
C. Hofmeister et al. (Eds.): QoSA 2006, LNCS 4214, pp. 43 – 58, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Building Up and Reasoning About
Architectural Knowledge

Philippe Kruchten1, Patricia Lago2, and Hans van Vliet2

1 University of British Columbia
Vancouver, Canada
pbk@ece.ubc.ca

2 Vrije Universiteit
Amsterdam, the Netherlands

{patricia, hans}@few.vu.nl

Abstract. Architectural knowledge consists of architecture design as well as
the design decisions, assumptions, context, and other factors that together
determine why a particular solution is the way it is. Except for the
architecture design part, most of the architectural knowledge usually remains
hidden, tacit in the heads of the architects. We conjecture that an explicit
representation of architectural knowledge is helpful for building and evolving
quality systems. If we had a repository of architectural knowledge for a
system, what would it ideally contain, how would we build it, and exploit it in
practice? In this paper we describe a use-case model for an architectural
knowledge base, together with its underlying ontology. We present a small
case study in which we model available architectural knowledge in a
commercial tool, the Aduna Cluster Map Viewer, which is aimed at ontology-
based visualization. Putting together ontologies, use cases and tool support,
we are able to reason about which types of architecting tasks can be
supported, and how this can be done.

1 Introduction

Software that is being used, evolves. For that reason, quality issues like
comprehensibility, integrity, and flexibility are important concerns. For that reason
also, we not only bother about today’s requirements during development but also, and
maybe even more so, about the requirements of tomorrow.

This is one of the main reasons for the importance of software architecture, as for
instance stated in Bass et al. [1]: a software architecture manifests the early design
decisions. These early decisions determine the system’s development, deployment,
and evolution. It is the earliest point at which these decisions can be assessed.

There are many definitions of software architecture. Many talk about components
and connectors, or the ‘high-level conception of a system’. This high-level conception
then is supposed to capture the ‘major design decisions’. Whether a design decision is
major or not really can only be ascertained with hindsight, when we try to change the
system. Only then it will show which decisions were really important. A priori, it is

44 P. Kruchten, P. Lago, and H. van Vliet

often not at all clear if and why one design decision is more important than another
one [9].

Architectural design, even well documented according to all the good recipes [5,
12, 14], is only one small part of the Architectural Knowledge that is required to
design a system, or that is needed to guide a possibly multisite development team, or
that can be exploited out of a system to build the next one, or that is required to
successfully evolve a system. Van Vliet and Lago have pointed rightfully that all the
assumptions that were made during the architectural design, all the linkage to the
environment are a key component of architectural knowledge [16, 28]. Similarly,
Bosch and others have pointed out that design decisions, the tight set of
interdependencies between them, and their mapping to both the requirements, needs,
constraints upstream, or the design and implementation downstream are also a key
component of architectural knowledge [2, 15, 25].

We can usually get at the architectural Design part, ultimately by reverse
engineering if there was no explicit documentation. This amounts to the result of the
design decisions, the solutions chosen, not the reasoning behind them. The Context
and some of the Rationale may be partially retrieved from management documents,
vision documents, requirements specs, etc. Design Decisions and much of the
Rationale are usually lost forever, or reside only in the head of the few people
associated with them, if they are still around.

So the reasoning behind a design decision, and other forces that drive those
decisions (such as: company policies, standards that have to be used, earlier
experiences of the architect, etc.), are not explicitly captured. This is tacit knowledge,
essential for the solution chosen, but not documented. At a later stage, it then becomes
difficult to trace the reasons of certain design decisions. In particular, during the
evolution one may stumble upon these design decisions, try to undo them or work
around them, and get into trouble when this turns out to be very costly if not
impossible. The future evolutionary capabilities of a system can be better assessed if
this type of knowledge would be explicit. We use the term assumptions as a general
denominator for the forces that drive architectural design decisions. Just like it is
difficult to distinguish between the what and the how in software development, so that
one person’s requirements is another person’s design, it is also difficult to distinguish
between assumptions and decisions. Here too, from one perspective or stakeholder,
we may denote something as an assumption, while that same thing may be seen as a
design decision from another perspective. As a result, we are left with:

Architectural Knowledge = Design Decisions + Design (1)

In this paper, we focus on the Design Decisions and their rationale. We distinguish
four types of design decisions:

• Implicit and undocumented: the architect is unaware of the decision, or it
concerns “of course” knowledge. Examples include earlier experience, implicit
company policies to use certain approaches, standards, and the like.
• Explicit but undocumented: the architect takes a decision for a very specific
reason (e.g., the decision to use a certain user-interface policy because of time
constraints). The reasoning is not documented, and thus is likely to vaporize over
time.

