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CHAPTER 1

Introduction

1.1. Low dimensional dynamics and topological forcing
A topological structure in 2 and 3 dimensional dynamics

Many problems in the natural sciences can be stated and studied in the mathematical
language of dynamical systems. These systems often come with an underlying topological
structure, which can be exploited in order to draw conclusions about their behavior. As an
example of the aforementioned structure, let us consider the non-autonomous differential
equation

x′ = X(x, t),

where x = (p,q) ∈ R2, t ∈ R and f : R2× S1 → R is a sufficiently smooth function. In
such a setting, let x(t) and y(t) be two periodic solutions of period one, that intersect in the
(p,q)-plane. When lifted to the extended phase space R3 they link (see Figure 1.1). This
link carries the topological information that we will exploit to study the evolution of the
system, or to conclude existence of additional solutions. This also suggests another concept
that is essential to our studies – forcing. The knowledge of the way that the two trajectories
are intertwined may allow us to construct additional solutions.
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Figure 1.1: The trajectories of two periodic points x0 and y0, intersecting in the two dimensional
phase space [left]. Their lifts link as the topological circles (end points are identified) [right].
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2 1. INTRODUCTION

A similar approach can be applied to autonomous systems in R3, that is, to equations
of the form

x′ = Y (x),
where x∈R3. This topological structure cannot be exploited in higher dimensional systems
because linking is trivial in dimensions 4 and higher. Nevertheless, the above mentioned
approach may be used to obtain results for a wide class of problems. For example, in
the context of the non-autonomous Hamilton equations with one degree of freedom, or for
systems generated by iterating certain orientation reversing diffeomorphisms of the plane.

REMARK 1.1. Throughout the introduction we only number the theorems proved in this
thesis. The references to the results of other authors are given in the comments before or
after their statements.

Dynamical order relations
A well known forcing result in dynamics is Sharkovskii’s theorem proved in 1964 (see

[64]). It concerns one dimensional discrete dynamical systems and can be formulated as
follows. Let f : I → R be a continuous map, where I ⊂ R is a bounded interval. The
function f defines a dynamical system in a standard way (xn+1 = f (xn)). Before stating the
theorem we introduce an ordering on N. Every positive integer n can be uniquely written
in a form 2r p, where p is an odd number and r is such that 2r is the highest power of 2 that
divides n. Using this description we order the natural numbers in the following way

3& 5& 7 . . .& 2 ·3& 2 ·5 . . . & 2r ·3& 2r ·5& . . .& 2r & . . .& 2& 1.

This is Sharkovskii’s ordering. With this we can state the following.

THEOREM (Sharkovskii). If f has a point of period n, then it necessary has at least one
point of period n1, provided n& n1.

In particular, if f has a period three point then it has periodic points of all periods. This
explains why this theorem is sometimes referred to as “period three implies chaos” ([44]).
The proof relies on studying carefully how the intervals bounded by the points of a given
periodic orbit are mapped. In the simplest case one can use the intermediate value theorem
to obtain forced solutions. This technique, while interesting and elementary, is restricted to
dimension one.

Poincaré’s geometric theorem
A well-known forcing result in dimension two, is Poincaré’s geometric theorem, origi-

nally presented in 1912 ([58]) and proved by Birkhoff in 1917 ([12]). In its basic form it can
be described as follows. Let A be an annulus of which the boundary consists of two circles
C(r1) and C(r2), with radii r1 and r2 respectively (r1 > r2 > 0). Let f : A→ A be a con-
tinuous area-preserving injective map rotating the outer circle in the counter clockwise and
inner circle in the clockwise direction (cf. Figure 1.2). With this we can state the following.

THEOREM (Poincaré’s geometric theorem). Under the above assumptions, f has at least
two fixed points in A.

This theorem is an example, how general knowledge of a problem (area preservation)
and some limited information on the behavior of the map (rotation at the boundary) allows
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C(r1)

C(r2)

Figure 1.2: The annulus bounded by circles C(r1),C(r2). The arrows indicate the directions in
which the flow induced by f twists the boundary. Poincaré’s theorem guarantees existence of at
least two fixed points.

us to conclude the existence of stationary or periodic orbits. This kind of methodology will
be central in our work.

Twist maps
Poincaré’s geometric theorem above can be interpreted in the context of twist maps. We

say that a continuously differentiable map f : R2 → R2 has the twist property if there exist
global coordinates (x,y) such that ∂x′

∂y > 0 (∂x′∂y < 0), where (x′,y′) = f (x,y). We call such a
function f a positive (negative) twist map. As an example, consider the Hénon map. It is a
invertible map of the plane given by

f : (x,y) = (−y,1−αy2 + x).

This is an orientation and area preserving negative twist map. It is well known for its strange
attracting set, known as Hénon attractor, that exhibits Cantor-set like structures.

Let f be a twist map of the annulus in polar coordinates (r,θ). Then the graph of
f can be schematically presented as in Figure 1.3. This guarantees that, in a sense, f
rotates the outer circle faster than the inner circle. Poincaré’s geometric theorem discussed
above implies that f has at least two fixed points. Exploiting the fact that f is a twist map
gives a simple proof to Poincaré’s geometric theorem (see [50]). In general, let (x′,y′) =
f (x,y), then due to the implicit function theorem, there exist functions h1, h2 such that
y = h1(x,x′) and y′ = h2(x,x′). Moreover, area preservation shows that there exists a C2

function h(x,x′) on R2 such that h1 = ∂1h and h2 = −∂2h (see [47] or [10]). For fixed
points of an annulus twist map the above yeilds a periodic function h : S1 → R, and h has
at least two critical points (maximum and minimum) which proves Poincaré’s geometric.
In general, for d-periodic points of f the trajectory { f k(x,y)}dk=1 = {(xk,yk)}dk=1, can be
uniquely described using its x-coordinates. Moreover, a sequence x = {xk} yields an f -
trajectory (first coordinates thereof) if and only if

∂iW (x) = 0 (variational principle),

whereW (x)∑d
i=1 h(xi,xi+1).

For an annulus twist map f , its trajectories can be fully determined using only the angle
coordinates θi. Consider an d-periodic orbit starting in (r0,θ0). By the same token as above,
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periodic dθ
dr > 0

2π

θ

rr2r1

Figure 1.3: A twist map in the polar coordinates (r,θ). The radii r1 and r2 correspond to the
boundary components of the annulus. The fact that dθ

dr > 0 guarantees that the circles bounding
the annulus have different rotation speeds under f .

there exists a functionW such that

∂iW (θ0,θ1, . . . ,θn−1) = 0 i= 1, . . . ,n, (1.1)

where θi denotes the angular coordinates of the periodic orbit. Observe thatW is defined on
the n-dimensional torus. The question arises if the topological properties of the underlying
manifold can provide us with any information about the critical points of W . Important
contributions to the theory of twist maps were given by Moser [56], Mather [47], Aurby &
Le Daeron [10], Angenent [2], and Boyland [16].

Morse theory
Morse theory, in its simplest form, can be described in the following way. Consider

an n-dimensional smooth compact Riemannian manifold M. Let h : M→ R be a smooth
function such that all its critical points (x is critical if dh(x) = 0) are non-degenerate (the
Hessian of h at x, denoted by H2h(x), is invertible). Then to all points in

Crith := {x ∈M | dh(x) = 0}

one can assign the Morse index

µ(x) = dim Eig−H2h(x),

where Eig−H2h(x) denotes the space spanned by eigenvectors corresponding to negative
eigenvalues of H2h(x). Also

ck := #Critkh = #{x ∈ Crith | µ(x) = k},

is the number of critical points of index k.
Morse theory gives a relation between Crith and the topology of the underlying manifold

M. To measure the topological properties of M one uses concepts from algebraic topology.
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Recall that the Betti numbers of M are defined by
βk = dimHk(M) k ∈ {0, . . . ,n},

whereHk(M) denotes the k-th singular homology group ofM. We can now state the theorem
about the Morse inequalities.

THEOREM (Morse inequalities). For a smooth function h :M→Rwith only non-degenerate
critical points it holds that

ck− ck−1 + . . .± c0 ≥ βk−βk−1 + . . .±β0,

for all k = 0, . . . ,n−1 and for k = n we have equality

cn− cn−1 + . . .± c0 = χ(M),

where χ(M) = βk−βk−1 + . . .±β0 denotes the Euler characteristic of M.

If the condition of non-degeneracy of critical points is removed then the following esti-
mate holds

#Crith ≥ Cat(M),

where the Cat(M) denotes (Ljusternik-Schnirelmann) category (minimal number of con-
tractible subsets required to cover M). For example

Cat(Tn) = n+ 1
In particular, for n = 1 we obtain that the number of critical points of a twist map on an
annulus is greater than or equal to 2. That is why Morse theory can be considered a gener-
alization of Poincaré’s geometric theorem.

The theorem gives also a lower bound on the number of critical points of index k, i.e.,
ck ≥ βk. The theory is due to Morse (see [54]) and was extended into several important
directions by Thom [67], Smale [65], Milnor [51], Witten [69] and more recently, and most
crucially for our work, by Floer (see Section 1.4).

Thurston-Nielsen theory
Let M be a compact, orientable two-manifold, possibly with boundary and let f : M→

M be an orientation preserving homeomorphism. Iterations of f generate a dynamical sys-
tem. We say that two homeomorphisms f0, f1 are isotopic (denoted f0 ) f1) if there exists
an isotopy ft : M× [0,1]→M such that for all t ∈ [0,1] the map ft(·) is a homeomorphism.
The set of all homeomorphisms of M can be divided into isotopy classes using the rela-
tion ), and the collection of all isotopy classes together with composition forms a group,
known as the mapping class group, denoted by MCG(M). If M has a boundary, one usually
considers only homeomorphisms that are the identity on the boundary and isotopes that fix
it pointwise, leading to MCG(M,∂M). Additionally, it is very useful to consider isotopy
classes relative to some finite set A, that is, we take into account only homeomorphisms
leaving A invariant and isotopies fixing it. This yields MCG(M rel A). Combining it with
the boundary case, MCG(M rel A,∂M). In applications one should think of A as being a
known periodic orbit.

