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Preface

The subject of this thesis is developing and applying topological
methods to study forcing properties and existence of periodic solutions
for fourth order conservative systems.

The introductory Chapter 1 provides an overview of the known re-
sults and techniques which are employed in this thesis. Examples are
given to explain the basic ideas. The main results are summarized in
this chapter. We apply our techniques to the Swift-Hohenberg equation
and we give a classification of its periodic solutions according to their
braid type. The bifurcation diagram for this equation is discussed in
terms of this classification.

In Chapter 2 we extend Conley index theory to non-proper braid
classes. This means that we can use the Conley index to analyze the
invariant set of non-proper braid class although it is not an isolating
neighborhood for the underlying flow. This chapter as well as Chap-
ter 3 is a joint work with J.B. van den Berg and R.C.A.M. van der Vorst.

Chapter 3 applies the Conley index theory to obtain forcing results
based on the braid type of solution and establishes a partial order of
periodic solutions of Swift-Hohenberg equation.
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CHAPTER 1

Introduction

1.1. Prologue
Differential equations have played an important role in pure and

applied mathematics since they were introduced in the mid 17th cen-
tury. First applications were made largely to geometry and mechanics.
In the 18th century, the study of partial differential equations (PDE’s)
was initiated in the work of Euler, d’Alambert, Lagrange and Laplace
as the principal tool of analytic study of models in the physical science.

In these days physics is very far from being the only science where
differential equations are used. Every science which tries to study
changing quantities, in a meaningful way, is in quest of differential
equations because given the initial state they complectly determines
the evolution of the system. To name a few examples: the reaction and
diffusion of chemicals, the dynamics of populations in biology, the de-
velopment and treatment of diseases in medicine, or the flow of fluids
or gases, which applications range from fundamental astronomy to me-
teorology to industrial engineering.

In late 19th century H. Poincaré stated a prophetic insight that dif-
ferential equations of mathematical physics will have a significant role
within mathematics itself. Indeed through the whole 20th century till
now differential equations constitute a bridge between central issues
of applied mathematics and physical sciences on the one hand and the
development of mathematical ideas in active areas of pure mathemat-
ics on the other hand. We will restrict our self to mention just a few
of them: differential geometry, functional analysis, topology, Fourier
analysis, algebraic geometry and theory of chaos. For more detail dis-
cussion of the history of PDE’s and approaches to solve (understand)
them see [4].

3



1. INTRODUCTION

Dynamical system theory combines analysis, geometry and topol-
ogy for analyzing (partial) differential equations. Two main ingredi-
ents of the dynamical system are the space X which consists of possi-
ble states of the system and a rule (differential equation) that governs
the evolution of the state. The space X plays a very important role.
Understanding topology of this space may give a deep insight into the
dynamics of the system. Imagine the rain falling on the mountains. A
rain drop which falls on the mountain ridge will flow downwards and
eventually join with other rain drops to crate a stream running down in
the valley, joining with other streams into a river and continuing trough
the valleys to the sea. Other possible scenario is that the rain drop ends
up in a puddle or a lake. A good knowledge about the terrain enables
us to predict where the temporary lakes and torrents will be created.
However, this approach does not tell us anything about a position of
the single drop of water in a river. Hence information obtained is coarse
in this sense but still meaningful. Differential and algebraic topology
are used to formalize these ideas.

In this thesis we study dynamical systems via topological invari-
ants. Conley index theory is used to prove the existence of geomet-
rically different solutions for variety of fourth order differential equa-
tions. The main focus is on extended Fisher-Kolmogorov and Swift-
Hohenberg equation introduced in the following section. In the same
section we survey the main results of the thesis. Section 1.3 provides
a more general setting in which Swift-Hohenberg equation can be seen
and to which our results are applicable. To obtain the theorems about
the existence of solutions for Swift-Hohenberg equation, stated in Sec-
tion 1.2, we employ forcing of solutions via the Conley index for braids.
The main ideas of forcing are summarized in Section 1.4 while a brief
survey of Conley index theory for braids can be found in Section 1.5.

1.2. The fourth order equation
Whereas the solutions of second order autonomous ODEs can be

represented in a phase plane, leading to modest complexity of the dy-
namics, equations of higher order can exhibit a plethora of distinct
behaviors, and the dependence of the dynamics on parameters is ex-
tremely complex. The results of this thesis are concerned with the solu-
tions of the nonlinear forth order equations of the form

−γu′′′′ + βu′′ + f(u) = 0 γ > 0, β ∈ R, (1.2.1)





1.2 THE FOURTH ORDER EQUATION

and their generalizations. Equation (1.2.1) describes the stationary so-
lutions of the equation

∂u

∂s
= −γ ∂

4u

∂t4
+ β

∂2u

∂t2
+ f(u) = 0 γ > 0, β ∈ R.

We are especially interested in the bi-stable nonlinearity f(u) = u −
u3. For this nonlinearity Equation (1.2.1) is known as extended Fisher-
Kolmogorov equation for β > 0 and for β < 0 the name Swift-Hohenberg
equation is more appropriate.

One of the reasons to investigate Equation (1.2.1) is that, with var-
ious nonlinearities f(u), they serve as models in an abundance of ap-
plications. For example in the study of a strut on a nonlinear elastic
foundation and in the study of shallow waves [5], where this equation
arises with the nonlinearity f(u) = u − u2. The homoclinic orbits of
this equation have been extensively studied [1, 5, 6, 15]. Some of our
results are applicable also to this type of nonlinearity. A more detailed
explanation can be found at Section 1.6.

Using a scaling argument Equation (1.2.1) with f(u) = u − u3, can
be rewritten as

u′′′′ + αu′′ − u+ u3 = 0, α ∈ R, (1.2.2)

where α = − β√
γ .

Of particular importance in the study of Equation (1.2.2) is the vari-
ational formulation. We explain this concept later on in more detail, see
Chapter 2. Equation (1.2.2) occurs as the Euler-Lagrange equation of an
action functional involving a second order Lagrangian:∫

I
L(u, u′, u′′)dt,

where

L(u, v, w) =
1
2
w2 − α

2
v2 +

1
4
(u2 − 1)2.

The results of this thesis are applicable to a broad class of the se-
cond order Lagrangians. In the present work we apply them to Equa-
tion (1.2.2) in order to study its periodic solutions.

The Lagrangian action is translation invariant and through Noe-
ther’s Theorem conserved quantity can be related to variational struc-
ture : solutions of Equation (1.2.2) satisfy the energy equation

E[u] = −u′u′′′ + 1
2
(u′′)2 − α

2
(u′)2 − 1

4
(u2 − 1)2 = E.





1. INTRODUCTION

The energy equation defines three dimensional energy surfacesME

that foliate R4. For the values E = −1
4 and E = 0 the energy surfaces

are singular with singularities at u = 0 and u = ±1 respectively. For all
E > 0 we have thatME

∼= S1×R2. There may not be any periodic solu-
tions at the positive energy level, however the existence of certain types
of periodic solutions may force additional periodic solutions based on
topological invariants. The level E = 0 plays the role of organizing
center due to the existence of the equilibrium states u = ±1. Intuitively,
homoclinic solutions to u± = ±1 and/or a heteroclinic cycle will, if they
exist, lie in this energy level and it is well known that such connecting
orbits may be the source of complicated dynamics [7, 9, 11, 12]. This
naturally leads us to the study of solutions in this singular energy level.
The focus on the singular energy level is not new. We will highlight
some of the known results and introduce the classification of periodic
solutions of Equation (1.2.2).

Classification of periodic solutions

The structure of the set of periodic solutions of Equation (1.2.2) de-
pends very much on the linearization around the constant solutions
u± = ±1 and hence on the value of the parameter α. In particular,
one can identify two critical values of α : +

√
8 and −

√
8. At these val-

ues the linearization around the constant solutions u±, i.e. the points
P± = (±1, 0, 0, 0) in (u, u′, u′′, u′′′) phase space, changes type, as indi-
cated in Figure 1.

In fact, for α ≤ −
√

8, the equilibria u± are real saddle and there are
no periodic solutions on the zero energy level. The set of all bounded
solutions is very limited, and consists of the three equilibrium points,
two monotone antisymmetric heteroclinic loops and (modulo transi-
tions) a one parameter family of single bump periodic solutions, which
are even with respect to their extrema and odd with respect to their
zeros. These periodic solutions can be parameterized by the energy
E ∈

(
−1

4 , 0
)
, see [20].

As α increases beyond −
√

8 the equilibria u± become saddle-foci
and the set of periodic solutions becomes much richer. There is a
plethora of periodic solutions on the energy level zero bifurcating
from the heteroclinic loop at α = −

√
8. It has been proved that for

−
√

8 < α ≤ 0 the zero energy level contains a great variety of multi-
bump periodic solutions. For detailed results we refer to [9, 11, 12].
For 0 < α <

√
8 the results are more tentative and less complete. For





1.2 THE FOURTH ORDER EQUATION
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Figure 1: Bifurcation diagram a) shows three different types of the
branches, in the plane (α, ‖u‖∞), which bifurcate for α = −

√
8. Solu-

tions on the branches that extend beyond the boundary of the diagram
are of the first type, see e) for an example; branches that form closed loops
consist of solutions of the second type, see f) for an example ; branches col-
lapsing on ‖u‖∞ = 1 consist of solutions of the third type see, g) for exam-
ple. The spectrum of the linearization around P+ and P− for b) α ≤ −

√
8;

c) α ∈ (−
√

8,
√

8); d)
√

8 ≤ α.

α >
√

8 the equilibria change to centers and small periodic oscillations
around equilibria u± appear.

Figure 1 shows the bifurcation diagram, where we graph the norm
of the solutions u as function of α. Three branches with very different
geometric behavior appear in the bifurcation diagram. It is shown in
[18] that at the regular energy level every solution is a concatenation of
monotone laps between extrema and the number of the monotone laps
is finite and even per period. Two essential properties are preserved for
the solutions laying on the same branch of the bifurcation diagram:
(1) the number of monotone laps;
(2) the number of crossings of the solution with the u+ and u−.
We stress that it is important that the counting of monotone laps and
crossings is done with the following conventions. A regular monotone
lap is a piece of the solution u such that u′ does not change sign i.e. u′ <
0 or u′ > 0, and a degenerate monotone lap is an inflexion point. We
have to count both non-degenerate and degenerate monotone laps in
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1. INTRODUCTION

order to obtain the invariant along the bifurcation branch, see [14]. The
number of crossings of solution u with u± is the number of zero points
of the function u− u± counted over one period without multiplicity, i.e.
every zero point is counted just once even if it is a multiple zero. The
zero points of the function are isolated thus this number is well defined,
finite and preserved along the continuous branches, see [14].

Now we proceed to make a classification of solution branches. De-
fine the intersection sequence σ = (σj1σj2 . . . σjm), jk ∈ {1, 2}, where
σ1 represents the intersections of a periodic function u with u− = −1
while σ2 represents the intersections with u+ = +1, counted over the
period τ . Due to periodicity of u we can suppose that σ starts with σ1

if u intersects u−. We group the same elements together and use the
notation with powers instead of repeating the symbols e.g. we write
(σ2

1σ
2
2)

2 instead of σ1σ1σ2σ2σ1σ1σ2σ2. We distinguish different types of
periodic functions based on their intersections σ.

DEFINITION 1.2.1. We can distinguish the following three classes of
periodic functions:

(I) σ = (σ2
1σ

2
2)
q for some q ∈ N;

(II) both σ1 and σ2 are present in σ but σ 6= (σ2
1σ

2
2)
q

for any q ∈ N;
(III) σ = (σ2q

1 ), or σ = (σ2q
2 ) for some q ∈ N.

These three classes do not contain all periodic functions. The func-
tion which does not attain at least one of the values +1 or −1 is not in
any of them. To motivate the previous definition a relation to braids
can be made.

DEFINITION 1.2.2. A braid β on n strands is a collection of embed-
dings {βα : [0, 1] → R3}nα=1 with disjoint images such that βα(1) =
βτ(α)(0) for some permutation τ . Two such braids are said to be of the
same topological braid type if they are homotopic in the space of braids.
The strands must remain disjoint along the homotopy.

The solutions u and u± can be interpreted as a braid via the map
t → (t, u(t), u′(t)). For a more detailed explanation see [8]. The inter-
section sequence σ defines the topological type. Therefore the sequence
σ distinguishes a subset in the space of braids. Later on we will intro-
duce a topological invariant called Conley index for braid types. This
invariant is an extension of the degree theory. Non-triviality of the in-
variant for the braid type yields the existence of solution of (1.2.2) with
this braid type. Detailed explanation can be found in Section 1.5.


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Figure 2: Bifurcation diagram for the solutions of the first type and corres-
ponding solutions for α = 1.5. The number of monotone laps for the
solution pictured at (b) is six and it intersects u± two times. For solution
(c) number of monotone laps is ten and crossing number with u± is six.

The bifurcation diagram in Figure 1 can be explained by using this
invariant. For the first type of solutions the topological invariant is
non-trivial for α ≥ 0 and the bifurcation branch extends to infinity. For
solutions of the second type the invariant is trivial and does not pro-
vide information about the existence of solutions. However, if there is
a non-degenerate (hyperbolic) solution of this type then there has to be
another one and the bifurcation branches of this solutions form loops.
The loop turns for some parameter value α∗ for which the two solu-
tions coalesce together. For solutions of the third type we cannot define
the topological invariant as for the previous types because there is a
fixed point corresponding to u+ = 1 at the boundary. We use lineariza-
tion at this fixed point to overcome the problem, see Chapter 2. For
the third type of solutions the topological invariant is non-trivial up to
some value of α and then it becomes trivial. This explains the bifurca-
tion diagram in Figure 1. In fact topological methods are employed on
slightly positive energy levels and the limit process extends the results
to the energy level E = 0.

Further classification of periodic solutions can be done by counting
the monotone laps of solutions.

DEFINITION 1.2.3. Let u be a solution of (1.2.2) with p-monotone
laps per period and the intersection sequence σ. Then we say that so-
lution u lies in the class [σ, p].

For periodic solutions of Type (I) it is proved in [8] that at the pa-
rameter range α ≥ 0 there exist at least two periodic solutions of the
class [(σ2

1, σ
2
2)
q, 2p] for any q ≤ p at the energy surface E > 0. The limit

process used in Chapter 2 extends the result for the zero energy level.
The existence actually holds for all α > −

√
8, see [16]. In this thesis we





1. INTRODUCTION

1.30

|
|

8

1.15

8

PSfrag replacements

(a)

‖u‖
α

α

u
1

−1

|| ||
−39 −13 13 39

x

PSfrag replacements

(b)
u
1

−1

5 15
||

x
||

 

−5−15

PSfrag replacements

(c)

Figure 3: Bifurcation diagram for the solutions of the third type and
corresponding solutions which are in the class

[
σ2

2 , 2
]
. Solution (b) cor-

responds to α = −1 and (c) to α = 1.

obtain the following results for solutions of the second and third type.
In Chapter 2 the following theorem, concerning solutions of the third
type, is proved.

THEOREM 1.2.4. Let p, q ∈ N be relatively prime and q < p. Then for
every α ∈ [

√
8, αp,q) there exists a solution uα ∈

[
σ2q

1 , 2p
]

of Equation (1.2.2)

with E[uα] = 0, where αp,q =
√

2
(
p
q + q

p

)
.

Figure 3 shows two solutions of the class [σ2
1, 2] for different value

of the parameter α, and the bifurcation curve on which these solutions
lie. In the previous theorem we proved existence of one solution of the
class [σ2q

1 , 2p]. However it seems that there are two different solutions
of this class, see Section 1.6. An analog of Theorem 1.2.4 can be proved
for solutions of the class

[
σ2q

2 , 2p
]
. Moreover one should be able to ex-

tend the previous theorem to the parameter range [0,
√

8), where the
eigenvalues of equilibria u± = ±1 are saddle-foci, by perturbing the
potential F = 1

4(u2 − 1)2 as explained in [8], see Section 1.6 for more
detailed explanation. Solutions of the second type are studied in Chap-
ter 3 where the following result is proved.

THEOREM 1.2.5. Let α ∈ [0, 2] and p, q1, . . . qn ∈ N such that qi > 1
and

∑n
i=1 qi ≤ 2p. Suppose that at least one qi > 3 if

∑n
i=1 qi < 2p. Then

there exists a solution

uα ∈
[
σ2

1σ
2q1
2 . . . σ2

1σ
2qn
2 , 2p

]
of Equation (1.2.2) with E[uα] = 0. Moreover, if

∑n
i=1 qi = 2p then there are

at least 22(p−2) geometrically different solutions otherwise the lower bound is
given by 22q, where q =

∑n
i=1 qi − 4.





1.3 TWIST SYSTEMS

Different solutions of the second type are depicted in Figure 4, Fig-
ure 7 and Figure 9.

1.3. Twist systems
In this thesis the main application of the theory is the existence of

periodic solutions of Equation (1.2.2). However, the results are applica-
ble for a broad class of the second order Lagrangian systems. The se-
cond order Lagrangian systems are used as mathematical models for a
variety of physical problems. Their applications range from non-linear
elasticity, nonlinear optics to solid mechanics and many other fields of
physic. We briefly recall the concept of the second order Lagrangians.

Let L : R3 → R be a C2-function of the variables u, v, w. Then the
functional

J [u] =
∫
I
L(u, u′, u′′)dt,

defined for any smooth function u : I ⊆ R → R, is called the Lagrang-
ian action. The pair (L, dt) is called a second order Lagrangian system.
The function u is stationary point of the lagrangian system if it satisfies
the equation

∂L

∂u
− d

dt

∂L

∂u′
+
d2

dt2
∂L

∂u′′
= 0,

which is called the Euler-Lagrange equation of the Lagrangian system
(L, dt), and given by δJ [u] = 0 with respect to variations δu ∈ C∞c (I,R).

If we seek closed characteristics i.e. a periodic solution of Equa-
tion (1.2.2) at a given energy level E we can invoke the following vari-
ational principle:

Extremize {JE [u] : u ∈ Ωper, τ > 0}, (1.3.1)

where Ωper = ∪τ>0C
2(S1, τ), the periodic functions with period τ and

JE [u] =
∫ τ

0
(L(u, u′, u′′) + E)dt.

The function L ∈ C2(R3,R) is assumed to satisfy ∂2L
∂w2 (u, v, w) ≥ δ > 0

for all (u, v, w) ∈ R3. For the general second order Lagrangian system
the (conserved) energy is given by

E[u] =
(
∂L

∂u′
− d

dt

∂L

∂u′′

)
u′ +

∂L

∂u′′
u′′ − L(u, u′, u′′).

The variations in τ guarantee that any critical point u of (1.3.1) has en-
ergy E[u] = E.





1. INTRODUCTION

An energy value E is called regular if ∂L
∂u (u, 0, 0) 6= 0 for all u that

satisfy L(u, 0, 0) + E = 0. The energy manifold ME ⊂ R4 for a regular
energy value E is a smooth non-compact manifold without boundary.
For a fixed regular energy value E, the extrema of a characteristic are
contained in the closed set {u : L(u, 0, 0)+E ≥ 0}. The connected com-
ponents IE of this set are called interval components. Moreover, it fol-
lows from [18] that solutions on a regular energy level do not have in-
flexion points. For the singular energy level the interval component IE
contains critical points and situation is more complicated. If we work
at a singular energy level we avoid the critical points, hence we assume
all exterma to be non-degenerate. Under this restriction the behavior on
the singular energy level is the same as at the regular one. Therefore,
we restrict our selves to the regular energy levels for the moment.

As mentioned above the extremal points of every solution (on reg-
ular energy level) are confined to the set IE . In this thesis we concen-
trate on the systems for which the solution can be coded by its extremal
points. Systems with this property admit a map T defined on a direct
sum of every single connected component of IE , see Section 1.4. The
map T satisfies a twist property ∂yT (x, y) > 0. A brief survey of twist
systems is provided here while detailed explanation is postpone until
Section 2.2. A second order Lagrangian system (L, dt) is called a twist
system if for any points u1, u2 ∈ IE there exists a positive number τ
and a monotone function uτ which satisfies u(0) = u1, u(τ) = u2 and
minimizes

inf
u∈Xτ ,τ∈R+

∫ τ

0
(L(u, u′, u′′) + E)dt,

where Xτ is a space of all monotone functions connecting u1 and u2.
It is shown in [18] that Lagrangian systems J [u] =

∫
I L(u, u′, u′′)dt,

where L(u, u′, u′′) = 1
2u
′′2 +K(u, u′) at energy levels E which satisfy

∂K

∂v
v −K(u, v)− E ≤ 0 for all u ∈ IE and v ∈ R, (1.3.2a)

∂2K

∂v2
v2 − 5

2

{
∂K

∂v
−K(u, v)− E

}
≥ 0 for all u ∈ IE and v ∈ R,

(1.3.2b)

are twist systems.
For a twist system the function

SE(u1, u2) = inf
u∈Xτ ,τ∈R+

∫ τ

0
(L(u, u′, u′′) + E)dt, (1.3.3)





1.3 TWIST SYSTEMS

is well defined for u1 6= u2 and called the generating function. The pro-
perties of this function are listed in Chapter 2. We only mention that
∂1∂2SE(u1, u2) > 0 which embodies the twist property.

The question of finding closed characteristics for a twist system can
now be formulated in terms of SE . Any periodic solution u is a con-
catenation of monotone laps. Let us take an arbitrary 2p periodic se-
quence {ui} and define u as a concatenation of monotone laps (mini-
mizers uτ (ui, ui+1)) between the consecutive extremal points ui solving
the Euler-Lagrange equation in between any two extrema. The concate-
nation u does not have to be a solution on R because the third deriva-
tives of two monotone laps do not have to match at the extremal point
ui. It was proved in [18] that the third derivatives match if and only if
the sequence of extrema {ui} is a critical point of

W2p =
2p−1∑
i=0

SE(ui, ui+1). (1.3.4)

Compare with the method of broken geodesics.

Parabolic recurrence relation

Critical points of W2p satisfy equations

Ri(ui−1, ui, ui+1) = ∂2SE(ui−1, ui) + ∂1SE(ui, ui+1) = 0, (1.3.5)

The properties of the function SE listed in Chapter 2 ensure that
Ri(s, t, r) is well-defined and C1 on the following domains

Ωi = {(r, s, t) ∈ I3
E : (−1)i+1(s− r) > 0, (−1)i+1(s− t) > 0}. (1.3.6)

The functions Ri and domains Ωi satisfy Ri = Ri+2 and Ωi = Ωi+2

for i ∈ Z. Moreover ∂1Ri = ∂1∂2S(ui−1, ui) > 0, and ∂3Ri =
∂1∂2S(ui, ui+1) > 0. The functions Ri are not defined at the diagonal
boundaries of Ωi. This corresponds to the nature of solutions of the se-
cond order twist systems, namely that minima and maxima alternate.
However close to this boundaries R assumed as a vector field, points
away from the diagonal. Functions Ri with Above-mentioned proper-
ties imply that Ri is a parabolic recurrence relation of up-down type,
see Chapter 2 for the definition. In this section we restrict to parabolic
recurrence relations defined on whole RZ.

DEFINITION 1.3.1. A parabolic recurrence relation R on RZ is a se-
quence of real-valued functions R = (Ri)i∈Z satisfying
(a) [monotonicity], ∂1Ri > 0 and ∂3Ri > 0 for all i ∈ Z
(b) [periodicity], for some d ∈ N,Ri+d = Ri for all i ∈ Z.
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The relation between solutions of the second order Lagrangian sys-
tem and zero points of parabolic recurrence relation R is summarized
in the following theorem which proof can be found in [8].

THEOREM 1.3.2. Let J [u] =
∫
L(u, u′, u′′)dt be a second order Lagrang-

ian twist system. Suppose that W2p is the discrete action defined through
(1.3.3) and (1.3.4) at the regular energy level E. Then
(a) the functions Ri = ∂iW2p defined on Ωi are components of a parabolic

recurrence relation R of up-down type,
(b) solutions ofR = 0 correspond to periodic solutions on the energy level E.

In order to find solutions of R = 0 we interpret R as a vector field
and study an invariant set of the gradient flow generated by this vector
field. In the case of a gradient vector field invariant sets have special
structure and thus information about critical points can be obtained.
There is a natural way to define a flow generated by an up-down para-
bolic recurrence relation on the set

Ω2p = {u ∈ RZ : u is 2p periodic and (ui−1, ui, ui+1) ∈ Ωi, for i ∈ Z}.
(1.3.7)

Consider the differential equations

d

dt
ui(t) = Ri(u(t)), u(t) ∈ Ω2p, t ∈ R. (1.3.8)

Equation (1.3.8) defines a (local) C1 flow ψt on Ω2p. This flow is not de-
fined at the boundary of Ω2p. We will show in Section 2.2 that close to
the boundary of Ω2p the flow points away from it. In the following sec-
tion we explain how to employ information about known zero points
of the parabolic recurrence relation R to fined more zero points of the
same parabolic recurrence relation.

1.4. Forcing and order on solutions
A classical forcing result is the Sharkovskii’s ordering of natural

numbers. The Sharkovskii’s ordering states a forcing relation for one
dimensional discrete dynamical systems given by iterating the contin-
uous map f : I ⊆ R → R. Before we formulate the forcing result let us
recall the ordering. Every positive integer n can be uniquely written in
a form 2rp, where p is an odd number and r is such that 2r is the highest
power of 2 that divides n. Using this description we order the natural
numbers in the following way:

3 ≺ 5 ≺ 7 . . . ≺ 2 · 3 ≺ 2 · 5 . . . ≺ 2r · 3 ≺ 2r · 5 . . . ≺ 2r ≺ . . . ≺ 2 ≺ 1.
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Figure 4: Sketch of two periodic solutions ũ, u ∈
[
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points are labeled by ũi and ui.

PROPOSITION 1.4.1. Let f : I → R be a continuous map, where I ⊆ R
is a bounded interval. Then the dynamical system defined by iterating the map
f has the following property. If the system has an orbit with period n then it
has at least one orbit of period m, provided that n ≺ m.

The twist system at the regular energy level corresponds to a two
dimensional discrete system defined on the Poincaré sections. To
be more precise, there are functions ρ± : Σ±E → Σ∓E where Σ±E =
{(u, u′, u′′, u′′′) ∈ ME : u′ = 0, (±1)u′′ > 0} defined as follows.
Let x = (x0, x1, x2, x3) ∈ Σ+. Then the solution u with initial data
di

dti
u(0) = xi has a minimum for t = 0. The map ρ+ maps x → y where

yi = di

dti
u(t0) and t0 is the first positive time for which u′(t0) = 0. Non-

degeneracy of extremal points, at the regular energy levels, ensures that
u has a maximum at t0. Roughly speaking, the maps ρ± map minimum
(maximum) of the solution u onto consecutive maximum (minimum).
Due to the fact that ME w R2 × S1, there are invertible projections π±
of Σ±E to R2 such that T± = π∓ρ±π

−1
± : R2 → R2 are continuous maps.

Therefore a periodic solution u of the twist system with 2p extremal
points per period corresponds to a p-periodic orbit of two dimensional
discrete system generated by the function T = T+ ◦ T− : R2 → R2.
Moreover, the map T is a twist map, i.e. ∂yT (x, y) > 0, see [18]. In the
case of two dimensional discrete dynamical systems the results are far
from being as complete as the one mentioned in the previous theorem,
see [3].

In Chapter 3 we investigate a partial order on the pairs [σ, p] which
is defined by a forcing relation.
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Figure 5: The triangleD = I×I \{u1 > u0}. The arrows denote (schemat-
ically) the direction of the gradient ∇W2. Clearly W2 has a minimum
on A1 and maximum on A2. Additionally if equilibrium points ±1 are
saddle-foci then direction of ∇W2 in a small neighborhood of +1 (-1) is as
depicted.

