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Introduction

In this thesis we investigate topological properties and invariants of a special
class of non-linear partial differential equations (PDEs) with applications to the
theory of relative braid classes. The three main results can be summarized as
follows:

o the Poincaré-Hopf Theorem for relative braid classes;

e the construction of an isomorphism between the braid Floer homology and
the braid Morse homology;

e ageneralization of the Poincaré-Bendixson Theorem for non-linear Cauchy-
Riemann equations.

In the next sections we explain the interplay between braids and differential equa-
tions, and why we can exploit the topological properties therein contained. In
order to put this into a more general context, we start off with some examples
which involve the solution of analytical problems via topological tools.

1.1 Examples of topological invariants in analysis

In this thesis we use topology as a useful tool which can give information on
the structure of dynamical systems. Perhaps the first user of topology in differ-
ential equations was Poincaré, who developed many of his topological methods
while studying ordinary differential equations which arose from certain astron-
omy problems. His study of autonomous systems

i=F(x), 2xecR?* FecC'R%R?).

involved looking at the totality of all solutions rather than at particular trajec-
tories as had been the case earlier. This is the context of the famous Poincaré-
Bendixson Theorem.

The use of topological techniques in analysis is full of insightful examples. We
provide three.

(i) The classical BROUWER DEGREE theory provides a tool that contains infor-
mation about the zeroes of a continuous function. Its infinite-dimensional
generalization, the LERAY-SCHAUDER DEGREE, applies to a special class of
operators.

(ii) The POINCARE-HOPF FORMULA relates a purely topological concept, i.e.
the Euler characteristic of a smooth manifold M, to the index of a vector
field on M, which is a purely analytical concept.



Chapter 1: Introduction

(iif) MORSE THEORY also can be put in this framework: one of the consequences
of the Morse inequalities is that the number of critical points of any Morse
function on a smooth manifold is closely related to the homology of the
underlying manifold.

1.1.1 The Brouwer degree and the Leray-Schauder degree

The analytical construction of the (localized) Brouwer degree deg(f,2,p) of a
smooth mapping f : 2 ¢ R* — R", with Q open bounded and a regular value
p & f(09), is defined as

deg(f,2,p):= > senJy(x).
zef-1(p)

Here J; denotes the Jacobian of f. By approximation one can extend the definition
to continuous functions and also to non-regular values.

For such maps the degree being non-vanishing implies the existence of an
x € Q such that f(z) = p. More importantly the Brouwer degree is invariant un-
der homotopies of functions and of domains. On the base of these properties one
can show that degree theory has important implications, among which Brouwer’s
fixed point Theorem. In full generality the latter states that any Hausdorff topo-
logical space homeomorphic to the unit closed ball B; (0) c R™ has the fixed point
property .

A straightforward generalization of Brouwer’s fixed point Theorem to infi-
nite dimensions, i.e., using the unit ball of an arbitrary Banach space instead
of Euclidean space, is not true. The main problem here is that the unit balls in
infinite-dimensional Banach spaces are not compact. Nevertheless an infinite di-
mensional degree theory exists and has been developed by Leray and Schauder.
They identified an important class of non-linear operators in a Banach space, the
compact perturbations of the identity, for which the problem of contractibility
of the sphere could be solved. This extension has been successfully applied to
non-linear elliptic boundary value problems, see [41].

1.1.2 The Hairy Ball Theorem and the Poincaré-Hopf formula

The Hairy Ball Theorem states that there is no non-vanishing continuous tangent
vector field on even dimensional n-spheres. For ordinary spheres, or 2-spheres,
the latter can be rephrased as follows: whenever one attempts to comb a hairy
ball flat, there will always be at least one tuft of hair at one point on the ball.
The theorem was first stated by Poincaré in the late 19th century and proved in

1 A Hausdorff topological space X has the fixed point property if every continuous mapping g :
X — X has at least one fixed point.



1.1 Examples of topological invariants in analysis

Figure 1.1: The standard two-torus T? embedded in R3. In black the sublevel sets
of the height function.

1912 by Brouwer. This is famously stated as you can’t comb a hairy ball flat without
creating a cowlick, or sometimes you can’t comb the hair on a coconut.

From a more advanced point of view, every zero of a vector field has an index
2, and it can be shown that for an even dimensional sphere the sum of all of the
indices at all of the zeros must be two. Therefore there must be at least one zero.
This is a consequence of the Poincaré-Hopf formula. The latter has the form

S indi (1) = x(M), (1.1)

i

where M is a manifold, X a vector field on M, the sum of the indices is over all
the isolated zeroes of X, and x (M) is the Euler characteristic of M. One important
consequence of (1.1) is that the index of a vector field does not depend on the
choice of the vector field, but only on the topology of the manifold M. In the
case of the torus, the Euler characteristic is 0; and it is possible to comb a hairy
doughnut flat. In this regard, it follows that for any compact regular 2-dimensional
manifold with non-zero Euler characteristic, any continuous tangent vector field
has at least one zero.

1.1.3 Classical Morse Theory

The power of Morse theory is that it provides an analytical framework in which
to study the topology of manifolds. One of the classical references is Milnor [37].

Consider the standard embedding of the two-torus T? in R*, as shown in Fig-
ure 1.1 and the height function % : T? — R which returns the third coordinate of
such embedding. This function has four critical points. By studying the sublevel

2defined, for an isolated zero, in terms of the mapping degree introduced in the previous section

3
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e

Figure 1.2: Handle decomposition of the sublevel sets of the embedded two-torus.

sets M. = h™'((~o0,c)) we realize that the topology of M. does not change as
long as ¢ does not pass a critical value of f. When c¢ crosses a critical value, the
topology changes. Morse theory is the study of this phenomenon. More gener-
ally, if a manifold has a non-trivial homotopy type, the sublevel set M., has a
non-trivial homotopy type and therefore f must have critical points. The Morse
inequalities [9] are a concise formulation of this, relating the minimum number
of critical points of a function to the homology of the underlying manifold. They
imply furthermore (1.1). One can prove that the homotopy type of a sublevel set
changes exactly by attaching an n-cell (or an n-handle as in Figure 1.2) where n is
given by the nature of the critical point, i.e., depending whether the critical point
is a minimum, maximum, or a saddle point. One builds up a CW-complex in this
manner, which captures the homotopy type of the manifold. For this to work the
function f needs to satisfy certain properties, which are contained in the concept
of a Morse function.

1.2 Braids and braid diagrams

In this section we begin with informal definitions of braids, braid classes and
relative braid classes in three different contexts. All three settings are closely
related and we will point out their relations. We will mainly follow [52].

1.2.1 Braids on D?

Consider the standard 2-disc D? (with coordinates = (p,q) € D?) in the plane
and the cylinder C = [0, 1] xD? . An unordered collection of continuous functions
= {z1(t),...,2™(t)}, 2% : [0,1] — D? (called strands) is called a braid on the 2-
disc D? if:

(i) 2*(t +1) = 2°(F)(¢) for some permutation o € S,,, and

(i) z¥(t) # a"(t) forall k # hand all t € [0, 1].



1.2 Braids and braid diagrams

The set of all braids on D? homotopic to z is denoted by [z]p: and is called a
braid class. We will often use, for such braids, the terminology bounded braids,
since for all 2 € [x]p2 we have |zo| < 1. A way to visualize a braid is to consider
a so-called braid diagram in the plane. The latter is obtained by projecting the
cylinder C onto a plane of the form [0, 1] x L, where is L c R is a diameter of D?.
If we denote the projection by 7 : D? — L, then two strands z*(¢) and z"(¢) have
a positive crossing in the projection at m2"(ty) = wz"(to) if 2* — 2" rotates counter
clockwise about the origin, for small interval of times ¢ around Zy. A negative
crossing corresponds to a clockwise rotation. Now consider special collections
of the form {z(t),y'(t),...,y™(t)}, with z = {z(t)} a periodic function on [0, 1],
with values in D? and y = {y!(¢),...,y™(t)} as above. Denote such collections by
xrely and assume that they are braids with 1 + m strands. Since we singled out
two braid components we denote the braid class containing z rely by [z rel y]pe.
The latter is called a relative braid class, abbreviated RBC. The component y is
called the skeleton of the relative braid class. We refer to the z-component as the
free part. 1f we take the skeleton y to be fixed, then the set of periodic functions
x for which zrel y is a braid is denoted by [z]p2 rely and is called a relative braid
class fiber. On [z]p2 rel y we consider the C° topology. The space [zrely|p: is a
fibered space over [y]p2 and the relative braid class [x]p2 rel y is a fiber in [x rel y]p2.
The intertwining between x and y gives rise to different braid classes. A relative
braid class is called PROPER if  can not be deformed, or ‘collapsed’, onto any y
components, nor onto the boundary 9D?. We abbreviate proper relative relative
braid classes as PRBCes. In this thesis we consider only relative braids, whose
free part is composed by only one strand, but we can easily generalize the notion
of relative braid (classes) with z consisting of n strands.

1.2.2 Braid diagrams in dimension 1

In the special case that strands z(t) are of the form z,(t) = (¢.(t), ¢(t)) the projec-
tion onto the ¢g-coordinate provides a representation of a braid in terms of graphs.
Such strands satisfy the property that they lie in the kernel of the one-form

a = dq — pdt,

which is known as the Legendrian property. An unordered collection of functions
Q ={Qt),...,Q™()},Q" : [0,1] = [-1,1],j = 1,...,m is called a (bounded)
braid diagram or, equivalently a (bounded) LEGENDRIAN braid if

i) QF(t+1)= Q"™ (t) for some o € S,,, and
(ii) all graphs Q*(t) intersect transversally.

The set of all braid diagrams isotopic to () is denoted by [Q]_1,1). As before we
also consider collections of the form grelQ = {q(t),Q'(¢),...,Q™ ()} and the
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Figure 1.3: A positive relative braid and its Legendrian projection.

associated (bounded) relative braid classes [grel Q][_1,1) and [g]_1 1) rel @ (fibers).
In order to slim the notation for bounded Legendrian RBC we will write sim-
ply [grel Q] and for fibers [g] rel Q, instead of [grel Q)1 1) and [g][_1 1) rel Q respec-
tively. It is immediate that these Legendrian braid classes are a subset of the braid
classes on D?. The Legendrian constraints implies that all crossings of strands are
positive.

As in the case of D?, the intertwining between ¢ and Q yields different braid
classes. In this case the notion of proper translates into the following condition.
We say that a relative Legendrian braid class is PROPER if the strand ¢ cannot be
deformed onto any of the strands Q*, for all k = 1,...,m nor onto the constant
strands +1.

1.2.3 Discrete braid diagrams

Yet another simplification is obtained by considering piecewise linear functions
connecting the points ¢; = ¢(i/d),i = 0,...,d. We represent such piecewise lin-
ear functions by sequences ¢p = {¢; }i=0,....4- Both the sequences and their linear
piecewise extension will be denoted by the same symbol ¢gp. An unordered col-
lection of sequences Qp = {Q},...,QE} = {{Q}},...,{Q"}}ico,. .4 is called a
discrete, or PIECEWISE LINEAR BRAID DIAGRAM if

i) QF, = Qf(k), for some permutation o € S,,,, and forall¢ =0,...,d

(ii) all the graphs Q*(t) intersect transversally >.

The set of the equivalents classes, via isotopy, fixing the endpoints is denoted
by [@p]. Crossing in this setting are also marked as positive. Collections of the
form gprelQp = {qp,QL,...Q}} and the associated relative braid class are
denoted by [gp rel @ p] are the fibers by [gp] rel @ p. As before, we say that a class

k

3in this setting we say that an intersection is transverse if (Qfﬁ 1-Q f:l NQ7F - Qﬁ/l) > 0 whenever

QF=Ql.
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Figure 1.4: A Legendrian relative braid and its discretization.

of discrete braid diagrams is PROPER if the piecewise linear strand gp cannot
be deformed onto any of the strands Q%, for all k = 1,...,m and the strand ¢p
cannot de deformed onto the constant sequence +1.

1.2.1. Remark. Properness is a topological condition that descents from braids on
D? to discrete braids, i.e. properness of [z rel y|pz implies

[zrelylp: = [qrelQ] = [gprel @p].

The implications do not necessarily go in the opposite direction.

1.3 State of the art: braids and PDEs

The use of braids in dynamics is not without precedent (see e.g. [27], [28], [29],
[38], [49]), in particular if applied to the theory of topological forcing in dimension
two and three ([26], [49], [50]). How do braids evolve and under which equations
this motion is ruled? We explain this in the next three paragraphs. An important
motivation for using braid theory in dynamics comes from the comparison prin-
ciple, which essentially states that if we evolve a braid in time, the complexity
of the braid diminishes. The comparison principle motivates the choice of the
Cauchy-Riemann equation for braids in D?, the choice of the heat flow for Legen-
drian braids in dimension 1, and the choice of discrete parabolic relations in the
discrete case.

1.3.1 The Cauchy-Riemann equations
The non-linear equations

us — J(s,t)(uy — Xp(t,u)), u:RxS' = D? (1.2)
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are called the Cauchy-Riemann equations, or, abbreviated, non-linear CRE. The
parameters J and H are called almost complex structure and Hamiltonian re-
spectively. An almost complex structure is a smooth map J : R x S* — Sp(2,R)
such that J(s,t)? = —1d, for all (s,t) € R x S! (here Sp(2,R) denotes the sym-
plectic group of degree 2 over R). We consider the class of constant almost com-
plex structures and we denote it by _¢. Regarding the Hamiltonian function
H : S' xD? - R, we assume that H(t,z) = 0 forall z € OD? and all ¢t ¢ R
and we call this class of Hamiltonians .7°. The Hamiltonian function H gives rise
to the Hamiltonian vector field X g.

For a braid x the total crossing number Cross(x) is defined as the number of
positive minus the number of negative crossings, i.e.

Cross(x) := #{positive crossings} — #{negative crossings}.

For relative braids this number is denoted by Cross(z rel y) and it is an invariant of
the relative braid class [z rel y|p2. Let [x]p2 rel y be a relative braid class fiber with
skeleton y, then we can choose Hamiltonians H, such that the skeletal strands
are solutions of the s-stationary equations y; = Xy (¢,y). Let u(s, -) rely denote a
local solution in s of the Cauchy-Riemann equations, then

Cross(u(sy, ) rely)| < Cross(u(sg,-)rely) forall s; > sq.

This is also known in literature as the Monotonicity Lemma (see [49]): in essence
along solutions u(s,t) of the non-linear CRE (1.2), the number Cross(u(s, ) rely)
is non-increasing. In other words, along flow-lines of the non-linear CRE posi-
tive crossings can evolve into negative crossings, but not vice-versa. If we con-
sider braid classes which are proper they yield isolating sets for the dynamics:
a bounded solution u(s, ) € [z]pz rely with [z]|p= rely a proper fiber stays away
both from any of the y components and from 9D?.

1.3.2 The heat flow

Consider the scalar parabolic equation, or the non-linear heat flow equation
Vs — Vgt + 0 — O, W (tv) =0, v:RxS' —[-1,1]. (1.3)
For the non-linearity W we assume the following hypotheses: W e C*°(S! x

[-1,1];R) and 9, W (¢,+1) = +1 for all t € S*. Equation (1.3), unlike (1.2), gener-
ates a local semi-flow /* on the space of periodic function C°(S*; [-1,1]).
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Let @) be a braid diagram of dimension 1 on m strands, we can define the ana-
logue of the crossing number for x as the intersection number I(Q) as it follows:

I(Q) := #{total number of crossings}.

Since, by the Legendrian constraint, all intersections correspond to positive cross-
ings, the total intersection number is equal to the crossing number defined above.
This means that if we define y = (Q;, @) then

Cross(y) = 1[(Q).

The classical lap-number property [6] of non-linear scalar heat equations states
that the number of intersections between two graphs can only decrease in time s,
as s increases.

We now apply this principle to Legendrian braid classes. Let [g]rel Q a Leg-
endrian RBC fiber with skeleton @ and suppose that we can choose the non-
linearity U such that the skeletal strands are solutions of the stationary equation
Qu—-Q+0oW (t, Q) = 0. Denote by v(s, -) rel @ local solutions of the heat equation,
then, as in the elliptic case, then

I(v(s1,-)rel Q) < I(v(sp,-)rel Q) forall s > s

If we consider Legendrian braid classes that are proper they yield isolating sets for
the dynamics: also in this case a bounded solution v(s, -) € [¢] rel @ with [g] rel @
a proper Legendrian fiber stays away both from each of the ) components and
from the constant strands +1 (this property is also called isolation of proper braid
classes).

1.3.3 Discrete parabolic relations

In the discrete setting the dynamics that respect the braids consists of the discrete
parabolic equations. These are recurrence relations on the space of discretized
braid diagram and consist of nearest neighbor interaction. They resemble spacial
discretizations of parabolic equations. For a k-strand braid diagram on d points,
the discrete parabolic relations are given by

v = R;(v¥q, v, vyy), foralli=0,...,d-1, (1.4)

% -1 Y 9 Y+l

&=

forevery a = 1,..., k. On R; we assume the following: 9;R; > 0 and 95R; > 0;
Ri.q = R;, forall .
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If we restrict the range of the sequences v%,a = 1,. ..k to the interval [-1, 1],
then Equation (1.4) generates a flow ¢° on the space D% of k-tuples of d-periodic
sequences. This flow will be referred as parabolic flow on DE. If we furthermore
assume that R;(-1,-1,-1) = R;(1,1,1) = 0 for all ¢, the constant sequences +1
are stationary for the flow ¢°.

There is a discrete analogue of the crossing number and the intersection num-
ber. Recall that any discrete braid diagram (of k-strands) can be expressed in
terms of the (positive) generators {c; f;ll of the braid group Bj,. While this word
is not necessarily unique, the length of the word is, as one can easily see from
the representation of Bj. As in the previous cases, we consider piecewise linear
braids that are composed by a free part and a skeletal part, and we denote them
by gp rel @ p. Note that the skeletal part may consist of multiple (say m) piece-
wise linear strands, i.e. Qp = {Q}, ..., Q% }, while we consider the free strands
to be only of 1 strand. The length of a closed braid in the generators o; is thus
precisely the word metric ¢(Qp) from geometric group theory. The geometric in-
terpretation of /(Qp) for a piecewise linear braid @ p is the number of pairwise
strand crossings in the diagram @) p. This means that if we discretize a positive
braid diagram @ in dimension 1 and we call the discretization @ p then

{(Qp) =1Q).

A result in [28] shows that, as for the continuous case, the word length can only
decrease as time s increases.

We now apply this principle to discrete braid diagram. Let [gp]rel @p a dis-
cretized RBC fiber with skeleton () p and suppose that we can choose R; such that

the skeletal strands are solutions of the stationary equation for alla« = 1,...,m
Ri(Q51,Q8, Q%) =0,fori =0,...,d -1 (and by periodicity Qf = Qg for all

a =1,...,m). Denote by vp(s) rel @ local solutions of (1.4), then, as in the elliptic
case, and in the continuous parabolic case we have

l(vp(s1)rel@Q) < l(vp(sp)rel@) forall s; > s

This was shown in [28]. Also in this case, if we consider discrete braid classes
which are proper they yield isolating sets for the dynamics.

1.4 Braid invariants

In the previous section we linked the three types of braid classes to natural dy-
namical systems associated with these braid classes. They all share the properties
that proper braid classes yield isolating sets for the dynamics.
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Floer’s approach, used in the beginning to solve the Arnol’d conjecture, de-
velops a Morse type theory for the Hamiltonian action

1 1
%H(z):/() L(Jx, 2y) dtf/U H(t,z(t)) dt.

This applies to the non-linear CRE. The variational structure for the heat flow is
given by the action

1 1
L) = / Lo + Lgf? dt - / Ut q(t)) dt
0

and takes the name of Lagrangian action functional. A discrete variational prin-
ciple for discrete parabolic equations is given by the action

d-1
{Qz Z Sz q“ QHI
=0

where S, are smooth functions on [-1, 1] x[-1, 1] with the property that 9;025; > 0.
In this case R; = 025;_1 + 015;. All the equations introduced above are now
gradient flow equations and we carry out Floer’s procedure.

1.4.1 Floer homology, Morse homology, Conley homology for

proper relative braid classes

Let us explain the basic ingredients of Floer theory for the Cauchy-Riemann equa-
tions. The same applies to the other two cases. We should emphasize that the in-
gredients for obtaining respectively Floer homology, Morse homology and Con-
ley homology are the same, but working out the details is very delicate and some-
times very tedious. Denote the set of bounded solutions of Equation (1.2) in a
braid class fiber [z]p2 rel y, that exists for all s € R, by .# ([x]p2 rely; J, H). The im-
age under the mapping u + u(0, -) is denoted by 5”([ Jpz rely; J, H) ¢ C(SY;R?).

o Compactness. Consider a PRBC and the set .# of bounded solutions of the
Cauchy-Riemann equations in the considered braid class. Elliptic regularity
guarantees that the spaces .# and .7 are compact with respect the appro-
priate topologies and properness insures that . is isolated. Compactness
and isolation hold in all the three cases.

o Genericity of critical points. For a generic choice of Hamiltonians H in the
class s (where # has been introduced in Section 1.3.1) for which the
skeletal strands y are solutions of the associated Hamilton equations, the

11
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critical points of .7y in the proper relative braid class [z]p2 rely are non-
degenerate. Hence the set of critical points in [z]p- rel y, which we denote
by Critg ([z]p2 rely), consists only of finitely many isolated points. Notice
that no non-degeneracy condition is imposed on the y strands. The fact that
there are only finitely many isolated critical points in a class holds also for
the other cases.

o Genericity of connecting orbits. The gradient structure of the Cauchy-
Riemann equations implies that ./ is the union of the space of connecting
orbit:

M(algerely; LH) = ) a7 (el rely; I H),

z*eCrit g ([z]p2 rely)

where .#* +* ([x|p>rely; J, H) is the subspace of bounded solutions of
Equation (1.2) with limits = and «* for s — +oo. It can be proven that for
generic choice of J and H, the space of connecting orbit are smooth finite
dimensional manifolds without boundary.

o Index function. One can establish a grading u(x) on the non-degenerate
elements of Crity([z|p2rely) in such a way the the dimension of
M ([z]p2 rely; J, H) is given by the formula

dim .7 ([a]pe vely; J, H) = p(a”) — p(a).

This theory is based on the theory of Fredholm operators and holds in all
cases. For the Cauchy-Riemann equations we chose p to be the Conley-
Zender index, for the heat flow the classical Morse index and the same for
the case of discrete parabolic equations.

o Chain complex and its homology. The construction of the chain complex and
therefore the Floer homology has become a standard procedure ([23]). By
the compactness and genericity Crity ([x]p2 rely) is finite and we define the
chain groups Ck([z]p: rely) as formal sum }_, a;z; with coefficients a; <
Zy. A boundary operator is defined by the formula

Ok = Z n(z,x' )’

p(z')=k-1

where n(z, ') is the number of elements (modulo 2) in .#Z* +*" ([x]p2 rel y; J, H)
with p(27) —pu(x*) = 1. Genericity and compactness imply that this number
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is finite. Proving that 0y, is a boundary operator is equivalent to showing
that
8k,1 o 8k =0.

The composition counts the number of broken trajectories, i.e. the number
of elements in the set

U (///wi’wl([x]Dz vely: J, H) x 4% ([x]p> rely; J, H)) :
p(z')=k-1

The space .4 +* ([z|p2rely; J, H)/R, with u(z) — p(at) = 2, is a mani-
fold without boundary of dimension 1 and the Floer’s gluing construction
reveals that if .#%  ([z]p2 rely; J, H)/R is not compact then the manifold
can be compactified to manifold with boundary diffeomorphic to [0, 1] by
adding broken trajectories in

U (///f ([2]p rely; J, H) x 4% ([a]pe rely; J, H)) .
(z")=k-1

The gluing construction also reveals that the procedure is surjective and
thus the number of broken trajectories is even, thus d;_1 0 J;, = 0. In the end
this proves that (C., 0,) is a chain complex and its homology is well-defined
and finite.

We define

HF ([z]p2 rely; J, H) := Hp(Cx, Oy).

Different choices of H € J# and of J ¢ ¢ (s and ¢ have been defined in
Section 1.3.1) yield isomorphic Floer homologies and

HF, ([z]p2 rel y) = lim HF . ([z]p2 rel y; H, J),
—

where the inverse limit is defined with respect to the canonical isomor-
phisms ay(H, H') : HF([z]rely; H,J) — HFp([z]rely; H',J) and by (J,J') :
HFy([x]rely; H, J) — HFy([z]rely; H,J'). Some properties are (see [49] for the
proofs):

(i) the groups HF([x]pz rel y) are defined for all k € Z and are finite, i.e. Z¢ for

some d > 0;

(ii) the groups HFy([z]p=rely) are invariants for the fibers in the same rela-

tive braid class [z rely]p2, i.e. if zrely ~ z'rely’, then HF([z]|p2 rely) =
HF ' ([2|p2 rely'). For this reason we will write HF, ([z rel y]p2);

13
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(iii) if (zrely) - A% denotes composition with £ full twists, then HF,([(z rely) -
A2Z}D2) = HFk,zg([I rel y]]D)z )

A similar construction can be carried out for the heat flow equation and the dis-
crete parabolic equation leading to Morse and Conley homology, respectively

HM. ([grelQ]) and HC,([gprel@p)).

The latter is isomorphic to the homological Conley index. The former will be
referred to as the Morse homology of [grel Q] and the latter as the homological
Conley index of [¢p rel @p]. Note that properties (i) and (ii) continue to hold in
the three different settings.

1.5 Discussion of the results

Since the construction of these three topological invariants is so similar in the
three cases, the first question that arises is whether these three topological invari-
ants are related. We give a (partial) answer to this question in this thesis. In the
following subsections we analyze the main results contained in this manuscript.
The first two results go towards the direction of linking topological invariants for
discrete braids to those concerning continuous ones. We go even beyond this aim:
in Chapter 2 we link the Euler-Floer characteristic to a non-variational problem,
a novelty in the panorama of the Floer context. The last result, i.e. the Poincaré-
Bendixson Theorem for non-linear Cauchy-Riemann equations, is more a topo-
logical property characterizing these equations.

1.5.1 The Euler-Floer characteristic and periodic point of two-

dimensional diffeomorphisms
Endow the 2-disc D? with the standard symplectic form w = dp A dq and choose a

Hamiltonian function H in the class #. Define the time-dependent Hamiltonian
vector field X g via the relation

dH = w(Xp, ).
Solving the initial value problem associated to the vector field Xy, i.e.

dzx
{ o = Xu(t,) (1.5)
x(0) = xo
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Figure 1.5: Here the braid on the left has two components and three strands. The
diffeomorphism is on the right and has one point of period one and two points
of period two. The two components of the braid are generated by two points of
period two and one of period one. The fact that the braid has three strands does
not necessarily implies that the diffeomorphism has one periodic point of period
three.

gives rise to a smooth family of Hamiltonian symplectomorphisms (i.e. diffeo-
morphisms that preserve the area form w and originated from Xy ) denoted by
Yr : R x D* — D?. The time-1 map f = ¢x(1,-) is orientation preserving and
exactly homotopic to the identity according to the nomenclature introduced in
[13]. There is a one-to-one correspondence

k-periodic points of f & period-k orbits of ¢y

The latter holds because f*(x) = =z if and only if {¢x(t,z),t € [0,1]} is a
closed orbit of period k. The relation between braids and symplectomorphisms
is explained as follows. Let z e D? be a k-periodic point, i.e. f*(z) = =z,
k > 1, the minimal period. Then the set Ay = {z, f(x),..., f* ()} satisfies
f(AR) = {f(2), f2(2),..., fF(x) = v} = Ay, and a periodic point is thus repre-
sented by an element A, € C;,(D?), the configuration space of k distinct points in
D?. Any invariant set Ay, of f of cardinality k is a point in C(ID?) and gives rise to
a k-strand braid via ¢ — (¢, Ay). Summarizing, a k-periodic point z € D? gives
rise to an invariant set Ay, := {f(z),..., f*1(z), f¥(z) = 2} for f,i.e. f(Ar) = Ag.
On the other hand, if there exists a k € N and distinct points 1, ...,z € D?, such
that the set Ay, := {z1,..., 2} is invariant for f, this does not imply necessarily
that there exists one k-periodic point, but that there exists a collection of periodic
pointsx%,...x}cl,z%,...x%z,...,zg,...,xig with >, k, = k.

In [49] the authors show that, under the hypotheses that f has an invariant set
A,, representing the m-strand braid class [y|p2, for any proper relative braid class
[z rel y]p2 for which the braid Floer homology HF .. ([z rel y]pz) # 0, there exists an
invariant set A/, for f such that the union A,, U A/, represents the relative braid
class [z rel y]p2. The latter is a forcing result: if the braid Floer homology of asso-
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ciated proper relative braid classes is non-trivial, then additional periodic points
of the time-1 map of the Hamiltonian family of symplectomorphisms induced by
the Hamilton equations are forced to exist. We stress that different braid classes
yield different periodic points.

As explained so far, for any given proper relative braid class [zrely|p: the
Floer homology HF, ([xrely]p2) is well-defined and applicable to Hamiltonian
systems and area-preserving maps of the 2-disc. Two immediate questions that
come to mind are: Can the invariant be applied to more general systems and mappings
of the 2-disc, and to what extend can the invariants be computed?

We give a partial answer to this question in Chapter 2 and we summarize our
result in this section.

The construction of HF,, as it is presented in this thesis, fails when X is arbi-
trary. The main reason is simple: Equation (1.5) relies strongly on a variational
principle, one-periodic solutions are critical points of an action functional. By re-
placing X iy with an arbitrary X the variational structure is lost, and, so far, Floer
theory has never been applied in a non-variational setting. The project of building
a non-variational Floer theory would certainly be challenging, and there is hope
for this to work, also in light of our results presented in Chapter 4. Turning back
to our problem, not everything is lost. By substituting in (1.5) a non-Hamiltonian

vector field X we obtain J

x

{ o~ Xt (1.6)
z(0) = xo.

Under the hypotheses that X is one-periodic (X (¢,z) = X (¢+1, x)) and tangent to
the boundary 9D? (X (¢, z)-v = 0 for all z € 9D?, where v is the outward unit nor-
mal on 9D?)*, the system (1.6) gives rise to a smooth family of diffeomorphisms
é(t,-) : D> — D?, whose time 1-map g = ¢(1,-) is orientation preserving. The
one-to-one correspondence between period-m points of g and m-periodic orbits
of ¢' still holds. Note that g has less structure than f, namely it is only a diffeomor-
phism and not a Hamiltonian symplectomorphism in general. By assuming that
¢ has an invariant set B,, that consists of m distinct points in D?, then B,, gives
rise to a m-strand braid, exactly in the same manner as for symplectomorphims.

In Chapter 2 we show that Problems (1.5) and (1.6) can be rephrased into
problems “a la Leray-Schauder” in the following way. Multiplying by J, adding
px, v # 2nZ on both sides of (1.5) and (1.6) and inverting (J % + 1) we obtain
respectively

@, () =2 (J%+p) ' (JXu(z,t)+pz)=0

and
@, (z) =2~ (J% +p) " (JX(2,t) + px) = 0.

4In case X = X this means that H ¢ J#
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In this regard both maps ¢, # and ®,, are in the form “identity minus compact”.
Now, by assuming y to be the skeleton for X (i.e. yg = X(t,y),j=1,...,m)and
looking at periodic solutions in a proper relative braid class fiber Q := [z]p2 rely,
we prove that isolation is preserved also for the non-variational case: in other
words solutions that are contained in 2 stay away from the elements of the skele-
ton y and from the boundary 9D?. The Leray-Schauder degree deg; ¢(®,,,,0) is
therefore well-defined. By assuming that y is also the skeleton for Xy (such a
Hamiltonian function can always be constructed, see [49]) we perform a linear
homotopy X, = (1 - )X + aXpy, a € [0,1]. For such homotopy X,, y it is an
admissible skeleton, since it is a skeleton for both X and Xy . Associated with the
homotopy X, we define the homotopy of maps

P, o) =2 (J& +p)  (JXa(z,t) + pz), acl0,1].

We observe that isolation is preserved for all € [0, 1]. By the homotopy invari-
ance of the Leray-Schauder degree we have

degLS(CI),L, 0,0) = degLS(@u,av 0,0) = degLS(q)mHa Q,0).

By linearizing ®,, around a non-degenerate solution = € € and gauging &}, ()

with the operator Id —(J4% + p)*(01d +u),0 # 277 we prove that we can re-
late deg;g(®, m,,0) with the braid Floer homology: a delicate analysis of
deg; g(®,.m,,0) via spectral flow theory reveals that

degrg(®.m,9,0) = —x(HF.([z]p2 rely)) = ~x(HF . ([x rel y|p2)), (1.7)

where x is the Euler characteristic of the braid Floer homology. In (1.7) the sec-
ond equality follows from invariance of fibers of the braid Floer homology. The
parallel with the finite dimensional case is clear. In case of finite dimensions,
via the Morse inequalities one defines the Euler-Morse characteristic for gradient
vector fields and extends it via the Brouwer degree to arbitrary vector fields. In
our case we give meaning of the Euler-Floer characteristic, naturally associated
to the variational problem (1.5) to non-variational systems such as (1.6), via infinite
dimensional degree theory.

The above arguments lead to the definition of an index « for non-degenerate
and isolated one-periodic closed integral curves x of X. By using the theory of
parity of index zero Fredholm operators we prove that for a non-degenerate and
isolated one-periodic closed integral curves of X we have that deg; 4(®,,,0) is
independent of the choice of 1 and of §. More generally the index ¢(x) is indepen-
dent of the inversion of the operator .J % + 11, and of the choice of any gauging

dt
matrix © € Ms,2(R), provided that ¢(©) N 21iZ = &. We then provide a deriva-
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tion of a Poincaré-Hopf formula for relative braid classes. The latter has the form
(recall (1.1))

> wo) = X(HF.([zrely]pz)).

Zo

The sum here is computed over all closed integral curves xg rel y in the proper rel-
ative braid class fiber [z]|pz rel y. The index formula can be used to obtain existence
results for closed integral curves of arbitrary vector fields in proper relative braid
classes and provides an extension of the already mentioned forcing result con-
tained in [49]: if x (HF . ([x rel y]p2)) # 0, this forces the existence of closed integral
curves of arbitrary vector fields X in any proper relative braid class [z rel y]pz. In
the language of diffeomorphisms and periodic points the result can be reformu-
lated as follows: under the hypotheses that a diffeomorphism ¢ has an invariant
set A,, representing the m-strand braid class [y|p2 , for any proper relative braid
class [z rel y]p2 for which the Euler characteristic of the braid Floer homology does
not vanish, there exists a fixed point for g such that the union A,,, U{z} represents
the relative braid class [z rel y|pz. Note that we obtain results concerning fixed
points of diffeomorphisms, but the same theory, with small but necessary adjust-
ments, applies to periodic points of the diffeomorphisms. A further development
would be to extend the result to any two-dimensional surfaces (with or without
boundary).

