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Abstract
Classical Morse theory studies the topology of manifolds through Morse functions defined on
the manifolds. A main result is that a Morse function generates a CW-complex homotopic to the
underlying manifold. Cohen, Jones, and Segal [9] have shown in 1995 that it is also possible
to store the Morse theoretic information in a flow category. The classifying space of the flow
category is homotopic to the underlying manifold if the function is a Morse function, and even
homeomorphic if the function is a Morse-Smale function. We show how to define the flow
category for weak Morse functions, these being smooth functions with isolated critical points.
The classifying space of the flow category of a weak Morse function is shown to be homotopic to
the underlying manifold. It is possible to define a flow category for a class of dynamical systems
which need not come from a gradient, but exhibit gradient-like behavior. The axioms of this class
excludes recurrent behavior in the system. The classifying space is shown to be homotopic to
the underlying space. After this we will consider decompositions of general dynamical systems.
Morse decompositions of dynamical systems give rise to isolating block decompositions. The
isolating block decompositions allow us to define the flow category for any (real-time) dynamical
system. The flow category is dependent on the Morse decomposition, and the isolating block
decomposition subordinate to it, but the classifying space of the this flow category is shown to
be homotopic to the underlying space, independent of this data.
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Chapter 1

Introduction

1.1 Classical Morse Theory
Consider the landscape of figure 1.1. This landscape is the graph of a height function
f : [0, 1]2 → R. In figure 1.2 we plotted sublevel sets Mc = f−1((−∞, c)) for var-
ious non-critical values of c. One realizes that the topology of the sublevel sets does
not change as long as c does not pass a critical value of f . When c does cross a critical
value the topology changes. Morse theory is the study of this phenomenon.

The above observation can also be made on compact manifoldsM . One considers
a smooth function f : M → R and one studies sublevel sets as before. In figure 1.3
we plotted the sublevel sets of the height function of the torus embedded in R3. The
height function returns the third coordinate of an embedding of the torus in R3. This
function has four critical points. We have shown the sublevel sets of some values be-
tween critical points. More generally, if a manifold has a non-trivial homotopy type,
the sublevelsetM∞ = M has a non-trivial homotopy type and therefore f must have
critical points. The Morse inequalities [2] are a concise formulation of this, relating

Figure 1.1: The landscape
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Figure 1.2: We plot the sublevel sets of the graph of the landscape. The topology of the
sublevel sets changes when the sublevel set crosses a critical point of the landscape.

the minimum number of critical points of a function to the homology of the underlying
manifold.

One can prove that the homotopy type of a sublevel set changes exactly by attaching
an n-cell where n is given by the nature of the critical point, i.e. depending wether the
critical point is a minimum, maximum, or a saddle point. One builds up a CW-complex
in this manner, which captures the homotopy type of the manifold. For this to work the
function f needs to satisfy certain properties, which are contained in the concept of a
Morse function. Morse functions and their properties are studied in depth in [2].

Definition 1.1. Let M be a smooth manifold. A Morse function f : M → R is a
smooth function such that the critical points of f are non degenerate, i.e. at every point
x ∈ M where dxf = 0 we have that detHxf %= 0.

It is possible to show, see [2, Theorem 5.31], that the class of Morse functions lies
open and dense in Cr(M, R) for any 2 ≤ r ≤ ∞. One can form an interesting twist

Figure 1.3: We plot the sublevel sets of the height function on the torus embedded
in R3. The topology of the sublevel set changes when we pass a critical value of the
height function. There are four critical points of the height function. If we are below
the first critical point, the sublevel set is the empty set. If we pass the minimum of the
height function, the sublevel set is homeomorphic to the disc. When we pass the first
saddle point, we obtain a tube. After we pass the third critical value, the sublevel set
equals the torus with a hole in it. When the maximum of the height function is reached,
the whole torus is obtained.



1.2. A CATEGORIC VIEW OF MORSE THEORY 7

on the idea that the critical points of a function are constrained by the homology of
the underlying space. One can show that not only the number of critical points of a
Morse function is constrained by the homology of the manifold; the function, if chosen
generically, also gives means for computing the homology. One needs to define some
extra technical apparatus, like boundary operators, but it is possible to do. The generic
condition the function needs to satisfy is known as the Morse-Smale transversality
condition.

Definition 1.2. Let M be a Riemannian manifold. A Morse function f : M → R

satisfies theMorse-Smale transversality condition if and only if the stable and unstable
manifolds of f intersect transversely, i.e.

Wu(q) ! W s(p) (1.1)

for all critical points p, q. For all point x ∈ Wu(q)∪W s(p), the tangent space of TxM
is spanned by the tangent spaces TxWu(q) and TxW s(p)

TxM = TxWu(q) ⊕ TxW s(p). (1.2)

A Morse function which satisfies the Morse-Smale transversality condition is called a
Morse-Smale function.

1.2 A Categoric View of Morse Theory
Enter Cohen, Jones, and Segal. In an unpublished paper [9] they propose another way
to store Morse theoretic information. The information of the gradient flow of the Morse
function is not stored in a CW-complex, but in a topological category, which they call
the flow category. The classifying space of the flow category, is homotopic to the un-
derlying manifold if the function is a Morse function. They also prove the stronger
result that the classifying space is homeomorphic to the underlying manifold if the
function satisfies the Morse-Smale transversality condition.

Theorem 1.3 (Cohen, Jones, and Segal). Let f : M → R be a Morse function defined
on a closed Riemannian manifoldM , and Cf the flow category of this function. Then

• The classifying space of the flow category is homotopic to M :

BCf ) M. (1.3)

• If f is generic, i.e. it satisfies the Morse-Smale transversality condition, then the
classifying space of the flow category is homeomorphic to M :

BCf
∼= M. (1.4)

Their paper did not push the weakest assumptions on f for which the first result
holds. It is not necessary to start with a Morse function, we only need that the critical



8 CHAPTER 1. INTRODUCTION

points are isolated. In chapter 3 we prove the homotopy part of their result for the
weaker assumptions, also filling in some details omitted in the original paper.

The functions we study are weak Morse functions. These are smooth functions,
which have isolated critical points, i.e. we can find neighborhoods around each critical
point, such that in this neighborhood there is only one critical point.

We will not focus our attention on the second part of the theorem, that is equa-
tion (1.4). The result does not generalize to dynamical systems apparently.

1.3 Dynamical Systems
The ideas of Cohen et al. are applicable to a class of continuous dynamical systems
on metric spaces which are sufficiently gradient-like. This is the class of strongly
gradient-like systems, see definition 5.3. In chapter 5 we show that we can construct a
flow category for this class of dynamical systems. For the flow category we show that
we can prove the following theorem.

Theorem 1.4. LetD be a strongly gradient-like dynamical system on a metric space S,
and CD its flow category. The classifying space of the flow category CD is homotopic
to the underlying metric space S

BCD ) S. (1.5)

This result directly generalizes theorem 3.1. The gradient flow of a weak Morse
function determines a strongly gradient-like dynamical system. Another class of func-
tions often studied for their nice properties is the class ofMorse-Bott functions. We also
show that the gradient flow of this class of functions gives rise to a strongly gradient-
like dynamical system. The statement is much broader however, we do not even need
a differentiable structure on the underlying manifold, a general compact metric space
is enough.

Morse theory has also made an impact on general dynamical system theory. In gen-
eral, the behavior of dynamical systems is extremely complex. A part of the behavior
of the dynamical system can have properties of a gradient system. Recurrent behavior
is not possible on this part of the dynamics. This can be modeled using Morse de-
compositions. Morse decompositions generalize the idea of critical points in a gradient
system. In chapter 7 we attack general dynamical systems, using Morse decompo-
sitions. These Morse decompositions induce isolating block decompositions, which
are closed neighborhoods of the Morse decompositions. These isolating blocks can be
used to define a flow category for the dynamical system. This flow category depends
on both the Morse decomposition, and the choice of the isolating block decomposition
subordinate to it. However the homotopy type of the classifying space does not depend
on either. We prove:

Theorem 1.5. Let D be a dynamical system on a compact metric space S, M be a
Morse decomposition of the dynamical system, andN be an isolating block decompo-
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sition subordinate to M . The homotopy type of the classifying space of the flow cate-
gory C

M,N
D is an invariant for dynamical systems, Morse decompositions and isolating

block decompositions subordinate to this, and is of the same type as the underlying
metric space S.

BC
M,N
D ) S. (1.6)

1.4 Organization
The thesis is organized as follows. In chapter 2 we recall the notions of category and
topological category. The classifying space of a topological category is defined. Some
examples of classifying spaces are computed. We reformulate and prove the homotopy
part of the theorem of Cohen et al. [9] in chapter 3 for a larger class of functions than
they studied. We also correct some minor mistakes, and fill in some details omitted
in the original paper. We continue in chapter 4 with some examples of weak Morse
functions, their flow categories and the corresponding classifying spaces.

In chapter 5 we define a class of dynamical systems which allow for the construc-
tion of a flow category. We prove that the classifying space of the flow category has
the homotopy type of the underlying metric space. Some examples of this theorem are
studied in chapter 6.

In chapter 7 we attack general dynamical systems. We show that Morse decompo-
sitions give rise to isolating block decompositions, which allow for the definition of a
flow category. The homotopy type of the flow category is an invariant for the underly-
ing space, and equivalent to the homotopy type of the underlying space. Examples of
this theorem are studied in chapter 8.
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Chapter 2

Classifying Spaces

2.1 Introduction
Category theory is the abstract study of mathematical structures. A way to understand
categories is to use the classifying space. The classifying space is a topological space
which one associates to a a category. The space captures some information of the
category. In this chapter we recall the notion of categories, topological categories, and
we show how the classifying space is constructed. In the last section we discuss some
examples.

2.2 Categories
Mathematics is the study of structure. Important are maps which preserve the structure
under consideration. One can think for example of sets and functions, of vector spaces
and linear maps, of topological spaces and continuous maps, or of groups and group
homomorphisms. It is a deep insight, and has taken mathematicians a long time to
realize, that the structure preserving maps illuminate the structure one studies more that
the structures themselves do. What it does, it defines. Category theory is a profound
way of expressing and generalizing this insight. In this section we recall the notion of
a category and some basic properties of categories are studied. By no means this is
exhaustive, or enough prerequisites to follow this thesis. We merely use it to refresh
the mind and fix notation. A classic reference on this subject is Mac Lane [18], and
one can consult the freely available primer of Hillman [14].

Definition 2.1. A Category C consists of two collections

• the collection of objects Ob(C) of C,

• the collection of morphisms Hom(C) of C,

and four rules

1. a rule cod assigning to a morphism γ the codomain of γ, which is an object
cod γ of C.

11
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2. a rule dom assigning to a morphism γ the domain of γ, which is an object dom γ
of C.

3. a rule id assigning to an objectX the identity, which is a morphism idX with the
property cod idX = X and dom idX = X .

4. a rule ◦, called composition, assigning to a composable pair of morphisms (α, β),
that is a pair of morphisms with the property domβ = codα, a new morphism
β ◦ α with

dom(β ◦ α) = domα

cod(β ◦ α) = codβ.
(2.1)

The collections and the rules form a category if the following two properties are satis-
fied

• composition is associative, i.e. γ ◦ (β ◦ α) = (γ ◦ β) ◦ α for all composable
morphisms,

• the identity can be removed or inserted in any string of compositions. The two
properties

γ ◦ iddom(γ) =γ,

idcod(γ) ◦γ =γ,
(2.2)

hold for all morphisms γ.

Remark 2.2. A morphism γ with dom γ = X and cod γ = Y will be written in the
following equivalent forms γ : X → Y , X

γ
!! Y , and Y X

γ
"" interchange-

ably. These notations specify the same morphism. We sometimes omit the composition
symbol ◦ when no ambiguity arises. Thus β ◦ α will be written as βα or β(α) indis-
criminately. Morphisms are also known as arrows.

A useful feature of category theory is the simplicity with which one can move
between different layers of abstraction. One can study morphisms between categories.
These morphisms are known as functors.

Definition 2.3. A functor F : C → D consists of two rules denoted by the same
symbol

F : Ob(C) → Ob(D)

F : Hom(C) → Hom(D),
(2.3)

which satisfy the intertwining properties

• for all morphisms γ, F intertwines the structural rules

dom(Fγ) =F (dom γ)

cod(Fγ) =F (cod γ)
(2.4)
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• for all composable pairs (α, β) of morphisms in C, F intertwines composition

F (β ◦ α) = (Fβ) ◦ (Fα). (2.5)

• F maps identities to identities

F idX = idFX . (2.6)

This holds for all objectsX .

Remark 2.4. Functors take commutative diagrams to commutative diagrams. For ex-
ample, let F : C → D be a functor, and assume the diagram in C

X

ν◦µ
##

!!
!!

!!
!

µ
!! Y

ν

$$

Z

(2.7)

commutes in C. The axioms of a functor makes that we can apply F to the whole
diagram. The resulting diagram

F (X)

F (ν◦µ)
%%""

""
""

""
"

F (µ)
!! F (Y )

F (ν)

$$

F (Z)

(2.8)

is a commutative diagram inD.

If we have two functorsFi : C → Dwe can also do the preceding in a commutative
way. This is the idea of a natural transformation.

Definition 2.5. A natural transformation N between two functors F : C → D, and
G : C → D, written N : F→̇G, is a rule associating to each object X ∈ Ob(C) a
morphismNX ∈ Hom(D), such that the diagram

F (X)

F (γ)

$$

NX
!! G(X)

G(γ)

$$

F (Y )
NY

!! G(Y ),

(2.9)

commutes for all morphisms γ : X → Y in C. The morphism NX is called the
component ofN at X .

A natural transformation is a “functor between functors”. This is made precise in
the next proposition.
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•

&&
##

##
##

##

C × 1 •

''$$$$$$$$$$$$$
!! •

•

&&
##

##
##

##

((

C × 0 •

((

''$$$$$$$$$$$$$
!! •

((

Figure 2.1: A sketch of the category C × 2. The category consists of two copies of C.
We can move to the upper layer via the morphism ↑.

Proposition 2.6. Let F0, F1 : C → D be two functors, and N : F0→̇F1 a natural
transformation between them. The natural transformationN is isomorphic to a functor
N : C × 2 → C. Here 2 is the category with two objects, denoted 0, 1, and one non-
identity morphism ↑: 0 → 1.

Proof. The category C × 2 can best be understood using figure 2.1. Let X ∈ Ob(C),
(γ : X → Y ) ∈ Hom(C), and i ∈ {0, 1}. Define the functorN via the equations

N(X, i) =Fi(X)

N(γ, idi) =Fi(γ)

N(γ, ↑) =NY ◦ F0(γ) = F1(γ) ◦ NX .

(2.10)

The latter identity holds becauseN is a natural transformation. One easily verifies that
N is a functor. These equations express that applyingN to the commuting diagram

(X, 0)

(γ,id0)

$$

(idX ,↑)
!! (X, 1)

(γ,id1)

$$

(Y, 0)
(idY ,↑)

!! (Y, 1)

(2.11)

gives the commutative diagram

F0(X)

F0(γ)

$$

NX
!! F1(X)

F1(γ)

$$

F0(Y )
NY

!! F1(Y )

. (2.12)

Any natural transformation N defines the functor N uniquely, and any functor N :
C × 2 → C defines a unique natural transformationN .
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Two properties of categories are basic. We define them here.

Definition 2.7. A category C is small if Ob(C) and Hom(C) are sets, and not proper
classes [18]. A category is concrete if X ∈ Ob(C) is a set with structure and γ ∈
Hom(C) is a function preserving that structure for all objects and morphisms.

Example 2.8. The category of all setsSet, and the category of all groupsGrp are large
and concrete. In the first case morphisms are functions between sets, and in the latter
case morphisms are homomorphisms, i.e. functions preserving the group structure. The
category 2 is small and non-concrete.
Remark 2.9. The categories we will consider are small. Therefore the structural rules
are actually maps. From here on we will speak of the structural maps, instead of struc-
tural rules.

2.3 Topological Categories
Categories can be enriched by letting the collections of objects and morphisms be ob-
jects in some other category, e.g. a concrete category is a category enriched by Set.
We do not consider general enrichements of categories, only categories enriched by
Top, the category of topological spaces and continuous functions. The axioms of a
Top-enriched category boil down to the definition that follows.

Definition 2.10. A Topological Category is a small categoryC satisfying the additional
axioms

• Ob(C) and Hom(C) are topological spaces.

