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Abstract. Architectural knowledge consists of architecture design as well as 
the design decisions, assumptions, context, and other factors that together 
determine why a particular solution is the way it is. Except for the 
architecture design part, most of the architectural knowledge usually remains 
hidden, tacit in the heads of the architects. We conjecture that an explicit 
representation of architectural knowledge is helpful for building and evolving 
quality systems. If we had a repository of architectural knowledge for a 
system, what would it ideally contain, how would we build it, and exploit it in 
practice? In this paper we describe a use-case model for an architectural 
knowledge base, together with its underlying ontology. We present a small 
case study in which we model available architectural knowledge in a 
commercial tool, the Aduna Cluster Map Viewer, which is aimed at ontology-
based visualization. Putting together ontologies, use cases and tool support, 
we are able to reason about which types of architecting tasks can be 
supported, and how this can be done. 

1   Introduction 

Software that is being used, evolves. For that reason, quality issues like 
comprehensibility, integrity, and flexibility are important concerns. For that reason 
also, we not only bother about today’s requirements during development but also, and 
maybe even more so, about the requirements of tomorrow. 

This is one of the main reasons for the importance of software architecture, as for 
instance stated in Bass et al. [1]: a software architecture manifests the early design 
decisions. These early decisions determine the system’s development, deployment, 
and evolution. It is the earliest point at which these decisions can be assessed. 

There are many definitions of software architecture. Many talk about components 
and connectors, or the ‘high-level conception of a system’. This high-level conception 
then is supposed to capture the ‘major design decisions’. Whether a design decision is 
major or not really can only be ascertained with hindsight, when we try to change the 
system. Only then it will show which decisions were really important. A priori, it is 
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often not at all clear if and why one design decision is more important than another 
one [9]. 

Architectural design, even well documented according to all the good recipes [5, 
12, 14], is only one small part of the Architectural Knowledge that is required to 
design a system, or that is needed to guide a possibly multisite development team, or 
that can be exploited out of a system to build the next one, or that is required to 
successfully evolve a system. Van Vliet and Lago have pointed rightfully that all the 
assumptions that were made during the architectural design, all the linkage to the 
environment are a key component of architectural knowledge [16, 28]. Similarly, 
Bosch and others have pointed out that design decisions, the tight set of 
interdependencies between them, and their mapping to both the requirements, needs, 
constraints upstream, or the design and implementation downstream are also a key 
component of architectural knowledge [2, 15, 25]. 

We can usually get at the architectural Design part, ultimately by reverse 
engineering if there was no explicit documentation. This amounts to the result of the 
design decisions, the solutions chosen, not the reasoning behind them. The Context 
and some of the Rationale may be partially retrieved from management documents, 
vision documents, requirements specs, etc. Design Decisions and much of the 
Rationale are usually lost forever, or reside only in the head of the few people 
associated with them, if they are still around. 

So the reasoning behind a design decision, and other forces that drive those 
decisions (such as: company policies, standards that have to be used, earlier 
experiences of the architect, etc.), are not explicitly captured. This is tacit knowledge, 
essential for the solution chosen, but not documented. At a later stage, it then becomes 
difficult to trace the reasons of certain design decisions. In particular, during the 
evolution one may stumble upon these design decisions, try to undo them or work 
around them, and get into trouble when this turns out to be very costly if not 
impossible. The future evolutionary capabilities of a system can be better assessed if 
this type of knowledge would be explicit. We use the term assumptions as a general 
denominator for the forces that drive architectural design decisions. Just like it is 
difficult to distinguish between the what and the how in software development, so that 
one person’s requirements is another person’s design, it is also difficult to distinguish 
between assumptions and decisions. Here too, from one perspective or stakeholder, 
we may denote something as an assumption, while that same thing may be seen as a 
design decision from another perspective. As a result, we are left with: 

Architectural Knowledge = Design Decisions + Design (1) 

In this paper, we focus on the Design Decisions and their rationale. We distinguish 
four types of design decisions: 