The remaining part of Chapter 2 deals with computability of the Euler-Floer
characteristic. The latter can indeed be determined via a discrete topological in-
variant. In this sense the challenge of constructing an isomorphism which links
the Floer homology for proper relative braid classes to the Conley homology of
proper discretized relative braid classes via Morse homology is not that far from
being solved. On the level of the Euler characteristic of the three homology theo-
ries, the following holds

X (HF. ([zrely]p2)) = x (HM. ([grel Q])) = x (HC.([gp rel Qp])) -

The idea behind the proof of this result is to first relate x (HF.([zrely|p2)) to
mechanical Lagrangian systems and then use a discretization approach based on
the method of broken geodesics. This result opens the door for computation of
the Floer Homology (at least on the level of the Euler characteristic), since the
problem of computing HC. ([¢p rel @p]) is combinatorial, and relates the Floer
homology to finitely computable simplicial homology.

1.5.2 Braid Floer homology equals braid Morse homology

Chapter 3 consists of an isomorphism theorem between Floer homology for PRBC
and Morse homology for Legendrian PRBC. Let z = (p,q) ¢ D? and y = (P, Q) €
D?, such that zrely is a proper relative braid. Compose z rel y with an integer ¢
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Figure 1.6: Representation of full twists of braids with 2, 3 and 4 strands.

of full twists A2. A full twist can be explained informally in the following way:
think of pieces of string attached to the tips of your fingers and rotate one hand
by 7; this is the half-twist, also also called the Garside element. Rotating the hand
once more gives the full twist (see Figure 1.6).

If the number ¢ is chosen properly then (zrely) - A% gives rise to a braid
x" rely* with only positive crossings. The latter are called positive (relative)
braids. This form for (zrely) - A% = x* rely* is called the Garside normal form,
see [10] or [25].

Passing to braid classes, we obtain the following equality

[(wrely) - A*|pe = [z" rel y]pe (1.8)

By the shift property proved in [49] (Property (iii) of Section 1.4.1), on the level of
the homology, this yields

HF, o0([(zrely) - A%]p2) = HF, ([z* rel y*|p2). (1.9)

It follows from (1.9) that we can restrict ourselves to positive braids, hence from
now on we will consider, without loss of generality, only positive relative braid
classes. Positive braids enjoy, up to isotopy, the Legendrian property, in other
words z* rel y* is isotopic to a Legendrian relative braid x” rel y*. The latter can
be written as 2 = (¢;, ¢) and y* = (Q;, Q). Denoting by 7 is the projection onto
the second coordinate we can write (relative) Legendrian as ¢grel Q. We denote
by [grel @], all the (relative) braids which can be homotoped via a Legendrian
isotopy to grel Q, and by [g] rel Q) the associated fiber.

Having introduced the concepts used in the third chapter, in the following we
summarize the content of Chapter 3, which consists of three different sections.

In the first section we define the braid Floer homology with respect to a new
class of Hamiltonian functions. The construction is carried out by taking into
account a broader class of braid classes. We consider relative classes that are
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homotopic to x rel y via homotopies in R? instead of D?, and we denote them by
[zrel y|ge. In this case the problem comes from the fact that fibers [x]g2 rely are
not a-priori bounded, since they are not a priori contained in compact subsets
of D? as it happens for [z]pz rely. To overcome the issue of non-compactness of
R?, we consider a new class of Hamiltonian functions which we call hyperbolic.
Following the construction summarized in Section 1.4.1 we obtain the definition
of the hyperbolic Floer homology for unbounded proper relative braid class, which
is denoted by
HHF . ([z rel y|g2).

Even though we restrict our attention to positive braids, the hyperbolic braid
Floer homology can be defined for all kind of braids, not only for positive ones.
By following the arguments in [49] also in this case the shift theorem holds, i.e.

HHF, o0 ([(zrely) - A%]ge) = HHF, ([z" rel y*|g2). (1.10)
The main result contained in the first section of Chapter 3 consists of proving that
HF, ([xrel y]p2) = HHF, ([z rel y]g2). (1.11)

The second part of Chapter 3 deals with Morse homology for braids. This is
also a new result: so far, the formulation of a Morse theory for braids has been
proven for piecewise linear braids in [28], not yet for continuous ones. By select-
ing a positive representative z* rel y* in [zrely|gz, and considering Legendrian
isotopies, in the the second part of Chapter 3 we focus our attention on Legen-
drian relative braid classes [¢rel Q. For such braids we construct a Morse-type
homology. The fact that, to build our theory, we can use the classical Morse index,
instead of the Conley-Zehnder index, derives from the special properties of the
Legendrian braid classes, where only positive crossings are admitted. As in the
previous case we consider unbounded classes and a special class of Hamiltoni-
ans, which, in this case, are called mechanical. The latter allows to construct braid
invariants with support on non-compact manifolds. At the end of the second part
of Chapter 3, we define

HHM. ([grel Qlr),

i.e., the mechanical Morse homology for unbounded proper Legendrian braid
classes. We observe, furthermore, that

HHM., ([grel Q]r) = HM.([qrel Q]), (1.12)

where the latter is the Morse analogue of HF .. ([z rel y|pz).
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In the last part of the chapter we prove that, for a (positive) proper relative
braid class [z rel y|p2, the following holds:

HHF, ([z rel y]g2) = HHM, ([grel Q|r).- (1.13)

The isomorphism (1.13) is proved using the machinery of [46], with some modi-
fications that make it applicable to the theory of relative braid classes. In essence,
to prove (1.13) we use a perturbation method, through which the solutions of the
heat equation can be seen as limit as ¢ goes to zero of an ¢ dependent Cauchy-
Riemann equation, see Section 3.4.1. As in [46] we prove that the bounded so-
lutions of the Cauchy-Riemann equations are in one-to-one correspondence with
the bounded solutions of the heat flow. The map which ensures the one-to-one
correspondence takes the name of the Salamon-Weber map. We prove that this
map respects the braid classes. As a consequence, the Morse complex defined
for Legendrian braid classes agrees, up to isomorphisms, with the Floer complex
defined for relative braid classes.

Putting together (1.11) (1.12) and (1.13) we obtain that for a proper positive
braid class in D? [z rel y|pe it holds that

HF, ([z rel y]p2) = HM., ([grel Q]).

By considering not-only positive proper relative braid classes, and considering
the shift (1.9), this is a first step towards the conjecture that

HF._3¢([z rely]p2) = HM.([grel Q]) = HC.([gp rel @p]). (1.14)

Equation (1.14) would link the Floer braid invariants to the discrete invariant for
piecewise linear positive braid classes, and hence to finitely computable simpli-
cial homology, opening finally the door for computation of the Floer homology.

1.5.3 Asymptotic behavior of the Cauchy-Riemann equations
Chapter 4 goes towards the direction of constructing a Floer homology theory
in a non-variational setting. Our result is purely topological and exploits the
structure of the Cauchy-Riemann equations. By looking at the construction of
the Floer/Morse/Conley homology we see that the Cauchy-Riemann equations
are obtained as formal L?-gradient flow of the Hamiltonian action. In this case,
bounded solutions will be, generically, connecting orbits between equilibria. As
already mentioned, equilibria (i.e. the critical points of the action functional) are
in this case periodic solutions of the equation

= Xg(t,z), zeD?teS! (1.15)
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for a chosen non-autonomous Hamiltonian vector field Xz on D?. For a general
vector fields X we have shown furthermore that we can build a Poincaré-Hopf
formula and give meaning to the Euler-Floer characteristic. By substituting a
non-Hamiltonian vector field X in (1.15) we lose the variational structure, and,
with it, the gradient-like behavior of the Cauchy-Riemann equations. In this case
they become

s — J(ug — X(t,u)) =0, w:RxS"—D*tesh (1.16)

If X = Xy, then generically bounded solutions of the non-linear CRE are con-
necting orbits between one-periodic solutions of (1.15). If X is arbitrary, as in
(1.16), then a priori bounded solutions do not have the connecting orbit structure,
since (1.16) is not a gradient flow. Nevertheless, we have a result concerning the
asymptotic of bounded solutions of (1.16). We prove that the asymptotics of (1.16)
behaves surprisingly well as time s goes to infinity. More precisely, we prove that
bounded solutions of Equation (1.16) admit Poincaré-Bendixson behavior.

The classical Poincaré-Bendixson Theorem describes the asymptotic behavior
of flows in the plane. The topology of the plane puts severe restrictions on the
behaviour of limit sets. Poincaré-Bendixson Theorem states for example that if
the a- and the w-limit set of a bounded trajectory of a smooth flow in R? does
not contain equilibria, then the limit set is a periodic orbit. In full generality the
classical Poincaré-Bendixson Theorem can be formulated as follows.

1.5.1. Theorem (Poincaré-Bendixson (1906)). Let R be a region of the plane which is
closed and bounded. Consider a dynamical system & = X (z) in R where the vector field
X is at least C'. Assume that R contains no fixed points of X. Assume furthermore that
there exists a trajectory -y of X (a solution of & = X (x)) starting in R which stays in R
for all future times. Then,

(i) either ~y is a closed orbit
(ii) or v asymptotically approaches a closed orbit.

The classical proof of the Poincaré-Bendixson Theorem exploits the fact that, since
the vector field X is autonomous, flow-lines can not intersect. As a consequence,
the Jordan curve theorem is applicable and hence restricts the asymptotic behav-
ior of flow-lines in two-dimensional domains. We stress that the above result is
strictly linked to the dimensionality of the plane and essentially rules out chaos
in the plane. However, it does not seem to hold for other configuration spaces or
other types of dynamical systems.

Dynamical systems on two-dimensional manifolds other than the plane may
well violate the Poincaré-Bendixson Theorem. Consider for instance the follow-
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ing vector field on the torus, which we identify with the unit square in the plane
with opposite sides identified:

=1 and y=m. (1.17)

There is nothing special about the choice of 7: any other irrational number would
work just as well. Even though the torus is compact and the vector field (1.17)
does not have any zeros, the orbits of (1.17) are not periodic: one can check that
these orbits densely fill up the torus. This is referred to as quasi-periodic mo-
tion. Nevertheless, there is a generalization of the Poincaré-Bendixson for two-
dimensional manifolds: either the classical dichotomy holds or the manifold is a
torus.

In dimension three or higher, orbits may approach a very complicated limit set
known as a strange attractor, which is characterized by a non-integer dimension
and the fact that the dynamics on it are sensitive to initial conditions. In other
words, chaos occurs. A celebrated example of a strange attractor is the Lorentz
attractor.

However, the remarkable result by Fiedler and Mallet-Paret [18] establishes an
extension of the Poincaré-Bendixson Theorem to infinite dimensional dynamical
systems with a discrete positive Lyapunov function. They apply their result to
scalar parabolic equations of the form

us = uge + f(z,u,us), xeS feC? (1.18)

For this equation the result of Matano ([35]) holds: it states that intersection be-
tween two solutions of (1.18) can only be destroyed (and not created) as times s
increases. Here, the existence of a linear projection onto R?, of a discrete positive
Lyapunov function combined with regularity of Equation (1.18) force solutions of
(1.18) to have a Poincaré-Bendixson like behavior. As a matter of fact, the result
contained in [18] does not only hold for the Equation (1.18), but for regular (semi)
flows on Banach spaces endowed with a positive discrete Lyapunov function and
a linear projection onto R?. The result is independent of the dimensionality of the
system.

With our result, we establish a version of the Poincaré-Bendixson Theorem
for bounded orbits of the non-linear Cauchy-Riemann equations in the plane. We
prove that the asymptotic behavior, as s goes to infinity, of bounded solutions
of Equation (1.16) is as simple as the limiting behavior of flows in R?. The non-
linear Cauchy Riemann system is elliptic, and the Cauchy problem for elliptic
equations is unstable with regard to small variations of data, i.e., it is ill-posed. As
a consequence, there is no flow associated to (1.16). For this reason we consider
the space of bounded flow-lines of (1.16). This space has nice properties, among
which compactness and Hausdorffness. Since Equation (1.16) is autonomous in
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s, we have that the space of bounded solution is invariant under s-translation.
By translating flow-lines we can build a flow on such a space. The constructed
flow is not regularizing, but at least it maintain the requirement of continuity.
Furthermore, flow lines of equation (1.16) are endowed with a discrete Lyapunov
function: as explained in the previous sections as times s increases, the winding
number between two solutions decreases, possibly reaching negative values.

By embedding equation (1.16) in a more abstract setting, which include also
equation (1.18), our result gives an abstract extension of the Poincaré-Bendixson
Theorem to flows that allow a discrete Lyapunov function. We point out that
the main differences between the results in [18] for parabolic equations and the
results in Chapter 4, are that the Cauchy-Riemann equations do not define a well-
posed initial value problem and, more importantly, the discrete Lyapunov func-
tions that we consider are not bounded from below. Furthermore, our result does
not assume differentiability of the flow, nor does the flow need to be defined on a
compact Banach space. We only assume the space to be compact and Hausdorff.
We also believe that most of the result contained in Chapter 4 can be extended to
semi-flows.

Our result could be used to build a non-variational Floer theory. By proving
that the asymptotic behavior of the non-linear Cauchy-Riemann equations is ei-
ther a point or a periodic orbit we could build a Floer theory “a la Smale”[48] by
incorporating in the chain complex periodic orbits and fixed points.

1.6 Conclusions and future work

The list of challenges we would like to solve is far from being complete. First
of all, the question of transversality for a complete Morse theory for Legendrian
PRBC has not been proved in the present work. We expect this to hold via mod-
ifying the proof for the Hamiltonian case and exploiting the Sard-Smale theory
together with a version of the Implicit Function Theorem in infinite dimension.
Second, we would like to fully prove the isomorphism (1.14). The first half is
contained in this thesis, but the second half has a special meaning: it would
open the door for computation of the Floer homology, via the construction of
a finite cube complex. Developing computer algorithms would be a further step.
Furthermore, extending the Floer theory to non-variational problems would be
even more challenging. In fact, Floer theory has not been applied beyond the
variational context, since it crucially uses the gradient structure of the Cauchy-
Riemann equations. The above described Monotonicity Principle of the Cauchy-
Riemann equations with respect to the crossing number Cross([x]p= rel y) remains
valid for the non-variational Cauchy-Riemann equation (1.16). As in the varia-
tional case, bounded solution of the Cauchy-Riemann equation in a proper rela-
tive braid class are isolated. Notwithstanding, in order to link the Floer invari-
ants HF, ([z] rel y) to the non-variational Cauchy-Riemann equations we need to



1.6 Conclusions and future work

build a complex in a different way. In this sense the Poincaré-Bendixson Theo-
rem for the non-linear Cauchy-Riemann equations suggests that limits as s — oo
are either periodic solutions of z; = Xy (¢, z) or periodic solutions in s (and ¢).
This first step establishes that the non-variational Cauchy-Riemann equations are
generically a Morse-Smale system.

The next step would be, after putting the system in general position, to build
an appropriate chain complex (C,d,) incorporating periodic orbits and fixed
points. If such an extension of the Floer homology can be developed then

H,.(C,,0.) = HF  ([x rel y]p2).

25



26 Chapter 1: Introduction




The Poincaré-Hopf Theorem for RBC

Braid Floer homology is an invariant of proper relative braid classes [49]. Closed
integral curves of 1-periodic Hamiltonian vector fields on the 2-disc may be re-
garded as braids. If the Braid Floer homology of associated proper relative braid
classes is non-trivial, then additional closed integral curves of the Hamiltonian
equations are forced via a Morse type theory. In this article we show that certain
information contained in the braid Floer homology — the Euler-Floer character-
istic — also forces closed integral curves and periodic points of arbitrary vector
fields and diffeomorphisms and leads to a Poincaré-Hopf type Theorem. The
Euler-Floer characteristic for any proper relative braid class can be computed via
a finite cube complex that serves as a model for the given braid class. The results
in this paper are restricted to the 2-disc, but can be extended to two-dimensional
surfaces (with or without boundary).

2.1 Introduction

Let D? c R? denote the standard (closed) 2-disc in the plane with coordinates
z = (p,q) and let X (x,t) be a smooth 1-periodic vector field on D?, i.e. X (x,t +
1) = X(z,t) forallz € D? and ¢ € R. The vector field X is tangent to the boundary
0D?,i.e X (z,t) - v = 0 for all z € OD?, where v the outward unit normal on OD?.
The set of vector fields satisfying these hypotheses is denoted by F|(D* x R/Z).
Closed integral curves z(t) of X are integral curves! of X for which z(t + ¢) = x(t)
for some £ € N. Every integral curve of X with minimal period ¢ defines a closed
loop in the configuration space C,(ID?) of £ unordered distinct points. A collection
of distinct closed integral curves with periods ¢; defines a closed loop in C,,,(D?),
with m = 37 £;. As curves in the cylinder D? x [0, 1] such a collection of integral
curves represents a geometric braid which corresponds to a unique word b, <
B,,,, modulo conjugacy and full twists:

by ~ by A%F ~ AR, (2.1)

where A? is a full positive twist and B,, is the Artin Braid group on m strands.
Let y be a geometric braid consisting of closed integral curves of X, which will
be referred to as a skeleton. The curves y(t), i = 1,--- ,m satisfy the periodicity
condition y(0) = y(1) as point sets, i.e. y'(0) = y¥(1) for some permutation
0 € Sp. In the configuration space C,..m(D?)? we consider closed loops of the

ntegral curves of X are smooth functions = : R — D? c R? that satisfy the differential equation
z' = X(z,t).

2The space of continuous mapping R/Z — X, with X a topological space, is called the free loop
space of X and is denoted by LX.
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form wrely := {a'(t), - 2"(t),y*(t),--- ,y™(t)}. The path component of zrely
of closed loops in LC,, ., (D?) is denoted by [z rely] and is called a relative braid
class. The loops 2’ rely’ € [zrely|, keeping ¥’ fixed, is denoted by [z'| rely’ and
is called a fiber. Relative braid classes are path components of braids which have
at least two components and the components are labeled into two groups: « and
y. The intertwining of x and y defines various different braid classes. A relative
braid class [z rel y] in D? is proper if components x. c = cannot be deformed onto
(i) the boundary 9D?, (ii) itself,? or other components z/, ¢ z, or (iii) components
in y. c y, see [49] for details. In this paper we are mainly concerned with relative
braids for which z has only one strand. To proper relative braid classes [z rely]
one can assign the invariants HB, ([z rel y]), with coefficients in Z,, called Braid
Floer homology. In the following subsection we will briefly explain the construc-
tion of the invariants HB, ([z rel y]) in case that x consists of one single strand. See
[49] for more details on Braid Floer homology.

2.1.1 A brief summary of Braid Floer homology
Fix a Hamiltonian vector field Xy in F||(D? x R/Z) of the form Xy (z,t) =

JV H(z,t), where
0 -1
(V)

and H is a Hamiltonian function with the properties:
(i) H e C=(D? x R/Z;R);
(il)) H(z,t)|zcopz =0, forallt e R/Z.

For closed integral curves of X of period 1 we define the Hamilton action
1
() = / Jx -2y — H(z,t) dt,
0

Critical points of the action functional <7} are in one-to-one correspondence with
closed integral curves of period 1. Assume that y = {y’(¢)} is a collection of
closed integral curves of the Hamilton vector field X, i.e. periodic solutions
of the y/ = Xp(y7,t). Consider a proper relative braid class [z]rely, with z
1-periodic and seek closed integral curves xrely in [z]rely. The set of critical
points of &7y in [z]rely is denoted by Crity,, ([x]rely). In order to understand

3This condition is separated into two cases: (i) a component in z cannot be not deformed into a sin-
gle strand, or (ii) if a component in « can be deformed into a single strand, then the latter necessarily
intersects y or a different component in x.
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the set Crit,, ([z]rely) we consider the negative L?-gradient flow of «/y. The
L?-gradient flow u, = —V 2.7y (u) yields the Cauchy-Riemann equations

us(s,t) — Jug(s,t) = VH(u(s,t),t) =0,

for which the stationary solutions u(s,t) = z(t) are the critical points of <.

To a braid y one can assign an integer Cross(y) which counts the number of
crossings (with sign) of strands in the standard planar projection. In the case
of a relative braid zrely the number Cross(zrely) is an invariant of the rela-
tive braid class [zrely]. In [49] a monotonicity lemma is proved. The latter
states that, along solutions u(s, t) of the nonlinear Cauchy-Riemann equations,
the number Cross(u(s, -) rely) is non-increasing (the jumps correspond to ‘singu-
lar braids’, i.e. ‘braids’ for which intersections occur). As a consequence an isola-
tion property for proper relative braid classes exists: the set bounded solutions of
the Cauchy-Riemann equations in a proper braid class fiber [z] rely, denoted by
A ([x]rely; H), is compact and isolated with respect to the topology of uniform
convergence on compact subsets of R%. These facts provide all the ingredients
to follows Floer’s approach towards Morse Theory for the Hamiltonian action
[23]. For generic Hamiltonians which satisfy (i) and (ii) above and for which y
is a skeleton, the critical points in [x]rely of the action <7y are non-degenerate
and the set of connecting orbits .#,,_,_([z]rely; H) are smooth finite dimensional
manifolds. To critical in Crit,y, ([z] rely) we assign a relative index % (z) (the
Conley-Zehnder index) and

dim . ([x]vely; H) = p©% (z) - p% (@)

Define the free abelian groups C); over the critical points of index k, with coeftfi-
cients in Zo, i.e.

Cr([x]rely; H) := Bz,

a:eCritg/H ([z] rel y),
w(z)=k

and the boundary operator

Ok = O ([z]rely; H) : Cp — Cho1,
which counts the number of orbits (modulo 2) between critical points of in-
dex k and k - 1 respectively. Analysis of the spaces .#, . ([x]rely; H) re-

veals that (C,, 0,) is a chain complex, and its (Floer) homology is denoted by
HB, ([z] rely; H). Different choices of H yields isomorphic Floer homologies and

HB, ([z] rely) = léI_I_lHB*([x] rely; H),
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where the inverse limit is defined with respect to the canonical isomorphisms
ax(H, H') : HBy([z] rely, H) — HBy([z]rely, H'). Some properties are:

(i) the groups HBj([z]rely) are defined for all k € Z and are finite, i.e. Z for
some d > 0;

(ii) the groups HBj([z]|rely) are invariants for the fibers in the same rela-

tive braid class [zrely], ie. if xrely ~ a'rely’, then HBy([z]rely) =
HBj,([2'] rel y’). For this reason we will write HB, ([z rel y]);

(iii) if (zrely) - A% denotes composition with ¢ full twists, then HBy,([(z rely) -
A1) = HBy, g ([ rel y]).

2.1.2 The Euler-Floer characteristic and the Poincaré-Hopf For-

mula

Braid Floer homology is an invariant of conjugacy classes in B,,,, and can
be computed from purely topological data. The Euler-Floer characteristic of
HB, ([z rely]) is defined as follows:

x(zrely) = Z(—l)kdimHBk([xrely]). (2.2)
keZ

In Section 2.7 we show that the Euler-Floer characteristic of HB, ([z rel y]) can be

computed from a finite cube complex which serves as a model for the braid class.
A 1-periodic function z € C'(R/Z) is an isolated closed integral curve of X if

there exists an € > 0 such that z is the only solution of the differential equation

& (x(t) = %(t) - X (z(1),¢), (2.3)

in B.(z) c C'(R/Z). For isolated, and in particular non-degenerate closed inte-
gral curves we can define an index as follows. Let © € My, 2(R) be any matrix
satisfying o(©) N 27kiR = @, for all kK € Z and let n — R(t;n) be a curve in
C*(R/Z; Ma.2(R)), with R(t;0) = © and R(t;1) = D, X (z(t), t) — the lineariza-
tion of X at z(t). Thenn — F(n) = & — R(t;n) defines a curve in Fred(C*, C°).
Denote by ¥ ¢ Fredy(C?, C") the set of non-invertible operators and by ¥; ¢ X
the non-invertible operators with a 1-dimensional kernel. If the end points of F
are invertible one can choose the path n — R(t; n) such that F(n) intersects ¥ in
¥; and all intersections are transverse. If v = # intersections of F(n) with ¥,
then

t(z) = —sgn(det(0))(-1)". (2.4)

This definition is independent of the choice of ©, see Section 2.6.



2.1 Introduction

The above definition can be expressed in terms of the Leray-Schauder degree.
Let M e GL(C% C') be any isomorphism such that ®,/(z) := M&(z) is of the
form ‘identity + compact’. Then the index of an isolated closed integral curve is
given by

() = — sgn(det(©))(=1)7(®) deg, o(®as, B(x),0). (2.5)

where 3/(©) is the number of negative eigenvalues of M4 — M© counted with
multiplicity. The latter definition holds for both non-degenerate and isolated 1-
periodic closed integral curves of X. In Section 2.6 we show that the two expres-
sions for the index are the same and we show that they are independent of the
choices of M and ©.

2.1.1. Theorem (Poincaré-Hopf Formula). Let y be a skeleton of closed integral curves
of a vector field X e F(D? x R/Z) and let [xrely] be a proper relative braid class.
Suppose that all 1-periodic closed integral curves of X are isolated, then for all closed
integral curves xq rely in [xo] rel y it holds that

Z t(zo) = X(ac rel y) . (2.6)

Zo

The index formula can be used to obtain existence resulst for closed integral
curves in proper relative braid classes.

2.1.2. Theorem. Let y be a skeleton of closed integral curves of a vector field X «
F|(D? x R/Z) and let [z rely] be a proper relative braid class. If x(zrely) # 0, then
there exist closed integral curves zo rely in [z] rely.

The analogue of Theorem 2.1.1 can also be proved for relative braid class
[zrely] in C,.m(D?). Our theory also provides detailed information about the
linking of solutions. In Section 2.8 we give various examples and compute the
Euler-Floer characteristic. This does not provide a procedure for computing the
braid Floer homology.

2.1.3. Remark. In this paper Theorem 2.1.1 is proved using the standard Leray-
Schauder degree theory in combination with the theory of spectral flow and par-
ity for operators on Hilbert spaces. The Leray-Schauder degree is related to the
Euler characteristic of Braid Floer homology. Another approach is the use the
degree theory developed by Fitzpatrick et al. [21].

2.1.3 Discretization and computability

The second part of the paper deals with the computability of the Euler-Floer char-
acteristic. This is obtained through a finite dimensional model. A model is con-
structed in three steps:
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(i) compose zrely with £ > 0 full twists A2, such that (zrely) - A% is isotopic
to a positive braid 2" rel y*;

(ii) relative braids " rely* are isotopic to Legendrian braids x 1, rel y;, on R?, i.e.
braids which have the form z;, = (¢, q) and y;, = (Q:, Q), where ¢ = mox
and @) = my, and 7, the projection onto the g—coordinate;

(iii) discretize ¢ and Q@ = {Q’} to qa = {¢;}, with ¢; = ¢(i/d),i = 0,...,d
and Qp = {Q}}, with @}, = {Q’} and Q) = Q(i/d) respectively, and
consider the piecewise linear 1nterp01ations connecting the anchor points ¢;
and Qg fori =0,...,d. A discretization gp rel Qp is admissible if the linear
interpolation is isotopic to grel Q). All such discretization form the discrete
relative braid class [gp rel Q p], for which each fiber is a finite cube complex.

2.1.4. Remark. If the number of discretization points is not large enough, then
the discretization may not be admissible and therefore not capture the topology
of the braid. See [28] and Section 2.7.4 for more details.

For d > 0 large enough there exists an admissible discretization ¢p rel @ p for
any Legendrian representative z, rel yz, € [z rely] and thus an associated discrete
relative braid class [¢p rel @p]. In [28] an invariant for discrete braid classes was
introduced. Let [gp] rel Qp denote a fiber in [¢p rel Q p], which is a cube complex
with a finite number of connected components and their closures are denoted by
N;. The faces of the hypercubes N; can be co-oriented in direction of decreasing
the number of crossing in ¢p rel @ p, and we define N ;as the closure of the set of
faces with outward pointing co-orientation. The sets IV; are called exit sets. The
invariant for a fiber is given by

HC.([gp]rel @p) @H

This discrete braid invariant is well-defined for any d > 0 for which there exist
admissible discretizations and is independent of both the particular fiber and the
discretization size d. For the associated Euler characteristic we therefore write
x(gp el Qp). The latter is an Euler characteristic of a topological pair. The Euler
characteristic of the Braid Floer homology x(zrely) can be related to the Euler
characteristic of the associated discrete braid class.

2.1.5. Theorem. Let [zrely] a proper relative braid class and £ > 0 is an integer such
that (wrely) - A is isotopic to a positive braid x* rely*. Let qp rel Qp be an admissible
discretization, for some d > 0, of a Legendrian representative xyrelyr € [z*rely'].
Then

x(zrely) = x(qp rel @p),
where Q%, is the augmentation of Qp by adding the constant strands +1 to Qp.
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The idea behind the proof of Theorem 2.1.5 is to first relate x(zrely) to me-
chanical Lagrangian systems and then use a discretization approach based on the
method of broken geodesics. Theorem 2.1.5 is proved in Section 2.7. In Section 2.8
we use the latter to compute the Euler-Floer characteristic for various examples
of proper relative braid classes.

2.1.4 Additional topological properties

In this paper we do not address the question whether the closed integral curves
xrely are non-constant, i.e. are not equilibrium points. By considering rela-
tive braid classes where x consists of more than one strand one can study non-
constant closed integral curves. Braid Floer homology for relative braids with =
consisting of n strands is defined in [49]. The ideas in this paper extend to relative
braid classes with multi-strand braids «. In Section 2.8 we give an example of a
multi-strand « in z rel y and explain how this yields the existence of non-trivial
closed integral curves.

The invariant x (q prel @ D) is a true Euler characteristic and

x(gprelQp) = x(lgp]rel Qp, [qp] el Qp),

where [gp]” rel @ p is the exit. A similar characterization does not a priori exist for
[z] rel y. This problem is circumvented by considering Hamiltonian systems and
carrying out Floer’s approach towards Morse theory (see [23]), by using the isola-
tion property of [z] rely. The fact that the Euler characteristic of Floer homology
is related to the Euler characteristic of a topological pair indicates that Floer ho-
mology is a good substitute for a suitable (co)-homology theory. For more details
see Section 2.7 and Remark 2.7.6.

Braid Floer homology developed for the 2-disc D? can be extended to more
general 2-dimensional manifolds. This generalization of Braid Floer homology
for 2-dimensional manifolds can then be used to extend the results in this paper
to more general surfaces.

2.2 Closed integral curves

Let X ¢ F|(D? x R/Z), then closed integral curves of X of period 1 satisfy the
differential equation

dz
==X D? R/Z
{ dt (x’t)7 S bl tE / ’ (27)

x(0) = z(1).
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Consider the unbounded operator L,, : C'(R/Z) c C°(R/Z) — C°(R/Z), defined
by
L, = Ji R
pi= g peR

The operator is invertible for y # 27k, k € Z and the inverse L,! : C°(R/Z) —
C°(R/Z) is compact. Transforming Equation (2.7), using L', yields the equation
¢, (x) = 0, where

D(x) =L, (-JX(,1) + px).

If we set
Ku(z) := L' (-J X (x,t) + px),

then @, is of the form ®,(z) = x - K, (x), where K, is a (non-linear) compact op-
erator on C°(R/Z). Since X is a smooth vector field the mapping ®,, is a smooth
mapping on C°(R/Z).

2.2.1. Proposition. A function x ¢ C°(R/Z), with |x(t)| < 1 for all t, is a solution of
®,(z) = 0ifand only if v ¢ CY(R/Z) and x satisfies Equation (2.7).

Proof. If z ¢ C'(R/Z;D?) is a solution of Equation (2.7), then ®,,(z) = 0 is ob-
viously satisfied. On the other hand, if z € C°(R/Z;D?) is a zero of ®,, then
r = K,(z) e CY(R/Z), since R(L,') ¢ C'(R/Z). Applying L, to both sides
shows that x satisfies Equation (2.7).

Note that the zero set <I>;L1(O) does not depend on the parameter p. In order
to apply the Leray-Schauder degree theory we consider appropriate bounded,
open subsets Q2 ¢ C°(R/Z), which have the property that ®,'(0) N 9Q = &. Let
Q = [z]rely, where [z] rely is a proper relative braid fiber, and y = {y*,--- ,y™}
is a skeleton of closed integral curves for the vector field X.

2.2.2. Proposition. Let [x rely| be a proper relative braid class and let Q = [z]rely be
the fiber given by y. Then, there exists an 0 < r < 1 such that

le(t)| <7, and |z(t) -y (t)]>1-r, Vj=1,---,m, VteR,
and forallz € ®,'(0)NQ={zeQ|x=K,(z)}.

Proof. Since 2 ¢ C°(R/Z) is a bounded set and K, is compact, the solution set
®,'(0) NQis compact. Indeed, let z,, = K,(2,,) be a sequence in ®,'(0) N, then
K,(zn,) — z, and thus z,, — z, which, by continuity, implies that K, (z,,) —
K, (z), and thus = € ®,'(0) N Q.

Let z,, € ®,'(0) N and assume that such an 0 < r < 1 does not exist. Then,
by the compactness of ®,'(0) N, there is a subsequence x,,, — x such that one,
or both of the following two possibilities hold: (i) |z(¢¢)| = 1 for some t;. By the

uniqueness of solutions of Equation (2.7) and the invariance of the boundary 9D?
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(X (z,t) is tangent to the boundary), |z(¢)| = 1 for all ¢, which is impossible since
[z] rely is proper; (ii) z(to) = y’(to) for some ¢ and some j. As before, by the
uniqueness of solutions of Equation (2.7), then z(t) = y?(¢) for all ¢, which again
contradicts the fact that [z] rel y is proper.

