiwL)
=0 (Gwtrac€R,, C; QJWLC )= Cw(2L; —1). (B.40)

Thus, by substitutingK.40), (B.39) and B.37) in (B.32), we have proven
(4.129, too:

trace Sy Rz Zjwe Rayq,) = (J — 1) + 2N = J)|1 — w0
—Cw(2L; — 1)+ CwoptraceR,, C; QJ w Ci. (B.41)



Appendix C

Equalization Technigues for
MC-CDMA Systems

C.1 Proof of Theorem5.1

Let us consider the case when the channel transfer funciion) has
0 < M, < L distinct zeros on the subcarriets,, = e"%ﬂml,zm =
M2y, = eI N MM with my # mg # - F mpy, €
{0,1,..., N — 1}. In this case, one has

- 2T
e'N

Yep(ma) = Yep(ma2) = - -+ = Yep(mar,) = 0 (C.1)
and, thus, the diagonal matrkxp is singular with
rankTcp) = N — M. (C.2)

In its turn, this implies thagc, may be rank deficient even if the code vectors
c1,¢o,...,cy are linearly independent, i.eG is full-column rank. Indeed,
under the assumptions thdt < N and rankC) = J, the matrixI'c, C is
full-column rank iff [24]

N (Tep) NR(C) = 0. (C.3)

The null space oF ¢, can be readily characterized: an arbitrary vegiar cN
belongs to\/ (T'¢p) iff there exists a vectoB € CM:= such thaty = S, 8.
Hence, an arbitrary vectqr € N (T'¢p) also belongs to the subspa®€C)
iff there exists a vectoex € C” such thaiS, 3 = C . As a consequence,
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condition V' (T'¢p) N R(C) = Ox holds iff the system of equatiors o —
S. 3 = 0p admits the unique solutioax = 0; and3 = 0,,,. It can be
seen 6] that this happens iff the matrfC, S.] € CV*(/+M:) turns out to be
full-column rank.

C.2 Proof of Lemmab.1

Preliminarily, observe that ra&) = .J iff the null spaces ofC andC* in-
tersect only trivially, that is\(C) N AV(C*) = {0,}. An arbitrarynonzero
vectora € C’ belongs taV(C) iff Ca = 0y, from which, by conjugat-
ing, one obtainC*a* = 0y. The last two systems of equations show that
a € N(C) iff a* € N(C*). Consequently, an arbitrary vectar# 0; be-
longs toV(C) N A (C*) iff there exists a nonzero vectdr ¢ C/ belonging

to A(C) such thap3* = a.
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