• Implicit and undocumented: the architect is unaware of the decision, or it 
concerns “of course” knowledge. Examples include earlier experience, implicit 
company policies to use certain approaches, standards, and the like. 
• Explicit but undocumented: the architect takes a decision for a very specific 
reason (e.g., the decision to use a certain user-interface policy because of time 
constraints). The reasoning is not documented, and thus is likely to vaporize over 
time. 
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• Explicit, and explicitly undocumented: the reasoning is hidden. There may be 
tactical company reasons to do so, or the architect may have personal reasons (e.g., to 
protect his position). 
• Explicit and documented: this is the preferred, but quite likely exceptional, 
situation. 

1.1   The Role of Knowledge Management 

The main value of a software company is its intellectual capital. As Rus and Lindvall 
[21] state: The major problem with intellectual capital is that it has legs and walks 
home every day. This is not only a problem when a key person, such as a software 
architect, goes on holiday, moves on to the next project, or even quits his job, but also 
when the company educates staff. It is in the interest of companies to transform 
architectural knowledge, such as design decisions, from the architects’ minds to 
explicit knowledge on paper. Individual experts should share their knowledge 
amongst each other and with the rest of the company. The field of research that 
studies these topics is called knowledge management. A key motivation for our 
research is to support the sharing of architectural knowledge. 

1.2   Dimensions of Architectural Knowledge 

Nonaka and Takeuchi identify three levels of knowledge [20]: 

• Tacit: mostly in the head of people 
• Documented: there is some trace somewhere 
• Formalized: not only documented, but organized in a systematic way. 

The same categorization may be applied to architectural knowledge. The first three 
types of design decisions identified above then are examples of tacit knowledge.  
We aim to formalize part of this tacit knowledge. We readily recognize that only 
part of this knowledge can, and need, be formalized. We need only formalize 
what is subsequently useful to persons that exploit the architectural knowledge. To 
get insight into this need, we developed a use-case model for architectural 
knowledge. 

As shown in figure 1, there is also a level of maturity of architectural knowledge: 
some design decisions, or elements of the design may be tentative, not fully 
integrated, whereas others are hard coded, immutable elements.  

Finally, there is a time dimension to architectural knowledge. Certain architectural 
knowledge may be valid or relevant in some version of the architecture and/or system, 
but might be overridden, become invalid or irrelevant after a certain modification is 
made. Thus, we should not only retain the latest version of the architectural 
knowledge, but its version history as well. 

1.3   Design Rationale 

Capturing design rationale has been a key research topic for many years, leading to 
interesting models, tools and methods [4, 6, 13, 18, 19], but it has failed to transfer to 
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practice [3, 17]. Why? This is mostly because the burden to capture assumptions and 
decisions outweighs largely the immediate benefits that the architect may draw. These 
benefits would be felt much later, or by others. If we are not careful to address the key 
problem: how to move this knowledge out of the tacit level into at least the 
documented level and then the formalized level, all what we may do with 
architectural knowledge could follow the same route as design rationale has done over 
the years: nice ideas, but not practical. One way is to automate the collection of 
rationale (or of decisions, or both). These observations are corroborated in a recent 
empirical study of architecture design rationale: documenting architecture design 
rationale is deemed important, but methodology and tool support is lacking [22]. 

1.4   Contribution of the Paper 

The remainder of this paper is devoted to a discussion of what Architectural 
Knowledge entails, in terms of an ontology for design decisions, and typical usages 
thereof (with a focus on design decisions), followed by a sketch of the extent to which 
a commercial tool, the Aduna Cluster Map Viewer, supports the storage and use of 
Architectural Knowledge. This then leads to an agenda of research questions we think 
need answers for Architectural Knowledge modeling and usage to become a practical 
reality. These research questions mainly concern suitable visualization and task-
specific support. As a running example, we use the set of design decisions of the 
SPAR Aerospace Robotic Arm. A companion paper [26] gives a more elaborate 
discussion of the use-case model, including a sample application of some of these use 
cases in an industrial application. 