By Proposition 2.2.2 the Leray-Schauder degree deg;s(®,,Q,0) is well-
defined. Consider the Hamiltonian vector field

Xy = JVH, J= ( ; ‘é > 2.8)

where H(z,t) is a smooth Hamiltonian such that Xy € F(D? x R/Z) and y is a
skeleton for X 5. Such a Hamiltonian can always be constructed, see [49], and the
class of such Hamiltonians will be denote by #(y). Since y is a skeleton for both
X and Xy, itis a skeleton for the linear homotopy X, = (1-a) X +aXg, a € [0, 1].
Associated with the homotopy X, of vector fields we define the homotopy

O, q0(x) =2 L;l (-JXa(z,t) +pz) =2 - Ky olz), acl0,1],

with K, o (z) = L' (-J X4 (x,t) + pa). Proposition 2.2.2 applies for all a € [0, 1],
i.e. by compactness there exists a uniform 0 < r < 1 such that

lz(t)] <7, and |z(t) -y’ (t)] > 1 -7,

forallt e R, forall jand forallz € ®,',(0)NQ = {z e Q|2 = K, o(z)} and all
a € [0,1]. By the homotopy invariance of the Leray-Schauder degree we have

degLS ((I)/u Q, 0) = degLS((I)/t,m Q, O) = degLS((pth? Q, O)v (29)

where &, = ¢, and ®,, = ®, y. Note that the zeroes of ®,, j; correspond to
critical point of the functional

1
() = /0 1Jx -2y — H(z, t)dt, (2.10)

and are denoted by Crity,, ([z] rel y). In [49] invariants are defined which provide
information about @,';;(0) N Q = Crit., ([z]rely) and thus deg; s(®,, i, 2, 0).
These invariants are the Braid Floer homology groups HB, ([z] rel y) as explained
in the introduction. In the next section we examine spectral properties of
the solutions of @', (0) N Q in order to compute deg;s(®, z,,0) and thus
degLS((blH Qv 0)
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2.2.3. Remark. There is obviously more room for choosing appropriate operators
L,, and therefore functions ®,. In Section 2.6 this issue will be discussed in more
detail.

2.3 Parity, Spectral flow and the Leray-Schauder de-

gree

The Leray-Schauder degree of an isolated zero x of ®,(x) = 0 is called the lo-
cal degree. A zero x ¢ ®,'(0) is non-degenerate if 1 ¢ o(D,K,(z)), where
D,K,(z) : C°(R/Z) — C°(R/Z) is the (compact) linearization at = and is given
by D,K,(z) = L, (-JD, X (z,t) + ). If  is a non-degenerate zero, then it is an
isolated zero and the degree can be determined from spectral information.

2.3.1. Proposition. Let x € C°(R/Z) be a non-degenerate zero of ®,, and let € > 0
be sufficiently small such that B.(z) = {@ € C°(R/Z) | |(t) - z(t)| < €, Vt} isa
neighborhood in which x is the only zero. Then

degys(®u, Be(x),0) = degp(Id —D, K, (z), Be(x),0) = (~1)P#(®
where
Bu(z) = Z Bj, p; =dim (U ker (o Id DrKu(@Y) ’
0j>1, o5e0 (D, K, (x)) =1

which will be referred to as the Morse index of x, or alternatively the Morse index of
linearized operator D, ®,(x).

Proof. See [34].

The functions ®,, o (z) = = — K, () are of the form “identity + compact’ and
Proposition 2.3.1 can be applied to non-degenerate zeroes of ¢, (z) = 0. If we
choose the Hamiltonian H ¢ Hﬁeg(y) ‘generically’, then the zeroes of ¢, 5 are

non-degenerate, i.e. 1 ¢ 0(D,K, n(x)), where D, K, (z) = DK, 1(x). By
compactness there are only finitely many zeroes in a fiber 2 = [z] rel y.

2.3.2. Lemma. Let x € @;?H(O) N Q. Then following criteria for non-degeneracy are
equivalent:

(i) 14 o(D K, u(x));
(ii) the operator B = —J % — D2H (x(t),t) is invertible;
(iii) let U(t) be defined by BY (t) = 0, ¥(0) = Id, then det(¥(1) - Id) # 0.
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Proof. A function ¢ satisfies D, K, y(z)y = ¢ if and only if By = 0, which
shows the equivalence between (i) and (ii). The equivalence between (ii) and (iii)
is proved in [49].

The generic choice of H follows from Proposition 7.1 in [49] based on cri-
terion (iii). Hamiltonians for which the zeroes of ®, y are non-degenerate are
denoted by #**(y). Note that no genericity is needed for a  [0,1)! For the

Leray-Schauder degree this yields

deg; 5(®,.0,2,0) = deg; 5(P,, 1,Q,0) = > (-1)Pur(@ (2.11)

xeCrit oy, ([x] rely)

for all « € [0, 1] and where 3, () is the Morse index of Id -D, K, r(z).

The goal is to determine the Leray-Schauder degree deg; o(®,,€2,0) from in-
formation contained in the Braid Floer homology groups HB..([z] rel y). In order
to do so we examen the Hamiltonian case. In the Hamiltonian case the linearized
operator D, ®, i (x) is given by

A:=D,®, p(r) =1d-D, K, u(x) =1d-L,' (DIH(z(t),t) + p),

which is a bounded operator on C°(R/Z). The operator A extends to a bounded
operator on L?(R/Z). Consider the path n — A(n), n € I = [0, 1], given by

A(n) =1d-L,' (S(t;n) + p) = 1d =T (n), 212

where S(t; 7) a smooth family of symmetric matrices and T),(n) = L /;1 (S(t;m)+p).
The endpoints satisfy

S(t;0) =01d, S(t;1) = D2H(x(t),t),

with § # 2rk, for some k ¢ Z and D?H (x(t),t) is the Hessian of H at a crit-
ical point in Critg, ([z]rely). The path of n — A(n) is a path bounded linear
Fredholm operators on L?(R/Z) of Fredholm index 0, which are compact pertur-
bations of the identity and whose endpoints are invertible.

2.3.3. Lemma. The path n — A(n) defined in (2.12) is a smooth path of bounded linear
Fredholm operators in H*(R/Z) of index 0, with invertible endpoints.

Proof. By the smoothness of S(t;n) we have that |S(¢;n)z||gm < C||z||gm, for
any € H™(R/Z) and any m € NU{0}. By interpolation the same holds for all z €
H*(R/Z) and the claim follows from the fact that L' : H*(R/Z) — H*"'(R/Z) —
H#*(R/Z) is compact.
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2.3.1 Parity of paths of linear Fredholm operators

Let n — A(n) be a smooth path of bounded linear Fredholm operators of index
0 on a Hilbert space J#. A crossing 1y € I is a number for which the operator
A(no) is not invertible. A crossing is simple if dim ker A(ng) = 1. A path n — A(n)
between invertible ends can always be perturbed to have only simple crossings.
Such paths are called generic. Following [19-22], we define the parity of a generic
path 7 — A(n) by

parity(A(), 1) :=  [[  (-1) = (~pyeross(A(). D), (2.13)
ker A(10) #0

where cross(A(n),I) = #{no € I : ker A(no) # 0}. The parity is a homotopy
invariant with values in Z,. In [19-22] an alternative characterization of parity
is given via the Leray-Schauder degree. For any Fredholm path n — A(7) there
exists a path n — M(n), called a parametrix, such that n — M (n)A(n) is of the
form ‘identity + compact’. For parity this gives:

parity(A(n), I) = deg s (M (0)A(0)) - deg s (M (1)A(1)),

where deg; g (M (n)A(n)) = degp s (M (n)A(n), #,0), for n = 0,1, and the expres-
sion is independent of the choice of parametrix. The latter extends the above
definition to arbitrary paths with invertible endpoints. For a list of properties of
parity see [19-22].

2.3.4. Proposition. Let nn — A(n) be the path of bounded linear Fredholm operators on
H?*(R/Z) defined by (2.12). Then

parity (A(n), I) = (-1)P2@ - (-0 = (C)Profac. (214)

where 4.0y and a1y are the Morse indices of A(0) and A(1) respectively.

Proof. For n — A(n) the parametrix is the constant path n — M (n) = Id. From
Proposition 2.3.1 we derive that

deg 5 (A(0) = ((1)%0, and  degy(A(1)) = (-1)P20),
which proves the first part of the formula. Since B(A(0)) - B(A(1)) = [B(A(0)) +
B(A(1))] mod 2, the second identity follows.

2.3.5. Lemma. For 6 > 0, the Morse index for A(0) is given by B0y = 2 P‘—*e—‘
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—0+2km
p+2km

Proof. The eigenvalues of the operator A(0) are givenby A = and all have

multiplicity 2. Therefore number of integers k for which A < 0 is equal to ["2—;9—‘

and consequently 349 = 2 [%ﬂ

Ifx e @;}H (0) is a non-degenerate zero, then its local degree can be expressed
in terms of the parity of A(n).

2.3.6. Proposition. Let x <I>;L1H(O) be a non-degenerate zero, then

degg ((I)u,Hv Be (1‘), 0) = pafitY(A(ﬁ), I)a (2.15)

where 1 — A(n) is given by (2.12).

Proof. From Proposition 2.3.1 we have that deg; (P, i, Be(z),0) = (-1)%m
and by Equation (2.14), parity (A(n), I) = (=1)%4© . (-1)Pa®) = (~1)P40), which
completes the proof.

2.3.2 Parity and spectral flow

The spectral flow is a more refined invariant for paths of selfadjoint opera-
tors. For z € H*(R/Z) we use the Fourier expansion z = Y, ,e*™/ ktx) and
> kez [k|?*|zk]* < co. From the functional calculus of the selfadjoint operator

d T e
,Jax = Z(Qﬂ'k})62 i

we define the selfadjoint operators

2k + 1 o gt

Nuxzz(Qﬂ"k‘-‘rM)eQﬂ—Jkt‘rk? and PM:L‘:ZQ’H’“{]|+M

keZ keZ

(2.16)

For i > 0 and u # 2rk, k € Z, the operator P, is an isomorphism on H*(R/Z), for
all s > 0.* Consider the path

C(n) = PuA(n) = Py - N, (S(t;m) + ), (2.17)

4As before | Pyz| s < ||| s and HPﬁlmHHl/z <C(lz|l gay2, o> 0and p # 27k.
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which is a path of operators of Fredholm index 0. The constant path  — M, (n) =
P,! is a parametrix for  — C(n) (see [21, 22]) and since M,,C(n) = A(n), the
parlty of C(n) is given by

parity(C(n), I) = parity(A(n), I). (2.18)

Using N,,, with 1 > 0 and i # 27k, we define an equivalent norms on the Sobolev
spaces H°(R/Z):

(x,y)pgs := (ij,Niy) Va,y € H*(R/Z).

L27

2.3.7. Lemma. The operators C(n) are selfadjoint on (Hl/Q(R/Z), (-, -)H1/2> for all
n e I,and n — C(n) is a path of selfadjoint operators on H'/?(R/Z).

Proof. From the functional calculus we derive that

(Puz,y)ue = Y pu(k)n’ (k)arys = (2, Puy) e
keZ

where n, (k) = 2r|k| + pand p, (k) = fﬂ’]:rj‘u For s = 1/2 we have that

(NS ) + ), y) e = ((SED) + wz,y) 2 = (2, (S(ED) + 1)y) L.
= (2, N, (SEm) + 1Y) e

which completes the proof.

For a path  — A(n) of selfadjoint operators on a Hilbert space /¢, which is
continuously differentiable in the (strong) operator topology we define the cross-
ing operator I'(A,n) = W%A(n)ﬂker A(n), Where 7 is the orthogonal projection
onto ker A(n). A crossing 1o € I is a number for which the operator A(ng) is not
invertible. A crossing is regular if I'(A, 7)) is non-singular. A point 7, for which
dim ker A(no) = 1, is called a simple crossing. A path n — A(7) is called generic if
all crossings are simple. A path nn — A(n) with invertible endpoints can always be
chosen to be generic by a small perturbation. At a simple crossing 7, there exists
a C'-curve \(n), for n near 1y, and A(n) is an eigenvalue of A(n), with A(n9) = 0
and A (no) # 0, see [43, 44]. The spectral flow for a generic path is defined by

specflow(A(n),I) = Z sgn(N(1o))- (2.19)
A(no)=0
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For a simple crossing 7y the crossing operator is simply multiplication by A’ (r)
and

D m)(m) = (A Om)00m)) | b0m) = X(m)s(m), (220

where (1) is normalized in ¢, and

X () = (5 Al m)om)) @21)

H

The spectral flow is defined any for continuously differentiable path 1 — A(7)
with invertible endpoints. From the theory in [22] there is a connection between
the spectral flow of A(n) and its parity:

parity(A(y), I) = (—1)sPectlow(A(n), [) 2.22)

which in view of Equation (2.13) follows from the fact that cross(A(n),I) =
specflow(A(n),n) mod 2 in the generic case.

The path n — C(n) defined in (2.17) is a continuously differentiable path of
operators on H = H'/?(R/Z) with invertible endpoints, and therefore both parity
and spectral flow are well-defined. If we combine Equations (2.15) and (2.18) with
Equation (2.22) we obtain

degys(®,. 1, B.(w),0) = parity(A(y), I) = (-1)sPecflow(Cm), 1) 523

In the next section we link the spectral flow of C(n) to the Conley-Zehnder indices
of non-degenerate zeroes and therefore to the Euler-Floer characteristic.

2.4 The Conley-Zehnder index

We discuss the Conley-Zehnder index for Hamiltonian systems and mechanical
systems, and explain the relation with the local degree and the Morse index for
mechanical systems.
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24.1 Hamiltonian systems

For a non-degenerate 1-periodic solution z(t) of the Hamilton equations the
Conley-Zehnder index can be defined as follows. The linearized flow ¥ is given

by
J% - D?H(z,t)¥ =0
T(0) =1d,

By Lemma 2.3.2(iii), a 1-periodic solution is non-degenerate if ¥(1) has no eigen-
values equal to 1. The Conley-Zehnder index is defined using the symplectic
path ¥ (¢). Following [44], consider the crossing form I'(¥, ¢), defined for vectors
€ e ker(¥(t) - 1d),

D(V,1)€ = w(€, $W(0E) = (& DIH (), 1)8) (2.24)

A crossing to > 0 is defined by det(¥(tp) — Id) = 0. A crossing is regular if the
crossing form is non-singular. A path ¢ — W¥(t) is regular if all crossings are reg-
ular. Any path can be approximated by a regular path with the same endpoints
and which is homotopic to the initial path, see [43] for details. For a regular path
t — ¥(¢) the Conley-Zehnder index is given by

pCZ (0 = % sgn D2 H (2(0),0)) + Z sgnT (¥, tp). (2.25)

to>0,
det (¥ (tg)-1d)=0

For a non-degenerate 1-periodic solution z(t) we define the Conley-Zehnder in-
dex as u“?(z) := p“4(¥), and the index is integer valued.

Let z be a 1-periodic solution and consider the path n — B(n;z) = ~J % -
S(t;n), where, as before, S(t;n) is a smooth path of symmetric matrices with
endpoints S(t;0) = 01d and S(t;1) = D2H(z(t),t) with § # 27k, k € Z. The
operators B(n) = B(n;x) are unbounded operators on L*(R/Z), with domain
H'(R/Z). A path n — B(n) is continuously differentiable in the (weak) oper-
ator topology of B(H', L?) and Hypotheses (A1)-(A3) in [44] are satisfied. We
now repeat the definition of spectral flow for a path of unbounded operators
as developed in [44]. The crossing operator for a path n — B(n) is given by
I'(B,n) = W%B(T})ﬂ"kerB(n), where 7 is the orthogonal projection onto ker B(n).
A crossing 79 € I is a number for which the operator B(7g) is not invert-
ible. A crossing is regular if I'(B,ny) is non-singular. A point 7y for which
dimker B(no) = 1, is called a simple crossing. A path n — B(n) is called generic
if all crossing are simple. A path n — B(n) can always be chosen to be generic.
At a simple crossing 7 there exists a C''-curve £(n), for n near 7, and /() is an
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eigenvalue of B(n) with ¢(n9) = 0 and ¢'(19) # 0. The spectral flow for a generic
path is defined by

specflow(B(n), ) = Z sgn(? (no)), (2.26)
£(n0)=0

and at simple crossings 7,

DB, mo(m) = (5 Blo(m). 6m)) | o0m) = Cm)om). 227

after normalizing ¢(no) in L?(R/Z). As before the derivative of / at 1 is given by

' (no) = (8,8 (t;m0)¢(n0), (M0)) p2- (2.28)

2.4.1. Proposition. Let n — B(n),n € I, as defined above, be a generic path of un-
bounded self-adjoint operators with invertible endpoints, and let n — ¥ (n;t) be the
associated path of symplectic matrices defined by

{ —J%/(t; n) - S(t;n)¥(t;n) =0
(0;m) = 1d,

Then
specflow(B(n), I) = u) — 150, (2.29)

where uG7, = pC% (W (#0)), n§%, = uC% (U(t:1).

Proof. The expression for the spectral flow follows from [44] and [49].

In the case n = 0, the Conley-Zehnder index ugé) can be computed explicitly.
Recall that B(0) = ~J & — S(0) = ~J 4 — 61d.

2.4.2. Lemma. Let 0 > 0 (fixed) and 0 # 27k, then ug(zo) =1+2|L£].

Proof. The solution to B(0)¥(t) = 0is givenby ¥(t) = €%/t and det(¥(1)-Id) = 0
exactly when ¢t =ty = %. By (2.24) and (2.25) we have that I'(¥, t)¢ = 6[£|? and
therefore u3% =1+ 2|5~ |, which proves the lemma.

The zeroes z € @', (0) in Q = [2] rel y can estimated by Braid Floer homology
HB, ([z]rely) of Q@ = [z]rely. The Euler-Floer characteristic of HB, ([z]rely) is
defined as

x (HB.([z] rely)) := Z(—l)kdim HBj ([z] rel y). (2.30)
keZ
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In [49] the following analogue of the Poincaré-Hopf formula is proved.

2.4.3. Proposition. For a proper braid class [z]rely and a generic Hamiltonian H €
H,\®(y), it holds that

X(HB.(z]rely)) = 3 (-1 @,

xetb}’fyH(O)

It remains to show that x (HB, ([z] rely)) and deg 4(®,, i, €2, 0) are related.

2.4.4. Proposition. For a proper braid class [z]rely and a generic Hamiltonian H e

Hﬁeg(y), we have that

X(HB.([a]rely)) = - 3 (- specflow(Blma), 1) - g31)
zie‘b:H(O)

where n — B(n; x) is given above for x € (I);,lH(O)-

Proof. By Proposition 2.4.1 and Lemma 2.4.2 the spectral flow satisfies,

17 (@) = uGh..) = 1uGhh, ~ specfiow(B(n; x), I)

=1+2|L| - spectlow(B(n;z),1).

This implies
(71)/102(;3) — (1) specflow(B(n; x), I)

which completes the proof.

i

2.4.2 Mechanical systems

A mechanical system is defined as the Euler-Lagrange equations of the La-
grangian density L(q,t) = %qf - V(g,t). The linearization at a critical points
q(t) of the Lagrangian action is given by the unbounded opeartor

75—; - DV (q(t),t) : H*(R/Z) c L*(R/Z) — L*(R/Z).

Consider a path of unbounded self-adjoint operators on L?(R/Z) given by 1 —
D(n) = _4 Q(t;m), with Q(t; n) smooth. If D(0) and D(1) are invertible, then

d?
the spectral flow is well-defined.
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2.4.5. Proposition. Assume that the endpoints of n — D(n) are invertible. Then

specflow(D(n),I) = Bp() — Bo(1), (2.32)

where Bp oy and Bp () are the Morse indices of D(0) and D(1) respectively.

Proof. In [44] the concatenation property of the spectral flow is proved. We use
concatenation as follows. Let ¢ > 0 be a sufficiently large constant such that
D(0) +cId and D(1) + cId are positive definite self-adjoint operators on L*(R/Z).
Consider the paths  — D1 (1) = D(0) + ncIld and n — D2 (n) = D(1) + (1 - n)cld.
Their concatenation D;#D; is a path from D(0) to D(1) and  — D;#D; is
homotopic to n — D(n). Using the homotopy invariance and the concatenation
property of the spectral flow we obtain

specflow(D(n), I) = specflow(D1# D3, I) = specflow (D1, I) + specflow(Da, I).
Since D(0) is invertible, the regular crossings of D;(n) are given by n} = 2
where ); are negative eigenvalues of D(0). By the positive definiteness of D(0) +
cld, the negative eigenvalues of D(0) satisfy 0 > A; > —c. For the crossing 7; this
implies

7

)
0<ni=—?’<1,

and therefore the number of crossings equals the number of negative eigenval-
ues of D(0) counted with multiplicity. By the choice of ¢, we also have that
d%Dl(n) = cld is positive definite and therefore the signature of the crossing
operator of Di(n) is exactly the number of negative eigenvalues of D(0), i.e.
specflow(D1,I) = Bp(y. For Da(n) we obtain, specflow(Dy,I) = —fp(1). This
proves that specflow(D(n), I) = Bp(o) — Bp)-

For a mechanical system we have the Hamiltonian H(z,t) = 1p? + V(q,t). As
such the Conley-Zenhder index of a critical point ¢ can be defined as the Conley-
Zehnder index of z = (g, ¢) using the mechanical Hamiltonian, see also [1] and
[16].

2.4.6. Lemma. Let q be a critical point of the mechanical Lagrangian action, then the
associated Conley-Zehnder index 1% () is well-defined, and % (x) = B(q), where
B(q) is the Morse index of q.

Proof. As before, consider the curves n — B(n) and n — D(n), n € I = [0,1]
given by

5D =15 (6 oy ): D=~ - Q).
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The crossing forms of the curves are the same — I'(B,n) = I'(D, ) — and there-
fore also the crossings 7 are identical. Indeed, B(7) is non-invertible if and only
if D(no) is non-invertible. Consequently, specflow (B(n),I) = specflow(D(n),I)
and the Propositions 2.4.1 and 2.4.5 then imply that

Bp©) — By = BSi) — K50 (2.33)

Now choose Q(t;7) such that Q(¢;0) = d*V (q(t),t) + cand Q(t; 1) = D2V (q(t), t)
and such thatn — B(n) and n — D(n) are regular curves. If ¢ < 0, then 8p ) = 0.
In order to compute ug(ZO) we invoke the crossing from I'(¥, ¢) for the associated
symplectic path ¥(¢) as explained in Section 2.4. Crossings at to € (0, 1] corre-
spond to non-trivial solutions of the equation D(0)y = 0 on [0, o], with periodic
boundary conditions. To be more precise, let ¥ = (¢, %), then B(0)¥ = 0 is
equivalent to ¢y = ¢ and —¢y — (D2V (q(t),t) + ¢)1» = 0, which yields the equa-
tion D(0)y) = 0. For the latter the kernel is trivial for any ¢y € (0,1]. Indeed,
if 4 is a solution, then fgo [ |? = Oto(DgV(q,t) +¢)y? < 0, which is a contra-
diction. Therefore, there are no crossing to € (0,1]. As for tx = 0 we have that
(D3V(4(0),0) +c) < 0, which implies that sgn $(0;0) = 0 and therefore u37,) = 0,
which proves the lemma.

2.5 The spectral flows are the same

In order to show that the spectral flows are the same we use the fact that the
paths n — C(n) and n — B(n) for a non-degenerate zero x; € @;11{(0) are chosen
to have only simple crossings for their crossing operators, i.e. zero eigenvalues
are simple. In this case the spectral flows are determined by the signs of the
derivatives of the eigenvalues at the crossings. For 1 — B(n) the expression given
by Equation (2.28) and from Equation (2.21) a similar expression for 1 — C(n) can
be derived and is given by

N (no) =~ (N, 0nS(t;10)1(10), ¥ (10)) 15 = —(OnS(E;10)8(m0), ¥ (10)) ;> (2.34)
2.5.1. Lemma. The sets {n € [0,1] : C(n)y(n) = 0} and {n < [0,1] : B(n)¢(n) = 0}
are the same, and the operators C(n) and B(n) have the same eigenfunctions at crossings
no. In particular, n — B(n) is generic if and only if n — C(n) is generic.

Proof. Given 1 ¢ [0, 1] such that C'(n9)¥(no) = 0, then

Putp(no) = N (S(noit) + pw)p(no) = 0,
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and thus ¥ (no) — L, (S(no; t) + p)1b(no) = 0, which is equivalent to the equation

(—~J & = S(t;m0)) ¥(mo) = 0, ie. B(no)y(no) = 0.

2.5.2. Lemma. Forall i > 0, with p # 27k, k € Z, sgn X (no) = sgnt'(no) for all
crossings at 1.

Proof. The eigenfunctions () in Equation (2.34) for X' (no) are normalized in
H'/?(R/Z). Therefore they relate to the eigenfunctions ¢(n) in Equation (2.28)
for ¢'(ng) as follows:

__ 6(m) L
’(/}(770) - H(b(nO)HHlﬂ ) ||¢(770)||L L

Combining Equations (2.28) and (2.34) then gives
X (o) = —(8nS(t;m0)¢(n0), ¥(10)) 12

IR, )
= oI B, OrSE o) 9m)) 12 = om S

which proves the lemma.

Lemma 2.5.2 implies that for any non-degenerate x ¢ <1>le(0) naQ
specflow(C'(n; x), I) = specflow(B(n; ), I), (2.35)

where B(n; z) and C(n; ) are the above described path associated with z. There-
fore

parity (A(n; z), 1) = (71)specﬂow(C(n;:1:),I) _ (71)specﬂ0W(B(n;x),I)’ (2.36)

which yields the following proposition.

2.5.3. Proposition. The Leray-Schauder degree satisfies

degrs(®u.m,Q,0) = —x(HB*([a:] rely)).

Proof. For any Hamiltonian H ¢ #(y) there exists a generic Hamiltonian H e
”Hﬂeg (y) such all zeroes z; € <I>’1H(O) N 2 are non-degenerate. Since Q@ = [z]rely

is isolating for all Hamiltonians in H(y), the invariance if the Leray-Schauder
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degree yields deg g (®,, 1,2, 0) = deg,5(®,, 7,9, 0). From the Propositions 2.3.6
and 2.4.4 and Equation (2.36) we conclude that

degLS((I)M,H,Q,O) = degLs((bu,f{anO)
= Z degLS(@lLﬁ,Be(x),O): Z parity(A(n; x), I)

xe@;{ﬁ(o) ace'fb;’l_ﬂ(o)
_ Z (_1)specﬂow(B(n;:c),I): Z (_1)7specﬂow(B(n;x),I)
xe@;{g(O) zeq);l,l_.[(O)

=X (HB* ([f] rel y)) ’

which completes the proof.

2.5.4. Remark. As p > 1 it holds that ¢/(ny) ~ pX (o). Indeed, ||¢(no)||%,.,. =
> (27|k| + p)ai, where aj, are the Fourier coefficients of ¢(ny) and Y, ai = 1.
Since ¢(19) are smooth functions the Fourier coefficients satisfy the following
properties. For any 6 > 0 and any s > 0, there exists N5, > 0 such that
S ikpon [K1**ax|* < 6, forall N > Ns ;. From the latter it follows that 3, 27|k|af <
C, with C' > 0 independent of 79 and .. We derive that 1 < [[¢(no) |31, < C +
and

)\/
Lo M <u(770)_ j SR

Cop— o)~ lemo)lZ:  n

as p — oo, which proves our statement.

2.6 The proof of Theorems 2.1.1 and 2.1.2

We start with the proof of Theorem 2.1.2. Since HB,.([z] rel y) is an invariant of the
proper braid class [z rel y] it does not depend on a particular fiber [z] rel y. There-
fore we denote the Euler-Floer characteristic by x(zrely) := x(HB.([z]rely)).

Recall the homotopy invariance of the Leray-Schauder degree as expressed in
Equation (2.9)

degs(®y,2,0) = degrg(Ppua,2,0) = degrg(Pp, 1,2, 0).
By Proposition 2.5.3 we have that

degr (P, Q,0) = deg;g(Ppy i, Q2,0) = —x(zrely),
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and x(zrely) # 0, then implies that ®,'(0) N Q # @. Therefore there exist closed
integral curves in any relative braid class fiber of [z rel y|, whenever x(z rel y) # 0,
and this completes the proof of Theorem 2.1.2.

The remainder of this section is to prove the Poincaré-Hopf Formula in Theo-
rem 2.1.1 for closed integral curves in proper braid fibers. The mapping

_dx

&:CUR/Z) = C°(R/Z), &(z) == -

X(z,t),

is smooth (nonlinear) Fredholm mapping of index 0. Let M e GL(C",C") be an
isomorphism such that M &(x) is of the form M & (z) = ®pr(z) = - Kp(x), with
Ky : CYR/Z) — CH(R/Z) compact. Such isomorphisms M (constant parametri-

-1
ces) obviously exist. For example M = (% + 1) ,or M = —JL,'. The mappings

1 CY(R/Z) — C*(R/Z) are Fredholm mappings of index 0.
Let z € C*(R/Z) be a non-degenerate zero of & and recall the index ¢(z):

u(z) = —sgn(det(@))(—l)BM(@) deg; ¢ (@M, Be(ar:),O)7

where O € My, »(R), with 0(0) N27kiR = &, k € Z and S,,(0) is the Morse index
of Id — K, (0).
2.6.1. Lemma. The index «(z) for a non-degenerate zero of & is well-defined, i.e. inde-
pendent of the choices of M e GL(C?,C') and © € Ma.2(R).
Proof. Consider smooth paths n — Fg(n), defined by Fo(n) = % — R(t;n), where
R(t;0) = ©and R(t;1) = D, X (x(t),t). The path

Fo : [0,1] — Fredo(C*, C°)

has invertible end points, and by the theory in [19, 20] we have that the parity of
1 — Fo(n) is well-defined and independent of M, i.e.
parity(Fe (n), I) = parity(Dare (n), I) = (-1)°(9)(~1) ()
- (71)61\4(@) degLS ((pl\/fv Be(z)a 0)7
where Dyro(n) = MFo(n) and Ba(x) is the Morse index of Dye(l) =
Id -K(1). It remains to show that the index ¢(z) is independent with respect

to ©. Let © and ©’ be admissible matrices and let  — G(n) be a path connecting
G(0) =4 —©and G(1) = & — ©'. For the parities it holds that

parity (Fe(n), ) = parity(G(n), I) - parity(Fer(n), ).
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To compute parity(G(n), I) we consider a special parametrix M, given by M, =

-1
(% + u) , it > 0. From the definition of parity we have that

parity(G(n), I) = parity(M,G(n),I) = degps(M,G(0)) - degy s (M,G(1)).

We now compute the Leray-Schauder degrees of A, G(0) and M, G(1). We start
with © and in order to compute the degree we determine the Morse index. Con-
sider the eigenvalue problem

M,G0)yp =M, XeR,
which is equivalent to (1 - )\)% = (© + Au) . Non-trivial solutions are given by

Y(t) = exp <@1t)/‘\“ t) o, which yields the condition 91*:\/\“ = 2wki, k € Z, where 0 is

an eigenvalues of ©. We now consider three cases:

(i) 0. = a +1ib. In case of a negative eigenvalue A\ we have “1*:\/\“ = 0 and
% = 2rk. The same A < 0 also suffices for the conjugate eigenvalue via
% = -2mk. This implies that any eigenvalue A < 0 has multiplicity 2, and
thus deg; ¢ (M,G(0)) = 1.

(i) 6. € R, 6_ -0, > 0. In case of a negative eigenvalue A we have % =0

[

and thus A\, = —%, which yields two negative or two positive eigenvalues. As
before degy 5 (M,G(0)) = 1.

(iii) 0. € R, 8_ - 0, < 0. From case (ii) we easily derive that there exist two
eigenvalues )., one positive and one negative, and therefore deg; ¢ (M, G(0)) =
-1.

These cases combined impliy that deg; ¢ (M, G(0)) = sgn(det(©)) and

parity (G(n), I) = sgn(det(0)) - sgn(det(0")).
From the latter we derive:

sgn(det(©)) - parity (Fo (1), I)
= sgn(det(0)) - sgn(det(0)) - sgn(det(0)) - parity(Fo (1), I)
= sgn(det(’)) - parity(Fer (1), I),
which proves the independence of ©.

Lemmas 2.6.1 shows that the index of a non-degenerate zero of & is well-
defined. We now show that the same holds for isolated zeroes.
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2.6.2. Lemma. The index v(x) for an isolated zero of & is well-defined and for a fixed
choice of M and © the index is given by

((z) = —sgn(det(0))(~1)7(®) deg g (Par, Be(x),0),
where € > 0 is small enough such that x is the only zero of & in Be(x).

Proof. By the Sard-Smale Theorem one can choose an arbitrarily small h ¢
C%(R/Z), ||h|lco < €, such that h is a regular value of & and &'(h) N Be(x)

consists of finitely many non-degenerate zeroes in xj. Set &(x) = &(x) - h and

define
vx) = Z v(xp). (2.37)
zpe1(0)NB.(z)
We now show that () is well-defined. Choose a fixed parametrix M (for &) and
fixed © € My, 2(R), and let <T>M = M@E, then

S t(an) = - sen(det(©))(-1)"©) 3" deg, (s, Be, (), 0),

Th Th

where B, (z,) are sufficiently small neighborhoods containing only one zero.
From Leray-Schauder degree theory we derive that

ZdegLS(&)Mv Be, (z1),0) = deg; (s, Be(x),0) = deg g(Par, Be(w),0),

Th
which proves the lemma.

Theorem 2.1.1 now follows from the Leray-Schauder degree. Suppose all ze-
roes of & in ) = [z]rel y are isolated, then Lemma 2.6.2 implies that

S i) = - sen(det(©))(-1)P (@ Y deg g (®ar, B (), 0)

ze&-1(0)NQ
= —sgn(det(©))(~1)#*©®) deg, ¢ (@, 9,0)

Since the latter expression is independent of M and © we choose M = L
and © = 6J. Then, &), = ®,, and for the indices we have sgn(det(6J)) = 1

and by Lemma 2.3.5, (—1)5%1 @n _ By Proposition 2.5.3, deg; 4(®,,,0) =
-X (a: rel y), which, by substitution of these choices into the index formula, yields

Z v(z) = x(xrely),

ze&1(0)NQ
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completing the proof Theorem 2.1.1.

2.7 Computing the Euler-Floer characteristic

In section we prove Theorem 2.1.5 and show that the Euler-Floer characteristic
can be determined via a discrete topological invariant.

2.7.1 Hyperbolic Hamiltonians on R?

Consider Hamiltonians of the form
L, 1,
H(z,t) = oP" - 50+ h(z,t), (2.38)

where h satisfies the following hypotheses:

(h1) he C*(R? x R/Z);

(h2) supp(h) c R x [-R, R] x R/Z, for some R > 0;
(h3) [|hllczr2cr/z) < c.

2.7.1. Lemma. Let H be given by (2.38), with h satisfying (h1)-(h3). Then, there exists
a constant R’ > R > 0, such any 1-periodic solution of x of v’ = Xy (z,t) satisfies the
estimate

|z(t)] < R/, forall t e R/Z.