The core of the Thurston-Nielsen classification theory is that every homeomorphism
can be decomposed into components on which the dynamics is simple and components
with complicated dynamics. To describe the chaotic part, recall the linear hyperbolic toral
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Figure 1.4: Local pictures of two transverse foliations (one depicted with solid lines and the
other one with dashed lines) with singularities. The figure on the right presents a foliation near
a boundary component.

automorphisms, namely smooth invertible maps of the torus that uniformly contract one
direction and stretch the other. Those are standard examples of chaotic maps. It is possible
to extend this concept to other surface maps. One needs to replace the orthogonal directions,
as those may not exist in general. One uses transverse foliations with singularities, which
we do not introduce formally here (for the intuitive picture cf. Figure 1.4). Using the concept
of a transverse measure on foliations (measuring length of arcs transverse to the foliation),
one can generalize the concept of stretching and contracting. We say that a map f : M→
M is pseudo-Anosov relative the finite set A if there exist two transverse foliations with
singularities only in points of A and corresponding measures such that the image of f along
one of the measured foliations is stretched with constant λ > 1, whereas along the other it
is contracted by a factor 1

λ . We say that map is pseudo-Anosov (abbreviated pA map) if the
set A is empty.

The dynamics of a pA map is complicated (chaotic). On the other side of the scale,
we have maps that are fairly simple. We say that a map g : M → M is of finite order if
there exists an n > 0 such that gn = id. Finally, a map f is Thurston-Nielsen reducible, if
M can be decomposed (we do not make it precise here) into connected components that
are dynamically separated by f and such that f restricted to each of them is either pA or
finite order. The Thurston-Nielsen classification theorem can be summarized by saying that
every isotopy class in MCG(M rel A) contains a Thurston-Nielsen reducible representative
(provided that M \A has negative Euler characteristic).

The philosophy is to find a periodic orbit (a set A) that may force chaotic, pA behavior.
We should also mention that in general it is far from trivial to find a set A for which one
can conclude that the given map is pA relative the set A. For an overview of the methods
outlined here, one should consult [17]. The details of the proof of the classification theorem
can be found in [68].

The above methods fall into two categories. Sharkovskii’s theorem and Thurston-
Nielsen theory allow one to prove the existence of periodic solutions using the knowledge
of other periodic solutions, due to the dynamical forcing. On the other hand, results like
Poicnaré’s geometric theorem and Morse theory provide a lower bound on the number of
critical points, using the topology of the underlying manifold. Combining the two above
approaches, can lead to a new class of results that give insight into the dynamics of the low
dimensional systems. This is the methodology that we will use in this thesis.
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u2

u1 t0 + εt0− ε t0

Figure 1.5: The local picture of the evolution of two solutions of a parabolic PDE that develop
a tangency at t0 [middle]. The number of intersections among the solutions drops by two in a
neighborhood of t0.

u

x
uxx

u

Figure 1.6: Two solutions of a parabolic equation [left]. Their lift to (x,u,ux,)-space [right].

1.2. Braids and dynamics
Parabolic equations - braids enter the dynamics

The idea of using the topological structure of linked solutions (braids, knots) to obtain
forcing results in dynamical systems was already used in several settings. In particular, we
mention Thurston-Nielsen theory and the lap number techniques that we will discuss in this
section.

An important motivation for using braid theory comes from the comparison principle.
Consider a parabolic partial differential equation

ut = f (x,u,ux,uxx) = uxx +g(x,u,ux), x ∈ R/Z,

where g is a smooth function. For two solutions of this equation, u1(x, t) and u2(x, t), define
the number of crossings between them by

zu1,u2(t) = #{x | u1(x, t) = u2(x, t)}.

It turns out that z is a non-increasing function of time, and if u1 and u2 intersect non-
transversally (topologically) then the intersection will be destroyed (cf. Figure 1.5). This
was first observed by Sturm and later used and extended by many authors including Matano
[46], Brunovsky and Fiedler [19], Angenent [3], [6], etc. Similar techniques were used in
the context of curve-shortening to prove existence of geodesics on two dimensional mani-
folds (see [6, 5]).

Lifting u1 and u2 to the (x,u,ux)-space, one recognizes a braid structure (cf. Figure
1.6) as two solutions wind around each other. The fact that zu1,u2 is non-increasing in t,
translates into the language of the braid theory: along the evolution the complexity of the
braid corresponding to those solutions cannot increase.
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u1

u5

u2

u3

u4

σ= {1,2}{3}{4,5}
σ= {1,2}

u1 u2

Figure 1.7: Two conventions for presenting braids. Horizontal – a braid on 5 strands consisting
of two connected components [left]. Vertical – a braid on two strands (a single component)
[right]. Both have the corresponding permutation indicated.

Braids and braid classes
Intuitively it is clear what a braid is, and the mathematical definition reflects this in-

tuition. Roughly speaking, a braid consists of several strings that are intertwined. To be
precise, we consider a braid to be a collection of n continuous curves uα [0,1]→ R3, called
strands, that are transversal to all planes parallel to one of the directions. For example, we
can assume ∂uα1 > 0 for all α, where uα = (uα1 ,uα2 ,uα3 ) (cf. Figure 1.7). Moreover, strands
are assumed to have disjoint images (they do not intersect).

The braids considered in this thesis are closed. This does not necessary mean that all
strands are periodic, but that there exists a permutation σ on n elements such that uα(1) =
uσ(α)(0) for all α∈{1, . . . ,n} (cf. Figure 1.7). We will denote the braids using bold font, i.e.,
u = {u1, . . . ,un}, omitting the corresponding permutation σ if it is clear from the context.
Cycles of the permutation divide braids into braid components (see again Figure 1.7).

We say that, two braids are equivalent if one can be deformed into the other without
creating any intersections along the path. The equivalence classes of this relation are called
braid classes. For a schematic presentation of a braid class and examples of equivalent
braids see Figure 1.8. Observe that two different braid classes on n strands are necessary
separated by so called singular braids, i.e., collections of curves that do have intersections
among the strands (cf. Figure 1.8).

Singular braids can have intersections of different degree of degeneracy ranging from
two strands having a single isolated crossing to two (or more) strands collapsed onto each
other. They can be viewed as the boundaries between braid classes. Observe that a con-
tinuous path between the representatives of two braid classes sharing a co-dimension one
boundary component contains a singular braid that has one intersection among the strands
(of course choosing a path through the aforementioned boundary components). At this
point recall, the behavior of the parabolic flow, in which the transversal intersections of two
solutions are destroyed along the evolution.
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Figure 1.8: Schematic picture of a braid class with two representatives indicated [left] and
[right] and a singular one corresponding to a point on the boundary of the class [middle].

ux
x

x

u

u

Figure 1.9: A braid on two strands [left]. The braid diagram (piecewise linear representant of
the class of the two dimensional projection of the braid) [right].

The algebraic structure of braids
A discretized braid diagram is created from a braid by considering a (generic) two

dimensional projection and then taking a piecewise linear approximation of it (cf. Figure
1.9). In this context, strands uα are represented as k-tuples uα := (uα1 , . . . ,uαk ), and a braid
as an unordered collection of such tuples. Here k denotes the number of discretization
points. We also keep track of the type of crossings.

Braids carry the following algebraic structure. Let the configuration space be defined
asCn := {z ∈Cn z j *= zi, i *= j}/Σn where Σn denotes the permutations on n symbols, i.e.,Cn
is a space of unordered n-tuples of distinct points in C, or equivalently R2. Then the group
of braids on n strands, denoted Bn, is defined as the fundamental group of Cn, that is, the
space of equivalence classes of loops inCn (i.e. Bn = π(Cn)). Observe that a loop u on this
space can be viewed as a set of n unordered paths uα : [0,1]→ R2 such that uα1(t) *= uα2(t)
for α1 *= α2 and uα(0) = uσ(α)(1) for some permutation σ∈ Σn. By drawing graphs in R3 it
is easy to see that we obtain n strands connecting the plane (0,y,z) with (1,y,z), which are
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i−1 i i+1 i+2

i−1

i

i+1

i+2

σi

σi

..

.

..

.

· · ·· · ·

Figure 1.10: Standard representations of the generator σi.

≈

Figure 1.11: The figure presents two piecewise linear braids that have equivalent symbolic
description: the one on the left σ3σ2σ3σ3σ1 and the one on the right σ2σ3σ2σ1σ3. Observe that
these braids lie in the same braid class.

tangled. Concatenation of two such paths introduces the group structure. Again, two paths
are homotopic if their stands can be homotoped without intersections along the path.

Artin in [9] showed that the braid group Bn can be given the following representation.
Let σi be the braid that twists (exchanges) strands i and i+ 1 with i-th strand passing over
i+ 1-st one (positive crossing) and leaving all other strands invariant (the standard repre-
sentation of this generator is presented in Figure 1.10). Then the group Bn can be described
using letters {σ1, . . .σn−1} and their inverses (σ−1

i twists the same strands as σi but i-th
strand passes beneath the i+ 1-st; negative crossing) with two equivalence relation among
the combinations of symbols, namely

{
σiσ j = σ jσi for |i− j| > 2, 1≤ i, j ≤ n−1

σiσi+1σi = σi+1σiσi+1 for 1≤ i≤ n−2

An element of this group is usually presented as a braid diagram i.e. a piecewise linear rep-
resentative of the class (cf. Figure 1.11, which also shows the above equivalence relations).

It is worth to mention two problems related to the algebraic structure of braids. The first
one is the word problem, that is, the question whether it is possible to decide algorithmically
if the two given sequences of generators represent the same element in the braid group. The
affirmative answer was already given by Artin in [9]. The second one is the conjugacy
problem. We ask, given two braids x and y, whether one can algorithmically find (and
decide whether it exists) a braid v such that y = v

−1xv. This problem was first solved by
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ũ
tt

u

i−1 i+1ii−1i+1ii−1i−1i

Figure 1.12: Along the evolution of the parabolic flow crossings can be destroyed, not created.
Compare to Figure 1.5.

Garside in [32]. The results in this paper, in particular, the Garisde normal form of a braid
will be also used in Chapter 3.