• The four structural maps are continuous. These are

– The identity map id : Ob(C) → Hom(C)

X .→ idX . (2.13)

– The composition law ◦ : Hom(C) × Hom(C) → Hom(C)

(γ1, γ2) .→ γ2 ◦ γ1. (2.14)

– The domain map dom : Hom(C) → Ob(C)

(γ : X → Y ) .→ X. (2.15)

– The codomain map cod : Hom(C) → Ob(C)

(γ : X → Y ) .→ Y. (2.16)

Remark 2.11. Every small category can be topologically enriched to a topological cate-
gory. We endow the setsOb(C) andHom(C) with the discrete topology, i.e. all subsets
of these sets are open. All the structural maps are trivially continuous, thus the category
is topological. Of course this is not the unique topology that turns the category into a
topological category.
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The natural morphisms between topological categories are continuous functors.

Definition 2.12. A continuous functor F : C → D is a functor between two topological
categories satisfying the with the property that the maps F : ObC .→ ObD and
F : HomC .→ HomD are continuous.

A perk of category theory is the ability to maneuver between different layers of
abstraction. Category theory also allows us to study totalities of structures, e.g. the
category of all sets and the category of all small categories. We are interested in the
category of all topological categories.

Definition 2.13. The category of topological categories TopCat is the large category
whose objects are topological categories, and whose morphisms are continuous func-
tors.

Remark 2.14. A topological category is a small category;Ob, andHom are topological
spaces, and therefore sets. In contrast TopCat is not small, i.e. Hom(TopCat) is a
proper class. For a discussion on small and large categories, consult Mac Lane [18].
Remark 2.15. The term topological category has two different meanings in the math-
ematical literature. The first notion of topological category is the one we have de-
scribed in this section, small categories where the sets of objects and morphisms come
equippedwith a topology such that the four structural maps are continuous. The second
one, found for example in Brümmer [7], is a generalization of the category of topolog-
ical spaces Top. These topological categories have morphisms which have properties
similar to the the morphisms in Top i.e. continuous functions. Some examples include
the category of metric spaces, or the category of topological spaces Top itself.

2.4 The Classifying Space of a Topological Category
To every topological category we can associate the classifying space of the topological
category. This is a topological space. The classifying space gives geometric under-
standing of the category. This construction is functorial. A continuous functor induces
a continuousmap between the associated classifying spaces. In this section we describe
this construction.

Definition 2.16. LetX = (X0, X1, ..., Xl) be a finite sequence of objects of C. Such
a sequence is called admissible if for all 0 ≤ i ≤ l − 1, Hom(Xi, Xi+1) is non-
empty. Then l(X) = l is the length of the sequence. Furthermore we define the space
Hom(X) of morphisms of the admissible sequenceX with length l(X) ≥ 1 to be

Hom(X) := Hom(X0, X1) × Hom(X1, X2) × ... × Hom(Xl−1, Xl). (2.17)

It is endowed with the product topology. If l(X) = 0 then

Hom(X) := Hom(X0, X0). (2.18)

The classifying space will be built up from limbs.
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Definition 2.17. Let ∆n be the standard n-simplex

∆n :=

{

(x0, x1, . . . , xn) ∈ R
n+1
≥0 |

n
∑

i=0

xi = 1

}

, (2.19)

and the spaces NnC of a topological category C be defined by

NnC :=
∐

l(X)=n

Hom(X). (2.20)

The disjoint union runs over all admissible sequences of length n. The limbs KC are
defined by

KC :=
∞
∐

n=0

∆n × NnC. (2.21)

KC is a topological space.

The last ingredient necessary for the definition of the classifying space is an equiv-
alence relation. This equivalence relation is generated by four maps, which we define
below.

Definition 2.18. The face map δi : ∆n → ∆n+1 and the degeneracy map σi : ∆n →
∆n−1 are defined by

δi(x0, . . . , xn) = (x0, x1, . . . , xi−1, 0, xi, . . . , xn) for 0 ≤ i ≤ n + 1

σi(x0, . . . , xn) = (x0, x1 . . . , xi + xi+1, xi+2, . . . , xn) for 0 ≤ i ≤ n − 1.

What remains are the more complicated maps di : NnC → Nn−1C and si : NnC →
Nn+1C. For l(X) ≥ 2 we have

di : Hom(X0, . . . , Xl) → Hom(X0, . . . , Xi−1, Xi+1, . . . , Xl), (2.22)

defined by

di(γ0, γ1, . . . , γl−1) =











(γ1, . . . , γl−1) i = 0

(γ0, . . . , γi ◦ γi−1, γi+1, . . . , γl−1) 1 ≤ i ≤ l − 1

(γ0, . . . , γl−2) i = l

.

(2.23)
Notice that γi is a morphism with domγi = Xi and codγi = Xi+1. If l(X) = 1 we
have the degenerate case d0 : Hom(X0, X1) → Hom(X1) which maps γ0 .→ idX1 ,
and d1 : Hom(X0, X1) → Hom(X0) which maps γ0 .→ idX0 . The last map we need
is

si : Hom(X0, . . . , Xl) → Hom(X0, . . . , Xi, Xi, . . . , Xl), (2.24)

defined by the equation

si(γ0, γ1, . . . , γl−1) = (γ0, . . . , γi−1, idXi , γi, . . . , γl−1). (2.25)
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x1

x2

x0

δ0∆1

δ1∆1 δ2∆1

Figure 2.2: The maps δ0, δ1, δ2 are shown acting on ∆1. They map the 1-simplex ∆1

onto the boundary of the 2-simplex∆2 as indicated in the figure. Each map maps ∆1

to a different edge of the 2-simplex∆2.

Remark 2.19. We have chosen to name all face and degeneracy maps by the same
symbol. That is δi : ∆n → ∆n+1 are all denoted δi for all n. From context the
dimensionality of the domains and images will be clear. One should realize that di goes
in the opposite direction as δi; i.e. di maps aHom space of an admissible sequence into
aHom space of a shorter admissible sequence. δi maps a low dimensional simplex into
a higher dimensional simplex. The situation for si and σi is similar, but the directions
are reversed. si maps an admissible sequence into a longer admissible sequence, while
σi maps a simplex into a lower dimensional simplex.

In figure 2.3 we have drawn the zero, one, and two dimensional simplices. To better
understand the maps δ and σ we have listed the action of δ : ∆1 → ∆2 in figure 2.2,
and the action of σ : ∆2 → ∆1 in figure 2.4. The face maps map lower dimensional
simplices into the faces of a higher dimensional simplices. The degeneracymap project
higher dimensional simplices onto lower dimensional simplices.

The maps di and si are best understood diagrammatically. Let X , with l(X) ≥ 2
be an admissible sequence and γ ∈ Hom(X). Then di acts on the string

γ = a0
γ0

!! . . .
γl−1

!! al (2.26)
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x0

x1

x0

x1
x2

x0

Figure 2.3: The blue dot, line, and triangle are the first three simplices. Later we will
not consider the embedding of ∆n into Rn+1 but draw them as subspaces of Rn. For
computational purposes the embedding of∆n in Rn+1 is convenient.

by

d0(γ) = a1
γ1

!! . . .
γl−1

!! al

di(γ) = a0
γ0

!! . . .
γi−2

!! ai−1
γi◦γi−1

!! ai+1
γi

!! . . .
γl−1

!! al

dl(γ) = a0
γ0

!! . . .
γl−2

!! al−1 .

(2.27)

The map si inserts an identity at the i-th spot

si(γ) = a0
γ0

!! . . .
γi−1

!! ai
idai

!! ai
γi

!! . . .
γl−1

!! al . (2.28)

Definition 2.20. The Classifying Space BC associated to a topological category C is
the topological space

BC := KC/ ∼, (2.29)

where the equivalence relation ∼ in K is generated by stating

(x, di(γ)) ∼ (δi(x), γ), (2.30)

and
(x, si(γ)) ∼ (σi(x), γ). (2.31)

Remark 2.21. The construction of the classifying space is also possible for ordinary,
i.e. non-topological, categories. One builds up a simplicial set, called the nerve of the
category, and then the classifying space is the geometric realization of this simplicial
set. Equivalently one can turn the category into a topological category by imposing the
discrete topology on Hom(C) and Ob(C), and one gets the classifying space outlined
in this section. Both constructions are equivalent, and one obtains a CW-complex in
this manner. For a proof of this and more information see Milnor [22].

A proper understanding of the classifying space construction involves some more
terminology.
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x1

x2

x0

x1

x2

x0

Figure 2.4: The left picture the identification σ0 induces on ∆2 is shown. A thick line
is identified with a single point of ∆1. On the right picture the identification of σ1 is
depicted in the same manner.

Definition 2.22. A point x ∈ ∆n is interior if xi %= 0 for all 0 ≤ i ≤ n. Let X be
an admissible sequence. A chain γ ∈ Hom(X) is said to be degenerate if γi = idXi ,
otherwise it is non-degenerate. A point (x,γ) ∈ KC is non-degenerate, if γ is non-
degenerate and x is interior.

Remark 2.23. Note that a chain cannot be degenerate if the admissible sequence does
not stammer. In the categories we will consider, Hom(X, X) will always consist of a
single morphism, the identity morphism. In this case the non-degeneracy of the chain
is equivalent with the property that the admissible sequence does not stammer. Note
that different non-degenerate elements ofKC are never equivalent.

The classifying space allows us to study a category geometrically. Objects are iden-
tified with points, morphisms with lines, triangular commuting diagrams with triangles
etc. The construction of the classifying space identifies the edges of these objects with
the elements from which they are constructed. We clarify this with an example. More
examples are found at the end of this chapter in section 2.7.
Example 2.24. Let 2 be the category with two elements, 0, 1 and one non-identity
morphism, the morphism ↑: 0 → 1. The category is topologized by endowing Ob(2)
and Hom(2) with the discrete topology. Most elements of the limbs

K2 =
∞
∐

i=0

∆i ×





∐

l(X)=i

Hom(X)



 (2.32)

are degenerate, c.f. definition 2.22. All elements with i > 1 are, because there are only
two different objects. In the classifying space, all spaces with dimension i > 1 will be
identified with spaces of dimension 0, or 1. For i = 0 we only have two points, these
are the objects 0 and 1. For i = 1 we have a single admissible sequence which is not
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degenerate, this is the sequence

X = {0, 1} and γ ∈ Hom(X) is γ = {↑}. (2.33)

One computes
d0(γ) = 0 and d1(γ) = 1. (2.34)

The endpoints are identified with the domain and codomain. The resulting classifying
space is a line. This is geometrically what we would expect the category to be. In the
example section 2.7 we compute the classifying space of 3, which is a triangle. This
generalizes, for the category n the classifying space can be computed to be homeomor-
phic to the n − 1 simplex

Bn ∼= ∆n−1. (2.35)

Remark 2.25. The classifying space is a way to study categories in a topological man-
ner. We can lift topological properties to categories. For example we can define a
category to be connected, if and only if the classifying space of the category is con-
nected. We will not pursue this idea further.
Remark 2.26. We have chosen to give a rather explicit description of the classifying
space. We formulate the process more abstractly. A category C, determines a nerve
NC which is a simplicial set, or a simplicial space if the category is topological. The
classifying space is the geometric realization of the nerve. All maps in this construction
are functors. The diagram

C
Nerve Functor

!! NC
Geometric Realization Functor

!! BC (2.36)

illuminates this. The abstract functorial approach is studied in [28].

2.5 Some Propositions
We prove some basic propositions involving classifying spaces and topology.

Proposition 2.27. A continuous functor F : C → D induces a continuous map of
classifying spaces BF : BC → BD. The operation

B : TopCat → Top, (2.37)

is a functor.

Proof. We prove this result in two steps. We first show that a continuous map between
KC andKD is induced. Secondly we show that this induced map respects the equiva-
lence relation. It follows that the resulting map descends to the quotient.

Step 1. If the chain γ = (γ0, . . . , γl) has the property γ ∈ Hom(X) for an admis-
sible sequenceX = (a0, . . . , al) in C, then F (γ) := (Fγ0, . . . , Fγl) ∈ Hom(F (X))
for the admissible sequence F (X) := (F (a0), . . . , F (al)) in D, by the functorial
properties of F . The mapKF : KC → KD defined by

KF (x,γ) = (x, F (γ)), (2.38)



22 CHAPTER 2. CLASSIFYING SPACES

is a continuous map by the continuity properties of F . If G : D → E is another con-
tinuous functor, thenK(G ◦ F ) = (KG) ◦ (KF ) as is directly verified.

Step 2. We show that KF respects the equivalence relation ∼. Let l(X) ≥ 2.
Observe that

F (di(γ)) =











(Fγ1, . . . , Fγl−1) i = 0

(Fγ0, . . . , (Fγi) ◦ (Fγi−1), Fγi+1, . . . , Fγl−1) 1 ≤ i ≤ l − 1

(Fγ0, . . . , Fγl−2) i = l

= di(F (γ)).

For l = 1 we also have that F ◦ di = di ◦ F , which is a triviality. The map si also
satisfies the intertwining property Fsi = siF . This makes that the map KF respects
the equivalence relation. The factorization BF of KF to the quotient is continuous.

Milnor [23] proves the following fact.

Proposition 2.28. Let (x,µ) ∈ KC. There exists a unique non-degenerate (y, ν) ∈
KC such that

(x,µ) ∼ (y, ν). (2.39)

The following theorem is true, see Segal [28] for a proof.

Theorem 2.29. Let C andD be topological categories, where either C orD has a finite
number of objects. There exists a homeomorphism

B(C × D) ∼= (BC) × (BD). (2.40)

In Segal [28] the theorem is formulated in a more general setting. The above result
is the one we need however. The following proposition is crucial in what is to come.

Theorem 2.30. Let F0, F1 : C → D be continuous functors. Suppose that there exists
a natural transformationN : F0→̇F1. Then the induced maps BF0 : BC → BD and
BF1 : BC → BD are homotopic.

Proof. We can view N as a functor N : C × 2 → D. The category 2 is finite, hence
there is a splitting B(C × 2) ) BC × B2. We computed in example 2.24 that B2 ∼=
[0, 1]. Furthermore,BN(X, 0) = (BF0(X), 0), and BN(X, 1) = (BF1(X), 0). BN
is a homotopy, henceN induces the homotopy between the mapsBF0 and BF1.

2.6 The Subdivision of a Topological Category
Sometimes we would like to view objects and morphisms of a topological category on
the same level. This is possible, because every objectX ∈ Ob(C) gives rise to a mor-
phism idX . The subdivision category is a nice way of viewing objects and morphisms
on the same footing. Roughly, objects in the subdivision category are morphisms in the
original category. Morphisms in the subdivision category are “inclusions of composi-
tion”. If µ = β ◦ ν ◦ α for morphisms µ, ν, β, α in C, then there is a morphism µ → ν
in sd (C).
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Convention 2.31. In this section we explicitly state to which category a structural map
belongs. For example we write domC for the domain map in C and we write domsd(C)

for the domain map in sd (C). The proofs in this section move between all the different
categories, so it is clearer if we specify all these labels. In later chapters we will not
do this, we will either fully work in C or in sd (C) so the distinction is redundant and
clumsy.

Definition 2.32. The subdivision category sd (C) of a topological category C is a topo-
logical category, where

• The space of objectsOb(sd (C)) of the subdivision category equals the space of
morphisms of the original categoryHom(C),

Ob(sd (C)) = Hom(C). (2.41)

• The space of morphisms is the subspace of Hom(C) × Hom(C), where (α, β) :
µ → ν is a morphism if and only if the diagram

x

µ

$$

α
!! x′

ν

$$

y y′
β

""

(2.42)

commutes in C.

• Let (α, β) : µ → ν. The maps domsd(C) and codsd(C) are the obvious maps
defined by

domsd(C)(α, β) = µ

codsd(C)(α, β) = ν.
(2.43)

• The identity map idsd(C) maps γ ∈ Ob(sd (C)) to
(

idC

domC(γ), id
C

codC(γ)

)

/

• Let (α, β) and (α′, β′) be composable morphisms. Then the composition of the
morphisms is defined by

(α, β) ◦sd(C) (α′, β′) = (α′ ◦C α, β ◦C β′). (2.44)

Remark 2.33. The formula for the identity map is derived by studying the diagram

dom(γ)

γ

$$

iddom(γ)
!! dom(γ)

γ

$$

cod(γ)
idcod(γ)

!! cod(γ)

, (2.45)
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and the composition law is best understood while pondering the diagram

a

γ

$$

α
!! a′

γ′

$$

α′

!! a′′

γ′′

$$

b b′
β

"" b′′
β′

""

. (2.46)

The composition law measures “inclusion of composition”. If a morphism can be writ-
ten as compositions of other morphisms γ = γn ◦ . . . ◦ γ0 in C then there exists mor-
phisms γ → γi in sd (C).