2   An Ontology of Design Decisions 

In this section we describe an ontology of architectural design decisions, and their 
relationships. An earlier version hereof was published in [15]. This ontology will later 
be used to structure architectural knowledge of the SPAR Aerospace Robotic Arm. 
The use cases of section 3 refer to this structure, and tools like the Aduna Cluster Map 
Viewer operate on architectural knowledge structured this way. 

2.1   Kinds of Architectural Design Decisions 

2.1.1   Existence Decisions (“Ontocrises”) 
An existence decision states that some element/artifact will positively show up, i.e., 
will exist in the system’s design or implementation. 

There are structural decisions and behavioral decisions. Structural decisions lead 
to the creation of subsystems, layers, partitions, components in some view of the 
architecture. Behavioral decisions are more related to how the elements interact 
together to provide functionality or to satisfy some non functional requirement 
(quality attribute), or connectors. Examples: 

− Dexterous Robot (DR) shall have a Laser Camera System. 
− DR shall use the Electromagnetic (EM) communication system to communicate 
with GroundControl. 
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Existence decisions are not in themselves that important to capture, since they are the 
most visible element in the system’s design or implementation, and the rationale can 
be easily captured in the documentation of the corresponding artifact or element. But 
we must capture them to be able to relate them to other, more subtle decisions, in 
particular alternatives (see section 2.3). 

2.1.2   Bans or Non-existence Decisions (“Anticrises”) 
This is the opposite of an existence decision, stating that some element will not 
appear in the design or implementation. They are a subclass of existential decisions 
in a way. 

This is important to document precisely because such decisions are lacking any 
“hooks” in traditional architecture documentation. They are not traceable to any 
artifact present. Ban decisions are often made as we gradually eliminate possible 
alternatives. Examples: 

− DR shall not block HST solar arrays, or communications systems. 

2.1.3   Property Decisions (“Diacrises”) 
A property decision states an enduring, overarching trait or quality of the system. 
Property decisions can be design rules or guidelines (when expressed positively) or 
design constraints (when expressed negatively), as some trait that the system will not 
exhibit. Properties are harder to trace to specific elements of the design or the 
implementation because they are often cross-cutting concerns, or they affect too many 
elements. Although they may be documented in some methodologies or process in 
Design guidelines (see RUP, for example), in many cases they are implicit and rapidly 
forgotten, and further design decisions are made that are not traced to properties. 
Examples: 

− DR motion should be accurate to within +1 degree and +1 inch. 
− DR shall withstand all loads due to launch. 

2.1.4   Executive Decisions (“Pericrises”) 
These are the decisions that do not relate directly to the design elements or their 
qualities, but are driven more by the business environment (financial), and affect 
the development process (methodological), the people (education and training), 
the organization, and to a large extent  the choices of technologies and tools. 
Executive decisions usually frame or constrain existence and property decisions. 
Examples: 

• Process decisions:  
− All changes in subsystem exported interfaces (APIs) must be approved by the CCB 
(Change Control Board) and the architecture team. 
• Technology decisions:  
− The system is developed using J2EE. 
− The system is developed in Java. 
• Tool decisions: 
− The system is developed using the System Architect Workbench. 
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Software/system architecture encompasses far more than just views and quality 
attributes à la IEEE std 1471-2000 [13]. There are all the political, personal, cultural, 
financial, technological aspects that impose huge constraints, and all the associated 
decisions are often never captured or they only appear in documents not usually 
associated with software architecture. 

2.2   Attributes of Architectural Design Decisions 

This subsection contains a list of attributes we deem essential. It may be extended 
with other attributes, such as cost, or risks associated with the design decision.  

2.2.1   Epitome (or the Decision Itself) 
This is a short textual statement of the design decision, a few words or a one-liner. 
This text serves to summarize the decisions, to list them, to label them in diagrams. 