 Building Up and Reasoning About Architectural Knowledge 45

• Explicit, and explicitly undocumented: the reasoning is hidden. There may be
tactical company reasons to do so, or the architect may have personal reasons (e.g., to
protect his position).
• Explicit and documented: this is the preferred, but quite likely exceptional,
situation.

1.1 The Role of Knowledge Management

The main value of a software company is its intellectual capital. As Rus and Lindvall
[21] state: The major problem with intellectual capital is that it has legs and walks
home every day. This is not only a problem when a key person, such as a software
architect, goes on holiday, moves on to the next project, or even quits his job, but also
when the company educates staff. It is in the interest of companies to transform
architectural knowledge, such as design decisions, from the architects’ minds to
explicit knowledge on paper. Individual experts should share their knowledge
amongst each other and with the rest of the company. The field of research that
studies these topics is called knowledge management. A key motivation for our
research is to support the sharing of architectural knowledge.

1.2 Dimensions of Architectural Knowledge

Nonaka and Takeuchi identify three levels of knowledge [20]:

• Tacit: mostly in the head of people
• Documented: there is some trace somewhere
• Formalized: not only documented, but organized in a systematic way.

The same categorization may be applied to architectural knowledge. The first three
types of design decisions identified above then are examples of tacit knowledge.
We aim to formalize part of this tacit knowledge. We readily recognize that only
part of this knowledge can, and need, be formalized. We need only formalize
what is subsequently useful to persons that exploit the architectural knowledge. To
get insight into this need, we developed a use-case model for architectural
knowledge.

As shown in figure 1, there is also a level of maturity of architectural knowledge:
some design decisions, or elements of the design may be tentative, not fully
integrated, whereas others are hard coded, immutable elements.

Finally, there is a time dimension to architectural knowledge. Certain architectural
knowledge may be valid or relevant in some version of the architecture and/or system,
but might be overridden, become invalid or irrelevant after a certain modification is
made. Thus, we should not only retain the latest version of the architectural
knowledge, but its version history as well.

1.3 Design Rationale

Capturing design rationale has been a key research topic for many years, leading to
interesting models, tools and methods [4, 6, 13, 18, 19], but it has failed to transfer to

46 P. Kruchten, P. Lago, and H. van Vliet

practice [3, 17]. Why? This is mostly because the burden to capture assumptions and
decisions outweighs largely the immediate benefits that the architect may draw. These
benefits would be felt much later, or by others. If we are not careful to address the key
problem: how to move this knowledge out of the tacit level into at least the
documented level and then the formalized level, all what we may do with
architectural knowledge could follow the same route as design rationale has done over
the years: nice ideas, but not practical. One way is to automate the collection of
rationale (or of decisions, or both). These observations are corroborated in a recent
empirical study of architecture design rationale: documenting architecture design
rationale is deemed important, but methodology and tool support is lacking [22].

1.4 Contribution of the Paper

The remainder of this paper is devoted to a discussion of what Architectural
Knowledge entails, in terms of an ontology for design decisions, and typical usages
thereof (with a focus on design decisions), followed by a sketch of the extent to which
a commercial tool, the Aduna Cluster Map Viewer, supports the storage and use of
Architectural Knowledge. This then leads to an agenda of research questions we think
need answers for Architectural Knowledge modeling and usage to become a practical
reality. These research questions mainly concern suitable visualization and task-
specific support. As a running example, we use the set of design decisions of the
SPAR Aerospace Robotic Arm. A companion paper [26] gives a more elaborate
discussion of the use-case model, including a sample application of some of these use
cases in an industrial application.

2 An Ontology of Design Decisions

In this section we describe an ontology of architectural design decisions, and their
relationships. An earlier version hereof was published in [15]. This ontology will later
be used to structure architectural knowledge of the SPAR Aerospace Robotic Arm.
The use cases of section 3 refer to this structure, and tools like the Aduna Cluster Map
Viewer operate on architectural knowledge structured this way.

2.1 Kinds of Architectural Design Decisions

2.1.1 Existence Decisions (“Ontocrises”)
An existence decision states that some element/artifact will positively show up, i.e.,
will exist in the system’s design or implementation.

There are structural decisions and behavioral decisions. Structural decisions lead
to the creation of subsystems, layers, partitions, components in some view of the
architecture. Behavioral decisions are more related to how the elements interact
together to provide functionality or to satisfy some non functional requirement
(quality attribute), or connectors. Examples:

− Dexterous Robot (DR) shall have a Laser Camera System.
− DR shall use the Electromagnetic (EM) communication system to communicate
with GroundControl.