Of course we need to prove that the structure we have defined is a topological
category. We use the topological structure of the underlying category.

Proposition 2.34. The subdivision category sd (C) is a topological category, for any
topological category C.

Proof. We directly verify that the subdivision is a small category, for whichOb(sd(C))
and Hom(sd(C) are topological spaces; we only establish the continuity of the struc-
tural maps.

We start of with the continuity of the composition law. Let (α, β) and (α′, β′) be
two composable morphisms. Their composition is defined by

(α, β) ◦sd(C) (α′, β′) = (α′ ◦ α, β ◦ β′). (2.47)

This is the product map of the two continuous maps (α, α′) .→ α′ ◦ α and (β, β′) .→
β′ ◦ β. These are both continuous, since C is a topological category. The product map
of two continuous functions is continuous.

The identity map idsd(C) maps γ ∈ Ob(sd (C)) to the product

idsd(C)(γ) = (idC

domC(γ), id
C

codC(γ)). (2.48)

This is the product map of two continuous maps, idC

domC(γ), and idC

codC(γ) hence con-
tinuous.

The codomain map codsd(C) maps a pair (α, β) : µ → ν to ν. The preimage of
ν under codsd(C) are all morphisms (α′, β′) which have codC(α′) = domC(ν) and
domC(β′) = codC(ν). This is illuminated by the diagram

domC(µ) = domC(α′)
α′

!!

µ

$$

domC(ν) = codC(α′)

ν

$$

codC(µ) = codC(β′) cod(C(ν)) domC(β′)/
β′

""

(2.49)
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Thus
(

codsd(C)
)−1

(ν) =
⋃

ρ,σ∈Hom(sd(C))

(

HomC
(

ρ, codC(ν)
)

, HomC
(

domC(ν), σ
))

Where we understand that we skip a term if one of the Hom spaces is empty. The
preimage of ν is a union of open sets, therefore open, hence the preimage of an open
set U ⊂ Ob(sd (C)) is open, because it is a union of open sets.

Finally the domain map domsd(C). One verifies

domsd(C)(α, β) = β ◦C codsd(C)(α, β) ◦C α. (2.50)

This is a composition of the continuous projections π1(α, β) = α, π2(α, β) = β
and the continuous maps codsd(C) and ◦C. We conclude that domsd(C) is therefore
continuous. All four structural maps are continuous, hence sd (C) is a topological
category.

The main interest in subdivisions is that the homotopy type of the classifying space
does not change. The following is proved in [10, Theorem 32] or in [20].

Proposition 2.35. The classifying space of a topological category and its subdivision
have the same homotopy type

B sdC ) BC. (2.51)

2.7 Examples
In this section we discuss several examples of classifying spaces of simple categories.
In the discussion of the examples, the identification maps are explicitly described, to
ease the understanding of these maps.

In the categories we will consider, Nn will consist of only degenerate elements if
n is big enough, there are no infinite non-degenerate chains. We will only draw theNn

which are not completely degenerate. If we draw Nn we usually omit all degenerate
elements as well.
Example 2.36. In this example we compute the classifying space of 3. This is the
category of three elements, denoted 0, 1, and 2. There is a unique morphism between
the object x and x′ if and only if x ≤ x′. We denote these by γ01 : 0 → 1, γ02 : 0 → 2,
and γ12 : 1 → 2. Of course we also have three identity morphisms, which we write
id0 : 0 → 0 etc. This category is topologized by endowing the spaces Ob(C) and
Hom(C) with the discrete topology. Now Nn for n > 2 consist only of degenerate
chains. We depicted ∆0 × N03, ∆0 × N13, and ∆0 × N23 in figure 2.5. We have
labeled the faces of the chains, what di would induce. We encourage the reader to
reproduce the pictures; this will aid understanding of the theory. We now are able to
read off that the classifying space of 3 is the 3−simplex. This example generalizes to
all the categories n, the categories with n elements, with unique morphisms if x ≤ x′.
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The second example is an example of a useful category, that is the category associ-
ated to a specific poset.
Example 2.37. A partially ordered set (or poset) is a set with a binary operation ≤
which is transitive, reflexive, and antisymmetric [13, section 14]. There exists a notion
of a classifying space of a poset. This is the geometric realization of the order complex
associated to the poset. On the other hand, we can associate a topological category to a
poset as follows. Let ObC be the underlying set of the poset, and let there be a unique
morphism if a ≤ b. Endow both Ob C and HomC with the discrete topology. The
classifying space obtained in this manner is homeomorphic to the classifying space
obtained from the geometric realization of the order complex. The previous example
is actually a poset.

Example 2.38. We study another example which arises in poset theory. Let Bn be the
set of subsets of [n] := {1, 2, . . . , n}. This is a poset under inclusion, i.e. for x, y ∈ Bn

we have x ≤ y if and only if x ⊂ y. The category Bn is defined to have as objects

∆0 × N03 = •0 •1 •2

∆1 × N13 = •1

•0

γ01

((
•2

•0

γ02

((
•2

•1

γ12

((

∆2 × N23 = •0

•1

γ02

))
%%%%%%%%%

γ01
!! •2

γ12

**&&&&&&&&&

Figure 2.5: Some non-degenerate elements of the spaces ∆n × Nn3. The classifying
space, the space we get after identifying the points with the same label, is homeomor-
phic to the 2−simplex.

∆0 × N0B3 = •{1} •{2} •{3} •{1,2} •{1,3} •{2,3}

∆1 × N1B3 = •{1,2}

•{1}

((
•{1,3}

•{1}

((
•{1,2}

•{2}

((
•{2,3}

•{2}

((
•{1,3}

•{3}

((
•{2,3}

•{3}

((

Figure 2.6: The limbs ofB3. Higher limbs are all degenerate.
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{2, 3}

''
''

''

((
((

((

{2} {3}

{1, 2}

''
''

''
{1, 3}

((
((

((

{1}

Figure 2.7: The classifying space BB3 is homeomorphic to the circle S1.

elements of Bn, excluding ∅ and [n]. There is a unique morphism x → y if x ⊂ y.
Both Ob(Bn) and Hom(Bn) are endowed with the discrete topology.

Now we turn to the special case n = 3. There are six objects, and six morphisms.
We depict the limbs in 2.6. We have have shown the resulting classifying space is a
circle, as seen in figure 2.7. This is not a coincidence. The category we constructed is
the barycentric subdivision of a 2−simplex. We expect, if we remove the center point,
to retrieve the boundary of the two simplex, which is homeomorphic to the circle. This
works for all dimensions, i.e. BBn

∼= Sn−2 for n > 1.
In the third example we investigate the differences if the topologies ofOb andHom

vary.
Example 2.39. We define two categories, C and D. Both categories have the same
objects and morphisms

Ob(C) = Ob(D) = [0, 1]
∐

[2, 3] Hom(C) = Hom(D) = [0, 1], (2.52)

viewed as sets. A morphism x ∈ [0, 1]maps x to x + 2. We define different topologies
on the objects and morphisms of C and D. For C endow the collections of objects and
morphisms with the discrete topology. Let Ob(D) and Hom(D) be endowed with the
subspace topology of R. The classifying space of C consists of an infinite number of
disjoint lines and the classifying space of D is homeomorphic to the square [0, 1]2 ⊂
R2.

Our last example will actually be used in the proof of the homotopy theorems later
in the thesis. We therefore formulate it as a proposition.

Proposition 2.40. Let S be a topological space, and letS be the topological category
with

Ob(S) = S and Hom(S) = S (2.53)
Where we interpret x ∈ Hom(S) as idx. Then the classifying space and the original
space are homeomorphic,

BS ∼= S. (2.54)
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Proof. All non-degenerate chains come from admissible sequences with length 0 thus

BS ∼= ∆0 × N0S. (2.55)

And we have
∆0 × N0S ∼= N0S = S. (2.56)

Thus the classifying space is homeomorphic to the space S.



Chapter 3

The Flow Category of a Weak
Morse Function

3.1 Introduction
Morse functions have nice properties. Around a critical point a Morse function is
described by a quadratic polynomial. Sublevel sets Mc = f−1((−∞, c]) describe
changes in homotopy of the underlying manifold. The gradient flow is heteroclinic,
i.e. the alpha and omega limit sets of points are singletons. These properties all play a
fundamental role in classical Morse theory. A wider class of functions, which contains
the Morse functions, also have the latter property. This property is crucial for the
proof of the homotopy part of the theorem. We call the class of functions with isolated
critical points, which are allowed to be degenerate, weak Morse functions. We define
the notion precisely in this chapter and we define the flow category a weak Morse
function generates. The goal of this chapter is to prove the following theorem.

Theorem 3.1. Let M be a Riemannian manifold, f : M → R a weak Morse function.
There exists a homotopy

BCf ) M, (3.1)

where Cf is the flow category of f .

3.2 Weak Morse Functions
Definition 3.2. LetM be a smooth manifold. A function f : M → R is called a weak
Morse function if it is smooth and all critical points of f are isolated. That is, for each
critical point p, there exists a neighborhoodUp 2 p such that p is the only critical point
in this neighborhood.

A Morse function is always a weak Morse function. The notion of a weak Morse
function is weaker than the notion of a Morse function. This sanctions the use of the
name weak Morse.

29
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Proposition 3.3. A Morse function is a weak Morse function.

Proof. The Morse lemma, c.f. [2, Lemma 3.11], shows that a critical point p with
critical value c of a Morse function f , has a chart (U,ϕ) such that

f(ϕ−1(x1, . . . , xn)) = c − x2
1 − . . . − x2

k + x2
k+1 + . . . + x2

n, (3.2)

in this chart. It directly follows that the critical points of a Morse function are isolated,
U isolates the critical point p from other critical points.

The following property of weak Morse functions is critical, and its proof is stan-
dard.

Proposition 3.4. IfM is compact, a weakMorse function has a finite number of critical
points. Conversely, a smooth function with a finite number of critical points is weak
Morse.

3.3 Heteroclinicity
Recall that if f is a function, then a gradient flow line or orbit through x is the maximal
curve γ satisfying the differential equation

γ̇(t) = −∇f(γ(t)) γ(s) = x for some s ∈ R. (3.3)

On compact manifolds gradient flows of Morse functions and weak Morse func-
tions are heteroclinic, i.e. the limits lim±∞ γ(t) exist. The following proposition is
proved for Morse functions in Banyaga and Hurtubise [2]. The proof for weak Morse
functions is completely analogous. We state the proof here for convenience.

Proposition 3.5. Let f : M → R be a weak Morse function on a closed Riemannian
manifold. Then all gradient flow lines γ : R → M are defined for all time, and begin
and end at a critical points of f . That is

lim
t→∞

γ(t) and lim
t→−∞

γ(t) (3.4)

exist, and both are critical points of f .

Proof. Let γ be a gradient flow line through x ∈ M . SinceM is compact, the flow line
γ is defined for all time. The compactness ofM forces f ◦ γ : R → R to be bounded,
because the image of a compact set is compact, and compact sets in R are bounded and
closed. Thus for any subset U ⊂ M , the set f(U) is bounded. We compute

df(γ(t))

dt
= df

dγ(t)

dt
= df(−∇f(γ(t)))

= − ||∇f(γ(t))||2 ≤ 0,

(3.5)
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hence f decreases along orbits. The boundedness of f ◦γ and the preceding imply that

lim
t→±∞

df(γ(t))

dt
= 0. (3.6)

Now let t±n ∈ R be sequences with limn→∞ t±n = ±∞. Clearly γ(t±n ) ⊂ M are
infinite sets of points on a compact manifold, hence they have accumulation points q±.
These accumulation points are critical points of f since limn→∞ ||∇f(γ(t±n ))|| = 0.
The critical points q± are isolated by assumption hence there exists neighborhoods
U± 2 q± where these are the only critical points in their neighborhoods. Now suppose
that limt→±∞ γ(t) %= q±. Then there exists sequences t̃±n with limn→∞ t̃±n = ±∞
and γ(t̃±n ) ∈ U± \ V ± with V an open neighborhood of q±. Therefore the sequence
γ(t̃±n )must have accumulation points q̃± ∈ U±\V ±. By the previous discussion these
must be critical points. We assumed the critical points q± are the only critical points in
U±. Hence we conclude that limt→±∞ γ(t) = q±.

3.3.1 A Counterexample
One might conjecture that all gradient flows are heteroclinic. This is not true and we
provide a counterexample in this section. We construct a C2 function for which orbits
do not have well defined limits as t → ∞.

Example 3.6. We work in polar coordinates on R2. The function f : R2 → R is
defined by

f(r, θ) =

{

(r − 1)2(sin( 1
r−1 + θ) + 2) for r > 1

0 for r ≤ 1.
(3.7)

Elementary analysis shows that f isC2 everywhere, andC∞ outside of a neighborhood
of r = 1. The function is drawn in figure 3.1. The gradient flows spiral towards the an
attractor, the circle r = 1. The flows themselves do not have well defined limits. One
can choose sequences txn ∈ R with limn→ txn = ∞, such that limn→∞ γy(tn) = x for
any x ∈ S1, and all y with ||y|| > 1. All points on the circle are approached as t → ∞.

3.4 The Flow
We will encode the information stored in the gradient flow of a function in a category.
The objects of the category will be critical points, and the morphisms in the category
will be unions of reparameterized orbits extending between equilibria. We also need to
be able to compose orbits. We want to use concatenation as composition of orbits. The
orbits are defined for all time, and this is an obstruction for a simple concatenation.
Therefore we reparameterize the orbits, in such that it only takes a finite amount to
trace the image of the orbit. We exploit the heteroclinicity we have proved before, and
we will use some ODE theory. A slicker argument, one which generalizes to metric
spaces, is used in chapter 5.
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r
θ

Figure 3.1: The function f sketched in polar coordinates on the left, on the right hand
side we plotted a part of the function as observed in R2. Notice how the gradient flows
spiral to the attracting circle r = 1. There is an infinite number of wobbles just outside
of the attracting circle r = 1. Orbits of the gradient flow do not have well defined
limits as t → ∞. All points on the circle are approached by all orbits.

3.4.1 The Reparameterization of the Flow
In the following we understandM to be a closed, i.e. compact without boundary, Rie-
mannian manifold and f : M → R a weak Morse function. Let γab : R → M be a
gradient flow line from the critical point a to the critical point b. The curve γab satisfies
the gradient flow equation

dγab(t)

dt
= −∇f(γab(t)). (3.8)

We want to find a reparameterization of the flow γab which must be a path ωab :
[f(b), f(a)] → M with the properties

• ωab is smooth,

• imωab = im γab, with the bar denoting topological closure,

• The value of f coincides with the parametrization along the orbit

f(ωab(t)) = t. (3.9)

In contrast to γab, which starts at a and ends at b, the reparameterized flow line ωab

starts at the critical point b and ends at the critical point a. Furthermore a differentiation
of equation (3.9) shows

d

dt
t = 1 =

d

dt
f(ωab(t))

= df(ωab(t))
dωab(t)

dt

= 〈∇f(ωab(t)),
dωab(t)

dt
〉ωab(t),

(3.10)



3.4. THE FLOW 33

that ωab ought to obey the differential equation

dωab(t)

dt
=

∇f(ωab(t))

||∇f(ωab(t))||
2 . (3.11)

We should note here that

dωab(t)

dt
=

∇f(ωab(t))

||∇f(ωab(t))||
2 + V (ωab(t)), (3.12)

also solves (3.10) for any vector field V orthogonal to∇f . However if we have a com-
ponent which is orthogonal to f we will never satisfy the property imωab = im γab.
Therefore we conclude that V = 0 for the paths that we are interested in. We want to
show these paths exist, and that every non-critical point lies on a unique reparameter-
ized path.

Proposition 3.7. For each orbit γab : R → M satisfying

dγab(t)

dt
= −∇f(γab(t)), (3.13)

and
lim

t→−∞
γab(t) = a lim

t→∞
γab(t) = b, (3.14)

there exists a unique smooth reparameterized flow line ωab(t) : [f(b), f(a)] → M
satisfying

• imωab = im γab,

• The value of f coincides with the parametrization, i.e. f(ωab(t)) = t.