Parabolic flows and braid diagrams
Let us consider the equations of the form

Ri(ui−1,ui,ui+1) = 0, (1.2)

where Ri : R3 → R are increasing in both the first and third variable. Moreover, assume
that the sequence of Ri is periodic, i.e., Ri+d = Ri for some d ∈ N. Such a sequence R is
called a parabolic recurrence relation (compare with monotone recurrence relations studied
for example in [4] and [37]). We would like to point out that the properties of a parabolic
recurrence relation resemble those obtained via generating function h (Section 1.1).

A periodic solution of Equation (1.2), {ui} with ui+d = ui, can be depicted in a diagram
by connecting the points ui with straight lines. We interpret a collection of such solutions
(sequences) as a (discretized) braid diagram. Due to nature of our problem it is enough
to restrict ourself to positive braids only, i.e., only positive generators. This superimposed
structure becomes natural if we consider the parabolic flow

d
dt
ui = Ri(ui−1,ui,ui+1).

The change of the position of the i-th point depends on its two nearest neighbors. One can
deduce from the monotonicity properties of the parabolic recurrence relation that, along the
flow, crossings among the strands can be destroyed but not created. If the evolution of the
system develops an isolated tangency in a braid diagram (exactly two points of different
strands collide, Figure 1.12), then the monotonicity conditions on R guarantee that

Ri(ui−1,ui,ui+1)−Ri(ũi−1,ui, ũi+1) = u′i− ũ′i
has a sign (negative in Figure 1.12). That is, the number of crossings before the collision
will necessarily be greater than the number of crossings after. We already mentioned that
the singular braids (possessing intersections among the strands) can be seen as boundary
between two classes. With this we obtain the intuitive picture presented in Figure 1.13 (in
analogy to the parabolic partial differential equation in Figure 1.5).

Observe that in this setting a strand is just a sequence of points, but for the following
two reasons we connect them piecewise linearly. First, visually it allows to deduce which
points belong to one strand. Secondly, this formalism provides us with a way to encode the
decreasing of intersections along the parabolic flow. The properties described above suggest
that one should look at the boundary of a braid class and decide about the direction of the
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u

Σ

i−1 i

[u rel v]

i+ 1

Figure 1.13: A schematic picture of a parabolic flow on a braid class. Σ denotes the set of
singular braids (boundary of the class).

u0

u1

u0

u0

u1

⊂

Σ

Figure 1.14: In the braid on the left, black strands denote the strands fixed by the flow and the
gray one is allowed to move. In the middle its configuration space is shown and the direction
of the parabolic flow on the boundary is indicated. On the right we see how the configuration
space is positioned with respect to the stationary points of the flow (black strands), represented
by the four dots.

flow on the singular braids by comparing the number of crossings in the adjacent classes. It
turns out that this is indeed possible, but there are issues one needs to resolve to make this
kind of argument precise (see chapter 2 and [33]).

To give some intuition of how one can use the properties mentioned above, let us discuss
in more detail the example presented in Figure 1.14. Consider the braid depicted on the left
in this figure. We deal with the braid diagram with two discretization points (points on the
left are identified with those on the right). Coming back to the ideas of forcing, assume
that we know four two-periodic solutions of the parabolic flow (depicted as black strands in
the figure). We want to investigate the possible behavior of an additional grey strand under
the evolution of the flow. Observe that the crossing property traps the point u0 between the
points of the black strands. Traversing any of them would increase the overall number of
crossings of the braid. The situation for u1 is different though, as once it touches any of
the stationary strands it will be forced to move past them (the number of crossing drops in
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such a case). Drawing a schematic picture of the braid class in the (u0,u1)-plane and noting
the direction of the flow on its boundary yields the picture in the middle of Figure 1.14. It
suggests a hyperbolic stationary point, hence an additional (forced) solution.

To prove the existence of forced trajectories one uses the theory of the Conley index
for braid diagrams. For now one should just think of it as an algebraic topology tool, that
allows us to draw rigorous conclusions about the existence of additional solutions inside of
given braid class. The details of the construction of the index are carried out in [33] and
some additional explanation can be found in chapter 2. For the general Conley index theory
we refer to [20] or [53].

1.3. Orientation reversing twist maps
The above ideas can be used to study orientation reversing twist maps of the plane.

DEFINITION 1.2. A map f is called an orientation reversing twist map of the plane if it is
C1-smooth and if there exist global coordinates (x,y) ∈ R2 such that f given by (x′,y′) =
f (x,y) satisfies the following two conditions: (i) det(d f ) < 0, and (ii) dx′

dy > 0. It is called
an orientation reversing twist diffeomorphism of the plane if in addition the function f is a
diffeomorphism.

Property (ii) is referred to as a positive twist property or simply twist property. One
of the questions that Chapter 2 deals with, is how an orientation reversing twist map (dif-
feomorphism) leads to a parabolic recurrence relation R (see [33]). In the case when f is
an orientation reversing map the situation is more complicated. While it is still possible
to express the second coordinates of the trajectory in terms of the first ones and obtain a
recurrence relation R̃ depending on two nearest neighbors, the monotonicity condition does
not hold. That is, R̃ is decreasing in the first and increasing in the third variable (details can
be found in Chapter 2). We introduce the following modification:

R0(x−1,x0,x1)
def
= R̃(−x−1,−x0,x1)

R1(x0,x1,x2)
def
= R̃(−x0,x1,x2)

R2(x1,x2,x3)
def
= −R̃(x1,x2,−x3)

R3(x2,x3,x4)
def
= −R̃(x2,−x3,−x4).

Using the monotonicity conditions of R̃ we infer that Ri indeed forms a parabolic recurrence
relation in the above (periodic) sense.

Another way to look at this, is observing that for an orientation reversing map, its
second iterate f 2 can be decomposed as f 2 = f+ ◦ f− with f+ = f ◦Rx and f− = Rx ◦ f ,
where Rx is a linear reflection in the y-axis. Observe that both f+ and f− are orientation
preserving maps, and while f+ has a positive twist, f− has a negative twist. The fourth
iterate of f can be written as a composition of four orientation preserving maps with positive
twist:

f 4 = f3 ◦ f2 ◦ f1 ◦ f0,
where f0 =− f−, f1 =− f+ ◦(−id), f2 = f− ◦(−id) and f3 = f+. Each of the maps defines
an Ri and brings us back to the theory of parabolic recurrence relations.
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type I

type II

Figure 1.15: The flip transformation changes the braid diagram corresponding to a period four
orbit point into a diagram of one of two types.

To introduce the braid diagrams in this setting, let z be a period four point of f and
denote the points on its trajectory by z0 = z, z1 = f (z), z2 = f 2(z) and z3 = f 3(z). Since
the first coordinates xi of the trajectory zi = (xi,yi) determine the trajectory fully, the corre-
sponding braid diagram is obtained by connecting points (i,xi) with piecewise linear graphs.
Three additional strands are given by shifts of this trajectory, with respectively z1, z2 and z3
as starting points. Now we need to incorporate the modifications applied to the recurrence
relation to turn it into a parabolic recurrence relation. Analyzing the definition of Ri, we
see that we need to apply the following transformation to the x-coordinates of points of the
trajectory:

(x0,x1,x2,x3)→ (−x0,x1,x2,−x3).

This will result in a sequence that satisfies Ri = 0 if and only if the original {xi} satisfy
R̃ = 0, hence form a trajectory of f . We call the above transformation a flip.

One also needs to investigate the effects of the flip on the braid diagrams constructed
from a period four orbit. Initially those lead to six different diagrams depending on the
permutation according to which the period four orbit visits its points. Applying the flip
transformation to all six diagrams (by reversing the order of points on the flipped coor-
dinates) surprisingly results in diagrams that can be divided into two types. To be more
precise, the resulting diagrams lie in one of the two braid classes, as shown in Figure 1.15.
If the resulting diagram of a given period-four trajectory belongs to the first of the classes
we call it type I point and in the second case we call it type II. Our goal is to look for ad-
ditional stationary solutions inside braid classes, with the strands corresponding to one of
these two types being fixed. Hence we want to investigate the forcing properties (if any) of
the period four points of type I and type II, see Figure 1.15.

The above mentioned type of braid diagram is a crucial element of the classification
of period four orbits for an orientation reversing twist map. It turns out that we need a
technical, but quite natural assumption, namely that f satisfies the infinite twist condition,
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i.e.,
lim
y→±∞

πx f (x,y) = ±∞ for all x ∈ R,

where πx denotes the projection onto the first coordinate. With this we can prove the fol-
lowing theorem:

THEOREM 1.3 (Chapter 2). An orientation reversing twist map of the plane that satisfies
the infinite twist condition and that has a type I period-4 point, is a chaotic system, i.e., the
topological entropy of some bounded invariant set inR2 is positive. Conversely, there exists
an orientation reversing twist map that satisfies the infinite twist condition, has a type II
period-4 point, and that has zero entropy.

Topological entropy is a measure of how complicated the dynamics of the system is
and it essentially measures the growth of distinguishable periodic orbits as the period in-
creases. If this growth is faster than exponential, the entropy is positive. We would like to
stress here that under quite weak assumptions (especially no compactness is required) it is
possible to obtain a fairly general result that classifies the period four orbits. In compari-
son, the Thurston-Nielsen theory does not give a bounded set on which a map is chaotic.
Comapctifying R2 to the sphere allows applying the theory. Nevertheless, one cannot obtain
a compact set on which the dynamics is chaotic after returning to R2 (more knowledge on
the behavior near infinity is required).

What is crucial in the method is to use the diagram obtained through flipping from the
period four orbit as fixed (for parabolic flow) strands of a braid. Through these strands we
can thread an additional strand(s) and the braid class created like this will have a non-trivial
Conley index. This can be seen by comparing Figures 1.14 and 1.15, since the braid of
type I consist of two copies of the braid depicted on the left of Figure 1.14. The analysis
at this point becomes similar to the one that was described when discussing the example in
Figure 1.14. Adjusting it to the braid of type I allows the construction of many additional
orbits leading to the construction of a semi-conjugacy to the shift on three symbols. This
semi-conjugacy is used to obtain a lower bound on the topological entropy and to conclude
the chaotic nature of the system having a period four orbit of type I.