2.2.2   Rationale 
This is a textual explanation of the “why” of the decision, its justification. It should 
not simply paraphrase or repeat information captured in other attributes, but have 
some valued added. If the rationale is expressed in a complete external document, for 
example, a tradeoff analysis, then the rationale points to this document. Note that 
rationale has two facets: an intrinsic rationale as a property of the design decision, and 
an extrinsic one, represented by its relationships to other design decisions. The latter 
is contained in any of the relationships discussed in section 2.3. 

2.2.3   Scope 
Some decision may have limited scope, in time, in the organization or in the design 
and implementation (see the Overrides relationship below). By default (if not 
documented) the decision is universal. Examples: 

− System scope: The Communication subsystem [is coded in C++ and not in Java] 
− Time scope: Until the first customer release [testing is done with Glider]. 
− Organization scope: The Japanese team [uses a different bug tracking system] 

2.2.4   Author, Time-Stamp, History 
The person who made the decision, and when the decision was taken. Ideally we 
collect the history of changes to a design decision. Important are the changes of State, 
of course, but also changes in formulation, in scope, especially when we run 
incremental architectural reviews. Example: 

− “Use the UNAS Middleware”—tentative (Ph. Kruchten, 1993-06-04); decided (Ph. 
Kruchten, 1993-08-05); approved, (CCB, 1994-01-16); Scope: not for test harnesses; 
(Jack Bell, 1994-02-01); approved (CCB, 1994-02-27). 

2.2.5   State 
Like problem reports or code, design decisions evolve in a manner that may be 
described by a state machine or a statechart. See fig.1. This scheme may be too simple 
for certain environments, or too complicated for others; it has to match a specific 
decision and approval process. The states can be used to make queries, and as a filter 
when visualizing a Decision Graph; for example, omit ideas, or display them in green. 
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You would not include the ideas, tentative, and obsolesced decisions in a formal 
review, for example. 

There is an implied “promotion” policy, which is used to check consistency of 
decision graphs (models), with the level of state being successively: 0: idea and 
obsolesced; 1: rejected; 2: tentative and challenged; 3: decided; 4: approved. 

 

Fig. 1.  State machine for a decision. Idea: Just an idea, captured not to be lost, when doing 
brainstorming, looking at other systems etc.; it cannot constrain other decisions other than 
ideas. Tentative: allows running “what if” scenarios, when playing with ideas. Decided: 
current position of the architect, or architecture team; must be consistent with other, related 
decisions. Approved: by a review, or a board (not significantly different from decided, though, 
in low ceremony organizations). Challenged: previously approved or decided decision that is 
now in jeopardy; it may go back to approved without ceremony, but can also be demoted to 
tentative or rejected. Rejected: decision that does not hold in the current system; but we keep 
them around as part of the system rationale. Obsolesced: Similar to rejected, but the decision 
was not explicitly rejected (in favor of another one for example), but simply became ‘moot’, 
irrelevant as a result of some higher level restructuring, for example. 

2.2.6   Categories 
A design decision may belong to one or more categories. The list of categories is open 
ended; you could use them as some kind of keywords. 

Categories will complement the taxonomy expressed above, if this taxonomy is not 
sufficient for large projects. (There is a danger in pushing taxonomy too far, too deep 
too early; it stifles creativity.) Categories are useful for queries, and for creating and 
exploring sets of design decisions that are associated to a specific concern or quality 
attribute. Examples: 

− Usability 
− Security 

But the architects may be more creative and document also Politics: tagging decisions 
that have been made only on a political basis; it maybe useful to revisit them once the 
politics change. Example: 

− “Use GIS Mapinfo” in Categories: politics, usability, safety, COTS 
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Fig. 2. Fragment of a decision graph for the SPAR Aerospace Dexterous Robotic Arm (DR). 
(Courtesy Nicolas Kruchten & Michael Trauttmansdorff) 

2.3   Relationships Between Architectural Design Decisions 

Decision A “is Related to” Decision B. This way, decisions form a graph-like structure. 
The use cases of section 3 refer to this structure, and the example in section 4 uses one. 
In the next subsections we discuss an initial set of relations between design decisions. 