 Building Up and Reasoning About Architectural Knowledge 47

Existence decisions are not in themselves that important to capture, since they are the
most visible element in the system’s design or implementation, and the rationale can
be easily captured in the documentation of the corresponding artifact or element. But
we must capture them to be able to relate them to other, more subtle decisions, in
particular alternatives (see section 2.3).

2.1.2 Bans or Non-existence Decisions (“Anticrises”)
This is the opposite of an existence decision, stating that some element will not
appear in the design or implementation. They are a subclass of existential decisions
in a way.

This is important to document precisely because such decisions are lacking any
“hooks” in traditional architecture documentation. They are not traceable to any
artifact present. Ban decisions are often made as we gradually eliminate possible
alternatives. Examples:

− DR shall not block HST solar arrays, or communications systems.

2.1.3 Property Decisions (“Diacrises”)
A property decision states an enduring, overarching trait or quality of the system.
Property decisions can be design rules or guidelines (when expressed positively) or
design constraints (when expressed negatively), as some trait that the system will not
exhibit. Properties are harder to trace to specific elements of the design or the
implementation because they are often cross-cutting concerns, or they affect too many
elements. Although they may be documented in some methodologies or process in
Design guidelines (see RUP, for example), in many cases they are implicit and rapidly
forgotten, and further design decisions are made that are not traced to properties.
Examples:

− DR motion should be accurate to within +1 degree and +1 inch.
− DR shall withstand all loads due to launch.

2.1.4 Executive Decisions (“Pericrises”)
These are the decisions that do not relate directly to the design elements or their
qualities, but are driven more by the business environment (financial), and affect
the development process (methodological), the people (education and training),
the organization, and to a large extent the choices of technologies and tools.
Executive decisions usually frame or constrain existence and property decisions.
Examples:

• Process decisions:
− All changes in subsystem exported interfaces (APIs) must be approved by the CCB
(Change Control Board) and the architecture team.
• Technology decisions:
− The system is developed using J2EE.
− The system is developed in Java.
• Tool decisions:
− The system is developed using the System Architect Workbench.

48 P. Kruchten, P. Lago, and H. van Vliet

Software/system architecture encompasses far more than just views and quality
attributes à la IEEE std 1471-2000 [13]. There are all the political, personal, cultural,
financial, technological aspects that impose huge constraints, and all the associated
decisions are often never captured or they only appear in documents not usually
associated with software architecture.

2.2 Attributes of Architectural Design Decisions

This subsection contains a list of attributes we deem essential. It may be extended
with other attributes, such as cost, or risks associated with the design decision.

2.2.1 Epitome (or the Decision Itself)
This is a short textual statement of the design decision, a few words or a one-liner.
This text serves to summarize the decisions, to list them, to label them in diagrams.

2.2.2 Rationale
This is a textual explanation of the “why” of the decision, its justification. It should
not simply paraphrase or repeat information captured in other attributes, but have
some valued added. If the rationale is expressed in a complete external document, for
example, a tradeoff analysis, then the rationale points to this document. Note that
rationale has two facets: an intrinsic rationale as a property of the design decision, and
an extrinsic one, represented by its relationships to other design decisions. The latter
is contained in any of the relationships discussed in section 2.3.

2.2.3 Scope
Some decision may have limited scope, in time, in the organization or in the design
and implementation (see the Overrides relationship below). By default (if not
documented) the decision is universal. Examples:

− System scope: The Communication subsystem [is coded in C++ and not in Java]
− Time scope: Until the first customer release [testing is done with Glider].
− Organization scope: The Japanese team [uses a different bug tracking system]

2.2.4 Author, Time-Stamp, History
The person who made the decision, and when the decision was taken. Ideally we
collect the history of changes to a design decision. Important are the changes of State,
of course, but also changes in formulation, in scope, especially when we run
incremental architectural reviews. Example:

− “Use the UNAS Middleware”—tentative (Ph. Kruchten, 1993-06-04); decided (Ph.
Kruchten, 1993-08-05); approved, (CCB, 1994-01-16); Scope: not for test harnesses;
(Jack Bell, 1994-02-01); approved (CCB, 1994-02-27).

2.2.5 State
Like problem reports or code, design decisions evolve in a manner that may be
described by a state machine or a statechart. See fig.1. This scheme may be too simple
for certain environments, or too complicated for others; it has to match a specific
decision and approval process. The states can be used to make queries, and as a filter
when visualizing a Decision Graph; for example, omit ideas, or display them in green.