DEFINITION 1.4.2. The class of solutions [σn, pn] precedes [σm, pm]
if and only if the existence of a solution of the class [σn, pn] forces the
existence of solution of the class [σm, pm], we write [σn, pn] ≺ [σm, pm].

Let us mention the implication for the bifurcation diagram of Equa-
tion (1.2.2). If Γn and Γm are continuous curves corresponding to so-
lutions of the class [σn, pn] and [σm, pm] then Γm has to exist at least as
long as Γn does.

Simple examples of forcing

In order to find a fixed point of two dimensional discrete system
generated by T : R2 → R2, we focus on finding stationary points of
the discrete action W2p defined by (1.3.4) and (1.3.3). We demonstrate
the basic ideas for Equation (1.2.2). The constant solutions u± = ±1 are
exploited to find a critical point of

W2(u0, u1) = S(u0, u1) + S(u1, u0),

which according to the previous section corresponds to a solution
of (1.2.2).

EXAMPLE 1.4.3. Figure 5 denotes the direction of the gradient∇W2

on the triangle D = I × I ∩ {u1 > u0} where I = [u∗0, u
∗
1]. The system

generated by (1.2.2) is dissipative, i.e. we can choose u∗0 < u∗1 in such a
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way that ∂u0W2(u∗0, u1) < 0 for all u1 ∈ (u∗0, u
∗
1] and ∂u1W2(u0, u

∗
1) > 0

for all u0 ∈ [u∗0, u
∗
1). Define A1 = {−1 < u0 < u1 < 1} and

A2 = D ∩ {u0 < −1, u1 > 1}. The gradient of W2 points outwards
on ∂A2 and inwards on ∂A1. Thus W2 attains local maximum on A2

and local minimum on A1. This proves the existence of two different
solutions of (1.2.2). We note that one of them does not intersect u+ and
u−. The other one is of the class [σ2

1σ
2
2, 2]. Actually, the gradient∇W2 is

not defined for u0 = u1 but by slightly shrinking the set A1 we obtain
the previous result. At the parameter range α ∈ [0,

√
8) in which case

the stationary solutions u± are saddle-foci, the sets A3 and A4 depicted
in Figure 5 are isolating neighborhoods with respect to the gradient
flow of W2, see [19] for more details. The Conley index of A3 and A4 is
non-trivial. Hence there is a critical point of W2 in both isolating neigh-
borhoods A3 and A4. These critical points correspond to solutions of
the class [σ2

1, 2], respectively [σ2
2, 2].

We used the explicitly known solutions to prove existence of ge-
ometrically different ones. However forcing can be considered in a
more general framework. Instead of using explicitly known solution(s)
one can ask the following question. When does existence of a solution
ũ ∈ [σ, p] force existence of some other solution? In Chapter 3 we show
that the existence of the solution ũ ∈ [σ2

1σ
4
2, 4] forces the existence of

solutions in a plethora of different classes. Let us present a simple ex-
ample.

EXAMPLE 1.4.4. Let ũ be a solution of the class [σ2
1σ

4
2, 4]. Then ũ has

four non-degenerate extremal points per period with properties ũ0 <
−1 < ũ2 < 1 < ũ1, ũ3, see Figure 4. According to the previous section
R1(u1, ũ2, u3) < R1(ũ1, ũ2, ũ3) = 0 for u1 < ũ1 and u3 < ũ3. Hence for
(ũ2, u0) ∈ ∂A, where A = {−1 < u0 < u1 < 1}∩{u0 < ũ2}, it holds that

∂1W2(ũ2, u1) = ∂2S0(u1, ũ2) + ∂1(ũ2, u1) = R1(u1, ũ2, u3) < 0.

As before the gradient∇W2 points inward on ∂A andW2 attains a local
minimum on A, see Figure 6. This minimum corresponds to a solution
u of (1.2.2) with two extremal points per period and−1 < min{u(t), t ∈
R} < max{u(t), t ∈ R} < ũ2 < 1.

We studied W2 to force the existence of periodic solutions with two
extremal points per period. In order to force existence of general peri-
odic solutions we need to study the gradient flow generated by W2p for
p > 1.
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Figure 6: The triangle D = [−1, 1] × [−1, 1] \ {u1 > u0}. The arrows
denote (schematically) the direction of the gradient ∇W2. Clearly W2 has
a maximum on A.

Ordering of solutions of the second type

The existence of solution ũ of Equation (1.2.2) which lies in the class
[σ2

1σ
4
2, 4] forces existence of solutions in plethora of different classes.

The forcing results summarized in this section are used to prove The-
orem 1.2.5. Before we formulate them we present a brief overview of
the known results about solutions of the class [σ2

1σ
4
2, 4]. In [10] the ex-

istence of solution ũ ∈ [σ2
1σ

4
2, 4] is shown for every α ∈ [−

√
8, ε] where

ε > 0 is sufficiently small. This solution is a minimizer of the under-
lying Lagrangian system. Hence its Morse index is zero. Its extremal
points ũ1, ũ2, ũ3 (see Figure 4 a) are very close to u+ = 1. The numerics
suggest that there is another solution with the Morse index one in the
same class. This solution has a different shape, see Figure 4b. In this
thesis a topological invariant, which can be seen as a generalization of
the degree theory, is used to prove the existence of solution with a cer-
tain braid type. In the parameter range [0,

√
8] the topological invariant

of the braid type corresponding to the solutions of the class [σ2
1σ

4
2, 4], is

trivial. Therefore the solution ũ cannot be the only one in this class. The
numerics suggest that these two solutions lie on the same bifurcation
branch which forms a loop which turns at some point α∗ > 0 where
these two solutions coalesce, see Figure 1.

Rigorous numeric is used in [21] to prove the existence of a solution
ũ ∈ [σ2

1σ
4
2, 4] for α ∈ [0, µ) where µ > 2. In the same paper, the Conley

index for the discretized braid diagrams is employed to force the exis-
tence of solutions which are build up by connecting any finite number
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Figure 7: Sketch of aperiodic solution u ∈
[
σ2

1σ
6
2σ

2
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]
which consists

of two blocks namely
[
σ2

1σ
6
2 , 6
]

and
[
σ2

1σ
8
2 , 8
]
.

of blocks [σ2
1σ

2p
2 , 2p], see Figure 7. We formalize this statement in the

following proposition.

THEOREM 1.4.5. Let α ∈ [0,
√

8) and q1, . . . , qn ∈ N with qi > 1. Then

[
σ2

1σ
4
2, 4
]
≺

[
σ2

1σ
2q1
2 . . . σ2

1σ
2qn
2 , 2

n∑
i=1

qi

]
.

We generalize the structure of the blocks which can be used to build
up solutions forced by ũ ∈

[
σ2

1σ
4
2, 4
]
. We justify the use of the blocks[

σ2
1σ

2q
2 , 2p

]
with 3 < q < p. An example of the solution of the class[

σ2
1σ

8
2, 10

]
is depicted in Figure 9. The essential part of our result is that

instead of finding just one solution of the class
[
σ2

1σ
2q
2 , 2p

]
we prove the

existence of many geometrically different solutions in the same class.
Different solutions weave around the solution ũ in a different manner
and attain different extrema values. More precisely, if we interpret u
and ũ as a braid then different solutions correspond to different topo-
logical braid types. Figure 4 shows two solutions of the class [σ2

1σ
4
2, 4].

The following theorem estimates the number of solutions of the class[
σ2

1σ
2q
2 , 2p

]
.

THEOREM 1.4.6. Let α ∈ [0,
√

8) and p ∈ N such that p ≥ 2. Then[
σ2

1σ
4
2, 4
]
≺
[
σ2

1σ
2p
2 , 2p

]
.

If q ∈ N such that 3 < q < p then[
σ2

1σ
4
2, 4
]
≺
[
σ2

1σ
2q
2 , 2p

]
.
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solid black curve represents one solution. The second (third) solution is
obtained by replacing the second (third) dip with the dashed curve. The
fourth solution is the one for which both dips are replaced by the dashed
curves.
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ũ0

Figure 9: Sketch of a periodic solution u ∈
[
σ2

1σ
8
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]
.

Moreover, there are at least 22(p−2) geometrically distinct solutions of the class[
σ2

1σ
2p
2 , 2p

]
and at least 22(q−4) of the class

[
σ2

1σ
2q
2 , 2p

]
.

Figure 8 shows four geometrically different solutions of the class[
σ2

1σ
10
2 , 10

]
. In case of the general class

[
σ2

1σ
2p
2 , 2p

]
we construct 22(p−2)

different solution in the same manner as we do for the class
[
σ2

1σ
10
2 , 10

]
.

Figure 9 displays a solution of the class
[
σ2

1σ
8
2, 10

]
.

By concatenation of the building blocks and employing the solu-
tion ũ ∈

[
σ2

1σ
4
2, 4
]

which was proved to exist in [21], we obtain Theo-
rem 1.2.5. To prove Theorem 1.4.6 the Conley index theory is employed.

Theorem 1.2.4 is also proved by using forcing of solutions via non-
triviality of the Conley index. However in this case, the Conley index
cannot be applied directly because the sets which contain the solutions
of the class [σ2q

1 , 2p] are not isolating neighborhoods, see Chapter 2 for
deatiled explanation. We present a short overview of Conley index the-
ory in this introduction.
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1.5. The Conley index for discertized braids
In the previous sections we introduced the main ideas behind forc-

ing the existence of solutions for Equation (1.2.2). The constant solu-
tions u± = ±1 were used to force the existence of periodic solutions
with one minimum and one maximum per period. This is done by ana-
lyzing the discrete action W2 defined by (1.3.4) and (1.3.3). The station-
ary points ofW2p correspond to the solutions of (1.2.2) with 2p extremal
points per period. To find fixed points of W2p we introduce the gradi-
ent flow Ψt generated by the parabolic recurrence relation of up-down
type R where R = ∇W2p. Obviously the flow Ψt cannot be defined
on the whole space R2p because R is only defined on Ω2p ⊂ R2p, given
by (1.3.7). The space of piecewise linear braid diagrams of up-down
type proves to be a good choice of underlaying space for the flow Ψt.
Information about the already known solutions decompose this space
into subsets called braid classes. In the last section of this introduc-
tion we review the results obtained in [8] which show that under cer-
tain conditions braid class is an isolating neighborhood for the flow Ψt.
Hence Conley index theory can be applied to study the isolated inva-
riant sets within these braid classes. In the case of the gradient flow
non-triviality of the invariant set implies the existence of a fixed point.

In this thesis we extend the approach developed in [8] to the braid
classes which are not isolating neighborhoods, i.e. to those classes for
which there is a fixed point of the flow Ψt lying on their boundary.
A non-proper braid class is not an isolating neighborhood. The care-
ful analysis of the flow near the fixed point allows us to take a subset
of non-proper braid class which is an isolating neighborhood for the
slightly perturbed flow. Due to the robustness of the index with respect
to small perturbations we obtain information about the invariant set
within a non-proper braid class.

Parabolic flows on the space of discretized braid diagrams

First we motivate a connection between the solution u ∈ [σ, 2p], or
in other words its 2p-periodic sequence of extrema, and a discretized
braid diagram. Let u be a solution of (1.2.2) of the class [σ, 2p]. Then
its extrema sequence {ui} is 2p-periodic and we can construct a piece-
wise linear graph by connecting the consecutive points (i, ui) ∈ R2 by
straight line segments. The piecewise linear graph, called a strand,
is cyclic: one restricts to 0 ≤ i ≤ 2p and identifies the end points
abstractly. A collection of n closed characteristics of period 2p then
gives rise to a collection of n strands. We place on this diagram a braid
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Figure 10: (a) A periodic function and (b) its piecewise linear graph (c) a
braid consisting of 3 strands.

structure by assigning a crossing type (positive) to every transverse in-
tersection of the graphs: larger slope crosses over smaller slope, see
Figure 10. In this way we represent periodic extrema sequence in the
space of closed, positive, piecewise linear braid diagrams Dnd see Defi-
nition 2.2.4.

Any PL-braid diagram corresponds to some n-collection {uk}n−1
k=0

of 2p-periodic extrema sequences. The converse to this statement
is not true because collection of extrema sequences can have a non-
transversal intersection which is not allowed for PL diagrams. The
non-transversal intersection mean that there are two sequences uk and
ul such that uki = uli for some i and

(uki−1 − uli−1)(u
k
i+1 − uli+1) ≥ 0.

Middle diagram on the left side in Figure 11 shows non-transversal in-
tersection while the intersections in the other diagrams are transversal.
A collection of n extrema sequences for with non-transversal intersec-
tion corresponds to a singular PL-braid diagram, see Definition 2.2.6.
We denote Dnd the space of all PL-diagrams also the ones with non-
transversal intersections and Σ = Dnd \ Dnd is the set of singular braid
diagrams. The space Dnd can be interpreted as a closure of Dnd . The
set Σ− is a subset of Σ which consist of braid diagrams for which two
strands are identical. See Chapter 2 for detailed explanation.

Since for bounded characteristics local minima and maxima oc-
cur alternatively, we require that (−1)i(ui+1 − ui) > 0: the (natural)
up-down restriction. Therefore an n-collection of extrema sequences
{uk}n−1

k=0 can be seen as a point in the space of up-down piecewise li-
near braid diagrams.

DEFINITION 1.5.1. The space En2p of up-down PL-braid diagrams on
n strands with period 2p is the subset ofDn2p determined by the relation
(−1)i(uki+1 − uki ) > 0, for k = 1, . . . , n and i = 0, . . . , 2p− 1.
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Figure 11: A schematic picture of a parabolic flow on a braid class. The
boundary of the braid class is contained in the set of singular braids Σ.

As before we denote End the closure of the space End , i.e the space
containing braid diagrams with non-transversal intersections. The up-
down restriction on the space En2p ensures that we can define the flow
ψt on this space by differential equations

d

dt
uki = Ri(uki−1, u

k
i , u

k
i+1) (1.5.1)

However, this flow does not respect transversality condition. It can
happen that non-transversal intersection is created in finite time. There-
fore, we assume the flow on the space En2p.

The set En2p has a boundary in Dn2p which can be characterized as
follows:

∂En2p = {u ∈ En2p : uki = uki+1 for at least one i and k}. (1.5.2)

Such braids, called horizontal singularities, are not included in Defini-
tion of En2p since the recurrence relation (1.3.5) does not induce a well-
defined flow on the boundary ∂En2p.

The flow coming from the parabolic recurrence relation evolves the
anchor points of the braid diagram in such a way that the braid class
can change, but only so as to decrease complexity: the word metric
|u|word of the braid diagram u may not increase with time. By the
|u|word we mean the number of pairwise strand crossings in the braid
diagram u. It is proved in [8] that the flow Ψt defined on the space
En2p by Equations (1.5.1) is transversal to the set Σ \Σ− and points from
the class with bigger word metric to the one with smaller word metric,
see Figure 11. Hence the orbit can not leave the braid class and return
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to it later. Moreover, the boundary ∂En2p is a repeller for the flow Ψt.
Lemma 2.2.8 in Chapter 2 formalizes what we said above.

If v is a closed characteristic of a second order Lagrangian system,
then the strand v corresponding to its extrema sequence {vi} is a fixed
point for parabolic flow Ψt generated by (1.5.1). Let [u]E be a braid class
and suppose that v 6∈ cl[u]E then the intersection number of Ψt(uk) and
v, for all strands uk ∈ [u]E , is non-increasing. To use the fact that cross-
ing number is non-increasing we will evolve certain components of a
braid diagram while fixing the remaining components. This motivates
working with a class of relative braid diagrams.

Let u ∈ En2p and v ∈ Em2p, the union u∪v ∈ Em+n
2p is naturally defined

as the unordered union of the strands. For given v ∈ Em2p, we define

En2p rel v := {u ∈ En2p : u ∪ v ∈ En+m
2p }.

The path components of En2p rel v, denoted [u rel v]E , define relative dis-
crete braid classes. The braid v is fixed and it is called skeleton. The set
of singular braids ΣE rel v are those braids u such that u∪ v ∈ ΣE . The
collapsed singular braids are denoted by Σ−E rel v. As before, the set
(En2p rel v) ∪ (ΣE rel v) is denoted En2p rel v.

Two relative braid classes [u rel v]E and [u′ rel v′]E in En2p rel v and
En2p rel v′ are equivalent if they lay in the same path component in

E = {(u,v) ∈ En2p × Em2p : u ∪ v ∈ En+m
2p }.

We use the notation [u rel [v]] for the path component in E and u rel [v]
for the fibers of [u rel [v]], see Figure 12. Before we apply the Conley
index theory to the relative braid classes we present a brief survey of
the general Conley index theory. Finally, we present two important
types of braid classes.

DEFINITION 1.5.2. A discrete relative braid class [u rel v] is proper
if it is impossible to find a continuous path of braid diagrams u(t) for
t ∈ [0, 1] such that u(0) = u, u(t) rel v defines a braid for all t ∈ [0, 1),
and u(1) rel v is a diagram where entire component of the closed braid
has collapsed onto itself or onto another component of u or v.

DEFINITION 1.5.3. A discrete relative braid class [u rel v] is called
bounded if the set [u rel v] is bounded.

Figure 13 shows examples of both proper and non-proper braid
classes.
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Figure 13: Non-proper [left] and proper [right] relative braid classes. Both
classes are bounded.

Conley index theory

Conley index is a topological tool for studying maximal invariant
set within an isolating neighborhood. The Conley index is an invariant
and thus robust with respect to perturbation of the isolating neighbor-
hood as well as the flow. The price for robustness is that the information
about the invariant set is rather coarse. It is possible to define the index
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in a very general setting. However for the purpose of this thesis we
just do so for a locally compact metric space X and a continuous flow
Ψt(x) : R×X → X . A compact setN ⊂ X is an isolating neighborhood
for the flow Ψt on X if the maximal invariant set

Inv(N) := {x ∈ N : cl{Ψt(x)}t∈R ⊂ N} ⊂ int(N)

is contained in the interior of N . The invariant set Inv(N) is then called
a compact isolated invariant set for Ψt.

DEFINITION 1.5.4. A pointed space (Y, y0) is a topological space Y
with a distinguished point y0 ∈ Y . Given a pair (N,L) of spaces with
L ⊂ N ,

N/L := (N \ L) ∪ [L]
where [L] denotes the equivalence class of points in L in the equiva-
lence relation x ∼ y if and only if x = y or x, y ∈ L. We use N/L to
denote the pointed space (N/L, [L]).

DEFINITION 1.5.5. Let S = Inv(N) be an isolated invariant set. A
pair of compact sets (N,L) where L ⊂ N is called and index pair for S
if:
(1) S = Inv(cl(N \ L)) and N \ L is a neighborhood of S.
(2) L is positively invariant in N i.e. given x ∈ L and Ψt(x) ∈ N for all

t ∈ [0, t0] then Ψt(x) ∈ L for all t ∈ [0, t0].
(3) L is an exits set forN i.e. given x ∈ N and t1 > 0 such that Ψt1(x) 6∈

N then there exists t0 ∈ [0, t1] with properties Ψt(x) ∈ N for all
t ∈ [0, t0] and Ψt0(x) ∈ L.

The following proposition guarantees the existence of an index pair
for every isolated invariant set and states a relation between different
index pairs.

PROPOSITION 1.5.6. Given an isolated invariant set S, there exists an
index pair. Let (N,L) and (N ′, L′) be index pairs for S. Then pointed spaces

[N/L] ' [N ′/L]

have the same homotopy type.

DEFINITION 1.5.7. The homotopy Conley index of the isolated in-
variant set S is given by homotopy type of pointed space

h(S) ' [N/L].

The Conley index of the invariant set is defined via its index pair
(N,L). Hence the notation h(N) is also used to denote the index h(S).
The crucial property of the index is given by the following proposition.
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PROPOSITION 1.5.8. If Conley index h(N) is non-trivial then

Inv(N) 6= ∅.

To compute the homotopy type is extremely difficult in general.
The standard way to get around this problem is using homological
Conley index defined by

H∗(h(N)) := H∗(N/L) w H∗(N,L),

where H∗(N/L) is a homology of the pointed space N/L and H∗(N,L)
is a relative homology.

REMARK 1.5.9. It is not true thatH∗(N/L) w H∗(N,L) for any index
pair. However one can always find index pairs for which this isomor-
phism holds. For all index pairs used in this thesis the isomorphism is
satisfied.

The characteristic polynomial is defined as

CPt(N) :=
∑
k≥0

βkt
k,

where βk = dimHk(N,L) and Hk(N,L) is a relative homology of the
index pair (N,L). As explained later, N = cl([u rel v]) is an isolating
neighborhood for ever proper bounded relative braid class [u rel v]. In
[8] the following estimate is proved

#Fix([u rel v]) ≥ |CPt|,
where Fix([u rel v]) is the number of the fixed points within [u rel v]
and |CPt| is the number of distinct nonzero monomials in the charac-
teristic polynomial CPt.

The Conley index for braids

We demonstrate an application of the Conley index to the braid di-
agrams on an easy example. Let the braid class [u rel v] be given by
the representant depicted in Figure 14. Suppose that the black skeleton
strands v are fixed points of the flow Ψt generated by parabolic recur-
rence relation. The anchor points u0 and u1 of the free strand u cannot
cross any anchor points of the skeleton strands without changing the
number of intersections with the skeleton and hence the braid class. If
u0 moves out of the braid class then the intersection number increases
while for u1 it decreases. According to Lemma 2.2.8 the direction of
the flow is transversal to the boundary of the braid class [u rel v] and
N = cl([u rel w]) is an isolating neighborhood. Figure 14 shows the
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Figure 14: A representant of the relative braid class [u rel v] ⊂ D1
2 rel v

with four skeleton strands (black) and one free strand (gray). Sketch of the
flow Ψt at the boundary is shown in the middle. At the right we present
a bigger portion of the space D1

2 rel v to show the direction of the flow
in the neighborhood of fixed points corresponding to the skeleton v. The
braid classes adjacent to these fixed points are not proper.

sketch of the flow at the boundary of [u rel v]. The exit set N− ⊂ ∂N
consists of the points for which u1 coincides with an anchor point of
some skeletal strand. Homotopy index h(N) ' S1 and there exists a
fixed point u ∈ [u rel v]. Notice that the result holds for any flow Ψt

generated be parabolic recurrence relation as long as Ψt(v) = v for all
t.

In the same way as above the Conley index theory can be applied
to arbitrary proper and bounded braid classes. The following theorem
summarizes the results obtained in [8].

THEOREM 1.5.10. Suppose [u rel v] is a bounded proper relative braid
class and Ψt is a parabolic flow fixing v. Then the following are true:
(a) N := cl([u rel v]) is an isolating neighborhood for the flow Ψt, which

thus yields a well-defined Conley index h(u rel v) = h(N);
(b) The index h(u rel v) is independent of the choice of parabolic flow Ψt so

long as Ψt(v) = v;

One can also define an invariant for [u rel [v]] as follows. Given a
fiber u rel [v] ∈ [u rel [v]] define

H(u rel [v]) :=
∨
h(u(i) rel v)

where ∨ is a topological wedge and classes [u(i) rel v] are components
of the fiber u rel [v], see Figure 12. In [8] it is proved that H is an inva-
riant of [u rel [v]].

For any bounded proper relative braid class [u rel v] we can define
its index intrinsically, independent of any notions of parabolic flows via
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Figure 15: Representants of the three different relative braid classes. A
fixed point in the relative braid class defined by its representant a) corre-
sponds to the solution of the type I, b) type II and c) type III. Braid classes
(a) and (b) are proper but (c) is not.

the index pair (N,N−). The set N = cl[u rel v] ⊂ D1
2p rel v. To define

N− ⊂ ∂N ⊂ Σ, consider w ∈ ∂N and let V be a small neighborhood
of w for which the subset V \Σ has finite number of connected compo-
nents {Vj} where V0 = V ∩N . We define N− as the set of w for which
the word metric is locally maximal on V0, namely

N− := {w ∈ ∂N : |V0|word > |Vj |word ∀j > 0}. (1.5.3)

Let us now relate the three types of solutions in Figure 1 to braid
classes and put them in the context of the definitions presented in
this section. The three types of solutions are distinguished accord-
ing to their intersections with the constant solutions u± = ±1. The
most straightforward way of relating a solution to a relative braid class
would be to take the two constant strands ±1 as a skeleton and define
the relative braid class by the free strand u which intersects the con-
stant strands ±1 in the same manner as the solution u intersects u±.
However, the flow Ψt is well defined only for the braids with up-down
restriction. Hence instead of taking the constant strands we have to use
the skeleton v = u+∪u−, where the strands u± correspond to the solu-
tions of Equation (1.2.2) which oscillate around u± with a small ampli-
tude (on a slightly positive energy level) and the free strand u intersects
the skeleton strands in the same manner as u intersects u±. Figure 15
shows the three different braid classes which correspond to the three
different types of solutions. The first two braid classes are proper and
the third one is not. All these braid classes are obviously unbounded.
It is shown in [8] how to use the properties of Equation (1.2.2) to find
extra fixed strands which make the class bounded. See Chapter 2 for
more details.

According to [8] the Conley index for any braid class corresponding
to a solution of the first type is non trivial and there is a fixed point in





1. INTRODUCTION

this class. This fixed point corresponds to a solution of Equation (1.2.2)
of the first type. Thus there are many different solutions of the first type
and their bifurcation branches exist for all α ≥ 0, see Figure 1.

For the second braid class the Conley index is trivial and thus does
not provide information about fixed points. However, if we know that
there exists a non-degenerate (hyperbolic) solution of the second type
then it corresponds to a fixed point in the braid class with a trivial Con-
ley index. Hence there must be another fixed point in this class which
corresponds to a different solution of the same type and the bifurcation
curves form loops, see Figure 1.

In the third case, the braid class is not proper (not an isolating
neighborhood), since the free strand can collapse on a skeletal strand
u+. Using the information about the flow Ψt near the strand u+, we
perturb the parabolic recurrence relation on a neighborhood of the
boundary of the non-proper braid class [u rel v]E and construct some
new fixed strands which will make the class proper, without changing
the invariant set inside the class. In Figure 16 we schematically demon-
strate direction of the flow Ψt and its perturbation on the boundary of
the non-proper braid class and boundary of a new proper braid class
[u rel v]E . The skeleton v is created by adding extra strands which are
fixed points of the perturbed vector field. We show that the Conley in-
dex h([u rel v]E) is non trivial. Thus there is a fixed point of the flow
Ψt within the class [u rel v]E . This is the essence behind the proof of
Theorem 1.2.4. For detailed treatment of the non-proper braid classes
we refer the reader to Chapter 2.

1.6. Reflections
At different places in this introduction we already mentioned sev-

eral interesting unresolved issues. This last section surveys them in
more detail. We want to stress that although the main application of
the theory developed in this thesis is the Swift-Hohenberg equation it
can be applied to a broad class of second order Lagrangian systems, see
Section 1.3.

Different nonlinearities

We present extensions to equations

u′′′′ + αu′′ + f(u) = 0, α ∈ R,

for different nonlinearities f(u). In this thesis we concentrate on the
non-linearity f(u) = −u + u3 which corresponds to the double well
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Figure 16: Figure (a) schematically shows behavior of the vector field R
on the boundary of the non-proper braid class [u rel v]E corresponding to
the third type of solution. The strand u+ is a fixed point for the flow Ψt

and some trajectories approach this point as t → −∞. Figure (b) shows
the behavior of the perturbed vector field on the boundary of the proper
braid class [u rel v]E , where v = v∪z1 ∪z2 and z1, z2 are fixed strands for
this perturbed vector field.

potential F (u) = 1
4(u2 − 1)2, depicted in Figure 17. However the pre-

vious equation has applications also for different non-linearities. For
example in the study of a strut on a nonlinear elastic foundation and
in the study of shallow waves [5], this equation arises with the nonlin-
earity f(u) = u − u2. The homoclinic orbits of this equation have been
extensively studied [1, 5, 6, 15]. The results obtained in Chapter 2 are
applicable also to this non-linearity. Basically Chapter 2 applies to any
positive number of wells and Chapter 3 to two or more wells. Potentials
do not need to be either positive or negative.