2.3.1   Constrains 
Decision B is tied to Decision A. If decision A is dropped, then decision B is dropped. 
Decision B is contingent to decision A, and cannot be promoted higher than decision 
A. The pattern is often that a property decision (rule or constraint) constrains an 
existence decision, or that an executive decision (process or technology) constrains a 
property decision or an existence decision. Examples: 

− “Must use J2EE” constrains “use JBoss”; taking the dotNet route instead of J2EE 
would make JBoss the wrong choice. 

2.3.2   Forbids (Excludes) 
A decision prevents another decision to be made. The target decision is therefore not 
possible. In other words, decision B can only be promoted to a state higher than 0 if 
decision A is demoted to a state of 0. (cf. section 2.2.5) 

2.3.3   Enables 
Decision A makes possible Decision B, but does not make B taken. Also B can be 
decided even if A is not taken. It is a weak form of Constrains. Example: 

− “use Java” enables “use J2EE” 
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2.3.4   Subsumes 
A is a design decision that is wider, more encompassing than B. Example: 
− “All subsystems are coded in Java” subsumes “Subsystem XYZ is coded in Java” 
Often a tactical decision B has been made, which is later on generalized to A. It is 
often the case that the design decision could be reorganized to connect relatives of B 
to A, and to obsolesce B (B can be removed from the graph). 

2.3.5   Conflicts with 
A symmetrical relationship indicating that the two decisions A and B are mutually 
exclusive (though this can be sorted out by additional scoping decisions, cf. 0). Example: 

− “Must use dotNet” conflicts with “Must use J2EE” 

2.3.6   Overrides 
A local decision A that indicates an exception to B, a special case or a scope where 
the original B does not apply. Example: 

−  “The Communication subsystem will be coded in C++” overrides “The whole 
system is developed in Java” 

2.3.7   Comprises (Is Made of, Decomposes into) 
A high level and somewhat complicated, wide-ranging decision A is made of or 
decomposes into a series of narrower, more specific design decisions B1, B2, … Bn. 
This is the case in high-level existence decisions, where partitioning or decomposing 
the system can be decomposed in one decision for each element of the decomposition. 
Or the choice of a middleware system, which implies a choice of various mechanisms 
for communication, error reporting, authentication, etc. This is stronger than 
constrains, in the sense that if the state of A is demoted, all the Bi are demoted too. 
But each B may be individually overridden. 

Many of the rationale, alternatives etc. can be factored out and associated with the 
enclosing decision to avoid duplication, while details on a particular topic are 
documented where they belong. Examples: 

− “Design will use UNAS as middleware” decomposes into 
− “Rule: cannot use Ada tasking” and “Message passing must use UNAS messaging 
services” and “Error Logging must use UNAS error logging services” and etc. 

2.3.8   Is an Alternative to 
A and B are similar design decisions, addressing the same issue, but proposing 
different choices. This allows keeping around the discarded choices, or when 
brainstorming to relate the various possible choices. 

Note that not all alternatives are conflicts, and not all conflicts are alternatives. But 
A conflicts with B is resolved by making A obsolete and an alternative to B. 

2.3.9   Is Bound to (Strong) 
This is a bidirectional relationship where A constrains B and B constrains A, which 
means that the fate of the two decisions is tied, and they should be in the same state. 

2.3.10   Is Related to (Weak) 
There is a relation of some sort between the two design decisions, but it is not of any 
kind listed above and is kept mostly for documentation and illustration reasons. 
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Examples are high level decisions that only provide the frame for other design 
decisions, while not being a true constraint (2.3.1) nor a decomposition (2.3.7). 

2.3.11   Dependencies 
We say that a decision A depends on B if B constrains A (2.3.1), if B decomposes in 
A (2.3.7), if A overrides B (2.3.6). See figure 2 for an example of decision graph that 
depicts a number of such dependencies. 