Proof. The flow line satisfies the following property. If ∇f(γab(t)) = 0 for some t,
then ∇f(γab(t)) = 0 for all t ∈ R. In this case, we have trivially proven the theorem
by the observation that a reparameterization is given by ωab(f(x)) := x, the curve
consisting of a single point. Therefore we assume without loss of generality that∇f is
nonzero on the image of γab. Let

s :=
1

2
(f(a) + f(b)). (3.15)

The function f is strictly decreasing on im γab, with endpoint values of f being f(a)
and f(b), therefore there exists a unique x ∈ im γab with f(x) = s. Hence there is a
unique s̃ ∈ R with γab(s̃) = x.

We want to find a smooth diffeomorphism λ : (f(b), f(a)) → R such that the
curve ωab : (f(b), f(a)) → M defined by

ωab(t) := γab (λ(t)) , (3.16)
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can be extended (to the full domain [f(b), f(a)]), such that ωab satisfies the properties
of the proposition. If we would be able to find such a diffeomorphism, it ought to
satisfy the differential equation

dλ(t)

dt
=

−1

||∇f(γab(λ(t)))||2
, (3.17)

as the chain rule shows, after a differentiation of (3.16) to t

dω(t)

dt
=

d

dt
γab(λ(t))

=γ̇ab(λ(t))λ̇(t)

= −∇f(γab(λ(t)))λ̇(t),

(3.18)

if we want ωab to satisfy (3.11). The right hand side of (3.17) is smooth, hence by the
theory of ordinary differential equations there is a unique maximal solution λ : I → R

to this equation, with initial condition λ(s) = s̃. Of course we have that∇(f) %= 0 on
im γab.

We first prove that the image of λ is in fact the whole of R, then we will conclude
that the maximal domain is (f(b), f(a)). From this it will follow that ωab defined
above satisfies the properties that we want. By compactness ofM , and the smoothness
of f we have

||∇f ||2 < R (3.19)

for some R > 0. This gives the following bound on dλ
dt

dλ(t)

dt
< −

1

R
. (3.20)

We have two cases. The domain of λ is bounded, or it is not. We study these cases
separately. First, if the domain of λ is unbounded from above or below the image can-
not be bounded from below or above respectively. This directly follows from equation
(3.20).

Now we argue that even if the domain is bounded from above or below the image
still cannot be bounded from below or above respectively. These results combined
show that imλ = R. Suppose that the domain is bounded from above by q, and the
image is bounded from below, and call the biggest lower bound r. Then we compute
the limit

lim
t→q

λ(t) = r. (3.21)

Nowwe solve the differential equation (3.17) with boundary initial condition λ̃(q) = r.
By the local existence and uniqueness theorem, this solution exists, and agrees with λ
on (q − δ, q) for some δ > 0. Hence we conclude that λ can be extended to q + δ for
some δ > 0. This extended λ has a lower lower bound, since dλ

dt is strictly decreasing.
This shows that if the domain is bounded from above, the image cannot be bounded
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from below. A similar reasoning shows that the same if the domain is bounded from
below, than the image cannot be bounded from above.

This gives that the image of λ is the whole of R. Now we show that ωab has the
reparameterization property that we wanted.

f(ωab(t)) − f(ωab(s)) =

∫ t

s

d

dτ
f(ωab(τ))dτ

=

∫ t

s

dωab(τ)f
dωab(τ)

dτ
dτ

=

∫ t

s

〈∇f(ωab(τ)),
dωab(τ)

dτ
〉dτ.

(3.22)

Using equations (3.17) and (3.18) we compute

f(ωab(t)) − f(ωab(s)) =

∫ t

s

〈∇f(ωab(τ)),
d

dτ
γab(λ(τ))〉dτ

=

∫ t

s

〈∇f(ωab(τ)),
∇f(ωab(τ))

||∇f(ωab(τ))||2
〉dτ

=

∫ t

s

dτ = t − s.

(3.23)

We have ωab(s) = γab(s̃) = x and f(x) = s by construction, so we can conclude
that f(ω(t)) = t on the whole domain on which λ is defined. This directly shows
that the domain of λ cannot be larger than (f(b), f(a)) since the differential equation
(3.16) would be ill defined. If the domain of λ is smaller than (f(b), f(a)) then we can
extend λ contradicting the assumption that the domain was maximal.

The only thing that remains is extending ωab to f(b) and f(a). This is done by
imposing ωab(f(b)) = b and ωba(f(a)) = a. The extended ωab is still a continuous
function.

We will consider spaces of reparameterized curves. A natural topology on function
spaces is the compact open topology.

Definition 3.8. Let X and Y be topological spaces. The compact-open topology on
the space of continuous functions fromX to Y , C(X, Y ), is the topology generated by
the subbasis

D(C, U) = {f ∈ C(X, Y ) | f(C) ⊂ U}, (3.24)

where C ⊂ X is compact, and U ⊂ Y is open.

More information on the compact-open topology can be found in Munkres [25].
We can now define the spaces of piecewise flow lines.
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Figure 3.2: t,m, and b are three critical points of a weak Morse function, and γtm, and
γmb are reparameterized orbits through them. The curves γtm and γmb are smooth,
however their composition γmb ◦ γtm is merely continuous. For almost all flows this
phenomenon occurs.

Remark 3.9. In the spaces we consider in this thesis, the compact topology is equivalent
to the topology of uniform convergence. An aim is to generalize the theorems we prove
in this thesis, to more general systems, where the topology of uniform convergence
is ill-defined. Therefore we will work with the slightly more general compact-open
topology.

Definition 3.10. Let a and b be different critical points of f . The space of piecewise
flow lines Hom(a, b) is defined to be the space of all curves ωab : [f(b), f(a)] →
M satisfying (3.11) on all points of t ∈ (f(b), f(a)) where ωab(t) is not a critical
point for f and having the limits ωab(f(b)) = b, and ωab(f(a)) = a. We topologize
Hom(a, b) as a subspace of the space of continuous maps C([f(b), f(a)], M) endowed
with the compact open topology. The space of piecewise flow linesHom(a, a) has only
element; the curve defined by ωaa(f(a)) = a.

These spaces are in a sense, which we make more explicit in the propositions 3.13
and 3.15, the closure of the space of all flow lines from a to b. Notice that the flows in
Hom(a, b) need not be smooth, but are piecewise flow lines, hence they are piecewise
smooth and continuous everywhere, see figure 3.2.

The next proposition is crucial, however we have not found a proof of this result.
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Proposition 3.11. Let x ∈ M . Then the assignment operator

asgn : M →
∐

a,b∈Crit(f)

Hom(a, b), (3.25)

which assigns to x the reparameterized curve ωab through x is continuous.

For the compactness of Hom(a, b) we make use of a version of Arzelà-Ascoli’s
theorem [25, Theorem 47.1].

Theorem 3.12 (Arzelà-Ascoli). Let X be a topological space, and (Y, d) a metric
space. Let C(X, Y ) be the space of continuous functions X → Y endowed with the
topology of uniform convergence on compact sets. Let F ⊂ C(X, Y ). If F is equicon-
tinuous, and the set

Fa := {g(a) | g ∈ F} (3.26)

has compact closure for all a ∈ X , then F has compact closure in C(X, Y ).

We use this to prove that the Hom spaces are compact.

Proposition 3.13. Hom(a, b) is compact for all critical points a and b.

Proof. M is a metric space, it is a Riemannian manifold and its topology corresponds
to the topology generated by the metric

d(x, y) := inf L(γ). (3.27)

Where the infimum runs over smooth γ, which connect x and y, and L(γ) is the length
of the curve measured by the Riemannian metric cf. [17, Proposition 1.2]. It is a fact
that the compact-open topology is equivalent to the topology of uniform convergence
on compact sets [25, Theorem 46.8] if the space is a compact metric space. The set
Hom(a, b) is a subset of all continuous maps C([f(b), f(a)], M) in the compact open
topology. We show that the space is equicontinuous. Pick t ∈ [f(b), f(a)], and ε > 0.
Form the open tubular neighborhood T of f−1(t) by

T =
⋃

x∈f−1(t)

Bε(x). (3.28)

Here Bε(x) is the ε ball around x in M . The continuity of f shows the existence of
a δ > 0 such that f−1(Bδ(t)) ⊂ T , where the δ ball is in [f(b), f(a)]. Now for any
ωab ∈ Hom(a, b) we have

ωab(Bδ(t)) ⊂ f−1(Bδ(t)), (3.29)

becauseωab is a reparameterized orbit, cf. proposition 3.7. Combining this with the fact
that the right hand side is a subset of T , we have proven equicontinuity. BecauseM is
a compact space we have that the setsHom(a, b)t = {ωab(t) | ωab ∈ Hom(a, b)} have
compact closure inM , any closed subset of a compact Hausdorff space is compact. We
conclude that Hom(a, b) has compact closure in C([f(b), f(a)], M).1

1We need to proof that Hom(a, b) is closed, then we have proven the result.
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The spacesHom(a, b) with the compact-open topology are somewhat abstract. For
examples it is convenient if we can get some geometric understanding of the spaces
Hom(a, b). A space that we can sketch in examples is the following

Definition 3.14. Let t ∈ (f(b), f(a)). LetMt(a, b) be the space

Mt(a, b) := W s(b) ∩ Wu(a) ∩ f−1(t), (3.30)

whereWu(a) andW s(b) are the stable and unstable manifolds of f ,

W s(b) := {x ∈ M | lim
t→∞

ϕt(x) = b}

Wu(a) := {x ∈ M | lim
t→−∞

ϕt(x) = a}.
(3.31)

It is easy to sketch these spaces. Just look at all the flow lines beginning at a and
ending at b. Take the image of all these flow lines, and draw a line orthogonal to all the
curves. This is a space which is homeomorphic toMt(a, b).

Proposition 3.15. Let t ∈]f(b), f(a)[. The assignment operator restricted toMt(a, b)
is an embedding into Hom(a, b).

Proof. We will show that the assignment operator asgn is an embedding, restricted
to Mt(a, b). The assignment operator is continuous, see proposition 3.11, and is
clearly injective restricted to Mt(a, b), each point has a unique reparameterized flow
line through it. To show that this map is an embedding in the sense of topology
we have to show that it is a homeomorphism onto its image. The inverse operation
evt : Hom(a, b)|asgn(Mt(a,b)) → Mt(a, b), which sends a curve γ to γ(t), is restriction
of the evaluation map ev : [f(b, f(a)]×Hom(a, b) → M . The compact-open topology
forces the evaluation map to be continuous [25]. Therefore the restriction is continuous
as well. Hence asgn is an embedding.

Proposition 3.16. There exists an associative composition law

◦ : Hom(a, b) × Hom(b, c) → Hom(a, c), (3.32)

which is continuous.

Proof. The composition law is just the obvious concatenation of the curves. Given
ωab ∈ Hom(a, b) and ωbc ∈ Hom(b, c) we can form ωac ∈ Hom(a, c) by

ωac(t) :=

{

ωbc(t) for f(c) ≤ t ≤ f(b)

ωab(t) for f(b) < t ≤ f(a) .
(3.33)

Clearly this function satisfies the defining differential equation on all non-critical points,
since both ωab and ωbc do. The limits also work out fine, because ωac(f(a)) =
ωab(f(a)) = a and this holds analogously for the endpoint f(c). By construction
this composition is associative, which clearly follows.
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We want to check that ◦ : Hom(a, b) × Hom(b, c) → Hom(a, b) is continuous in
the compact open topology. The compact-open topology onHom(a, b) is the topology
generated by the subbasis

D(C, U) = {ωab ∈ Hom(a, b) | ωab(C) ⊂ U}, (3.34)

where C ⊂ [f(b), f(a)] is compact and U ⊂ M is open. For the continuity of the
composition map we need to check that the preimage of a subbasis element is open.
Let C ⊂ [f(c), f(a)] be compact, and U open in M . Clearly we can decompose
C = C1 ∪ C2, with C1 ⊂ [f(b), f(a)] and C2 ⊂ [f(c), f(b)]. One readily verifies

◦−1D(C, U) = D(C1, U) × D(C2, U), (3.35)

with D(C1, U) a subbasis element of Hom(a, b) and D(C2, U) a subbasis element of
Hom(b, c). Hence the preimage of any subbasis element under ◦ is open. Therefore ◦
is a continuous map.

Convention 3.17. From now on we will not study the original orbits, the notation ωab

will get clumsy. Therefore we will use the notation γ to denote a general reparameter-
ized orbit.

3.5 The Flow Category
We are now in the position to define the flow category. The topology we endow on the
set of objects is discrete, cf. 3.19. This is a peculiarity because we look at the gradient
flow of a weak morse function. In chapter 5 we will construct a flow category where
the topology on the objects of the category is non-discrete.

Definition 3.18. The flow category, associated to the weak Morse function f , is the
topological category Cf , which is defined by the following rules.

• The space of objects Ob(Cf ) = Crit(f) is the space of critical points, i.e. x ∈
Ob(Cf ) implies dxf = 0. It is topologized as a subspace ofM .

• The space of morphisms

Hom(Cf ) =
∐

x,y∈Ob(Cf )

Hom(x, y), (3.36)

is the union of all spaces of piecewise reparameterized orbits.

• dom sends a morphism γ ∈ Hom(x, y) to the domain x.

• cod sends a morphism γ ∈ Hom(x, y) to the codomain y.

• id sends an object x to the constant orbit idx ∈ Hom(x, x), which satisfies

idx(f(x)) = x. (3.37)



40 CHAPTER 3. THE FLOW CATEGORY OF A WEAK MORSE FUNCTION

• The composition of morphisms is the concatenation ◦ defined in definition 5.14.

The topology on the space of objects is discrete. The topology we have described
above generalizes to the case where the flow we study is not the gradient flow of a weak
Morse function.

Proposition 3.19. The topology on Ob(Cf ) is discrete.

Proof. There are only a finite number of objects due to proposition 3.4. All these
critical points are isolated. The isolating neighborhoods are open sets, restricted to
Ob(Cf ) are singletons. Thus the topology of Ob(Cf ) is discrete.

Theorem 3.20. The category Cf is a topological category.

Proof. It is clear that Cf is a category. We show that Cf satisfies the axioms of a topo-
logical category. By definition Ob(C) and Hom(C) are topological spaces. We only
need to show that the involved maps are continuous.

The identity map is continuous. The preimage of an open U ⊂ Hom(C) under
the identity map is some set V ⊂ Ob(C). Ob(C) has the discrete topology, hence
V is open. A similar reasoning shows that the maps cod and dom are open. The
compositionmap is continuous by proposition 3.16. All structural maps are continuous,
therefore Cf is a topological category.

The spaces Hom(a, b) are compact. This ensures that the classifying space is com-
pact.

Proposition 3.21. The classifying space BCf is compact.

Proof. Proposition 3.13 shows that all the spaces Hom(a, b) are compact. All sim-
plices δn are bounded and closed subsets of Rn+1 hence compact. There are only
a finite number of non-degenerate spaces ∆n × NnCf . Thus the space of all non-
degenerate limbs is compact. These are sufficient for the formation of the classifying
space. The formation of the quotient over the limbs does not change compactness.
The topology on the quotient is the smallest topology such that the projection map is
continuous. The image of a compact space under a continuous map is compact.

Remark 3.22. This proposition is also a direct corollary to theorem 1.3 in the case the
function f is Morse-Smale.

3.6 The Subdivision of the Flow Category
We need precise control over the reparameterized flow lines. The subdivision from
section 2.6 is a valuable tool for this purpose.
Remark 3.23. It is good to view the composition in the subdivision category of the flow
category as inclusion of reparameterized flow lines. There exists a morphism γ1 .→ γ2

if and only if im γ2 ⊂ im γ1. Thus this category measures if the piecewise flows are
included inside each other. Figure 3.3 clarifies this.
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Figure 3.3: The subdivision category sd(Cf ) measures inclusions of piecewise flow
lines. In the figure we have three reparameterized flow lines γ1, γ2, γ3, and their
composition γ4 = γ3 ◦ γ2 ◦ γ1. There are morphisms γ4 → γi for all 1 ≤ i ≤ 4,
because there is are inclusions of images im γi ⊂ im γ4.

The subdivision is still a bit to crude. We want to keep track of the points of the
curves, and relate them to the underlying manifold. To this end we define the tweaked
subdivision, which is also a topological category

Definition 3.24. The flow category Cf admits the tweaked subdivision sd (Cf ). This
is the category where

• The space of objects,Ob(sd (Cf)), consists of pairs (γ, x)with γ ∈ Ob(sd(Cf ))
and x ∈ im γ a point on the curve. The space of objects is topologized as a
subspace of Ob(sd(Cf )) × M .