To finish the classification of period four orbits, we need to construct an example of non-
chaotic twist map having a period four orbit of type II. This is done by lifting a classical and
thoroughly studied one dimensional logistic map to dimension two. Details can be found
in Chapter 2. The rest of that chapter deals with a version of the above result that does not
require the infinite twist condition, but instead requires map f to be a diffeomorphism.

THEOREM 1.4 (Chapter 2). An orientation reversing twist diffeomorphism of the plane
that has a type I period-4 point is a chaotic system, i.e., there exists a compact invariant
subset Λ ⊂ R2 for which f |Λ has positive topological entropy. Conversely, there exists
an orientation reversing twist diffeomorphism with a type II period-4 point that has zero
entropy.

As an example Let us come back to the Hénon map. Its general form is

f (x,y) = (βy,1−αy2 + x),

where α and β are real parameters. This map has the twist property for β *= 0 and for
β > 0, is orientation reversing, while for β < 0 it is orientation preserving. Observe that
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∂x′
∂y = β *= 0, and since

d f (x,y) =

(
0 β
1 −2αy

)
,

the Hénon map is area preserving if and only if |β| = 1. The results presented in Theorems
1.3 and 1.4 can be applied to this map (see Chapter 2.

1.4. Floer homology for relative braids
Area preserving maps and the Hamilton equations on the disc

The area preserving maps of the D2 can be seen as a generalization of twist maps of the
disc (or R2). On the other hand, there exists a strong connection between the solutions of the
Hamilton equations and area preserving maps. Consider compact 2-dimensional symplectic
manifold (M,ω), i.e., ω is a non-degenerate closed 2-form on M. Let H : R/Z×M→R be
smooth, and let XH be the Hamiltonian vector field generated by H , i.e.,

iXHω(·, ·) = ω(XH , ·) =−dH.

Then the Hamilton equations are given by

dx
dt

= XH
(
t,x
)
. (1.3)

The solutions of this equation generate a family of maps ψtH : M→M satisfying

d
dt
ψtH = XH ◦ψtH ψ0

H = Id. (1.4)

The link between the solutions of the Hamilton equations and area preserving maps can
be observed by analyzing Equation (1.4) in the case M = D2. One can prove that the family
ψtH preserves the symplectic structure ω0 = dp∧dq, which is equivalent, in dimension two,
to preserving the area and orientation. Given H , the Hamilton equations yield a time-1
map ψ1

H that is area preserving. On the other hand, for each orientation preserving map
f : D2 → D2 that preserves the area, there exists a hamiltonian Hf such that f is the time-1
map of the flow given by

ẋ(t) = XHf (t,x).

The above observations allow us to translate the results concerning orientation pre-
serving maps of the disc to the results for the Hamilton equations, and vice versa. The
information about the dynamics of time-1 maps gives insight into the flow defined by the
Hamilton equations. As an example, fixed points of f correspond to 1-periodic orbits of the
Hamiltonian flow. On the other hand, the periodic orbits of

ẋ(t) = XH(t,x),

translate to the periodic orbits for the area and orientation preserving map (time-1 map of
the flow).
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Arnold Conjecture
The main motivation of Floer’s original work was a long standing conjecture due to

V.I. Arnold. Define the set of one periodic solutions of the Hamilton equations, which is
equivalent to the set of fixed points of the time one map ψ1

H (see Equation (1.4))

CritH :=
{
x : R/Z→M

∣∣∣∣
dx
dt

= XH(t,x)
}

.

We use the notation of critical points analogous to Morse theory to stress the fact that
the set of one periodic solutions corresponds to the critical points of an appropriate action
functional (see below). In this context x ∈ CritH is called non-degenerate if

det
(

Id−dψH(1)
(
x(0)
))
*= 0. (1.5)

The Arnold conjecture was first proposed in [7] and can be stated as follows.

THEOREM (Arnold Conjecture). Let (M,ω) and H be as above and assume that all x ∈
CritH are non-degenerate. Then

#CritH ≥
2n

∑
i=0

dimHi(M),

where Hi(M) denotes the singular homology of M.

This theorem improves on the Lefschetz fixed point theorem proved in [43], which
bounds the number of one-periodic points by the alternating sum of Betti numbers (dimen-
sions of the homology groups). The result was also known previously for Hamiltonians
that are t independent (autonomous systems), as in this case CritH coincides with critical
points of H; it is then enough to show that the nondegeneracy condition from the theorem
above implies that H is a Morse function, as we can apply standard Morse theory. The
first progress in proving the conjecture in more general settings was obtained by Conley
and Zehnder in [21], where they proved the conjecture for the n-dimensional torus using a
variational principle on the loop space. Then Gromov [35] proved existence of at least one
critical point using pseudo-holomorphic curves. Floer, in his series of papers [27, 28, 29],
managed to combine the ideas of Conley and Zehnder with those of Gromov to develop
an alternative for Morse theory that allowed him to prove the Arnold conjecture for a large
class of symplectic manifolds. Further generalizations of the methods were done by Hofer
and Salamon [38] and Ono [57]. Floer’s proof of the Arnold conjecture has been extend to
all compact symplectic manifolds by Fukaya and Ono in [30], Liu and Tian in [45].

The example of how Morse theory can be applied to an autonomous system suggests
that it is possible to adapt the prove of the Arnold conjecture for time dependent Hamil-
tonians. On D2 (or R2) the Hamiltonian action functional on the space of loops is given
by

fH(x) =−
∫ 1

0
α0
(
xt(t)
)
+
∫ 1

0
H(t,x(t))dt,

where dα0 = ω0 (i.e., α= pdq in the standard R2). In this setting, critical points of fH are
in fact solutions of the Hamilton equations.

When trying to follow the ideas of Morse theory, one is faced with the following ob-
structions. The first one is that the action functional is not bounded, neither from above nor
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from below. Moreover, fact that its spectrum is unbounded in both directions prevents us
from defining a counterpart of the Morse index in any meaningful sense. Additionally, the
L2 gradient flow of fH does not define a well posed initial value problem. Those are of the
main reasons why the Arnold conjecture was open until the Floer’s work.

As natural choices of gradient dynamics we may consider both the L2 or theW 1
2 ,2 gra-

dient flow. The latter yields an ordinary differential equation with a well posed initial value
problem and defines a flow. The L2 gradient yields to an elliptic partial partial differential
equation – the nonlinear Cauchy-Riemann system – for which the initial value problem is
ill posed. In this case one needs to restrict to the set of bounded solutions. The advantage
of using the L2 gradient over the W 1

2 ,2 gradient flow is that it satisfies the so called cross-
ing principle, an analogue of the lap number techniques for parabolic equations, which is
not satisfied by the W 1

2 ,2 gradient flow. We will explain the implications of the crossing
principle in the next section.

The Cauchy-Riemann equations in the setting of braids
To study n-periodic solutions, or a number of solutions of different integer periods, we

can employ the structure of braids. Starting with an n-periodic solution of (1.3) we can
describe the whole trajectory on the interval [0,1] using its translates, i.e., define

x1(t) = x(t), x2(t) = x(t+ 1), . . . , xn(t) = x(t+n−1).

Each of the xi forms a strand in a braid that corresponds to a given solutions x. Observe
that if we want to consider the collection of above curves xi : [0,1] → D2 as a braid we
need to show that their images are disjoint (we assume that n is a minimal period). This
is, indeed the case due to the uniqueness of the initial value problem for the Hamilton
equations. In fact, in this way we can superimpose several different solutions, possibly
with different periods, as one braid, by considering the strands generated by the different
solutions together.

To stress this braid oriented approach we use the notation x for the collection of strands
{x1, . . . ,xn}. The associated permutation on n symbols σ is defined by

xk(1) = xσ(k)(0). (1.6)

For a single solution the permutation σ of the corresponding braid is just a cyclic permuta-
tion, but for collections of solutions it is of course more complicated. The action functional
for the Hamilton equations takes the form

fH(x) =−
∫ 1

0
α0(xt(t))+

∫ 1

0
H(t,x(t))dt, (1.7)

with α0 = pdq. Let x be a braid, then its action is defined by

fH(x) :=
n

∑
k=1

fH(xk).

The Hamilton equations corresponding to this action functional can be viewed as a system
of 2n equations on (D2)n with H̄(t,x) = ∑k H(t,xk), coupled via the boundary conditions
given in Equation (1.6).
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Following the ideas of Morse theory, we want to analyze a ‘negative gradient flow’ of
fH . Formally,

d fH(x)δx =
∫ 1

0

[
−pδq′ −δpq′+Hpδp+Hqδq

]
dt

=
∫ 1

0

[
−q′ δp+ p′ δq+Hpδp+Hqδq

]
dt

=
∫ 1

0
〈J0x′+∇H,δx〉dt,

where
J0 =

(
0 −1
1 0

)
.

We add a new variable time variable s to the system to define a negative gradient flow of fH ,
which reads

∂uk

∂s
+ J0

∂uk

∂t
+∇H(t,uk) = 0. (1.8)

Again, the equations for uk are coupled through the boundary conditions in Equation (1.6).
Here we use u to denote the solutions of the above equation to stress the dependence on
s. The linear part of the above equations, ∂uk

∂s + J0
∂uk
∂t , is the reason why we call them

the Cauchy-Riemann equations. Observe that in this setting, the periodic solutions of the
Hamilton equations are the stationary braids of the Cauchy-Riemann equations (1.8). The
equations do not define a well-posed initial value problem, as one can obtain a solution only
if the Fourier coefficients of the initial condition decay sufficiently fast. Hence we restrict
our attention to the set of bounded solutions, denoted MJ,H . The next step is to prove
that MJ,H is compact in the C1

loc topology. This leads to a version of Floer’s compactness
theorem.

THEOREM 1.5 (Compactness, Chapter 3). The set of bounded solutions (braids) MJ,H is
compact in the topology defined by convergence on compact subsets of R× [0,1].

The proof of this theorem follows form interior regularity for the Cauchy-Riemann
operator; details can be found in Chapter 3.