2.4   Relationship with External Artifacts 

Decisions are not only related to other decisions, but also to other artifacts, such as 
requirements or parts of the implemented system (i.e. the Architectural Design, the 
models, the code). Example relationships in this category are `traces from’ and `does 
not comply with’. 

3   A Use Case Model for Architectural Knowledge 

Assuming for a while that we have defined a repository of architectural knowledge in 
the form of all design decisions, how would we use it? Who would use it, to do what? 
Ultimately, every bit of architectural knowledge stored should be used in at least one 
use case and, conversely, every use case should be answerable from the architectural 
knowledge captured. A use-case model has at minimal actors (what are the various 
roles involved) and use cases (what do these roles do). 

3.1   Actors 

Who would use, produce, and exploit Architectural Knowledge from our repository? 

• Architects:  the people designing the system (or a part of a large system). They 
need to document much of the design, they should bring the decisions and 
assumptions from tacit to documented or formalized 
• Other architects: People who are designing parts that integrate with that system. 
They need to understand the parts not directly under their responsibility, to see what 
impact it has on their decisions. 
• Developers: People involved in the implementation of the design and decisions. 
• Reviewers:  people involved in judging the quality or progress of a design 
• Analysts: Mostly, people dealing with requirements they are interested in 
• Maintainers: while evolving or correcting the system they need to understand the 
correlation between decisions they take and the current set of decisions. 
• Users: Not the end-users of the system, but people who use Architectural 
Knowledge, for example to interface another system, to document the system etc. 
• Re-Users: people who want to exploit all or some of the Architectural Knowledge 
to build a new system 
• Students: people who want to study software architecture by looking at 
Architectural Knowledge from various angles 
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• Researchers: Researchers may want to look at Architectural Knowledge to find 
new patterns, new information, better mousetraps. 
• Software tools: Tools may both add to the AK repository, or exploit automatically 
some of the contents (consistency checking, pattern recognition, report generation, etc.) 

From this list  we can identify roles of passive users or consumers of Architectural 
Knowledge: people who need to exploit Architectural Knowledge for their own 
understanding but who are not going to alter it or expand it. Examples are Developers, 
Reviewers, and Students. 

Other roles are those of active users or producers of architectural knowledge: they 
add to the Architectural Knowledge repository, integrate it, mature the information in 
it. Examples include Architects and Software tools. 

3.2   Use Cases 

From interviews held with practicing architects, as well as our own experience, we 
identified the following initial set of use cases: 

• Incremental architectural review: what pieces of Architectural Knowledge have 
been added or modified since the last review? Extract and visualize these elements; 
browse and explore dependencies or traces. 
• Review for a specific concern: from a given perspective (such as security, safety, 
reuse, etc.) what are the knowledge elements involved? This consists in building in 
some sense a “view” of Architectural Knowledge restricted to that concern. 
• Evaluate impact: if we want to do a change in an element, what are the elements 
impacted (decisions, and elements of design). This may branch out to various kinds of 
changes: change of an assumption, change of a design decision. 
• Get a rationale: given an element in the design, trace back to the decisions it is 
related to. 
• Study the chronology: over a time line, find what the sequence of design decisions 
has been. 
• Add a decision: manually or via some tool; then integrate the decision to other 
elements of Architectural Knowledge. (Similarly for other AK elements). 
• Cleanup the system: make sure that all consequences of a removed decision have 
been removed. 
• Spot the subversive stakeholder: identify who are the stakeholders whose changes 
of mind are doing the most damage to the system. 
• Similar but different, Spot the critical stakeholder: the stakeholder who seems to 
have the most “weight” on the decisions, and who therefore maybe the one that could 
be most affected by the future evolution of the system. 
• Clone Architectural Knowledge: produce a consistent subset of Architectural 
Knowledge to prime the pump for a new system (reuse Architectural Knowledge). 
• Integration: you want to integrate multiple systems and decide whether they fit. 
The tool would help answering questions about integration strategies. 
• Detection and interpretation of patterns: are there patterns in the graphs that can 
be interpreted in a useful fashion, and lead to guidelines for the architects. For 
example: decisions being hubs (“God” decisions), circularity, decisions that gain 
weight over time and are more difficult to change or remove. 
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4   Ontology-Based Information Visualization: A Case Study 