 Building Up and Reasoning About Architectural Knowledge 49

You would not include the ideas, tentative, and obsolesced decisions in a formal
review, for example.

There is an implied “promotion” policy, which is used to check consistency of
decision graphs (models), with the level of state being successively: 0: idea and
obsolesced; 1: rejected; 2: tentative and challenged; 3: decided; 4: approved.

Fig. 1. State machine for a decision. Idea: Just an idea, captured not to be lost, when doing
brainstorming, looking at other systems etc.; it cannot constrain other decisions other than
ideas. Tentative: allows running “what if” scenarios, when playing with ideas. Decided:
current position of the architect, or architecture team; must be consistent with other, related
decisions. Approved: by a review, or a board (not significantly different from decided, though,
in low ceremony organizations). Challenged: previously approved or decided decision that is
now in jeopardy; it may go back to approved without ceremony, but can also be demoted to
tentative or rejected. Rejected: decision that does not hold in the current system; but we keep
them around as part of the system rationale. Obsolesced: Similar to rejected, but the decision
was not explicitly rejected (in favor of another one for example), but simply became ‘moot’,
irrelevant as a result of some higher level restructuring, for example.

2.2.6 Categories
A design decision may belong to one or more categories. The list of categories is open
ended; you could use them as some kind of keywords.

Categories will complement the taxonomy expressed above, if this taxonomy is not
sufficient for large projects. (There is a danger in pushing taxonomy too far, too deep
too early; it stifles creativity.) Categories are useful for queries, and for creating and
exploring sets of design decisions that are associated to a specific concern or quality
attribute. Examples:

− Usability
− Security

But the architects may be more creative and document also Politics: tagging decisions
that have been made only on a political basis; it maybe useful to revisit them once the
politics change. Example:

− “Use GIS Mapinfo” in Categories: politics, usability, safety, COTS

50 P. Kruchten, P. Lago, and H. van Vliet

Fig. 2. Fragment of a decision graph for the SPAR Aerospace Dexterous Robotic Arm (DR).
(Courtesy Nicolas Kruchten & Michael Trauttmansdorff)

2.3 Relationships Between Architectural Design Decisions

Decision A “is Related to” Decision B. This way, decisions form a graph-like structure.
The use cases of section 3 refer to this structure, and the example in section 4 uses one.
In the next subsections we discuss an initial set of relations between design decisions.

2.3.1 Constrains
Decision B is tied to Decision A. If decision A is dropped, then decision B is dropped.
Decision B is contingent to decision A, and cannot be promoted higher than decision
A. The pattern is often that a property decision (rule or constraint) constrains an
existence decision, or that an executive decision (process or technology) constrains a
property decision or an existence decision. Examples:

− “Must use J2EE” constrains “use JBoss”; taking the dotNet route instead of J2EE
would make JBoss the wrong choice.

2.3.2 Forbids (Excludes)
A decision prevents another decision to be made. The target decision is therefore not
possible. In other words, decision B can only be promoted to a state higher than 0 if
decision A is demoted to a state of 0. (cf. section 2.2.5)

2.3.3 Enables
Decision A makes possible Decision B, but does not make B taken. Also B can be
decided even if A is not taken. It is a weak form of Constrains. Example:

− “use Java” enables “use J2EE”

 Building Up and Reasoning About Architectural Knowledge 51

2.3.4 Subsumes
A is a design decision that is wider, more encompassing than B. Example:
− “All subsystems are coded in Java” subsumes “Subsystem XYZ is coded in Java”
Often a tactical decision B has been made, which is later on generalized to A. It is
often the case that the design decision could be reorganized to connect relatives of B
to A, and to obsolesce B (B can be removed from the graph).

2.3.5 Conflicts with
A symmetrical relationship indicating that the two decisions A and B are mutually
exclusive (though this can be sorted out by additional scoping decisions, cf. 0). Example:

− “Must use dotNet” conflicts with “Must use J2EE”

2.3.6 Overrides
A local decision A that indicates an exception to B, a special case or a scope where
the original B does not apply. Example:

− “The Communication subsystem will be coded in C++” overrides “The whole
system is developed in Java”

2.3.7 Comprises (Is Made of, Decomposes into)
A high level and somewhat complicated, wide-ranging decision A is made of or
decomposes into a series of narrower, more specific design decisions B1, B2, … Bn.
This is the case in high-level existence decisions, where partitioning or decomposing
the system can be decomposed in one decision for each element of the decomposition.
Or the choice of a middleware system, which implies a choice of various mechanisms
for communication, error reporting, authentication, etc. This is stronger than
constrains, in the sense that if the state of A is demoted, all the Bi are demoted too.
But each B may be individually overridden.