Crossing principle
The crucial interplay of the dynamics of the Cauchy-Riemann equations and the topo-

logical structure of braids is expressed in the crossing principle. The basis of this principle
is the analysis in the case of two strands satisfying the Cauchy-Riemann. In the ‘generic’
case two strands intersect at a single point (Figure 1.16). This is the analogue of the prop-
erty of parabolic flows on the braid diagrams. Observe that while two stands of a braid have
disjoint images, they “overlap”, i.e., intersect in projection. This overlap (corresponding
to a generator in the braid word), is called a crossing, and we distinguished positive and
negative types of crossings (cf. Figure 1.16). The crossing is negative if the strand ‘coming
from the left goes below the one from the right’ and positive in the other case.

Consider the ‘generic’ local picture as in Figure 1.16. That is, two strands (solutions)
u1 and u2 which intersect at an isolated point (s0, t0). The Cauchy-Riemann equations for
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Figure 1.16: The labeling convention for crossing types: negative [left] and positive [right].
Two strands (solutions) x and y intersecting at a single point [center]. The flow (in s) changes
negative into positive crossing.

u1 = (p1,q1) and u2 = (p2,q2) are

u1
s + J0u1

t +∇H(t,u1) = 0,

u2
s + J0u2

t +∇H(t,u2) = 0.

Define the difference z = u1− u2 and let us investigate how it changes along the evolution
of the system. Observe that z satisfies

zs+ J0zt +∇H(t,u1)−∇H(t,u2) = 0,

and at (s0, t0) it simplifies to
zs+ J0zt = 0.

In the extended phase space, we have u1 = (p1,q1, t) and u2 = (p2,q2, t) which yields

u1
t ×u2

t =




q1
t −q2

t
−(p1

t − p2
t )

p1
t q2

t − p1
t q2

t



 .

On the other hand, in the p,q-plane, we have zt = (p1
t − p2

t ,q1
t −q2

t )
T . Hence we get

πp,q(u1
t ×u2

t ) =−J0zt ,

where πp,q denotes the projection on the p,q-plane. Consequently,

zs ·πp,q(u1
t ×u2

t ) =−J0zt ·πp,q(u1
t ×u2

t ) = ‖J0zt‖2 > 0.

That is, zs has the same direction as πp,q(u1
t ×u2

t ), hence as s increases u2 “moves downward
faster” than u1, as indicated in Figure 1.16.

We define the crossing number of a braid x by

Cross∗(x) = #negative crossings−#positive crossings.

Observe that the crossing number is only defined for (not singular) braids. Along the evo-
lution under the Cauchy-Riemann equations, u ∈MJ,H may develop an intersection at s0.
Then Cross∗(u(s0)) is not defined. We have the following.

LEMMA 1.6 (Crossing lemma, Chapter 3). Where defined, Cross∗(u(s)) is a non increasing
function as a function of s.
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Figure 1.17: Sketch of a relative braid class !x rel y" and some representatives.

The proof (see Chapter 3) relies on the fact that the properties of solutions of the
Cauchy-Riemann equations are similar to those of complex differentiable functions. In
particular, two solutions are either equal for all (s, t) or their difference has only isolated
zeros. This is due to the general similarity principle (see [39]).

Floer homology for relative braid classes
The idea of forcing leads to the concept of relative braid classes. Let Ωn denote the set

of braids on n strands. Define x∪ y for x in Ωn and y in Ωm as the collection of strands
of both braids. If none of the strands of x∪ y intersect then x∪ y ∈ Ωn+m. The braid y
will be called the skeleton and x the free strands. For fixed y, define Ωn rel y, as the space
consisting of all x∈Ωn, such that x∪y∈Ωn+m. We will call elements of this space relative
braids.

In this setting [x] rel y denotes a path component of x rel y in Ωn rel y, that is, all equiv-
alent relative braids with a fixed skeleton y. Intuitively, [x] rel y describes a class of braids
that can be deformed onto each other without creating any intersections along the homotopy
while keeping the skeletal strands y fixed. The concept of the relative braid class allows us
to obtain a finer decomposition of the space of braids (cf. Figure 1.17). Observe that one
may consider a more general version of a relative braid class, namely let

Ωn,m =
{

(x,y) ∈Ωn×Ωm | x∪y ∈Ωn+m} ,

and denote the path component of x∪y ∈Ωn+m in Ωn,m by !x rel y" (cf. Figure 1.17).
A relative braid class is proper if its boundary does not contain a representative with

a free strand that has entirely collapsed onto another one (be it free or fixed), or onto the
boundary of the disc. Let [x] rel y be a proper relative braid class, then we define

MJ,H([x] rel y) := {u ∈MJ,H | u(s, ·) ∈ [x] rel y for all s ∈R},

a set of bounded solutions of the Cauchy-Riemann equations within a given braid class
(cf. Figure 1.18). The crossing principle guarantees the isolation property for such proper
classes, and with it the associated compactness properties.
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[x] rel y

[x] rel y

MJ,H([x] rel y)

!x rel y"

Figure 1.18: The set of bounded solutions MJ,H([x] rel y
)

restricted to a relative braid class
[x] rel y.

From this point on we follow the Floer’s original work, although the braid structure
forces us to replace some of the concepts with the counterparts that take into account the
‘σ-periodicity’ of braids. The first step is the definition of a relative index1 for critical
points of the action functional. Then we face the issue of transversality. Solving those two
problems will finally allow us to define chain groups and the boundary operator. For the
purpose of this introduction we only indicate the necessary adjustments and the reader is
advised to go to Chapter 3 for the details.

The definition of a relative index is an adapted version of the theory presented in [59]
and [60] that develops the Maslov index and Conley-Zehnder index for Lagrangian paths.
For two stationary solutions x−,x+ ∈ CritH and an orbit u connecting them, the linearized
Cauchy-Riemann operator can be written as

∂̄K,Δσ =
∂
∂s

+ J0
∂
∂t

+K(s, t),

where K(s, t) is a family of 2n × 2n symmetric matrices. This operator acts on functions
satisfying the boundary conditions given by Equation (1.6), and the family K satisfies a
certain limit conditions dictated through x− and x+. For non-degenerate (see Chapter 3) x−
and x+, the operator ∂̄K,Δσ is Fredholm on appropriate function spaces, that is, its kernel and
co-kernel are both finite dimensional. Using this property one can obtain a relative index µ
for stationary points so that

ind ∂̄K,Δσ = dimker ∂̄K,Δσ −dimcoker ∂̄K,Δσ = µ(x−)−µ(x+).

The relative index µ is defined using Maslov indices (see Chapter 3).
Roughly speaking, by choosing the Hamiltonians in a large enough class, bounded

solutions generically have the property that ∂̄K,Δσ is Fredholm and surjective. This implies

1Compare with the fact that the Morse index is not well defined in this context as remarked in the ’Arnold
Conjecture’ section.
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Figure 1.19: The possible boundary components of the manifold of connecting orbits between
points with index difference two. In particular the number of connections via intermediate
points is even.

via the implicit function theorem that the spaces M
J,H
x−,x+ ⊂MJ,H of connecting orbits are

smooth manifolds of dimension

dim M
J,H
x−,x+ = µ(x−)−µ(x+). (1.9)

Define the chain groups as free Abelian groups with coefficients in Z2 over the points
of index k, i.e.,

Ck := spanZ2{x ∈ CritH : µ(x) = k}.
Under genericity assumptions, Equation (1.9) guarantees that, modulo reparametrization of
the trajectories, we have only finitely many connections between points with index differ-
ence one. This is crucial, as it allows us to define the boundary operator ∂k :Ck→Ck−1 as
the linear map that for any x ∈ CritH([x] rel y) with µ(x) = k is given by

∂kx= ∑
µ(x′)=k−1

n(x,x′)x′,

where n(x,x′) = #M
J,H
x,x′ mod 2.

We say that points x−,x+ with µ(x−)−µ(x+) = 2 are connected via a broken trajectory
through x′ (Figure 1.19), if µ(x−)−µ(x′) = 1, and M

J,H
x−,x′ and M

J,H
x′,x+ are both non-empty.

In this setting the square of the boundary operator counts the number of broken trajectories
connecting x−,x+ via all possible intermediate points. Further analysis of the Cauchy-
Riemann equations reveals that the connected components of spaces M

J,H
x−,x+ can only be

homeomorphic to S1 or (0,1). The closure of (0,1) in MJ,H is obtained by adding two
‘ends’ 0 *= 1, which corresponds to broken trajectories (gluing principle, cf. Figure 1.19).
Hence the number of broken trajectories is always even and it holds that

∂k ◦∂k+1 = 0.

We thus conclude that
(
Ck,∂k
)

forms a chain complex. With this we can define the Floer
homology of a proper relative braid class [x] rel y as

FHk([x] rel y,J,H) :=
ker(∂k)

im(∂k+1)
.

Floer homology satisfies the following invariance.
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Figure 1.20: Braid with generators σ1σ2σ
−1
1 σ−1

1 [left] and the representative of the same braid
class in a Garside normal form [right].

LEMMA 1.7 (Continuation). For a proper relative braid class [x] rel y Floer homology does
not depend on the choice of J or the Hamiltonian H fixing y.

Moreover, homotopies of the skeleton y (in an appropriate sense) do not change the
Floer homology allowing us to define it for a proper braid class !x rel y" (cf. Figure 1.17).

THEOREM 1.8. Let [x] rel y and [x′] rel y′ be in a proper relative braid class !x rel y", then
it holds that

FH∗([x] rel y) = FH∗([x′] rel y′).
In particular, the Floer homology is an invariant of the class !x rel y". This justifies the
notation FH∗(!x rel y").

With this theorem we start investigating the properties of the Floer homology for the
relative braid classes. Let H be a Hamiltonian fixing a given skeleton y, then we have the
following.

THEOREM 1.9 (Chapter 4). Let !x rel y" be a proper braid class. If
FH∗
(
[x] rel y

)
*= 0,

then CritH([x] rel y) *= ∅.

Additionally, we can obtain the following counterpart of the Morse inequalities. Let
βk = dimFHk(!x rel y") be the k-th Betti number of the Floer homology. Then, for a generic
Hamiltonian H fixing y, the number of critical points of index k in [x] rel y is bounded from
below by βk.