Proof. The Hamilton equation in local coordinates are given by

pe=q—he(p,q,t), @ =p+hy(p gt).

Since h is smooth we can rewrite the equations as

Gt = hpg(p, @, ) + (1 + hyp(p, 4, 8)) (¢ — he(p, 4, 1)) + hpe (P, g, 1). (2.39)

If z(t) is a 1-periodic solution to the Hamilton equations, and suppose there exists
an interval I = [t, t1] c [0, 1] such that |¢(¢)| > R on int(I) and |q(t)\|al = R. The
function ¢|; satisfies the equation ¢;; — ¢ = 0, and obviously such solutions do not
exist. Indeed, if q|; > R, then ¢;(to) > 0 and ¢;(t1) < 0 and thus 0 > ¢|or = [, ¢ >
RI|I| > 0, a contradiction. The same holds for ¢|; < —R. We conclude that

lq(t)] < R, forall teR/Z.



2.7 Computing the Euler-Floer characteristic

We now use the a priori g-estimate in combination with Equation (2.39) and Hy-
pothesis (h3). Multiplying Equation (2.39) by ¢ and integrating over [0, 1] gives:

1 1 1 1
/ th = _/ hpq‘]tq - / (1 + hpp) (q - hq)q - / hptq
0 0 0 0

1 1
SC/ |qt|+C§e/ qt2+Ce,
0 0

which implies that fol ¢? < C(R). The L?>-norm of the right hand side in (2.39) can
be estimated using the L*° estimate on ¢ and the L?-estimate on ¢;, which yields
fol g7, < C(R). Combining these estimates we have that ||q|| z2r/z) < C(R) and
thus |¢(t)| < C(R), for all t € R/Z. From the Hamilton equations it follows that
Ip(t)] < |ge(t)| + C, which proves the lemma.

2.7.2. Lemma. If H(z,t;«), o € [0,1] is a (smooth) homotopy of Hamiltonians satis-
fying (h1)-(h3) with uniform constants R > 0 and ¢ > 0, then |z, (t)] < R', for all
1-periodic solutions and for all o € [0, 1].

Proof. The a priori H?-estimates in Lemma 2.7.1 hold with uniform constants
with respect to « € [0, 1]. This then proves the lemma.

2.7.2 Braids on R? and Legendrian braids

In Section 2.1 we defined braid classes as path components of closed loops in
LC,,(D?), denoted by [z]. If we consider closed loops in C,,(R?), then the braid
classes will be denoted by [z]g:. The same notation applies to relative braid
classes [z rel y|rz. A relative braid class is proper if components z. ¢ z cannot
be deformed onto (i) itself, or other components z, ¢ z, or (ii) components y. c y.
A fiber [x]g2 rel y is not bounded!

In order to compute the Euler-Floer characteristic of [ rel y] we assume with-
out loss of generality that xrely is a positive representative. If not we compose
x rel y with a sufficient number of positive full twists such that the resulting braid
is positive, i.e. only positive crossings, see [49] for more details. The Euler-Floer
characteristic remains unchanged. We denote a positive representative x* rel "
again by xrely.

Define an augmented skeleton y* by adding the constant strands y (¢) =
(0,-1) and y,(¢t) = (0, 1). For proper braid classes it holds that [z rel y] = [z rel y*].
For notational simplicity we denote the augmented skeleton again by y. We also
choose the representative x rel y with the additional the property that 7oz rel oy
is arelative braid diagram, i.e. there are no tangencies between the strands, where
w2 the projection onto the g-coordinate. We denote the projection by grel (), where
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q = mx and Q) = may. Special braids on R? can be constructed from (smooth) pos-
itive braids. Define z;, = (¢;,q) and y1, = (Q4, @), where the subscript ¢ denotes
differentiating with respect to ¢t. These are called Legendrian braids with respect to
0 = pdt — dq.

2.7.3. Lemma. For positive braid x rely with only transverse, positive crossings, the
braids xp relyy, and xrely are isotopic as braids on R2. Moreover, if xy vely; and
x, rely) are isotopic Legrendrian braids, then they are isotopic via a Legendrian isotopy.

Proof. By assumption zrely is a representative for which the braid diagram
grel @ has only positive transverse crossings. Due to the transversality of inter-
sections the associated Legendrian braid z, rel y;, is a braid [z rel y|g2. Consider
the homotopy

¢t ) =mp (1) + (1 - 7)gz,
for every strand ¢/. At g-intersections, i.e. times to such that ¢/ (to) = ¢/ (o) for
some j # j', it holds that p’(to) - p? (to) and ¢} (to) — ¢! (to) are non-zero and
have the same sign since all crossings in z rel y are positive! Therefore, (7 (tg, 7) #
¢7' (to, ) for any intersection o and any 7 € [0, 1], which shows that z rely and
xp relyy, are isotopic. Since z, rel y;, and 2, rel y; have only positive crossings, a
smooth Legendrian isotopy exists.

The associated equivalence class of Legendrian braid diagrams is denoted by
[¢rel Q] and its fibers by [¢] rel Q.

2.7.3 Lagrangian systems

Legendrian braids can be described with Lagrangian systems and Hamiltonians
of the form Hy (z,t) = %p2 - %(f +g(g,t). On the potential functions g we impose
the following hypotheses:

(g1) g e C=(RxR/Z);
(g2) supp(g) ¢ [-R, R] x R/Z, for some R > 1.

In order to have a straightforward construction of a mechanical Lagrangian
we may consider a special representation of y. The Euler-Floer characteristic
X(m rel y) does not depend on the choice of the fiber [z]rely and therefore also
not on the skeleton y. We assume that y has linear crossings in y. Let t = t; be
a crossing and let I(ty) be the set of labels defined by: 4,j € I(ty), if ¢ # j and
Q' (to) = Q?(to). A crossing at t = t is linear if

Qi(t) = constant, Vie I(ty), and Vte (—e+tg, e +to),

for some € = €(tg) > 0. Every skeleton () with transverse crossings is isotopic to
a skeleton with linear crossings via a small local deformation at crossings. For
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Legendrian braids z, rel y;, € [z rel y|g2 with linear crossings the following result
holds:

2.7.4. Lemma. Let y;, be a Legendrian skeleton with linear crossings. Then, there exists
a Hamiltonian of the form Hy,(z,t) = $p* - 2¢® + g(q, t), with g satisfying Hypotheses
(g1)-(g2), and R > 0 sufficiently large, such that yy, is a skeleton for X, (x,t).

Proof. Due to the linear crossings in y;, we can follow the construction in [49].
For each strand Q° we define the potentials ¢'(t,z) = —-Q%,(t)q. By construction
Q" is a solution of the equation Qj, = —g.(t,Q"). Now choose small tubular
neighborhoods of the strands Q' and cut-off functions w’ that are equal to 1 near
Q' and are supported in the tubular neighborhoods. If the tubular neighborhoods
are narrow enough, then supp(w’g*) Nsupp(w’¢’) = &, forall i # j, due to the fact
that at crossings the functions g’ in question are zero. This implies that all strands
Q' satisfy the differential equation Q};, = - >, w’(t)gZ(Q",t) and on [-1,1] x R/Z,
the function is ), w'(t)g*(q,t) is compactly supported. The latter follows from
the fact that for the constant strands Q° = +1, the potentials g’ vanish. Let R > 1
and define

» g'(t,q) for |q| <1, teR/Z,

(tq) = {

g “ L forlgl >R, teR/Z

where m = #Q, which yields smooth functions §° on R x R/Z. Now define
Z 3'(gt

By construction supp(g) ¢ [-R, R] x R/Z, for some R > 1 and the strands Q' all
satisfy the Euler-Lagrange equations Qi, = Q' — g4,(Q°", t), which completes the
proof.

9(q

l\')\»—l

The Hamiltonian H, given by Lemma 2.7.4 gives rise to a Lagrangian system
with the Lagrangian action given by

1
1 1
2= [ 5+ 5 - sla.)ar (240)
0

The braid class [g]rel @ is bounded due to the special strands +1 and all free
strands ¢ satisfy —1 < ¢(t) < 1. Therefore, the set of critical points of .Z in
[q]rel Q is a compact set. The critical points of %, in [¢]rel ) are in one-to-one
correspondence with the zeroes of the equation

@y p, (x) =2 - L, (VHL(x,t) + px) =0,
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in the set Qg2 = [z ]r2 relyr, which implies that &, y, is a proper mapping on
Q2. From Lemma 2.7.1 we derive that the zeroes of ®, f, are contained in ball
in R? with radius R’ > 1, and thus ® ', (0)NQg> ¢ Br/(0) c C'(R/Z). Therefore
the Leray-Schauder degree is well- defined and in the generic case Lemma 2.4.6
and Equations (2.23), (2.29) and (2.35) yield

degLS((I)mHL’QszO) =~ Z (_1)HCZ(I) = Z (_1)B(q)_
ZL’E‘P;}‘HL (0)NQp2 qeCrit(Zy)N([q] rel Q)

(2.41)

We are now in a position to use a homotopy argument. We can scale y to

a braid py such that the rescaled Legendrian braid py, is supported in D?. By

Lemma 2.7.3, y is isotopic to yz, and scaling defines an isotopy between yz, and

pyr. Denote the isotopy from y to pyr by y.. By Proposition 2.5.3 we obtain that
for both skeletons y and pyy, it holds that

degs(® p,H 5 2, 0) = (l“ rely) = degLS((I)mevavo)a

where Q, = [pzr]rel pyr c [zrely] and H, € H|(pyr). Now extend H, to R? x
R/Z, such that Hypotheses (h1)-(h3) are satisfied for some R > 1. We denote
the Hamiltonian again by H,,. By construction all zeroes of ®,, z, in [px]rel pyr,
are supported in D? and therefore the zeroes of @, , in [pz]g2 rel pyy, are also
supported in D2, Indeed, any zero intersects D?, since the braid class is proper
and since 9D? is invariant for the Hamiltonian vector field, a zero is either inside
or outside D?. Combining these facts implies that a zero lies inside D?. This yields

degLS(¢H7Hp,Qp7R2,O) = degLS(<I>N7Hp,Qp,()) = —X(a:rely),

where Q, g2 = [prp]r2 rel pyr. For the next homotopy we keep the skeleton pyy,
fixed as well as the domain €2, g2. Consider the linear homotopy of Hamiltonians

1, 1
Hy(z,t;a) = §p2 - 5612 + (1= a)hy(z,t) + agy(q, t),

where H, 1(t,z) = ip? — 1¢* + g,(q,t) given by Lemma 2.7.4. This defines an
admissible homotopy since pyy, is a skeleton for all a € [0,1]. The uniform esti-
mates are obtained, as before, by Lemma 2.7.2, which allows application of the
Leray-Schauder degree:

degLs(‘I)u,Hp,UQp,R%O) = degLS(fl)M’Hp,Qp’]Rz,O) = —X(x rely).
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Finally, we scale pyr, to yr via yo,r = (1 — &)pyr + ayr and we consider the
homotopy

1 1
Hg(l',t;a) = §p2 - §q2 +9(Qat§0¢)a

between Hy, and H, 1, where g(q, t; ) is found by applying Lemma 2.7.4 to yq 1.
The uniform estimates from Lemma 2.7.2 allows us to apply the Leray-Schauder
degree:

deg;g(®p m, , Or2,0) = degLS(éupryL,QmRz,O) = —X(a:rely).

Combining the equalities for the various Leray-Schauder degrees with (2.41)
yields:

— degps(®p, . Qpe,0) = x(zrely) = > -9 (242)
qeCrit(Zy)N([q] rel Q)

2.7.4 Discretized braid classes

The Lagrangian problem (2.40) can be treated by using a variation on the method
of broken geodesics. If we choose 1/d > 0 sufficiently small, the integral

) Tial 1
Si(¢isgi1) =  min / 54t + 4% - gl t)dt, (243)
a(t)eB;(9i.9i:1) f 2 2
la($)l<1 ‘
has a unique minimizer ¢’, where E;(g;,¢i.1) = {q¢ € H*(7,71) | a(ns) =

Gi, q(Tis1) = qi+1}, and 7; = i/d. Moreover, if 1/d is small, then the minimiz-
ers are non-degenerate and S; is a smooth function of ¢; and ¢;,1. Critical points
g of £, with |¢(t)| < 1 correspond to sequences gp = (qo, - - , gq), With g9 = gn,
which are critical points of the discrete action

—

n—

W (qp) = ) Si(qi;Gis1)- (2.44)

N
I
=)

A concatenation #;¢* of minimizers ¢’ is continuous and is an element in the
function space H'(R/Z), and is referred to as a broken geodesic. The set of bro-
ken geodesics #;¢' is denoted by E(qp) and standard arguments using the non-
degeneracy of minimizers ¢’ show that E(qp) — H'(R/Z) is a smooth, d-
dimensional submanifold in H'(R/Z). The submanifold E(gp) is parametrized
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by sequences Dy = {qp € R? | |¢;| < 1} and yields the following commuting
diagram:

In the above diagram #; is regarded as a mapping qp — #iq', where the mini-
mizers ¢; are determined by ¢p. The tangent space to E(¢qp) at a broken geodesic
#.q" is identified by
Ty Blap) = {v € H'(R/Z) | b + 9 — ggq(q' (), )0 = 0,
w(Tz) - 5%7 Q/J(T'Hl) = 5qi+1> 5% S R,Vl},

and #;q" + Ty,, E(qp) is the tangent hyperplane at #;4¢". For H'(R/Z) we have
the following decomposition for any broken geodesic #;¢" € E(qp):

HY(R/Z) = E' & Ty, E(ap), (2.45)

where E' = {n e HY(R/Z) | n(r;) = 0, Vi}. To be more specific the decomposition
is orthogonal with respect to the quadratic form

~ 1 ~ ~ ~ ~
D%, ()66 = / Gede + 0 — gaqla(t).)03dL, 6,3 ¢ H(R/Z).

Indeed, let n € E' and ¢ € Ty, ,i E(qp), then
Titl

DLy (#iq" )y = Z/ M + M — gaq (¢ (1), 1)Endt

ZZ#JM

Let ¢ = 1+ ¢, then

S [ b 6+ gl 0,0t =0,

D22, (#:4")¢d = D2.Ly(#:q )i + DL,y (#:4" ),

by the above orthogonality. By construction the minimizers ¢’ are non-degenerate
and therefore D?.%, |/ is positive definite. This implies that the Morse index of a
(stationary) broken geodesic is determined by D?.Z, | i E(ap)- By the commut-
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ing diagram for % this implies that the Morse index is given by quadratic form
D?% (gp). We have now proved the following lemma that relates the Morse in-
dex of critical points of the discrete action % to Morse index of the ‘full” action
Zy.

2.7.5. Lemma. Let g be a critical point of £, and qp the corresponding critical point of
W, then the Morse indices are the same i.e. 3(q) = B(qp).

For a 1-periodic function ¢(t) we define the mapping

D . .
Q*$QD:(QOa"'an)7 Q7:q(l/d)a 1:07"'5d7

and ¢p is called the discretization of ¢. The linear interpolation

qp = Ly (t) = # Qi+%f )

reconstructs a piecewise linear 1-periodic function. For a relative braid diagram
qrelQ, let gprel@p be its discretization, where Q)p is obtained by applying
Dy to every strand in ). A discretization gp rel Qp is admissible if {,,, rel{g,,
is homotopic to grel @, i.e. {,,rellg, € [grelQ]. Define the discrete relative
braid class [¢p rel @p] as the set of “discrete relative braids’ ¢}, rel Q',, such that
ly, rellg, e [grel Q). The associated fibers are denoted by [gp]rel Qp. It follows
from [28], Proposition 27, that [¢p rel @ p] is guaranteed to be connected when

d > #{ crossings in grel Q},

i.e. for any two discrete relative braids ¢p rel Qp and ¢}, rel @', there exists a
homotopy ¢f, rel QF, (discrete homotopy) such that £,a rel £ is a path in [grel Q.
Note that fibers are not necessarily connected! For a braid classes [grel Q] the
associated discrete braid class [gp rel @ p] may be connected for a smaller choice
of d.

We showed above thatif 1/d > 0 is sufficiently small, then the critical points of
2, with |g| < 1, are in one-to-one correspondence with the critical points of %/,
and their Morse indices coincide by Lemma 2.7.5. Moreover, if 1/d > 0 is small
enough, then for all critical points of .Z; in [g] rel @, the associated discretizations
are admissible and [¢p rel @ p] is a connected set. The discretizations of the critical
points of % in [¢]rel ) are critical points of #  in the discrete braid class fiber

[gp] rel @p.
Now combine the index identity with (2.42), which yields

y(zrely) = > (1)@ = > (-1)%lar) - (2.46)
qeCrit(Zy)N([q) rel Q) qpeCrit(#)N(lgp]relQp)
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2.7.5 The Conley index for discrete braids

In [28] an invariant for discrete braid classes [¢p rel @ p] is defined based on the
Conley index. The invariant HC, ([¢p] rel @ p) is independent of the fiber and can
be described as follows. A fiber [¢p]|rel @ p is a finite dimensional cube complex
with a finite number of connected components. Denote the closures of the con-
nected components by N;. The faces of the hypercubes N; can be co-oriented in
direction of decreasing the number of crossing in gp rel @ p, and define V. ; as the
closure of the set of faces with outward pointing co-orientation. The sets N; are
called exit sets. The invariant is given by

HC. (lgp] rel @p) = €D H.(Nj, N ).

The invariant is well-defined for any d > 0 for which there exist admissible dis-
cretizations and is independent of both the fiber and the discretization size. From
[28] we have for any Morse function % on a proper braid class fiber [gp]rel @ p,

> (-1)#@P) = X (HC.(lgp] 1l @p)) =: x(qp el QD). (2.47)
gpeCrit(#)N([gp]rel @p)

The latter can be computed for any admissible discretization and is an invariant
for [grel @Q]. Combining 2.46 and 2.47 gives

X(x rely) = X(QD relQD). (2.48)

In this section we assumed without loss of generality that xrely is augmented
and since the Euler-Floer characteristic is a braid class invariant, an admissible
discretization is construction for an appropriate augmented, Legendrian repre-
sentative x, rel y;,. Summarizing

X(a:rely) = X(HJL relyz) = X((JD relQ}S).

Since X(q prel QE) is the same for any admissible discretization, the Euler-Floer
characteristic can be computed using any admissible discretization, which proves
Theorem 2.1.5.

2.7.6. Remark. The invariant x (q prelQ D) is a true Euler characteristic of a topo-
logical pair. To be more precise

x(aprelQp) = x([ap] rel Qp, lqp] el Qp),
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where [gp] rel @p is the exit set a described above. A similar characterization
does not a priori exist for [z] rely. Firstly, it is more complicated to designate the
equivalent of an exit set [z]| rely for [z]rely, and secondly it is not straightfor-
ward to develop a (co)-homology theory that is able to provide meaningful in-
formation about the topological pair ([z] rely, [z]  rely). This problem is circum-
vented by considering Hamiltonian systems and carrying out Floer’s approach
towards Morse theory (see [23]), by using the isolation property of [z]rely. The
fact that the Euler characteristic of Floer homology is related to the Euler charac-
teristic of topological pair indicates that Floer homology is a good substitute for
a suitable (co)-homology theory.

2.8 Examples

We will illustrate by means of two examples that the Euler-Floer characteristic is
computable and can be used to find closed integral curves of vector fields on the
2-disc.

2.8.1 Example

Figure 2.1[left] shows the braid diagram g rel () of a positive relative braid z rel y.
The discretization with ¢gp rel Qp, with d = 2, is shown in Figure 2.1[right]. The
chosen discretization is admissible and defines the relative braid class [¢p rel @ p].
There are five strands, one is free and four are fixed. We denote the points on the
free strand by ¢p = (go,¢1) and on the skeleton by Qp = {Q!, -+ ,Q*}, with
Q’L = (QBVQ’i)/z = ]-7 74'

Qi Qi

Q=00

@G-

Qs o Qi

Figure 2.1: A positive braid diagram [left] and an admissible discretization
[right].
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In Figure 2.2[left] the braid class fiber [gp]rel @ p is depicted. The coordinate
qo is allowed to move between Q3 and Q2 and ¢; remains in the same braid class
if it varies between Q1 and Q7. For the values ¢y = Q} and ¢y = Q3 the rela-
tive braid becomes singular and if gy crosses these values two intersections are
created. If ¢; crosses the values Q1 or Qf two intersections are destroyed. This
provides the desired co-orientation, see Figure 2.2[middle]. The braid class fiber
[gp] rel @ p consists of 1 component and we have that

N =cl(lgprel Qp]) = {(q0, 1) : Q) < 90 < Q3. Q1 < q1 < Q1},
and the exit set is
N ={(q0.q1) : n = Q}, or 1 = Q1}.
For the Conley index this gives:

oz k=1
HCy([gp]rel@p) = Hi(N, N ;Z):{ 0 otherwise

Figure 2.2: The relative braid fiber [gp]rel @p and N = cl([gp] rel @p).

The Euler characteristic of ([¢gp]rel@Qp, [gp] rel@p) can be computed now
and the Euler-Floer characteristic (z rely) is given by

x(zrely) = x(lgp]rel Qp, lqp] relQp) = -1 # 0

From Theorem 2.1.2 we derive that any vector field for which y is a skeleton has
at least 1 closed integral curve zgrely € [x]rely. Theorem 2.1.2 also implies that
any orientation preserving diffeomorphism f on the 2-disc which fixes the set of
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four points A4, whose mapping class [f; A4] is represented by the braid y has an
additional fixed point.

2.8.2 Example

The theory can also be used to find additional closed integral curves by concate-
nating the skeleton y. As in the previous example y is given by Figure 2.1. Glue
¢ copies of the skeleton y to its (-fold concatenation and a reparametrize time by
t — £ -t. Denote the rescaled ¢-fold concatenation of y by #,y. Choose d = 2¢
and discretize #,y as in the previous example. For a given braid class [z rel #,y],

Figure 2.3: A discretization of a braid class with a 5-fold concatenation of the
skeleton y. The number of odd anchor points in middle position is 1 = 3.

Figure 2.3 below shows a discretized representative gp rel #,Q) p, which is admis-
sible. For the skeleton #,Q) p we can construct 3* — 2 proper relative braid classes
in the following way: the even anchor points of the free strand ¢p are always in
the middle and for the odd anchor points we have 3 possible choices: bottom,
middle, top (2 braids are not proper). We now compute the Conley index of the
3¢ -2 different proper discrete relative braid classes and show that the Euler-Floer
characteristic is non-trivial for these relative braid classes.

The configuration space N = cl([q p|rel #,Q D) in this case is given by a carte-
sian product of 2/ closed intervals, and therefore a 2/-dimensional hypercube. We
now proceed by determining the exit set N~. As in the previous example the co-
orientation is found by a union of faces with an outward pointing co-orientation.
Due to the simple product structure of N, the set N~ is determined by the odd
anchor points in the middle position. Denote the number of middle positions at
odd anchor points by j:.. In this way N~ consists of opposite faces at at odd anchor
points in middle position, see Figure 2.3. Therefore

HCy([gp]rel #¢Qp) = HL(N,N™) = { ?2 Z;Z
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and the Euler-Floer characterisc is given by

X(wrel #y) = (~1)" # 0.

Let X (z,t) be a vector field for which y is a skeleton of closed integral curves,
then #,y is a skeleton for the vector field X*(z,t) := ¢X,(x, ¢t). From Theorem
2.1.2 we derive that there exists a closed integral curve in each of the 3¢ — 2 proper
relative classes [z] rel y described above. For the original vector field X this yields
3¢ — 2 distinct closed integral curves. Using the arguments in [51] one can find a
compact invariant set for X with positive topological entropy, which proves that
the associated flow is ‘chaotic’ whenever y is a skeleton of given integral curves.

2.8.1. Remark. The computations of the Conley homology in the above examples
can be found in [28].

2.8.3 Example

So far we have not addressed the question whether the closed integral curves
xrely are non-trivial, i.e. not equilibrium points of X. The theory can also be
extended in order to find non-trivial closed integral curves. This paper restricts
to relative braids where x consists of just one strand. Braid Floer homology for
relative braids with x consisting of n strands is defined in [49]. To illustrate the
importance of multi-strand braids we consider the discrete braid class in Figure
24.

8 FR XXX

Figure 2.4: A discretization of a braid class with a 3-fold concatenation of the
skeleton y. The number of odd anchor points in middle position is p = 2 [right].
If we represent all translates of x we obtain a proper relative braid class where x
is a 3-strand braid [left]. The latter provides additional linking information.

The braid class depicted in Figure 2.4[right] is discussed in the previous exam-
ple and the Euler-Floer characteristic is equal to 1. By considering all translates
of x on the circle R/Z, we obtain the braids in Figure 2.4[left]. The latter braid
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class is proper and encodes extra information about ¢p relative to () p. The braid
class fiber is a 6-dimensional cube with the same Conley index as the braid class
in Figure 2.4[right]. Therefore,

x(gprelQp) = (-1)? = 1.

As in the 1-strand case, the discrete Euler characteristic can used to compute the
associated Euler-Floer characteristic of zrely and x(zrely) = 1. The skeleton y
thus forces solutions x rel y of the above described type. The additional informa-
tion we obtain this way is that for braid classes [z rel y], the associated closed in-
tegral curves for X cannot be constant and therefore represent non-trivial closed
integral curves.

65



66  Chapter 2: The Poincaré-Hopf Theorem for RBC




Floer and Morse homology for RBC

This Chapter consists of three parts. Recall that in [49] a Floer type theory ap-
plied to proper relative braid classes with support in D? was introduced. In the
first part of this Chapter, for a particular class of Hamiltonian systems, called hy-
perbolic, we extend the same construction as in [49] to unbounded proper relative
braid classes. These are braid classes whose representatives are not necessarily
supported in a compact set of R?, like D?. We prove that this construction leads
to the definition of a braid Floer homology which is isomorphic to the classical
braid Floer homology defined in [49]. In the second part, we define a Morse type
theory for a special class of unbounded braids, called Legendrian. The latter is
obtained by applying, in a parabolic setting, the construction we have used in
the first part of the Chapter. In the last part, we apply the techniques of [46] to
establish an isomorphism between the two homology theories for braids we have
introduced.

3.1 Introduction

Floer homology theory plays nowadays an important role in Geometry and Ana-
lysis. It has been used in many fields with different aims and different results,
from the solution of the well-known Arnol’d Conjecture [23], to many applica-
tions in symplectic field theory [17], symplectic homology [24], [42], [53], heat
flows [46], elliptic systems [7] and strongly indefinite functionals on Hilbert
spaces [2]. Roughly speaking the Floer theory is an extension of the Morse theory
to a fully infinite-dimensional setting with a strongly indefinite functional. Floer
homology considers a formal gradient flow and studies its set of bounded flow-
lines. Floer’s initial work studied the elliptic non-linear Cauchy-Riemann equa-
tions, which occur as a formal L?-gradient flow of a (strongly indefinite) Hamil-
tonian action. As in the construction of Morse homology one builds a complex
by grading the critical points via the Fredholm index and constructs a boundary
operator by counting heteroclinic flowlines between points with difference one in
index. The homology of this complex, called Floer homology, satisfies a continu-
ation principle and remains unchanged under suitable (large) perturbations.

In [49] the above mentioned Floer theory was applied for the first time to
the algebraic theory of braids, with many different interesting results, such as the
Monotonicity Lemma and the definition of the braid Floer homology for bounded
proper relative braid classes.

As mentioned already in Chapter 1 and Chapter 2 braids on D? may be repre-
sented as closed loops in the configuration space C,(ID?). This may be extended
to any two-dimensional manifold. In particular in the following notes we will
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use braids on R?. When we will consider explicitly R? instead of D?, in order not
to create ambiguities, we will use the adjective UNBOUNDED.

Recall briefly from Chapter 2 that relative braids, which we denote by x rely
are those braids which consist of two components: x and y. In this thesis we
are concerned with relative braids such that the 2 component consists only on 1
strands, while y consists of m strands. The path component of z rel y of closed
loops in £LCj.,,(R?)! is denoted by [z rel y|r2 and is called a relative braid class.
The intertwining of = and y defines various different braid classes. A braid class
[z rel y|ge is PROPER if & cannot be deformed onto components in y. ¢ y. We ab-
breviate relative braid classes by RBC and proper relative braid classes by PRBC.
Recall that a bounded braid class [z rel y]p2 is PROPER if 2 cannot be deformed
(via homotopies in D?) onto components in either y. c y or the boundary oD?.

3.1.1. Remark. Properness is a topological condition that descents from braids on
D? to braids on R?, i.e. properness of [z rely|p: implies properness of [z rel y|g.
The implication does not necessarily go in the opposite direction.

The aim of this chapter is threefold:

(1) extend, for a special class of Hamiltonians, the construction of the braid
Floer homology of [49] from bounded PRBC to unbounded PRBC and es-
tablish an isomorphism between them;

(2) define a Morse thoery for a special type of (unbounded) braids, called (un-
bounded) Legendrian;

(3) establish an isomorphism between Floer homology for bounded PRBC and
Morse homology for unbounded Legendrian PRBC, using the construction
of [46] adapted to our setting.

In the next three paragraphs we give a short description of the three main parts
of the Chapter.

3.1.1 Uniform estimates for unbounded proper relative braid

classes
Let R? be the plane with coordinates = = (p,q) € R%. The construction of braid
Floer homology proposed in [49] cannot be directly extended from D? to R?, with
the same class of Hamiltonians as in [49]. This is due to the fact that R? is not
a compact manifold, and hence loops in C,,,(R?) are not a priori contained in a
compact set of R?, as it happens for those in C,,,(D?). In order to construct a well

I The space of continuous mapping S* — X, with X a topological space, is called the free loop
space of X and is denoted by £LX.
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defined Floer homology theory for unbounded PRBC, we assume the Hamilto-
nian function is HYPERBOLIC. Let Hy : S* x R? — R defined as follows

HV(tap7 q) = %pQ - %q2 + V(t7pa Q) (31)

The function V : S' x R? — R satisfies the following conditions:
(V1) V e C*°(S! x R%R);
(V2) for j = 0,1, 2 there exists a G/ € C2°(R) such that

107V (t,p,q)| < G?(q), forall (t,p,q)eS" xR

We denote by 7 the space of functions V : S x R? such that (V1) and (V2) holds,
and by J4,,,, the space of Hamiltonians with V' € ¥. For V € ¥ and Hy € Ay,
define the action functional as follows

Ay, (x) = /01 $(Jz, ) — Hy (t,z) dt. (3.2)

Here (-, -) denotes the standard inner product in R?, and J is the standard sym-

plectic matrix, i.e.
0 -1
J= ( 1 0 ) . (3.3)

The requested uniform bounds are obtained by exploiting the properties of
generic hyperbolic Hamiltonians. With respect to this class of special Hamilto-
nians, the construction of A. Floer [23] applies and yields

HHF, ([z]|gz rely; Hy, J).
Here the almost complex structure J plays the role of a parameter. We prove, by
construction (Theorem 3.2.18), that for a specific H € C§°(D?) c 7 there exists
V e ¥ and Hy; € 4y, such that
HF, ([z]p2 rel y; H, J) = HHF, ([z]|g2 rel y; Hyy, J).

Different choices of Hy € 74, and of constants J € ¢ (defined in Section 1.3.1)
yields isomorphic Floer homologies and

HHF . ([z]g2 rel y) = lim HHF, ([z]g2 rel y; Hy, J),
—
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where the inverse limit is defined with respect to the canonical isomorphisms
ap(Hy,Hy:) : HHFg([z]rely; Hy,J) — HHFy([z]rely; Hy/, J) and b (J,J') :
HHF ([z] rely; Hy, J) — HHF([z] rely; Hy, J'). This implies, in particular, that

HHF ., ([zrel y|gz) = HF ., ([z rel y]p2). (3.4)

3.1.2 Mechanical Morse homology for unbounded Legendrian

PRBC

Property (iii) of Section 1.4.1 can be shown to hold for HF, ([z]g2rely, Hy ). It
shows that if we compose z rel y with ¢ > 0 full twists A2, the homology groups
of [z rel y]g2 are isomorphic to the ones of [(x el y) - A]g: (up to shifting).

Let z rel y be a RBC supported in R? and compose z rel y with £ > 0 fulltwists A?,
such that (zrely) - A2 is isotopic to a positive braid z* rel y*. By Property (iii) of
Section 1.4.1 we have

HHF, ([ rel y]pe) = HHF, o0 ([(z" rely") - A%]g2). (3.5

By (3.5) we will assume from now on, without loss of generality, that our rela-
tive braids have a positive representative. Positive relative braids " rel y* are
isotopic to Legendrian braids z% rel y* on R?, i.e. braids of the form z¥ = (¢, q)
and y* = (Q,Q), where ¢ = maz and Q = may, and 7> the projection onto the
g-coordinate, see Sections 2.7.2 and 2.7.3. The associated equivalence class of un-
bounded Legendrian braids is denoted by [¢rel Q]r and its fibers by [¢]r rel Q.
Legendrian braids can be described via mechanical systems and Hamiltonians of
the form

Hy(t,p,q) = 5p° - 5¢° + U(t,q). (3.6)
On the potential U : S x R — R we assume the following hyphotheses:
(U1) U e C=(R x S4;R)
(U2) for j = 0,1,2 there exists a G € C2°(R) such that

07U (t,q)| < G7(q), forall (t,q) e S* xR.

We will denote by % the space of functions U : R x S' — R such that (U1) and
(U2) holds, and by s#,ccn the class of Hamiltonians Hy such that U € % . The
action functional in this setting becomes

1
Lo(q) = / 12+ 12 _U(t,q) dr. (3.7)
0
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We note that .#}; is not strongly indefinite. Then, as in classical Morse theory, to
any critical point ¢ of ., one can assign a finite Morse index, which we denote by
B(g). Since also in this case we are working with unbounded Legendrian PRBC,
also in this case we need to find uniform estimates. To obtain uniform bounds,
we use Fourier estimates and parabolic bootstrapping. We emphasize that in this
pages we do not develop the proofs of the genericity properties for critical points
and connecting orbits. The construction of the Morse homology follows the steps
summarized in Section 1.4.1. It follows that

HHM, ([glr rel Q; U)

is well-defined and independent of the chosen potential U € % and of the fiber
[¢]r rel Q. For these reasons we will write HHM., ([grel Q]r). At the end of Section
3.2, in Section 3.3.3, we introduce the class of potentials #. These are functions
such that

(W1) W e C=(S x R;R)
(W2) 9, (¢t,+1) = +1.