Many of the rationale, alternatives etc. can be factored out and associated with the
enclosing decision to avoid duplication, while details on a particular topic are
documented where they belong. Examples:

− “Design will use UNAS as middleware” decomposes into
− “Rule: cannot use Ada tasking” and “Message passing must use UNAS messaging
services” and “Error Logging must use UNAS error logging services” and etc.

2.3.8 Is an Alternative to
A and B are similar design decisions, addressing the same issue, but proposing
different choices. This allows keeping around the discarded choices, or when
brainstorming to relate the various possible choices.

Note that not all alternatives are conflicts, and not all conflicts are alternatives. But
A conflicts with B is resolved by making A obsolete and an alternative to B.

2.3.9 Is Bound to (Strong)
This is a bidirectional relationship where A constrains B and B constrains A, which
means that the fate of the two decisions is tied, and they should be in the same state.

2.3.10 Is Related to (Weak)
There is a relation of some sort between the two design decisions, but it is not of any
kind listed above and is kept mostly for documentation and illustration reasons.

52 P. Kruchten, P. Lago, and H. van Vliet

Examples are high level decisions that only provide the frame for other design
decisions, while not being a true constraint (2.3.1) nor a decomposition (2.3.7).

2.3.11 Dependencies
We say that a decision A depends on B if B constrains A (2.3.1), if B decomposes in
A (2.3.7), if A overrides B (2.3.6). See figure 2 for an example of decision graph that
depicts a number of such dependencies.

2.4 Relationship with External Artifacts

Decisions are not only related to other decisions, but also to other artifacts, such as
requirements or parts of the implemented system (i.e. the Architectural Design, the
models, the code). Example relationships in this category are `traces from’ and `does
not comply with’.

3 A Use Case Model for Architectural Knowledge

Assuming for a while that we have defined a repository of architectural knowledge in
the form of all design decisions, how would we use it? Who would use it, to do what?
Ultimately, every bit of architectural knowledge stored should be used in at least one
use case and, conversely, every use case should be answerable from the architectural
knowledge captured. A use-case model has at minimal actors (what are the various
roles involved) and use cases (what do these roles do).

3.1 Actors

Who would use, produce, and exploit Architectural Knowledge from our repository?

• Architects: the people designing the system (or a part of a large system). They
need to document much of the design, they should bring the decisions and
assumptions from tacit to documented or formalized
• Other architects: People who are designing parts that integrate with that system.
They need to understand the parts not directly under their responsibility, to see what
impact it has on their decisions.
• Developers: People involved in the implementation of the design and decisions.
• Reviewers: people involved in judging the quality or progress of a design
• Analysts: Mostly, people dealing with requirements they are interested in
• Maintainers: while evolving or correcting the system they need to understand the
correlation between decisions they take and the current set of decisions.
• Users: Not the end-users of the system, but people who use Architectural
Knowledge, for example to interface another system, to document the system etc.
• Re-Users: people who want to exploit all or some of the Architectural Knowledge
to build a new system
• Students: people who want to study software architecture by looking at
Architectural Knowledge from various angles

 Building Up and Reasoning About Architectural Knowledge 53

• Researchers: Researchers may want to look at Architectural Knowledge to find
new patterns, new information, better mousetraps.
• Software tools: Tools may both add to the AK repository, or exploit automatically
some of the contents (consistency checking, pattern recognition, report generation, etc.)

From this list we can identify roles of passive users or consumers of Architectural
Knowledge: people who need to exploit Architectural Knowledge for their own
understanding but who are not going to alter it or expand it. Examples are Developers,
Reviewers, and Students.

Other roles are those of active users or producers of architectural knowledge: they
add to the Architectural Knowledge repository, integrate it, mature the information in
it. Examples include Architects and Software tools.

3.2 Use Cases

From interviews held with practicing architects, as well as our own experience, we
identified the following initial set of use cases:

• Incremental architectural review: what pieces of Architectural Knowledge have
been added or modified since the last review? Extract and visualize these elements;
browse and explore dependencies or traces.
• Review for a specific concern: from a given perspective (such as security, safety,
reuse, etc.) what are the knowledge elements involved? This consists in building in
some sense a “view” of Architectural Knowledge restricted to that concern.
• Evaluate impact: if we want to do a change in an element, what are the elements
impacted (decisions, and elements of design). This may branch out to various kinds of
changes: change of an assumption, change of a design decision.
• Get a rationale: given an element in the design, trace back to the decisions it is
related to.
• Study the chronology: over a time line, find what the sequence of design decisions
has been.
• Add a decision: manually or via some tool; then integrate the decision to other
elements of Architectural Knowledge. (Similarly for other AK elements).
• Cleanup the system: make sure that all consequences of a removed decision have
been removed.
• Spot the subversive stakeholder: identify who are the stakeholders whose changes
of mind are doing the most damage to the system.
• Similar but different, Spot the critical stakeholder: the stakeholder who seems to
have the most “weight” on the decisions, and who therefore maybe the one that could
be most affected by the future evolution of the system.
• Clone Architectural Knowledge: produce a consistent subset of Architectural
Knowledge to prime the pump for a new system (reuse Architectural Knowledge).
• Integration: you want to integrate multiple systems and decide whether they fit.
The tool would help answering questions about integration strategies.
• Detection and interpretation of patterns: are there patterns in the graphs that can
be interpreted in a useful fashion, and lead to guidelines for the architects. For
example: decisions being hubs (“God” decisions), circularity, decisions that gain
weight over time and are more difficult to change or remove.

54 P. Kruchten, P. Lago, and H. van Vliet

4 Ontology-Based Information Visualization: A Case Study

Aduna Cluster Map Viewer1 [8] is a tool to visualize ontologies that describe a
domain through a set of classes and their hierarchical relationships. In such
ontologies, classes often share instances: a software architect can be both a security
expert and involved in project X. The Aduna Cluster Map Viewer is especially well
suited to graphically depict such relationships. Based on a user query, it selects and
displays the set of objects that satisfy the query. Objects belonging to the same cluster
are depicted in one bubble. Clusters can belong to one or more classes.

Figure 3 shows part of the XML representation of the set of design decisions for
the SPAR Aerospace Robotic Arm that is used as input to the Aduna Cluster Map
Viewer.

 - <ObjectSet>
 - <Object ID="obj2">

<Name>Motion should be accurate to
within +1 degree and +1 inch</Name>

 </Object>
 - <Object ID="obj33">
 <Name>Shall withstand all loads due to launch</Name>
 </Object>
 <\ObjectSet>
 - <ClassificationSet>
 - <Classification ID="onto">
 <Name>Ontocrises</Name>
 <Objects objectIDs="obj2 obj4 … obj33 …" />
 <SuperClass refs="kind" />
 - <Classification ID="system">
 <Name>System</Name>
 <Objects objectIDs="… obj32 obj33 …" />
 <SuperClass refs="scope" />
 </Classification>
 - </Classification>
 <Name>Approved</Name>
 <Objects objectIDs="obj1 obj2 …" />
 <SuperClass refs="state" />
 </Classification>
 <\ClassificationSet

Fig. 3. XML representation of design decisions. We have employed a taxonomy where the
class DesignDecision has four subclassses: Kind (ontocrises, anticrises, etc; see section 2.1),
Scope (System, Time, Organization; see section 2.2.3) and State (Idea, Tentative, etc; see
section 2.2.5). We list here two design decisions, labeled obj1 and obj2. It further states that
decisions labeled obj2, obj3 … are of type Ontocrises, while obj1, obj2 … have state
Approved, Finally, decisions obj32, obj33 … have a System scope.

The same set of design decisions represented in XML in figure 3 is used to get the
visualization of the example cluster map in Figure 4.

1 http://aduna.biz/products/technology/clustermap

 Building Up and Reasoning About Architectural Knowledge 55

Fig. 4. The decisions are split into two types: pericrises and ‘the rest’. For each of the decisions
a state has been determined. State ‘decided’ contains the decisions that have been marked as
decided. The figure shows the overlap between the clusters of all decisions, those that are
pericrises, those that have been decided upon and those that are tentative. It shows that 10
decisions have been marked as decided, one of which falls in the class of pericrises. Of the
remaining five pericrises, three are tentative.

Fig. 5. Screenshot of Aduna Cluster Map Viewer. The left pane shows the various categories
distinguished. It is generated from the XML file fed into the system. The user clicks the
categories he is interested in. The right pane shows the results, including the intersections of the
various sets. In this case, it shows the overlap between the clusters of all decisions, all diacrises,
that are decided, and all organization-scoped decisions. A total of 10 decisions have been
marked as decided, of which two fall in the class of diacrises, and three others are limited to
organization scope. Of the remaining seven organization-scoped decisions, two are diacrises as
well, but none of these are marked decided.