• The space of morphisms, Hom(sd (Cf )) consists of triples (α, β)x, which are
morphisms between (γ, x) and (γ′, x′) if and only if x = x′ and there exists a
morphism (α, β) : γ → γ′ in sd (CD). The space is topologized as a subspace
of Hom(sd (Cf )) × M .

• Let (γ, x) be an object, and (α, β)x : (γ, x) → (γ′, x) be a morphism. The
identity, domain, and codomain maps are the obvious maps defined by

idsd(Cf )(γ, x) := (domCf γ, codCf γ)x

domsd(Cf )(α, β)x := (domCf (α, β), x) = (γ, x)

codsd(Cf )(α, β)x := (codCf (α, β), x) = (γ′, x).

(3.38)

• If (α, β)x and (α′, β′)x′ are composable, then the composition is defined by

(α, β)x ◦sd(Cf ) (α′, β′)x′ = (α′ ◦Cf α, β ◦Cf β′)x. (3.39)

Note that the morphisms are composable only if x = x′.

Remark 3.25. The construction of the tweaked subdivision can only be performed for
the flow category. It is not a categorical construction, we use the precise structure of
the objects and the morphisms of the underlying flow category. This is in contrast to
the construction of the subdivision in section 2.6, which is a categorical construction.
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Proposition 3.26. The tweaked subdivision sd (Cf) is a topological category.

Proof. All the structural maps in sd (Cf ) are the restrictions of the structural maps in
sd (Cf ). To spell this out

idsd(Cf ) := idsd(Cf ) × idM
∣

∣

∣

Ob(sd(Cf ))

domsd(Cf ) := domsd(Cf ) × idM
∣

∣

∣

Hom(sd(Cf ))

codsd(Cf ) := codsd(Cf ) × idM
∣

∣

∣

Hom(sd(Cf ))

(3.40)

The composition is the restriction of the continuous map

(((α, β), x), ((µ, ν), y)) .→ ((α, β) ◦sd(Cf ) (µ, ν), x), (3.41)

to the subspace of Hom(sd (Cf)) × Hom(sd (Cf )) where x = y. All structural maps
are continuous, hence sd (Cf ) is a topological category.

The following theorem is proved in [9, Lemma 6.3]

Proposition 3.27. The classifying spaces of sd (Cf ) and Cf are homotopic,

Bsd (CD) ) BCD. (3.42)

3.7 Proof of the Homotopy Theorem
We have developed all the tools needed to prove theorem 3.1. We outline the strategy
of proof first. We define a topological categoryMwhose classifying space is obviously
homeomorphic to M . We construct two continuous functors Θ : sd (Cf ) → M and
Γ : M → sd (Cf ). The compositionΘ◦Γ is the identity functor onM, while the com-
position Γ ◦ Θ is naturally transformable to the identity functor on sd (Cf ). In view of
proposition 2.30 we can conclude that this natural transformation induces a homotopy
on the level of classifying spaces. We are now able to proof theorem 3.1.

Proof. We define the topological categoryM. The space of objectsOb(M) equalsM .
The only morphisms are the identity morphisms, topologically Hom(M) = Ob(M).
The classifying spaceBM is homeomorphic toM , which is proven in proposition 2.40.

The continuous functorΘ : sd (Cf ) → M is defined by

Θ(γ, x) = x, (3.43)

acting on objects, on morphisms it is defined through

Θ(α, β)x = idx . (3.44)
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It maps a pair of a reparameterized orbit γ and a point x on this reparameterized orbit
to the point x. Any morphism is mapped to the identity morphism inM. This functor is
continuous because of the following reasoning. The functorΘ acting on objects is the
restriction of the projectionOb(sd(Cf ))×M , which maps (γ, x) .→ x to the subspace
Ob(sd (CD)) ⊂ Ob(sd(Cf )) × M . This projection is clearly continuous. The same
holds for Θ acting on morphisms. Hence Θ is a continuous functor.

The continuous functor Γ : M → sd (Cf ) maps a point x

Γ(x) = (γx, x), (3.45)

to the reparameterized orbit through x, keeping track of the point x as well. Thus γx is
the unique reparameterized orbit through x as described in proposition 5.10. Γ maps a
morphism inM, i.e. idx, to the identity morphism

Γ(idM

x ) = id
sd(Cf )
(γx,x) = (id

sd(Cf )
s(γx) , id

sd(Cf )
e(γx) )x. (3.46)

This functor is continuous acting on objects, because it is the restriction of the assign-
ment operator to sd (CD). The functor acting on morphisms is also continuous, because
it is the composition of continuous maps asgn and idsd(Cf ).

The composition acts

Θ ◦ Γ(x) = Θ(γx, x) = x

Θ ◦ Γ(idx) = Θ(id(γx,x)) = idx .
(3.47)

as the identity functor onM. The induced map BΘ ◦Γ = idBM is the identity map on
BM.

Now we study the reverse composition. Recall that any object of sd (Cf ) has a
unique decomposition

(γ, x) = (β ◦ γx ◦ α, x). (3.48)

Here γx is the reparameterized orbit through x as described in proposition 3.7. We now
define a natural transformation

N : idsd(Cf ) →̇Γ ◦ Θ, (3.49)

whose components map a piecewise reparameterized orbit γ to the decomposing mor-
phisms (α, β). That is

N (γ, x) = (α, β)x where (α, β)x : (γ, x) .→ (γx, x). (3.50)

The transformationN is natural between the identity functor on sd (Cf ) and the functor
Γ ◦ Θ. Let (γ, x) and (γ′, x′) be objects in sd (Cf ), with a morphism (δ, ε) between
them. That is x = x′ and γ = ε ◦ γ′ ◦ δ. The morphism γ′ has a decomposition

γ′ = β′ ◦ γx ◦ α′. (3.51)
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Because all decompositions involved are unique, we have β = ε ◦ β′ and α = α′ ◦ δ.
These observations can be written in a commutative diagram

(γ, x)

(δ,ε)x

$$

(α,β)
!! (γx, x)

id(γx,x)

$$

(γ′, x)
(α′,β′)

!! (γx, x)

. (3.52)

We verify the identities

N (γ, x) = (α, β)x

N (γ′, x) = (α′, β′)x

Γ ◦ Θ(γ, x) = (γx, x)

Γ ◦ Θ(γ′, x) = (γx, x)

Γ ◦ Θ(δ, ε)x = id(γx,x) .

(3.53)

We conclude that diagram 3.52 is equivalent to

id(γ, x)

id(δ,ε)x

$$

N (γ,x)
!! Γ ◦ Θ(γ, x)

Γ◦Θ(δ,ε)x

$$

id(γ′, x)
N (γ′,x)

!! Γ ◦ Θ(γ′, x)

. (3.54)

This diagram commutes for all morphisms (δ, ε)x. We have proven thatN is a natural
transformation from the identity functor to the composition Γ ◦ Θ. In view of propo-
sition 2.30 we concludeBsd (Cf ) ) B sd(C), and the theorem follows after we apply
proposition 3.27.



Chapter 4

Examples of the Theorem

4.1 Introduction

Mathematics is best understood through examples. We study some examples of the
homotopy theorem 3.1. In some examples we will actually study Morse-Smale func-
tions. It will be clear that we do not only get homotopies, but homeomorphisms in these
cases. We will also see two phenomena which obstruct homeomorphisms in general.
These are thickening, as seen in example 4.2 in the example of the deformed circle,
and we also get sometimes redundant flaps. The latter happens in the example of the
monkey saddle on the torus which can be found in example 4.4.

t

b

γrγl

Figure 4.1: The height function on the circle has two critical points. At the top t, and
at the bottom b.

45
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4.2 Two Different Circles
The Gelfand principle asserts that it is best to introduce a new concept with the simplest
non-trivial example. For Morse theory this is probably the circle, see figure 4.1, and
the height function.

4.2.1 The Circle
Example 4.1. We view the circle S1 as a submanifold of R2

S1 := {x = (x1, x2) ∈ R
2 |

√

x2
1 + x2

2 = 1}. (4.1)

The height function f : S1 → R returns the second variable.

f(x) = x2. (4.2)

This function clearly has two critical points, at the top t = (0, 1) and the bottom
b = (0,−1). There are four reparameterized orbits; two are stationary, idt and idb

which stay at the top and bottom of the circle. The other orbits can be computed to be

ωl(s) =
(

− cos(−
π

2
t + π), sin(−

π

2
t + π)

)

ωr(s) =
(

cos(−
π

2
t + π), sin(−

π

2
t + π)

)

.
(4.3)

The spacesHom(t, t) andHom(b, b) consist of one point each, and the spaceHom(t, b)
consist of two disjoint points. One verifies that all Nn for n > 1 are degenerate. We
list in figure 4.2 the non degenerate elements of the limbs.

The map di acts on Hom(t, b) as follows

d0(γl) = d0(γr) = idb

d1(γl) = d1(γl) = idt

(4.5)

∆0 × N0Cf = •idt
•idb

∆1 × N1Cf =

•idt

•idb

γl

((
•idt

•idb

γr

(( (4.4)

Figure 4.2: The non degenerate limbs of the circle.
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t

b

m

γl

γr

γtm

γmb

Figure 4.3: The deformed circle is shown on the left. The height function has three
critical points, at the top t, at the middle m and at the bottom b. On the right we
have drawn the classifying space. It consists of a 2−simplex with an attached 1−
simplex. Note that the classifying space is not homeomorphic, merely homotopic to
the deformed circle.

In this manner we arrived at the correct identifications. Hence we see that the end
of the lines in ∆1 × Hom(t, b) are identified with •idt

and •idb
. The resulting space is

seen to be homeomorphic, and in particular homotopic, to the circle. In this example
we find a homeomorphism, because the function f is actually a Morse-Smale function.

4.2.2 The Deformed Circle
In the previous example we computed the classifying space and the flow category of
a manifold and a Morse function on it. We now study an example where the function
defining the flow category is strictly weak Morse.
Example 4.2. Consider the deformed circle depicted in 4.3, viewed as a submanifold
of R2, and the height function f , which returns the second variable. The function has
three critical points, t, m and b. The flow category consists of three objects, and there
are seven morphisms. The spaces

Hom(t, t), Hom(m, m), Hom(b, b), Hom(m, t), and, Hom(m, b) (4.6)

all contain a unique morphism, which we denote by

idt, idm, idb, γtm, and γmb (4.7)

respectively. The space Hom(t, b) has two morphisms, which we denote by γl and γr.
One morphism is the flow line on the right. And the other flow line is the piecewise
flow line, which passes the critical pointm. It is equivalent to the concatenation of the
flow line in Hom(t, m) and the flow line in Hom(m, b). It is clear that the elements in
∆n×Kn are degenerate if n > 2. We have depicted non-degenerate limbs in 4.4. Once
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∆0 × N0Cf = •idt
•idm

•idb

∆1 × N1Cf =

•idt

•idb

γl

((
•idt

•idb

γr

((
•idm

•idb

γmb

((
•idt

•idm

γmt

((

∆2 × N2Cf =

•idb

•idm

γl

++
)))))))))

γbm

!! •idt

γmt

,,*********

(4.8)

Figure 4.4: Some limbs of the height function on the deformed circle.

more we have drawn the identifications that need be made. We see that the classifying
space of the flow category is a 2-simplex with an attached 1-simplex, cf. figure 4.3. The
classifying space is not homeomorphic to the deformed circle, but simply homotopic.
This phenomenon of thickening will occur in most situations where the function fails
to be a Morse function.

Figure 4.5: The torus, as a submanifold of R3, and the torus viewed as R2/Z2. Lines
on the righthand side are identified with the circles on the left-hand side.
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4.3 Three Functions on the Torus
It is also good to study some higher dimensional examples. Classically the torus has
been the example for demonstrating Morse theory. We will study the flow categories
and their classifying space for three different functions defined on the torus. These
functions all have some different properties, illuminating the different aspects of the
theory. The first function has the best properties, it is a Morse-Smale function. The
classifying space is homeomorphic to the torus. The second example is a weak Morse
function on the torus. We see that the classifying space is in a sense two dimensional,
but has ”extra flaps”. The third example is the standard height function on the torus.
The classifying space of the flow category is not homeomorphic to the torus. The clas-
sifying space has an higher dimension than the torus. The phenomenon of thickened
spaces occurs.

Throughout this section we will view the torus, depicted in figure 1.3, as R2/Z2.
A function on R2 which is periodic in both variables thus determines a function on the
torus. The explicit map we use for the embedding of R2/Z2 in R3 is

φ(θ, φ) = {(2 + cos(θ)) cos(φ), (2 + cos(θ)) sin(φ), sin(θ)}. (4.9)

4.3.1 The Morse-Smale Function
Example 4.3. Consider the function f : T → R

f(x1, x2) = sin(2πx1) + sin(2πx2), (4.10)

γ1
ab

γ2
ab

γ1
acγ2

ac

γ1
bdγ2

bd

γ1
cd

γ2
cd

a

b

c

d

Figure 4.6: We have shown the Morse-Smale function f on the torus on the left hand
side. On the right hand side we depicted the flow of gradient vector field.
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which is a Morse-Smale function. The function is depicted in 4.6, and has four critical
points, and an infinite number of morphisms. The objects of the flow category, i.e. the
critical points, are labeled by

a =

(

1

4
,
1

4

)

, b =

(

1

4
,
3

4

)

, c =

(

3

4
,
1

4

)

, d =

(

3

4
,
3

4

)

. (4.11)

The spaces

Hom(a, b), Hom(a, c), Hom(b, d), and Hom(c, d), (4.12)

all consist of two disjoint points, while the space Hom(a, d) contains an infinite num-
ber of morphisms. The topology defined on it allow us to view it as four disjoint lines,
c.f. proposition 3.15. The edges of the lines are precisely the possible compositions
in Hom(a, b, d) and Hom(a, c, d). All elements of Hom(X) with l(X) > 2 are de-
generate. These observations let us draw the limbs in figure 4.7. We reconstruct the
classifying space in figure 4.8.
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∆0 × N0Cf = •a •b •c •d

∆1 × N1Cf =

•b

•a

γ1
ab

((
•b

•a

γ2
ab

((
•c

•a

γ1
ac

((
•c

•a

γ2
ac

((
•d

•b

γ1
bd

((
•d

•b

γ2
bd

((
•d

•c

γ1
cd

((
•d

•c

γ2
cd

((

((

γ1
bd◦γ

1
ab

•a
((

γ1
cd◦γ

1
ac

•d

((

γ2
bd◦γ

1
ab

•a
((

γ1
cd◦γ

2
ac

•d

((

γ1
bd◦γ

2
ab

•a
((

γ2
cd◦γ

1
ac

•d

((

γ2
bd◦γ

2
ab

•a
((

γ2
cd◦γ

2
ac

•d

∆2 × N2Cf =

•d

•a

γ1
bd◦γ

1
ab

--
++++++

γ1
ab

!! •b

γ1
bd

..,,,,,,

•d

•a

γ2
bd◦γ

1
ab

--
++++++

γ1
ab

!! •b

γ1
bd

..,,,,,,

•d

•a

γ1
bd◦γ

2
ab

--
++++++

γ2
ab

!! •b

γ2
bd

..,,,,,,

•d

•a

γ2
bd◦γ

2
ab

--
++++++

γ2
ab

!! •b

γ2
bd

..,,,,,,

•d

•a

γ1
cd◦γ

1
ac

--
++++++

γ1
ac

!! •c

γ1
cd

..,,,,,,

•d

•a

γ2
cd◦γ

1
ac

--
++++++

γ1
ac

!! •c

γ1
cd

..,,,,,,

•d

•a

γ1
cd◦γ

2
ac

--
++++++

γ2
ac

!! •c

γ2
cd

..,,,,,,

•d

•a

γ2
cd◦γ

2
ac

--
++++++

γ2
ac

!! •c

γ2
cd

..,,,,,,

Figure 4.7: The limbs of the flow category of the Morse-Smale function defined on
the torus. Four objects give four points, and an infinitude of morphisms give 8 disjoint
lines, and four filled squares. There are eight non-degenerate commuting triangles
which give rise to eight 2-simplices.
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γ1
ab

γ2
ab

γ1
ac γ2

ac

γ1
bdγ2

bd

γ1
cd

γ2
cd

γ1
bd ◦ γ1

ab

γ1
cd ◦ γ1

ac

γ1
bd ◦ γ2

ab

γ2
cd ◦ γ1

ac

γ2
bd ◦ γ2

ab

γ2
bd ◦ γ1

ab γ1
cd ◦ γ2

ac

γ2
cd ◦ γ2

ac

a

b

c

d

Figure 4.8: The classifying space of the flow category of the Morse-Smale function
on the torus. We have drawn the classifying space embedded in R2/Z2. The spaces
between the lines is filled. The classifying space is homeomorphic to the torus.
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x3

x2

x1

t

b

m

Figure 4.9: The monkey saddle on R2/Z2 is drawn on the left hand side. On the right
hand side we have depicted the gradient flow.