Aduna Cluster Map Viewer1 [8] is a tool to visualize ontologies that describe a 
domain through a set of classes and their hierarchical relationships. In such 
ontologies, classes often share instances: a software architect can be both a security 
expert and involved in project X. The Aduna Cluster Map Viewer is especially well 
suited to graphically depict such relationships. Based on a user query, it selects and 
displays the set of objects that satisfy the query. Objects belonging to the same cluster 
are depicted in one bubble. Clusters can belong to one or more classes.  

Figure 3 shows part of the XML representation of the set of design decisions for 
the SPAR Aerospace Robotic Arm that is used as input to the Aduna Cluster Map 
Viewer.  

 
  - <ObjectSet> 
    - <Object ID="obj2"> 

<Name>Motion should be accurate to  
within +1 degree and +1 inch</Name>  

      </Object> 
    - <Object ID="obj33"> 
        <Name>Shall withstand all loads due to launch</Name>  
      </Object> 
    <\ObjectSet> 
  - <ClassificationSet> 
    - <Classification ID="onto"> 
        <Name>Ontocrises</Name>  
        <Objects objectIDs="obj2 obj4 … obj33 …" />  
        <SuperClass refs="kind" />  
    - <Classification ID="system"> 
        <Name>System</Name>  
        <Objects objectIDs="… obj32 obj33 …" />  
        <SuperClass refs="scope" />  
      </Classification> 
    - </Classification> 
        <Name>Approved</Name>  
        <Objects objectIDs="obj1 obj2 …" />  
        <SuperClass refs="state" />  
      </Classification> 
  <\ClassificationSet 

Fig. 3. XML representation of design decisions. We have employed a taxonomy where the 
class DesignDecision has four subclassses: Kind (ontocrises, anticrises, etc; see section 2.1), 
Scope (System, Time, Organization; see section 2.2.3) and State (Idea, Tentative, etc; see 
section 2.2.5).  We list here two design decisions, labeled obj1 and obj2. It further states that 
decisions labeled obj2, obj3 … are of type Ontocrises, while obj1, obj2 … have state 
Approved,  Finally, decisions obj32, obj33 … have a System scope. 

The same set of design decisions represented in XML in figure 3 is used to get the 
visualization of the example cluster map in Figure 4. 

                                                           
1 http://aduna.biz/products/technology/clustermap 
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Fig. 4. The decisions are split into two types: pericrises and ‘the rest’. For each of the decisions 
a state has been determined. State ‘decided’ contains the decisions that have been marked as 
decided. The figure shows the overlap between the clusters of all decisions, those that are 
pericrises, those that have been decided upon and those that are tentative. It shows that 10 
decisions have been marked as decided, one of which falls in the class of pericrises. Of the 
remaining five pericrises, three are tentative. 

 
Fig. 5. Screenshot of Aduna Cluster Map Viewer. The left pane shows the various categories 
distinguished. It is generated from the XML file fed into the system. The user clicks the 
categories he is interested in. The right pane shows the results, including the intersections of the 
various sets. In this case, it shows the overlap between the clusters of all decisions, all diacrises, 
that are decided, and all organization-scoped decisions. A total of 10 decisions have been 
marked as decided, of which two fall in the class of diacrises, and three others are limited to 
organization scope. Of the remaining seven organization-scoped decisions, two are diacrises as 
well, but none of these are marked decided. 
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Figure 5 shows a screenshot of the Aduna Cluster Map Viewer. The selection panel 
on the left hand side is used to build a query whose result is depicted on the right hand 
side. Suppose we want to carry out some of the use cases in section 3.2. How would a 
tool like the Aduna Cluster Map Viewer aid the architecting process? For example, 
we can carry out 'clone AK' to create a new system by reusing all 'system' level 
decisions that are in state 'decided' (see Fig. 3). Use cases 'spot the critical 
stakeholder' and 'review for a specific concern' can be supported in a rather 
straightforward way by selecting all decisions that match a certain attribute value. 
'Add a decision' or 'get a rationale' are realized by making selections or adding 
elements in the left pane (see Fig. 5). 