Solutions of the third type

Theorem 1.2.4 states the existence of solution of the class [σ2q
1 , 2p]

for α ∈ [
√

8, αp,q). Swift-Hohenberg equation is a twist system for
α ≥ 0. Hence it should be possible to extend the result for α ∈ [0,

√
8].

The major problem of this extension is that equilibria u± = ±1 are
saddle-foci and they do not perturb to periodic solutions for E > 0.
Figure 17 shows a perturbation of the potential F = 1

4(u2−1)2 of Swift-
Hohenberg equation, for detailed explanation about perturbation Fε
see [8]. For every perturbation Fε the small oscillations around u± are
present on the positive energy levels. By applying Conley index the-
ory for braid diagrams we can prove the existence of a solution uε of
the perturbed system. Then by taking the limit u = limε→0 u

ε we get
a solution of the original equation. The limit process is very similar
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Figure 17: Figure a) Potential F (u) = 1
4 (u2 − 1)2; b) small perturbation of

F (u); c) potential with three wells.
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Figure 18: Sketch of periodic solutions; a) of the class
[
σ2

2σ
4
1 , 4
]
; b) of the

class
[
σ4

1σ
4
2 , 4
]
.

to the one carried out in Chapter 2. However the perturbation of the
potential is not present in Chapter 2. In order to extend the result of
Theorem 1.2.4 to the parameter range α ∈ [0,

√
8] one has to check that

u 6≡ 1.
The Conley index computed in Lemma 2.5.6 implies the existence of

two different solutions of the Swift-Hohenberg equation on the positive
energy levels. We believe that by careful analysis of the limit process
one can show that these solutions do not collapse on each other. Hence
there should be at least two different solutions in every class [σ2q

1 , 2p].
The study of bifurcation diagram for Equation (1.2.2) in [17] proves the
existence of two solutions of the same class in a special case.

THEOREM 1.6.1. For p ∈ N there exists two families of even periodic solu-
tions of the second type with 2p-monotone laps per period for α ∈ (−

√
8, αn)

where αn =
√

2
(
1 + 1

n

)
.





1.6 REFLECTIONS

PSfrag replacements

1

−1
ũ0

Figure 19: Sketch of a periodic solutions of the class
[
σ2

2σ
8
1 , 10

]
.

Solutions of the second type

Theorem 1.4.6 shows that the class
[
σ2

1σ
4
2, 4
]

precedes classes of the

form
[
σ2

1σ
2q
2 , 2p

]
. Symmetry of the Swift-Hohenberg equation furnishes

analogous results for the class
[
σ2

2σ
4
1, 4
]

which can be formulated as
follows [

σ2
2σ

4
1, 4
]
≺
[
σ2

2σ
2q
1 , 2p

]
.

The number of solutions of the class
[
σ2

2σ
2q
1 , 2p

]
is the same as in The-

orem 1.4.6. Figure 18a shows a solution of the class
[
σ2

2σ
4
1, 4
]

and Fig-
ure 19 depicts a solution of the class

[
σ2

2σ
8
1, 10

]
.

By combining these results one should be able to prove the follow-
ing theorem.

THEOREM 1.6.2. Let p, q1, q2 ∈ N such that p > 3, q1 + q2 ≤ p and
max{q1, q2} > 3 if q1 + q2 < p. Then[

σ4
2σ

4
1, 6
]
≺
[
σ2q1

2 σ2q2
1 , 2p

]
.

Solution of the class
[
σ4

2σ
4
1, 6
]

is depicted in Figure 18b and Fig-
ure 20 shows a solution of the class

[
σ8

2σ
6
1, 12

]
. By similar arguments

as in Chapter 3 one can estimate the number of solutions of the class[
σ2q1

2 σ2q2
1 , 2p

]
and by connecting the building blocks we can obtain so-

lutions of the class [
σ2q1

2 σ2q2
1 . . . σ

2qn−1

2 σ2qn
1 , 2p

]
,

for every p, q1, . . . qn ∈ N such that
∑n

i=1 qi ≤ p and maxi∈{1,...n} qi > 3
if
∑n

i=1 qi < p.
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]
.
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CHAPTER 2

The Conley index for non-proper
braid classes and application to

Swift-Hohenberg equation

2.1. Introduction
Whereas the solutions of second order autonomous ODEs can be

represented in a phase plane, leading to modest complexity of the dy-
namics, equations of higher order can exhibit a plethora of distinct
behaviors, and the dependence of the dynamics on parameters is ex-
tremely complex. One of the challenges is to obtain global results for
general families of equations that have additional structure. This chap-
ter revolves around the periodic solutions of the fourth order equation

u′′′′ + αu′′ − u+ u3 = 0, (2.1.1)

and it generalizations. As explained in Chapter 1 Equation (2.1.1) has a
variational formulation via second order Lagrangian system:∫

I
L(u, u′, u′′)dt, (2.1.2)

where

L(u, v, w) =
1
2
w2 − α

2
v2 +

1
4
(u2 − 1)2. (2.1.3)

Related to this variational structure (through Noether’s theorem) is
a conserved quantity: solutions of Equation (2.1.1) satisfy the energy
equation

E[u] = −u′u′′′ + 1
2
(u′′)2 − α

2
(u′)2 − 1

4
(u2 − 1)2 = E. (2.1.4)
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Figure 1: Bifurcation diagram a) shows three different types of the
branches, in the plane (α, ‖u‖∞), which bifurcate for α = −

√
8. Solu-

tions on the branches that extend beyond the boundary of the diagram
are of the first type, see e) for an example; branches that form closed loops
consist of solutions of the second type, see f) for an example ; branches col-
lapsing on ‖u‖∞ = 1 consist of solutions of the third type see, g) for exam-
ple. The spectrum of the linearization around P+ and P− for b) α ≤ −

√
8;

c) α ∈ (−
√

8,
√

8); d)
√

8 ≤ α.

In the case α < 0 the Lagrangian defined by (2.1.3) is referred to as
the eFK-Lagrangian (see e.g. [9, 11, 12]), while for α ≥ 0 it is usually
referred to as the Swift-Hohenberg Lagrangian [17]. Equation (2.1.1)
appears in the description of special phase transitions, as well as in the
Swift-Hohenberg model for Rayleigh-Bénard convection.

In Chapter 1 we introduced a classification of periodic solutions of
Equation (2.1.1). We distinguished three main classes of periodic solu-
tions. In this chapter we are interested in solutions of the third type. For
this solutions we can not define the isolating neighborhood as for the
other types of solutions because there is a fixed point at the boundary.
We use linearization at this fixed point to overcome the problem. The
Conley index for the third type of solutions is non-trivial up to some
value of α and then it becomes trivial. This explains the bifurcation
diagram in Figure 2.
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Figure 2: Bifurcation diagram for the solutions of the third type and
corresponding solutions which are in the class u1,1. Solution (b) corre-
sponds to α = −1 and (c) to α = 1.

In the present chapter we use slightly different notation for classes
of solutions of the third type. The next definition introduces the nota-
tion used in this chapter.

DEFINITION 2.1.1. We say that a periodic solution is of class up,q if
it is a solution of the third type with 2p monotone laps per period and
intersects 2q times the constant solution u+ = 1.

Solutions of the third type come as a family of countable many dis-
tinct periodic solutions which bifurcate from the heteroclinic loop at
α = −

√
8. However, this family does not extend to infinity (as the first

type) in parameter space nor do they lie on loops (as the second type).
Instead, numerical results indicate that these periodic solutions bifur-
cate from the constant solution u+ as α tends to a critical value αp,q (see
Figure 2a) of the form

αp,q =
√

2
(
p

q
+
q

p

)
, p, q ∈ N, (p ≥ q). (2.1.5)

For q = 1 and p ∈ N it was analytically shown in [17] that there ex-
ists a family of solutions in the class up,1 for α ∈ (−

√
8, αp,1). Moreover,

for p ≥ 2 these solutions come in pairs. Numerically computed graphs
of two solutions of class u1,1 are shown in Figure 2.

The shooting technique used in [17] to prove existence of a solu-
tion of class u1,1 depends very strongly on the particular equation. The
method which we develop here generalizes this result in two ways. The
application of our method to Equation (2.1.1) proves the existence of so-
lutions of the class up,q for every relatively prime p, q ∈ N. The other
aspect is that this technique is not limited to this specific equation. It
can be applied to a huge variety of equations which have a variational
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formulation (2.1.2). The main idea is to use already known solutions
to force existence of another one. This idea goes back to [8] where it
was shown that a solution of Euler-Lagrange equation of Lagrangian
system with a twist property corresponds to a fixed point of the flow Ψt

generated by a parabolic recurrence relation which is defined on the
space of braids. The space of braids is not connected, its connected
components are called braid classes. For a more detailed explanation
see the next section.

The braid classes used in [8] are isolating neighborhoods for the
flow Ψt. Therefore the Conley index can be employed to show the ex-
istence of a fixed point within the class. However, in our case the braid
class fails to be an isolating neighborhood because there is a fixed point
on its boundary. This type of braid classes is called non-proper. In this
chapter, inspired by techniques in [2], we show how to use local infor-
mation near this fixed point to define a modified braid class which is
an isolating neighborhood, and the modifications do not change the in-
variant set inside the braid class. This allows us to prove the existence
of a solution which corresponds to a fixed point in a non-proper braid
class. It is enough to know one solution (and its linearisation) in order
to force the existence of different solutions.

By applying this result to Equation (2.1.1) we show the existence of
different solutions of the third type. Namely for any p ≥ q we prove
that there is a solution u ∈ up,q, for α ∈ [

√
8, αp,q). On the other hand

we cannot use this approach to extend the result for α ≥ αp,q because
the local behavior in the fixed point on the boundary of the braid class
changes character for this parameter value. Indeed, numerics suggest
that the branch of the solutions in the class up,q bifurcates from the con-
stant solution u+ = 1 at α = αp,q.

We note that the solution found by topological methods is on
slightly positive energy level E. Hence a limit process for E → 0 is
needed to prove the following theorem.

THEOREM 2.1.2. Let p, q ∈ N be relatively prime and q < p. Then there
exists a solution uα ∈ up,q of Equation (2.1.1) with E[uα] = 0 for every
α ∈ [

√
8, αp,q).

REMARK 2.1.3. One should be able to extend the previous theo-
rem to the parameter range [0,

√
8], where the eigenvalues of equilibria

u± = ±1 are saddle-foci, by perturbing the potential F = 1
4(u2 − 1)2 as

explained in [8].
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By using topological methods we have found a plethora of different
solutions of the third type.

2.2. Reduction to the finite dimensional problem
In this section we give a brief survey of the reduction of the problem

of finding periodic solutions for Equation (2.1.1) to the problem of find-
ing fixed points of a vector field generated by a parabolic recurrence
relation. We present this approach in the context of general second or-
der Lagrangians.

If we seek closed characteristics i.e., a periodic solution of Equa-
tion (2.1.1) at a given energy level E we can invoke the following vari-
ational principle:

Extremise {JE [u] : u ∈ Ωper, τ > 0}, (2.2.1)

where Ωper = ∪τ>0C
2(S1, τ), the periodic functions with period τ , and

JE [u] =
∫ τ

0
(L(u, u′, u′′) + E)dt. (2.2.2)

The function L ∈ C2(R3,R) is assumed to satisfy ∂2L
∂w2 (u, v, w) ≥ δ > 0

for all (u, v, w) ∈ R3. For the general second order Lagrangian system
the (conserved) energy is given by

E[u] =
(
∂L

∂u′
− d

dt

∂L

∂u′′

)
u′ +

∂L

∂u′′
u′′ − L(u, u′, u′′). (2.2.3)

It follows from [18] that the variations in τ guarantee that any critical
point u of (2.2.1) has energy E[u] = E.

An energy value E is called regular if ∂L
∂u (u, 0, 0) 6= 0 for all u that

satisfy L(u, 0, 0) + E = 0. The energy manifold ME ⊂ R4 for a regular
energy value E is a smooth non-compact manifold without boundary.
For a fixed regular energy value E, the extrema of a characteristic are
contained in the closed set {u : L(u, 0, 0) + E ≥ 0}. The connected
components IE of this set are called interval components. Moreover, it
follows from [18] that solutions on a regular energy level do not have
inflexion points. For a singular energy level the interval component IE
contains critical points and the situation is more complicated.

First, we restrict to the regular energy levels. It was shown
in [18] that for Lagrangian systems J [u] =

∫
I L(u, u′, u′′)dt, where

L(u, u′, u′′) = 1
2u
′′2 +K(u, u′) at energy levels E which satisfy
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∂K

∂v
v −K(u, v)− E ≤ 0 for all u ∈ IE and v ∈ R, (2.2.4a)

∂2K

∂v2
v2 − 5

2

{
∂K

∂v
−K(u, v)− E

}
≥ 0 for all u ∈ IE and v ∈ R,

(2.2.4b)

there is a unique pair (τ, uτ ) minimizing

inf
u∈Xτ ,τ∈R+

∫ τ

0
(L(u, u′, u′′) + E)dt,

where Xτ = Xτ (u1, u2) = {u ∈ C2([0, τ ]) : u(0) = u1, u(τ) = u2, u
′(0) =

u′(τ) = 0, u|(0,τ) > 0 if u1 < u2 and u|(0,τ) < 0 if u1 > u2} for (u1, u2) ∈
IE × IE \ ∆ and ∆ = {(u1, u2) ∈ IE × IE : u1 = u2}. Moreover, the
function defined by

SE(u1, u2) = inf
u∈Xτ ,τ∈R+

∫ τ

0
(L(u, u′, u′′) + E)dt, (2.2.5)

for (u1, u2) ∈ IE × IE \∆ and SE |∆ = 0 has the following properties:
(a) SE ∈ C2(IE × IE \∆).
(b) ∂1∂2SE(u1, u2) > 0 for all u1 6= u2 ∈ IE .
(c) limu1↗u2 −∂1SE(u1, u2) = limu2↘u1 ∂2SE(u1, u2) =

= limu1↘u2 ∂1SE(u1, u2) = limu2↗u1 −∂2SE(u1, u2) = +∞.
We call the function SE a generating function and the Lagrangian

system possessing such a generating function is called a twist system.
The second order Lagrangian system associated to Equation (2.1.1) is a
twist system for α ≥ 0. For more examples see [18].

The question of finding closed characteristics for a twist system can
now be formulated in terms of SE . Any periodic solution u is a con-
catenation of monotone laps. Let us take an arbitrary 2p periodic se-
quence {ui} and define u as a concatenation of monotone laps (mini-
mizers uτ (ui, ui+1)) between the consecutive extremal points ui solving
the Euler-Lagrange equation in between any two extrema. The concate-
nation u does not have to be a solution on R because the third deriva-
tives of two monotone laps do not have to match at the extremal point
ui. It was proved in [18] that the third derivatives match if and only if
the extrema sequence {ui} is a critical point of discrete action

W2p =
2p−1∑
i=0

SE(ui, ui+1). (2.2.6)
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Critical points of W2p satisfy equations

Ri(ui−1, ui, ui+1) = ∂2SE(ui−1, ui) + ∂1SE(ui, ui+1) = 0, (2.2.7)

where Ri(s, t, r) is, according to property (a), well-defined and C1 on
the following domain

Ωi = {(r, s, t) ∈ I3
E : (−1)i+1(s− r) > 0, (−1)i+1(s− t) > 0}. (2.2.8)

The functions Ri and domains Ωi satisfy Ri = Ri+2 and Ωi = Ωi+2

for i ∈ Z. Property (b) implies that ∂1Ri = ∂1∂2S(ui−1, ui) > 0, and
∂3Ri = ∂1∂2S(ui, ui+1) > 0.

Property (c) provides information about the behavior of Ri at the
diagonal boundaries of Ωi, namely,

lim
s↘r

Ri(r, s, t) = lim
s↘t

Ri(r, s, t) = +∞, (2.2.9)

lim
s↗r

Ri(r, s, t) = lim
s↗t

Ri(r, s, t) = −∞. (2.2.10)

Above-mentioned properties of Ri give us that Ri is parabolic recur-
rence relation of up-down type as defined below. First, we define para-
bolic recurrence relations.

DEFINITION 2.2.1. A parabolic recurrence relation R on RZ is a se-
quence of real-valued functions R = (Ri)i∈Z satisfying

(A1): [monotonicity] ∂1Ri > 0 and ∂3Ri > 0 for all i ∈ Z
(A2): [periodicity] for some d ∈ N,Ri+d = Ri for all i ∈ Z.

We see that our R is not a parabolic recurrence relation in the strict
sense because it is not defined on whole space RZ. It is not defined for
any sequence satisfying ui = ui+1 for some i ∈ Z. This corresponds
to the nature of solutions of Equation (2.1.1), namely that minima and
maxima alternate.

DEFINITION 2.2.2. A parabolic recurrence relationR defined on do-
main given by (2.2.8) is said to be of up-down type if (2.2.9) and (2.2.10)
are satisfied.

These results can be summarized in terms of parabolic recurrence
relation as follows.

THEOREM 2.2.3. Let J [u] =
∫
L(u, u′, u′′)dt be a second order Lagrang-

ian twist system. Suppose that W2p is the discrete action defined through
(2.2.5) and (2.2.6) at the regular energy level E. Then
(a) the functions Ri = ∂iW2p defined on Ωi are components of a parabolic

recurrence relation R of up-down type,
(b) solutions ofR = 0 correspond to periodic solutions on the energy level E.
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Figure 3: (a) A periodic function and (b) its piecewise linear graph (c) a
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In order to find solutions ofR = 0 we will employ the Conley index.
Conley index theory gives information about the invariant set of a flow
inside an isolating neighborhood for this flow. In the case of a gradient
vector field invariant sets have special structure and thus information
about critical points can be obtained. There is a natural way to define a
flow generated by an up-down parabolic recurrence relation on the set

Ω2p = {u ∈ RZ : u is 2p periodic and (ui−1, ui, ui+1) ∈ Ωi, for i ∈ Z}.
(2.2.11)

Consider the differential equations

d

dt
ui(t) = Ri(u(t)), u(t) ∈ Ω2p, t ∈ R. (2.2.12)

Equation (2.2.12) defines a (local) C1 flow ψt on Ω2p. This flow is not
defined at the boundary of Ω2p, but conditions (2.2.9) and (2.2.10) give
us information about the flow close to this boundary.

Thus, finding a periodic solution within the class up,q can be re-
duced to constructing an appropriate isolating neighborhood for the
flow Ψt and calculating its (nontrivial) Conley index. We will use the
concept of up-down discretized braid diagrams to construct this isolat-
ing neighborhood. For any 2p-periodic extrema sequence we can con-
struct a piecewise linear graph by connecting the consecutive points
(i, ui) ∈ R2 by straight line segments. The piecewise linear graph,
called a strand, is cyclic: one restricts to 0 ≤ i ≤ 2p and identifies the
end points abstractly. A collection of n closed characteristics of period
2p then gives rise to a collection of n strands. We place on this dia-
gram a braid structure by assigning a crossing type (positive) to every
transverse intersection of the graphs: larger slope crosses over smaller
slope, see Figure 3. We represent periodic sequence of extrema in the
space of closed, positive, piecewise linear braid diagrams. We briefly
recall some basic facts from (discrete) braid theory (for more details see
[8]).
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2.2 REDUCTION TO THE FINITE DIMENSIONAL PROBLEM

DEFINITION 2.2.4. Denote by Dnd the space of all closed piecewise
linear braid diagrams (PL-braid diagrams) on n strands with period d.
That is, the space of all (unordered) collections β = {βk}nk=1 of contin-
uous maps βk : [0, 1] → R such that

(a) βk is affine linear on [ id ,
i+1
d ] for all k and for all i = 0, . . . , d− 1;

(b) βk(0) = βτ(k)(1) for some permutation τ ;
(c) for any s such that βk(s) = βl(s) with k 6= l, the crossing is transver-

sal: for ε sufficiently small

(βk(s− ε)− βl(s− ε))(βk(s+ ε)− βl(s+ ε)) < 0.

Any PL-braid diagram corresponds to some n-collection {uk}n−1
k=0 of

2p-periodic extrema sequences via the relation

uki = βk (i mod 2p) , (2.2.13)

where uki is i-th entry of k-th extrema sequence. The converse to this
statement is not true because condition (c) of Definition 2.2.4 is not sat-
isfied for arbitrary collection of extrema sequences. A collection of n
extrema sequences for which this condition is violated corresponds to
a singular PL-braid diagram (see Definition 2.2.6). We switch between
the notation uki of the anchor points and βk of the piecewise linear braid
diagrams throughout this section, using β only if necessary.

Since for bounded characteristics local minima and maxima oc-
cur alternatively, we require that (−1)i(ui±1 − ui) > 0: the (natural)
up-down restriction. Therefore an n-collection of extrema sequences
{uk}n−1

k=0 can be seen as a point in the space of up-down piecewise li-
near braid diagrams.

DEFINITION 2.2.5. The space En2p of up-down PL-braid diagrams on
n strands with period 2p is the subset ofDn2p determined by the relation
(−1)i(uki+1 − uki ) > 0, for k = 1, . . . , n and i = 0, . . . , 2p− 1.

The up-down restriction on the space En2p ensures that we can define
the flow on this space by differential equations

d

dt
uki = Ri(uki−1, u

k
i , u

k
i+1) (2.2.14)

However, this flow does not respect condition (c) of Definition 2.2.4. It
can happen that this condition gets violated in finite time. Therefore,
we introduce a concept of singular braid diagrams which act as gates
between the path components of Dn2p (En2p).
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DEFINITION 2.2.6. Denote byDnd the space of all PL-braid diagrams
which satisfy properties (a) and (b) of Definition 2.2.4 (strong closure).
Denote by Σ = Dnd \Dnd the set of singular braid diagrams and by Σ− =
{β ∈ Σ : βk(s) = βl(s) for all s and some k 6= l} the set of collapsed
singularities. The path component in Dnd is called a braid class.

DEFINITION 2.2.7. Let En2p be the subset of all braid diagrams in
Dn2p satisfying (−1)i(uki+1 − uki ) > 0. As before the singular braid
diagrams are defined as ΣE = En2p \ En2p. The path components in
En2p comprise the up-down braid types [u]E , where u = (uki ). Again
Σ−E = {β ∈ ΣE : βk(s) = βl(s) for all s and some k 6= l} is the set of
collapsed singularities.

The set En2p has a boundary in Dn2p which can be characterized as
follows:

∂En2p = {u ∈ En2p : uki = uki+1 for at least one i and k}. (2.2.15)

Such braids, called horizontal singularities, are not included in Defini-
tion of En2p since the recurrence relation (2.2.7) does not induce a well-
defined flow on the boundary ∂En2p.

The flow coming from the parabolic recurrence relation evolves the
anchor points of the braid diagram in such a way that the braid class
can change, but only so as to decrease complexity: the word metric
|u|word of the braid diagram u may not increase with time. By the
|u|word we mean the number of pairwise strand crossings in the braid
diagram u. The following results, proved in [8], shows that the crossing
number acts as a discrete Lyapunov function for any parabolic flow on
En2p and the boundary ∂En2p is a repeller.

LEMMA 2.2.8. Let Ψt be a parabolic flow of up-down type on En2p.
(a) For each point u ∈ ΣE − Σ−E , the local orbit {Ψt(u) : t ∈ [−ε, ε]}

intersects ΣE uniquely at u for all ε sufficiently small.
(b) For any such u, the word metric of the braid diagram Ψt(u) for t > 0 is

strictly less than that of the diagram Ψt(u), t < 0.
(c) The flow blows up in a neighborhood of ∂En2p in such a manner that the

vector field points into En2p.

If v is a closed characteristic of a second order Lagrangian sys-
tem, then the strand v corresponding to its extrema sequence {vi} is
a fixed point for parabolic flow Ψt generated by (2.2.14). Let [u]E be a
braid class and suppose that v 6∈ cl[u]E then the intersection number of
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2.2 REDUCTION TO THE FINITE DIMENSIONAL PROBLEM

Ψt(uk) and v, for all strands uk ∈ [u]E , is non-increasing. To use the fact
that crossing number is non-increasing we will evolve certain compo-
nents of a braid diagram while fixing the remaining components. This
motivates working with a class of relative braid diagrams.

Let u ∈ En2p and v ∈ Em2p, the union u∪v ∈ Em+n
2p is naturally defined

as the unordered union of the strands. For given v ∈ Em2p, we define

En2p rel v := {u ∈ En2p : u ∪ v ∈ En+m
2p }.

The path components of En2p rel v, denoted [u rel v]E , define relative dis-
crete braid classes. The braid v is fixed and it is called skeleton. The set
of singular braids ΣE rel v are those braids u such that u∪ v ∈ ΣE . The
collapsed singular braids are denoted by Σ−E rel v. As before, the set
(En2p rel v) ∪ (ΣE rel v) is denoted En2p rel v.

Two relative braid classes [u rel v]E and [u′ rel v′]E in En2p rel v and
En2p rel v′ are equivalent if they lay in the same path component in

E = {(u,v) ∈ En2p × Em2p : u ∪ v ∈ En+m
2p }.

We use the notation [u rel [v]] for the path component in E. In general
a relative braid class is not an isolating neighborhood. However, it was
shown in [8] that any proper bounded relative braid class is an isolating
neighborhood.

DEFINITION 2.2.9. A relative braid class [u rel v]E ∈ E1
2p rel v is

called bounded if the set [u rel v]E is bounded.

DEFINITION 2.2.10. A discretized relative braid class [u rel v]E is
proper if it is impossible to find a continuous path of PL-braid diagrams
u(t) for t ∈ [0, 1] such that u(0) = u, u(t) ∈ E1

2p rel w defines a braid for
all t ∈ [0, 1), and u(1) is a diagram where an entire component of the
closed braid has collapsed onto itself or onto another component of u
or v.

We can see that the braid classes in Figure 4a and Figure 4b are
proper because it is impossible to find a continuous path of PL-braid
diagrams which stays in the same braid class and makes the free strand
to collapse on some other strand. On the other hand, the braid class
displayed in Figure 4c is non-proper.

THEOREM 2.2.11. Suppose [u rel v] is a bounded proper relative braid
class and Ψt is a parabolic flow fixing v. Then
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Figure 4: Representants of the three different relative braid classes. A fixed
point in the relative braid class defined by its representant a) corresponds
to the solution of the type I, b) type II and c) type III. Braid classes (a) and
(b) are proper but (c) is not.

(a) N := cl[u rel v] is an isolating neighborhood for the flow Ψt, which thus
yields a well-defined Conley index

h(u rel v) = h(N).

(b) The index h(u rel v) is independent of the choice of parabolic flow Ψt so
long as Ψt(v) = v.

(c) The index H(u rel [v]) is an invariant of [u rel [v]].
For the flow generated by a parabolic recurrence relation with an up-down
restriction

clE,ε[u rel v]E := {u ∈ clE [u rel v]E : (−1)i(uki+1 − uki ) ≥ ε ∀i, k}

is an isolating neighborhood for ε > 0 sufficiently small. Moreover
h([u rel v]E) = h(u rel v) where the skeleton v = v ∪ v+ ∪ v− and

v+
i = max

k,i
vki + 1 + (−1)i+1, v−i = min

k,i
vki − 1 + (−1)i+1.

Non-triviality of the index h(u rel v) implies the existence of a
fixed point u within the braid class [u rel v]. Moreover non-triviality
of H(u rel [v]) implies that for every fiber v there exists a braid class
[u rel v] ⊂ u rel [v] which contains a fixed point.