For these choice of potentials we can define HM., ([grel Q]), where [grel Q] is a
bounded Legendrian proper relative braid class. We also show that

HHM., ([grel Q]r) = HM.([grel Q).

3.1.3 Isomorphism between braid Floer and Morse homology
In the third part of the chapter we establish the isomorphism

HHF . ([zrel y|g2) = HHM..([q rel Q]r), 3.8)

where [z rel y]g2 is an unbounded proper relative braid class and [grel Q| its (un-
bounded) proper Legendrian projected class. We notice that the solutions of the
Cauchy-Riemann equations which have been perturbed by changing the sym-
plectic matrix J into

-1
JE::<8 % ), for some ¢ > 0,

formally converge when ¢ — 0 to the solutions of the heat equations, see Section
3.4.1. A deeper analysis of the structure of the equations (see Proposition 3.4.8)
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shows that the convergence is indeed in Cf. (R x S'). This allows to build a one-
to-one map between connecting orbits of the heat equation and connecting orbits
of the Cauchy-Riemann equations. We call this map the Salamon-Weber map, see
[46]. We prove finally that the map respects the braid classes, provided the RBC
are proper. From this, the required isomorphism follows.

Summarizing the main result of this Chapter is the proof of the chain of iso-
morphisms

HF. ([zrel y]p2) = HHF, ([z rel y|rz) = HHM, ([¢grel Q|r) = HM. ([¢rel Q]) (3.9)

3.2 Hyperbolic braid Floer homology

In this Section we extend the construction of the classical braid Floer homology of
[49] from bounded PRBC to unbounded PRBC with respect to hyperbolic Hamil-
tonians. At the end, Theorem 3.2.18 establishes an isomorphism between them,
and hence the first part of the chain isomorphism (3.9).

3.2.1 Set-up: hyperbolic Hamiltonians in R?.

Let V € ¥ and Hy € J#y, a hyperbolic Hamiltonian. Let <7, the action func-
tional defined in (3.2). Denote by Critg,, the space of critical points of 27y, and
endow Crit g7, with the compact-open topology on S'. Since S! is compact this is
equivalent to the strong C?(S') topology. Hyperbolic Hamiltonian systems have
special properties, among which the existence of uniform a priori estimates for
critical points of .7, . This is the content of the following lemma.

3.2.1. Lemma. Let Hy € JAy,,V € ¥ then there exists a uniform constant ¢ > 0
(dependent only on the support of G7 (in (V2))) such that for every critical point x ¢
Critg,,, it holds

Hl‘HCO(Sl) <c. (310)

Hence there exists C' > 0 such that for all x € Crit,y,
|, ()] < C. (3.11)
Proof. Lemma 2.7.1, or [39, lemma 7.1], proves (3.10). Then (3.11) immediately

follows.

For critical points of hyperbolic Hamiltonians the following compactness result
holds.

3.2.2. Proposition. The space Crity, is compact with respect to the compact-open

topology.
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Proof. Let x be in Crity, then, writing the Euler Lagrange equation for x and
passing to the C° norm we obtain

l[zellcosty < [|z]lcogsty + [IVV]|co(st)-
The right hand side is uniformly bounded because of Lemma 3.2.1 and because
V e 7. Hence z is uniformly bounded in C*(S'). By the Theorem of Arzela-
Ascoli, C*(S1') — C°(S') is compact. Hence Crity, is compact with respect

to the strong C° topology on S'. Since S! is a compact set the compact-open
topology is equivalent to the strong C° topology on S, and the result follows.

3.2.2 Uniform estimates for bounded solutions

The negative L? gradient flow of the action functional <7y, yields the non-linear
Cauchy-Riemann equations i.e.

us — J(up — Xpr, (t,u)) = 0. (3.12)
Since Hy € iy, V € ¥, Equation (3.12) can be written as
Oyru—VV(t,u) =0, (3.13)
where 0 r is the linear operator represented by
Oyr =05 —JO + R.

Here
R=Q-P (3.14)

and P, Q : R? — R? are the projections defined as follows

P(p,q) = (p,0), Q(p,q) = (0,q). (3.15)

Let V ¢ ¥ and z* be in Crity, , we define the space of connecting orbits
between 2~ and z* as

%;IV;I‘ = {U R x Sl — R27usatisﬁes (312) lim u(s7) _ $j:} )

S§—r+00
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Let 0 < a < 0o, we define the space of bounded solution as follows

My, = {u ‘R x S* — R?, u satisfies (3.12) : sup |, (u(s, )| < a} .
seR

We endow . Iﬁ;ﬁ and .#f;, with the compact-open topology on R x S*. In this
Section we show that if V € 7, there exists a > 0 large enough such that

MEE
Hy = Hy»

for every z* ¢ Crity, . We prove furthermore that elements in .# EV””A are uni-
formly bounded in C"(R x S'), for every r ¢ N. In order to prove this we need
some preliminary lemmas.

3.2.3. Lemma. There exists a constant C' > 0 such that for every u ¢ CL(R?) it holds
|l (r2) < Cll0sruUll L2 (R2).- (3.16)
Proof. Invoking the Fourier transform on R? we obtain that
=~ . [ €-1 —in
aR_A_( in  i+1 )

where (£, n) are the variables in the Fourier space and the Fourier transform is
defined by

1 )
u(é,m) = /2 e U8ty (5 1) dsdt.

2
47 R

The inverse of A is given by

PR i€+1 i
E+n?+1\ —in -1 )7

Since | det A| > 1 we get

2 1 2
& S<1, <, (3.17)
(det A) (det A)
which implies that ||A™||,(r2;r2) < 1, where || - || (r2;r2) is the norm of the

bounded operators in from R? into itself. By the Plancherel isometry we have

ullpzey = |[tll2@ey = [|A10sRullL2@®2)

A Y Lr2ir2) 105, RUll 22y < (105, RUllL2(R2).
(3.18)

IN
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We still need to prove the L? estimates on the derivatives. These are given in the
Fourier space by i¢A! and inA~'. We have that

| i€-€ &y
icd _§2+n2+1< &n i€£2>'

As in (3.17) the norms of the matrix entries are bounded by 1. The case for inA~*
is analogous. As in (3.18) we obtain estimates for ||us||z2r2) and [[us]|r2(r2).

3.2.4. Lemma. Let be G c R? be compact and K cc G. For any function u e C*(R x
St R?) there exists a constant Ci i > 0 such that

[ull i1 (xy < Cra (100Ul L2y + ull2(@)) 5 (3.19)

Proof. First, extend u via periodic extension to a function on R? in the ¢ direction.
Let € be positive such that € < dist(K, 0G). By compactness, K can be covered by
finitely many open balls of radius /2 :

N
K c U B jo(x;).

i=1
We consider a partition of unity {p. s, }i=1,.. ~. on K subordinate to
{Be(zi)}i—1 . - In particular the support of p. ., is contained in B:(z;), for
any ¢ > 0and any ¢ = 1... N.. Then, for any u, any ¢ > O and any ¢ = 1... N,
the function v, ; := p. o, u belongs to HE(R?), for any k € N. Recall that p. ., isa
scalar function (and set 0y = 05 — J0;). Using Lemma 3.2.3 we get

@2y = llveillm (oo < CllOs RV illL2(B. (22)
= C||pe,z;05,RU + pe 2, Ru + 10 pe 2, | |L2(Ba(wi)) (3.20)
< Cl|0s,rul|L2 (@) + CllullL2 (),

|[ve,i

where C'is the constant that appears in (3.16). As {p.;},_, 5. is a partition of
unity it follows that

N
< Z ||’U€’iHH1(BE(x1;)) . (321)
HY(K) =1

\|U||H1(K) =

N
E Ve,i
i=1

Putting together (3.20) and (3.21) we obtain (3.19).

3.2.5.Lemma. Let V e ¥ and a < co. There exists C, > 0 such that

l[us||z2(®xs1) < Ca, (3.22)
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for every u e ME .

Proof. Let u € .#}; ,, for some 0 < a < oo. By the gradient flow structure of the
Cauchy-Riemann equations we obtain

da

1
ot (u(s) = = [ (s, .

Let S > 0 be arbitrary, by integrating over [-S, S| we have

S 1
[ ) / g (5,0)? dtds = iz, (u(—S,)) — Az, (u(S, ).

The right hand side is bounded by 2a. Since this bound is independent of the
chosen u € ./ , passing to the limit S — oo, we obtain (3.22).

3.2.6. Corollary. Let V € ¥. There exists ¢ > 0 such that

l[us||L2rxs1) < € (3.23)

for every x* € Crity, and every u e M7

+
s L
\4

Proof. Follow the proof of Lemma 3.2.5. We obtain
sl 72y < [y (@7)] + |y (@)

The right hand side is uniformly bounded by (3.11) of Lemma 3.2.1, hence the
same estimate holds for every u € . ;”IV’I‘ and every z* € Critg, .

3.2.7. Proposition. Let V € ¥ and a < oco. There exists a positive constant C, > 0 such

that

||UHC’”(]R><SI) < Ca, fOTlleT' S N, (324)
for every w e M, . Furthermore, the space Mg, is compact in the compact-open topol-
ogy on R x S*.

Proof. We start multiplying Equation (3.13) by Ru. We obtain

(05,ru, Ru) = —psp + 45q — (pq)¢ + ° + ¢* = 0,V (t,p,q)q — 9,V (t,p,q)p. (3.25)
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Let S > 3 be arbitrary. We integrate Eq. (3.13) over the rectangle R} := [-S, 5] x
[-2, 3]. Because of (3.25), V € ¥ and u is one-periodic in ¢ we obtain

lullfzpyy = // lu|? ds dt://l Ip? + ¢*| dsdt
RS RS

< // |psp| dsdt + // lgsq|dsdt
+ // 2 (., q)q| dsdt + // »(t, p, @)p| dsdt
< CS||UHL2 (RL)- (3.26)

Here we have used the Cauchy-Schwartz inequality and the uniform bounds on
||us||L2(res1) given by Lemma 3.2.5. This implies

llullz2(rL) < Cs. (3.27)

We point out that the constant Cg in this proof changes from line to line, it is uni-
form in u but it may depend on S. We can now start with elliptic bootstrapping.
Since u satisfies (3.13) we have that

Osru=-VV(t,u) = f(s,t).
Because V e ¥
||aJRu||L2(R1 = Hf||L2(R ) <Cs (3.28)

By Lemma 3.2.4, (3.27) and (3.28) if we choose R%;= [-(S-1), S -1] x[-1, 2], then
R% € R} we obtain
l[ul| 1 (r2) < Cs. (3.29)

Differentiating the equation (3.13) with respect to ¢ and s we obtain respectively
Oy rur = g'(s,t) and 9y rus = g%(s,1),

fome some g'(s,t) := 0,(VV (t,u(s,t))) and g2(s,t) := 05(VV (t,u(s,t))). Because
V e ¥, also g* € L?(Qg), for i = 1,2. Let R = [-(S - 2),5 - 2] x [0,1] then
R} € R% € R} By (3.19) we obtain that there exists C's > 0 such that

uellirscrg) < Cs (119122 + luelliare) )

and
sl < Cs (llg*ll ez + lusllzarz) -

By (3.29) we obtain
|[ull 2Rz < Cs.
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Using [5, Theorem 4.12, part 1, Case A] the continuous Sobolev embedding (n =
P=24=c0) 2(p3 0(p3
H*(Rg) — C”(Ry).

we obtain

lullco(rzy < Cs,
for a uniform constant Cs. Let o be in R, define Rs,, := [-(S - 2) + 0,(S -
2) + o] x [0, 1]. Since solutions of the Cauchy-Riemann equations are s-translation
invariant, we have

HUHCO(Rg) = [|ullco(rs. )

for every o € R. From this it follows

||u||CO(RX51) < C.

Let K € R}, by differentiating again Equation (3.13) with respect to ¢ and s we
get uniform H 3(K) estimates. By using again [5, Theorem 4.12, part 1, Case A],
this yields uniform local C* estimate. Since all these estimates are s-translation
invariant, they can be extended to global C! estimate. By further differentiations
of Eq. (3.13) we obtain uniform bounds for every derivative of u. From this (3.30)
follows. For the remainder of the proof, it is enough to take Ky € K compact,
and use the compact Sobolev embedding (see [5, Theorem 6.3 Part III])

H3(K) = C°(Ky).

This proves the final assertion.

3.2.8. Corollary. Let V € ¥. There exists a positive constant C' > 0 such that

l[ullcrresry < C,  forallr e N, (3.30)

for every u € Ay and every x* € Critg,, .

Proof. The same as Proposition 3.2.7. Start the bootstrapping with the bound
(3.23) of Corollary 3.2.6. The latter depends only on the constant that appear in
(3.10), and it is independent of the critical points 2, z* € Critg,, .

3.2.9. Remark. The proof of Proposition 3.2.7 uses the same bootstrapping argu-
ment as in the proof of Proposition 4.2.1 of Chapter 4. We use here the Hilbert
Sobolev spaces H* instead of the Banach Sobolev spaces W*?, k € N,p > 1. This
is a consequence of the Fourier estimates of Lemma 3.2.3.
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3.2.3 Compactness and isolation for critical points in a PRBC

Recall that in Chapter 1, if 2 and y do not have tangencies?, we have defined the
integer Cross(x rely), in terms of the winding number of z rel y (with the conven-
tion that the crossing is positive if the z — y' rotates counter clockwise rotation
about the origin, and negative if z - y' rotates clockwise). For un unbounded
braid the same definition can be given and the following result hold.

3.2.10. Lemma (Monotonicity lemma). Let a > 0,V € ¥,y € LC,,,(R?) and u €
M, The function s +— Cross(u(s,-)rely) is (when well-defined) a non-increasing
function of s with values in Z. To be more precise, if there exists (so,to) € R x S* such
that u(so, to) = y(to) then there exists an g > 0 such that

Cross(u(sg — €, ) rely) > Cross(u(sg + €, -) rel y),

forall 0 < e < .

Proof. Follow line-by-line [49, Lemma 5.4]. The same argument holds since it
does not require elements z rel y to be uniformly bounded.

Let y be in £C,,(R?). Consider an unbounded relative braid class (RBC)
[]ge rel y. Recall that y are called skeleton and x ¢ [x]g= are called free strands. If
the number of free strands of an element in [z]g> rel y is one, the space [z]|g2 rely
is a subspace of C?(S';R?). Define the space of critical points of @y, inside
[z]g rely as

Critg, ([z]gz rely) := Critg,, N([z]gz2 rely).

For V e ¥, and z* ¢ Crity, ([x]ge rely) define the space of connecting orbits in
[]ge rely as

///I”_”I;/’f([x]Rz rely) = {u € ///IC_”I:/”” cu(s,-) € [x]gzrely, forall s e R} .

Let a € R be positive. The space of bounded solutions of Equation (3.13) is defined
as follows

M, ([2]r2rely) = {u e MF;, :u(s,-) € [z]p2rely, forall s e R} .

It follows from Lemma 3.2.10 that if [z]g2 rel y is an unbounded RBC, and a >
0, for u e .#f;  ([z]r> rel y) we have that Cross(u(s, -) rely) is an invariant of the
unbounded relative braid class. This means that Cross(u(s, -) rel y) is constant on
connected components of [z]g2 rel y.

2more precisely if z and y° forall i = 1, ..., m do not have tangencies
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3.2.11. Remark. Let 0 < a < 00,V ¢ ¥ and [z]g2 rely an unbounded RBC fiber,
with y € £(C,,(D?)). By Proposition 3.2.7 we have uniform bounds in C" for
every r for the space .Z}; , ([z]rz rel y).

Recall that for a relative braid class fiber with skeleton y, we say that [z]g= rel y
is proper, if the free strand = cannot be deformed onto itself, or components in
Yo € y. For an unbounded PROPER relative braid class [z]g= rel y, the space

Crit g, ([z]gz rely)

has special properties. The most important is that unbounded PROPER RBCes
isolate the space of critical points.

3.2.12. Proposition (properness implies isolation). Lety € £LC,,(R?)and V ¢ V. If
[]r2 rely is an unbounded PROPER RBC, then the space Crit gy, ([z]gr2 rely) is compact
(with respect to the compact-open topology) and isolated in [z]|g2 rel y.

Proof. We first prove that Crity, ([z]gzrely) is compact. Let z, «
Critg, ([z]gzrely), then in particular z,, € Crity, . Since Crity, is compact
(by Proposition 3.2.2), up to a subsequence

Tn — xo € Crity,, .

Since [z]g2 rel y is proper, by Lemma 3.2.10, Cross(z,, rely) is well defined for all
n e N and, by continuity, Cross(x,, rely) = Cross(zo rely). This implies that x¢ €
Critg,, ([z]g= rely). It follows that Crit g, ([z]g= rel y) is closed, and hence compact.
We now prove that Crit g, ([x]g2 rel y) is isolated. By Remark 3.2.11, we have that
there exists ¢ > 0 such that ||z||co < ¢, for every x € Crity,, ([z]g2 rely). We will
show that there exists 0 < r < ¢ such that

lz(t)| < and |z(t) -y’ (t)>c-r, forallj=1,....,m (3.31)

for all x € Crity, ([x]g2 rely). By contradiction, suppose that such r does not exist.
Let z,, € Crity, ([x]ge rely), by compactness of Critg,, ([z]g= rel y) (up to a subse-
quence) there exists zy € Critg,, ([z]g2 rely), such that z,, — z¢. If such r in (3.31)
does not exist, then there exists ty € S* such that

zo(to) =9’ (to) forsomeje {1,...,m}.

By uniqueness of the solutions of the Euler-Lagrange equations we have z(t) =
y(t), for all t € S* which contradicts the fact that [z]g: rel y is proper.



3.2 Hyperbolic braid Floer homology

3.2.4 Genericity for critical points of hyperbolic Hamiltonians

Let V ¢ ¥,y € LC,,(R?) and [z]g: rely an unbounded RBC. We say that = ¢
Critg, ([z]gr= rel y) is a non-degenerate critical point if the operator

J% +D*Hy (t,x) : H'(S*) — L*(S")

is invertible. We prove now that if V' is chosen "generically" in ¥ then all crit-
ical points are non-degenerate. This is the content of the following proposi-
tion. We first give some nomenclature. For Hy € J4,yp,,V € ¥, we say that
y = {y*®),...,y" ()} € LC,(R?) is a solution curve of Xp, > if for every
i=1,...,my"asolution of

vi =Xy (ty'"), y'(0)=y" (1), forsomeo e Sy, (3.32)

Recall that || - ||¢e is defined as

1hllo= = erllhllcx,

keN

for a sufficiently fast decaying positive sequence ¢y.

3.2.13. Proposition. Let y be in LC,,,(R?) and [z]g: rel y be an unbounded PRBC. For
every hyperbolic Hamiltonian Hy € .y, V € ¥ with y a solution curve of X g, there
exists a 0, > 0 with the following significance. For every 6 < 6, there existsa V' € ¥
(and Hy» € Hh,yp) with the property that

(i) ||Hy = Hy|[co < 0
(i1) y is a solution curve of Xp,, .
and such that Crity,, ([x]r2 rely) consists only of non degenerate critical points. This

implies, by compactness, that the space Crity,,, ([x]g2 rel y) consists only of finitely many
isolated points.

Proof. By Lemma 3.2.1 the space Crit g, ([z]g2 rel y) is uniformly bounded, by a
constant C' > 0. Let y ¢ £C,,(R?), then y has m strands. Let B.(y") a tubular
neighborhood of y* of radius e. Define

Ne(y) = U Be(yi)'

k=1,....m

3the Hamiltonian vector field is defines as X uy = JVHy
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If € > 0 is chosen small enough, IV, consists of m disjoints cylinders.
D¢ :={zeR?:|z| < C},

Let
T% := S' x D¢

be the two-torus. By the uniform bounds on Crit g, , if C' is chosen large enough
and ¢ > 0 small enough, N.(y) c T%. Define

Ae,C = I’]IQC' \ Ns(y)

Since [z]g2 rel y is proper there exists an ¢, > 0 such that for every ¢ < ¢, it holds
that
Crity, ([z]gzrely) c int (Ase o) -

Fix now ¢ ¢ (0,¢,] and, for ¢ > 0 small define the space
Vs.e = {v e C®(S* xR%R),suppv ¢ A o, |[v]|c~ < 6}

of perturbations of V. Let vs be in V, 5 and define Let V' := V + vs. Construct a

Hamiltonian

1,2 1.2
Hy: = 3p” - 54"+ V +vs.

By construction Hy € Sy, V' € ¥,y is a solution curve of Xy, and
[|Hy — Hy/||ce < 0.
Using the same arguments as in Proposition 3.2.12 we have that the compact set
Critg,, ([z]r2 rely)
is isolated for all perturbations v; € Vs .. This shows that
Critp,,, ([z]ge rely) — Crity,, ([z]r2 rely)
in the Hausdorff metric* as § — 0. Therefore there exists a J, > 0 such that
Critp, ,, ([z]re rely) c int (A2 o) (3.33)

forall 0 < 0 < 4.. Now fix ¢ € (0, d,]. The Hamilton equations for Hy are —Jx; +
VHy(t,z) + Vus(t,z) = 0, with periodic boundary conditions. Now, in order to

4If X, Y are non-empty subsets of a metric space (M, d) we define their Hausdorff distance as

dyg(X,Y) := max{sup inf d(z,y),sup inf d(z,y)}
zeX YeY yeY zeX
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conclude the proof, we need to show that we can choose vs € Vs . generically such
that for every x e Crity,, ([#]g2 rel y) the operator Jx;, + D?Hy(t, z) is invertible.
Without going into details (see [49, Proposition 7.1] for a complete proof), we only
say that using the fact that [z]g= rel y is proper, and, in particular (3.33), for a large
(dense) class of vs € Vs, the Sard-Smale Theorem [47] implies that the operator
Jxy + D?Hy/ (t, z) is invertible.

3.2.14. Remark. The previous Proposition 3.2.13 shows that if we choose V' gener-
ically, then critical points are non-degenerate, which implies that they are isolated
points. Compactness of critical points, (Proposition 3.2.12) shows furthermore
that they are finitely many.

We now prove that the constant C,, which appears in (3.30) is independent of
a, provided a is chosen large enough and V' € ¥ is generic. This is a consequence
of the fact that generically the space of bounded solutions equals the space of
connecting orbits (inside a proper relative braid class).

3.2.15. Proposition (uniform bounds). Let Hy € Jfy, with V € ¥ generic. Let y
be in LC,,(D?) and [x]ge rely be an unbounded PRBC. If a > 0 is sufficiently large it
holds

M, ([r]r2 vely) = U ///I?Vf ([z]ge rely). (3.34)

z*eCritay, ([z]g2 rely)

This implies that there exists C' > 0 such that
l|uller@mxsty < C,
for all a > 0 sufficiently large and all u e A F;, ([x]g> rely).
Proof. By Corollary 3.2.8 we obtain that there exists (a uniform) a > 0
My, ([r]r2 Tely) 2 ///flvz ([z]g2 rel y)

for all * ¢ Crity, ([z]g2rely). Hence taking the union over all z* ¢
Crit g, ([x]gz rel y) we obtain

M, ([x]ge rely) 2 U <%IJ_};’I+([:];]R2 rely).

x*eCrit gy, ([x]g2 rel y)

It remain to establish the opposite inclusion. Let u € . , ([x]g= rely), then by
Proposition 3.2.7 we obtain that there exists C,, > 0 such that [|u||cr@®.s1) < Ca.
Using this bound and and genericity of V' € ¥ as in [45, Proposition 4.2] we
establish that solutions in .Z}; ([z]r> rely) have limits, i.e.

lim wu(s,t) = 2*(t), forallte S'.

S§—+00
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for some z* e C'(S'). If @ > 0 is large enough then z* e Crity, . Hence
ue M ZI;/W, for some z* € Critgy, . Isolation of proper relative braid classes im-
plies that * ¢ Critgy, ([]g2 rely). by the Monotonicity Lemma (Lemma 3.2.10)
we have u € ./ I“{”;/:N ([x]rz2 rel y) and the other inclusion follows.

To prove the final assertion, we note that elements on the right hand side of
(3.34) are uniformly bounded by a constant C that is independent of a.

3.2.16. Remark. Let a > 0 be large enough V' ¢ ¥ generic and [z]g2 rel y is an un-
bounded PRBC. It follows from Proposition 3.2.15 that the space .Z;, ([z]g: rel y)

is compact in the following sense. Let {u,},ny C A ;};}’z+([ﬂjhg2 rely) be a se-
quence, then there exists a subsequence (still denoted by u,) and sequences of
times s}, e R,i =0,..., k such that u, (- + s, -) converges with its derivatives uni-

formly on compact sets to u’ € . flvw ' ([z]gz rel y), where x? € Crity,, ([z]ge rel y)
fori =0,...,kand 2° = »~ and 2% = z*. This type of convergence is called in
literature geometric convergence (see [45]).

3.2.5 Hyperbolic braid Floer homology and its isomorphism

with the classical braid Floer homology

We are now ready to construct the Floer homology for hyperbolic Hamiltonian
systems in the setting of unbounded PRBC. We follow the steps of Section 1.4.1.
Recall that the image of .#;, ([z]g= rel y) under the mapping u — u(0, ) is called
., ([7]r2 rel y). We have proved compactness of the space .#}; , ([z]g: rely). The
proof of compactness of .7}; ([x]r> rely) follows from the same arguments as in
[49], and from the compactness of .Z}; , ([z]r2 rely). The same arguments as in
[49] show that .}; ([x]r>rely) is isolated. We have shown genericity proper-
ties of critical points of hyperbolic Hamiltonian systems. For connecting orbits,
the arguments are the same as in [49]. This yields that the space of connecting
orbits consists of smooth dimensional manifolds without boundary. For non-
degenerate critical points of hyperbolic Hamiltonians we can define the Conley-
Zenhder index as in Section 2.4. By grading the critical points of a generic hyper-
bolic Hamiltonian with the Conley-Zenhder index, we define a chain complex
C([z]g= rel y) with coefficients in Z; and a boundary Jj, operator. Its homology
is denoted by
HHF, ([z]gz rely; Hy ) := Hy(Ck, Oy).

The latter are called hyperbolic braid Floer homology groups. By the same ar-
guments as in [49] we can show that HHF, ([x]g2 rel y; Hy) is independent of the
chosen hyperbolic Hamiltonian and of the fiber. Hence we can write

HHF ([z rel y]g2).
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We now prove the isomorphism (3.4). But before we perform an extension
from bounded proper relative braid classes to unbounded ones in the follow-
ing way. Let [zrely]p2 be a bounded proper relative braid class and [z]p2 rely
its fiber. Extend now [z]pz rely to [z]g2 rel y by considering homotopies in R? in-
stead of D?2. Since [z]p2 rely is proper, by Remark 3.1.1, [z]gz rely is proper. The
extended unbounded proper relative braid classes [z]g= rel y inherit furthermore
from [z]p2 rel y the topological property that can not be deformed onto 9D?. Ex-
tensions of proper relative braids class fibers enjoy the following property.

3.2.17. Lemma. Let y € £C,,(D?) and [z]pz rely be a bounded proper relative braid
class fiber. Let [x|g2 rely its proper unbounded extension. If there exists a loop & in R?
with support entirely contained in (D?)¢ := {z ¢ R? : |z| > 1} then

T ¢ [x]ge rel y.

Proof. We have y € £(C,,(D?)). Then all the skeleton strands have support in D?.
Fix a representative z( € [x]p2 rely. Since, as sets, [x]p2 rely ¢ [z]g2 rel y, then we
can assume that x¢ € [z]g2 rel y has support entirely contained in D?. Suppose, by
contradiction, that there exists & € [z]g= rel y, with support entirely contained in
(D?)¢. Then there exists a homotopy g : [0, 1] x L(R?) — £(R?) such that (0, z) =
zo and ¢g(1,2) = & and g(\, x) € [z]gzrely, for all A € [0, 1]. Then there are only
two topological configurations for z.

(i) # has non-trivial homotopy type. Without loss of generality, since supp(Z) is
entirely contained in (D?)¢ and # has non-trivial homotopy type, we can assume
that there exists R > 1 such that # = D% = {z ¢ R? : |z| = R}. If we now
perform the following homotopy

B\ ) = g\, x) for all X : [g(\,z)| < 1, for all z € L£(R?)
TIZ g\, @) #manzg(N, ) for all X : there exists 7 : |g(\, 7)| > 1

where map: : C([0,7];R?) — OD? is the continuous function that makes every
curve v in R? with intersection with 9D? collapse to the segment (inside 7) in OD?
with endpoints the intersection between the curve and 9D?, and # denote the
concatenation between two curves. By construction A is continuous, |h(), z)| <
1, for all A € (0,1), and all z € £(R?), and h(0,z) = 2o and 7 = h(l,z) =
mop2g(1l,z) = 9D?, for all |z| > 1. Hence we have found a homotopy h(\,z) €
[z]p2 rely for all A € [0, 1] with endpoints zo and 9D?. This contradicts the fact
that [x]p= rel y is proper.

(ii) Z has trivial homotopy type. Without loss of generality, since supp(Z) is en-
tirely contained in (D?)¢ and Z has trivial homotopy type, we can assume that
7 € OD?. Hence g(\, z) € [z]pz rely for all X € [0, 1] with endpoints 7o and & € 9D?.
This contradicts again the fact that [z]pz rel y is proper.
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3.2.18. Theorem. Let [zrely|p2 a proper relative braid class and [xrelylgz its un-
bounded extension. Then

HF, ([x rel y]p2) = HHF, ([z rel y]g2). (3.35)

Proof. The proof is constructive. Let [z rel y|p2 be a bounded proper relative braid
class with fiber [z]pzrely and y € £(C,,(D?)). Let H ¢ J (defined in Section
1.3.1) be generic, then

HF . ([z rel y]p2) = HF g ([z]p2 rel y; H).

Since the left hand side is independent (up to isomorphims) of the chosen Hamil-
tonian H e 7, without loss of generality we can choose H (¢, -) € C5°(D?). Extend
H(t,-) smoothly to R? in the following way

i _ | H(t,z) [z[<1
Htz) = { 0 |z| > 1.

Note that H(t,-) € C5°(R2). Let g be in C>(R*) such that
1 r<2
g(T’) - { 0 r > 3’

V(tp.0) = g(lal) (~30° + S¢* + H(t,2) ) .

and define

By construction V € ¥ and hence

Hy(t,x) = 4p* - 3¢° + V(t,p,q)

is in J#,y,. We have furthermore, by construction of Hy;, that every constant zg
with 1 < |xo| < 2 is a solution of the Hamilton equations of Hy;, hence an element
of Crity,, . Since the Hamilton equations of Hy; have no closed orbits for |z| > 3,
there are no critical points of 7y, for [z| > 3.

The proof now proceeds in two steps.

(i) We prove that
Crit g ([x]pz rely) = Crity,, ([z]g2 rely). (3.36)

It suffices to show that every = e Crity ([2]r2 rely) has support in int(D?).
Suppose, by contradiction, that there exists z € Critpy,, ([z]gz rely) and to
such that z(ty) = zo for some zo ¢ dD?. Uniqueness of the initial value
problem of the Hamilton equations yields |z(t)| = zo for all ¢ € S*. This is
a contradiction, since [z]g2 rely is an extension of the proper relative braid
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class [z]p2 rely (that can not be deformed onto dD?). This proves that, for
every z € Crity ([z]g2 rely), x has support either in the interior or in the ex-

terior of D?. Lemma 3.2.17 proves that the support of = can not be contained
entirely in (D?)¢, and hence (3.36).

(i) And now we show that
MET ([z]pe rely) = ///flﬁm‘ ([z]g2 rely). (3.37)

By (i) if u € A, ;;x+([1']]]{2 rely) then there exists S > 0 such that u(s,-) ¢
[x]p2 rely for all |s| > S. The Monotonicity Lemma (Lemma 3.2.10) implies
that u(s,-) € [z]p2rely for every s € R. Since Hy|p2 = Hp» we have that
ue M3 " ([z]p2 rely). This implies (3.37).

To conclude the proof we have, by (3.37) homotopy invariance of the Hamilto-
nians H € 4 and Hy € J4,y,, homotopy invariance of the fiber [z]p: rely in
[zrely]p: and of [z]grely in [zrely|ge, and homotopy invariance of the chosen
constant almost complex structure J € _#, that

HF . ([zrelylp:) = HFE.([z]p2rely; H,J)
HHF, ([x]ge rely; Hy, J) = HHF.([zrely]rz2).

This shows (3.35) and concludes the proof.

3.3 Mechanical braid Morse homology

In this Section we define, for a special type of braids, called Legendrian, a Morse
type thoery. The construction will follow the step summarized in Section 1.4.1
and it is carried out in full details except for the genericity properties for critical
points and connecting orbits. Since we consider Legendrian unbounded braid
class, we need to obtain also in this case we need uniform estimates. These es-
timates will be obtained in the same manner as in Section 3.2, but in a parabolic
setting.

Consider now a simplification of the hyperbolic Hamiltonian system (3.1). Let
U e % (defined in Section 3.1.2) and Hy € 0.1 Recall that Hy has the form

HU(tap7 Q) = %p2 - %qQ - U(ta q)
where U satisfies the hypotheses (U1) and (U2) of Section 3.1.2. The action func-

tional has the form (3.7). Note that .2, (¢) = i, (4, ¢). Critical points of % are
denoted by Crity .
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3.3.1. Remark. Since mechanical systems are special hyperbolic hamiltonian sys-
tems, for mechanical systems, Lemma 3.2.1 and Proposition 3.2.2 continue to
hold. Hence there exists constants ¢ > 0 and C > 0 such that

llgllco(sty < ¢ (3.38)

and
|Zv(9)] < C, (3.39)

for all ¢ € Crity . Furthermore the set Crity is compact with respect the compact-
open topology.

The choice of Hy of the form (3.6), implies that critical points of %7, are restricted
tobe z(t) = (p(t), q(t)) = (q:(t), q(t)). In the setting of braids, it can be easily seen
that such strands lay in the kernel of the one-form a = dg - pdt. This property
is known as the Legendrian property, and we will refer to these braids as LEG-
ENDRIAN BRAIDS. It it important to highlight that for a Legendrian braid (with
multiple strands) the Legendrian constraint implies that all intersections corre-
spond to positive crossings.

3.3.1 Uniform bounds (and compactness) for bounded solutions

The negative L? gradient flow of the action functional %}, gives rise to the non-
linear heat equation
Vs — Vg + 0 — O, U (t,v) =0, (3.40)

Solutions of Equation (3.40) lay in the space
CH(Rx SY) :={ve COR xS : vy, v, v € CO(R x SH}.