Every braid class has a representative that consist of a positive braid and a number of
negative half twists. This corresponds to the Garside normal form of the braid (see [32]).
As a corollary one can deduce that each braid class can be represented by a braid with a
positive part concatenated with l ∈ N full negative twists. In Figure 1.20 we present an
example of a braid and its normal form. Above guarantees that there exists a representant
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β(x rel y) of the class !x rel y" that can be written as

β(x rel y) = !
−l ·β(x+ rel y+), (1.10)

where β(x+ rel y+) contains only positive generators, ! denotes a full positive twist and
l ∈N. We have the following result

THEOREM 1.10 (Chapter 4). For a proper class !x rel y" on n strands (both skeletal and
fixed). Then there exists a minimal natural number l satisfying Equation (1.10) such that

FH∗(x rel y)∼= FH∗−2nl(x+ rel y+).

This allows us to restrict our attention to braids with positive generators only.

1.5. Extensions and future work
Connection with the Conley index for braids

Above we have defined the Floer homology of a relative braid class, suggesting that it
allows us to obtain forcing results for the Hamilton equations. The problem that we face
at this point is that a careful inspection of all the ingredients used to define the homology
requires an almost complete knowledge of the system. Except for some special cases where
one can continue the problem to integrable system. We need to know all periodic orbits of
the Hamiltonian flow and all connections between them the Cauchy-Riemann flow. Such
a detailed knowledge of the system defies the purpose of calculating it. Ideally, one would
like to exploit topological information about the braid class to calculate the homology.

An ultimate goal for future work on this subject is to connect the Floer homology of a
braid with the Conley index of a discretized braid diagram that corresponds to it, and then to
use the latter to draw conclusions about the original system. We were able to prove one step
in this direction. The first problem that we encounter in our search for a connection between
the Floer homology and the Conley index for braids, is the fact that the latter theory deals
only with positive braids, while the former allows also negative crossings. The Garside
normal form of a braid and the shift Theorem 1.10 eliminates this problem.

Connection with Thurston-Nielsen theory
In the case of the disc, the mapping class group relative to a finite set (periodic orbit) A

is MCG(D2 rel A,∂D2). One can identify this group with Artin’s braid group on n-strands
Bn divided by its center, where n is number of points in A (or period in case of a periodic
orbit). This correspondence is best explained via an example. Let us consider the case
A = {a1,a2,a3}. Words in the braid group B3 are generated by letters σ±1

1 and σ±1
2 , with

the relations described earlier in this introduction. Besides, let φ1 ∈ MCG(D2 rel A,∂D2)
denote a homeomorphism that interchanges a1 with a2 in a counterclockwise direction (its
inverse does so in the opposite direction), and φ2 interchanges in an analogous way a2 and
a3. Observe that

It turns out that the map G : B3 →MCG(D2 rel A,∂D2) that sends the generator σi to
an isotopy class [φi]) is a group isomorphism, providing the required correspondence (cf.
Figure 1.21). In this sense one can think of an (isotopy class of) homeomorphism as being
represented by a braid (class).
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σ2

a1 a3

a2

σ1 φ1

a1 a3

a2

φ2

Figure 1.21: The schematic picture of the correspondence between the representatives φ1 and
φ2 of MCG(D2 rel A,∂D2), and the generators σ1 and σ2 of the braid group B3.

To explain this intuitively one needs the concepts of the suspension manifold and the
suspension flow. The suspension manifold corresponding to a homeomorphism is defined
as the quotient

Mf :=
M× [0,1]

(x,0) ∼ ( f (x),1)
.

In the case of the disc it can be thought of as a torus created from a cylinder with the ends
glued along f . The suspension flow ψtf defined on Mf is just a unit speed flow on the
second coordinate of M× [0,1] projected onto Mf . In this context, a braid is created from
an element of the isotopy class by extracting orbits of the points of A in the suspension flow.
Observe that all representants of a given isotopy class yield braids in the same braid class.

So far we have only mentioned the application of the braids in Thurston-Nielsen context
as a tool to analyze the group MCG(D2 rel A,∂D2). We now present some results to which
the use of braids may lead. Recall that the periodic orbit of a homeomorphism leads to a
braid in the suspension flow and conversely. One hopes for a kind of Sharkovskii order
among braids, that ideally would lead to a (partial) ordering on the braid classes in such a
way that the existence of braid β as a periodic orbit of a given map, forces existence of all
periodic orbits corresponding to the braids that are lower in the ordering than β. Of course,
in many cases this is too much to ask for, and only partial results can be obtained. Below
we will try to give some examples following [17].

We recall that MCG(D2 rel A,∂D2) can be identified with the braid group on n strings
(where n = #A). In this context, a braid β is pseudo-Anosov if its image under the group
morphism G : B3→MCG(D2 rel A,∂D2) introduced above, is a pseudo-Anosov map (or its
isotopy class contains a representant with a component that is pseudo-Anosov, see Section
1.1).

We finally introduce the concept of the exponential sum of a braid, defined as the sum of
exponents of its generators in the word describing the braid. For example, for the braid β=
σ−1

1 σ1
2σ

2
1 its exponential sum, denoted es(β), is 2. Let Rn/m : D2 → D2 denote the rotation

map of the disc, which in polar coordinates can be expressed as Rn/m(r,θ) = (r,θ+ n
m). The

following classification of homeomorphisms of the disc can be obtained.

THEOREM (Theorem 8.3 in [17]). If f is an orientation-preserving homeomorphism of the
disk that satisfies fm = id, than f is topologically conjugate to Rn/m for some 0≤ n≤ m.
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It is not too hard to see that for a braid βn/m corresponding to the map Rn/m, we have
that es(βn/m) = n(m−1). On the other hand we have the following:

THEOREM (Proposition 9.4 in [17]). If a braid β on m strands, where m is prime, does not
correspond to any of the maps Rn/m, then the map containing β is pseudo-Anosov.

In particular, combining these results, we obtain that if es(β) *= n(m− 1) for any 0 <
n< m, then β forces the pA property on the map containing it.

Let us come back for a moment to the case of braids on three strands, since in such a
setting one is able to obtain a much stronger result in the spirit of Sharkovskii’s theorem. It
turns out that any braid on three strands can be described using the generators σ1 and σ−1

2
only, and with this we obtain the following.

THEOREM (Theorem 9.4 in [17]). (a) A braid β on three stands leads to a pA map if and
only if its minimal word in the σ1,σ

−1
2 description contains both generators.

(b) Let β1,β2 be two pA braid classes. Moreover, assume that the minimal braid word in the
σ1,σ−1

2 description of β2 is contained as a sub-word in the σ1,σ−1
2 word of β1. Then, if

a homeomorphism contains the periodic orbit corresponding to β1, it also has the one
corresponding to β2.

The partial orders on braid types were studied by several authors, including Matsuoka
[49], Benardete e.a. [11], de Carvalho and Hall [23]. Despite the fact that the comparison
of the Thurston-Nielsen classification theory and our methods still requires more elaborate
studies, we would like to point out some of the similarities and distinctions between the
theories.

Orientation reversing twist maps. To explain the differences between our application
of the Conley index to an orientation reversing twist maps of the plane and the Thurston-
Nielsen theory we refer to Chapter 2. The differences between the two approaches are that
we require the map to have the twist property, and we essentially exploit the variational
structure that comes with it, while the Thurston-Nielsen classification is also suitable for
non-twist maps. On the other hand, Thurston-Nielsen theory requires the underlying man-
ifold to be compact, whereas our maps are defined on the whole plane. In general, to be
able to restrict the dynamics of such maps onto a disc, one needs control of the behavior at
infinity, which is irrelevant in our case (for twist diffeomorphisms). This makes the methods
somewhat complementary as they are applicable in different settings.

Floer homology. A comparison of the Floer homology for relative braids and the
Thurston-Nielsen theory requires more in-depth studies. Both theories require the under-
lying manifold to be compact and two-dimensional. As already mentioned above, both
methods use a braid theoretic approach. This makes both theories very similar in spirit.
Thurston-Nielsen theory uses a braid algorithm (train tracks) to study the classification of
the dynamics forced by a braid corresponding to a given periodic orbit. In the case of Floer
homology additional studies are required to make it computable, so that relevant informa-
tion about the system can be extracted. Nevertheless, the approach is intrinsically different
and interesting in its own right. Moreover, it is much more analytic in nature, which may
have certain advantages, such as being able to deal with singularities, as well as the possi-
bility to study non-equilibrium solutions of the Cauchy-Riemann equations.





CHAPTER 2

Orientation reversing twist maps of the plane

2.1. Introduction
Orientation preserving twist maps have been studied by many authors over the past

decades. In particular we mention the important contributions by Moser [55, 56],
Mather [48], Aubry & Le Daeron [10], Angenent [2, 4], Boyland [17] and Le Calvez [42].
Most of these works consider area and orientation preserving twist maps and make use of
the variational principle that comes with it. This is a powerful tool for studying periodic
points, in particular when the domain of the map is an annulus.

In this paper we are interested in dynamical systems generated by orientation reversing
twist maps that do not necessarily preserve area and that are defined on the whole plane.
Specifically, we are interested in periodic orbits and the minimal dynamics they force. We
postpone a discussion of related work to the end of this introductory section. First, we give
the necessary definitions and introduce a topological principle for such orientation reversing
maps.

A well-known example of a two dimensional orientation reversing twist map is the
family of Hénon maps. The discrete time dynamics that are obtained by iterating such maps
have emerged as models from various applications in the physical sciences. Orientation
preserving (twist) maps of (sub-regions of) the plane are often obtained as time-1 maps in
non-autonomous Hamiltonian systems in the plane, or as first return maps to a Poincaré
section in three dimensional dynamical systems. On the other hand, maps that reverse
orientation do not occur as such section maps.

In this paper we are mainly concerned with diffeomorphisms of the plane, i.e. bijective
C1 maps.

DEFINITION 2.1. A diffeomorphism f : R2 → R2 is called an orientation reversing twist
diffeomorphism of the plane if there exist global coordinates (x,y) ∈R2 such that f is given
by (x′,y′) = f (x,y) and satisfies the assumptions: (i) det(d f ) < 0, and (ii) ∂x′

∂y > 0. Due to
the latter condition, which we will refer to as the twist property, f is said to have positive
twist. If the bijectivity assumption is dropped but f is stillC1 and satisfies properties (i) and
(ii) then f is called an orientation reversing twist map.