Let us now relate the three types of solutions in Figure 1 to braid
classes and put them in the context of the definitions presented in
this section. The three types of solutions are distinguished accord-
ing to their intersections with the constant solutions u± = ±1. The
most straightforward way of relating a solution to a relative braid class
would be to take the two constant strands ±1 as a skeleton and define
the relative braid class by the free strand u which intersects the con-
stant strands ±1 in the same manner as the solution u intersects u±.
However, the flow Ψt is well defined only for the braids with up-down
restriction. Hence instead of taking the constant strands we have to
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Figure 5: Figure (a) schematically shows behavior of the vector field R
on the boundary of the non-proper braid class [u rel v]E corresponding to
the third type of solution. The strand u+ is a fixed point for the flow Ψt

and some trajectories approach this point as t → −∞. Figure (b) shows
the behavior of the perturbed vector field on the boundary of the proper
braid class [u rel v]E , where v = v∪z1 ∪z2 and z1, z2 are fixed strands for
this perturbed vector field.

use the skeleton v = u+ ∪ u−, where the strands u± correspond to
the solutions of Equation (2.1.1) which oscillate around u± with a small
amplitude (on a slightly positive energy level) and the free strand u
intersects the skeleton strands in the same manner as u intersects u±.
Figure 4 shows the three different braid classes which correspond to
the three different types of solutions. The first two braid classes are
proper and the third one is not. All these braid classes are obviously
unbounded. It was shown in [8] how to use the properties of Equa-
tion (2.1.1) to find extra fixed strands which make the class bounded.
We will give more details in Section 2.5.

According to [8] the Conley index for any braid class corresponding
to a solution of the first type is non trivial. Conley index theory guar-
antees the existence of a fixed point in this class. A fixed point in this
braid class corresponds to the solution of Equation (2.1.1) of the first
type. Thus there are many different solutions of the first type and their
bifurcation branches exist for all α ≥ 0 as we can see in Figure 2. For
the second braid class the Conley index is trivial and thus does not pro-
vide information about fixed points. However, if we know that there
exists a non-degenerate (hyperbolic) solution of the second type then
it corresponds to a fixed point in the braid class with a trivial Conley
index. Hence there must be another fixed point in this class which cor-
responds to a different solution of the same type. This explains that the
bifurcation curves form loops in Figure 6.
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In the third case, the braid class is not proper (not an isolating
neighborhood), since the free strand can collapse on a skeletal strand
u+. Using the information about the flow Ψt near the strand u+, we
will perturb the parabolic recurrence relation on a neighborhood of the
boundary of the non-proper braid class [u rel v]E and construct some
new fixed strands which will make the class proper, without changing
the invariant set inside the class. In Figure 5 we schematically demon-
strate the behavior of the vector field R and its perturbation on the
boundary of the non-proper braid class and boundary of a new proper
braid class [u rel v]E created by adding extra strands which are fixed
points of this perturbed vector field. We will show that the Conley in-
dex h([u rel v]E) is non trivial. Thus there is a fixed point of the flow Ψt

within the class [u rel v]E .
Throughout this thesis we concentrate on braid classes with one

free strand, i.e. [u rel v] ⊂ E1
2p rel v. In this case the free strand u of

a non-proper braid class can collapse only onto some skeleton strand,
because there are no other free strands. Hence the set Σ−E consists of iso-
lated points which are fixed points for the flow Ψt. In the next section
we study linearisation of W2p at the fixed points and introduce notion
of a rotational number. Proofs of the results listed in this section can be
found in [2].

2.3. Linearisation of W2p

Assume that x ∈ E1
2p is a critical point of W2p =

∑2p−1
i=0 SE(ui, ui+1).

Define Pi = (xi, yi), where yi = ∂1SE(xi, xi+1). It was shown in [2] that
we can define the differentiable functions Fi on some neighborhood of
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Pi by the relation

(x′, y′) = Fi(x, y) ⇔ y = ∂1SE(x, x′) and y′ = −∂2SE(x, x′).

It holds that Pi+1 = Fi(Pi) because x ∈ E1
2p is a critical point of W2p.

We define the rotation number as follows. Take a vector u0 ∈ TP0R2

such that u0 6= 0, and define ui ∈ TPiR2 by

ui = dFi(Pi−1)ui−1, for all i.

Identify the tangent spaces TPiR2 with R2 in the obvious way, and let
the vector ui have components (ξi, ηi). For each integer i we define θi
to be the angle between ui−1 and ui, oriented in the clockwise sense.
This angel is only defined up to a multiple of 2π, so we have to specify
which multiple we mean. For this we use the following rule:

if ξi−1ξi > 0, then − π < θi ≤ π, (2.3.1a)
if ξi−1ξi < 0, then 0 < θi < 2π. (2.3.1b)

Then we define the rotation number of the orbit x, τ(x), to be

τ(x) = lim
n→∞

(2n)−1
+2pn∑
i=−2pn

θi/2π. (2.3.2)

Roughly speaking, 2πτ(x) is the average angle about which dF (P0) ro-
tates the vector u0, where F = F2p−1 ◦ . . . ◦ F0. Or, alternatively, 2τ(x)
is the average number of times the sequence ξn changes sign, in inter-
val of the length 2p. This holds due to the choice done in (2.3.1a) and
(2.3.1b)

If we differentiate∇W2p at the point x we get the following expres-
sion for the i-th component of the linearization L

(Lξ)i = αiξi−1 + βiξi + αi+1ξi+1, (2.3.3)

where

αi = ∂1∂2SE(xi−1, xi) > 0, (2.3.4a)

βi = ∂2
2SE(xi−1, xi) + ∂2

1SE(xi, xi+1), (2.3.4b)

The fact that αi > 0 follows from the monotonicity property ∂1∂2SE > 0
of the generating function. Thus L is a Jacobi matrix, and the following
is known (see [22]).

PROPOSITION 2.3.1. The spectrum of L is given by

sp(L) = {λ0 > λ1 > λ2 > λ3 > . . . > λ2p−1}.
In particular, for all i we have λ2i > λ2i+1.
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Let us summarize the results obtain for the linearization L in [2].
We use a symbol [a] for the lower integer part of the number a.

LEMMA 2.3.2. Let wi be an eigenvector of L corresponding to the eigen-
value λi and 1 ≤ k ≤ l ≤ 2p be given. Then any nonzero linear combination
of wk, wk+1, . . . , wl has at least 2[(k + 1)/2] and at most 2[(l + 1)/2] sign
changes.

LEMMA 2.3.3. The linearization L has at least 2[τ(x)]+1 positive eigen-
values.

It follows from Equation (2.3.3) that if Lξ = 0 then all ξi can be
computed from (ξ0, ξ1) and(

ξ2p
ξ2p+1

)
= M(x)

(
ξ0
ξ1

)
, (2.3.5)

with

M(x) =

(
0 1

−α2p−1

α2p

−β2p−1

α2p

)
. . .

(
0 1
−α0
α1

−β0

α1

)
, (2.3.6)

whereαi, βi are given by (2.3.4a), (2.3.4b). One can see that det(M(x)) =
α2p−1

α2p

α2p−2

α2p−1
. . . α0

α1
= α0

α2p
= 1.

REMARK 2.3.4. The matrix M(x) is conjugate to the matrix

dF (P0) = dF2p−1(P2p−1) ◦ . . . ◦ dF0(P0),

see Lemma 3.1. in [2].

2.4. The Invariant set of a non-proper braid class
The closure of a proper braid class is an isolating neighborhood and

Conley index theory provides information about qualitative properties
of the invariant set within the braid class. Therefore, if we show that
the invariant set inside a non-proper braid class [u rel v] is identical
to the invariant set in the closure of some proper braid class [u rel v],
then we can use the Conley index to study qualitative properties of the
invariant set Inv([u rel v]).

The basic idea behind creating a corresponding proper braid class
is to add new skeleton strands which will prevent the free strand from
collapsing onto the skeleton, see Figure 7. However, these new skeletal
strands have to be fixed points of the underlying flow because that is
a requirement of the relative braid class construction. Thus we will
perturb the parabolic recurrence R in such a way that we can find the
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new skeletal strands, which are fixed points for the flow generated by
the perturbed parabolic recurrence relation N . Then we introduce a
new braid class [u rel v] by adding these strands to the skeleton. Finally
we will show that the invariant set of the flow Ψt inside the braid class
[u rel v] is the same as invariant set of the flow, generated by N , in the
closure of [u rel v].

As we mentioned the braid classes assumed in this thesis have only
one free strand. To avoid technical difficulties we will confine ourselves
to the non-proper braid class [u rel v] ⊂ E1

2p rel v for which skeleton is
given by

v = v1 ∪ . . . ∪ vn,
and the free strand u can collapse only on the skeleton strand v1. In
this case we define

σ(v) := min(|v1
i − vji | > 0 : i ∈ {0, . . . , 2p− 1}, j ∈ {2, . . . , n}). (2.4.1)

The arguments are easily extended to the case when the free strand can
collapse on several skeletal strands and the result can be formulated as
follows.

THEOREM 2.4.1. Let [u rel v] ⊂ E1
2p rel v be a non-proper bounded braid

class for which skeleton is given by v = v1 ∪ . . . ∪ vn. Suppose that the free
strand u can collapse only on the skeleton strand v1 and the intersection num-
ber I(u,v1) 6= 2τ(v1). Then there exists an augmentation v of the skeleton v
and a flow Φt such that the braid class [u rel v] is proper and

InvΨ(cl[u rel v]) = InvΦ(cl[u rel v]).

COROLLARY 2.4.2. Under the conditions stated in Theorem 2.4.1 the set
S = InvΨ(cl[u rel v]) is an isolated invariant set and Conley index

h(S) = h(u rel v).

The augmented skeleton v is shown at Figure 7.

REMARK 2.4.3. The prove of Theorem 2.4.1 follows from Lemma 2.4.13
and Remark 2.4.14.

Perturbation of the parabolic recurrence relation

The parabolic recurrence relation R, generated by Equation (2.1.1)
is two periodic. However, we will deal with a more general setting,
namely that R is 2p-periodic i.e. Ri+2p = Ri for all i ∈ Z. Every com-
ponent Ri depends only on (ui−1, ui, ui+1), and we use the notation
ui = (ui−1, ui, ui+1).
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2. THE CONLEY INDEX FOR NON-PROPER BRAID CLASSES

Throughout this section we use a smooth bump function ωε : R3 →
R which satisfies

ωε(x1, x2, x3) =
{

1, for ‖x‖ ≤ ε
2 ,

0, for ‖x‖ > ε,

where ‖x‖ = ‖(x1, x2, x3)‖ =
√
x2

1 + x2
2 + x2

3. Moreover we suppose
that

∣∣∣∂ωε∂xi

∣∣∣ < A
ε and

∣∣∣ ∂2ωε

∂ui∂uj

∣∣∣ < B
ε2

, for 1 ≤ i, j ≤ 3, for some A,B > 0
(independent of ε).

Now we introduce a perturbation of the vector field R which is
linear near v1. Due to a technical reason which will become clear later,
we do not replace the vector field R by its linearization at v1 but with
a linear function which is sufficiently close to this linearization.

DEFINITION 2.4.4. Let ε > 0 and α, β ∈ R2p such that∥∥α− ∂1R(v1)
∥∥ < ε and

∥∥β − ∂2R(v1)
∥∥ < ε,

where ∂iR(v1) = (∂iR0(v1), . . . , ∂iR2p−1(v1)). Then

N εαβ
i (ui) = ωε(ui − v1

i )L
εαβ
i (ui) + (1− ωε(ui − v1

i ))Ri(ui), (2.4.2)

where

Lεαβi (xi) = αi−1(xi−1 − v1
i−1) + βi(xi − v1

i ) + αi+1(xi+1 − v1
i+1).

REMARK 2.4.5. If there is no ambiguity in choosing (α, β) or results
do not depend on their values just on the distance form ∂iR(v1) then
we use the notation N ε.

Following two lemmas summarize properties of N ε.

LEMMA 2.4.6. There exists an ε0 > 0 such that N ε is a parabolic recur-
rence relation of up-down type for 0 < ε < ε0 .

PROOF. EveryN ε
i is well defined on the set Ωi andN ε

i (ui) = R(ui)
if ui 6∈ Bi(ε), where

Bi(ε) := {v ∈ R3 :
∥∥v − v1

i

∥∥ ≤ ε}. (2.4.3)

ThusNi has all required properties on the complement of the set Bi(ε).
The up-down restriction for the braid v1 implies that

σ := min(|v1
i − v1

i−1|, i ∈ {0, . . . , 2p− 1}) > 0. (2.4.4)

If we choose ε < σ
3 then sufficiently small neighborhood of ∂Ωi is in

the complement of Bi(ε) and N ε is of up-down type because the limits
(2.2.9) and (2.2.10) for N ε

i are the same as for Ri.
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To prove the monotonicity condition ∂1N ε
i (ui) > 0 on all of Ωi we

will show the existence of a universal constant Ci > 0, such that, for
ε < σ

3 ,
∂1N ε

i (ui) > ∂1Ri(v1
i )− εCi for ui ∈ Bi(ε). (2.4.5)

Monotonicity of R (∂1Ri > 0) combined with inequality (2.4.5) im-
plies that ∂1N ε

i (ui) > 0 for ui ∈ Bi(ε), where 0 < ε < δi, and
δi = min

{
σ
3 ,

∂1Ri(v1
i )

Ci

}
.

In order to prove inequality (2.4.5) we use that Ri(v1
i ) = 0 to esti-

mate

|Lεi (ui)−Ri(ui)| ≤ |(αi − ∂1Ri(v1
i ))(ui−1 − v1

i−1)+

+ (βi − ∂2Ri(v1
i ))(ui − v1

i )+

+ (αi+1 − ∂3Ri(v1
i ))(ui+1 − v1

i+1)|+

+
1
2

∥∥d2Ri(vi)(ui − v1
i ,ui − v1

i )
∥∥ ,

where vi = (1− t)ui + tv1
i , for some t ∈ (0, 1). So

|Lεi (ui)−Ri(ui)| ≤ 3ε
∥∥ui − v1

i

∥∥+
Di

2

∥∥ui − v1
i

∥∥2
, (2.4.7)

for ui ∈ Bi(ε) where Di = maxv∈Bi(ε)
∥∥d2Ri(v)

∥∥ . In the same manner
we can show that∣∣∣∣∂1Lεi (ui)

∂ui
− ∂1Ri(ui)

∂ui

∣∣∣∣ < ε+Di

∥∥ui − v1
i

∥∥ , (2.4.8)

for every ui ∈ Bi(ε). We can write

N ε
i = Lεi + (1− ωε)(Ri − Lεi ).

Using the estimate |∂1ω
ε| < A

ε , for some A > 0 we get

∂1N ε
i (ui) = ∂1N ε

i (ui) = ∂1Lεi (ui)− ∂1ω
ε(ui)(Ri(ui)− Lεi (ui))

+ (1− ωε(ui))∂1(R(ui)− Lεi (ui)) >

> αi −
A

ε
|Ri(ui)− Lεi (ui)| − |∂1(Ri(ui)− Lεi (ui))| >

> ∂1Ri(v1
i )− ε− A

ε
|Ri(ui)− Lεi (ui)| − |∂1(Ri(ui)− Lεi (ui))|.

So

∂1N ε
i (ui) > ∂1Ri(v1

i )− ε− A

ε
ε2
(

3 +
Di

2

)
− ε

(
1 +

Di

2

)
,

for ui ∈ Bi(ε) and ε < σ
3 .
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2. THE CONLEY INDEX FOR NON-PROPER BRAID CLASSES

The last inequality guarantees the existence of the universal con-
stant Ci in (2.4.5). Positivity of ∂3Ni can be shown in the same way.
Therefore, the monotonicity condition for parabolic recurrence relation
is satisfied. �

REMARK 2.4.7. Inequality (2.4.7) implies that for ε0 small enough
there exists a constant Cε0 such that ‖N ε(u)−R(u)‖ < εCε0 , for all
u ∈ E1

2p and 0 < ε < ε0.

LEMMA 2.4.8. There exists an ε0 > 0 and a positive constants Kε0 such
that N ε can be written in the form

N ε(u) = Lε(u) + P ε(u), (2.4.10)

where

‖P ε(u)‖ ≤ Kε0 ‖u− v‖2 , (2.4.11)

for all u ∈ E1
2p such that

∥∥u− v1
∥∥ < ε0 and 0 < ε < ε0.

PROOF. We will show that there exists P εi and Kε0
i such that

(2.4.10) holds for every component N ε
i and (2.4.11) holds for every

P εi . Then the lemma holds for P ε = (P ε1 , . . . , P
ε
2p)

T and Kε0 =√
2pmaxi∈{0,...,2p−1}K

ε0
i .

Due to the usual estimate on the remainder of the Taylor series it
is enough to show that, for every k, l ∈ {0, . . . , 2p − 1}, there exists a
constant Kε0

i,k,l with the property∣∣∣∣ ∂2N ε
i

∂uk∂ul
(ui)

∣∣∣∣ ≤ Kε0
i,k,l, (2.4.12)

for ui ∈ Bi(ε0). One can compute that

∂2N ε
i

∂uk∂ul
(ui) = ωε(ui)

∂2Lεi
∂uk∂ul

(ui) + (1− ωε(ui))
∂2Ri

∂uk∂ul
(ui)

+
∂ωε

∂ul
(ui)

(
∂Lεi
∂uk

(ui)−
∂Ri

∂uk
(ui)

)
+

+
∂ωε

∂uk
(ui)

(
∂Lεi
∂ul

(ui)−
∂Ri

∂ul
(ui)

)
+

∂2ωε

∂uk∂ul
(ui) (Lεi (ui)−Ri(ui)) .
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2.4 THE INVARIANT SET OF A NON-PROPER BRAID CLASS

Using the estimates
∣∣∣∂ωε∂ul

∣∣∣ < A
ε and

∣∣∣ ∂2ωε

∂ul∂ul

∣∣∣ < B
ε2

, the bounds (2.4.7),
(2.4.8) imply ∣∣∣∣ ∂2N ε

i

∂uk∂ul
(ui)

∣∣∣∣ ≤ Di + 2
A

ε
εDi +

B

ε2
ε2
Di

2
,

for ui ∈ Bi(ε0), where Di = maxv∈Bi(ε0)

∥∥d2Ri(v)
∥∥. �

Construction of the proper braid class

In the previous subsection we defined the perturbation N ε of the
parabolic recurrence relation R. Now we will show that for every ε >
0 we can associate the braid class [u rel v] with a proper braid class
[u rel vε] where N ε(vε) = 0 and 0 < ε < ε0. Before we define the
skeleton vε we will show how to employ local information about the
parabolic recurrence relation R near v1 ∈ E1

2p to construct a fixed point
for N ε.

LEMMA 2.4.9. Let v1 ∈ E1
2p have a positive rotation number τ(v1) and

assume that the matrix M(v1) given by (2.3.6) is conjugate to the matrix(
cos 2πτ(v1) − sin 2πτ(v1)
sin 2πτ(v1) cos 2πτ(v1)

)
.

Then for every ε0 > 0 there exist ε > 0, p′, q′ ∈ N and α, β ∈ R2p such that
p′, q′, 2p are relatively prime, 0 ≤

∣∣∣ q′p′ − τ(v1)
∣∣∣ < ε < ε0 and N εαβ possesses

a 2pp′-periodic zero cε with up-down restriction satisfying:

(a) |cεi − v1
i | < ε/4, for all i,

(b) the sequence (cε0 − v1
0, . . . , c

ε
2pp′−1 − v1

2pp′−1) changes the sign 2q′ times
and intersects the zero sequence transversally,

(c) cε2ip = cε2jp only if |i− j| = kp′ for some k ∈ N.

PROOF. To prove the lemma we need to construct a parabolic re-
currence relation N εαβ and a point cε satisfying conditions (a), (b) and
(c) such that N εαβ(cε) = 0. However, N εαβ = Lεαβ near v1. Therefore
we will construct a zero point of Lεαβ .

As we mentioned in Section 2.3, finding a 2pp′-periodic zero point
of Lεαβ is equivalent to solving the equation(

ξ0
ξ1

)
= Mp′

α,β

(
ξ0
ξ1

)
, (2.4.14)
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2. THE CONLEY INDEX FOR NON-PROPER BRAID CLASSES

where

Mαβ =

(
0 1

−α2p−1

α2p

−β2p−1

α2p

)
. . .

(
0 1
−α0
α1

−β0

α1

)
.

Vector α ∈ R2p and α2p is not defined. To keep the notation from Sec-
tion 2.3 we set α2p = α0. Then det(Mαβ) = 1 for arbitrary (α, β).

First suppose that τ(v1) = q′

p′ , for some p′, q′ ∈ N such that p′, q′, 2p
are relatively prime, then for α = ∂1R(v1) and β = ∂2R(v1) the matrix
Mαβ = M(v1) is conjugate to a rotation about the angle 2π q

′

p′ . Thus
Equation (2.4.14) is satisfied for arbitrary values (ξ0, ξ1) and there is
a 2pp′-periodic zero point of the linearization Lεαβ corresponding to
(ξ0, ξ1) for arbitrary ε < ε0.

The fact that the matrix M(v1) is conjugate to a rotation about
the angle 2π q

′

p′ and p′, q′, 2p are relatively prime allow us to choose
(ξ0, ξ1) in such a way that the sequence {ξi} is not constant and ξ2ip =
ξ2jp only if |i − j| = kp′ for some k ∈ N. We can suppose that
|ξi| < ε

4 for all i ∈ Z otherwise we take the sequence {cξi} where
c = ε

4 max(ξi, i = 0, . . . , 2pp′−1). According to Section 2.3 the sequence
(ξ0, ξ1, . . . , ξ2pp′−1) changes sign 2q′ times.

To prove that the nonconstant sequence {ξi} intersects zero trans-
versally suppose that ξi = 0. Then equation (Lεαβξ)i = 0 implies
that ξi+1 = − αi

αi+1
ξi−1 where αi = ∂1Ri(v1) is positive for all i. Thus

ξi−1ξi+1 ≤ 0. Hence, for a non transversal intersection it holds that
ξi−1 = ξi = ξi+1 = 0, and the sequence {ξi} is constant zero sequence
which is a contradiction.

We conclude that in the case τ(v1) = q′

p′ for some p′, q′ ∈ N, where
p′, q′, 2p are relatively prime, we can define

cεi = v1
i + ξi, for i ∈ Z. (2.4.15)

Consider now the case that τ(v1) is not rational or p′, q′ and 2p are
not relative prime. We will show that for arbitrary ε0 > 0 there exists an
ε < ε0 and α, β ∈ R2p such that

∥∥α− ∂1R(v1)
∥∥ < ε,

∥∥β − ∂3R(v1)
∥∥ < ε

and the matrix Mαβ is conjugate to(
cos 2π q

′

p′ − sin 2π q
′

p′

sin 2π q
′

p′ cos 2π q
′

p′

)
for some p′, q′ ∈ N, where p′, q′, 2p are relatively prime and∣∣∣∣q′p′ − τ(v1)

∣∣∣∣ < ε.
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Then following the previous construction we get a zero point of N εαβ

with properties (a), (b) and (c).
For α = ∂1R(v1), β = ∂3R(v1) the matrix Mαβ is conjugate to a

rotation matrix about the angle 2πτ(v1). It is enough to show that by
arbitrary small perturbation in (α, β) we can slightly change the eigen-
values of the matrix Mαβ to make the rotation angle θ = q′

p′ rational and
such that p′, q′, 2p are relatively prime. For every (α, β) ∈ R2p it holds
that det(Mαβ) = 1. The equation for the eigenvalues ofMαβ is given by

λ2 − Trace(Mαβ)λ+ 1 = 0.

Since Trace(Mαβ) is a rational function of (α, β), it suffices to show
that Trace(Mαβ) is not a constant function of (α, β). One can com-
pute that Trace(Mαβ) = 2(−1)p for α = (1, . . . , 1), β = (0, . . . , 0) and
Trace(Mαβ) = (−1)p for α = (1, . . . , 1), β = (1, 1, 0, . . . , 0). This proves
that the rational function Trace(Mαβ) is not constant. Therefore by ar-
bitrary small perturbation of (α, β) we can continuously change the
eigenvalues of the matrix Mαβ . �

Using the zero point cε of N ε we define vε as

vε := v ∪ zε, (2.4.16)

where
(zε)ki := cε2pk+i,

for k ∈ {0, . . . , p′ − 1} and i ∈ {0, . . . , 2p}.

LEMMA 2.4.10. For ε < σ(v), where σ(v) is given by (2.4.1), it holds
that vε ∈ En+p′

2p and N ε(vε) = 0.

PROOF. The only condition which needs to be checked is a transver-
sality condition. We start by proving that strands in zε intersect trans-
versally. For p′ = 1 it is trivial. Lets suppose that (zε)ki = (zε)li, for some
i and 0 ≤ l < k < p′, where p′ > 1. Then the equation

Lεαβi ((zε)li−1 − (zε)ki−1, (z
ε)li − (zε)ki , (z

ε)li+1 − (zε)ki+1) = 0 for all i, k,
(2.4.17)

implies

− αi
αi+1

((zε)li−1 − (zε)ki−1) = ((zε)li+1 − (zε)ki+1).

Thus if (zε)li−1 6= (zε)ki−1 then the transversality condition

((zε)li−1 − (zε)ki−1)((z
ε)li+1 − (zε)ki+1) < 0
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is satisfied. If (zε)li−1 = (zε)ki−1, applying (2.4.17) we get (zε)li = (zε)ki
for all i. Therefore cε2kp = cε2lp, where 0 < |k − l| < p′ and we have a
contradiction with the condition (c) of the fixed point cε in Lemma 2.4.9.

We are left with showing that zε transversally intersects strands in
v. Condition (b) of the fixed point cε implies that zε transversally in-
tersects the strand v1. Condition (a) of the fixed point cε implies that
|(zε)ki − v1

i | < ε
4 for all k, i. If the anchor point vmi , m 6= 1 satisfies

(zε)li = vmi , for some l, then |vmi − v1
i | < ε

4 < σ(v) and it follows, from
the definition of σ(v), that vmi = v1

i . All intersections of the strands v1

and vm are transversal. Hence (vmi−1 − v1
i−1)(v

m
i+1 − v1

i+1) < 0. The pre-
vious inequality combined with |vmi±1 − v1

i±1| ≥ σ(v) > |(zε)li±1 − v1
i±1|

implies that (vmi−1 − (zε)li−1)(v
m
i+1 − (zε)li+1) < 0.

According to the definition N ε(vk) = R(vk) = 0 for all k. The
previous lemma implies thatN ε(zε) = 0, and thereforeN ε(vε) = 0. �

Now we associate the improper braid class [u rel v] with a proper
one, namely [u rel vε], as follows.

DEFINITION 2.4.11. The braid class [u rel vε] ⊂ E1
2p rel vε is given

by its representant u which satisfies the following properties

(a) u ∈ [u rel v],
(b) |ui − v1

i | ≥ ε
2 for i ∈ {0, . . . 2p− 1}.

LEMMA 2.4.12. For ε < σ(v) the relative braid class [u rel vε] is well de-
fined. Moreover if the braid class [u rel v] is bounded and I(u,v1) 6= 2τ(v1),
then [u rel vε] is bounded and proper for ε < |I(u,v1)− 2τ(v1)|.

PROOF. Every up-down braid u ∈ [u rel v] which satisfies |ui −
v1
i | ≥ ε

2 for all i does not have a common anchor point with strands zε.
Thus the representant u lies in E1

2p rel vε.
First we will show that the braid class [u rel vε] is uniquely defined.

Let u1 and u2 be arbitrary braids in [u rel v] which satisfy |u1,2
i −v1

i | ≥ ε
2 .