As for the Cauchy-Riemann equations, for U € % and ¢* € Crity define the space
of connecting orbits between ¢~ and ¢* as

NIt = {v e CH?(R x S') : v satisfies (3.40) and lirin v(s,-) = qi} :
S§—r+00
Let a > 0 define the space of bounded solutions as

N = {v e CH?(R x S') : v satisfies (3.40) and sup |.Zy (v(s, )| < a} .
seR
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In order to prove the requested uniform estimates it is useful to deal with the
so-called anisotropic Sobolev spaces. We define

Hy?(R?) := {v e L*(R?) : vy, vs, vy € L*(R?)},
The norm associated to the space Hy?(R?) is the following
ol 222y = Hvllez + [lvslz2 + [[oel] L2 + [[veel| 2
Define then recursively
HE R (R?) = {v e L2(R?) : vy, vs, vy € HY 1(R?)}.

We define also the linear heat operator dyea; : Hy>(R x S') — L*(R x S') as
follows
OheatV := Vs — Vgt + V.

In order to obtain uniform estimates for connecting orbits we need some prelim-
inary lemmas. We now prove a parabolic version of Lemma 3.2.3.

3.3.2. Lemma. It holds
||v||H21’2(R2) < ||aheat’l)||L2(]R2), (3.41)

for every v e CL2(R?).

Proof. Asin Lemma 3.2.3 we denote by 9(£, ) = 225 [p e 5 u(s, 1) dsdt the
Fourier transform of v. By using the Fourier transform we have

||@||i2(R2) = HM;QHaheatUHQLQ(R%'
Hence, using the Plancherel identity we obtain

||UHL2(R2) < ||6heatUHL2(]R2)-

The functions vs, vs, vy in the Fourier space become respectively ino,i€0 and
—£29. We have

2 _ —_—
ol = g O < (Gheaio”
0P = gy Ohea < 3 lOhear
20> = W\&waWIQ < |Oneatv] 2

By using again the Plancherel identity (3.41) follows.
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And now we prove a parabolic version of Lemma (3.2.4).

3.3.3. Lemma. Let G c R? be compact and K € G. There exists a constant Cx ¢ > 0
such that

il 22y < Cr6 (I1OneasvllL2(a) + l|vlz2(ay + [vell p2(ay) 5 (3.42)

for every u e C12(R x S1).

Proof. Extend v via periodic extension in ¢ to a function v € C*(R x S*). The
proof of estimate (3.42) is equal to the proof of Lemma 3.2.4. Interchange in that
proof the role of the Cauchy-Riemann operator 9; r with the heat operator Opeat
and use Lemma 3.3.2, when Lemma 3.2.3 is used. The extra term (||v¢||z2(q))
arises because the heat operator has two derivatives in ¢.

3.3.4. Remark. Let U € %, a < oo and ¢* ¢ Crity . The estimates (3.22) and (3.23)
continue to hold respectively for elements in .4;# and JVU(LW. Their proofs use
only the fact that the Cauchy-Riemann equations are a gradient flow system and
the bounds on the functional. Since these two conditions are satisfied by the heat
flow we obtain that for every a there exists ¢, > 0 such that

[vsl| 22 (R 51) < Cay (3.43)
for every v € ;7. We get also that there exists ¢ > 0 such that
Vsl L2 s1) < C. (3.44)

a9
for every v e A/

3.3.5. Proposition. Let U € % and a < oo. There exists a constant C, > 0 such that

[|v]

Cr(RxS1) < Ca fOT all v e N, (34:5)

or every v e . Furthermore, the space is compact with respect to the compact-
yve N . Furth the space N} i pact with respect to th pact
open topology on R x S*.

Proof. The proof resembles the proof of Proposition 3.2.7. Nevertheless we pro-
vide all the details. We will obtain (3.45) via bootstrapping argument as Proposi-
tion 3.2.7.

Let S > 3and R} := [-S, S] x [-2, 3]. We start multiplying Equation (3.40) by v
and integrating over Rg and using the periodic boundary conditions. We obtain

J[ voasa= [

Vv — 0% + 0, U (¢, v)v dsdt = // —v? —v? +0,U(t,v) dsdt.

1 1 1
S S RS
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Rearranging the terms, using the Cauchy-Schwartz inequality, (3.43) and the fact
that U € % we obtain

0l 2aasy + el oy = //R o 02 dsdt

1
S

< // lvsv| dsdt +/ O U (t,v)v dsdt
Ry Rg

< Os(IvlBagy, + llorlZegay))?
From this it follows that

V]| 22 (L) < Cs, (3.46)
and

||rUt||L2(R§) < Cs. (347)
For v € A7} we have

Vs — v +0 = O,U (v, t) = f(s,1). (3.48)

Because U € % then f satisfies

[Oneatvll = [ fll2(ry) < Cs. (3.49)

Let R% := [-S + 1,5 - 1] x [-1,2], then R% € R}. Using (3.42), (3.46), (3.47),
and (3.49) we obtain

oll 32 sy < Cs (1f11z2msy + 1ollzacmyy + lwillaayy ) < Css - (3:50)

We continue with parabolic bootstrapping. By differentiating the equation (3.48)
with respect to ¢

ahcatvt = gl<87 t) and ahcatvs = 92(33 t)7
where g' = 9,(0,U) and ¢g? = 9,(0,U). Because U ¢ % then g ¢ L?>(R?),i = 1,2.

Let now R} := [-S + 2,5 — 2] x [0,1], then RY € R%. By (3.42) we obtain, using
(3.50)

vell 22 gy < Cllg'|2crz) + el L2 (rs) + [Josell L2(rs,) < C.
This implies that

[vtsll2(rzy < € and  [|vwe|[p2(ry) < C, (3.51)
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for a uniform constant C' > 0. By (3.42) and (3.51) we obtain
105l 22 gy < CUlGP M2 mz) + vsll L2 ray + vstl L2 (rz)) < C

for a uniform C > 0. Hence v ¢ H?**(R}). By composing the embedding
H*Y(R%) < H?(R}) with the continuous Sobolev embedding H?*(R%) —
CY(R%), we obtain,

[vllcorzy < Cs.
Since the Equation (3.40) is autonomous then all the estimates can be extended
globally on R x S', hence

l[v]]comxs1y < C.
By continuing bootstrapping we can get uniform (local) bounds in H**¢, for ev-
ery s € N. This implies a bound for derivative of v of every order (i.e. (3.45)) and,
using the Rellich-Kondrachov Theorem (see [5, Theorem 6.3, Part II],) the final
assertion is proven.

3.3.6. Corollary. Let U € % . There exists a positive constant C' > 0 such that

[[v]|crresty < C,  forallreN, (3.52)

-+
for every v e A7 and every ¢* e Crity .

Proof. Use the estimate (3.44) and start with parabolic bootstrapping.

3.3.2 Mechanical braid Morse homology

As for braids with support in R? we now focus our attention to relative braids,
i.e. those braids which have at least two strands, labeled into two group: g and Q.
The elements denoted by Q = {Q*,...,Q™} are called skeleton and correspond
to the (skeleton) elements y = {y',...,y™} in the case of braids supported in
the plane. If y € £C,,(R?), it holds that Q = ma(y), where 3 is the standard
projection on the second coordinate. For the free strands we will always assume
that they consist of a single strand. Therefore ¢ = {q}. We recall that such braids
that have only positive crossings. The associated equivalence class of unbounded
Legendrian braids and their fibers are denoted by

[grelQ)r and [g]rrel Q.
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These are elements which are invariant under Legendrian isotopies. Let now
[¢Jr rel @, an unbounded Legendrian relative class fiber. The space of critical
points of %y in [¢|gr rel @ is denoted by

Crity ([gJrrel @) := Crity N[g]r rel Q.

For U € % and ¢* ¢ Crity([g]rrel Q), define the space of connecting orbits on
[¢Jr rel Q by

J‘/[};*,q'([q]R rel Q) := {v € ,/VU‘f’qv cv(s, ) € [glrrel Q, forall s e R} )
Let a > 0. The space of bounded solutions in [g]r rel Q) is defined as
N (lglrrel Q) := {v e AP :v(s,-) € [glrrel Q, forall s € R}.
3.3.7. Remark. Let a > 0 and U € % and [g]g=rel y a RBC fiber. By Proposition

3.3.5 we have uniform bounds in C” for every r for the space A}/ ([x]g2 rely)

As for unbounded RBCes, for Legendrian unbounded RBCes, an invariant
can be defined. If xrely is a relative braid then we have defined the integer
Cross(x rel y) in function of the winding number of x rel y. For Legendrian braids
the same definition can be given. For the Legendrian property all the crossings
are constraint to be positive. If we define I(grel )) the number of crossings be-
tween g and @ and = = (¢4, ¢) and y = (Q:, Q) then we have

Cross(zrely) = I(grel Q),

For parabolic equations like (3.40) a similar principle of Lemma 3.2.10 holds.

3.3.8. Lemma (parabolic Monotonicity Lemma). Let a > 0,U e %,y e
LC,,(D?),Q = ma(y) and v € ANP. The function s — I(v(s,-)rel Q) is (when well
defined) a non-increasing function of s with values in N. In particular, if there exists
(s0,t0) € R x ST such that v(sg,to) = Q(to) then there exists an e > 0 such that

I(v(so —&,-)rel Q) > L(v(so + ¢, ) rel @),

forall 0 < € < gp.

Proof. See, for instance [6] [12], [18] and [35].

3.3.9. Remark. The implications of the parabolic Monotonicity Lemma (Lemma
3.3.8) (and Remark 3.3.7) are the same as the implications of the Monotonicity
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Lemma (i.e. Lemma 3.2.10) (and Remark 3.2.11). In particular, by the same ar-
gument as in the proof of Proposition 3.2.12, we can prove that if [¢]g= rel Q is an
unbounded PRBC, and U ¢ % then the space Crity([g|r rel @) is compact and
isolated in [g]g rel Q.

Let U € % and [g|rrel Q an unbounded relative braid class we say that ¢ ¢
Crity ([g]r rel Q) is non-degenerate if the operator

Aq =0y ~1d+02U(t,q) - H*(S") — L*(SY)

is invertible. This operator is self-adjoint with respect the standard L? inner prod-
uct. The number of negative eigenvalues is finite, and it is denoted by 3(4,) and
called the Morse index of A,. If g € Crityy we define its Morse index by

By analogy with the hyperbolic Hamiltonian case, for Hy € necn, U € % and
y € LC,,(R?) of the form y = (Q, Q) wesay that Q = {Q'(¢),...,Q™(t)} = m2(y)
is a solution curve of Xy, (this is abuse of notation) if y = (Q¢, @) is a solution
curve of the vector field Xy, (see (3.32)). Because Q = m2(y) Equation (3.32)
means that for every i = 1,...,m Q" a solution of

Q- Q' +90:U(t,Q") =0 Q'(0) =Q°(1), forsomeo € Sy,

In these notes the proofs for genericity properties of critical points of the La-
grangian action is not given. We will state this property as a conjecture.

3.3.10. Conjecture. Lety € LC,,(R?) of the form y = (Q;, Q) with Q a solution curve
of Xp,, and [gr rel Q be an unbounded Legendrian PRBC fiber. Then for every mechan-
ical Hamiltonian Hy € 5nech, U € %, there exists 0, with the following significance.
For every 0 < 0, there exists a U’ € % with the property that

(Z) HHU — HU/HCoo < )
(ii) @ is a solution curve of Xp,,

and such that Crity ([qlr rel Q) consists only of non degenerate critical points. This
implies, by compactness, that the space Crity ([q]r rel Q) consists only of finitely many
isolated points.

3.3.11. Remark. The idea for the proof of Conjecture 3.3.10 is to use a Sard-Smale
argument to show that the space of certain variations of the potential function
U (which would give non-degeneracy of critical points) is dense in the set of all
variations. The argument is standard in transversality theory and can be found
for instance in [3, Section 2.11]. It turns out that we need only to prove that
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the linearization (around (g, V)) of the map F(¢%,v%) = ¢f, — ¢° + 94 (V (t, %) +
v’ (t,¢%)) such that ¢° is an e perturbation of ¢ (that stays away from Q) with
e > 0 small, and v° is a § perturbation of V, with § > 0 small, is surjective. Since
we want to keep ) as a solution curve of Xz, we do not want to perturb our
potential close to Q°, for all i = 1,...,m. By the Hahn-Banach Theorem one can
prove that dF (g, V) is surjective, by proving that the image has trivial orthogonal
complement. In order to prove this, one can use the same argument as in [49].

We say that %}, is Morse if all the critical points are non-degenerate. By the
above conjecture ., is a Morse function for a generic choice of a potential func-
tion U € % . By compactness, this implies that Crity ([¢|g rel @) is a finite. If we
assume Conjecture 3.3.10 to hold, then we can obtain uniform bounds for un-
bounded Legendrian PRBCes, in the same as the elliptic case.

3.3.12. Proposition (uniform bounds for the parabolic case). Let U € % with £y
Morse and let Q) is a solution curve of X, . Let [g]r rel Q be an unbounded Legendrian
relative braid class fiber. Then there exists C' > 0 such that

l|v|[crmxsty < C

forall a > 0 sufficiently large and all v € Af*([g]r rel Q).

Proof. As in the elliptic case we have

A (la)mrel Q) = U A (lglrrel Q)

g*eCrity ([glr rel Q)

if U € % and ¢y is Morse and a > 0 sufficiently large. By Corollary 3.3.6 we have
that elements on the right hand side are uniformly bounded in C" by a constant
C that is independent of a. Hence, the same holds for elements in the right hand
side.

3.3.13. Remark. Let a > 0 be large enough, U € % such that .3, is Morse, let
[¢]r rel @ be an unbounded Legendrian PRBC and ¢* € Crity ([g]r rel Q). It follows
from Proposition 3.3.12, that as in Remark 3.2.16 for the elliptic case, also in the
parabolic setting compactness of .A4{f ([¢]r rel Q) is to be meant as compactness to

broken trajectories. More precisely Let {v, },cn € A7 *? ([g]r rel Q) be a sequence,
then there exists a subsequence (still denoted by v,) and sequences of times s, e
R,i = 0,...,k such that v,(- + s,-) converges with its derivatives uniformly

on compact sets to v’ € :/VUQZ’Q‘F1 ([glrrel Q), where ¢' € Crity ([glrrel Q) for i =
0,...,kand ¢° = ¢ and ¢* = ¢".
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As for critical points, non-degeneracy can also be defined for connecting or-

bits. Let U € % and ¢* € Crity . A connecting orbit v € 47 ¢ is said to be
non-degenerate, if the linearized heat operator

8s — Oy + 1d -0,U(t,q) : Hy*(R x S1) — L*(R x S?) (3.53)

is surjective. This is an analytical condition that states that the stable manifold
of ¢~ and the unstable of ¢" intersect transversely. If the transversality condition
holds we say that %7, is Morse-Smale.

3.3.14. Remark. Note that £ ¢ Hy*(R x S') admit limits lim,_,.o &(s,t) = 0
uniformly in ¢. This holds because, by the (anisotropic) Sobolev embedding,
Hy? (R x S1) < L°(R x S1) (see [32, Lemma 2.3])

3.3.15. Proposition. Lety € £LC,,(R?) of the form y = (Qy, Q) with Q a solution curve
of Xy, and [g|r rel Q be an unbounded Legendrian PRBC fiber. Under the assumption
that all critical points of £y are non-degenerate, i.e. £y is Morse, it holds that

(i) A 9 ([q]r rel Q) consists only of non-degenerate connecting orbits

(ii) JV{"f ([q]r rel Q) are smooth manifolds without boundary with
dim( A (gl el Q) = Bla ) - Bla").

Proof. In [33] the authors prove that the heat flow with periodic boundary con-
ditions is automatically Morse-Smale, if one assumes that .#7; is Morse. From this
(i) and (ii) follow.

We are now ready to construct the braid Morse homology for mechanical
Hamiltonian systems in the setting of unbounded Legendrian PRBCes. We fol-
low the steps of Section 1.4.1. Let a > 0 sufficiently large U € %, and [g]r rel Q be
an unbounded Legendrian PRBC. Recall that the image of A{/([¢]r rel Q) under
the mapping v — v(0,-) is called .75 ([¢|r rel Q). We have already proved com-
pactness for the space 4% ([g]r rel Q) Compactness of .3 ([g]r rel Q) follows from
compactness of A7 ([g]r rel Q) Properness shows furthermore that .7} ([q]r rel Q)
is isolated. By grading the critical points in a generic hyperbolic mechanical
Hamiltonian system with the Morse index, it follows that the Morse chain com-
plex C, = Ci([q]r rel Q) with Zo coefficients and the associated boundary oper-
ator 0, : C, — Cj_1 are well defined. Its homology is denoted, in analogy with
the hyperbolic braid Floer homology by HHM.,([¢]r rel @Q; Hy ). The latter can be
denoted by

HHM, ([q rel QJ]),



3.3 Mechanical braid Morse homology

after proving that HHM.,, ([g]r rel Q; Hy). is independent of the skeleton.

3.3.3 Braid Morse homology and its isomorphism with the me-

chanical braid Morse homology

A similar construction can be carried out if we assume that the class of potential
satisfies the properties (W1) and (W2) stated at the end of Section 3.1.2. Recall that
the class of function that satisfies (W1) and (W2) is denoted by #. For this class of
potentials we can restrict ourselves to bounded Legendrian proper relative braid
classes. Condition (W2) implies that ¢ = =1 are stationary for the Lagrangian
action Zy . In this case, we restrict to Legendrian relative braids with support
in [-1, 1]. This means that we consider only solutions of the heat flow which are
uniformly bounded by 1. We then do not need all the extra-work we did for the
unbounded case to obtain uniform bounds. Following the steps in Section 1.4.1,
by considering proper (bounded) Legendrian relative braid class fiber [¢]rel @,
and a W € # we define
HM.([¢q] rel Q; W).

The latter is invariant, up to isomorphism, of the choice of a generic W € #" and
of the fiber [g] rel Q. This implies that

HM., ([grel Q]) = HM., ([g] rel Q; W).

We now show that this invariant is isomorphic to HHM, ([grel Q]r), in the spirit
of Theorem 3.2.18. We first give meaning to extension of bounded Legendrian
relative braid classes in the following way. If [grel Q)] is a (bounded) Legendrian
relative braid class, then we extend [grel Q] to [grel Qg by considering Legen-
drian isotopies in R instead of [-1,1].

3.3.16. Theorem. Let [grel Q] be a bounded Legendrian proper relative braid class and
let [qrel Q|g its unbounded extension. Then

HM. ([grel Q]) = HHM, (/g rel Qlz) (3.54)

Proof. This is only a simpler case of Theorem 3.2.18, we will be brief. Extend
[q]rel @ to [¢]r rel Q by considering isotopies in R (and not only in [-1,1]). The
unbounded relative braid class fiber [g]r rel Q inherit from [g] rel @) the proper con-
dition: in particular elements in [g]r rel ) can not be deformed onto the constants
+1. Let W € # be generic. We have

HM, (grel Q]) = HML ([q] rel Q5 W)
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Let e > 0 small and extend W to W such that /W(t, ) e C§°([-1 - &,1 +¢]). Extend
again W to U in the following way

-] Wta lg<i+e
0 lg| >1+e

its extension. Note that U € C5°(R) and hence € % . By similar arguments as in
the proof of Theorem 3.2.18 we obtain

Critw ([q] rel Q) = Crit ([¢]rrel Q)

and o o
Myt ([arel @) = AZ? (lg]rrel @).
Hence
HM. ([grelQ]) = HM.([q]relQ; W)
= HHM.,([q]rel@;U) = HHM,([grelQ]r),
which proves (3.54)

3.4 Hyperbolic braid Floer homology equals mechan-
ical braid Morse homology

The aim of this Section is to establish an isomorphism between the hyperbolic
braid Floer homology introduced in Section 3.2 and the mechanical braid Morse
homology developed in Section 3.3. We use the techniques of [46] and we show
that they can be applied to the setting of braids. In order to make a self contained
thesis, we will incorporate some of the proofs contained in [46] in Appendix 3.A.

3.4.1 The adiabatic limit

Let [zrelylgz be an unbounded proper relative braid class, then by the ar-
guments shown in Section 3.2 the hyperbolic braid Floer homology groups
HHM. ([z rel y|g2) are well-defined, and independent, up to isomorphisms, of the
fiber [z]g2 rely, of the hyperbolic Hamiltonian Hy € J#,, and of the constant
almost complex structure J € #. Letnow U € %, then Hy € Hnech C HAyp. Let
¢ > 0, define J¢ as follows
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We have that J° € _7. It follows that
HHF . ([zrel y|gz) = HHF, ([x]g2 rely; Hy, J).

Fix now Hy € J#,y;, generically and J¢ as above.

In this section we show that the heat equation can be seen as a formal limit of
the Cauchy-Riemann equations. With such choice of J¢ € ¢ and Hy as above,
the Cauchy-Riemann equations become

us — J(uy — Xp, (t,u)) = 0. (3.55)
If we write them in (p, ¢)-coordinates, Equation (3.55)

pstelg-elp=0
gs —€pt +€q —€0,U = 0.

Under the scaling
o =¢gs, (3.56)

we obtain ep, = p,; and ¢, = ¢s. Hence we get

e2ps+q—-p=0
{ Go —pt +q—0,U =0. (3.57)

Differentiating the first equation with respect to ¢, for ¢ = 0 Equation (3.57) be-
comes

do = qt — q + 0,U(L,q).

Labeling the variable o by s we obtain Equation (3.40). With a terminology due to
[46], we say then the heat equation is the adiabatic limit for ¢ — 0 of the Cauchy-
Riemann equations.

3.4.2 More estimates of Cauchy-Riemann equations

In this section we show the existence of uniform bounds for the e-dependent
Cauchy-Riemann equations introduced in (3.55). The estimates carried out in
Section 3.2 are independent of u, but not necessarily independent on ¢ > 0. In
this Section we show that those estimates are also independent of € > 0. After
performing the scaling (3.56) Equation (3.55) can be written in the form

D.u® —1(04:U(t,¢%)) = 0. (3.58)
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Here D, := B.0s — JO; + R, where J is the symplectic matrix (3.3), R the operator
defined in (3.14), B. is the following

2 0
= (5)

and ¢ : R — R? is the embedding :(q) = (0, ). Because Equation (3.58) is e-
dependent it is useful to work with e-dependent Sobolev norms. Define for u ¢
H'(R?;R?) with coordinate u = (p, q) the equivalent Sobolev norm

lull gy = [[ullL2 +ellps||zz + llgs|lL2 + [Juel] 22 (3.59)

To prove uniform estimates we introduce some preliminary lemmas.

3.4.1. Lemma. There exists a constant C' > 0 such that, for every u ¢ C}(R?) and every
0 <e<1,itholds
[ul| 1 (r2y < Cl|Deul|L2®2)- (3.60)

Proof. This is an e-version of Lemma 3.2.3. We repeat the arguments. Using the
Fourier transform we obtain

— . [i&?+1 in p
Famaan (€0 ) (1),
The inverse of A, is given by
Al 1 € -1 m
€ det A, —in g6+ 1

where det A. = —(£262 + 1+ n? +i(e2¢ - €)). For the square norms of the matrix
entries we obtain

£2+1 7,]2

462
<1, e*e” +1 <1
|det A |? | det A.|?

[det A2 ~ 77

1
<5
-2
which implies ||AZ!|| < 1, and therefore, using the Plancherel isometry we obtain

[ullL2(r2) < [|Deul|L2(r2)- (3.61)

To prove the remainder of the lemma we need to estimate the matrix norms of
i€A_' and inA_'. By the Plancherel isometry we have

ellpsllLe = ellpsl|ze = elli€pl| L2 = elli€PA," Deu|| 2



3.4 Hyperbolic braid Floer homology equals mechanical braid Morse homology ~ 101

and, similarily,

llasllze = 1G]l e = 11i€dl| L2 = |li€QA" Deu| 2.

Here P and (@ are the operators defined in (3.15). In order to estimate the matrix
norm of PAZ! and QA_! we need to bound the following terms

62(54 _'_52) 1 €2€2n2 - 1
(282 +1+m?)2+€2(e2-1)2 = 7 (282 +1+1?)2 +£2(e2-1)2 ~ 2
and
2,2 2 _dgd
£ 1 £ +e%¢ <1

(52§2+1+n2)2+§2(62 _ 1)2 - 2’ ’(5252 +1+n2)2+§2(€2 _ 1)2 -

And for the norm u; we need to estimate

n* + (1€)° _5 n* -1
(282 +1+m2)2+€2(e2-1)2 =77 (22 +1+m?)2 +&2(e2-1)2 ~
and
€22 4 2 )
(22 11 n2)2 4 €2(2-1)2 =
These bounds show (3.60).

3.4.2. Lemma. Let G c R? be compact and K € G. There exists s constant Cx ¢ > 0
such that

|ull g1 (k) < Cr.a ([|Deull2 () + ullr2e)) (3.62)
for every u e CH(R x S*;R?) and every 0 < e < 1

Proof. The proof is the same as the proof of Lemma 3.2.4. Replace the norm H'
with the norm H! and use Lemma 3.4.1 when in the proof of Lemma 3.2.4 Lemma
3.2.3 is used.

For U € % and ¢* € Crity we denote, as usual, the space of connecting or-

bits between ¢~ and ¢~ of (3.58) by .# gU"f;, and for a > 0 the space of bounded
solutions of (3.58) by .#, ..

3.4.3. Remark. Let U ¢ % . By denoting ¢ € Crity we mean that x = (¢, q) €

Critpy,, . With abuse of notation we will also denote by .#/ I‘_ZIU’q the set of connect-

ing orbits between = = (¢;,¢") and z* = (¢{, ¢*). Sometimes we will also write

M ’IE with the same meaning as .2 *”_. Note furthermore that for Legendrian

braid class fibers we have that [*]R2 reUly = [¢Jrrel Q. Hence we can write also
///ZIUIs ([z]ge rely) = ///I'_]IU?E ([qlr rel Q).
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3.4.4.Remark. For U € %, wehave that, in particular, U € ¥ Let ¢* € Crity, then
Lemma 3.2.1 holds. We point out that an e-version of Lemma 3.2.5 and Corollary

3.2.6 holds if we interchange the role of .Z};  with .#f; _ and of .4} f’f with

MY ’q . Their proofs, indeed, rely only on Lemma 3.2.1 and on the gradlent -flow
structure of the Cauchy-Riemann equations. Hence, the same argument as in the
proof of Lemma 3.2.5 gives that for every a > 0 we obtain a constant ¢, such that

5Hp§||L2(Rx51) + ||qz||L2(]R{x51) < Cq, (3.63)

for all u € 4%, , for every 0 < £ < 1. The same argument as in the proof of
Corollary 3.2.6 gives that

ellpsllreesty + g5l L2 @asty < c (3.64)

for every 0 < < 1, every ¢* e Crity and every u® € ./} "

3.4.5. Proposition. Let U € % and 0 < a < oo. Then there exists a uniform positive
constant C, > 0, such that

|l

cr®xst) < Ca, foreveryr e N (3.65)

for every 0 < e < 1and every u® € .4y, .. Furthermore, the space My, . is compact in
the Cf (R x S*) topology, for every ¢ e N.

loc
Proof. This is a variation of the proof of Proposition 3.2.7. We give a condensed
version. By the same token as in (3.25), by the fact that U € % and using (3.63)
instead of (3.22), we obtain a local uniform (in both u and ) L?-estimate for u°.
Using now the bound (3.62) and the fact that U € % we obtain a uniform local
H! for u®. This implies that we have local uniform L?-estimates (in both € and u?)
for ps, ¢; and ¢5, but not yet for pg, as in the proof of Proposition 3.2.7. This is due
to the fact that we are using the ¢ dependent Sobolev norm H? (3.59). To obtain
local uniform estimates for p and further derivatives of ¢° and p® we differentiate
the Equation (3.58) with respect to s, and we start bootstrapping. Using the fact
that U € % and the bound (3.62) we obtain local uniform L?-estimates (in both
¢ and v®) for p and for p,, ¢S, and ¢5,. And by differentiating Equation (3.58)
with respect to ¢, we get bounds for for pg,, ¢;,. Differentiating even more we can
obtain uniform bounds in H*, for every s € N. This implies (3.65), by using the
Sobolev continuous embedding H* < C*2, and the s-translation invariance of
the Cauchy-Riemann equations. As in the proof of Proposition 3.2.7, by using the
bounds obtained so far, we can apply the Rellich-Kondrachov Theorem and the
last assertion follows.
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3.4.6. Remark. If U € % is generic (it is suffcient that JZ%HU is Morse, this would
imply non-degeneracy of .#¢ * and hence of .#% ) and 0 < a < oo is suffi-
ciently large, the constant Wthh appears in (3.65) is { also independent of a, pro-
vided we consider elements u e Zf  _([glrrel Q), where [g]rrel @ is a proper
(unbounded) Legendrian relative braid class fiber. This follows from the fact that
under these hypotheses Conjecture 3.3.10 holds. It follow then, from the same
arguments as in the proof of Proposition 3.2.15 that

My, (lglrrel Q) = U M (ldlr el Q). (3.66)

qeCrity ([qlr rel Q)

3.4.7. Remark. Compactness of .Zj; . implies furthermore that if u* € .Z  _ .
where ¢; is a sequence of positive numbers converging to zero, then u* — (w, v)
in CL. (up to a subsequence). The adiabatic limit argument implies that v satisfies
(3.40). Regularity of the heat equation implies that w = v;.

3.4.8. Proposition. Let U € % and £ be Morse, let Q be a [g]r rel Q be an unbounded
Legendrian PRBC, and q¢* € Crity ([qlr rel Q), with u©? (z7) — p%(x*) = 1. If u® €
M flfl;q; ([qlr rely), where €; is a sequence of positive numbers converging to zero, then

ut —vin Cloc

(up to a subsequence) with v e A7 * ([gl rel Q).

Proof. Since .# }_II;J@ C My, for some a > 0, by compactness of the space .Zf;
(see Remark 3.4.7), we have that there exists v such that u* — v and v satisfies
(3.40). For every s € R we have

1
Lo(o(s,) = / Lug(s,8)2 + LJo(s, ) = U(t, o(s, 1)) ds
1
= lim L7 (s, )2 + 3|a% (s, t) > ~ U(t, ¢ (s, 1)) dsdt

1—00 0

= lim oy, (u(s,"))
71— 00

From this it follows, by the fact that u® e .Zf , that v e A7 Since U € % is
generic (because .#7; is Morse, and hence Morse-Smale), by the uniform estimates
of Proposition 3.3.12 we establish that v has limits. Hence there exist ¢, ¢* € Crity
such that v(s,-) — ¢° when s — oo and v(s,-) — ¢! when s — —o0. Isolation of
proper relative braid classes shows that ¢°, ¢! € Crity ([g]r rel Q). The parabolic

Monotonicity Lemma (Lemma 3.3.8) implies that v ¢ JVI?Z’QI ([¢lr rel Q). To finish
the proof we show that ¢° = ¢~ and ¢! = ¢*, if u“%4(27) — u“?(2*) = 1. Suppose
by contradiction that either of the ¢*,i = 0, 1 is different from ¢*. Without loss of
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generality we can assume that ¢° = ¢~ and ¢' # ¢*. Then, by [39] (Lemma 2.4.6),
we have

Pl (@)~ (@) = Bla) - Bla") = B(d°) - Bla") + B(a") - B(g") > 2.

This is a contradiction and concludes the proof.

3.4.3 The Salamon-Weber map and the isomorphism

For U € % and ¢* ¢ Crity define z* = (¢;,¢*). By construction z* € Crity . In
this section we prove the isomorphism (3.31). The key idea is to use, when e > 0
small, the so-called Salamon-Weber map [46]. This is a bijective map between

A4 and A, I”_CIU’QCE , where U € 7% is chosen generic. This shows that for every
connecting orbit of the heat equation we can detect a nearby connecting orbit
of the e-dependent Cauchy-Riemann equation. We will show furthermore that
the Salamon-Weber map respect the braid classes, hence the isomorphism (3.31)
follows.

Before introducing the Salamon-Weber map we introduce some nomenclature
for the linearized operators. For ¢ € R, recall the embedding ¢ : R — R? given
by «(q) = (0, ). By linearizing Equation (3.58) around a solution u®* = (p%, ¢%)
we obtain the first order linear differential operator C¢ : HY(R x SY;R?) —
L*(R x SY;R?) by

(p®,q%) ~

Cle,

gy = B0s = JOi + R+ 1(02-U(t,¢%)) = D= + (83U (t, ¢°)).

Since Cf,. ., does not depend on p° we will write Cj; and drop the e superscript
over g. We furthermore denote by (C5)* = —-B.ds — JO;, + R + 1(0;U(t,¢%)) the
adjoint in the L* norm of C.

We proceed now with the definition of the Salamon-Weber map. In Appendix
3.A we will repeat the estimates of [46] in our case to show that the map is well
defined, injective and surjective.

3.4.9. Theorem (Salamon-Weber, [46]). Assume that U € % is generic. There exists
an o > 0 with the following significance. There is a one-to-one correspondance between

</1/U""7’q+ and //lg;}?;,for every € € (0,&0) and every ¢* € Crity with 8(q”) - B(¢*) = 1.

Proof. See [46, Theorems 4.1, Theorem 4.3 and Theorem 10.1], and Appendix
3.A.
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The proof of Theorem 3.4.9 is constructive. It shows that for every ¢ € (0, €9),
where ¢ is defined in Theorem 3.4.9, there exists a unique element (¢ = (n°,£°) €
im(C7)* such that

ué = (pE’qs) E%I(_II;}CI , ps :Ut+7787 qs ZU—&-fE.

for each v € (/‘/Uq*,f such that 8(¢") — 8(¢") = 1. This gives rise to the Salamon-
Weber map defined by

e . 9,9 q 9"
TE o MY — //lHU’E

v = uf = (vt 4 775’ v+ 56), (775,55) c 1m(Cf))*, (367)

Theorem 3.4.9 demonstrates that the map 7° is well-defined, injective and
surjective.
We apply now the Salamon-Weber map to the setting of the braids.