4.3.2 The Monkey Saddle
Example 4.4. Consider the function drawn in figure 4.9. This is a function, which has
a maximum at t = (1

4 , 3
4 ) and a minimum at b = (3

4 , 1
4 ). The middle pointm = (1

2 , 1
2 )

is a monkey saddle, i.e. there exists a chart (U,ϕ) such that

f ◦ ϕ−1(x, y) = x3 − 3xy2, (4.13)

in this chart. Clearly this is not a Morse function, since the critical point at m is
degenerate. It is a weak Morse function however, the critical points are isolated. The
spaces

Hom(t, m), and Hom(m, b) (4.14)

t

m

b

γ1

γ2

γ3

γ4

γ5
γ6

γ2 ◦ γ1
γ2 ◦ γ3

γ4 ◦ γ3

γ4 ◦ γ5 γ6 ◦ γ5

γ6 ◦ γ1

γ2 ◦ γ5

γ6 ◦ γ3

γ4 ◦ γ1

Figure 4.10: The classifying space of the monkey saddle cannot be nicely embedded
into R3 or R2/Z2. On the left hand side we have shown a projection onto R2/Z2.
On the right hand side we have a projection of the classifying space embedded in
R2/Z2 × R. This is not a nice embedding. In the original space the three red lines do
not cross.
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consist of three points each. We label these by γ1,γ3,γ5, and γ2,γ4,γ6, respectively.
The space Hom(t, b) consists of three disjoint lines, cf. 3.13, and three disjoint points.
The edges of the lines correspond to the compositions, which bound the lines. The
three disjoint points are unnatural. They correspond to the compositions which cross
the critical pointm. These are

γ2 ◦ γ5 γ4 ◦ γ1 γ6 ◦ γ3. (4.15)

The disjoint points are an artifact which arise because the function is not Morse-Smale.
It will obstruct the construction of a homeomorphism of the classifying space of the
flow category to the torus. The limbs are computed in figure 4.11.

∆0 × N0Cf = •t •m•b

∆1 × N1Cf =

•m

•t

γ1

((
•m

•t

γ3

((
•m

•t

γ5

((
•b

•m

γ2

((
•b

•m

γ4

((
•b

•m

γ6

((

((

γ4◦γ3

•b
((

γ6◦γ1

•t

((

γ2◦γ3

•b
((

γ6◦γ5

•t

((

γ2◦γ1

•b
((

γ4◦γ5

•t

•b

•t

γ4◦γ1

((
•b

•t

γ6◦γ3

((
•b

•t

γ2◦γ5

((

∆2 × N2Cf =

•b

•t

γ2◦γ1
--

+++++

γ1
!! •m

γ2
,,-----

•b

•t

γ4◦γ1
--

+++++

γ1
!! •m

γ4
,,-----

•b

•t

γ6◦γ1
--

+++++

γ1
!! •m

γ6
,,-----

•b

•t

γ2◦γ3
--

+++++

γ3
!! •m

γ2
,,-----

•b

•t

γ4◦γ3
--

+++++

γ3
!! •m

γ4
,,-----

•b

•t

γ6◦γ3
--

+++++

γ3
!! •m

γ6
,,-----

•b

•t

γ2◦γ5
--

+++++

γ5
!! •m

γ2
,,-----

•b

•t

γ4◦γ5
--

+++++

γ5
!! •m

γ4
,,-----

•b

•t

γ6◦γ5
--

+++++

γ5
!! •m

γ6
,,-----

Figure 4.11: The non-degenerate limbs of the monkey saddle on the torus.
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4.3.3 The Morse Function on the Torus
It is interesting that the standard example of Morse theory is the most difficult example
we will discuss in this chapter. It is the height function on the torus. The tricky thing
is that it isn’t a Morse-Smale function. The height function returns the third coordinate
of the torus embedded in R3, where the torus is standing up. The flow of the Morse
function is depicted in figure 4.12. The function has 4 critical points. One maximum a,
one minimum d, and two saddle points b, c. The Hom(a, b),Hom(b, c), and Hom(c, d)
consist of two disjoint points. The space Hom(a, d) has two disjoint lines, and 4 dis-
joint points. These observations allow the computation of the non-degenerate limbs, in
figure 4.13.

γ1
ab

γ2
ab

γ1
bcγ2

bc

γ1
cd

γ2
cd

a

b

d

c

Figure 4.12: The flow of the height function on the torus. There are four critical points,
and an infinite number of morphisms. The non-identity morphisms that are elements
of Hom sets with a finite number of elements are named.



56 CHAPTER 4. EXAMPLES OF THE THEOREM

∆0 × N0Cf = •a •b •c •d
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•d

•c

2

((
•a

•d

γ1
cd◦γ

1
bc◦γ

2
ab

((
•a

•d

γ1
cd◦γ

2
bc◦γ

2
ab

((
•a

•d

γ2
cd◦γ

1
bc◦γ

1
ab

((

•a

•d

γ2
cd◦γ

2
bc◦γ

1
ab

((
((

γ1
cd◦γ

1
bc◦γ

1
ab

•a
((

γ2
cd◦γ

1
bc◦γ

2
ab

•d

((

γ1
cd◦γ

2
bc◦γ

1
ab

•a
((

γ2
cd◦γ

2
bc◦γ

2
ab

•d

∆2 × N2Cf =

•d

•a

γ1
bd◦γ

1
ab

//
..

..

γ1
ab

!! •b

γ1
bd

,,////

•d

•a

γ2
bd◦γ

1
ab

//
..

..

γ1
ab

!! •b

γ2
bd

,,////

•d

•a

γ1
bd◦γ

2
ab

//
..

..

γ2
ab

!! •b

γ1
bd

,,////

•d

•a

γ2
bd◦γ

2
ab

//
..

..

γ2
ab

!! •b

γ2
bd

,,////

•d

•a

γ1
cd◦γ

1
ac

//
.

...

γ1
ac

!! •c

γ1
cd

,,//
//

•d

•a

γ2
cd◦γ

1
ac

//
.

...

γ1
ac

!! •c

γ2
cd

,,//
//

•d

•a

γ1
cd◦γ

2
ac

//
.

...

γ2
ac

!! •c

γ1
cd

,,//
//

•d

•a

γ2
cd◦γ

2
ac

//
.

...

γ2
ac

!! •c

γ2
cd

,,//
//

∆3 × N3Cf =

•c

γ1
cd $$
•d

•a

00000000

--
+

++
+

++
+

+
++

+

γ1
ab

!! •a

11111111

γ1
bc

..,,
,
,
,,

,
,,

,
,

•c

γ2
cd $$
•d

•a

00000000

--
+

++
+

++
+

+
++

+

γ1
ab

!! •a

11111111

γ1
bc

..,,
,
,
,,

,
,,

,
,

•c

γ1
cd $$
•d

•a

00000000

--
++

+
++

+
+

++
+

+

γ1
ab

!! •a

11111111

γ2
bc

..,
,
,
,,

,
,,

,
,
,

•c

γ2
cd $$
•d

•a

00000000

--
++

+
++

+
+

++
+

+

γ1
ab

!! •a

11111111

γ2
bc

..,
,
,
,,

,
,,

,
,
,

•c

γ1
cd $$
•d

•a

00000000

--
++

+
++

+
+

++
+

+

γ2
ab

!! •a

11111111

γ1
bc

..,
,
,
,,

,
,,

,
,
,

•c

γ2
cd $$
•d

•a

00000000

--
+

+
++

+
+

++
+

+
+

γ2
ab

!! •a

11111111

γ1
bc

..,
,
,,

,
,,

,
,
,,

•c

γ1
cd $$
•d

•a

00000000

--
+

+
++

+
+

++
+

+
+

γ2
ab

!! •a

11111111

γ2
bc

..,
,
,,

,
,,

,
,
,,

•c

γ2
cd $$
•d

•a

00000000

--
+

+
++

+
+

++
+

+
+

γ2
ab

!! •a

11111111

γ2
bc

..,
,
,,

,
,,

,
,
,,

Figure 4.13: The limbs of the height function on the torus. We have chains of length
3, we have depicted the 3-simplices by triangles with a barycentric subdivision. These
are projections of the 3-simplex to the plane. Some of the labels of the compositions
miss in ∆3 ◦ N3Cf . All the simplices commute, therefore it is easy to complete the
labeling of the simplices. If we would choose to label all the compositions the figures
would become too cluttered.
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Figure 4.14: The classifying space of the height function on the torus. We have chosen
to embed the classifying space in R2/Z2 × R. The picture is hard to understand.
The colored lines correspond to the threefold compositions. The green lines are the
morphisms γ1

cd ◦ γ1
bc ◦ γ1

ab, γ2
cd ◦ γ1

bc ◦ γ2
ab, γ1

cd ◦ γ2
bc ◦ γ1

ab, and γ2
cd ◦ γ2

bc ◦ γ2
ab. The

red and blue morphisms correspond to the other possible combinations of 3morphisms.
Note that we have to fill the space between these morphisms, and the morphisms whose
compositions yield these. This is impossible to draw however. We end up with a 3-
dimensional space that is homotopic to the torus, i.e. the plane in R2/Z2 × R. Clearly
it is not homeomorphic, the classifying space is three dimensional, while the torus is
two dimensional.
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Chapter 5

Dynamical Systems

We have spent quite some time studying gradient like systems. The main objective of
this chapter is to generalize the preceding ideas to a large class of dynamical systems,
for which the proofs of chapter 3 carry over verbatim. In this chapter we will show the
proofs of statements which do not carry completely analogously.

We recall the notion of a dynamical system.

Definition 5.1. Let (S, d) be metric space. A dynamical system on S is a continuous
map ϕ : R × S → S satisfying two properties

• ϕ(0, x) = x

• ϕ(t, ϕ(s, x)) = ϕ(t + s, x),

for all x ∈ S and all t, s ∈ R. The map ϕ is called the flow. The flow is a continuous
group action of the reals on S. The orbit or trajectory through x is the curve γx : R →
S defined by

γx(t) := ϕ(t, x). (5.1)
The set of equilibria E is

E := {x ∈ S | ϕ(t, x) = x for all t ∈ R} . (5.2)
E is topologized as a subspace of S. We will usually denote the time parameter with a
subscript

ϕt(x) := ϕ(t, x). (5.3)

Remark 5.2. We state in the definition the orbit through x. There is a free R action
defined on the orbits. The images of γt(x) and γs(γt(x)) are the same. There is a
unique orbit with γx(0) = x. In this sense the orbits are unique.

The behavior of dynamical systems can be extremely complex. Recurrent behavior
is something we cannot hope to capture in the flow category. Therefore we study a
subclass of all dynamical systems where this behavior cannot occur. We also exclude
almost recurrent behavior; all orbits converge to points in positive and negative time,
cf. example 3.6.
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Definition 5.3. A dynamical system is said to be strongly gradient-like, if the dynam-
ical system satisfies the axioms

1. The space of equilibriaE is non-empty and has only a finite number of connected
components.

2. The flow is gradient-like, i.e. there exists a continuous Lyapunov function f :
S → R, which is constant on connected components ofE and strictly decreasing
on all non-equilibrium trajectories. That is

f(γx(t)) ≤ f(γx(t + s)), (5.4)

for all x ∈ S, all t ∈ R and all positive times s ∈ R>0. Equality only holds if
and only if x ∈ E.

3. The orbits γx are heteroclinic, i.e. both limits

lim
t→±∞

γx(t), (5.5)

exist and are elements of E for all x ∈ S. The limits are denoted by

s(γx) := lim
t→−∞

γx(t) e(γx) := lim
t→∞

γ(t). (5.6)

Some familiar mathematical constructions determine strongly gradient-like dynam-
ical systems. A generalization of a Morse function is a Morse-Bott function.

Definition 5.4. Let M be a smooth Riemannian manifold. A smooth function f :
M → R is a Morse-Bott function if the set

Crit(f) = {x ∈ M | df(x) = 0}, (5.7)

of critical values consist of a disjoint union of connected submanifolds, and for each
connected submanifold C ⊂ Crit(f), the Hessian, restricted tot the normal bundle of
C is non-degenerate.

Corollary 5.5. A Morse function f is in particular a Morse-Bott function.

Proof. Crit(f) consist of disjoint critical points. These are in particular submanifolds.
The Hessian at the critical points is non-degenerate by the Morse lemma. Hence f is a
Morse-Bott function.

Information on Morse-Bott functions can be found in for example [2]. The axioms
of a strongly gradient-like dynamical system where modeled after the flow of a Morse-
Bott function. In particular we have the following.

Proposition 5.6. Let f : M → R be a Morse-Bott function. The flow of the gradient
vector field

V := −∇f (5.8)

is a strongly gradient-like dynamical system, where the Lyapunov function is the func-
tion f .
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Convention 5.7. For the remainder of this chapter we denote by D = (S, d, ϕ, f) a
strongly gradient-like dynamical system.

The objective of this chapter is the proof of the following theorem.

Theorem 5.8. Let D be a strongly gradient-like dynamical system. The classifying
space of the flow category CD is homotopic to the underlying metric space S.

BCD ) S. (5.9)

The theorem states that a flow category of a strongly gradient-like dynamical sys-
tem is constrained by the underlying topological space. One can view this as an invari-
ant for the space. Of course this invariant is not different from the homotopy type of the
space itself, but it might be easier to compute, since one has the freedom of choosing
the dynamical system defined on it.

5.1 The Flow
The flow category associated to a strongly gradient-like dynamical system is inspired
by the flow category of a weak Morse function. The objects in the category are equi-
librium points, and the morphisms are reparameterized orbits of the flow. The space
of objects is topologized in the subspace topology of S, and the space of morphisms
is topologized as a subspace of the compact open topology. Composition in the flow
category is concatenation of these reparameterized orbits. The reparameterization part
of this chapter is done differently than in chapter 3, and the definition of the flow cat-
egory contains some subtleties. After constructed the category all proofs carry over
from chapter 3.

5.1.1 The Reparameterization of the Flow
Even though we do not assume that S is compact, the image of the Lyapunov function
is compact. Strongly gradient-like dynamical systems are “closed and bounded in the
direction of the flow”.

Proposition 5.9. The set f(S) is compact. The smallest interval containing f(S) is
defined to be J .

Proof. The image of an orbit along with its limit points, is a bounded and closed inter-
val, i.e. compact. We directly verify

f(S) =
⋃

x∈S

f(im γx). (5.10)

We see that f(im γx) = [f(e(γx)), f(s(γx))]. The number of connected components
of E is finite, there are only a finite number of different closed and bounded intervals
that can be formed. Hence the union in equation (5.10) is actually finite. A finite union
of compact sets is compact. Hence f(S) is compact.
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We can reparameterize the orbits using the Lyapunov function. We do this because
the reparameterized orbits are unique, in the sense that all points of S lie on a unique
curve, in contrast with remark 5.2. This is not the case for the original orbits, there is
a free R action defined on them. We are also able to concatenate the reparameterized
curves, which we need for the construction of the flow category. One should compare
the next proposition with proposition 3.7.

Proposition 5.10. Let γx be the orbit through x ∈ S \ E. Define the interval I :=
]f(e(γx), f(s(γx))[. There exists a unique continuous curve γ : I → S with the
properties

• im γ = im γx

• f(γ(t)) = t.

If x ∈ E then the function γ : [f(x), f(x)] → S defined by

γ(f(x)) = x (5.11)

is a reparameterization of γx.

Proof. This proof makes use of Brouwer’s theorem on invariance of domain [6]. This
theorem states that a continuous injective map g : U → V is an openmap ifU, V ⊂ Rn

are open. In particular it is a homeomorphism if it is surjective as well.