Let u(t) ∈ E1
2p rel v be the path between them, which, without loss of

generality, evolves just one anchor point at the time. It means that there
is a division of interval [0, 1], given by 0 = t0 < t1 < . . . < tm−1 < tm =
1, such that only anchor point uij evolves for t ∈ (tj , tj+1] where ij ∈
{0, . . . , 2p}. The path u(t) does not have to be in E1

2p rel vε, because non-
transversal crossing with some strand in zε can occur. We will modify
the path u(t) in order to avoid this. If |uij (tj+1) − v1

ij
| < ε

2 then we
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perturb the function ũij (t) : (tj , tj+1] → R as follows

ũij (t) =
{
uij (tj)(1− t) + (vij + ε/2)t, if uij (tj+1) ≥ vij ,
uij (tj)(1− t) + (vij − ε/2)t, otherwise.

We set ũij (t) = ũij (tj+1), for all t > tj+1, until the original path moves
uij again. The fact that uij (1) 6∈ (v1

i − ε/2, v1
i + ε/2) implies that there

is a j′ such that u(t) evolves the point uij for t ∈ (tj′ , tj′+1]. Then we
define ũij (t) : (tj′ , tj′+1] → R as a linear function connecting ũij (tj+1)
with uij (tj′+1). We repeat the previous procedure for any anchor point
ending up closer than ε

2 from v1. This perturbation does not create non-
transversal intersection with v1,v2, . . .vn. Along the perturbed path
only one anchor point ui can be in the interval (v1

i − ε/2, v1
i + ε/2) at a

time. If ui passes trough this interval then ui−1 < v1
i − ε/2 < v1

i + ε/2 <
ui+1 or ui+1 < v1

i−ε/2 < v1
i +ε/2 < ui−1. Thus non-transversal crossing

with strands zε is not possible because all their anchor points are within
distance ε

4 of v1.
If u ∈ [u rel vε] then u ∈ [u rel v]. Thus the braid class [u rel vε] is

bounded. To prove the properness we have to show that the free strand
u cannot collapse on the skeleton strands zε and v1. If zε consists only
of one strand then Lemma 2.4.9 implies that for the crossing number
we have I(v1, zε) = 2q′ where |2q′ − 2τ(v1)| < ε. We will show that
u cannot collapse on zε by contradiction. If u can collapse on zε then
I(u,v1) = I(zε,v1) = 2q′ and |I(u,v1) − 2τ(v1)| < ε. This contradicts
the assertion of the lemma. It holds that I(u,v1) = I(u, zε), hence a
similar contradiction proves that u cannot collapse on v1. If zε contains
of p′ > 1 strands then it follows from Lemma 2.4.9 that (zε)i0 6= (zε)i2p
for any i. This ensures that u cannot collapse on any of the strands of
zε. We will show that u cannot collapse on v1 by contradiction. First of
all
∑

z∈zε I(u, z) =
∑

z∈zε I(u,v
1) = p′I(u,v1). However if u collapse

on v1 then
∑

z∈zε I(u, z) =
∑

z∈zε I(v
1, z) = 2q′. The previous two

equalities imply that I(u,v1) = 2 q
′

p′ . By applying Lemma 2.4.9 one
infers that |I(u,v1)− 2τ(v1)| < ε, a contradiction. �

Invariant set of [u rel v].

The following lemma establishes a connection between the inva-
riant set

InvΨ([u rel v]) := {u : cl(Ψt(u)) ⊂ [u rel v]}
and the invariant set InvΦε(cl[u rel vε]) where the flow Φε is generated
by the parabolic recurrence relation N ε.
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LEMMA 2.4.13. If I(u,v1) < 2τ(v1) then there exists an ε0 > 0 such
that

InvΨ(cl[u rel v]) = InvΦε(cl[u rel vε])
for 0 < ε < ε0.

REMARK 2.4.14. Similar arguments prove the assertion of the pre-
vious lemma also in the case that I(u,v1) > 2τ(v1).

PROOF. We will start with proving the inclusion

InvΨ([u rel v]) ⊂ InvΦε(cl[u rel vε]).

The sets InvΨ([u rel v]) and ∂[u rel v] are compact and disjoint. Thus
there exists an ε1 < σ(v) such that their distance

ρ(InvΨ([u rel v]), ∂[u rel v]) > ε1. (2.4.18)

Moreover, for z ∈ InvΨ([u rel v]) with |zi− v1
i | < ε1, as we show below,

it holds that
|zi±1 − v1

i±1| > ε1, (2.4.19)

(zi−1 − v1
i−1)(zi+1 − v1

i+1) < 0. (2.4.20)
We will prove (2.4.19) by contradiction. Consider

s = (z0, . . . , zi−2, v
1
i−1, v

1
i , zi+1, . . . , z2p−1) ∈ ∂[u rel v].

If |zi−1 − v1
i−1| ≤ ε1 or |zi+1 − v1

i+1| ≤ ε1 then by using the fact that
z ∈ InvΨ([u rel v]) we can estimate the distance

ρ(InvΨ([u rel v]), ∂[u rel v]) ≤ ρ(z, s) ≤ ε1.

This contradicts Inequality (2.4.18). If we suppose that

(zi−1 − v1
i−1)(zi+1 − v1

i+1) ≥ 0

then we obtain a similar contradiction for

s = (z0, . . . , zi−1, v
1
i , zi+1, . . . , z2p−1) ∈ ∂[u rel v].

Therefore (2.4.20) holds as well.
First we will now prove that InvΨ([u rel v]) ⊂ [u rel vε] for ε < ε1.

Let z ∈ InvΨ([u rel v]). If |zi−vi| ≥ ε
2 for all i then z ∈ [u rel vε]. In case

that some |zi − vi| < ε
2 , it follows from (2.4.19) and (2.4.20) that we can

move zi out of interval (vi − ε
2 , vi + ε

2) without changing intersection
number with the skeletal strands vε. Thus z ∈ [u rel vε].

If z ∈ InvΨ([u rel v]) then it follows form (2.4.18) that Ψt(z) stays
away from the boundary ∂[u rel v]. This implies that Ψt(z) = Φε

t (z)
for t ∈ R and Φε

t (z) ∈ [u rel vε]. Therefore z ∈ InvΦε(cl[u rel vε]). In
particular, InvΨ([u rel v]) ⊂ InvΦε(cl[u rel vε]) for ε < ε1.
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We are left with proving the opposite inclusion. Suppose that

z ∈ InvΦε(cl[u rel vε])

and
ρ(Φε

t (z), ∂[u rel v]) > ε for all t,

then Φε
t (z) = Ψt(z) for t ∈ R and z ∈ InvΨ([u rel v]). Therefore it is

enough to prove that there exists ε2 > 0 such that

ρ(InvΦε(cl[u rel vε]), ∂[u rel v]) > ε for all 0 < ε < ε2. (2.4.21)

We will show that for every braid y ∈ ∂[u rel v] there exists an εy
such that for x ∈ Bεy(y) = {x ∈ E1

2p : ‖x− y‖ < εy} it holds that
x 6∈ InvΦε(cl[u rel vε]). The compact set ∂[u rel v] can by covered by a
finite covering U = {Bεyi (yi)}. Hence (2.4.21) holds for ε2 := min εyi .

Let us start with the boundary point v1. Identify E1
2p and R2p via

u → (u0 − v1
0, . . . , u2p−1 − v1

2p−1) ∈ R2p,

so that v1 becomes origin.
By following the ideas in the proof of Lemma 7.2 in [2] one can see

that the linear part Lε of N ε at v1 can be written as Lε = Lε+ + Lε−,
where Lε+ and Lε+Lε− = Lε−Lε+ = 0 and

(x,Lε+x) > 0, (x,Lε−x) ≤ 0,

holds for all nonzero x ∈ R2p.
Let {w0, . . . , w2p−1} and {λ0 > λ1 ≥ λ2, . . . , λ2p−1} be the eigenvec-

tors and values of L0, where L0 is linearization of R at v1. The null
space of L0

+ is spanned by {wm, wm+1, . . . , w2p−1}, where m > I(u,v1).
Indeed, I(u,v1) < 2τ(v1) implies that L0 must have at least I(u,v1)+1
positive eigenvalues, see Lemma 2.3.3 and [2].

Hence Lemma 2.3.2 implies that if x 6= 0 and L0
+x = 0 then x

has at least I(u,v1) + 2 sign changes and therefore x does not lie in
cl([u rel v]). Thus there is a constant K0 > 0 such that

(x,L0
+x) ≥ K0 ‖x‖2

holds for all x ∈ cl[u rel v]. This also implies that
∥∥L0

+x
∥∥ ≥ K0 ‖x‖.

It follows from the continuous dependence of the eigenvalues of Lε
on ε that there exists a constant K > 0 such that

(x,Lε+x) ≥ K ‖x‖2 ,

for ε small enough.
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Consider the functionGε(x) = 1
2(x,Lε+x). Lemma 2.4.8 implies that

close to x = 0 the flow Φε
t is given by

x′(t) = Lε(x(t)) + P ε(x(t)), (2.4.22)

where
|P ε(x(t))| < K1 ‖x(t)‖2 , (2.4.23)

for some K1 > 0 and ε sufficiently small. So

d

dt
Gε(x) = (Lε+x,Lε+x) + o(‖x‖2) ≥ (K2 + o(1)) ‖x‖2 > 0,

for all x ∈ [u rel v] close to origin and Gε(0) = 0. Now, let ε3 > 0 be so
small that d

dtG
ε > 0, whenever Gε(x) < ε3. Define

U = {x : Gε(x) < ε3}.

We choose ε4 so small that the ball with radius ε4 is a subset of U .
Let us track points in [u rel vε] ∩ Bε4(v

1) back in time for the flow
Φε
t . If orbit Φε

t (x) stays in [u rel vε], for t < 0, then Φε
t (x) stays in

U and d
dtG

ε(Φt
ε(x)) > 0 for all t < 0. It follows that Φt

ε(x) → 0
as t → −∞. Hence,

∑
z∈zε I(Φ

ε
t (x), z) → 2q′ as t → −∞. On the

other hand if Φε
t (x) ∈ [u rel vε] then

∑
z∈zε I(Φ

ε
t (x), z) = p′I(u,v1)

and p′I(u,v1) < 2q′. Therefore Φε
t (x) leaves the class [u rel vε], for

some t0 < 0 and x 6∈ InvΦε(cl[u rel vε]) for any 0 < ε < ε4 and all
x ∈ [u rel vε] ∩Bε4(v1).

Now, suppose that y ∈ ∂[u rel v] and y 6= v1. The flow Ψt is
transversal to the set ∂[u rel v] \ {v1}. We can suppose that it points
out of the set [u rel v] at y. Otherwise we get the same result for the
reversed time direction. According to Lemma 2.2.8 the flow Ψ can-
not enter the class [u rel v] after leaving it. This combined with the
transversality of the flow implies that there exists ε5 > 0 such that
for every x ∈ cl(Bε5(y)) ∩ [u rel v] there is a constant Tx with pro-
perties ΨTx(x) ∈ ∂[u rel v] and ΨTx+1(x) 6∈ cl([u rel v]). Moreover
T = supx∈C Tx is finite and

δ = min
x∈C

ρ(ΨTx+1(x), ∂[u rel v]) > 0.

One can estimate

‖Φε
t (x)−Ψt(x)‖ ≤

∫ t

0
‖N ε(Φε

s(x))−R(Ψs(x))‖ ds ≤

≤
∫ t

0
‖N ε(Φε

s(x))−R(Φε
s(x))‖ ds+

∫ t

0
‖R(Φs(x))−R(Ψs(x))‖ ds.


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For some constant C > 0 and t ∈ [0, T + 1] we get

‖Φε
t (x)−Ψt(x)‖ ≤ Kε(T + 1) + C

∫ t

0
‖Φε

s(x)−Ψs(x)‖ ds,

where K is a positive constant (see Remark 2.4.7) and the estimate on
the second term follows from C1-regularity of R. Gronwall’s theorem
implies that

‖Φε
t (x)−Ψt(x)‖ ≤ Kε(T + 1)eRt,

for t ∈ [0, T + 1] and 0 < ε < ε5. So for

ε < εy := min
{
ε5,

δ

2K(T + 1)
e−R(T+1)

}
we have that ∥∥Φε

Tx+1(x)−ΨTx+1(x)
∥∥ ≤ 1

2
δ.

Therefore Φε
Tx+1 6∈ [u rel vε], for x ∈ Bεy(y) and

Bεy(y) ∩ InvΦε(cl[u rel vε]) = ∅

for ε < εy. This concludes (2.4.21) which implies that

InvΦε(cl[u rel vε]) ⊂ InvΨ([u rel v])

and thus finishes the proof of the lemma. �

2.5. Application to the fourth order differential
equation

In this section we prove existence of solutions of Equation (2.1.1)
on the zero energy level. We concentrate on solutions of the third type
i.e., those which intersect constant solution u+ = +1 but do not inter-
sect u− = −1. As we mentioned in Section 2.1 these solutions can be
further classified by the number of monotone loops (2p) and number
of intersections (2q) with u+. To prove Theorem 2.1.2 we will show
existence of solution uα ∈ up,q for α ∈ (

√
8, αp,q) where αp,q is given

by (2.1.5).
One obstacle to applying the machinery developed in the previous

section is that strands u± corresponding to the discretization of the con-
stant solutions u± = ±1 do not obey the up-down restriction. Hence
we cannot not include them in the skeleton v and define the braid class
[u rel v] by taking the free strand u which intersects 2q times the strand
u+ but does not intersect the strand u−.
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To overcome this problem we have to use a more elaborate ap-
proach. First we will show that for small positive energy E there ex-
ist two solutions of (2.1.1) such that one oscillates around u+ while the
other one around u−. Then we will define the braid class [u rel v]. The
strands associated to the small oscillations around u± are included in v
and the free strand is braided with them in the way mentioned above.
We will employ the result from the previous section to prove existence
of a fixed point within the braid class. This provides a solution uE of
(2.1.1), for small positive E, such that E[uE ] = E. Finally we will use a
limit process E → 0 for solutions uE to find a solution u ∈ up,q at the
zero energy level.

Small oscillations

Here we will show the existence of a solution, which oscillates
around the constant solution, on every small positive energy level, and
associate it with a strand. The rotation number of this strand will be
computed as well.

LEMMA 2.5.1. For every α >
√

8 and sufficiently small E > 0 there
exists a periodic solution uE+ of Equation (2.1.1) with two extrema per period
such that minuE+ < 1 < maxuE+, and E[uE+] = E. Moreover uE+ → +1 as
E → 0.

PROOF. The transformation u(t) = 1 + εw(t) transforms Equa-
tion (2.1.1) into

w′′′′ + αw′′ + 2w + 3εw2 + ε2w3 = 0, (2.5.1)

with the energy functional given by

Eε[w] = −w′w′′′ + 1
2
(w′′)2 − α

2
(w′)2 − Fε(w),

where Fε(w) = w2 + εw3 + 1
4ε

2w4. If ε = 0 then (2.5.1) becomes linear:

w′′′′ + αw′′ + 2w = 0. (2.5.2)

The eigenvalues of the last equation are given by

λ2
i =

1
2
[α− (−1)i

√
α2 − 8].

Thusw0(t) = − cos(λ1t) is its solution with two extrema per period and
energy E0[w0] = λ4

1
2 − 1 > 0 for α >

√
8.
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We now turn to the nonlinear problem. Equation (2.5.1) contains
only even derivatives for every ε ≥ 0. This implies that every solution
satisfying

w′(0) = w′(T ) = w′′′(0) = w′′′(T ) = 0,
for some T ∈ R+ is 2T -periodic. Define G : R3 → R2 by

G(A, T, ε) =
(
w′ε,A(T )
w′′′ε,A(T )

)
,

where wε,A is the solution of (2.5.1) with initial data

wε,A(0) = A, w′ε,A(0) = 0,

w′′ε,A(0) =
√

2(Fε(A) + E0[w0]), w′′′ε,A(0) = 0.

If G(wε,A, T, ε) = (0, 0)T then wε,A is a 2T -periodic solution of (2.5.1).
The condition w′′ε,A(0) =

√
2(Fε(A) + E0[w0]) implies that Eε[wε,A] =

E0[w0].
To prove the existence of periodic solutions of (2.5.1) for ε > 0 we

will employ the implicit function theorem for the function G. For ε = 0
we have w0,−1 = w0 and

G(−1,
π

λ1
, 0) =

(
0
0

)
.

We can express

wε,A(t) = C(A) cos(λ1t) +D(A) cos(λ2t) + g(ε, A, t), (2.5.3)

where g = o(ε) and C(A), D(A) satisfy

C(A) +D(A) = A

−λ2
1C(A)− λ2

2D(A) =
√

2(Fε(A) + E0[w0]).
Using (2.5.3) one can compute that

det
(
∂G

∂A

∂G

∂T

)
(−1, π

λ1
,0)

= det
(
∂Aw

′
ε,A(T ) w′′ε,A(T )

∂Aw
′′′
ε,A(T ) w′′′′ε,A(T )

)
(−1, π

λ1
,0)

=

=
λ4

1

λ2
1 − λ2

2

sin
λ2

λ1
π 6= 0.

Therefore by the implicit function theorem there exist continuous func-
tions A : (−δ, δ) → R and T : (−δ, δ) → R for some δ > 0 such that
A(0) = −1, T (0) = π

λ1
and

G(A(ε), T (ε), ε) =
(

0
0

)
,
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for ε ∈ [0, δ).
The periodic solutionswε(t) := wA(ε),ε(t) converge tow0 = − cosλ1t

as ε→ 0 inC3 norm. Thuswε has two extrema per period (one negative,
one positive) for ε small enough.

Let ε(E) =
√

E
E0[w0] . Then the solution uE+(t) = 1 + ε(E)wε(E)(t) of

Equation (2.1.1) has energy

E[uE+(t)] = ε(E)2Eε(E)[wε(E)(t)] = E.

�

REMARK 2.5.2. An analogous construction can by carried out to
construct uE−, with the similar properties as uE+, and uE− → −1 asE → 0.

We have to keep in mind that every solution uE+ of Equation (2.1.1)
is a solution for some value of parameter α although we do not indicate
it in the notation. We can associate the solution uE+ with a braid uE+ ∈ E1

2

via its sequence of extrema. The following lemma estimates the rotation
number τ(uE+).

LEMMA 2.5.3. Let uE+ ∈ E1
2 be a braid corresponding to the solution uE+

for α >
√

8. Then for every ε > 0 there exists E0 > 0 such that∣∣∣∣τ(uE+)− λ2

λ1

∣∣∣∣ < ε for all 0 < E < E0, (2.5.4)

where λ2
i = 1

2 [α− (−1)i
√
α2 − 8]. Moreover, the matrixM(uE+) is conjugate

to the matrix (
cos(2πτ(uE+)) − sin(2πτ(uE+))
sin(2πτ(uE+)) cos(2πτ(uE+))

)
. (2.5.5)

PROOF. As we mentioned in Section 2.3 the twist maps FEi (x, y)
corresponding to the generating function SE for Lagrangian system
with Euler-Lagrange equation given by (2.1.1) can be defined as fol-
lows. Let ui be a solution of Equation (2.1.1) with the initial value con-
ditions

ui(0) = x, u′i(0) = 0,

u′′i (0) = (−1)i
√

2E + (x2 − 1)2, u′′′i (0) = y.

Let t0 > 0 be the first nonzero time for which u′(t0) = 0. Then

FEi (x, y) = (ui(t0), u′′′i (t0)).

Remark (2.3.4) implies that M(uE+) is conjugate to

d(FE1 ◦ FE0 )(uE+(0), (uE+)′′′(0)).
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Let us compute dFE0 (uE+(0), (uE+)′′′(0)). To do so we will use the trans-
formation u(t) = 1 + ε(E)w where ε(E) =

√
2E
λ4
1−2

. One can see that

dFE0 (uE+(0), (uE+)′′′(0)) = dF̃E(wE(0), w′′′E (0)),

where F̃E is defined in the same manner as FE0 but now u is a solution
of Equation (2.5.1) with initial data

u(0) = x, u′(0) = 0,

u′′(0) =

√
2
(
λ4

1

2
− 1 + x2 + ε(E)x3 +

1
4
ε(E)2x4

)
, u′′′(0) = y.

Continuous dependence on E implies that for every ε1 > 0 there exists
an E1 such that∥∥∥DF̃E(wE(0), w′′′E (0))−DF̃ 0(w0(0), w′′′0 (0))

∥∥∥ < ε1 for all 0 < E < E1,

(2.5.6)
where w0 = − cos(λ1t). The value of DF̃E(w0(0), w′′′0 (0)) in the direc-
tion (cos θ, sin θ)T for 0 ≤ θ < 2π can be computed as

dF̃ 0(w0(0), w′′′0 (0))
(

cos θ
sin θ

)
=

=
d

dµ
F̃ 0(w0(0) + µ cos θ, w′′′0 (0) + µ sin θ)µ=0 =

=
(

∂µyµ,θ(Pθ(0))
−∂µy′′′µ,θ(Pθ(0))− y′′′′µ,θ(Pθ(0)) d

dµPθ(0)|µ=0

)
,

where Pθ(µ) is the first positive time in which y′µ,θ(Pθ(µ)) = 0 has a
maximum. The function yµ,θ is a solution of Equation (2.5.2) with initial
conditions

yµ,θ(0) = w0(0) + µ cos θ,

y′µ,θ(0) = 0,

y′′µ,θ(0) =

√
2
(
λ4

1

2
− 1 + (w0(0) + µ cos θ)2

)
,

y′′′µ,θ(0) = w′′′0 (0) + µ sin θ.

We can evaluate d
dµPθ(0)|µ=0 by differentiating the equation

y′µ,θ(Pθ(µ)) = 0,


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with respect to the parameter µ:

d

dµ
Pθ(µ)|µ=0 = −

∂µy
′
µ,θ(Pθ(0))|µ=0

y′′µ,θ(Pθ(0))|µ=0
.

Linearity of Equation (2.5.2) enable us to compute all components
of dF̃E(w0(0), w′′′0 (0))(cos θ, sin θ)T for any θ. By doing so for θ = 0 and
θ = π

2 we get that

dF̃E(w0(0), w′′′0 (0)) =

(
cos(λ2

λ1
π) −λ1

λ2
sin(λ2

λ1
π)

λ2
λ1

sin(λ2
λ1
π) cos(λ2

λ1
π)

)
,

which is conjugate to(
cos(λ2

λ1
π) − sin(λ2

λ1
π)

sin(λ2
λ1
π) cos(λ2

λ1
π)

)
.

Thus it follows from (2.5.6) that we can choose E0 in such a way that
for all 0 < E < E0 the matrix dFE0 is conjugate to the rotation matrix(

cos(2τEπ) − sin(2τEπ)
sin(2τEπ) cos(2τEπ)

)
, (2.5.8)

where |τE − λ2
2λ1
| < ε

2 .
By similar calculation we get the same result for dFE1 . By compos-

ing dFE0 and dFE1 one gets that d(FE1 ◦ FE0 ) is also conjugate to the ma-
trix of the form (2.5.8) for some (different) τE which satisfies

∣∣∣τE − λ2
λ1

∣∣∣ <
ε. It follows from (2.3.2) that the rotation number τ(uE+) = τE + k for
some k ∈ N. Using the fact that λ2

2λ1
< 1

2 , for α >
√

8, determines
k = 0. �

REMARK 2.5.4. From now on, if there is no ambiguity, we will indi-
cate a p-fold of uE+ by the same symbol. The rotation number τ(uE+) of
the p-fold uE+ ∈ E1

2p is p times the rotation number of uE+.

Solution uE with positive energy

We will prove the existence of a solution u of Equation (2.1.1) on the
energy level zero as a limit of solutions uE on positive energy levels,
given by the following lemma, for E → 0.

THEOREM 2.5.5. Let p, q ∈ N be relatively prime such that q < p and
α ∈ (

√
8, αp,q). Then for sufficiently small E there exists a solution uE of

(2.1.1) with E[uE ] = E. Its extrema sequence uE is 2p-periodic. Moreover
I(uE ,uE+) = 2q and I(uE ,uE−) = 0, where uE , uE+ and uE− are extrema
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sequences corresponding to the solutions uE , uE+ and uE−, seen as points in
E1

2p.

PROOF. To prove this theorem we will employ the relative braid
class [u rel v] ⊂ E1

2p rel v. This braid class will turn out to contain a
fixed point uE which is an extrema sequence of the solution uE . Let us
start by identifying the skeleton

v = v1 ∪ v2 ∪ v3 ∈ E3
2p.

We define v1 = uE+ and v2 = uE−. To construct the strand v3 we use the
dissipativity of the Lagrangian system generated by Equation (2.1.1).
Dissipativity implies the existence of u∗1, u

∗
2 ∈ R such that u∗1 < v1

i , v
2
i <

u∗2 for all i and R2i(u2i−1, u
∗
1, u2i+1) < 0 for u∗1 < u2i±1 < u∗2 while

R2i+1(u2i, u
∗
2, u2i+1) > 0, for u∗1 < u2i, u2i+2 < u∗2. For more details see

[18]. Let

Ωi =
{

{(ui−1, ui, ui+1) ∈ R3 : u∗1 < ui±1 < ui < u∗2}, i odd,
{(ui−1, ui, ui+1) ∈ R3 : u∗1 < ui < ui±1 < u∗2}, i even.

Denote by Ω2p the set of 2p-periodic sequences {ui} for which
(ui−1, ui, ui+1) ∈ Ωi. Furthermore define the set

C = {u ∈ Ω2p : I(u,v1) = I(u,v2) = 2p}.
Since I(v1,v2) = 0 the vector field R is transverse to ∂C. Moreover,
the set C is contractible, compact, and R is pointing outward at the
boundary ∂C due to the dissipativity. The set C is therefore negatively
invariant for the induced flow Ψt. Consequently, there exists a fixed
point v3 of Ψt in the interior of C.

We define [u rel v] ∈ E1
2p rel v, by its representant u satisfying

1) (−1)iui > (−1)iv3
i ,

2) ui > v2
i ,

3) I(u,v1) = 2q,
where 0 < 2q < 2p, see Figure 7.

For p ≥ 2, [u rel v] is a bounded improper and free up-down braid
class where u can collapse only on v1. It follows from Lemma 2.5.3 and
Remark 2.5.4 that for every ε1 > 0 we can choose E > 0 so small that
the rotation number of v1 = uE+ satisfies the inequality∣∣∣∣τ(v1)− p

λ2

λ1

∣∣∣∣ < ε1,

where λ2
i = 1

2 [α − (−1)i
√
α2 − 8]. If α ∈ (

√
8, αp,q) then q

p < λ2
λ1

.
Therefore for any α ∈ (

√
8, αp,q) we can choose ε1 in such a way that
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PSfrag replacements
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Figure 7: A representat of the braid class [u rel vε] for p = 4, q = 3, p′ = 1
and q′ = 2. If we skip the strand zε

1 from the skeleton we get a representant
of the braid class [u rel v].

τ(v1) > q . Hence according to Lemma 2.4.13

InvΨ([u rel v]) = InvΦε([u rel vε]),

for ε small. Hence non-triviality of the index H(u rel vε), where vε is
the augmentation of vε as explained in Theorem 2.2.11, implies that the
braid class [u rel v] contains a fixed point of the flow Ψt. Non-triviality
of H(u rel vε) is given by the following lemma. �

LEMMA 2.5.6. The homotopy type of the topological invariant
H(u rel vε) is given as follows

H(u rel vε) = Sq−1 ∨ Sq.

PROOF. We will use techniques developed in [2, 8] to compute the
homotopy invariant H(u rel vε). We choose a sufficiently simple sys-
tem (an integrable Hamiltonian system) which exhibits the braids in
question and compute the homotopy index by examining the invariant
set of this system and its unstable manifold.