56 P. Kruchten, P. Lago, and H. van Vliet

Figure 5 shows a screenshot of the Aduna Cluster Map Viewer. The selection panel
on the left hand side is used to build a query whose result is depicted on the right hand
side. Suppose we want to carry out some of the use cases in section 3.2. How would a
tool like the Aduna Cluster Map Viewer aid the architecting process? For example,
we can carry out 'clone AK' to create a new system by reusing all 'system' level
decisions that are in state 'decided' (see Fig. 3). Use cases 'spot the critical
stakeholder' and 'review for a specific concern' can be supported in a rather
straightforward way by selecting all decisions that match a certain attribute value.
'Add a decision' or 'get a rationale' are realized by making selections or adding
elements in the left pane (see Fig. 5).

This small case study shows that the Aduna Cluster Map Viewer can support many
of our use cases in a rather straightforward way. A further discussion of tool support
is given in section 5.

5 Conclusions

In this paper we discuss the notion of architectural knowledge, in particular the design
decision part thereof. If we had a repository of architectural knowledge for a system,
what would it ideally contain, how would we build it, and exploit it in practice? We
describe a use case model for an architectural knowledge system, together with its
underlying ontology. We present a small case study in which we model available
architectural knowledge in a tool, the Aduna Cluster Map Viewer. Part of the use
cases are handled by the tool, and part need further extension of the tool.

One of the most interesting unsolved issues is how to visualize architectural
knowledge. The amount of information is overwhelming, so we have to abstract away
from a lot of details. Developments in the area of information visualization are
relevant here [7, 10, 27]. Most of these visualizations abstract away from details in the
graph representation, and present the result in terms of tree maps, radial or conical
representations, and the like. Fig. 2 gives an idea of a visualization of design decisions
and constraints/requirements. In our opinion, though, this is not enough. The
visualizations have to direct our attention to the very issue we want to convey, such as
the subversive or critical stakeholder. For example, the Challenger accident in 1986
was ultimately due to low temperature. This problem had occurred before, but the link
between low temperature and the rubber ring damage was not assessed and
recognized until the right visualization was given [24].

If we can link our ontology of design decisions to the contents of actual design
documents, we may exploit ontology-based browsers such as the Aduna Cluster Map
Viewer [8] to explore these resources. This is a kind of data mining operation on
documents containing architectural knowledge, with a targeted visualization. One
such approach, using information retrieval techniques to obtain traceability
information, is described in [11]. Assuming we have captured architectural
knowledge as discussed above in some graph-like form, where the edges represent
design decisions, and the vertices represent relationships between decisions, the
different use cases correspond to certain operations on this graph. Some of these
operations are relatively straightforward. They correspond to a subset operation
(Clone AK, Review for a specific concern) or closure operation (Evaluate impact,

 Building Up and Reasoning About Architectural Knowledge 57

Cleanup the system). An interesting variation of change impact analysis using
Bayesian Belief Networks is discussed in [23]. A more interesting operation has to do
with the detection or matching of patterns or, rather, antipatterns. Some of these can
be cast as graph operations; for example the detection of a “God” decision boils down
to selecting nodes with a high fan-in/fan-out. The identification and operationalization
of time-related patterns still is an open issue.

We might think of a series of plug-ins/services that each supports a specific use
case and an appropriate visualization for that use case. For instance, the use case
examples used in section 4 are all based on the analysis of flat subsets, and show that
a tool like the Aduna Cluster Map Viewer might prove useful for browsing the design
decision space. Instead, we might need another tool (and another type of
visualization) to carry out use cases needing to traverse a hierarchical structure of
design decisions and other knowledge entities. For instance, a tool visualizing
directed graphs in two- or three-dimensional space seems better suited for use cases
like 'evaluate impact' or 'study the chronology', which require to visualize not only
categories of entities but also how these entities are related.

From this exercise, as well as our earlier experiences, we corroborate that tool
support for manipulating architectural knowledge should focus on two crucial issues:
suitable visualization, and task-specific support.

The list of use cases and associated operations needs further underpinning. We are
currently in the process of validating and prioritizing this list with architects and
development groups in various commercial settings.

Acknowledgements

This research has partially been sponsored by the Dutch Joint Academic and
Commercial Quality Research & Development (Jacquard) program on Software
Engineering Research via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN
about architectural knowledge, and by an Eclipse Innovation grant from IBM.

References

1. Bass, L., et al.: Software Architecture in Practice. Addison-Wesley, Reading, MA (2003).
2. Bosch, J.: Software Architecture: the Next Step. In First European Workshop on Software

Architecture (EWSA 2004), (2004), Springer-Verlag, 194-199.
3. Buckingham Shum, S. Analyzing the usability of a Design Rational Notation. In Moran,

T.P. and Carroll, J.M. eds. Design Rationale Concepts, Techniques, and Use, Lawrence
Erlbaum Associates, Mahwah, NJ (1996) 185-215.