This small case study shows that the Aduna Cluster Map Viewer can support many 
of our use cases in a rather straightforward way. A further discussion of tool support 
is given in section 5. 

5   Conclusions 

In this paper we discuss the notion of architectural knowledge, in particular the design 
decision part thereof. If we had a repository of architectural knowledge for a system, 
what would it ideally contain, how would we build it, and exploit it in practice? We 
describe a use case model for an architectural knowledge system, together with its 
underlying ontology. We present a small case study in which we model available 
architectural knowledge in a tool, the Aduna Cluster Map Viewer. Part of the use 
cases are handled by the tool, and part need further extension of the tool. 

One of the most interesting unsolved issues is how to visualize architectural 
knowledge. The amount of information is overwhelming, so we have to abstract away 
from a lot of details. Developments in the area of information visualization are 
relevant here [7, 10, 27]. Most of these visualizations abstract away from details in the 
graph representation, and present the result in terms of tree maps, radial or conical 
representations, and the like. Fig. 2 gives an idea of a visualization of design decisions 
and constraints/requirements. In our opinion, though, this is not enough. The 
visualizations have to direct our attention to the very issue we want to convey, such as 
the subversive or critical stakeholder. For example, the Challenger accident in 1986 
was ultimately due to low temperature. This problem had occurred before, but the link 
between low temperature and the rubber ring damage was not assessed and 
recognized until the right visualization was given [24]. 

If we can link our ontology of design decisions to the contents of actual design 
documents, we may exploit ontology-based browsers such as the Aduna Cluster Map 
Viewer [8] to explore these resources. This is a kind of data mining operation on 
documents containing architectural knowledge, with a targeted visualization. One 
such approach, using information retrieval techniques to obtain traceability 
information, is described in [11]. Assuming we have captured architectural 
knowledge as discussed above in some graph-like form, where the edges represent 
design decisions, and the vertices represent relationships between decisions, the 
different use cases correspond to certain operations on this graph. Some of these 
operations are relatively straightforward. They correspond to a subset operation 
(Clone AK, Review for a specific concern) or closure operation (Evaluate impact, 
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Cleanup the system).  An interesting variation of change impact analysis using 
Bayesian Belief Networks is discussed in [23]. A more interesting operation has to do 
with the detection or matching of patterns or, rather, antipatterns. Some of these can 
be cast as graph operations; for example the detection of a “God” decision boils down 
to selecting nodes with a high fan-in/fan-out. The identification and operationalization 
of time-related patterns still is an open issue. 

We might think of a series of plug-ins/services that each supports a specific use 
case and an appropriate visualization for that use case. For instance, the use case 
examples used in section 4 are all based on the analysis of flat subsets, and show that 
a tool like the Aduna Cluster Map Viewer might prove useful for browsing the design 
decision space. Instead, we might need another tool (and another type of 
visualization) to carry out use cases needing to traverse a hierarchical structure of 
design decisions and other knowledge entities. For instance, a tool visualizing 
directed graphs in two- or three-dimensional space seems better suited for use cases 
like 'evaluate impact' or 'study the chronology', which require to visualize not only 
categories of entities but also how these entities are related. 

From this exercise, as well as our earlier experiences, we corroborate that tool 
support for manipulating architectural knowledge should focus on two crucial issues: 
suitable visualization, and task-specific support.  

The list of use cases and associated operations needs further underpinning. We are 
currently in the process of validating and prioritizing this list with architects and 
development groups in various commercial settings. 
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