Consider the first-order Lagrangian system given by the Lagrang-
ian Lλ(u, ut) = 1

2 |ut|
2 + λF (u), where we choose F (u) to be an even

four-well potential, with F ′′(u) ≥ −1 and F ′′(0) = −1. The Lagrangian
system (Lλ, dt) defines an integrable Hamiltonian system on R2, given
by differential equation u′′ = λF ′(u). The phase portrait of this equa-
tion is depicted in Fig. 8.

It was shown in [8] that for 0 < λ < π2 the time-1 map defined
via the induced Hamiltonian flow Ψλ, is an area preserving monotone





2.5 APPLICATION
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Figure 8: The integrable model in the (u, ut) plane; there are centers at
0,±2 and saddles in ±1,±3.

twist map. The generating function of the twist map is given by the
minimization problem

Sλ(u1, u2) = inf
u∈X(u1,u2)

∫ 1

0
L(u, ut)dt,

where X(u1, u2) = {u ∈ H1(0, 1) : u(0) = u1, u(1) = u2}. The recur-
rence function Rλ(ui−1, ui, ui+1) = ∂2Sλ(ui−1, ui) + ∂1Sλ(ui, ui+1) de-
fines an exact (autonomous) parabolic recurrence relation. We choose
the potential F such that the bounded solutions within the heteroclinic
loop between −1 and +1 have the property that the period Tλ is an in-
creasing function of the amplitude A, and Tλ → 2π√

λ
, as A → 0. This

single integrable system is enough to compute the homotopy index
H(u rel vε).

We begin by identifying the following periodic solutions. Set v1 =
{v1
i }, vi = 0, and v2 = {v2

i }, v2 = −1, and v± = {v±i }, v
±
i = ±3. Let

ũ(t) be a solution of u′′ = λF ′(u) with minimum ũ(0) ∈ (−3,−2) which
oscillates around both equilibria ±2 and T1(A(ũ)) = 2τ0 ≥ 2π, τ0 ∈ N.
For arbitrary λ ≤ 1 this implies that

Tλ(A(ũ)) =
T1(A(ũ))√

λ
=

2τ0√
λ
,

where we choose λ so that 1√
λ
∈ N. Set d = 2τ0p√

λ
and define v3 = {v3

i }
with v3

i = ũ(i), i = 0, . . . , d. Clearly, I(v3,v1) = I(v3,v2) = 2p for λ
sufficiently small.
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Finally we will identify the strands zε. Let p′ be the number of
strands in zε and 2q′ =

∑
z∈zε I(z,v

1). If we interpret the braid zε

as a single strand in E1
2pp′ then one can see that 2q′ is the intersec-

tion number of this strand with the p-fold of v1. Hence 2pp′

2q′ > 1

and 2τ0pp′

q′ > 2τ0 > 2π. Thus we can choose û(t) to be a solution of
u′′ = λF (u) with minimum û(0) ∈ (−1, 0) and

Tλ(A(û)) =
2τ0pp′

q′
√
λ

= d
p′

q′
.

Set (zε)k = {zki }, zki = û(kd+i), for i = 0, . . . , d and k = 0, . . . , p′−1. On
the interval [0, dp′] the solutions ũ and û have exactly 2q′ intersections.
So
∑

z∈zε I(z,v
1) = 2q′, for λ sufficiently small.

We note that in the construction of the proper braid class [u rel vε]
we chose p′ and q′ in such a way that q < q′

p′ . Now we look for the
solutions which corresponds to the free strand. Period Tλ increases
for A ∈ (0, 1), thus there exists a unique periodic solution u(t), with
with minimum u(0) ∈ (−1, 0) and T1(A(u)) = 2τ0p

q . The inequality

q < q′

p′ implies that the solutions û and u intersects 2q times on interval
[0, d]. This provide us with one parameter family of critical pointsMq =
{u(s) : ui(s) = u(i + s2τ0p

q
√
λ
)}, for s ∈ R/Z, of the system generated by

Rλ and I(u(s),v1) = I(u(s), (zε)k) = 2q while I(u(s),v3) = 2p for λ
sufficiently small. Due to the fact that Tλ(A) is an increasing function of
the amplitude A these are the only stationary points, with the required
crossing numbers, of the system generated by Rλ. It was shown in
[2] that Mq is diffeomorfic to a circle with a 2q dimensional unstable
manifold, hence

H(u rel vε) = H(Mq) = Sq−1 ∨ Sq.

�

Limit process

We proved existence of a solution uE of (2.1.1) in the parameter
range α ∈ (

√
8, αp,q) on small positive energy levels E. Its sequence of

extrema uE is 2p periodic and I(uE ,uE+) = 2q, while I(uE ,uE−) = 0.
We will construct a sequence {un}∞n=0 given by un = uEn such that u =
limn→∞ un is a solution of (2.1.1) in the periodic class up,q and E[u] = 0.
First we will show that there is a convergent sequence {un}∞n=0.





2.5 APPLICATION

LEMMA 2.5.7. There exists a convergent sequence {un}∞n=0 of solutions
of (2.1.1) such that un → u for n → ∞ in the C4 norm. Moreover u is a
solution of (2.1.1) on the zero energy level.

PROOF. Define the sequence {um}∞m=0 by um = uEm whereEm → 0

as m→∞. We will show that sequence
{
di

dti
um(0)

}∞
m=0

is bounded for

i ∈ {0, 1, 2, 3}. It follows from the construction of solutions uE that
u∗1 < um(t) < u∗2 for all t and u′m(0) = 0. Energy equation implies that

u′′m(0) =
√

2Em + (u2
m(0)−1)2

2 . Therefore {u′′m(0)}∞m=0 is bounded. By
standard estimates on the third derivative one can get that the sequence
{u′′′m(0)}∞m=0 is bounded as well.

Then we can choose a subsequence {un}∞n=0 such that di

dti
un(0) → ui

for n → ∞. The sequence {un}∞n=0 converges in the C4 norm to the
solution u of (2.1.1) satisfying initial value conditions di

dti
u(0) = ui. Its

energy is E[u] = limn→∞ E[un] = 0. �

The following Lemma shows that if the limit solution u is not con-
stant then it is in the periodic class up,q.

LEMMA 2.5.8. Let u be the limit of the sequence {un}∞n=0 given by the
previous lemma. If u 6≡ 1 then u ∈ up,q.

PROOF. Let Tn be the period of un. Every solution un has 2p ex-
trema per period and I(un,uEn+ ) = 2q for n ∈ N. We denote them
un = (un0 , . . . , u

n
2p−1). Let tin ∈ [0, Tn) be the time in which the solution

un attains the minimum (maximum) uni . The energy E[un] is positive
small E, hence any two extremal points uni and uni+1 are connected by a
non-degenerate monotone lap.

According to Lemma 2.5.7 the limit u = limn→∞ un lies in the zero
energy level, and we want to show that u ∈ up,q. First we will show
that u is not a constant solution of (2.1.1), i.e., u 6≡ ±1. We excluded
the case u ≡ 1 in the assumption of the lemma. On the other hand it
follows from I(un,uEn+ ) = 2q that for every n ∈ N there is tn such that
un(tn) > 1. Thus un can not converge to u− ≡ −1.

We will prove periodicity of u by contradiction. If u is not periodic
then Tn → ∞ as n → ∞. Otherwise there would be a constant K such
that Tn < K for all n ∈ N. Then there is a converging subsequence of Tn
which converge to some T ∈ R and u has to be T periodic. If Tn → ∞
and u is not constant then u consists of a finite number of monotone
laps and u(t) has to monotonically converge to u± = ±1 for t → ∞.
This is not possible because the equilibrium points ±1 are centers.
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2. THE CONLEY INDEX FOR NON-PROPER BRAID CLASSES

Next we prove that u ∈ up,q. We start with showing that u has
2p monotone laps per period. Degenerate monotone laps (inflexion
points) can occur on the singular energy level. According to the defini-
tion of the solution class we have to count also these degenerate laps.
Hence to show that u has 2p monotone laps per period it is enough
to prove that no sets of more than two extremal points can collapse
onto each other and if two extremal points collapse then a degenerated
monotone lap is created.

Suppose that there are three different extremal points collapsing
onto each other. Then sequences {ti−1

n }, {tin}, {ti+1
n } converge to the

same t0. The equalities u′n(ti−1
n ) = u′n(t

i
n) = u′n(t

i+1
n ) = 0 imply that

there exist t̃n ∈ (ti−1
n , tin) and t̂n ∈ (tin, t

i+1
n ) such that u′′n(t̃n) = u′′n(t̂n) =

0. Finally, there are tn ∈ (t̃n, t̂n) such that u′′′n (tn) = 0. By continuity
u′(t0) = u′′(t0) = u′′′(t0) = 0. Since E[u] = 0, it holds that u(t0) = ±1
and u is a constant solution. However, we already showed that u can
not be constant.

If there is a collapsing monotone lap (two extremal points collapse
on one) then the same argumentation as above implies that it collapses
on an inflexed point and the number of monotone laps is preserved.

Now we will show that the solution u intersects the constant solu-
tion u+ ≡ 1 exactly 2q times per period. Let sin ≥ 0 be the time at which
the i-th intersection of un with u+ occurs. Between any two crossings
of the extrema sequences un and uEn+ is at least one anchor point. Thus
for every sin there exists tjn such that sin ≤ tjn ≤ si+1

n . If two crossing
points sin and sjn with i < j collapse i.e., sin−s

j
n → 0, then un(t

j
n) → 1 as

n→∞ for all j such that sin ≤ tjn ≤ sjn. We showed that more than two
extremal points can not collapse, and thus more than three crossings
can not collapse.

Hence suppose that three crossings collapse (the case of just two
collapsing crossings is dealt with later). We can assume that crossings
are between extremal points uni , u

n
i+1, u

n
i+2, u

n
i+3. It is sin ≤ tj+1

n ≤ si+1
n ≤

tj+2
n ≤ si+2

n and sin, s
i+2
n → t as n → ∞. As before one can show

that u(t) = 1 and u′(t) = u′′(t) = 0. We assert that u(tjn) → A 6= 1
and u(tj+4

n ) → B 6= 1 for n → ∞. Otherwise at least three ex-
tremal points would collapse. Let A < B (the other case is analogous),

then u′′′(t) > 0. By construction
∣∣∣uEn+ −

(
1 +

√
En
E0

cos(λ1t)
)∣∣∣ → 0 for

n → ∞, where E0 = λ4
1
2 − 1. Hence |(uEn+ )i − 1| > 1

2

√
En
E0

for all i and

n sufficiently large. It holds for the maximum of the solution un at ti+1
n


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that un(ti+1
n ) > (uEn+ )i+1 > 1 while for the minimum at ti+2

n we get the
inequality un(ti+2

n ) < (uEn+ )i+2 < 1. We then estimate

un(ti+1
n )− un(ti+2

n ) ≥ (uEn+ )i+1 − (uEn+ )i+2 >

√
En
E0

.

Let δn =
√

En
E0

. It follows form the mean value theorem that for every
n there exists cn ∈ (tni+1, t

n
i+2) such that

−u′n(cn) =
un(ti+1

n )− un(ti+2
n )

ti+2
n − ti+1

n

.

Due to tni+2 − tni+1 → 0, we can estimate

−u′n(cn) > δn >

√
En
E0

, (2.5.9)

for n large enough. If we divide the energy equation

En = −u′n(cn)u′′′n (cn) +
1
2
(u′′n(cn))

2 − α

2
(u′n(cn))

2 − 1
4
(u2
n(cn)− 1)2.

by the positive number −u′n(cn) and use Inequality (2.5.9), we get√
E0En ≥ u′′′n (cn)−

α

2
|u′n(cn)|+

(u2
n(cn)− 1)2

4u′n(cn)
. (2.5.10)

Let us estimate

|un(cn)− 1| < un(ti+1
n )− un(ti+2

n ) = −u′n(cn)(ti+2
n − ti+1

n ) ≤ −u′n(cn),

and ∣∣∣∣(u2
n(cn)− 1)2

u′n(cn)

∣∣∣∣ ≤ |u′n(cn)|(u2(cn) + 1).

Taking limit for n → ∞ in Inequality (2.5.10) implies that u′′′(t) ≤ 0,
which is a contradiction with u′′′(t) > 0. Thus three crossings can not
collapse.

Now we show by contradiction that two crossings cannot collapse.
If two crossings collapse then there exist sin ≤ tjn ≤ si+1

n such that
sin, s

i+1
n → t. We can assume that un(t

j±1
n ) 6→ 1 otherwise the proof

is analogous to the case of three collapsing intersections. Then for t = t
the solution u has an extremum and u(t) = 1. As before, this contradicts
that E[u] = 0 and u 6≡ 1.

Finally, u(t) > −1 for all t because otherwise there would be an
extremum point t of u with u(t) = −1 and again E[u] > 0. �
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The final thing we have to show is that {un}∞n=0 does not converge
to the constant solution u+ = 1. Let E[un] = En and define the se-
quences {wn}∞n=0 and {wn+}∞n=0 as follows

un = 1 + ε(n)wn,

uEn+ = 1 + ε(n)wn+,
where ε(n) = ‖un − 1‖L∞ . Then wn, wn+ are solutions of equation

w′′′′ + αw′′ + 2w + 3ε(n)w2 + ε2(n)w3 = 0.

Let Eε be the energy functional related to the previous equation. Then
Eε(n)[wn] = Eε(n)[wn+] > 0. If un → 1 then ε(n) → 0, wn → w and
wn+ → w+ where w and w+ are solutions of the linear equation

w′′′′ + αw′′ + 2w = 0, (2.5.11)

with E0[w] = E0[w+] = E ≥ 0. By construction w+ =
√

E
E0

cos(λ1t),

where E0 = λ4
1
2 − 1.

The following two lemmas summarize the properties of linear
equation (2.5.11).

LEMMA 2.5.9. Let α >
√

8 be such that λ2
λ1

is irrational. Then there is
no periodic solution of (2.5.11) on the energy level zero. The only periodic
solution on a positive energy level is w+.

PROOF. Every solution of (2.5.11) can be written as

x(t) = A cos(λ1t+ ϕ1) +B cos(λ2t+ ϕ2), (2.5.12)

where A,B, ϕ1, ϕ2 ∈ R. The ratio of the frequencies λ2
λ1

is irrational.
Thus if x is periodic then either A = 0 or B = 0. Plugging (2.5.12) into
the energy equation proves the lemma. �

LEMMA 2.5.10. Let α >
√

8 be such that λ2
λ1

is rational i.e. there are
p′, q′ ∈ N relatively prime and λ2

λ1
= q′

p′ . Assume that E > 0 and w+ =√
E
E0

cos(λ1t) where E0 = λ4
1
2 − 1. Then every solution w of (2.5.11), with

E[x] = E, which is not equal to w+ satisfies that its extrema sequence v is
2p′-periodic and intersects v+ exactly 2q′ times per period.

PROOF. Without loss of generality it is enough to prove the state-
ment for the solutions w which attain a minimum for t = 0. Since λ2

λ1
is

rational, it follows from (2.5.12) that all solutions on the positive energy
level E are periodic with the period 2π

λ1
p′.
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First we will show that the number of extremal points per period
2π
λ1
p′ is 2p′ for all solutions of (2.5.11). Let w1 and w2 be two different so-

lutions. Then we can interpolate between them. Let y(s, t) be a solution
of (2.5.11) for every fixed s ∈ [0, 1] with initial conditions

y(s, 0) = sw1(0) + (1− s)w2(0),

y′(s, 0) = 0,

y′′(s, 0) =
√

2(E + (sw1(0) + (1− s)w2(0))2),

y′′′(s, 0) = sw′′′1 (0) + (1− s)w′′′2 (0).

For every fixed s ∈ [0, 1] it holds that E0[y(s, t)] = E. The fact that the
energy level E > 0 is regular implies that y(s, t) is a concatenation of
regular monotone laps (degenerate monotone lap cannot occur) for ev-
ery fixed s. If two extremal points would collapse or a new one would
be created along the path y(s, t) then the degenerate monotone lap oc-
curs which is impossible. Therefore the number of extremal points per
period 2π

λ1
p′ is constant along the path y(s, t). This implies that w1 and

w2 have the same number of extremal points per period 2π
λ1
p′. By count-

ing the number of extremal points of the solution w+ on the interval
[0, 2π

λ1
p′) one gets that this number is 2p′. Hence the extremal sequence

of any solution is 2p′-periodic.
It follows from the proof of Lemma 2.5.3 that the rotation num-

ber τ(v+) = λ2
λ1

= q′

p′ . This combined with the fact that the ex-
trema sequence v of an arbitrary solution is 2p′ periodic implies that
I(v,v+) = 2q′ for all solutions which initial data are sufficiently close
to the initial data of the solution w but w 6≡ w+.

Again by interpolating between the solutions we will prove that
I(v,v+) = 2q′ for an arbitrary solution not equal to w+. Let w1 and w2

be two solutions such that w1, w2 6≡ w+ and y(s, t) be the connecting
path between them defined as above. It could happen that y(s, t) = w+

for some s0 but by small perturbation of the path of initial conditions,
say varying y′′′(s, 0) slightly, we can avoid it. Therefore we suppose
that y(s, t) is not equal to w+ for any s. Let y(s) be an extrema sequence
of y(s, t). Now we show that I(v,y(s)) is constant by contradiction.
If it would not be constant then there exists s0 ∈ [0, 1] for which v+

and y(s) have a non-transversal intersection. However according to
Lemma 2.2.8 two stationary points v+ and y(s) of the flow Ψt generated
by Equation (2.5.11) can not have a non-transversal intersection. Hence
we proved that I(v,v+) = 2q′ for an arbitrary solution w not equal to
w+. �
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The final lemma completes the proof of Theorem 2.1.2. Let us re-
mind that we are dealing with the parameter range α ∈ [

√
8, αp,q)

where q
p <

λ2
λ1

.

LEMMA 2.5.11. The sequence {un}∞n=0 does not converge to the constant
solution.

PROOF. We will prove this by contradiction. Suppose that un → 1.
Then wn → w, where w is a solution of the linear equation (2.5.11) and
E[w] ≥ 0. Moreover, ‖w‖sup = limn→∞ ‖wn‖sup = 1. Let Tn be the
period of wn.

First we assume that λ2
λ1

is irrational. Let us start with the case
E[w] = 0. It follows from Lemma 2.5.9 that w is not periodic and as
we showed in the proof of Lemma 2.5.8 it holds that Tn → ∞. There-
fore solution w has at most 2p extrema on R and according to (2.5.12) it
holds w ≡ 0 which is a contradiction with ‖w‖sup = 1.

If E[w] > 0 then w has to be periodic, otherwise we would get
the same contradiction as above. It follows from Lemma 2.5.9 that the
only periodic solution on this energy level is w+. Thus wn → w+ and∥∥wn − wn+

∥∥
sup

→ 0. The fact that τ(vn+) → τ(v+) = λ1
λ2
> q

p contradicts
the assumption that vn is 2p periodic and I(vn,vn+) = 2q.

Now we deal with rational λ2
λ1

. If E[w] = 0 then w+ ≡ 0 and wn can
not converge to w+ because ‖w‖sup = 1. Hence by repeating the ideas
in the proof of Lemma 2.5.8 one gets that v is 2p periodic and intersects
zero 2q times per period. We will obtain a contradiction by showing
that v is 2p′ periodic and it intersects zero 2q′ times per period, where
p′, q′ ∈ N such that q′

p′ = λ2
λ1

> q
p . To prove the previous statement

about the extrema sequence v we employ solutions wnL of the linear
equation (2.5.11) with the same initial conditions as solutionswn. These
solutions converge to w and the energy E[wnL] > 0 for all n ∈ N. It
follows from Lemma 2.5.10 that vnL is 2p′ periodic and I(vnL,v

n
+) = 2q′.

Hence as before the limit process for wnL implies that v is 2p′ periodic
and intersects zero 2q′ times per period. This contradicts the inequality
q′

p′ >
q
p .

Finally, if E[w] > 0 then solutions wn can not converge to w+, other-
wise we would get the same contradiction as in the irrational case. So
Lemma 2.5.10 implies that v is 2p′ periodic and I(v,v+) = 2q′. On
the other hand wn → w and by repeating the ideas in the proof of
Lemma 2.5.8 one can get that v is 2p periodic and I(v,v+) = 2q, which
is a contradiction. �
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CHAPTER 3

Orderings of bifurcation points in
fourth order conservative systems

3.1. Introduction
In Section 1.2 we introduced a classification of periodic solutions of

the equation
u′′′′ + αu′′ − u+ u3 = 0, α ∈ R. (3.1.1)

In this chapter we study the ordering of these classes imposed by forc-
ing relation.

DEFINITION 3.1.1. The class of solutions [σn, pn] precedes [σm, pm]
if and only if the existence of a solution of the class [σn, pn] forces the
existence of solution of the class [σm, pm], we write [σn, pn] ≺ [σm, pm].

Let us mention the implication for the bifurcation diagram of Equa-
tion (3.1.1). If Γn and Γm are continuous curves corresponding to so-
lutions of the class [σn, pn] and [σm, pm] then Γm has to exist at least
as long as Γn does. In this chapter we prove the existence of solutions
in different classes without showing that they lay on the continuous
curves although it seems likely to be the case.

In Section 1.4 we presented basic ideas of forcing. In this chapter,
we show that the class [σ2

1σ
4
2, 4] precedes a plethora of different classes.

THEOREM 3.1.2. Let α ∈ [0,
√

8) and p ∈ N such that p ≥ 2. Then[
σ2

1σ
4
2, 4
]
≺
[
σ2

1σ
2p
2 , 2p

]
.

If q ∈ N such that 3 < q < p then[
σ2

1σ
4
2, 4
]
≺
[
σ2

1σ
2q
2 , 2p

]
.
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PSfrag replacements

1

−1
ũ0

Figure 1: Sketch of four different periodic solution u ∈
[
σ2

1σ
10
2 , 10

]
. The

solid black curve represents one solution. The second (third) solution is
obtained by replacing the second (third) dip with the dashed curve. The
fourth solution is the one for which both dips are replaced by the dashed
curves.

Moreover, there are at least 22(p−2) geometrically distinct solutions of the class[
σ2

1σ
2p
2 , 2p

]
and at least 22(q−4) of the class

[
σ2

1σ
2q
2 , 2p

]
.

Figure 1 shows four different solutions of the class
[
σ2

1σ
10
2 , 10

]
and

Figure 2 show a solution of the class
[
σ2

1σ
8
2, 10

]
. For Equation (3.1.1) the

existence of solution ũ ∈
[
σ2

1σ
4
2, 4
]

is proved in [21] for α ∈ [0, 2]. See
Section 1.4 for more details about the solution ũ. By concatenation of
the building blocks and employing the solution ũ, we obtain the fol-
lowing result.

THEOREM 3.1.3. Let α ∈ [0, 2] and p, q1, . . . qn ∈ N such that qi > 1
and

∑n
i=1 qi ≤ 2p. Suppose that at least one qi > 3 if

∑n
i=1 qi < 2p. Then

there exists a solution

u ∈
[
σ2

1σ
2q1
2 . . . σ2

1σ
2qn
2 , 2p

]
.

The lower estimate on the number of geometrically different solutions in the
class

[
σ2

1σ
2q1
2 . . . σ2

1σ
2qn
2 , 2p

]
is a product of the number of solutions in the

different blocks given by the previous theorem.

The part of Theorem 3.1.2 which deals with solutions in the class[
σ2

1σ
2p
2 , 2p

]
is proved in Section 3.2 while the rest of the proof is carried

out in Section 3.4.
As we explained in Section 2.2, the problem of finding periodic so-

lutions of Equation (3.1.1) can be reduced to finding fixed points of a
vector field generated by a parabolic recurrence relation R, see Theo-
rem 2.2.3. To find fixed points of the vector field generated by R we
employ Conley index theory for braid diagrams which is surveyed in
Section 1.5 and Section 2.2
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3.2. Forcing of solutions of the class [σ2
1σ

2p
2 , 2p]

In this section we prove the existence of geometrically different so-
lutions of (3.1.1) of the class [σ2

1σ
2p
2 , 2p] under the assumption that there

exists a solution ũ ∈ [σ2
1σ4, 4]. In the rest of this section we assume the

flow Ψt generated by R associated to (3.1.1). We start with a simple
example, for more examples see Section 1.4.

EXAMPLE 3.2.1. Let ũ ∈ [σ2
1σ

4
2, 4] with the sequence of extrema {ũi}.

For an arbitrary p ∈ N let v1 ∪ v2 ∈ E2
2p, be defined by v1

i = ũi and
vi2 = ũ(i+2) mod 2p. The system generated by (3.1.1) is dissipative and we
can choose I = [u∗0, u

∗
1] where the constants u∗0, u

∗
1 are such that u∗0 <

v1
i , v

2
i < u∗1 and Ri(ui−1, u

∗
0, ui+1) > 0 while Ri(ui−1, u

∗
1, ui+1) < 0 for

ui±1 ∈ I . Define

Ωi =
{
{(ui−1, ui, ui+1) ∈ I3| u∗0 ≤ ui±1 + δ ≤ ui ≤ u∗1}, i odd,
{(ui−1, ui, ui+1) ∈ I3| u∗0 ≤ ui ≤ ui±1 + δ ≤ u∗1}, i even,

where δ > 0 is chosen in such a way that the flow points into the set
at the boundary where one of the following relations is satisfied ui =


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ui±1 ± δ. Denote Ω2p the set of 2p periodic sequences {ui} for which
(ui−1, ui, ui+1) ∈ Ωi. Furthermore define the set

C := {u ∈ Ω2p : ι(u,v1) = ι(u,v2) = 2p},

where ι(u,v1) is the number of intersections of the sequence {u}2pi=0

and {v1}2pi=0. Since ι(v1,v2) = p < 2p and the system is dissipative, the
vector field R is transverse to ∂C. Moreover, the set C is contractible,
compact, and R is pointing outward at the boundary of ∂C. The set C
is therefore negatively invariant for the induced parabolic flow Ψt and
there exists a global minimum v3 of W2p which is a fixed point of Ψt in
the interior of C. Figure 3 depicts the strands v1,v2 and v3.

The Conley index of a relative braid class can be used to detect the
existence of a fixed point of Ψt within the braid class. However this
method works only for a proper bounded braid class [u rel w] whose
skeleton w is a fixed point of the flow Ψt (zero point of R), see Sec-
tion 2.2 for more details. In our case, there are no strands which are
fixed points of the flow Ψt and can be used to control the intersection
of the free strand u with u± = ±1. To overcome this problem we use the
sequence {uεi}∞i=0 given by the following lemma to define an isolating
neighborhood M as a subset of some proper and bounded braid class
[u rel w]E . Finally we will show that the homological Conley index of
the isolating neighborhood M is the same as H∗(h(u rel w)).

LEMMA 3.2.2 ([21]). Let −
√

8 < α <
√

8. For any ε < 0 there exists a
sequence {uεi}∞i=1,

0 < (−1)i(uεi − 1) < ε,

which satisfies
Ri(uεi−1, u

ε
i , u

ε
i+1) = 0 for i ≥ 2.

Notice that the previous lemma does not claim thatR1(uε0, u
ε
1, u

ε
2) =

0; uε0 is not even defined. The symmetry of Equation (3.1.1) enforces an
analogous result near u− = −1. To be explicit, uεi = −uεi . For technical
reasons we define

ûεi = uεi−2 mod 2p.