3.4.10. Proposition. Assume that U ¢ % is generic. Let [q|r rel Q be an unbounded
Legendrian PRBC fiber and let €, defined in Theorem 3.4.9. For every € € (0,eq) the
Salamon-Weber map

T M7 ([glrrel Q) — //If[ng ([z]g= rely),

given by v — u® is bijective.
Proof. By injectivity of the map 7° we have that, when ¢ € (0, ), for every v €

N rrel Q) there exists a unique u® € 4} 4" By the Monotonicity Lemma
U q q Hy e DY y

(3.2.10), since ¢* e Crity([gJrrel @), we obtain that u® € j/gl;f;([q]R rel Q).
Since [¢|rrel @ is Legendrian we have that [g]lrrel Q@ = [z]g2rel Q hence u® ¢

M fIU‘T; ([]r2 rely) and then the injectivity is proved. By surjectivity of the map
T°¢ we have that, when ¢ € (0, &), for every u® € .4 " ([x]|g2 rely) there exists a
unique v € A} 9" such that u® = T¢(v). Take a sequence ¢; of positive numbers

converging to zero, then by Proposition 3.4.8 u** — vand v € e/VU‘f’f([q]R rel ).
Hence surjectivity follows.

3.4.11. Theorem. Let [qrel Qg an unbounded Legendrian PRBC. Denote [x rel y|g2 the
unbounded proper relative braid class associated to [grel Q|r. Then

HHF, ([z rel y]g2) = HHM, ([grel Q|r). (3.68)
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Proof. Denote by [g]rrel @ a proper (unbounded) fiber associated to the class
[grel Q). Then, we have

HHM.([grel Q]r) = HHM([g]r el Q; U),

for a generic choice of U € % . Fixnow U € % . Fix 0 < € < €y, where ¢; appears
in Proposition 3.4.10, and consider J¢ € _#. By Proposition 3.4.10 we obtaint

#AE T (qlerel Q)/R = .ty ([a]aa rely) /R.

It follows that the chain complex defined by counting (modulo 2) the solutions of
(3.57) agrees with the Morse boundary operator defined by counting solutions of
(3.40). This proves the isomorphism

HHM., ([g]r rel Q; U) = HHF . ([z]gz2 rely, J., Hy).

Since the right hand side is independent of J* € ¢, Hy € J#4,,, and of the fiber
we obtain
HHF . ([z]g2 rely, J., Hy) = HHF, ([z rel y]g2).

Summarizing, we have proved the following chain of isomorphisms

HEM. ([grel Qlz) = HHM. ([g)z rel Qs U)
~ HHF, ([r] rely; Hy, J9) = HHE. ([rrely)g),

which shows (3.68) and concludes the proof.

3.4.12. Corollary. Let [qrel Qg a Legendrian PRBC and [qrel Q] its unbounded ex-
tension. Denote by [xrely|g= the unbounded proper relative braid class associated to
[qrel Qlgr, and by [z rel y|p2 the bounded one. Then we have the following chain of iso-
morphisms:

HM.([grel Q]) = HHM.([grel Q]r) = HHF, ([x rel y|g2) = HF . ([x rel y]p2).

Proof. The first isomorphism follows from Theorem 3.3.16, the second from The-
orem 3.4.11 and the third from Theorem 3.4.11 .

3.A The Salamon-Weber map

In this appendix we construct the Salamon-Weber map of [46] in our setting. We
follow the lines of [46]. See also [54], for an even more detailed reference. The
construction of the map relies on a variation of the Newton’s method in infinite
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dimensions. In order to construct the Salamon-Weber map we proceed as follows.
Let U € % be generic (it is enough to assume that .#;;—and hence o7y, — is
Morse ), g € Crity and v € z/i/U‘f’f. Define p = v; and ¢ = v and consider u® =
(p, q). Then u" satisfies (3.57) for € = 0, but it does not satisfy (3.57) for ¢ > 0. The
idea is to perturb u® to u® + (¢, for a ¢ € H'(R x S';R?) such that u° + (¢ is a
solution of (3.57) and then find ¢*.

Let ¢ > 0, define (p®, ¢°) via

PP=v+nS, ¢©=v+&, (5,&)=CecH (RxSHR?). (3.69)

Here (° is a zero of the non-linear map 75, : H*(R x S%;R?) — L*(R x S%; R?),
defined as follows

_ e2vups + €205 + & —1°

o€ =T = (e e ot e ) OO

The map F;, is obtained by substituting (p®, ¢°) in (3.57) and using the fact that v
satisfies (3.40). Note that, fore = 0 and (* = 0, we have F_,(0) = 0. Now, suppose
that there exists € > 0 such that 72, (¢®) = 0. Then, by defining u® := (p®, ¢°) as in
(3.69) we have u° is a solution of (3.55) in the sense of L2. Regularity of the heat
equation and of the Cauchy-Riemann equations will show then that u® € .# I‘_{,;f;,
for every ¢ ¢ (0,¢0), which we will demonstrate later on.

Finding a unique zero of the map (3.70) is therefore essential to define the
map (3.67). Hence, Equation (3.69) gives the key to define the Salamon-Weber
map (3.67). We will use the classical Newton’s method to find the zero of the map
FSo.
" In the following we denote by X, Y Banach spaces with norms ||-||x and ||-||y
and by || - ||z(x,y) the operator norm.

3.A.1. Theorem (Newton’s method). Let X and Y be Banach spaces and let f : X —
Y a continuously differentiable map. Let xo € X and suppose that the linearization at
xo of f, ie. df(xzo), is onto with right inverse T. Assume furthermore that there exist
constants 9, ¢ > 0 such that

1f@olly < 55, Tlecxyy e Mdf(x) - df (o)l ecx,v) < 20 3.71)

whenever ||x —xo||x < J. Then there exists a unique T €¢ X with f(Z) =0, ||zo-Z|| < ¢
and & — zo € im(T).

Proof. See [54, Theorem C.2.9].

As explained in Theorem 3.A.1 there are three ingredients that have to be con-
trolled: a small initial value of F:,(0,0), a uniformly bounded right inverse Q:,
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of dF:,(0), and the variation of derivatives dF:,(¢%) — dF:,(0). We proceed now
with verifying the three conditions.

(i)

(i)

We have that there exists ¢ > 0

= 52||Uts||L2(]Rx5’1) < ce?.

e2vg,
175 0.0l le.s = | (5
L2(RxS1)

This follows from regularity estimates of the heat equation. If v satisfies
the heat equation then v, satisfies the linearized heat equation. Because of
the gradient flow structure of the heat equation, by similar arguments as in
Remark 3.3.4, we obtain that there exists ¢ > 0 such that |[vs||r2®.s1) < ¢,

for every v e 4,7 *? and every ¢* € Crity .

We have that the operator

. o\ _ e2ns + & +°
dfu0(0,0)< ¢ ) = ( ggfma%efagU(t,v)fE )

correspond to the usual linearized Cauchy-Riemann operator (with almost
complex structure J¢). Hence for every ¢ > 0 the operator dF:,(0,0) is
bounded (if (¢ € H'). Since U ¢ % is generic then 95 — 9y, + 1d +02U (¢, v) is
onto (if we assume only that U € % is such that .%}; is Morse, then by using
the result of [33] we have that 9, — 0+ + Id +02U (¢, v) is onto). It follows that,
by [46, Thoerem 3.3], the linearized Cauchy-Riemann operator d.F:,(0,0)
is also onto. Therefore it admits a right inverse QF, : L? — H!. Since
dF:,(0,0) is onto then (dF:,(0)dF:,(0)*) is onto and one-to-one (see [11]),
hence it has an inverse (where (dF:,(0)* is the adjoint of dF_,(0) with re-
spect to the L? norm). Then the right inverse of d.F2,(0,0) can be expressed
in the form

0(C) = dF 20 (0) (dF 50 (0)dF20 (0)7) ¢

10

Being a composition of two bounded operators, Q2 is itself a bounded op-
erator. To see the boundedness of (d.F:,(0)dF:,(0)*) consider

I dF e, (0)* I dF 4 (0) 2
We have, by [54, Lemma 4.4.3], that ker(dF;,(0)) = coker(dF:,(0)*). Hence,
the operator dF:,(0)dF5,(0)* is a bounded bijection from H? — L?, hence
it has a bounded inverse by the Open Mapping Theorem. We need to show
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that the constants are e-independent. By Lemma 3.4.1 we have that there
exists C > 0 for every 0 < € < 1 and every (¢ € C>°(R x S'; R?)

1€z = ClldF g0 (0)C || 22,
and by a similar argument we can prove that

1€ 2 = ClldF g0 (0)CF| 2
Hence, by surjectivity of ., (0,0) we have

[1(dF 50 (0)dF 50 (0)) "%l < 411¢7 |-

(iii) We have that for ¢ = (n°, £°)

€ € € 0
(dF5(C7) — dF5(0) = ( _O2U(t,v + €5) + O2U(t,v) )

is independent of €. The operator is bounded, because U € % .

By (i)-(ii)-(iii) we have that if U € % for every 0 < ¢ < 1, for every ¢* e Crity
and every v € f/i/Uqfq+ there exists a unique ¢ such that 72, (¢*) = 0. Therefore, by
defining u® = (p°, ¢°) as in (3.69), we obtain that u° is a solution of the Cauchy-
Riemann equations. Now, the fact that (¢ ¢ H'(RxS'; R?) does not guarantee that
¢%(s,-) admits limits for s — +00, and the limit is 0. Hence we can not conclude

immediately that u® € ./ I‘_IIUq; However, since (¢ € H' and v € A7 *? then

o 1 oo 1
/ /|u§|2dtdsg/ /|vst|2+\vs|2+|n§|2+|§§\2dsdt50.
—00 JO -00 J0

Using the same arguments as in the proof of Proposition 3.2.7 we obtain regu-
larity for ¢, in particular u® € C"(R x S';R?), for every r e N. It follows that
(U (s,-)) is well-defined for every s € R and uniformly bounded by C. We
deduce that

suﬂg |, (U (s, )] < C.
It follows that u¢ € A gU. If U € % and hence Hy € J#,ech is generic, by (3.66)
we establish that ©° has limits for s — co uniformly in ¢. It follows that

1 € L) = 1 € O) — 0 .
91—1>Erﬂ<>oC (8’ ) 91—1>r£oou (87 ) v (8’ )
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exists. Now suppose that the limit lim;_,, |¢°(s,-)| = |f(-)] > C > 0. Then by
choosing S sufficiently large we obtain

// 1C5(s5, )2 dtdsz// (C—6) > o0,
{1s]>S} xS {1s]>S}xS1

where 0 < § < C. This implies that lim,_,. (°(s,-) = 0, uniformly in ¢. Hence
u® has the right limits and u° € .# g{f;. From the above arguments it follows that
the map 7¢ : M1 — M fluf defined by (3.67) is well defined and injective.
Theorem 3.A.1 also says that (5, £%) € im Q% C im(dF,0(0))*.

u0

In order to prove that the map is surjective we will show that there exists ¢
such that for every ¢ € (0,&0) the map 7° admits an inverse. Lete > 0,U € %

generic, z* ¢ Crity, and ¢ = m(z*) and u® = (p°,¢°) € //{;_”IUI‘ Define the
non-linear map G<. : Hy?(R x S';R) — L*(R x S;R) by

Goe (€)= €5 = &5, + & + 0U (1,7 — €%) = 9,U (8, %) + £°p5- (8.72)

By similar arguments as in (i)-(ii)-(iii) (where we interchange the role of the
heat equation to the one of the Cauchy-Riemann equations) we can apply the
Newton’s method to the map (3.72) which yields the existence of an ¢y and a
unique &°, for every € € (0,9) such that G5 (£°) = 0. Define now the map

s M) R
ug = (paaqs) — qE_ge’

The Newton’s method and regularity of the heat equation imply that the map S°
is well defined and injective. By construction S¢ is the inverse of 7°.



A Poincaré-Bendixson result for CRE

In [18] Fiedler and Mallet-Paret prove a version of the classical Poincaré-
Bendixson Theorem for scalar parabolic equations. We prove that a similar re-
sult holds for bounded solutions of the non-linear Cauchy-Riemann equations.
The latter is an application of an abstract theorem for flows with an (unbounded)
discrete Lyapunov function.

4.1 Introduction

The classical Poincaré-Bendixson Theorem describes the asymptotic behavior of
flows in the plane. The topology of the plane puts severe restrictions on the be-
haviour of limit sets. The Poincaré-Bendixson Theorem states for example that if
the a- and the w-limit set of a bounded trajectory of a smooth flow in R? does not
contain equilibria, then the limit set is a periodic orbit. Several generalizations
of this theorem have appeared in the literature. For instance in [8], the Poincaré-
Bendixson Theorem is generalized to two-dimensional manifolds. In [30] an ex-
tension to continuous (two-dimensional) flows is obtained, and [14] provides a
generalization to semi-flows. The remarkable result by Fiedler and Mallet-Paret
[18] establishes an extension of the Poincaré-Bendixson Theorem to infinite di-
mensional dynamical systems with a positive Lyapunov function. They apply
their result to scalar parabolic equations of the form

Us = Ugg + [T, u,uz), zelSt feC? 4.1)

In this paper we establish a version of the Poincaré-Bendixson Theorem for
bounded orbits of the nonlinear Cauchy-Riemann equations in the plane. A
bounded orbit of the nonlinear Cauchy-Riemann equation in the plane is a
(smooth) bounded function u: R x S* — R?, which satisfies the equation

us — J(up — F(t,u)) =0, 4.2)

with u(s,t) = (p(s,t),q(s,t)), s € R, t € S' = R/Z. Here F(t,u) is a smooth
non-autonomous vector field on R? and J is the symplectic matrix

0 -1
=(1 )
We prove that the asymptotic behavior, as s goes to infinity, of bounded solutions
of Equation (4.2) is as simple as the limiting behavior of flows in R?. Equation (4.2)
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arises in many different contexts, in particular in Floer Homology literature (see,
for instance [36]), where the vector field has the form F'(t,u) = Fy(t,u), i.e. Fy
is Hamiltonian. The latter implies that there exists a time-dependent Hamiltonian
function H(t,-) : R? — R, such that Fy(t,u) = JVH(t,u). In the Hamiltonian
case the Cauchy-Riemann equations are the L?-gradient flow of the Hamilton
action and as such bounded solutions of (4.2) will, generically, be connections
orbits between equilibria. The Hamilton action is an R-valued Lyapunov function
for the Cauchy-Riemann equations. In this paper we obtain a result about the
asymptotic behavior of orbits for general vector fields F' in the Cauchy-Riemann
Equations.

The main result for the Cauchy-Riemann equations in this paper concerns the
asymptotic behavior of bounded solutions. A bounded solution of the Cauchy-
Riemann equations is a smooth function u with |u(s,t)| < C. Let X be the set
of solutions bounded by a fixed (but arbitrary) constant (in the present work we
will always choose C' = 1). Endowed with the compact-open topology X is a
compact Hausdorff space. The translation invariance of the Cauchy-Riemann
equations defines a flow ¢” on X by translating solutions in the s-variable. A
bounded solution u can be identified with its orbit v(u), and a(u) and w(u) are
well-defined elements of X. In Section 4.2 we given a detailed account of the
space X and the flow ¢7 in the context of the Cauchy-Riemann equations.

4.1.1. Theorem. Let u be a bounded solution of the Cauchy-Riemann Equations (4.2).
Then, for the w-limit set w(u) the following dichotomy holds:

(i) either w(u) consists of exactly one periodic orbit, or
(ii) a(v) € E and w(v) C E, for every v € w(u),

where E denotes the set of 1-periodic solutions of the vector field F(x,t). The same
dichotomy holds for the o-limit set o(u).

As in the classical Poincaré-Bendixson Theorem, alternative (ii) allows for w(u)
(or a(u)) to consist of homoclinic and/or heteroclinic solutions joining equilibria.
An important reason why a generalization of the Poincaré-Bendixson holds for
the Cauchy-Riemann equations is that there exists a continuous projection onto
R?, which is defined as follows. Let t € S! be arbitrary, then define

Tty X — R? (4.3)
U= (pv q) = ’/Tto(u) = (p(ovtO)vq(OatO))
4.1.2. Theorem. Under the assumptions of Theorem 4.1.1 the projection

Ty wu) = mow(u)

is a homeomorphism onto its image.
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In general, if a flow allows a continuous Lyapunov function, then limit sets of
orbits consist only of equibria. Such flows are referred to as gradient-like flows.
Theorem 4.3.1 in this paper gives an abstract extension of the Poincaré-Bendixson
Theorem to flows that allow a discrete Lyapunov function. In particular Theorem
4.3.1 implies Theorem 4.1.1. Note that Theorem 4.1.2 together with the classical
Poincaré-Bendixson Theorem implies Theorem 4.1.1.

The main differences between the results in [18] for parabolic equations and
the results in this paper, are that the Cauchy-Riemann equations do not define a
well-posed initial value problem and, more importantly, the discrete Lyapunov
functions that are considered in this paper are not bounded from below. Fur-
thermore, the results obtained in this paper do not assume differentiability of the
flow, nor does the flow need to be defined on a Banach space. We believe that
most of the results in this paper can be extended to semi-flows, e.g. [14].

This paper is structured as follows. In Section 4.2 we analyze the main prop-
erties of the Cauchy-Riemann equations (4.2), with additional details given in
Section 4.6. In Section 4.3, we set up an abstract setting which generalizes the
properties of the Cauchy-Riemann equations. In Sections 4.4 and 4.5 a full proof
of the Poincaré-Bendixson Theorem is given, adapted to the abstract setting in-
troduced in Section 4.3.

4.2 The Cauchy-Riemann Equations

Since the initial value problem of Equation (4.2) is ill-posed, we restrict our atten-
tion to bounded solutions, i.e. functions u ¢ C*(R x S*;R?), that satisfy Equation
(4.2), and for which

lu(s,t)| < oo, forall (s,t) eR xS (4.4)

Since we can consider each bounded solution separately, it suffices to consider
the space X of functions u ¢ C'(R x S';R?) satisfying Equation (4.2), and for
which

lu(s,t)] < C, forall (s,t) e R x S,

for some fixed arbitrary constant C' > 0. Note that, without loss of generality, we
can choose C' = 1. On X we consider the compact-open topology, i.e.

C,
Wt o et g, (4.5)

where the latter indicates uniform convergence on compact subsets of S* x R.
Since C°(R x S*;R?), endowed with the compact-open topology, is Hausdorff
(see [40, §47]), and X c C°(R x S';R?), also X is a Hausdorff space.
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4.2.1. Proposition. The solution space X is a compact Hausdorff space.

Proof. See Section 4.6.

Identify the translation mapping (s,t) — (s + o0,t) by o € R and consider the
evaluation mapping

R x CO(R x S*;R?) — CO(R x SY;R?), (0,u) — ¢7(u) =uoo. (4.6)

4.2.2. Lemma. The evaluation mapping (o,u) — ¢ (u) is continuous with respect to
the compact-open topology on C°(R x S1;R?).

Proof. Since R x S! is a locally compact Hausdorff space, the composition of
mappings
COR x SY;R x S1) x CO(R x S*; R?) — CO(R x SY;R?),

is continuous with respect to the compact-open topologies on C°(R x SH;R x
S1) and C°(R x S*;R?), see [40, §46]. The translation o as defined above is a
continuous mapping in C°(R x S'; R x S1), which proves the lemma.

Since the Cauchy-Riemann Equations are s-translation invariant we have that
u € X implies that ¢7 (u) € X. We therefore obtain a continuous mapping Rx X —
X, again denote by ¢ (u). Also,

67 (67 (W) = (oo’ oo =uo (5 +0') = 677 (),

which shows that ¢ defines a continuous flow on X. A continuous flow on X is
a continuous mapping (o, u) — ¢°(u) € X, such that ¢°(u) = u and ¢7* (u) =
¢?(¢° (u)), for all 0,0’ € Rand forall u € X.

Consider the evaluation mapping ¢ : C°(R x S*; R?) — C°(S*;R?), defined by

u(s, ) — u(0,-).

By a similar argument as in Lemma 4.2.2 it follows that the mapping ¢ is a contin-
uous mapping with respect to the compact-open topology on C°(S*; R?).

4.2.3. Proposition. The mapping v : X — X, with & = «(X), is a homeomorphism.

Proof. See Section 4.6.
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For ¢ we have the following commuting diagram:
RxX — v X
idxe ¢
Rx 2 — 2,

with «(0, ) — T7(u(0,-)) = u(o,-), and T° defines a flow on 2.

The principal tool in the proof Theorem 4.1.1 is the existence of an un-
bounded, discrete Lyapunov function, which decreases along orbits of the flow
¢°. Let u',u? ¢ X be two solutions, with u! # w2, such that the function
t > ul(s,t) — u?(s,t) is nowhere zero. Then define w := u! — u? € C°(R x S*; R?).
The s-dependent winding number # of the pair (u', u?) is defined as the winding
number of w about the origin, i.e.

Pt (s, ) (s,) = # (wls,0) = 5 [ o, @7)
2 S1
where 6 = % is a closed one-form on R? \ {0} (see [49] for more details).

A pair of solutions (u',u?) € X x X is said to be singular, if they belong to the

“crossing” set defined by
Yy i={(u"u?) e X x X :IseR : u'(s,t) = u?(s,t) forsomet € S'},

and W: (X x X)\ Xx — Z, is defined by

W(u',u?) = # (e(u'), (u?)). 4.8)
The Lyapunov function W is continuous on (X x X) \ ¥ x and constant on con-
nected components. The set ¥ x is a closed in X x X, since uniform convergence
on compact sets implies point-wise convergence. The function W is a symmetric:

W(u!,u?) = W(u? u'), forall (u',u?) ¢ Zx.

The diagonal in X x X is defined by

A= {(ut,u?) e X x X s ub = u?},
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and A c Yx. The flow ¢ induces a product flow on X x X, via (u',u?)
(¢7 (u'), 97 (u?)), and the diagonal A is invariant for the product flow. For the
action of the flow on W we have

W (g7 (u'),¢7(u?)) = W (co¢”(u'),10¢”(u?))
= W(TU(L(ul))vTU(L(UQ))) = W(UI(O', ')aUQ(Ja ))

In [49] it is proved that the set £ x \ A is “thin" in X x X, which is the content
of the following proposition.

4.2.4. Proposition ([49]). For every singular solution pair (u',u?) € Sx \ A, there

exists an eg = e(u',u?) > 0, such that (¢° (u'), ¢ (u?)) ¢ Xx, forall o € (~ep,20) \
{0}

Orbits which intersect ¥ x “transversely” (and thus are not in the diagonal) in-
stantly escape from ¥ x and the diagonal A is the maximal invariant set contained
in ¥ x. The following proposition indicates W is a discrete Lyapunov function.

4.2.5. Proposition ([49]). For every pair of singular solutions (u',u?) e £x \ A, there
exists an g = e(u',u?) > 0, such that W(¢° (u'), ¢7 (u?)) > W(¢7 (u'), " (u?)), for
all o € (~£¢,0) and all o’ € (0, &).

For a given u € X define the o- and w-limit sets as:

wu) = {weX:¢7(u) 2, w, for some o, — o0},

afu) = {weX:¢(u) = w, for some o, — —00}.

The sets a(u) and w(u) are closed invariant sets for the flow ¢“, see [30, Lemma 4.6
Chapter IV]. Since X is compact, also a(u) and w(u) are compact. Compactness
of X implies furthermore that a(u) and w(u) are non-empty, see [30, Theorem
4.7 Chapter IV]. The Hausdorff property of X and the continuity of the flow ¢
imply that a(u) and w(u) are connected sets, see [30, Theorem 4.7 Chapter IV].
Define the equilibria of ¢ by

E:={ueX:¢(u) =u forall 0 ¢ R}.
Equilibria are functions v = wu(t) which satisfy the stationary equation u, =

F(t,u).

4.3 The abstract Poincaré-Bendixson Theorem

The concepts introduced so far can be embedded in a more abstract setting, which
generalizes the work by Fiedler and Mallet-Paret in [18]. Let ¢” be a continuous
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flow on a compact Hausdorff space X. In the case of the Cauchy-Riemann equa-
tions the flow ¢ was defined in (4.6), where the space X can be either the full
solution space, or else, the space which consists of the closure of a single entire
(bounded) orbit.

The notions of o- and w-limit sets, defined in Section 4.2 remain unchanged,
and a(u) and w(u) are non-empty, compact, connected, invariant sets.

Let A = {(u',u?) € X xX: u! = u*} be invariant for the product flow induced
by ¢“. We assume that there exist a closed “thin” singular set ¥, with A ¢ ¥ ¢
X x X, and functions W: (X x X)\ ¥ — Zand 7 : X — 7(X) c R? which satisfy
the following axioms:

(A1) themap W : X x X \ ¥ — Z, is continuous and symmetric;

(A2) the map 7 : X — 7(X) c R?, is a continuous projection onto its (compact)
image;

(A3) theset {(u',u?) € X x X: w(u'!) = m(u?)} is a subset of ¥;

(A4) forevery (u',u?) e £\ A, there exists an gy > 0, depending on (u!,u?), such
that (¢7 (ut), 97 (u?)) ¢ %, forall o € (~g9,0) \ {0};

(A5) forevery (u',u?) e £\ A, there exists an ¢y > 0, depending on (u!,u?), such
that

W (g7 (ul), 67 (u?)) > W (67 (ul), ¢ (u?)),
for all o € (—€¢,0) and all o’ € (0, &¢).

Axioms (A1)-(A5) are modeled on the properties of the non-linear Cauchy-
Riemann Equations discussed in Section 4.2, with 7 = 7, defined in (4.3). The
above axioms also generalize the conditions in the work of Fiedler and Mallet-
Paret in [18]. Note that the function W is a priori unbounded in the present case
and the flow ¢? does not necessarily regularize. Under these assumptions we
prove the following Theorem.

4.3.1. Theorem (Poincaré-Bendixson). Let ¢° be a continuous flow on a compact
Hausdorff space X. Let ¥ be a closed subset of X x X, and let W: (X x X)\ ¥ — Z
and 7 : X — w(X) c R? be mappings as defined above, and which satisfy Axioms
(A1)-(Ab). Then for w(u) we have the following dichotomy

(i) either w(u) consists of precisely one periodic orbit, or else
(i) a(w) ¢ Eand w(w) C E, for every w € w(u).
The same dichotomy holds for o(u).

As in [18], the proof of Theorem 4.3.1 will be divided into three Propositions,
namely Proposition 4.3.2, Proposition 4.3.3 and Proposition 4.3.4. For the follow-
ing three Proposition and throughout the paper we assume the hypotheses of
Theorem 4.3.1.
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4.3.2. Proposition (Soft version). Let u be in X and let w € w(u), then w(w) contains
a periodic solution or an equilibrium. The same holds for o(w).

Proposition 4.3.2 implies that, since w(w) and «(w) are both subsets of w(u), also
w(u) contains a periodic solution or an equilibrium.

4.3.3. Proposition. Let u be in X and let w € w(u). Then either,
(i) o(w) and w(w) consist only of equilibria, or else
(ii) ~(w) is a periodic orbit.

4.3.4. Proposition. Let u be X. If w(u) contains a periodic orbit, then w(u) is a single
periodic orbit.

The proof of Proposition 4.3.2 is given in Section 4.4 and the proofs of Propo-
sitions 4.3.3 and 4.3.4 are carried out in Section 4.5.2. Section 4.5.2 also provides
the proof of Theorem 4.1.2, with a formulation adapted to the abstract setting.
Propositions 4.3.3 and 4.3.4 together imply Theorem 4.3.1, while Proposition 4.3.2
will be used to prove Proposition 4.3.3. Theorem 4.3.1 can be applied directly to
the Cauchy-Riemann equations and therefore implies Theorem 4.1.1. Subsection
4.5.1 of Section 4.5 contains a number of technical lemmas. Finally, Section 4.6
provides the proofs of Propositions 4.2.1 and 4.2.3.

4.4 The soft version

This section deals with the soft version of the Poincaré-Bendixson theorem given
by Proposition 4.3.2. In the remainder of this text we adopt the hypotheses of
Section 4.3.

4.4.1. Lemma. For every pair (u',u?) e (X x X)\ A, the set
At 2y = {oeR: (¢“(u1),¢”(u2)) eX}
consists of isolated points only. Moreover, the mapping
o= W(e7(uh), 67 (u?)),

defined for o € R\ A 42), is a non-increasing function of o and constant on the
connected components of R\ Agy1 2.

Proof. Suppose there exists an accumulation point o,, — 0, for o, € A1 42). By
definition (¢7(u'), 97" (u?)) € ¥\ A, since A is invariant and (u',u?) ¢ A. By
the continuity of ¢° we have that

(67" (u'), 07 (u?)) == (67 (u'), 07" (u?)) € 2,
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since X is closed. This proves that o, € A1 42). The invariance of A implies that
(67 (ut), 97 (u?)) € £\ A. By Axiom (A4) there exists an gy > 0, depending on
(67 (ut), 97+ (u?)), such that (¢7=*<(u'), $7+¢(u?)) ¢ %, for all € € (~&0,0) \ {0}.
This contradicts the fact that o, is an accumulation point.

The set A(,1 ,2) is a discrete and ordered set. Let 0’ < " be two consecutive
points in A1 ,2y. By Axiom (A1), W is continuous and Z-valued, and therefore
W (g7 (ul), ¢° (u?)) is constant on o € (¢/,0"”). The fact that W is non-increasing
then follows from (A5), since W (¢7 (u'), ¢° (u?)) drops at points in A1 ,z2).

4.4.2. Lemma. Let u € X and w € w(u). For every w', w? € cl(y(w)) with w* # w?,
it holds that (w', w?) ¢ 3.

Proof. For contradiction, suppose (w',w?) ¢ ¥\ A, then, by the Axioms (A4)
and (A5), there exists an g9 > 0, such that (¢7(w'), ¢ (w?)) ¢ %, for all o €
(-€0,€0) \ {0} and

W (g7 (w'), 67 (w?)) > W (g7 (w'), ¢ (w?)),

forallo € (—£9,0) and all o/ € (0,¢p). Setoc = ~e and ¢’ = ¢, with 0 < € < . Since
w', w? e cl(y(w)), there exist 51,52 € R, such that (¢"*¢(w), ¢*2**(w)) ¢ ¥ and
(6% (w), $°2*°(w)) is close to (¢*(w), **(w?)). The continuity of W (Axiom
(A1)) then implies

WO () 6 (w)) = W (), o (u?)
< WO (wh),o *(w?) @9)
= W(om (). 0 (w)

Since y(w) ¢ w(u) is an invariant subset of w(u), the definition of w-limit set and
the continuity of 7 imply that there exists a sequence o,, = 00, as n — oo, such
that

¢Un+81752i8(u) — ¢S]i8(w)7 and (bo'ni&‘(u) — ¢82i6(w). (4.10)

Since oy, is divergent, we may assume
Ons1 > 0p +2¢, forall n. (4.11)

Inequality (4.9), the convergence in (4.10), Axiom (A1) (continuity) and the fact
that IV is locally constant (see Lemma 4.4.1), imply, for o,, — oo, that

W(¢G"+81752+6(u),¢0n+€(u)) _ W(¢51+5(w)’¢s2+5(w))
W((pSl—E(w)’ ¢8276(w))
W(¢Un+81*32*5 (U), ¢U”7E (’U,))

A
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By combining the latter with (4.11) and the fact that W is non-increasing, we
obtain

(90159755 (), 670172 () < W (677750754 ), 67 (u),

for all n. From this inequality we deduce that o — W (¢717%2(u), ¢ (u)) has
infinitely many jumps and therefore

W(p7*17%2(u), ¢7 (u)) - —00, as o — oo.
On the other hand, by continuity of W and (4.10) we have, for ¢, — oo, that
W(¢0n+81—82+6 (u)7 ¢l7n,+6 (U/)) — W(¢51+E (U}), ¢82+E (w)) > —OO7

which is a contradiction.

4.4.3. Lemma. Let u ¢ X and w ¢ w(u), then

72 cl (y(w)) = mel(y(w)) c R?

is a homeomorphism onto its image. Hence, ™ o ¢7 o w*

mcl(y(w).

Proof. By Axiom (A2), the projection 7: cl(y(w)) — mcl(y(w)) is continuous.
Since cl (y(w)) is compact and 7 cl(y(w)) is Hausdorff, it is sufficient to show
that 7 is bijective, see [40, §26, Thm. 26.6]. The projection 7 is surjective and it
remains to show that = is injective on cl(y(w)). Suppose 7 is not injective, then
there exist w!, w? e cl(y(w)), such that w! # w? and 7(w') = 7(w?). Axiom (A3)
then implies that (w', w?) € £\ A. On the other hand, Lemma 4.4.2 implies that
(w', w?) ¢ ¥, which is a contradiction. This establishes the injectivity of .

is a continuous flow on

For the projected flow on = cl(y(w)) we have the following commuting dia-
gram:

o

R x el(y(w)) LA cl(y(w))
idxm w (4.12)

R x mel(y(w)) L, mcl(y(w)),

where ¢° = 70 ¢° o (id x 7) L.

4.4.4. Corollary. The equilibria of the planar flow 1)° := mwo¢°o(idx7) " on 7 cl(y(w))
are in one-to-one correspondence with the equilibria of the flow ¢“ in cl(y(w)).
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Let (o,7) + ¢?(z), x € R?, be a continuous flow on R%. A subset 2 c R?is a
section for 17, if there is a § > 0, such that

Y 2)NY72(2) =2, forall0< oy <oy <,

where ¢ is called a o-extent of 2. The definition of section does not require dif-
ferentiability of the flow 7. If there exists a section 2 that is a continuum (i.e.
a compact, connected set containing at least two points), then 2 is a curve in R?
see [30, Theorem 1.6 ch. VII]. A curve in R? that is a section is called a transversal.

4.4.5. Lemma (Flow-box Theorem for planar flows). Let ¢ be a planar flow and let
x € R? not be an equilibrium of 1)°. Then,

(i) there exists a transversal € containing x, of extent 9, for some § > 0. The transver-
sal € is given as the image of the embedding r : [—¢,¢] — R? with r(0) = x, for
e > 0 sufficiently small. The set

U = {w"(r(T)) :Te|-g¢],0¢ [—%5, %5]},
is a neighborhood of x;

(ii) there exists a homeomorphism h : % — U := [-¢,€] x [~36, 36, such that for
every T € [-€,¢€],

hoy?(r(r)) = (1,0) e U, forall o [-16,16].

Proof. See [30, Proposition 2.5 chapter VII].

4.4.6. Remark. The homeomorphism h is also referred to as the canonical homeo-
morphism for ¢)?. Under its image the flow trivialises to the parallel flow as indi-
cated in Figure 4.1. The set U is referred to as a canonical domain, for which h is a
change of coordinates, that transforms the flow ¢ to the parallel flow ho)?oh~!.