Define the map λ : R → I by the equation

λ(t) := f(γx(t)) (5.12)

This map is continuous, being a composition of two continuous functions. It is injective
by the gradient-like property of f , λ(t) > λ(s) if t < s. Because γx has well defined
limits, for any s ∈ I there exists a y ∈ im γx with f(y) = s. λ is surjective. By
Brouwer’s theorem on invariance of domain the map λ is a homeomorphism. The
inverse of λ is well defined and continuous. Define the curve γ : I → S by

γ(t) = γx(λ−1(t)). (5.13)

The curve naturally extends continuously to the closure of I by imposing γ(f(s(γx))) =
s(γx) and γ(f(e(γx))) = e(γx)), using the fact that the orbits in a strongly gradient-
like dynamical system are heteroclinic orbits. The curve satisfies the properties in the
proposition. We reason that the curve is the only curve satisfying these properties. f is
strictly decreasing along orbits, hence there is a unique y ∈ im γx with f(y) = t for
fixed t. Hence we can define the curve via these equations, and the previous reasoning
shows that the curve is continuous.

Remark 5.11. If x ∈ E then the reparameterization γ of γx will also be written as
γ =: idx. These curves will form the identity morphisms in the flow category we are
about to define.
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Definition 5.12. If γ is a reparameterization of the orbit γx then we define the start
and end by

s(γ) := s(γx) and e(γ) := e(γx). (5.14)

Remark 5.13. Note that this nomenclature is somewhat misleading. The direction of
the reparameterized orbit is in the opposite direction of the flow. This is because of
historical reasons. The Lyapunov function is a generalization of minus the indexing
function for a gradient system. One studies the dynamical system

γ̇(t) = −∇(f)(γ(t)). (5.15)

This equation makes that f decreases along orbits. It is natural to reparameterize the
orbits using the values of the indexing function. The minus sign in the above equation
makes that the reparameterized orbits travel in the opposite direction of the original
curves.

We have shown that it is possible to reparameterize the orbits. This reparameteri-
zation allows us to concatenate orbits.

Definition 5.14. Let (α, β) be a pair of two reparameterized orbits as defined in propo-
sition 5.10. The pair is composable if e(α) = s(β). Then the composition or concate-
nation of α and β is

β ◦ α(t) =

{

β(t) for t ∈ [f(e(β), f(s(β))]

α(t) for t ∈ [f(e(α), f(s(α))]
(5.16)

Definition 5.15. Let x, y ∈ E be equilibrium points. The space of piecewise orbits
Hom(x, y) consists of all continuous curves

γ : [f(y), f(x)] → S, (5.17)

which are piecewise reparameterizations of orbits of the dynamical system. That is, we
can write γ = γn ◦γn−1 ◦ · · · ◦γ1 for reparameterized curves γi. The spaceHom(x, y)
is topologized by viewing it as a subspace of all continuous maps C([f(y), f(x)], S)
in the compact-open topology. An element of Hom(x, x) is said to be an identity.
Suppose γ is not an identity. The decomposition γ = γn ◦ γn−1 ◦ · · · ◦ γ1 is minimal
if all γi are not identities, if this is not the case, the decomposition is degenerate. A
non-identity piecewise reparameterization γ is prime, if the minimal decomposition of
γ consist of one reparameterized orbit. A non-identity reparameterized orbit can be
uniquely decomposed in prime reparameterized orbits.

Proposition 5.16. The composition ◦ : Hom(x, y)×Hom(y, z) → Hom(x, z) defined
in definition 5.14 is a continuous map.

Proof. The compact-open topology on Hom(x, y) is the topology generated by the
subbasis

D(C, U) = {γ ∈ Hom(x, y) | γ(C) ⊂ U}, (5.18)

where C ⊂ [f(y), f(x)] is compact and U ⊂ S is open. For the continuity of the
composition map we need to check that the preimage of a subbasis element is open.
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Let C ⊂ [f(z), f(x)] be compact, and U open in S. Clearly we can decompose
C = C1 ∪ C2, with C1 ⊂ [f(y), f(x)] and C2 ⊂ [f(z), f(y)]. We verify

◦−1D(C, U) = D(C1, U) × D(C2, U), (5.19)

where D(C1, U) a subbasis element of Hom(x, y) and D(C2, U) a subbasis element
of Hom(y, z). This is a subbasis element of the topology on Hom(x, y) × Hom(y, z)
thus open. Hence the preimage of any subbasis element under ◦ is open. The map ◦ is
a continuous.

5.1.2 Properties of the Hom sets
The Hom sets of a weak Morse function have some nice properties. In chapter 3 we
have proven continuity of the assignment operator in proposition 3.11, we have shown
the compactness of Hom(a, b) in proposition 3.13, and we have shown in proposi-
tion 3.13 that intersection of the stable and unstable sets embed nicely into Hom(a, b).
These results hold generally for strongly gradient-like dynamical systems. The proofs
are analogous to the proofs in chapter 3. We therefore omit the proofs.

Proposition 5.17. The assignment operator asgn : S →
⋃

x,y∈E Hom(x, y) which
maps a point x to the reparameterized orbit γ through x is continuous.

Proposition 5.18. If S is compact, then Hom(a, b) is compact for all a, b ∈ E.

For the last proposition we need some definitions.

Definition 5.19. Let a ∈ E. The stable set W s(a) and unstable set Wu(a) are defined
by

W s(a) ={x ∈ S | lim
t→∞

ϕt(x) = a}

Wu(a) ={x ∈ S | lim
t→−∞

ϕt(x) = a}.
(5.20)

Let a, b ∈ E and t ∈ (f(b), f(a)) The spaceMt(a, b) ⊂ S is defined by

Mt(a, b) = Wu(a) ∪ W s(b) ∪ f−1(t). (5.21)

This allows us to formulate and prove

Proposition 5.20. There exists an embedding ι : Mt(a, b) → Hom(a, b).

5.2 The Flow Category
The definition of the flow category is inspired by the definition of the flow category of
the gradient flow of a weak Morse function.

Definition 5.21. The flow category of D is the topological category CD where

• The space of objectsOb(CD) = E is the space of equilibrium points, i.e. x ∈ E
implies x ∈ Ob(CD)
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• The space of morphisms

Hom(CD) =
∐

x,y∈Ob(CD)

Hom(x, y), (5.22)

is the union of all spaces of piecewise reparameterized orbits.

• dom sends a morphism γ ∈ Hom(x, y) to its domain x.

• cod sends a morphism γ ∈ Hom(x, y) to its codomain y.

• id sends an object x to the constant orbit idx ∈ Hom(x, x), the identity at x,
where idx(f(x)) = x.

• The composition of morphisms is the concatenation ◦ defined in definition 5.15.

Theorem 5.22. The flow category CD is a topological category.

Proof. It is clear that the above defined structure is a category. We do have to prove
that this category is a topological category. For this we have to show that the structural
maps are continuous.

We first prove that the identity map id : x .→ idx is continuous. Let D(C, U) be a
subbasis element of the topology on Hom(CD), thus C is compact in J , the image of
the Lyapunov function, and U is open in S. The preimage of this basis element under
the identity map is

id−1(D(C, U)) = Ob(CD) ∩ f−1(C) ∩ U. (5.23)

f is constant on connected components of Ob(CD) = E, hence the preimage of C
under f is a union of these connected components, and is therefore open in E. The set
id−1(D(C, U)) is an intersection of three open sets hence open.

Now we prove that the map dom : (γ : x → y) .→ x is continuous. Let U ⊂
Ob(CD) be open. We check that

dom−1(U) =
⋃

y ∈Ob(CD),

x ∈ U

Hom(x, y). (5.24)

Each Hom(x, y) is open, thus the union is open as well. We conclude that the map
dom is continuous. Clearly this proof can be done analogously for cod.

We proved in proposition 5.16 that the concatenation is a continuous map. CD is a
topological category.

Completely analogous to proposition 3.21 we can prove that the classifying space
of the flow category is a compact space.

Proposition 5.23. The classifying space BCD is compact.
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5.3 The Subdivision of the Flow Category
The subdivision category for the flow category can be best viewed via inclusion, cf. 3.3.
There is a morphism µ .→ ν if and only if im ν ⊂ imµ. The morphism is unique. This
is a property for the flow category. In general one can define a topological category
for which this property does not hold. We prove the uniqueness of the morphisms in
sd(CD) in the next proposition.

Proposition 5.24. The subdivision sd (CD) is a poset.

Proof. The topological category sd (CD) has much more structure than a poset. A
poset in this context means that we can show that for every pair of objects µ, ν ∈
Ob(sd (CD)) there is at most one morphism µ → ν, and that the existence of arrows
µ → ν and ν → µ implies the equality µ = ν.

Let (α, β) be a morphism between µ and ν, then

µ = β ◦ ν ◦ α. (5.25)

This decomposition is unique. imµ ∩ E are finitely many points xi. Take yi ∈
]f(xi+1), f(xi)[. Then there is a unique orbit through f−1(yi) ∩ imµ. This can be
reparameterized uniquely by 5.10 to curves µi. Then µ = µn ◦ µn−1 ◦ . . . ◦ µ0.
This decomposition is unique in the sense that we cannot make a finer decomposi-
tion without using identity orbits, i.e. an orbit whose image lies in E. We also have
ν = νk ◦ . . . ◦ ν0, and the same reasoning shows a decomposition νi = µm+i for some
fixedm. Then β = µn ◦ . . .◦µm+k and α = µi−1 ◦ . . .◦µ0. If k = n, β is the identity
β = idcod(ν), and if m = 0, α is the identity α = iddom(ν). From this we see that
the decomposition of equation (5.25) is unique. This reasoning also shows that there
cannot be both µ → ν and ν → µ unless µ = ν, in this case m = 0 and k = n, and
the morphism µ → ν is the identity. The subdivision is a poset.

The subdivision is a construction which is defined for any (topological) category.
In the proof of the homotopy theorem we will a modified version of this, the tweaked
subdivision. This tweaked subdivision is a category which is only defined for the flow
category, we use the explicit structure of the morphisms and objects of the flow cate-
gory.

Definition 5.25. The flow category CD admits the tweaked subdivision sd (CD). This
is a topological category,

• As objects, pairs (γ, x)with γ ∈ Ob(sd(CD)) and x ∈ im γ a point on the curve.
The space of objects is topologized as a subspace ofOb(sd(CD)) × M .

• There is a morphism (α, β)x between (γ, x) and (γ′, x′) if and only if x = x′ and
there exists a morphism (α, β) : γ → γ′ in sd (CD). The space is topologized as
a subspace of Hom(sd (CD)) × M .
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• Let (γ, x) be an object, and (α, β)x : (γ, x) → (γ′, x) be a morphism in sd (CD).
The domain, codomain, identity map and composition are the obvious maps de-
fined by

idsd(CD)(γ, x) = (domCD γ, codCD γ)x

domsd(CD)(α, β)x = (γ, x)

codsd(CD)(α, β)x = (γ′, x).

(5.26)

• If (α, β)x and (α′, β′)x′ are composable, then the composition is defined by

(α, β)x ◦sd(CD) (α′, β′)x′ = (α′ ◦CD α, β ◦CD β′)x. (5.27)

Note that the morphisms are composable only if x = x′.

Remark 5.26. Note that the construction of the tweaked subdivision can only be per-
formed for the flow category. It is not a categorical construction, we use the precise
structure of the morphisms. This is in contrast to the construction of the subdivision in
section 2.6, which is a categorical construction.

The following proofs are completely analogous to the proofs of propositions 3.26
and 3.27.

Proposition 5.27. The tweaked subdivision sd (CD) is a topological category.

5.4 Proof of the Homotopy theorem
The proof of the homotopy theorem is completely analogous to the proof in chapter 3.
We have proven the continuity of the maps involved. The construction of the natural
transformation is the same. Therefore we have proven 5.8.
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Chapter 6

Examples of Dynamical Systems

6.1 Introduction
We show some examples of strongly gradient-like dynamical systems. We show how to
compute the classifying space, and see that the spaces are homotopic to the underlying
metric space.

6.2 Annulus
Example 6.1. Consider the annulusA ⊂ R2, defined by

A := {x ∈ R
2 | 1 ≤ ||x|| ≤ 2}. (6.1)

The annulus is best described in polar coordinates. On this annulus we study the flow

Figure 6.1: The flow ϕ on the annulus. All points are attracted to the circle r = 1 in
forward time, and are attracted to r = 2 in backwards time.
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S1
1 S1

2∆0 × N0CD =

S1
1 S1

2∆1 × N1CD =

Figure 6.2: The non-degenerate limbs of the flow on the annulus

ϕ : R × A → A defined by the equation

ϕt(r, θ) =

(

2(r − 1) + (2 − r)et

r − 1 + (2 − r)et
, θ

)

. (6.2)

This flow is the flow corresponding to the differential equation

ṙ = (r − 1)(r − 2)

θ̇ = 0,
(6.3)

and is depicted in figure 6.1. It is clear that this cannot be described using the meth-
ods of chapter 3. The dynamical system D defined by the flow is strongly gradient-
like. The set of equilibria consists of two connecting components. The attracting
circle S1

1 = {(r cos(θ, r sin(θ)) ∈ A | r = 1} , and the repelling circle S1
2 =

{(r cos(θ), r sin(θ)) ∈ A | r = 2}. A Lyapunov function f : A → R is given
by

f(r, θ) = r. (6.4)

One directly verifies that f satisfies the properties in definition 5.3. Furthermore, all
orbits are heteroclinic.

lim
t→∞

ϕt(r, θ) = (1, θ) and lim
t→−∞

ϕt(r, θ) = (2, θ). (6.5)

The dynamical system is strongly gradient-like. We show the limbs of the flow category
CD in figure 6.2. After we apply the equivalence relation we see a homeomorphism
BCD

∼= A. The theorem only ensures a homotopy, but apparently we get a homeomor-
phism.
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6.3 Graphs
A directed graph can be seen as a dynamical system. On each vertex we define a flow
which flows in the direction of the vertex. If the graph is acyclic, the dynamical system
we have defined is strongly gradient-like. The classifying space has the same homotopy
type as the graph embedded in Euclidean space.
Example 6.2. Consider the acyclic graph consisting of 5 vertices, and 5 edges, em-
bedded in R2 as shown in figure 6.3. We add to this graph a dynamical system which
respects the arrows on the edges. The coordinates of a vertex p are denoted by p1 and
p2. Let (x, y) be a point on an edge connecting p to q. Then we have the differential
equation

ẋ =sgn(p1 − q1)(x − p1)(x − q1)

ẏ =sgn(p2 − q2)(y − p2)(y − q2).
(6.6)

The flow of this system of differential equations respects the direction of the arrow. An
orbit starts at p and ends at q and completely lies in the vertex. For this system we
can find a Lyapunov function. The height function, which returns the y coordinate is
a Lyapunov function. The dynamical system with this Lyapunov function is a strongly
gradient-like dynamical system. We have drawn the limbs in figure 6.4 and the clas-
sifying space in 6.5. The classifying space and the graph are homotopic to the circle.
Therefore they are homotopic to each other.

This example probably extends to all directed acyclic graphs. We make the claim
that we can embed any directed acyclic graph inR3, where the third coordinate respects
the flow of the graph. It is easy to see that the differential equation (6.6) extends to such
a dynamical system. Also note that the classifying space we construct here is different
from the classifying space of the graph seen as a poset, see example 2.37.

1

2 3

4 5

a

b

c d

e

Figure 6.3: An acyclic directed graph embedded in R2. The function that returns the
second coordinate on the edges and vertices is a Lyapunov function for this dynamical
system.
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Figure 6.4: The limbs of the dynamical system on the graph. We have chosen not to
label all the edges of the 3−simplex. The simplex completely commutes, so one can
easily fill in the remaining labels of the edges.

Figure 6.5: The classifying space of the graph in the plane. Note that we cannot embed
this into the plane itself, it is a three dimensional space. The outermost lines lie in the
dimension perpendicular to the plane. The classifying space is homotopic to the circle,
as is the graph itself.



Chapter 7

Isolating Block Decompositions

We now turn our attention towards more general dynamical systems. In contrast to
chapter 5 we allow the dynamical system to be exhibit non-gradient-like behavior. We
only “forget” the non-gradient-like behavior, and focus on the gradient-like behavior of
the system. This is done through Morse decompositions. Morse sets, i.e. elements of
the decompositions, play the role of critical points in gradient-like systems. In contrast
to the rest of the thesis we merely suggest an approach, proofs are omitted. The goal
of this chapter is to attach to a dynamical system with a Morse decomposition a flow
category and show that is reasonable to conjecture:

Conjecture 7.1. Let (S, d) be a compact metric space, and D a dynamical system de-
fined on it. Let M be a Morse decomposition of this dynamical system. Then there
exists an isolating block decomposition N subordinate to M . An isolating block de-
composition generates a flow category C

M,N
D . The homotopy type of the classifying

spaces of the flow categories are invariants of the space S and

BC
M,N
D ) S. (7.1)

The facts on Morse decompositions, Lyapunov functions, and isolating neighbor-
hood decompositions we state in this chapter can be found in an article of Robbin
and Salamon [26] and the book on Conley theory of Kalies, Mischaikow, and Vander-
vorst [15] that will appear.