In order to find geometrically different solutions we define a braid
class [uI rel w]E ∈ E1

2p rel w for every

I = {j1, j2, . . . , jn} ∈ Nn, (3.2.1)

satisfying
1 < j1 < j2 < . . . < jn < p− 1. (3.2.2)
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We start with identifying the skeleton strands

w = v1 ∪ v2 ∪ v3 ∪ v4 ∪ v5 ∪ v6. (3.2.3)

The strand v1 corresponds to a sequence of extrema {ũi} of the solu-
tion ũ ∈ [σ2

1σ
4
2, 4], i.e. v1

i = ũi. The strand v2 is a shift of the strand
v1 given by v2

i = v1
(i mod 4)+2. We can suppose that v1

1 ≤ v1
2 otherwise

we would interchange v1 with v2. The strand v3 corresponds to se-
quence of extrema of the solution obtained in Example 3.2.1. It holds
that v3

2i < min{v1
2i, v

2
2i} and v3

2i+1 > max{v1
2i+1, v

2
2i+1} for all i. The

strand v4 is defined by the sequence of extrema of the solution con-
structed in Example 1.4.4 and −1 < v4

2i < v4
2i+1 < ũ2. All the strands

defined by now are fixed points of Ψt. Finally, we define the strands v5

and v6 by v5
i = 1 + (−1)i+1ε0 and v6

i = −1 + (−1)i+1ε0, where

ε0 =
1
2

min{|uεi − 1|, i = 0, . . . 2p− 1}.

and

ε =
1
2

min{−1− ũ0, ũ1 − 1, 1− ũ2, ũ3 − 1, 1 + v4
0, . . . , 1 + v4

2p−1},

The set I defines the weaving of the free strand around the skeletal
strands v1 and v2.

DEFINITION 3.2.3. The braid class [uI rel w]E ⊂ E1
2p rel w is defined

by its representant uI satisfying:

(1) uI0 ∈ (v1
0, v

6
0),

(2) uI2i+1 ∈ (v5
1, v

1
1) for all i,

(3) uI2i ∈
{

(v4
2, v

1
2) : if i ∈ I,

(v1
2, v

5
2) : if i 6= 0 and i 6∈ I.

Figure 4 shows the braid class [uI rel w]E ⊂ E1
10 rel w for I = {2, 3}.

To keep the figure synoptical we do not display the skeleton strand v3

which crosses all the other skeletal strands in between each two anchor
points and makes the braid class bounded. The skeleton w is not a
fixed point of Ψt. However any braid class [uI rel w]E is proper and
bounded.

Suppose that Φt is an arbitrary flow generated by parabolic recur-
rence relation of up-down type such that Φt(w) = w. It follows from
Proposition 2.2.11 that the set

NI,ε := {u ∈ cl([uI rel w]E) : (−1)i(ui+1 − ui) ≥ ε ∀i}
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Figure 4: A representative of the braid class [u rel w]E ⊂ E1
10 rel w for

I = {2, 3}. To keep the figure synoptical we do not display the skeletal
strand v3. The strand v3 makes the the braid class [u rel w]E bounded.
There would be no upper bound for u5 without the strand v3.

is an isolating neighborhood of the flow Φt for ε > 0 sufficiently small.
Moreover

h(NI,ε) = h(uI rel w).

In the rest of this section we denote N−
I,ε the subset of ∂NI,ε where the

flow Φt points out of the setNI,ε. The setN−
I,ε is the same for every flow

Φt which fixes the skeleton w. The non-triviality of H∗(NI,ε, N
−
I,ε) =

H∗(h(uI rel w)) is given by the following theorem, whose proof we de-
lay until Section 3.3.

THEOREM 3.2.4. The homology of h([uI rel w]) is given by:

Hk(h(uI rel w)) =
{

Z, if k = 2p−#I,
0, otherwise, (3.2.4)

where #I is the number of elements in I .

Finally we define the set MI,ε which will turn out to be an isolating
neighborhood for the flow Ψt and ε > 0 sufficiently small.

DEFINITION 3.2.5. Let MI,ε be a subset of NI,ε such that u ∈MI,ε if
and only if
(1) u0 < ûε0,
(2) (−1)iui < (−1)iuεi for all i.

We denote M−
I,ε the subset of ∂MI,ε where the flow Ψt points out of the

set MI,ε.


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LEMMA 3.2.6. For sufficiently small ε > 0 the set MI,ε is an isolating
neighborhood for the flow Ψt. Moreover,

H∗(MI,ε,M
−
I,ε) = H∗(h(uI rel w)).

PROOF. We start by studying the flow Ψt at the point u ∈ ∂MI,ε for
which u0 = ûε0. The monotonicity of R combined with Lemma 3.2.2
implies that

R0(u2p−1, û
ε
0, u1) > R0(ûε2p−1, û

ε
0, û

ε
1) = 0,

and the flow Ψt points out of the set MI . Analogously

(−1)iRi(ui−1, ui, ui+1) < (−1)iRi(uεi−1, u
ε
i , u

ε
i+1) = 0,

on the codimension 1 boundaries where only one ui = uεi . The flow
points out of MI,ε at these points. As in the proof of Lemma 40 in [8]
the flow is transversal at the rest of the boundary ∂MI,ε for ε > 0 suffi-
ciently small.

To relate H∗(MI,ε,M
−
I,ε) with H∗(h(uI rel w)) we will show that

MI,ε (M−
I,ε) is homotopic to NI,ε (N−

I,ε). Then

H∗(MI,ε,M
−
I,ε) = H∗(NI,ε, N

−
I,ε) = H∗(h(uI rel w)).

Define g = (g0, . . . , g2p−1) : NI,ε × [0, 1] → NI,ε as follows

g0(u, t) =
{

u0, if u0 < ûε0,
(1− t)u0 + tûε0, otherwise ,

and

gi(u, t) =
{

ui, if (−1)iui < (−1)iuεi ,
(1− t)ui + tuεi , otherwise ,

for i > 0, where u = (u0, . . . , u2p−1). It is straightforward to check that
g is a homotopy between NI,ε and MI,ε.

Now we concentrate on the sets N−
I,ε and M−

I,ε. If u ∈ NI,ε and
ui = v6

0 or ui = v5
i for some i then u ∈ N−

I,ε. On the other hand for
u ∈ MI,ε such that ui = ûε0 or ui = uεi for some i it holds that u ∈ N−

I,ε.
Hence g|N−

I,ε
is a homotopy between N−

I,ε and M−
I,ε. �

The following lemma summarizes the results obtained in this sec-
tion.
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LEMMA 3.2.7. Let p ∈ N and α ∈ [0,
√

8). Suppose that there exists a
solution ũ of Equation (3.1.1) of the class [σ2

1σ
4
2, 4]. Then for every I defined

by (3.2.1) and (3.2.2) there exists a solution u ∈ [σ2
1σ

2p
2 , 2p] whose sequence

of extrema u = {ui} satisfies u ∈ [uI rel w]E .

PROOF. It follows from Lemma 3.2.6 that

H∗(MI,ε,M
−
I,ε) = H∗(h(uI rel w)).

The non-triviality of H∗(h(uI rel w)) is given by Theorem 3.2.4. There-
fore there exists a fixed point u ∈ MI,ε ⊂ [uI rel w]E of the flow Ψt.
Hence there is a solution u of (3.1.1) with the sequence of extrema u
and u ∈ [σ2

1σ
2p
2 , 2p]. �

3.3. Computation of the homological Conley index
In this section we prove Theorem 3.2.4 which states that

Hk(h(uI rel w)) =
{

Z, if k = 2p−#I,
0, otherwise.

In the rest of this section we omit I from the notation of the braid class
[uI rel w] and write [u rel w], although the braid class is always defined
for some set I .

We start by simplifying the skeleton w without changing the in-
dex. According to Theorem 2.2.11, the skeleton strands v5 and v6

can be deformed to the constant strands +1 and −1 without chang-
ing the index h(u rel w). Due to the same theorem we can assume that
v1
1 = v2

1 = v1
3 = v2

3 . Finally, omitting the skeletal strand v4 does not
change the index either. Compare Figure 4, which shows the braid class
[u rel w]E for I = {2, 3}, and Figure 6 depicting the class [u rel w] with
the simplified skeleton. From now on, [u rel w] denotes the braid class
with the simplified skeleton. First we demonstrate the basic ideas on
simple examples.

EXAMPLE 3.3.1. Let p = 5 and I = {2}. The representant of the class
[u rel w] ⊂ D1

10 rel w is depicted in Figure 5. If u ∈ NI := cl[u rel w]
then

ui ∈


[v1

0,−1], if i = 0,
[−1, v1

2], if i = 4,
[v1

2, 1], if i is even and i 6∈ {0, 4},
[1, v1

1], if i is odd.

(3.3.1)

The set NI
∼= [0, 1]2p and the intersection number of the free strand

with the skeletal strands increases if u4 = −1 or u4 = ũ2. In the case
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Figure 5: The braid class [u rel w] ⊂ D1
10 rel w for I = {2}. The skeletal
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Figure 6: The braid class [u rel w] ⊂ D1
10 rel w for I = {2, 3} with the

simplified skeleton. To keep the figure clear we do not display the strand
v3 which makes the braid class bounded.

that any other anchor point different from u4 reaches the boundary the
intersection number decreases. Hence N−

I is a boundary of NI without
the faces {u ∈ NI : u4 = −1} and {u ∈ NI : u4 = ũ2}. By computing
the relative H∗(NI , N

−
I ) we obtain that the index

Hk(h(u rel w)) =
{

Z, if k = 2p− 1,
0, otherwise.

The same is true for I = {3}.

EXAMPLE 3.3.2. Let [u rel w] ⊂ D1
10 rel w where I = {2, 3}, see Fig-

ure 6. Again the anchor points ui with i 6∈ {4, 5, 6} are confined to
the intervals defined by (3.3.1) and if some of them attain the boun-
dary then the corresponding u ∈ M−

I . The configuration space of the
anchor points (u4, u5, u6) is given by a union of five ’cubes’ shown in
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Figure 7: The braid class [u rel w] ∈ D1
14 rel w for I = {2, 4, 5}. The skele-

tal strand v3 is not displayed.

Figure 8. If (u4, u5, u6) lays in one of the faces depicted in gray then
u ∈ N−

I . Note that the configuration space of the anchor points ui with
i 6∈ {4, 5, 6} is independent of the position of the anchor points u4, u5, u6

and vice versa. We will show later on that

Hk(h(u rel w)) =
{

Z, if k = 2p− 2,
0, otherwise.

The following example demonstrates the splitting of anchor points
into chunks with the following property. The configuration space of the
anchor points in one chunk is the same for any position of the anchor
points in the different chunks.

EXAMPLE 3.3.3. Let [u rel w] ⊂ D1
14 rel w, where I = {2, 4, 5}. De-

fine I1 = {4} and I2 = {8, 9, 10}. The configuration space of u4 is
[−1, ũ2] for any position of the other anchor points. As we saw in the
previous example the configuration space of ui with i ∈ I2 does not
depend on the position of any anchor point uj with j in a complement
of I2. Finally, for i ∈ I0 = {0, . . . 2p} \ I , where I = I1 ∪ I2, it holds that
the configuration space of ui is always given by (3.3.1).

Decomposition of the sets NI and N−
I

First we formalize the splitting of anchor points introduced in Ex-
ample 3.3.3. This splitting depends on the set I = {j1, j2, . . . , jn}. We
remind the reader that if we work with the braid class [uI rel w] ⊂ E1

2p

then we assume that

1 < j1 < j2 < . . . < jn < p.

DEFINITION 3.3.4. For the set I = {j1, j2, . . . , jn} we define

I = {i ∈ N : (i = 2jk) or (i = 2jk + 1 and jk+1 = jk + 1) for some k}
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Figure 8: a) and b) The configuration space U(2) of the anchor points
(u4, u5, u6) for [u rel w] with I = {2, 3}. The set U−(2) consists of the faces
displayed in gray. c) schematic representation of U(2) . The shaded faces
form U−(2). The cube BBB corresponds to the front cube at a). Division
into A1 and B1 is displayed.

and
I0 = {0, 1, . . . , 2p− 1} \ I.

Let I1, . . . , Il where Ik = {ik1, ik2, . . . , ikpk}, be the sets which decompose
I into consecutive chunks i.e.

I = I1 ∪ I2 ∪ . . . ∪ Il,

and the elements ikj satisfy

ikj+1 = ikj + 1,

ikpk + 1 < ik+1
1 .

The following statement generalizes observations from the previ-
ous examples for arbitrary set I . If u ∈ NI and i ∈ I0 then

ui ∈

 [v1
0,−1], if i = 0,
[v1

2, 1], if i is even and positive,
[1, v1

1], if i is odd.
(3.3.2)

If ui attains the boundary of the interval given by (3.3.2) then u ∈ N−
I .

For every set Im = {im1 , . . . , impm}, with m > 0, it holds that im1 − 1, impm +
1 ∈ I0 and the anchor points uim1 −1, uimpm+1 lay in the interval given
by (3.3.2). The fact that the configuration space of the anchor point
depends only on its immediate neighbors implies that the configuration
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space of the anchor point ui with i ∈ Im depends only on the anchor
points with j ∈ Im. Therefore

NI = U0 × U1 × . . .× Ul, (3.3.3)

where
Ui = im(πIi(NI)),

and πIi : NI → R#Ii is a projection on the coordinates with indices in
Ii.

EXAMPLE 3.3.5. Let [u rel w] be as in Example 3.3.3. Then NI =
U0 × U1 × U2. The set U1 = [−1, ũ2] and U2 = U(2) are depicted in Fig-
ure 8. It follows from (3.3.2) that U0 is homotopic to a ten dimensional
cube.

By employing the sets Ui we write

N−
I =

l⋃
j=0

U0 × U1 × . . .× Uj−1 × U−j × Uj+1 × . . .× Ul, (3.3.4)

where
U−j = im(πIj (N−

Ij
)),

and u ∈ N−
Ij

if and only if u ∈ N−
I for every u ∈ NI which satisfies

ui = ui for i ∈ Ij . In other words N−
Ij

is created by the points which are
in N−

I due to the position of the anchor points ui with i ∈ Ij .

EXAMPLE 3.3.6. Let I = {2, 4, 5}. Then N−
I = U−0 × U1 × U2 ∪ U0 ×

U−1 × U2 ∪ U0 × U1 × U−2 . The set U−1 = ∅, U−2 = U−(2) depicted in
Figure 8 and U−0 = ∂U0.

First, we compute the homology of the sets Ui and U−i . Then we de-
rive the homology NI and N−

I . Finally using the exact sequence which
relates H∗(NI) and H∗(N−

I ) to H∗(NI , N
−
I ), we show that

Hk(h(u rel w)) =
{

Z, if k = 2p−#I,
0, otherwise.

Homology of U0 and U−
0

It follows from (3.3.2) that U0
∼= [0, 1]#I0 and U−0

∼= ∂U0. Summa-
rizing

Hk(U0) =
{

Z, if k = 0,
0, otherwise, (3.3.5)
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and

Hk(U−0 ) =
{

Z, if k = 0,#I0 − 1
0, otherwise. (3.3.6)

Homology of Ui and U−
i for i > 0

The symmetry of the skeleton w implies that the sets Ui and U−i
depend only on the number of elements in Ii but not on their values. If
#Ii = 2m− 1 then Ui w U(m) ⊂ R2m−1 where U(m) is defined to be U1

for the set I = {2, 3, . . . ,m+ 1}. Therefore it is enough to deal with the
sets

U(m) = U1 ⊂ R2m−1 and U−(m) = U−1 ⊂ R2m−1,

where I = {2, 3, . . . ,m+ 1} and m ∈ N. The set U(m) is build up of the
cubes C = C0 × C1 × . . .× C2m−2 where Ci is either Ai or Bi and

Ai =
{

[v1
2, 1], if i is even,

[v1
1, v

3
1], if i is odd, (3.3.7)

Bi =
{

[−1, v1
2], if i is even,

[1, v1
1], if i is odd. (3.3.8)

By scaling and shifting we can deform each Ai to the interval [0, 1] and
Bi to [−1, 0].

REMARK 3.3.7. We omit the subscript of the sets Ai, Bi and the
direct sum × in the notation. Instead of writing B0 × A1 × B2 we
write BAB. If we want to refer to a face of the cube we will re-
place the symbol A (B) by the value of the appropriate coordinate i.e.
B[1]B = {(x0, x1, x2) ∈ R3 : x1 ∈ [−1, 0], x2 = 1, x3 ∈ [−1, 0]}.

According to Example 3.3.1 the set U(1) = B. Figure 8 shows the
set U(2) consisting of five cubes

U(2) = BBB ∪BAB ∪AAB ∪BAA ∪AAA.
We denote by C− the union of the faces of the cube C for which

the intersection number of the free strand u with the skeletal strands is
smaller than within the braid class [u rel w]. Then

U−(m) =
⋃
{C− : C ∈ U(m)}.

It follows from Example 3.3.1 that U−(1) = ∅. The case of U−(2) is
already more complicated. Figure 8 shows that

U−(2) = {(x0, x1, x2) ∈ U(2) :

x1 = −1 or x1 = +1 or x0 = +1 or x2 = +1}.
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The set U(2) is contractible and the set U−(2) consists of two disjoint
contractible pieces. Hence

Hk(U−(2)) =
{

Z2, if k = 0,
0, otherwise. (3.3.10)

For m > 2 we can not draw a picture of U(m) any more. Therefore
we introduce a schematic representation. The schematic representation
of U(2) and U−(2) is depicted in Figure 8. Each bar in schematic rep-
resentation consists of 2m− 1 boxes and stands for a cube with the co-
ordinates given by its label. If the upper (lower) part of the box, in the
bar, is shaded then the upper (lower) face of the cube at the correspon-
ding dimension is in U−(m). For example Figure 8 tells us that the face
B[−1]B ⊂ U−(2) because the second box of BBB has its lower part
shaded. If there is a connecting line between two cubes then they have
a common face which is indicated by the position of the end points of
the connecting line.

We already mentioned that U(2) consists of five cubes depicted in
Figure 8. Now we discuss some important properties of the set U(m)
form ≥ 2. The representant u used to define the braid class [u rel w] for
I = {2, . . . ,m+1} is chosen in such a way that its anchor points ui with
i ∈ I1 are in the cube C = C0, . . . , C2m−2 where Ci = B for all i. Hence
the cube B . . . B ⊂ U(m). The representant u has 2m intersections with
the strands v1 ∪ v2 for t ∈ [3, 3 + 2m]. This number has to be the same
for every representant. By inspection of the intersection number we can
establish the following rules for cubes in U(m). Let C = C0 . . . C2m−2 ⊂
U(m) then C2i can be both A and B if and only if C2i−1 = B while
C2i+1 = A or C2i−1 = A while C2i+1 = B. The interval C2i+1 can
be both A and B if and only if C2i = B and C2i+2 = B. Again by
inspection of the intersection number one can show that cubes in U(m)
cannot contain the sequences mentioned in the following remark.

REMARK 3.3.8. Let C = C0 . . . C2m−2 ⊂ U(m) then C2i−1C2iC2i+1

cannot be of the form BAB or AAA for any i.

The following lemma shows that the set U(m) is contractible.

LEMMA 3.3.9. The set U(m) is contractible for every m ∈ N.

PROOF. Any cube C0, . . . C2m−2 ⊂ U(m) contains the point
(0, . . . , 0). Hence for an arbitrary m ∈ N the set U(m) is star shaped
around the point (0, . . . , 0) and can be contracted to this point. There-
fore the set U(m) is contractible for every m ∈ N.

�
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The complexity of the set U−(m) increases with m. See Figure 9 for
a schematic representation of U(3) and U−(3). We decompose U−(m)
into two sets A−m,B−m i.e.

U−(m) = A−m ∪ B−m.
The set A−m is a part of the set U−(m) which is contained in a union

of the cubes C = C0C1 . . . C2m−2 with C1 = A while the set B−m is a
restriction of the set U−(m) to the cubes with C1 = B. The sets A−m,B−m
will turn out to be contractible. Moreover, we will prove that

H∗(A−m ∩ B−m) = H∗(A−m−1 ∪ B
−
m−1).

Then the Mayer-Vietoris sequence makes it possible to compute

H∗(U−(m)) = H∗(A−m ∪ B−m)

if we know H∗(A−m−1 ∪ B
−
m−1) and by induction we can compute the

homology of the set U−(m) for arbitrary m ∈ N.

DEFINITION 3.3.10. Let us define

Am =
⋃
{C0AC2 . . . C2m−2 ⊂ U(m)},

Bm =
⋃
{C0BC2 . . . C2m−2 ⊂ U(m)},

and
A−m =

⋃
{C− : C ⊂ Am},

B−m =
⋃
{C− : C ⊂ Bm}.

REMARK 3.3.11. For u ∈ [u rel w] with I = {2, . . . ,m+1} the anchor
point u3 ∈ [1, v1

1] which corresponds to B, see (3.3.8). Remark 3.3.8
implies that Co = B for every cube C ∈ Bm.

EXAMPLE 3.3.12. The set B2 = {BBB} and B−2 = {B[−1]B} while
A−2 is the rest of the set U−(2) and A2 consists of four remaining cubes,
see Figure 8. The set A−2 ∩ B

−
2 = A−1 ∪ B

−
1 = ∅.

Before we show thatA−m and B−m are contractible, we investigate the
diagram of U−(3) in Figure 9. For every cube C0AC2C3C4 ⊂ U(3) the
face C0[1]C2C3C4 ⊂ U−(3) and C0[0]C2C3C4 6⊂ U−(3). By taking into
account that the behavior of any anchor point ui is influenced only by
its immediate neighbors ui−1 and ui+1 one can generalize this for any
cube C0AC2C3 . . . C2m−2 ⊂ U(m) as follows

C0[1]C2C3 . . . C2m−2 ⊂ U−(m), (3.3.11)

C0[0]C2C3 . . . C2m−2 6⊂ U−(m). (3.3.12)
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Figure 9: Schematic representation of U(3). The shaded faces form U−(3).
The cubes in the polygon form B3 and the other cubes form A3.

By inspection of the cubes BBC2C3C4 ⊂ U(3) we conclude that if
BBC2C3 . . . C2m−2 ⊂ U(m) then

B[−1]C2C3 . . . C2m−2 ⊂ U−(m), (3.3.13)

B[0]C2C3 . . . C2m−2 ⊂ U−(m) if and only if C2 = A. (3.3.14)

LEMMA 3.3.13. The sets A−m and B−m are contractible for every m ∈ N.

PROOF. It follows from (3.3.12) that C0[0]C2 . . . C2m−2 6⊂ A−m.
Hence the map h : Am × [0, 1] → Am given by:

h(x0, . . . , x2m−2, t) = (x0, x1 + t(1− x1), x2, . . . x2m−2)

is a homotopy between the set A−m and

A−m|x1=1 := {x ∈ A−m : x1 = 1}.
The set A−m|x1=1 is a union of 2m− 2 dimensional cubes

C0[1]C2 . . . C2m−2

which satisfy that C0AC2 . . . C2m−2 ⊂ Am. Hence A−m|x1=1 is star
shaped around (0, 1, 0, . . . , 0). This implies that A−m is contractible.

Decompose Bm into

P =
⋃
{BBAC3 . . . C2m−2 ⊂ Bm},

Q =
⋃
{BBBC3 . . . C2m−2 ⊂ Bm},

then
B−m = P− ∪Q−,

where P− = {C− : C ⊂ P} and Q− = {C− : C ⊂ Q}. For m ≤ 2 the
set P = ∅. Note that if C = BBAC3 . . . C2m−2 ⊂ P then according to
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Remark 3.3.8 it holds that C3 = A and the faces B[0]AAC4 . . . C2m−2,
BB[1]AC4 . . . C2m−2 are in P−, see Figure 10. We decompose once
more. Let

P−0 =
⋃
{B[0]AAC4 . . . C2m−2 ⊂ P−},

and P−1 is a union of all the other faces in P−. Then

B−m = P−0 ∪ (P−1 ∪Q
−).

The set P−0 is a union of 2m − 2 dimensional cubes which is
star shaped around (0, . . . 0) and hence contractible. For any cube
C = C0BC2 . . . C2m−2 ⊂ Bm it holds that the face C0[−1]C2 . . . C2m−2

is present in P−1 ∪ Q− while C0[0]C2 . . . C2m−2 is not. The same ar-
gument as for A−m furnishes that P−1 ∪ Q− is contractible. To show
that B−m = P−0 ∪ (P−1 ∪ Q−) is contractible it remains to prove that
P−0 ∩ (P−1 ∪Q−) is contractible.

First, we will prove that

P−0 ∩ (P−1 ∪Q
−) = P−0 ∩ P

−
1 . (3.3.15)

For any cube C ∈ Q we have to show that

P−0 ∩C− ⊂ P−0 ∩ P
−
1 .

We distinguish three different types of cubes in Q. If

C = BBBAC4 . . . C2m−2 ⊂ Q

then
P−0 ∩C− ⊂ P−0 ∩ (P−1 ∩ C̃−) ⊂ P−0 ∩ P

−
1 , (3.3.16)

where C̃ = BBAAC4 . . . C2m−2 ⊂ P . The second inclusion is trivial.
To prove the first inclusion we proceed as follows. The set P−0 ∩C− ⊂
B[0][0]AC4 . . . C2m−2 and C− ∩ B[0][0]AC4 . . . C2m−2 ⊂ P−1 . Hence we
only have to show that C− ∩ B[0][0]AC4 . . . C2m−2 ⊂ C̃−. The fact
that the cubes C and C̃ differs only in C2 implies the previous state-
ment for all faces at coordinates different from i ∈ {1, 2, 3}. By analyz-
ing the intersection number of the free strand with the skeletal strands
we get that the faces BB[0]AC4 . . . C2m−2 and B[0]BAC4 . . . C2m−2 are
not in C−. Therefore we only have to check the faces at the third
coordinate. Again by analyzing the intersection number we get that
B[0][0][0]C4 . . . C2m−2 is not in C− (C̃−) and B[0][0][1]C4 . . . C2m−2 be-
longs both to C− and C̃−. This proves the first inclusion in (3.3.16).

For C = BBBBBC5 . . . C2m−2 ⊂ Q relation (3.3.16) holds with C̃ =
BBAABC5 . . . C2m−2. In this case P−0 ∩C− ⊂ B[0][0][0]BC5 . . . C2m−2.
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Figure 10: Schematic representation of B4. The shaded faces form B−4 . The
cubes in the polygon form P and the cubes out of it form Q.

The faces of C for i = 0 and i = 4 are not in C−. As before the faces of
P−0 ∩C− at the coordinates i > 4 are contained in P−1 ∩ C̃−.

Finally, for m > 3 there are cubes C ⊂ Q such that C =
BBBBAAC6 . . . C2m−2. From the structure of P and Remark 3.3.8 it
follows that P ∩ C ⊂ C̃ ∪ Ĉ, where C̃ = BBAAABC6 . . . C2m−2

and Ĉ = BBAABAC6 . . . C2m−2 are two cubes in P . In the same
way as in the previous cases one can prove that P−0 ∩ C− ⊂ P−0 ∩{
P−1 ∩ (C̃− ∪ Ĉ−)

}
. We just point out that intersection of P−0 with the

face BBBB[1]AC6 . . . C2m−2 is contained in C̃− while intersection of
P−0 with all the other faces is in C̃−

According to Remark 3.3.8 every cube C ⊂ P belongs to one of the
three types treated above and relation (3.3.15) holds. Hence to finish
the proof it is enough to show that P−0 ∩ P

−
1 is contractible.