4.4.7. Remark. In our case the projection 7 does not induce a planar flow on
the full R? (or an open subset of it), but only on the closed invariant subset
mel(y(w)) c R% In fact, as we will see later, we need to apply a variant of Lemma
4.4.5 to forward invariant closed subsets of the form

cl(y(w) U{¢? (u),0 > 0.}),
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C = h(¥)
U U = h(%)

Figure 4.1: The transversal % and the canonical change of coordinates h that maps to the
parallel flow.

where u € X,w € w(u),0, € R. On cl(y(w) U {¢?(u),0 > 0.}) we have a com-
muting diagram similar to (4.12). In order to have a bi-directional local flow, we
define the slightly smaller set

V= mwcl(y(w) U {7 (u),0 > 0y +06}), (4.13)

for § > O small. Then, if z € ¥ is not an equilibrium for 1)?, Lemma 4.4.5 continues
to hold, provided we replace % with

U = {v7(r(r)) i 7€ rH(CUY), o€ [-46,36]}.
Note that OZZ = %l'rer’l(%uy)-

4.4.8. Proposition (Soft version). Let u be in X and w € w(u), then w(w) contains a
periodic orbit or an equilibrium. The same holds for a(w).

Proof. Suppose w(w) does not contain any equilibria. Choose ¢ € w(w) and ¢* €
w((), then

w(() c w(w(w)) = w(w) c wly(w)) = cl(y(w)). (4.14)
Since (* is not an equilibrium, then 7(¢*) is not an equilibrium for ¢ = 70 ¢ o
(id x m)~! by Corollary 4.4.4. According to Lemma 4.4.5 there exists a transversal

¢ for ¢7, through « = 7(¢*). Let U be the canonical domain, which is the image
of % (neighbourhood of 7(¢*)) under A, and

hot? oh ' (h(m(())) =hot)?(() =homo¢’(¢), forall 7(¢)c .
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Since ¢* € w((), there exist times ¢,, — o0, such that ¢ ({) — ¢*. By the Flow-
box Theorem (Lemma 4.4.5) these times can be chosen such that 7o¢?" (¢) € €, for
oy, sufficiently large, and moreover m o ¢p7({) ¢ € for o € (0, 0p,1). We consider
two cases.

Case 1. For some n # n’, we have 7 o ¢ () = 7 o ¢°~'(¢). Then, since 7 is
a homeomorphism on cl(y(w)) (see Lemma 4.4.3) and since w(¢) < cl(y(w)) (see
Equation (4.14)), it follows that ¢~ ({) = ¢~ ({), and thus ¢?(¢) is a periodic
orbit.

Case 2. All m o ¢7(¢) are mutually distinct. Choose n* sufficiently large, such
that o ¢7({) and 7 o ¢7~1(() lie in %, for all n > n*. Consider the closed
Jordan curve ¢ in R? that is the union of the sets 7 o plononal(¢) and .7, where
S = b7 ([Tn, Tni1] x {0}), with 7,, and 7,,.1 the first coordinates of the points
homo@?({)and h o mo ¢7*((), respectively.

Consider the orbit 7 o ¢ (w). Since (* € w(w) and 7 is continuous, we have
that 7(¢*) is an w-limit point of 7(w) under ¢°. This implies, for ¢ sufficiently
large, that every time 7 o ¢ (w) enters %, it crosses ¢ exactly once. By Lemma
4.43, ¢7 is a planar flow on 7(y(w)) and therefore 7 o ¢”(w) cannot intersect
7 o plononial((). Thus, for o sufficiently large, m o ¢7 (w) is either in the interior or
in the exterior of the Jordan curve ¢ i.e. the interior of ¢ is either forward or
backward invariant with respect to ¢)?. Therefore there are only four possibilities:

(i) the interior of ¢ is forward invariant. For all o sufficiently large, 7 o ¢7 (w)
is inside 7 ;

(ii) the interior of ¢ is forward invariant. For all o sufficiently large, 7 o ¢7 (w)
is outside 7 ;

(iii) theinterior of ¢ is backward invariant. For all o sufficiently large, mo$“ (w)
isinside ¢

(iv) theinterior of ¢ is backward invariant. For all o sufficiently large, mo¢? (w)
is outside _#.

By (4.14) and the invariance of w(w), we have that 7~ (¢) € w(w), foralln € N,
and hence 7 o ¢?"({) € mw(w). Consequently, for all n € N, 7w 0 ¢7(() are w-limit
points of 7 o ¢° (w). Hence there exist 0} — oo and 07 — oo as k — oo with
¢k (w) — ¢ (¢) and ¢ (w) — ¢71((), as k — 0. By the Flow-Box Theorem
(Lemma 4.4.5) we may choose oi,j = 1,2 such that 7 0 ¢% (w) € €,j = 1,2.
Let 7 > 0 be small. Now, either 7 o ¢+"(w) is outside F and 7o gb”i”?(w) is
inside _# (see Figure 4.2 [left]), or 7 o ¢o* “(w) is inside # and 7 o gb"iw(w) is
outside ¢ (see Figure 4.2 [right]). Since ai — 00, j = 1,2, this contradicts all four
cases above. Consequently, Case 2 cannot occur, which implies Case 1 and thus a
periodic orbit.
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7 €

inside _# outside _#

Trntl Tnil
outside _# Tog © inside _# mog ©

or
insid. tsid
170 67 (C) Yoo 70 6 (¢) e &
outside _# inside _#

Figure 4.2: The two possible local geometries near the section % (in canonical coordi-
nates), for the Jordan curve _#. On the left the interior of ¢ is forward invariant, while
on the right it is backward invariant.

4.4.9. Remark. In [18, Proposition 2] the “soft version” was proved using both
smoothness of the flow and fact that there exists a non-negative discrete Lya-
punov function. The extension given by Proposition 4.4.8 makes it applicable to
the Cauchy-Riemann equations, for which a Z-valued Lyapunov function exists.

4.5 The strong version

This section is subdivided into two subsections. In the first subsection we show
some preliminary lemmas that will be used to prove the strong version of the
Poincaré-Bendixson Theorem. The proof of Proposition 4.3.3 occupy the second
subsection. Proofs are as in [18], but worked out in more details, and eventually
adjusted to our setting.

4.5.1 Technical lemmas

4.5.1. Lemma. Let u € X, then for every w € w(u) there exists an integer k(w), such
that
W(w' w?) = k(w),

for all w', w? e cl(y(w)), with w # w?.
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Proof. See also [18, Lemma 3.1]. Since we consider two distinct w!, w? ¢

cl(y(w)), we may exclude the case that w is an equilibrium. We therefore dis-
tinguish two cases: (i) y(w) is a periodic orbit, or (ii) o — ¢7(w) is injective.
Lemma 4.4.2 implies that (w!, w?) ¢ %, and therefore (w!, w?) — W (w!,w?) is a
continuous Z-valued function on (cl(vy(w)) x cl(y(w))) \ A.

(i) If v(w) is a periodic orbit, then, cl(y(w)) = v(w), which is homeomorphic
to S1, and v(w) x v(w) is therefore homeomorphic to the 2-torus T?. Therefore
(wh, w?) — W(w!, w?) induces a continuous Z-valued function on T? \ S!. Since
the latter is connected, it follows that W is constant on (y(w) x y(w)) \ A.

(i) If o — ¢7 (w) is injective, then (y(w) x y(w)) \ A has two connected compo-
nents given by (¢7* (w), 72 (w)), with o1 > 09, and o1 < o3, respectively. Since W
is symmetric (Axiom (A1)) we conclude that W is constant on (y(w) x y(w)) \ A.
Note that (cl(y(w)) xcl(y(w))) \ A is the closure of (y(w)xy(w))\Ain (X x X)\A.
Since W is continuous on (cl(y(w))xcl(y(w)))\4, itis also constant, which proves
the lemma.

4.5.2. Lemma. Assume that uw € X and w € w(u). Let k(w) be defined as in Lemma
4.5.1. If a(w) Nw(w) = @, then there exists a o, > 0, such that

W(u', wh) = k(w) (4.15)

for every ut e cl{¢?(u),0 > 0.} and every w' e cl(y(w)), such that u* # w'. In
particular, if T(ul) = m(wl) for some ul € cl{¢? (u), o > 0.} and w! € cl(y(w)), then
u! = w'. Hence

mo ¢ (u) gmcl(y(w)) forallo > o,. (4.16)

Proof. See [18, Lemma 3.2]. We start by observing that it is enough to prove that
(4.15) holds for u! € ¢°(u), o > 0. Then by continuity of W, the statement follows
for all ut € cl{¢°(u), o > 0.}

Suppose there exist sequences o,, — 00, wy, € cl(y(w)), with

7" (u) # Wy, kn = W(7 (u), wn) # k(w).

We may assume, passing to a subsequence if necessary, that for all n we have that
either k,, > k(w) or k,, < k(w). We will split the proof in two cases.

Case 1: k, < k(w). Again passing to a subsequence if necessary, we may
assume that either w,, ¢ a(w) for all n or else w,, ¢ cl(y(w)) \ a(w) for all n.
Since a(w) and w(w) are disjoint by assumption, it follows that cl(y(w)) \ a(w) =
v(w) U w(w). Choose now w! e w(w) in case w, € a(w), and w! € a(w) in case
wy, € y(w) Uw(w). In both cases we have w! ¢ w(u), hence we can choose a
sequence &, with &,, > o, for every n such that

1. ] Gn
W= nlgr;oqb (u).
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In case w,, € y(w)Uw(w) we may assume that 5, — o, is so large that qb&*i"’" (wy) €
cl{¢?(w), o > 0}. For a further subsequence, we have convergence of ¢~ 7" (w,,).
Call

2. _ 1 Gn—0On

w? = nll)rroloqb (w,).

Note that w!,w? € cl(y(w)), and w! # w? since a(w) Nw(w) = . In fact, by
construction it follows that either w! € w(w) and w? € a(w), or else w! € a(w)
and w? e cl{y(w),0 > 0} = {¢7(w),o > 0} Uw(w). By Lemma 4.5.1 there exists
k(w) € Z such that

W(w!, w?) = k(w).

Now, for n big enough, by continuity of W we obtain
ko < k(w) = W(w',w?) =W(@7 (u), 677 (wn))

W ), 67 ™)
W((bgn (u)vwn) = kn,

IN

which is a contradiction.

The final assertion (4.16) follows from the following observation. Suppose, for
contradiction that there exist a u' = ¢71 (u), for some o1 > o, and w! € cl(y(w)),
such that 7(u') = w(w'). By what we have just proved, we then have u' = w!.
Since w! € cl(y(w)) and, by assumption, the sets a(w), v(w) and w(w) are disjoint,
there are only three different possibilities.

(1) w! € w(w). Then ¢ (u) € w(w). By invariance w(u) € w(w(w)) = w(w).

Since a(w) € w(u) € w(w), this contradicts a(w) Nw(w) = @.
) w' € a(w). Then ¢! (u) € a(w). By invariance w(u) ¢ w(a(w)) = a(w).
Since w(w) € w(u) € a(w), this contradicts a(w) Nw(w) = @.

(w)
) w' € y(w). Then ¢ (u) € y(w). By invariance w(u) = w(w). But a(w) ¢
w(u) = w(w), again contradicting a(w) Nw(w) = @.

Case 2: k,, > k(w). This case is analogous to the previous one. It is enough to
exchange the roles of a(w) and w(w). See [18, Lemma 3.2] for further details.

4.5.3. Remark. Lemma 4.5.2 implies that the commutative diagram (4.12) extends
from cl(y(w)) to cl(y(w) U {¢7 (u), 0 > 0. }), if a(w) Nw(w) = @. Additionally, by
Lemma 4.4.5 and by Remark 4.4.7 the Flow-box Theorem holds for every x € ¥
(defined in (4.13)) that is not an equilibrium.

4.5.4. Lemma. Let u € X and let v, and v, be (not necessarily distinct) stationary or
periodic orbits in w(u). Then, there exists a k = k(v1,72), k € Z, such that

W(p',p®) =k, (4.17)
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for every p? e ~;,p* # p*. In particular, the projections of disjoint periodic orbits are
disjoint.

Proof. See [18, Lemma 3.3]. We consider the case where v; and v, are both peri-
odic, the others are analogous or even simpler. We first claim that W (p!, p?) is de-
fined for every p' € ' and every p? € v2 with p! # p2. Suppose, for contradiction,
that there exist p' € ! and p? € 72 with p! # p? such that (p',p?) € ¥\ A. Then,
by Axiom (A4) and (A5) there exists an ¢ > 0, such that (¢7 (p*), #° (p?)) ¢ X for
every o € (-£¢,¢0) \ {0} and

W (e (), 07 (1) < W(¢7 ("), 7 (1°)), (4.18)

for o’ € (0,0) and o € (~£¢,0). Set 0’ = £ and o = — . By continuity of I there
exists an n € (0, £2) such that W is constant on the set

2
U= {67 ("), ¢72(p*)) | - -n<o1,00 <L +1n}.

By periodicity of v! and 72 there isa o3 > £o such that (¢72 (p'), ¢3 (p?)) € U (both
in the periodic and the quasi-periodic case). Now, by (4.18)

W (g% 2(p"), 6°/%(p?)) < W (/2 (p"), ¢ =°/*(p?)) = W(¢”* (p'), ¢ (p*)).

Since o3 > <2, this contradicts Lemma 4.4.1. Hence (p',p?) ¢ ¥ and W (p', p?) is
well defined for every p' € 4! and every p? € 4%, with p! # p?.
This implies, by continuity of W, that the map

(r,p%) = W(p',p*)
is locally constant on
{0".p*) e xnlp' #p*}

This set is connected, which proves (4.17).

4.5.5. Lemma. Let u € X and e € E. For every w € w(u) with w # e it holds
(w,e) ¢ 3. If, furthermore, e # w(u) then there exists a & € R such that the map
o — W (¢ (u), e) is constant for o > &.

Proof. The proof resembles the one of Lemma 4.4.2. We repeat the argument. Let
w € w(u). Since w # e, we can assume that (w, e) ¢ A. Suppose, for contradiction,
that (w, e) € £\ A, then by Axioms (A4) and (A5), there exists an €y > 0 such that
(97 (w),e) X, forall o € (—eg,£0) \ {0} and

W (g° (w), €) > W (¢ (w), e),
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forall o € (-€¢,0) and all ¢’ € (0,¢¢). Seto = —e and ¢’ = ¢, with 0 < € < €¢. Then
we have
W(¢=(w),e) > W(¢*(w), e). (4.19)

By definition of the w-limit set and the fact that w is invariant, we have that there
exists a sequence ¢, — 00, as n — oo such that

7 (u) = ¢ (w). (4.20)
Since o, is divergent we assume that
Ons1 > 0n +2¢, foralln e N. (4.21)

Inequality (4.19), convergence in (4.20) and Lemma 4.4.1 imply, for o,, — oo, that

W(¢™(w),e)
W(g==(w),e)
W (75 (u), e).

W (g7 (u), e)

I A

Combining the latter with (4.21) and the fact that W is non-increasing, we obtain
W(¢7 1 (u),e) < W(g7"(u),e),

for all n. From this, we deduce that ¢ — W (¢ (u), e) has infinitely many jumps
and therefore
W(¢? (u),e) - —00 as o — 0.

On the other hand, continuity of W and (4.20) imply, for ¢, — oo, that
W(¢Un+€ (u)7 e) = W((be (w)7 e) > —00,

which is a contradiction.

To prove the final assertion, suppose, by contradiction, that such a & does not
exist. Then there exists a sequence o,, — oo such that (¢“" (u), e) € X. Now choose
aw € w(u) \ {e} # @. There exists a sequence &,, — oo such that ¢° (u) — w. By
the first part of the lemma, W (w, e) € Z. We may choose &,, > ¢,, without loss of
generality. By continuity of W and axiom (A5) it follows that

W(w,e) = lim W(¢%" (u),e) = —o0,

n—oo

a contradiction. This concludes the proof.

4.5.6. Lemma. Lef u be in X. There exists an integer ko € Z such that

W(w,e) = ko (4.22)
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for every w € w(w), and for every equilibrium e € w(u) such that w # e.

Proof. Fixe ¢ ENw(u). Letw € w(u) \ {e}. According to Lemma 4.5.5, W (w, ) is
well-defined. Since ¢ (u) — w for some 7,, — 00,

Wiwe) = lim W6 (u).e)
= ILm W (o7 (u),e) = ke,

where the second limit exists by Lemma 4.5.5. Since the above statement holds
for any w € w(u) \ {e}, this implies that W (w, ) is independent of w € w(u) \ {e}.

We still need to show that W (w, ) is independent of e ¢ E N w(u). Therefore
lete,é e ENw(u), e # é. Then, by Axiom (Al), by the fact that e, € € w(u), and by
Lemma 4.5.5 it holds that

ke = W(w,e) =W (e, e) = W(e, &) = W(w,é) = k.
This shows (4.22) and concludes the proof.

4.5.2 Proof of the strong version

In this section we prove Propositions 4.3.3 and 4.3.4. This completes the proof
of Theorem 4.3.1. We finish by proving Theorem 4.1.2 (in the abstract setting of
Section 4.3).

Proof of Proposition 4.3.3. Suppose that w* € w(w) is not an equilibrium and
suppose furthermore that v(w) is not periodic. Lemma 4.4.3 implies that 7 o ¢7
is a planar flow on the set w(w) ¢ cl(y(w)). By Corollary 4.4.4, the point 7(w*) is
not an equilibrium for 7 o ¢”. According to Lemma 4.4.5 there exist a transversal
¢ through 7(w*) and a canonical domain U centered in 7(w*), in which the flow
has the form shown in Figure 4.1 (as in Lemma 4.4.8 we will identify 7 (w*) with
h o w(w*) and the neighborhood % of w(w*) with its image under h, i.e. U =
h()). Consider first 7 o ¢?(w) and recall that by Lemma 4.4.3 the map ¢ —
m o ¢7(w) is one-to-one since y(w) is not periodic. Let 0,, — oo denote those
positive times for which 7 o ¢ (w) € ¥, and note that {7 o ¢ (w)}>2; are all
distinct. By construction, for all n € N we have 7 o ¢7"(w), 7 0 ¢ (w) € U.
Consider the Jordan curve ¢ consisting of 7 o ¢lo»7n1l(w) together with the
subinterval of ¥ with endpoints 7 o ¢7»(w) and 7 o ¢ (w). As in the proof of
Proposition 4.4.8, the region inside ¢, is either forward or backward invariant
for the flow 7o ¢? (w), and thus _# separates mw(w) from ma(w). By Lemma 4.4.3
we obtain a(w) Nw(w) = @. The assumptions of Lemma 4.5.2 are satisfied and
hence there exists a time o, such that the curve 70 ¢ (u) (o > 0,) cannot cross the
curve 7 o ¢ (w). In particular it cannot cross 7 o ¢l7n7n1l(w), for large n. When
7o ¢ (u) enters U it crosses ¢ in the same direction as 7(w*), hence 7 o ¢7 (u) is
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either inside or outside _¢ for all large 0 > 0., > 0,. Since both w(w) and a(w)
are contained in w(u) the curve 7o ¢7 (u) will have w-limit points when ¢ — oo in
both ma(w) and mw(w). These two sets are separated by _# and hence the forward
orbit 7 0 ¢7(u), 0 > 0., has to cross _# . This is a contradiction.

Proof of Proposition 4.3.4. See [18, Proposition 2]. Suppose that w(u) strictly
contains a periodic orbit v(p). Let V ¢ X be a closed tubular neighborhood of
v(p). Choose V' small enough such that it does not contain equilibria and such
that w(u) still has elements outside V. Since there are accumulation points (for
¢? (u) when o goes to infinity) both inside and outside V, then ¢° (u) must enter
and leave V infinitely often. Let o,, — oo be a sequence such that
p= lim ¢7"(u)

and such that ¢?(u) leaves V between any two consecutive times o,,. Let I,, :=
[0n — au, 0n + By] be the maximal time interval containing o,, such that

¢°(u) eV forallo e I,.

Since 0V is closed, we may assume convergence (passing to a subsequence, if
necessary) of ¢?»~*»(u). Note that o,, 1 < o, — o, thus o,, — @;, — 0. Let

q:= nh_)ngoqb T (y) € wlu).
We have that ¢ € V. Moreover we may assume that o, + 3, — oo (at least for
a subsequence) since w(u) contains a periodic orbit in the interior of V. We have
thus

w(g) € cl(¢?(q)) €V, o >0.

By Proposition 4.3.3 we have that v(¢) is periodic. By construction v(q) and (p)
are distinct and ~(¢) is contained in V. By continuity of the flow and the projec-
tion 7, and compactness of V,7y(p) and 7y(q) are close to each other with the
standard topology of R?, provided that we take the tubular neighborhood V suf-
ficiently small. From this it follows that 7y(¢) and 7my(p) are nested closed curves.
Reducing V' to separate y(p) from y(g), a periodic solution y(r) can be constructed
in the same way. Note once more that 7y(q), 7y(p) and 7y(r) are nested closed
curves. Applying Lemma 4.5.4 to the trajectories v(p) and v(g) we conclude that
there exists a k € Z such that
W(p',q') =k,

for all p* € y(p) and ¢* € v(q). By continuity of W (Axiom (A1)) this implies that

W(p',¢7 " (u)) = k,
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for all p' € v(p) when n is big enough, since ¢°» " (u) — ¢ € v(q). By Assump-
tion (A5) we get mo ¢7 (u) ¢ my(p) for every o in the open interval with endpoints
On — Qp, O — Oy, provided n, m are chosen large enough. Since o, — a;, — 00,
as m — oo, it follows that 7 o ¢7 (u) ¢ my(p), for any o large enough. In an analo-
gous manner we can prove that, for o large enough, the curve 7o ¢ (u) can never
intersect 7y(¢) and 7y(r), but this is a contradiction since 7 o ¢?(u) has w-limit
points as ¢ — oo in the three nested curves 7y(p), 7y(q), 7y(r).

Finally we are able to prove the following Theorem 4.5.7. Since, by Section
4.2, the Cauchy-Riemann Equations satisfy the Axioms in Section 4.3, Theorem
4.1.2 follows from Propostion 4.5.7.

4.5.7. Proposition. Let u € X then
7 w(u) = m(wu))

is a homeomorphism onto its image. Hence m o ¢ is a flow on m(w(uw)).

Proof. See also [18, Theorem 2]. By Axiom (A5) it is enough to show that there
exists a kg € Z such that
W(w', w?) = ko, (4.23)

2 1

for all w',w? e w(u),w! # w?. We now apply Theorem 4.3.1 (Poincaré-
Bendixson). If w(u) consists of a single periodic orbit, then (4.23) holds by Lemma
4.5.4. We may therefore assume for the remainder of the proof that for every
w € w(u) we have a(w),w(w) c E. If either w! or w? is an equilibrium then (4.23)
holds with kg defined in Lemma 4.5.6. We may therefore assume that w!' ¢ E.
Suppose now, for contradiction, that there exist (w!,w?) € ¥\ A. By Axioms
(A4) and (A5), there exists an g9 > 0, such that (¢7(w'),¢? (w?)) ¢ %, for all
o€ (~€0,20) \ {0} and

W (g7 (w'), 67 (w)) < W (97 (w'), ¢ (w?))

for all 0 € (-£¢,0) and all 0’ € (0,&¢). Set 0 = —e and ¢’/ = ¢, with 0 < € < &o.
Since w! € w(u), there exists o,, — oo such that

1 _ 9 On
W= g, 4

and
0<o0pi1 —0p, — 00, @S N —> OO.

Define 6, := (0511 — ) — 00 then, passing to a subsequence if necessary, the
limits A A
e:= lim ¢ 7" (¢ °(w?)) and é:= lim ¢ (¢°(w?))

n—oo n—oo
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exist, and e,é € E, since a(w?) ¢ F and w(w?) ¢ E. By Axiom (Al), Lemma
4.4.1, Lemma 4.5.6 and the fact that w! ¢ E we infer that, for n sufficiently large
(slightly shifting ¢ if necessary to make W well-defined for all relevant pairs)

W (o®(w'), ¢*(w?)) ¢ = (wh), ¢¢(w?))

717 (u), ¢ (w?))

Opi1—Opn— s(u)7¢—an—s(w2))

e (u), e)

“(wh) )

*(w'), €)

¢ (w'), é)

am1+e( ), €) )

Gn+0n ‘Fs(u)’ ¢¢7n+6 (wQ))

¢""*5() ¢* (w?))
¢ (w'), 6% (w?)),

which is a contradiction. In the sixth and in the seventh (in)equality we have used
Lemma 4.5.6.

A A

Il
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¢
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4.6 Proofs of Propositions 4.2.1 and 4.2.3
Consider the operators
0=0,-J0 and 9 = 95 + JO,,

and recall the following regularity estimates:

4.6.1. Lemma. Let g be a function in ¢ C2°(R x S';R?). For every 1 < p < oo, there
exists a constant Cp, > 0, such that

IVllLr@est) < CpllOgllLe@ast)- (4.24)

The same estimate holds for 0 via t — —t.
Proof. See [4], [15] [31], [36, appendix B].

Proof of Proposition 4.2.1. For a solution v € X, we can write

Ou = —JF(t,u) = f(s,t), (4.25)
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where F, and therefore f, are uniformly bounded since for every u € X we have
lu(s,t)] < 1forall (s,t) e R x S?,ie. u satisfies the a priori estimate

[[u]| oo (ms1y < 1. (4.26)

Extend f and u via periodic extension to a function on R? in the ¢-direction. By
(4.26) we obtain the existence of a constant M > 0, such that

£ oo (r2) < M. (4.27)

We use (4.24) to obtain the interior regularity estimates for the Cauchy-Riemann
operators.

Let K, L, G be compact sets contained in R? such that K € L € G c R?, and
let e be positive such that ¢ < dist(L, 9G). By compactness, L can be covered by
finitely many open balls of radius /2 :

N,
Lc U By jo(x;).

i=1

Consider a partition of unity {pc s, }i=1,...,n. on L subordinate to { B (z:) };_; .-
In particular the supports of p. ., are contained in B (z;), for every i = 1... N..
Then, for every u, every small ¢ > 0 and every ¢ = 1...N,, the function v, ; :=
pe.,;u belongs to Wj'P(R?), for every p > 1, and every k e N. Using the Poincaré
inequality and Lemma 4.6.1 we get (with C' changing from line to line)

e llwrre) = [lveillwie s @) < Cllveillie . 2.
< Cl0ve il|Lr(B. (@1
Al (5., ~ (4.28)
< Ol|pew;0ul|Le (B, (2:)) + ClluOpe 2| Lo (B, (2:))
< Cl|ou||Lr(ay + Cllul|Le(c)-

As {pcu; };_q . is a partition of unity it follows that

Ne
[lullwrery = <Y Moeillwrn s, ) - (4.29)

wWt.r(L) i=1

NE
E Ve, i
i=1

Putting together (4.28) and (4.29) we obtain

lullwrozy < Cp,r.a (10ullr @y + [[ull Lo (@) - (4.30)
Using (4.30) and (4.25), (4.26) and (4.27) we obtain

lullwrsz) < Coze (1fllLoe) + llullze) < Cpra < o0, (4.31)
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where the constant C’; 1. depends on p, L, G, but not on u. Therefore, we have
that if we take a sequence {u,,} ¢ X then, from (4.31), w,, is uniformly bounded
in W1P(L). It follows from the Sobolev compact embedding

WhP(L) — C°(Ly), (4.32)

for every Ly € L (see e.g. [5, theorem 6.3 part II]) that u,, has a converging
subsequence in C _(Lg). Since this holds for every L ¢ R?, we obtain that u,
converges (up to a subsequence) in X to a continuous . We still need to prove
that the limit u solves Equation (4.2). To prove that u ¢ X we will show that
the convergence of u,, to u is stronger, more precisely C{. . In order to obtain
further regularity, we consider a partition of unity of KX € L, which we call again
{pe,z; yi=1,...N., Wwhere now 0 < ¢ < dist(K, dL). On balls B, (z;) we obtain

1pe . ullwer(s.) < Cllpesullyze (s, o) < ClIOPezw)llwre(s. @)
< C (|lpew, Oullwrn (B, i) + [[u0pe,a, | lwrn(B. ()
< C (||0ul] Lo (ry + [[0ullwro(ry + ull Loy + [ullwiery) -

As in (4.29), using (4.25) we obtain

lullwzr(x) < Cp.in.a (1f ooy + 1 Fllwrey + ulloe @y + ullwirzy) -
(4.33)
To estimate the three terms || f|[ 1o (L), ||u||zo(z) and [[u[|w1.»(z) We use respec-
tively (4.27), (4.26), and (4.31). In order to estimate || f||yy1.»(z) we differentiate
the smooth vector field F' and we obtain

fs(s,t) = (F(t,u))s = Dy X (¢, 1) (0, us)
ft(S,t) = (F( ,u))t = DtMX(t,u)(l,ut).
Both right hand sides lie in L?(L), and hence also D f = (fs, f;) is in LP(L). From

this it follows, by using (4.33), that there exists a constant C . ; ., dependent on
p, K, L, G and uniform in u, such that

HUHW“(K) < C]?,K,L,G < 00,
for compact domains K € L € G. By the compact Sobolev immersion
WP(K) — C'(Ky), (4.34)

for every Ky € K [5, theorem 6.3 part II] we get, by choosing p > 2, and passing
to a subsequence that the limit u € X.



4.6 Proofs of Propositions 4.2.1 and 4.2.3

Proof of Proposition 4.2.3. As in the proof of Lemma 4.4.3 if suffices to show that
¢ is injective. Suppose there exist uq, us € X such that ¢(u1) = t(u2). By definition
of « we have

u1(0,-) = ug(0,-). (4.35)

Define v(s,t) := uy (s, t)-ua(s,t), forall (s,t) e RxS'. By (4.35) we have v(0,¢) = 0
for all ¢ € S*. By smoothness of the vector field F' we can write
F(t,u1) = F(t,u2) + R(t,u1, ug — u1)(ug — u1),
where R, is a smooth function of its arguments. Upon substitution this gives
v — Jug + A(s,t)v =0, v(0,t) =0 forallte S', (4.36)

and A(s,t) = R(t,ui(s,t),v(s,t)) is (at least) continuous on R x S'. Evaluating
(4.36) in t = 0 we obtain, in particular,

vs —Jug + A(s,t)v =0, v(0,0)=0 (4.37)
Introducing complex coordinates z := s + it, (4.37) becomes
Ozv+ A(z)v=0, v(0)=0, (4.38)

where the operator 0z := 0, — 0 is the standard anti-holomorphic derivative and
we have used the identification between the complex structure J in R? and i in

C. Multiplying (4.38) by e/o 4(99¢ and defining
w(z) = elo Ay,

we obtain
ozw =0, w(0)=0.

which means that w is analytic. This implies that either 0 is an isolated zero for
w, or there exists a 0 > 0, such that w(z) = 0,on Us := {z € C : |z| < §}. Because
of (4.36) we conclude that 0 cannot be an isolated zero for w, hence w = 0 in
Us := {z € C : |z] < 0}. Repeating these arguments we obtain that w(s,¢) = 0 for
all (s,t) € R x S and hence v = 0. This implies u; = ug, which concludes the
proof.

4.6.2. Remark. The same proof can be carried out in case J is a smooth map
R x ST — Sp(2,R) such that J2 = —1d (i.e. J is an almost complex structure and
Sp(2,R) denotes the symplectic group of degree 2 over R). In this case one can
prove that the equation us — J(s,t)(u; — F(t,u)) = 0 can be tranformed into (4.2)
using [31, Theorem 12, Appendix A.6].
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Samenvatting (Dutch Summary)

Braid invarianten voor niet-lineaire differentiaalvergelijkingen

In dit proefschrift worden topologische eigenschappen en invarianten van
speciale typen niet-lineaire parti€le differentiaalvergelijkingen onderzocht welke
gebruikt worden voor het vinden van oplossingen in bepaalde ‘braid” klassen van
krommen — krommen met de structuur van een vlechtwerk. De belangrijkste re-
sultaten kunnen in drie punten worden samengevat:

e een uitbreiding van de Poincaré-Hopf stelling voor braid klassen;

o de constructie van een isomorfisme tussen Floer homologie en Morse ho-
mologie voor braid klassen;

e een generalisatie van de Poincaré-Bendixson stelling voor niet-lineaire
Cauchy-Riemann vergelijkingen.

Periodieke banen van 1-periodieke Hamilton vectorvelden op de eenheidsbol
D? kunnen als braids (vlechtwerken) worden beschouwd. Voor bepaalde braid
klassen kan er een algebraisch topologische invariant worden gedefinieerd, de
Floer homologie van de braid klasse, zie [49]. Als de Floer homologie van een
braid klasse niet triviaal is, worden via Morse theorie aanvullende periodieke
banen van de Hamilton vergelijkingen geforceerd.

Het eerste resultaat in Hoofdstuk 2 toont aan dat de Euler karakteristiek van
de Floer homologie het bestaan van periodieke banen en periodieke punten voor
willekeurige vectorvelden en diffeomorfismen geeft. Dit resultaat kan worden
geformuleerd in termen van een Poincaré-Hopf stelling. Floer homologie en
dus ook de bijbehorende Euler-Floer karakteristiek zijn abstract gedefinieerd en
moeilijk te berekenen. We beschrijven een methode hoe de Euler-Floer karakter-
istiek voor een willekeurige relatieve braid klassen berekend kan worden via een
(eindig) simplicial complex.

In Hoofdstuk 3 geven we de definitie van de Morse homologie voor braids
en het isomorfisme naar de bijbehorende Floer homologie. De constructie wordt
uitgevoerd met behulp van verschillende technieken en met de keuze van spe-
ciale Hamilton functies. Dit is een eerste stap richting een isomorfisme tussen de
Floer homologie en de Conley index voor relatieve braid klassen. Op het niveau
van Euler karakteristieken is dit reeds uitgevoerd in Hoofdstuk 2. Een isomor-
fisme naar de Conley index geeft een soortgelijke berekenbaarheid van de Floer
homologie via simplicial complexes.

Hoofdstuk 4 betreft de karakterisering van het asymptotisch gedrag van de
Cauchy-Riemann vergelijkingen. Fiedler en Mallet-Paret (cf. [18]) bewijzen een
versie van de klassieke Poincaré-Bendixson stelling voor scalaire parabolische
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vergelijkingen. Wij tonen aan dat een vergelijkbaar resultaat geldt voor be-
grensde oplossingen van de niet-lineaire Cauchy-Riemann vergelijkingen. Om
dit laatste te bereiken, bewijzen we een abstracte Poincaré-Bendixson stelling
voor flows op compacte Hausdorff ruimten die een discrete Lyapunov functie
hebben. Deze stelling is een generalisatie van het resultaat van Fiedler en Mallet-
Paret. De stelling van Fiedler en Mallet-Paret kan niet toegepast worden op de
Cauchy-Riemann vergelijkingen.
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