7.1 Attractors and Repellers
In this chapter we assume that S is a compact metric space, and that ϕ is the flow of a
dynamical system D. Not all orbits of a general dynamical system are heteroclinic. In
order to attack the limiting behavior of orbits we use the concept of alpha and omega
limit sets.

Definition 7.2. The alpha limits set of a point x ∈ S is the set of all y ∈ S such that
there exists a sequence tn ∈ R tending to minus infinity, i.e. limn→∞ = −∞ such that

lim
n→∞

ϕtn(x) = y. (7.2)
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Analogously, the omega limit set of a point x ∈ S is the set of all y ∈ S such that there
exists a sequence tn ∈ R tending to plus infinity, i.e. limn→∞ = ∞ such that

lim
n→∞

ϕtn(x) = y. (7.3)

Remark 7.3. An orbit is heteroclinic if the alpha and omega limit sets are singletons.
In this case the orbit has proper limits as t → ±∞, i.e. both limits

lim
t→±

ϕt(x) (7.4)

exists and are elements of S.
Fundamental in the study of dynamical systems are attractors and repellers. Recall

these notions.

Definition 7.4. A compact set N ⊂ S is a trapping region if it is forward invariant,
i.e. ϕt(N) ⊂ N for all positive times t > 0, and there exists a T > 0 such that
ϕT (N) ⊂ int(N). A repelling region is backward invariant, and there exists a T < 0
such that ϕT (N) ⊂ int(N). A set A ⊂ S is an attractor if there exists a trapping
region N ⊂ S with the property that the largest invariant subset in N is A. Similarly,
a set R ⊂ S is a repeller if there exists a repelling region N ⊂ X such that R is the
largest invariant subset in N .

The compactness of S enforces that an attractor comes equipped with a dual re-
peller. On the same footing, a repeller has a dual attractor.

Proposition 7.5. Let A ⊂ S be an attractor. The set

A∗ = {x ∈ S | ω(x) ∩ A = ∅}, (7.5)

is a repeller, which we will call the dual repeller. Similarly a repellerR ⊂ S determines
an attractor

R∗ = {x ∈ S | α(x) ∩ R = ∅}, (7.6)

which we will call the dual attractor.

All orbits outside of the union of an attractor and its dual repeller ‘start’ at the
repeller, and ‘end’ at the attractor. This behavior is modeled after gradient-like systems.
The role of the gradient function is taken by a Lyapunov function. This function is like
a height function for an attractor repeller pair. Lyapunov functions always exist.

Theorem 7.6. Let (A, A∗) be an attractor repeller pair. Then there exists function
f : S → [0, 1] with the properties:

• f is continuous.

• f is constant on the attractor and its dual repeller,

f(A) = 0 and f(A∗) = 1. (7.7)
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• f strictly decreases along orbits

f(ϕt(x)) ≤ f(x), (7.8)

for all t > 0, and all x. Equality holds if and only if x ∈ A∪A∗. Such a function
is called a Lyapunov function.

Remark 7.7. The construction of the Lyapunov function makes excessive use of the
metric, and the fact that S is compact. While we have proved 5.8 for a class of dy-
namical systems, where we do not assume that S is a compact metric space, we do not
expect to be able to formulate a flow category for general dynamical systems if S is
non-compact. Most systems of interest do take place on metric spaces, and compact
ones to boot. The assumptions are not limiting.

Attractors and repellers have the structure of a distributive lattice.

Definition 7.8. A set L equipped with two binary operations∧,∨ : L×L → L, called
the wedge and vee respectively, is a lattice if the operations satisfy for all a, b, c ∈ L
the axioms:

• The operations are idempotent, i.e.

a ∧ a = a ∨ a = a. (7.9)

• The operations are commutative, i.e.

a ∧ b = b ∧ a a ∨ b = b ∨ a. (7.10)

• The operations are associative, i.e.

a ∧ (b ∧ c) = (a ∧ b) ∧ c a ∨ (b ∨ c) = (a ∨ b) ∨ c. (7.11)

• The operations are absorbent, i.e.

a ∧ (a ∨ b) = a ∨ (a ∧ b) = a. (7.12)

The lattice is distributive if the lattice satisfies the additional axiom:

• The operations are distributive, i.e.

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (7.13)

The lattice is bounded if the lattice satisfies the additional axiom:

• There exist neutral elements 0, 1 ∈ L such that

a ∧ 0 = 0, a ∨ 0 = a, and a ∧ 1 = a, a ∨ 1 = 1. (7.14)

Theorem 7.9. Attractors and repellers form a bounded distributive lattice with respect
to set union and intersection. Lyapunov functions form a bounded distributive lattice
with respect to pointwise minimum and maximum.
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7.2 Isolating Neighborhoods
The Lyapunov functions allow for the construction of isolating neighborhoods. Or-
bits outside of the attractors and repellers always pass the isolating neighborhoods at
unique points. There exists Lyapunov functions which are constant on the isolating
neighborhoods.

Theorem 7.10. Let A, A∗ be an attractor repeller pair. Let 0 < ε < 1
2 , and define the

sets

N ε
A = {x ∈ S | f(x) ≤ ε} N c

A∗ = {x ∈ S | f(x) ≥ 1 − ε} (7.15)

These sets are compact and

ϕt(N
ε
A) ⊂ intN ε

A ϕ−t(N
ε
A∗) ⊂ intN ε

A∗ , for all t > 0, (7.16)

and are isolating neighborhoods of A and A∗ respectively. There exists a modified
Lyapunov function g : S → [0, 1] which has the property

• g is continuous.

• g is constant on the isolating neighborhoods.

g(N ε
A) = 0 and g(N ε

A∗) = 1. (7.17)

• g strictly decreases along orbits

g(ϕt(x)) ≤ f(x) (7.18)

for all t > 0, and all x. Equality holds if and only if x ∈ N ε
A ∪ N ε

A∗ .

Theorem 7.11. The isolating neighborhoods form a bounded distributive lattice with
respect to set union and intersection. Modified Lyapunov functions form a bounded
distributive lattice with respect to pointwise minimum and maximum operations.

The isolating neighborhoods are well behaved with respect to intersections with
orbits.

Proposition 7.12. Let x ∈ S \ (N ε
A ∪ N ε

A∗). There exists unique smallest time∞ >
τ+ > 0 and biggest−∞ < τ− < 0 such that

φτ+(x) ∈ ∂N ε
A φτ−(x) ∈ ∂N ε

A∗ (7.19)

that is, the orbits enter N ε
A and leave N ε

A∗ at unique points.

7.3 Morse Decompositions
A tool for the study of the gradient like part of a dynamical system are Morse decom-
positions.
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Definition 7.13. LetP be a finite poset. A finite collectionM = {M(p) ⊂ S | p ∈ P}
of compact, non-empty, and pairwise disjoint invariant subsets of S, labeled by the
poset P is a Morse decomposition if, for all x ∈ S \

(

⋃

p∈P M(p)
)

, there exists
p, q ∈ P , with q < p such that

α(x) ⊂ M(p) and ω(x) ⊂ M(q). (7.20)

EachM(p) is called a Morse Set.

Remark 7.14. The Morse sets of a Morse decomposition are generalizations of the
critical points of a gradient system. The nomenclature decomposition is somewhat
strange. It is not really a decomposition, since a lot of points of S are not contained
in the Morse decomposition. Robbin and Salamon [26] therefore speak of attractor
networks. The name Morse decomposition has stuck however, and we conform to the
literature.

Theorem 7.15. A Morse decomposition is equivalent to a lattice of attractors, the
lattice of Lyapunov functions, the lattice of isolating neighborhoods and the lattice of
modified Lyapunov functions.

Proposition 7.16. Let N = {N(p) | p ∈ P} be an isolating neighborhood decompo-
sition subordinate to the Morse decomposition (M, P ). Then the sum of the modified
Lyapunov functions for all the isolating neighborhoods is a global Lyapunov function
f : S → R for the isolating neighborhood decomposition i.e.

• f is continuous

• f is strictly decreasing on orbits outside of the isolating neighborhood decom-
position, i.e. it respects the order P .

• f is constant on the isolating neighborhoods.

We will use the global Lyapunov function in the definition of the flow category in
the next section. The isolating blocks are sketched in figure 7.1.

7.4 The Flow category
The objective of this section is to define a flow category. Objects in the category will
be points of isolating neighborhoods. Morphisms are piecewise reparameterized short-
ened orbits, beginning and ending at the boundaries of isolating neighborhoods, and
reparameterized using the Lyapunov function.

Proposition 7.17. Each point x ∈ S lies on a unique reparameterized shortened orbit
γx. If x ∈ E than the orbit is the trivial orbit which stays at x

Definition 7.18. The flow category CM,N
D is the topological category where

• The objects are points inN , topologized as a subspace of S
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A

N ε
A

A∗

N ε
A∗

Ã

N ε
Ã

Ã∗

N ε
Ã∗

Figure 7.1: In the upper left corner we have drawn an example of a flow. We can
identify two attractors, A and Ã and their dual repellers A∗ and Ã∗. We have drawn
the isolating neighborhoods in light gray. The intersections of the attractors form a
Morse decomposition. The intersections of the isolating neighborhoods form an isolat-
ing block decomposition. We have drawn these in the lower right corner.
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• The morphisms are piecewise reparameterized shortened orbits, topologized as
a subspace of the space of all continuous maps of the intervals to S, with the
compact-open topology.

• Composition is concatenation of orbits.

• The maps dom, cod and id are the obvious maps.

We suspect the following.

Conjecture 7.19. C
M,N
D is a topological category.

7.5 The Homotopy Theorem
We expect that we can follow the steps outlined in chapters 3 and 5 to prove the ho-
motopy theorem for the flow category we have just defined. That is, the following
conjecture holds.

Conjecture 7.20. Let (S, d) be a compact metric space, and D a dynamical system
defined on it. Let M be a Morse decomposition of this dynamical system. Then there
exists isolating block decompositions N subordinate to M . These isolating block de-
compositions generate a flow category C

M,N
D . The homotopy types of the classifying

spaces of these flow categories are invariants for the space S and

BC
M,N
D ) S. (7.21)
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Chapter 8

Examples of Isolating Block
Decompositions

8.1 Flow on the Annulus

Example 8.1. This example is a variation of example 6.1. We consider the annulus
A ⊂ R2 once more, and on this annulus we have the system of differential equations

ṙ = (r − 1)(r − 2)

θ̇ = 1,
(8.1)

Figure 8.1: The annulus with the flow generated by the differential equations (8.1).
The orbits are repelled by the outer circle and attracted to the inner circle.
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Figure 8.2: The isolating neighborhood decomposition with respect to the Morse de-
composition contains two smaller annuli, which contain the morse sets, which are the
inner and outer circle.

The system is equivalent to the system in equation (6.3) except that the θ coordinate is
not constant, but linear. The flow of this system is given by

ϕt(r, θ) =

(

2(r − 1) + (2 − r)et

r − 1 + (2 − r)et
, t + θ

)

, (8.2)

and we have depicted it in figure 8.1. The system is not strongly gradient-like. The
orbits do not have well defined limits as t → ±∞. They keep approaching the attract-
ing and repelling circles in forward and backward time. The boundary of the annulus
are the attracting and repelling circles. These form a Morse decomposition of this dy-
namical system. The isolating neighborhood decomposition “thickens” the Morse de-
composition. We have shown this isolating neighborhood decomposition in figure 8.2.
The flow category with respect to this isolating neighborhood is well behaved. We can
compute the limbs in figure 8.3. The resulting classifying space is homeomorphic to
the original annulus. This is not something we would expect, we would expect only
a homotopy. This raises the question if we can formulate a condition similar to the
Morse-Smale transversality condition for general dynamical systems. Currently we do
not have such a criterion.
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N1
1 N1

2∆0 × N0C
M,N
D =

∆1 × N1C
M,N
D = ∂N1

1

∂N1
2

Figure 8.3: The limbs of the dynamical system on the annulus. This is actually similar
to the limbs of the non-rotating dynamical system of the annulus, cf. 6.2. The differ-
ence is that the 0 limbs are thickened, because these are neighborhoods of the Morse
decomposition, and the bounding circles of∆1×N1C

M,N
D are identified with the outer

and inner circles ofN1
1 andN1

2 respectively.
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Chapter 9

Conclusion

In this thesis we have established some results regarding the topology of dynamical
systems. We have shown, in various cases, that the homotopy type of a space is re-
flected in a dynamical system defined on the space. We have shown in different levels
of generality, cf. theorems 3.1 and 5.8, that the homotopy type of the classifying space
of the flow category is that of the underlying space. This is not the end of the story. We
expect that much more information is encoded in the flow categories. We conclude the
thesis with some conjectures and some ideas which require further study.

9.1 Conjectures
Conjecture 7.1 is the main conjecture that needs a proof. We do not seriously question
the truth of this statement however. This is not the case of some of the conjectures we
list below.

We have formulated the flow category for a general dynamical system using iso-
lating block decompositions. We suggest that the choice of the blocks subordinate to
the same Morse decomposition does not influence the classifying space of the flow
category.

Conjecture 9.1. The classifying space of the flow category C
M,N
D does not depend on

the construction of the isolating block decomposition. There exists homeomorphisms
between them

C
M,N
D

∼= C
M,N ′

D . (9.1)

Here N ′ is a different isolating block decomposition subordinate to M . If this is the
case, than we can attach a classifying space to the Morse decomposition itself.

Remark 9.2. Note that we do not claim that we can construct a flow category of a Morse
decomposition. We are able to attach a topological space to a Morse decomposition,
and this topological space fulfills the role of the classifying space of the (non-existing)
flow category.
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Morse decompositions are finite, i.e. the poset indexing a Morse decomposition is
assumed to be finite. There exists a notion of “infinite” Morse decompositions, chain
recurrent sets. We suggest that we can attach a flow category to these chain recurrent
sets.

Conjecture 9.3. We can construct a flow category of a chain recurrent set, and the
homotopy type of the classifying space is equivalent to the homotopy type of the under-
lying metric space.

The Morse inequalities are a deep result in topology. They show that the topology
of the manifold influences functions defined on the manifold. Can we extract similar
information out of a flow category of a general dynamical system?

Conjecture 9.4. Morse decompositions are ordered by a poset. We can look at all flows
and equilibrium points below a certain p ∈ P , i.e. there is no non-trivial orbit ending
at M(p). These defines a subcategories Cp of the flow category. We have injections
Cp → Cq if p < q. Also on the level of classifying spaces the injection BCp → BCq

holds. We can formulate Morse-like inequalities by studying the spaces

BCp/BCq. (9.2)

9.2 Ideas
We consider some ideas which we currently cannot formulate in a precise conjecture
in this section.

Cohen, Jones and Segal [9] have shown that the Morse-Smale transversality con-
dition is a condition that ensures that the classifying space of the flow category is
homeomorphic, and not merely homotopic, to the underlying manifold if we look at a
flow category of a gradient vector field. This condition does not naturally generalize
to dynamical systems on metric spaces, where we have proved some results on flow
categories. It would be good if we could find conditions that ensures that the homotopy
is actually a homeomorphism in this case.

We have not studied dynamical systems that are not invertible. A wide class of
natural dynamical systems, for example the flow of the heat equation, do not posses
invertibility. These systems do obey uniqueness in forward time. This suggests that
the information of these flows can be captured in operads. An operad is a generaliza-
tion of a category, where the morphisms are allowed to have multiple inputs. The role
of the nerve, which is a simplicial set (whose geometric realization is the classifying
space) is filled by dendroidal sets. There exists a notion of geometric realization of a
dendroidal set. It might be possible to capture the information of a non-invertible flow
in these constructions, such that we can formulate homotopy results as with invertible
dynamical systems.

The assumptions of a strongly gradient-like dynamical system enforces a system
to be finite dimensional in the direction of the flow. Can we broaden the definitions to
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allow certain infinite dimensional systems?

How critical is the assumption of compactness? Can we formulate the theorems
dropping this condition?
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