If C = BBAC3 . . . C2m−2 ⊂ P then it follows from Remark 3.3.8
that C3 = A and by analyzing the intersection number we obtain that
the face B[0]AC3 . . . C2m−2 ⊂ P−0 . All the other faces contained in C−

belong to P−1 . Thus P−0 ∩ P−1 = P−1 |x1=0. Moreover for every cube
in P , the face BB[1]AC4 . . . C2m−2 is in P−1 and BB[0]AC4 . . . C2m−2 is
not, see Figure 10. Hence P−0 ∩ P−1 = P−1 |x1=0 is star shaped around
(0, 1, 0, . . . , 0). This implies that the set P−0 ∩ P

−
1 contractible. �

Now we turn our attention to the set A−m ∩ B−m. To simplify the ar-
guments we define the sets

Ãm := {C : C = BAC2 . . . C2m−2 ⊂ Am},

Ã−m := {C− : C = BAC2 . . . C2m−2 ⊂ Am},
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which are contractible. The proof is analogous to the one for the sets
A−m. It holds that Ã−m∩B−m = A−m∩B−m because if C = AAC2 . . . C2m−2 ⊂
Am then C− ∩ B−m ⊂ Ĉ− ∩ B−m where Ĉ = BAC2 . . . C2m−2. Hence we
showed that H∗(Ã−m∩B−m) = H∗(A−m∩B−m) and H∗(Ã−m) = H∗(A−m). By
plugging this to the Mayer-Vietoris sequence

. . .
∂∗
k+1−→Hk(A∩B)

ϕ∗
k−→Hk(A)⊕Hk(B)

ψ∗
k−→Hk(A∪B)

∂∗
k−→Hk−1(A∩B)

ϕ∗
k−1−→ . . .

furnishes
H∗(Ã−m ∪ B−m) = H∗(A−m ∪ B−m). (3.3.17)

Before we start studying the setA−m∩B−m for an arbitrarymwe give
a low dimensional example.

EXAMPLE 3.3.14. We claim that

H∗(A−3 ∩ B
−
3 ) = H∗(A−2 ∪ B

−
2 ). (3.3.18)

According to (3.3.17) it is enough to show that

H∗(Ã−3 ∩ B
−
3 ) = H∗(Ã−2 ∪ B

−
2 ).

Let P1 = BABBB ∪ BABAB ∪ BABAA, P2 = BAABB, Q1 =
BBBBB ∪BBBAB ∪BBBAA andQ2 = BBAAB ∪BBAAA. The set
P−i (Q−i ) is a union of the faces of the cubes C ⊂ Pi (Qi) which are in
Ã−3 (B−3 ) and

Ã−3 ∩ B
−
3 =

2⋃
i,j=1

P−i ∩Q
−
j .

The intersection P−1 ∩ Q−1 = B[0]B[−1]B ∪ B[0]B[1]B ∪ B[0]B[1]A ∪
B[0]BA[1] is homotopic to the set 0 × 0 × {B[−1]B ∪ B[1]B ∪ B[1]A ∪
BA[1]}which can be written as 0×0×{Ã−2 ∪B

−
2 }, see Figure 11. There-

fore
H∗(P−1 ∩Q

−
1 ) = H∗(Ã−2 ∪ B

−
2 ).

After a short computation

P−2 ∩Q
−
1 = B[0][0][−1]B ⊂ P−1 ∩Q

−
1 ,

P−1 ∩Q
−
2 = B[0][0]AB ∪B[0][0]AA,
P−2 ∩Q

−
2 = B[0]A[0]B.

The set (P−2 ∩Q
−
1 )∪(P−2 ∩Q

−
2 ) is homotopic toB[0]B[−1]B∪B[0]B[1]A∪

B[0]BA[1] ⊂ P−1 ∩Q
−
1 . Hence Ã−3 ∩ B

−
3 is homotopic to P−1 ∩Q

−
1 and

H∗(Ã−3 ∩ B
−
3 ) = H∗(P−1 ∩Q

−
1 ) = H∗(Ã−2 ∪ B

−
2 ).
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Figure 11: a) b) the projection of the set A−3 ∩ B−3 on the coordinates
(u2, u3, u4). The set P−1 ∩Q−1 is shaded.

LEMMA 3.3.15. Let m ∈ N such that m > 1. Then

H∗(A−m ∩ B−m) = H∗(A−m−1 ∪ B
−
m−1). (3.3.19)

PROOF. According to (3.3.17) it holds that

H∗(A−m ∩ B−m) = H∗(Ã−m ∩ B−m).

Every cube C = C0C1 . . . C2m−2 ⊂ Ãm ∪ Bm satisfies that C0 = B and
its faces [−1]C1 . . . C2m−2 and [0]C1 . . . C2m−2 are not present in Ã−m ∪
B−m. This implies that H∗(Ã−m ∩ B−m) = H∗(Ã−m|x0=0 ∩ B−m|x0=0) where
Ã−m|x0=0 = {x ∈ Ã−m : x0 = 0} and B−m|x0=0 = {x ∈ B−m : x0 = 0}. In
order to evaluate H∗(Ã−m|x0=0 ∩ B−m|x0=0) we decompose Ã−m|x0=0 and
B−m|x0=0 as follows

P1 =
⋃
{C ∈ Ãm|x0=0 : C2 = B}, P2 =

⋃
{C ∈ Ãm|x0=0 : C2 = A},

Q1 =
⋃
{C ∈ Bm|x0=0 : C2 = B}, Q2 =

⋃
{C ∈ Bm|x0=0 : C2 = A}.

The set P−i (Q−i ) is the union of the faces of the 2m − 2 dimensional
cubes C = [0]C1 . . . C2m−2 ⊂ Pi (Qi), which are in Ã−m|x0=0 (B−m|x0=0).
Note that if C ⊂ P2 then C3 = B while if C ⊂ Q2 then C3 = A. The
intersection

Ã−m|x0=0 ∩ B−m|x0=0 =
2⋃

i,j=1

(P−i ∩Q
−
j ).

For every cube C = [0]C1 . . . C2m−2 ⊂ P1 it holds that C1 = A and
[0][0]C2 . . . C2m−2 6⊂ P−1 . If the cube C ⊂ Q1 then C1 = B and
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[0][0]C2 . . . C2m−2 6⊂ Q−1 . The fact that C2 = B for every cube in P1

and Q1 implies that (P−1 ∩Q
−
1 ) = 0× 0× (Ã−m−1 ∪ B

−
m−1) and

H∗(P−1 ∩Q
−
1 ) = H∗(Ã−m−1 ∪ B

−
m−1) = H∗(A−m−1 ∪ B

−
m−1).

If C ⊂ P2 ∩Q1 then

C = [0][0][0]BC4 . . . C2m−2 ⊂ [0][0]BBC4 . . . C2m−2 ⊂ P1 ∩Q1.

Non of the first three faces is in P−2 ∩ Q−1 . Hence the set P−2 ∩ Q−1 ⊂
P−1 ∩ Q−1 and H∗((P−1 ∩ Q−1 ) ∪ (P−2 ∩ Q−1 )) = H∗(P−1 ∩ Q−1 ). To prove
relation

H∗(Ã−m|x0=0 ∩B−m|x0=0) = H∗(P−1 ∩Q
−
1 ) = H∗(A−m−1 ∪B

−
m−1), (3.3.20)

it is enough to show that

V := (P−1 ∩Q
−
2 ) ∪ (P−2 ∩Q

−
2 ) (3.3.21)

is contractible and that its intersection with P−1 ∩ Q−1 is contractible.
We prove that V is contractible by showing that both components
in (3.3.21) are contractible and so is their intersection.

The set P1 is build up from cubes of the form [0]ABC3 . . . C2m−2

while cubes in Q2 have the form [0]BAAC4 . . . C2m−2. The cube
[0]ABAC4 . . . C2m−2 ⊂ P1 if and only if [0]BAAC4 . . . C2m−2 ⊂ Q2.
Moreover the face [0][0][0]AC4 . . . C2m−2 ⊂ P−1 ∩Q

−
2 . ThereforeP−1 ∩Q

−
2

is a union of 2n − 4 dimensional cubes [0][0][0]AC4 . . . C2m−2 ⊂ Q2

which is star shape around (0, . . . , 0) This concludes that P−1 ∩ Q−2 is
contractible.

If C ⊂ P2 ∩ Q2 then C = [0][0]A[0]C4 . . . C2m−2 ⊂ P2. Actually,
P2 ∩ Q2 = P2|{x2=0,x3=0}. Moreover C ⊂ P−2 because of the face
at the fourth coordinate and C ⊂ Q−2 because of the face at the se-
cond coordinate. Therefore the set P−2 ∩ Q−2 is a union of the cubes
[0][0]A[0]C4 . . . C2m−2 ⊂ P2 which is star shaped and contractible .

If C = [0][0][0][0]C4 . . . C2m−2 ⊂ P2 then C ⊂ Q − 2. This implies
that the set (P−1 ∩ Q−2 ) ∩ (P−2 ∩ Q−2 ) is a union of 2m − 5 dimensional
cubes [0][0][0][0]C4 . . . C2m−2 ⊂ Q2 which is star shape.We proved that
the setsP−1 ∩Q

−
2 , P−2 ∩Q

−
2 and their intersection are contractible. Hence

we proved that V is contractible.
The set (P−1 ∩ Q−1 ) ∩ V is given by faces, of 2m − 4 dimensional

cubes [0][0][0]AC4 . . . C2m−2 ⊂ Q2, which are present in (P−1 ∩Q
−
1 ). The

face [0][0][0][1]C4 . . . C2m−2 ⊂ (P−1 ∩ Q−1 ) for each of these cubes while
[0][0][0][0]C4 . . . C2m−2 is not. As in the proof of Lemma 3.3.13 the set
(P−1 ∩Q

−
1 ) ∩ V is contractible. This proves relation (3.3.20). �
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The following lemma describes homology of the set U−(m) for ar-
bitrary m ∈ N.

LEMMA 3.3.16. The homology of the set U−(m), for m > 0, is given by

H∗(U−(m)) = H∗
(
Γm−1

)
,

where Γn is the boundary of the n-dimensional unit cube [0, 1]n.

REMARK 3.3.17. We use a convention Hk

(
Γ0
)

= 0 for k ∈ Z.

PROOF. At the beginning of this subsection we proved the lemma
for m = 1, 2. We use induction to prove the lemma for arbitrary m. The
set U−(m) = A−m ∪ B−m and according to Lemma 3.3.13 the sets A−m and
B−m are contractible. Lemma 3.3.15 furnishes

H∗(A−m ∩ B−m) = H∗(A−m−1 ∪ B
−
m−1).

The induction argument implies that

H∗(A−m ∩ B−m) = H∗(Γm−2).

By applying the Mayer-Vietoris sequence

. . .
∂∗
k+1−→Hk(A∩B)

ϕ∗
k−→Hk(A)⊕Hk(B)

ψ∗
k−→Hk(A∪B)

∂∗
k−→Hk−1(A∩B)

ϕ∗
k−1−→ . . .

we conclude that
H∗(A−m ∪ B−m) = H∗(Γm−1).

�

Computation of H∗(h(u rel w))

First we recall that the sets NI and N−
I decompose as follows

NI = U0 × U1 × . . .× Ul,

N−
I =

l⋃
i=0

U0 × U1 × . . .× Ui−1 × U−i × Ui+1 × . . .× Ul.

The homology of the sets U0 and U−0 is given by (3.3.5) and (3.3.6). The
homology ofUi andU−i is computed in Lemma 3.3.9 and Lemma 3.3.16.
We use them to compute H∗(NI) and H∗(N−

I ). Then by using the exact
sequence which relates H∗(NI), H∗(N−

I ) to H∗(NI , N
−
I ) we calculate

H∗(h(uI rel w)) = H∗(NI , N
−
I ).

LEMMA 3.3.18. The set NI is contractible and the homology of N−
I is

given by

Hk(N−
I ) =

{
Z, if k = 0, 2p−#I − 1,
0, otherwise. (3.3.22)
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PROOF. The set NI is a direct sum of the contractible sets Ui. Hence
it is contractible. It remains to prove that homology of N−

I is given
by (3.3.22). We start by computing homology of the union

U−0 × U1 × U2 × . . .× Ul ∪ U0 × U−1 × U2 × . . .× Ul.

The sets Ui are contractible. Therefore

H∗(U−0 ×U1×U2×. . .×Ul∪U0×U−1 ×U2×. . .×Ul) = H∗(U−0 ×U1∪U0×U−1 ),

and
H∗(U−0 × U1) = H∗(U−0 ) = H∗(Γm),
H∗(U0 × U−1 ) = H∗(U−1 ) = H∗(Γn),

where Γm is the boundary of an m dimensional cube and m = #I0
while n = #I1 − 1. Suppose for now that U0 is an m dimensional cube
and U−0 = ∂U0, while U−1 = ∂U1 and U1 is an n dimensional cube. Then

∂(U0 × U1) = ∂U0 × U1 ∪ U0 × ∂U1 = U−0 × U1 ∪ U0 × U−1 ,

and

H∗(U−0 × U1 ∪ U0 × U−1 ) = H∗(∂(U0 × U1)) = H∗(Γm+n).

However in our case it only holds thatU−i ⊂ Ui, whereUi is contractible
and H∗(U−0 ) = H∗(Γm) while H∗(U−1 ) = H∗(Γn). Therefore we have to
prove that

H∗(U−0 × U1 ∪ U0 × U−1 ) = H∗(Γm+n), (3.3.23)
in this setting. If m = 0 or n = 0 then U−0 = ∅, or U−1 = ∅ and (3.3.23)
is trivially satisfied. For m,n > 0 we use the long exact sequence

. . .
∂∗
k+1−→Hk(A∩B)

ϕ∗
k−→Hk(A)⊕Hk(B)

ψ∗
k−→Hk(A∪B)

∂∗
k−→Hk−1(A∩B)

ϕ∗
k−1−→ . . .

(3.3.24)
to prove (3.3.23). Put A = U−0 × U1 and B = U0 × U−1 . Then

A ∩B = U−0 × U−1 .

Without the loss of generality we can suppose that m ≥ n. The homol-
ogy

H∗(A ∩B) = H∗(U−0 × U−1 ) = H∗(Γm × Γn)
is homology of the cross product of two spheres i.e only the homology
groups 0,m, n and m + n are nontrivial. If all the inexes are different
then these groups are Z. In case that some of the indexes are the same
then they refer to the same homology group and the group is Zk where
k is the number of the indexes which refer to this group. Hence plug-
ging the known homologies H∗(A) , H∗(B) and H∗(A ∩B) to the exact
sequence (3.3.24) leads to six different cases m = n = 1, m− 1 = n = 1,
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m − 1 > n = 1, m = n > 1 m − 1 = n > 1 and m − 1 > n > 1. We
will deal only with the case m − 1 > n > 1. All the other cases can be
treated analogously. In this case

Hk(A) =
{

Z, if k = 0,m− 1,
0, otherwise, Hk(B) =

{
Z, if k = 0, n− 1,
0, otherwise,

Hk(A ∩B) =
{

Z, if k = 0, n− 1,m− 1,m+ n− 2,
0, otherwise.

The homology group Hm+n−1(A ∪ B) = Z because of the short exact
sequence

0
ψ∗m+n−1−→ Hm+n−1(A ∪B)

∂∗m+n−1−→ Z
ϕ∗m+n−2−→ 0,

which is a part of the long exact sequence. The following part of the
exact sequence

0
∂∗m−→Z

ϕ∗m−1−→Z
ψ∗m−1−→Hm−1(A ∪B)

∂∗m−1−→ 0,

and relation imϕ∗m−1 = Z implies that Hm−1(A∪B) = 0. Similar calcu-
lations provide that Hn−1(A ∪B) = 0. By exploiting the sequence

0
ψ∗1−→H1(A ∪B)

∂∗1−→Z
ϕ∗0−→Z× Z

ψ∗0−→H0(A ∪B)
∂∗0−→0,

where imϕ∗0 = Z and kerϕ∗0 = 0 we obtain that H1(A ∪ B) = 0 and
H0(A ∪B) = Z. Finally, for all remaining indices the exactness of

0
ψ∗
k−→Hk(A ∪B)

∂∗
k−→0,

implies that Hk(A ∪B) = 0.
We thus proved that

H∗(U−0 × U1 × U2 × . . .× Ul ∪ U0 × U−1 × U2 × . . .× Ul) = H∗(Γm+n)

By repeating the previous computation l times we obtain that

H∗(N−
I ) = H∗

(
Γ{#I0+

Pl
i=1(#Ii−1)}

)
.

According to Definition 3.3.4 it holds that #I0 = 2p−
∑l

i=1(2#Ii − 1),
hence

Hk(N−
I ) = Hk

(
Γ{2p−#I}

)
=
{

Z, if k = 0, 2p−#I − 1,
0, otherwise.

�
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To conclude the proof of Theorem 3.2.4, we compute the relative
homology H∗(NI , N

−
I ). We use the long exact sequence

. . .
∂∗
k+1−→Hk(N−

I )
i∗
k−→Hk(NI)

π∗
k−→Hk(NI , N

−
I )

∂∗
k−→Hk−1(N−

I )
i∗
k−1−→ . . . .

For k 6∈ {0, 2p−#I} exactness of

0
π∗
k−→Hk(NI , N

−
I )

∂∗
k−→0,

implies that Hk(NI , N
−
I ) = 0. The exact sequences

0
π∗
2p−#I−→ H2p−#I(NI , N

−
I )

∂∗
2p−#I−→ Z

i∗
2p−#I−1−→ 0,

Z
i∗0−→Z

π∗0−→H0(NI , N
−
I )

∂∗0−→0,
furnish

Hk(NI , N
−
I ) =

{
Z, if k = 2p−#I,
0, otherwise.

According to Section 2.2 the indexH∗(h(uI rel w)) = H∗(NI , N
−
I ). This

concludes the proof of Theorem 3.2.4.

3.4. Forcing of solutions in [σ2
1σ

2q
2 , 2p]

In this section we prove that

[σ2
1σ

4
2, 4] ≺ [σ2

1σ
2q
2 , 2p],

holds for 3 < q < p and estimate the number of solutions of the class
[σ2

1σ
2q
2 , 2p]. To do so we define a braid class [uI rel w]E , for every set

I = {j1, . . . , jn} ⊂ Nn satisfying

p− q + 3 < j1 < . . . < jn < 2p,

and take a subset MI of [uI rel w]E which is an isolating neighborhood
of the flow Ψt generated by the parabolic recurrence relation correspon-
ding to (3.1.1). Non-triviality of the index H∗(h(uI rel w)) will imply
the existence of a fixed point u of the flow Ψt in the set MI which cor-
responds to a solution u ∈ [σ2

1σ
2q
2 , 2p]. Solutions obtained for different

sets I are geometrically different. By taking different sets I we produce
22(q−4) geometrically different solutions.

DEFINITION 3.4.1. Let the skeleton w be given by (3.2.3). The braid
class [uI rel w]E ∈ E1

2p rel w is defined by its representant uI satisfy-
ing:
(1) uI0 ∈ (v1

0, v
6
0),
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(2) uI2i+1 ∈
{

(v4
1, v

1
5) : if 1 < i < 2 + p− q,

(v5
1, v

1
1) : otherwise,

(3) uI2i ∈
{

(v4
2, v

1
2) : if i ∈ I or 1 < i < 2 + p− q,

v1
2, v

5
2) : otherwise.

The free strand u intersects the strand +1 four times then it stays
below this strand till the anchor point u4+2(p−q). Then it intersects the
strand +1 twice again. After this the free strand u behaves in the same
way as the free strand of the braid class form the previous section. Fig-
ure 12 shows the braid class [uI rel w] with a simplified skeleton for
q = 3 and I = ∅. The procedure for simplifying the skeleton is ex-
plained in the previous section. For the sake of simplicity we restrict
ourselves to the case I = ∅. However, the same decomposition of the
set of anchor points ui with i ∈ {4 + 2(p − q), . . . , 2p} as in Section 3.3
extends the result for non empty sets I . We omit I from the notation.

Now we recall an important property of the parabolic recurrence
relation R generated by (3.1.1) at the zero energy level. In the param-
eter range α ∈ [0,

√
8) the two equilibria u± = ±1 are saddle-foci and

there are no solutions which converge monotonically to any of these
equilibria. Therefore the twist property, see Section 2.2, implies that
for every (x, y) ∈ R2 \∆ there exists a finite τx,y and a unique solution
u(t;x, y) : [0, τx,y] → R such that u(0;x, y) = x, u(τx,y;x, y) = y and
u′|(0,τx,y) > 0 if x < y (u′|(0,τx,y) < 0 if x > y). The functionRi is defined
as follows

Ri(ui−1, ui, ui+1) = u′′′(τui−1,1;ui−1, ui)− u′′′(0;ui, ui+1).

Finally we investigate the function Ri for ui close to u+ = 1. We re-
strict to odd index i and take ui±1 < ui = 1. The fact that τui−1,1 and
τ1,ui+1 are always finite combined with Lemma 2.2 in [13] insures that
u′(τui−1,1;ui−1, 1) = u′′(τui−1,1;ui−1, 1) = 0 and u′′′(τui−1,1;ui−1, 1) 6= 0.
Monotonicity of u(t;ui−1, 1) implies that u′′′(τui−1,1;ui−1, 1) > 0. Anal-
ogously u′′′(τ1,ui+1 ; 1, ui+1) < 0 and Ri(ui−1, 1, ui+1) > 0. Due to the
uniqueness of the monotone loops (solutions u(t, x, y)) the function Ri

is continuous on Ωi and for sufficiently small δ > 0 it holds that

Ri(ui−1, 1− δ, ui+1) > 0.

In the same way one can show that

Ri(ui−1,−1 + δ, ui+1) > 0.

Therefore the same arguments as in the proof of Lemma 3.2.6 show that
the set Mε,δ, given by Definition 3.4.2, is an isolating neighborhood for
ε and δ sufficiently small.
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PSfrag replacements

v
1

v
2

v
5

v
6

u

Figure 12: A representative of the braid class [u rel w]I ∈ E1
14 rel w for

q = 3 and I = ∅ .

DEFINITION 3.4.2. Define

Nε = {u ∈ cl([u rel w]E) : (−1)i(ui+1 − ui) ≥ ε}
and let Mε,δ be a subset of Nε such that u ∈Mε,δ if and only if
(1) u0 < ûε0,
(2) −1 + δ < u2i+1 < 1− δ for i ∈ {2, 3, . . . , 1 + p− q},
(3) (−1)iui < (−1)iuεi for the remaining indices i.
Let M−

ε,δ denote the subset of ∂Mε,δ where the flow Ψt points out of
Mε,δ.

A similar homotopy to the one in the proof of Lemma 3.2.6 fur-
nishes that

H∗(Mε,δ,M
−
ε,δ) = H∗(h(u rel w)).

Non-triviality of the index H∗(h(u rel w)) stated in the last lemma con-
cludes the proof of Theorem 3.1.2.

LEMMA 3.4.3. The index H∗(h(u rel w)) is given by

Hk(h(u rel w)) =
{

Z, if k = 2(p− q)− 1,
0, otherwise. (3.4.1)

PROOF. The set N = cl[u rel w] is a 2p-dimensional set which is
homotopic to the unit cube [0, 1]2p and u ∈ N if and only if
(1) u1

0 ∈ [v1
0,−1],

(2) u2i+1 ∈
{

[−1, 1] : if 1 < i < 2 + p− q,
[+1, v1

1] : otherwise,

(3) u2i ∈
{

[−1, v1
2] : if 1 < i < 2 + p− q,

[v1
2, 1] : otherwise.

If u2i+1 reaches the boundary and i ∈ {2, 3, . . . , 1+p−q} then the cross-
ing number of the free strand u with the skeleton w increases. On the
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3. ORDERINGS OF BIFURCATION POINTS

other hand if some other anchor point reaches the boundary of its in-
terval then the crossing number decreases. Hence N− is a set on which
some uj , different from u2i+1 with i ∈ {2, 3, . . . , 1 + p − q}, attains the
boundary. The pointed space [N,N−] is homotopic to the boundary of
a 2(p − q) dimensional cube. Hence H∗(h(u rel w)) = H∗(N,N−) is
given by (3.4.1). �
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Samenvatting

In dit proefschrift bestuderen we systemen afkomstig van vierde
orde conservatieve vergelijkingen. De gebruikte methoden combineren
variationele en topologische methoden. De ontwikkeling van deze sys-
temen is beperkt tot enegieniveaus die de faseruimte foliëren. Omdat
banen in drie-dimensionale energieniveaus liggen, kunnen ze beschre-
ven worden als knopen en vlechten (braids) op het eneregieniveau.
Daarom identificeren we banen van het systeem met vlechtwerken in
drie dimensies. De ruimte van vlechtwerken is opgedeeld in klassen.
We definiëren topologische invarianten voor vlechtwerken die ons in
staat stellen forcing voor periodieke oplossingen te bewijzen. Om ana-
lytische problemen met oneindig dimensionale ruimten te voorkoment
gebruiken we het begrip van gediscretiseerde vlecht-diagrammen.
Variationele methoden worden gebruik om van een oneindig dimen-
sionale ruimte naar een eindig dimensionale ruimte te gaan. Het pa-
per [19] laat zien dat elke begrensde oplossing, op een regulier en-
ergieniveau, van het twist system een concatenatie is van monotone
curven en door de extrema wordt gekarakteriseerd. De periodieke
oplossingen kunnen gereresenteerd worden in een eindig dimensionale
ruimte van continue stuksgewijs lineaire vlecht-diagrammen. Conley
index theorie voor niet-gedegenereerde en begrensde vlechtwerken,
beschreven in [8], blijkt zeer efficient te zijn bij het aantonen van het
bestaan van periodieke oplossingen. Deze techniek wordt gebruikt in
hoofdstuk 3 om een partiële ordening, gebaseerd op forcing relaties, te
definiëren op oplossingen van de Swift-Hohenberg vergelijking. Ook
wordt het bestaan van oneindig veel periodieke oplossingen bewezen.
De homologische Conley index van oneindig veel vlechtwerken, waar-
van de complexiteit toeneemt met de dimensie, wordt berekend met
behulp van volledige inductie naar de dimensie.
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In hoofdstuk 2 breiden we Conley index theorie uit voor gede-
genereerde vlechtwerken. In dit geval is het vlechtwerk geen isol-
erende omgeving, maar is er een vast punt van de onderliggende gra-
dient flow op de rand van de gedegenereerde klasse van vlechtwerken.
Dit probleem wordt opgelost door een zorgvuldige analyse van de
gradient flow rond dit punt. De ideeën van deze analyse gaan terug
tot [2]. Door dit resultaat toe te passen op de Swift-Hohenberg vergeli-
jking kunnen we het bestaan van ene overvloed aan verschillende pe-
riodieke oplossingen aantonen en een verklaring geven voor de nu-
meriek waargenomen bifurcatie diagrammen.
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Summary

In this thesis we study dynamical systems coming from fourth or-
der conservative equations. The methods used combine variational and
topological methods. The dynamics of these systems is restricted to
energy manifolds which foliate the phase space. Since orbits lie on
three dimensional energy surfaces they can be regarded as knots and
braids in the energy surface. Therefore we identify orbits of the sys-
tem with braids in three dimensions. The space of braids decomposes
into braid classes. We define topological invariants for braids that al-
low us to prove forcing results for periodic solutions. In order to avoid
analytical difficulties of infinite dimensional spaces we use the con-
cept of discretized braid diagrams. To pass from infinite dimensional
space to finite dimensional one variational techniques are employed.
The paper [19] shows that every bounded solution, on the regular en-
ergy level, of the twist system is a concatenation of the monotone laps
and can be encoded by its extrema points. The periodic solutions can
be represented in a finite dimensional space of closed piecewise linear
braid diagrams. Conley index theory for the proper and bounded braid
classes developed in [8] proves very efficient for showing the existence
of periodic solutions.

This technique is used in Chapter 3 to impose a partial order on
solutions of the Swift-Hohenberg equation based on forcing relations.
Also the existence of infinitely many periodic solutions is proved. The
homological Conley index of infinitely many braid classes, which com-
plexity increase with their dimension, is computed by using the math-
ematical induction on their dimension.

In Chapter 2 we extend the Conley index theory for non-proper
braid classes. In this case the braid class is not an isolating neighbor-
hood. There is a fixed point of the underlaying gradient flow on boun-
dary of the non-proper braid class. We overcome this problem by a
careful analysis of the flow near to this point. The ideas of this analysis
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go back to [2]. By applying this result to the Swift-Hohenberg equation
we show the existence of a plethora of different periodic solutions and
give an explanation for numerically observed bifurcation diagrams.
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