4. Burge, J.E. and Brown, D.C. Reasoning with design rationale. In Gero, J.S. ed. Artificial
Intelligence in Design '00, Kluwer Academic Publishers, Netherlands (2000) 611-629.

5. Clements, P., Bachmann, F., Bass, L., et al.: Documenting Software Architectures: Views
and Beyond. Addison-Wesley, Boston (2002).

6. Conklin, J. and Begeman, M.L.: gIBIS: A tool for all reasons. Journal of the American
Society for Information Science, 40 (1989).

7. Fekete, J.-D.: The InfoVis Toolkit. In IEEE Symposium on Information Visualization 2004
(INFOVIS'04), (2004), 167-174.

58 P. Kruchten, P. Lago, and H. van Vliet

8. Fluit, C., Sabou, M. and van Harmelen, F. Ontology-based information visualisation. In
Geroimenko, V. and Chen, C. eds. Visualising the Semantic Web, Springer-Verlag (2005).

9. Fowler, M.: Who Needs an Architect. IEEE Software, 20 (5) (2003) 11-13.
10. Granitzer, M., Kienreich, W., Sabol, V., et al.: Evaluating a System for Interactive

Exploration of Large, Hierarchically Structured Document Repositories. In IEEE
Symposium on Information Visualization 2004 (INFOVIS'04), (2004), IEEE CS, 127-133.

11. Hayes, J.H., Dekhtyar, A. and Sundaram, S.K.: Improving After-the-Fact Tracing and
Mapping: Supporting Software Quality Predictions. IEEE Software, 22 (2005) 30-37.

12. IEEE standard 1471:2000--Recommended practice for architectural description of
software intensive systems. IEEE, Los Alamitos, CA (2000).

13. Klein, M. DRCS: An Integrated System for Capture of Designs and Their Rationale. In
Gero, J.S. ed. Artificial Intelligence in Design ‘92, Kluwer AP (1993) 393-412.

14. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software, 12 (6) (1995) 45-50.
15. Kruchten, P.: An Ontology of Architectural Design Decisions. In 2nd Groningen Workshop

on Software Variability Management, (2004), Rijksuniversiteit Groningen.
16. Lago, P. and van Vliet, H.: Explicit Assumptions Enrich Architectural Models. In

proceeding of ICSE 2005, (2005), ACM Press, 206-214.
17. Lee, J.: Design Rationale: Understanding the Issues. IEEE Expert 12 (1997) 78-85.
18. Lee, J.: SIBYL: a tool for managing group design rationale. In ACM conference on

Computer-supported cooperative work (CSCW90), (1990), 79 - 92.
19. Myers, K.L., Zumel, N.B. and Garcia, P.: Acquiring Design Rationale Automatically.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 14 (2000).
20. Nonaka, I., and Takeuchi, H.: The Knowledge-Creating Company: How Japanese

Companies Create the Dynamics of Innovation, Oxford University Press (1995).
21. Rus, I. and Lindvall, M.: Knowledge Management in Software Engineering. IEEE

Software, 19 (2002) 26-38.
22. Tang, A., Babar, M.A., Gorton, I., et al.: A Survey of Architecture Design Rationale. In

WICSA 5, (2005), IEEE CS.
23. Tang, A., Nicholson, A., Jin, Y., et al.: Using Bayesian Belief Networks for Change

Impact Analysis in Architecture Design. In WICSA 5, (2005), IEEE CS.
24. Tufte, E.R.: Visual explanations: images and quantities, evidence and narrative. Graphics

Press LLC, Cheshire, CO (1997).
25. Tyree, J. and Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE

Software, 22 (2005) 19-27.
26. van der Ven, J.S., et al. Using Architectural decisions. In Hofmeister, C., Crnkovic, I.,

Reussner, R. and Becker, S. eds. Perspectives in Software Architecture Quality,
Universitaet Karlsruhe, Fakultaet fuer Informatik (2006).

27. van Ham, F.: Using Multilevel Call Matrices in Large Software Projects. In IEEE
Symposium on Information Visualization 2003 (INFOVIS'03), (2003), IEEE CS, 227-232.

	Introduction
	The Role of Knowledge Management
	Dimensions of Architectural Knowledge
	Design Rationale
	Contribution of the Paper

	An Ontology of Design Decisions
	Kinds of Architectural Design Decisions
	Attributes of Architectural Design Decisions
	Relationships Between Architectural Design Decisions
	Relationship with External Artifacts

	A Use Case Model for Architectural Knowledge
	Actors
	Use Cases

	Ontology-Based Information Visualization: A Case Study
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