In the following, to indicate the coordinate functions x′ and y′ of f , we use the compo-
sition with the orthogonal projections πx and πy onto the x- and y-coordinate respectively,
i.e. x′ = πx f (x,y) and y′ = πy f (x,y).

29
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As will be explained in Section 2.3 (see also [33]) (compositions of) orientation preserv-
ing (positive) twist maps have a natural topological structure, which is less straightforward
in the orientation reversing case. There exists an easy procedure to circumvent this obstacle
and find a useful topological tool for orientation reversing twist maps. Note that even pow-
ers of f are orientation preserving maps, but compositions of twist maps are in general not
twist maps. The second composite iterate f 2 can be written as a composition of two orien-
tation preserving twist maps as follows: f 2 = f+ ◦ f−, with f+ = f ◦Rx, and f− = Rx ◦ f ,
where Rx is a linear reflection in the y-axis. The drawback is that f+ is a positive twist map
and f− a negative twist map. If we consider the fourth iterate f 4 we have the decomposition

f 4 = f3 ◦ f2 ◦ f1 ◦ f0, (2.1)
where the maps fi are defined as follows:

f0 =− f−, f1 =− f+ ◦ (−id), f2 = f− ◦ (−id), and f3 = f+.

One can easily verify that all four maps are orientation preserving maps with positive twist.
The theory of parabolic recurrence relations in [33] (summarized in Section 2.3) is now
applicable since it applies to compositions of orientation preserving positive twist maps.
Using this formulation we can study periodic points of period n = 4k (for other periods
symmetry requirements could be imposed, but we will not pursue this issue here).

Recall that a point z= (x,y) is a period-n point for f if f n(z) = z, where f n denotes the
n-th iterate of f . The period n is assumed to be minimal, i.e. f k(z) *= z for all 0 < k < n.
Instead of describing a period-4 point in terms of the images of f , i.e. (z, f (z), f 2(z), f 3(z)),
a natural way to describe orbits is to do so in accordance to the decomposition given by (2.1).
We write an orbit as {zi}3

i=0, with zi = fi(zi−1). This applies to period-4k points, by defining
fi via fi+4 = fi, for all i ∈ Z. The theory of parabolic recurrence relations in [33] now
dictates that orbits {zi} should be represented as braid diagrams, which we will explain
next.

Let z be a period-4 point of f . By choosing the points z, f (z), f 2(z), and f 3(z) as
different initial points we obtain four different orbits for the composition f3 ◦ f2 ◦ f1 ◦ f0,
namely the orbits defined by zi = fi(zi−1) while setting z0 = f k(z) for k = 0,1,2,3. For
each orbit we connect the consecutive points (i,zi) via piecewise linear functions. This
yields a piecewise linear closed braid consisting of four strands. By projecting the braid
on the x-coordinates one obtains a closed braid diagram. Braid diagrams are discussed in
more detail in Section 2.3. Figure 2.1 depicts the braid diagrams which result from this
construction starting from two different period-4 orbits. Since the braid diagram is only
concerned with the x-coordinates the construction of the braid diagram is, for all practical
purposes, equivalent to the following: let (x0,x1,x2,x3) be the x-coordinates of a period-4
point orbit { f k(z)}3

k=0, i.e. xi = πx f i(z), then perform a flip on these coordinates to obtain
(x0,x1,x2,x3) = (−x0,x1,x2,−x3), and finally connect the points (i,xi) in the plane by line
segments. This gives one strand and the total braid diagram is obtained by performing this
transformation to all shifts of the orbit through z.

Notice that period-4 points can occur in a variety of six different “permutations” (of the
x-coordinates, see also Section 2.4). However, permutations do not have topological mean-
ing with respect to parabolic recurrence relations and permutations are thus not suitable for
classifying period-4 points. On the other hand, via the above construction each permuta-
tion yields a unique braid class that has a topological meaning. It follows that period-4
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type I

type II

Figure 2.1: Period-4 points lead to two possible braid classes. In the braid diagrams on the right
one may think of all the crossings as being positive, i.e. the strand with the larger slope going
on top.

points give rise to exactly two types of braid classes. Figure 2.1 shows the two possible
braid classes: type I and type II. In other words, any period-4 orbits is either of type I or
of type II, according to the braid class that results from the above transformations. More
details on this classification are supplied in Section 2.4. Period-4 points of type I imply
chaos, while those of type II do not, as is stated in our main theorem.

THEOREM 2.2. An orientation reversing twist diffeomorphism of the plane that has a type I
period-4 point is a chaotic system, i.e., there exists a compact invariant subset Λ ⊂ R2 for
which f |Λ has positive topological entropy. Conversely, there exists an orientation reversing
twist diffeomorphism with a type II period-4 point that has zero entropy.

We want to point out that the theorem is stated under quite weak assumptions; in par-
ticular, there are no compactness assumptions (the twist property in a way compensates this
lack of compactness). The bijectivity assumption in the theorem is certainly stronger than
strictly necessary. In fact, instead, for twist maps it is more natural to assume the infinite
twist condition: a twist map is said to satisfy the infinite twist condition if

lim
y→±∞

πx f (x,y) = ±∞ for all x ∈R. (2.2)

For twist maps on the plane this condition in some sense means that the map has positive
twist at infinity (not an infinite amount of twist). Under the infinite twist condition we have
the same result as for diffeomorphisms.

THEOREM 2.3. An orientation reversing twist map of the plane that satisfies the infinite
twist condition and that has a type I period-4 point, is a chaotic system — chaotic as ex-
plained in Theorem 2.2. Conversely, there exists an orientation reversing twist map that
satisfies the infinite twist condition, has a type II period-4 point, and that has zero entropy.
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3 y−

5
3y

3). A period-4 orbit of type I is indicated
by the large dots.

We can also give a lower bounds on the entropy for Theorems 2.2 and 2.3. Namely the
entropy satisfies h( f )≥ 1

2 ln(1+
√

2) and h( f )≥ 1
2 ln3 in Theorems 2.2 and 2.3 respectively.

The infinite twist condition makes the topological/variational principle we use easier to
apply and the proof less technical. This is strongly related to the fact that the infinite twist
condition is a more natural assumption in the context of twist maps than bijectivity. We
will therefore explain all the details by proving Theorem 2.3. In Section 2.7 we make the
necessary technical adaptations to the method in order to prove Theorem 2.2.

The method discussed in this paper makes extensive use of the twist property. On
the other hand, we stress that it needs no compactness conditions, nor information about
the asymptotics of f near infinity. It allows us to study periodic solutions of orientation
reversing twist maps, in particular those of which the period is a multiple of four (but other
periods can be dealt with as well). Theorems 2.2 and 2.3 are representative for the kind of
results that can be obtained, but the method is much more general. We note that there is an
additional variational structure that can be exploited in this setting if the (absolute value of
the) area is preserved (see Remarks 2.5 and 2.15).

Of course the theorem does not detect all occurrences of chaos. An important example
of orientation reversing twist maps is the Hénon map f (x,y) = (βy,1−αy2 +x), where α ∈
R and β> 0 are parameters. It is well known that for various parameter choices the system
is chaotic, while a type I period-4 point is hard/impossible to find. Nevertheless, concerning
the practical aspects of the above theorem we note that to establish chaos one can search for
a type I period-4 point with the help of a computer. This can be done in a mathematically
rigorous manner, for example with the help of a software package like GAIO, see [25, 22].
Furthermore, in the family of generalized Hénon maps f (x,y) = (y,x+ ay− by3), which
are orientation reversing twist maps, a period-4 orbit of type I can be found analytically
(exploiting the symmetry) for a > 4

√
2 and any b > 0. In Figure 2.2 a period-4 orbit of

type I is indicated and the chaotic nature of the dynamics is apparent.
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To obtain an example of a non-chaotic map with a period-4 orbit of type II we return
to the classical Hénon map, for convenience rescaled to read f (x,y) = (y,εx+ λ[y− y2]).
For ε= 0 this is a one dimensional map and for λ not too large it is non-chaotic. For small
positive ε the 1-dimensional map perturbs to a 2-dimensional map, which for appropriately
chosen λ has a period-4 point of type II and which remains non-chaotic. The details of
the construction are given in Section 2.6. This provides a proof of second statements in
Theorems 2.2 and 2.3.

We like to point out the similarity of the above theorem and the famous Sharkovskii
theorem [64, 44], which states that a one dimensional system having a period-3 point nec-
essarily has periodic points of all periods. In our case chaos is forced by certain period-4
points. In a one dimensional system the Sharkovskii ordering has little implications for a
map containing a period-4 point. Nevertheless, also in the one dimensional case certain
types of period-4 orbits (depending on the permutation of the points) force chaos (proved
via the usual one dimensional techniques).

On compact surfaces of genus G (with or without boundary) the results in [36] and [14]
show that if an orientation reversing diffeomorphism has at least G+ 2 periodic points of
distinct odd periods, then there exist periodic points for infinitely many different periods,
and in particular the topological entropy of the map is positive. The maps in this paper are
maps on R2 and therefore the above result does not immediately apply. However, in the
special circumstance that an orientation reversing map on R2 allows extension to S2 with
a fixed point at infinity, then the existence of a period-3 point, or any other odd period for
that matter, implies, by the above mentioned result, that the map has positive topological
entropy. To translate this result back to the context of the original map on R2 one needs
(detailed) information about the local behavior near the point at infinity (the asymptotics
of the map). In contrast, Theorems 2.2 and 2.3 are applicable without prior knowledge of
asymptotic behavior. Moreover, our result gives insight in what happens when we have
information about period-4 points, which complements the results on periodic orbits with
odd periods in [14, 36].

The relation to Thurston’s theory
Once again, the method of proof in this paper strongly relies on the fact that we consider

(compositions of) twist maps, which allows an elementary construction of infinitely many
periodic points and a semi-conjugacy to a (sub-)shift on 3 symbols. This draws strongly on
the elegant topological principle for twist maps. A different approach would be to employ
Thurston’s classification theorem of surface diffeomorphisms [68]. Thurston’s result does
not restrict to twist maps, however compactness is required (we come back to this point in
a moment).

Since the results for arbitrary maps on compact surfaces via Thurston’s theory are com-
plementary to those for twist maps on the (non-compact) plane in the present paper, let us
explain how our results relate to Thurston’s theory. For sake of simplicity, let us assume that
the maps can be extended to homeomorphisms on for example D2. In that case the classifi-
cation theorem is applicable. In order to follow the approach using Thurston’s classification
theorem we first need to decide what distinguishes period-4 points. In our approach there
is a natural distinction into two types of period-4 points via discrete four strand braids. In
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f0
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y

x

Figure 2.3: The map f0 is orientation preserving and has the twist property, hence the suspension
looks like a distorted rotation, which leads to a positive braid.

the approach using Thurston’s result the braids are used to determine the isotopy class of a
map in question, see e.g. [17].

It is easier to visualize this for orientation preserving maps, so we consider g = f 4,
which is an orientation preserving map and which can be written as a composition of four
orientation preserving positive twist maps g = f3 ◦ f2 ◦ f1 ◦ f0. In the case of a period-4
orbit P = { f i(z)}3

i=0 for f , the map g has four fixed points P. Therefore one considers the
mapping class group MCG(D2 rel P), where the maps are orientation preserving and fix P
(as a set) and ∂D2 (a homeomorphism of the boundary). Using the results in [13] it can
be shown easily that MCG(D2 rel P)) B4/center, where B4 is Artin’s braid group on four
strands, and the center of the braid group B4 is the infinite cyclic subgroup generated by
(σ1σ2σ3)4, the full twists.

In general it is quite hard to determine the mapping class of a map, but for twist maps
this is a little easier. In fact, identifying the mapping class with the braid group, the mapping
class for f 4 is exactly the positive braid we have constructed above. We illustrate this
for the first of the composite maps f0 for a type I period-4 orbit in Figure 2.3. Besides
the permutation of the (x-coordinates of the) points in P, the twist property gives global
information about the map, so that the suspension can be understood (note that f0 does not
fix P, but this does not lead to undue complications). The other three maps are similar and
the total braid is obtained by the natural addition in the braid group. We refer to [15] for a
further discussion on the application of Thurston’s theory to twist maps on an annulus. As a
final point, the same construction can be carried out for g̃= f 2 = f+ ◦ f−. One needs to take
into account that f− has negative twist and thus leads to a braid with negative generators.
Of course, repeating the braid for g̃ twice leads to a braid that is equivalent to the one for g.

Using Thurston’s classification the braid of type I is pseudo-Anosov, and thus the corre-
sponding mapping class is also pseudo-Anosov, hence chaotic. In order to draw conclusions
for the original map on R2 one needs to find a compact invariant set in the interior of D2

on which the entropy is positive. This requires detailed information about the behavior near
∂D2, and thus about the asymptotic behavior of the original map on R2. This is not needed
in our results however. The braid of type II is reducible and contains only components of
finite type (and thus no pseudo-Anosov component, in fact the braid is a cable of cabled
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braids), hence the corresponding map is not necessarily chaotic. We point out that our con-
struction of a non-chaotic map with a type II period-4 point confirms the latter conclusion.
However, Thurston’s classification theorem does not provide a non-chaotic map within the
class of twist maps as required here. See also [18] for details on pseudo-Anosov maps and
mapping classes.

The organization of the paper is as follows. In Section 2.2 we recall some facts about
twist maps and for orientation reversing maps we introduce a transformation that associates
a parabolic recurrence relation to such maps. In Section 2.3 we summarize the concepts
we need from braid theory and parabolic flows, which were thoroughly studied in [33].
In Section 2.4 the focus shifts to period-4 orbits and their classification in types I and II.
We combine these concepts in Section 2.5 to prove the first assertion in Theorem 2.3 by
constructing a semi-conjugacy to the shift on three symbols. In Section 2.6 we show an
example of a non-chaotic map with a period-4 orbit of type II, which establishes the second
part of the theorem. Finally, Section 2.7 is devoted to extending the techniques to bijective
maps and proving Theorem 2.2.
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2.2. Twist Maps
We collect some facts about both orientation preserving and reversing twist maps.

Recurrence relations for twist maps
A C1 map from R2 to R2, denoted by f (x,y) = (πx f ,πy f ), is a (positive) twist map if

∂πx f
∂y > 0. It is orientation preserving if det(d f ) > 0 and orientation reversing if det(d f ) <

0. Of course, one could also consider ∂πy f
∂x > 0 and/or negative twist, but a change of

coordinates reduces these cases to ∂πx f
∂y > 0.

Note that iterates f k of a twist map are not necessarily twist maps, but the crucial prop-
erty of twist maps is that they allow us to retrieve whole trajectories {(xk,yk)}= { f k(x0,y0)}
from just the sequence {xk}. To show this we follow [4] (see also [2]). Let us start with the
observation that the twist property implies that there exists an open setU such that for any
pair x,x′ ∈U there exists a unique solution Y (x,x′) of the equation

πx f (x,Y (x,x′)) = x′.

It also follows from the twist property that Y is monotone in x′:
∂Y
∂x′

> 0.

From the function Y we construct yet another function:

Ỹ (x,x′) def
= πy f (x,Y (x,x′)).

This second function Ỹ also has a monotonicity property that follows directly from the
inverse function theorem. The map f is locally invertible and the derivative of its inverse
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f−1 is given by ∂2(πx f−1) =−(det(d f ))−1∂2(πx f )◦ f−1, hence

∂2(πx f−1) < 0 and
∂Ỹ
∂x

< 0 if f is orientation preserving,

∂2(πx f−1) > 0 and
∂Ỹ
∂x

> 0 if f is orientation reversing.

Obviously the reason for these definitions is that if (xk+1,yk+1) = f (xk,yk) then

yk = Y (xk,xk+1) and yk+1 = Ỹ (xk,xk+1).

That is, the functions Y and Ỹ can be used to retrieve the whole trajectory {(xk,yk)} from
the sequence {xk}. It easily follows that a sequence {(xk,yk)} forms an orbit of f if and
only if the x-coordinates satisfy

Y (xk,xk+1)− Ỹ (xk−1,xk) = 0 for all k ∈ Z.

We therefore introduce the notation
R(xk−1,xk,xk+1)

def
= Y (xk,xk+1)− Ỹ (xk−1,xk). (2.3)

Solutions {xk} of the recurrence relation R(xk−1,xk,xk+1) = 0 thus correspond to trajec-
tories of the map f . From the properties of Y and Ỹ we see that R is increasing in xk+1,
and if f is orientation preserving then R is also increasing in xk−1. In this case R will be
referred to as a parabolic recurrence relation. When f is orientation reversing then R is
not increasing, but decreasing in xk−1. In Section 2.2 we explain how we can, nevertheless,
associate a parabolic recurrence relation to an orientation reversing map.

The function Y (and similarly Ỹ ) has a domain of the form
D= {(x,x′) |x ∈ R,g(x) < x′ < h(x)},

where the functions g,h : R→ [−∞,∞] are upper/lower semi-continuous with g(x) < h(x),
see Section 2.7 for more details. A way to ensure that the domain D is the whole plane,
is to assume the infinite twist condition (2.2). To simplify the exposition in the following
sections we assume that D= R2. In Section 2.7 we show how to extend our results to maps
that are bijective to R2 (i.e. diffeomorphisms of the plane). Note that bijectivity does not
imply the infinite twist condition, nor does it guarantee that D= R2.
REMARK 2.4. Any twist map that satisfies the infinite twist condition is injective. Namely,
let f (x0,y0) = f (x1,y1) = (x′,y′). If x0 = x1 then it follows from the twist property that
y0 = y1. Suppose x0 *= x1, say x0 < x1, then the infinite twist condition implies that for any
x ∈ [x0,x1] there is a (unique) y(x) such that πx f (x,y(x)) = x′, with y(x0) = y0 and y(x1) =

y1. Since ∂Ỹ (x,x′)
∂x ≶ 0 we have dπy f (x,y(x))

dx ≶ 0, contradiction the fact that πy f (x0,y(x0)) =
πy f (x1,y(x1)) = y′.
REMARK 2.5. When f is an orientation and area preserving twist map there exists an
additional structure, namely generating functions (see e.g. [7]). A smooth function S : R2→
R exists with the property that if (x′,y′) = f (x,y), then y= ∂1S(x,x′), and y′ =−∂2S(x,x′).
This generating function S allows one to formulate the existence of periodic points in terms
of critical points of an action function. A period-n point corresponds to a critical point of

W (x0,x1, . . . ,xn−1)
def
=

n−1

∑
i=0

S(xi,xi+1), with xn = x0.
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The parabolic recurrence relation is then given by the gradient ofW : R(xi−1,xi,xi+1) = ∂W
∂xi .

For orientation reversing area preserving maps a similar variational structure exists. The
difference is that the relations between the generating function S and the y coordinates are
y= ∂1S(x,x′) and y′ = ∂2S(x,x′), i.e. with the same sign. A period-2m point corresponds to
a critical point of

W (x0,x1, . . . ,x2m−1)
def
=

2m−1

∑
i=0

(−1)iS(xi,xi+1), with x2m = x0.

The recurrence relation is not quite given by the gradient, but by ∂W
∂xi = (−1)iR(xi−1,xi,xi+1),

so there is still a correspondence between critical points ofW and solutions of R. However,
it is more convenient to deal with such a situation through the (flip) transformation described
in Section 2.2 below.

We finish this section with an example.

EXAMPLE 2.6. Let us consider the well known Hénon map. The Hénon map is a two-
dimensional invertible map given by formula:

f :
(
x
y

)
6→
(

βy
1−αy2 + x

)
.

It is an orientation reversing twist map for all β> 0 and α ∈ R. It is bijective and also sat-
isfies the infinite twist condition (2.2). It is not difficult to construct the recurrence relation:

R(xk−1,xk,xk+1) =−1− xk−1 +αβ−2x2
k +β−1xk+1.

Parabolic recurrence relations for orientation reversing twist maps
Consider the case that f is an orientation reversing twist map. From the previous sub-

section it then follows that the trajectory of a periodic point can be retrieved from the se-
quence {xk} satisfying the recurrence relation

R̃(xk−1,xk,xk+1) = 0,

where R̃ is defined by (2.3), with ∂1R̃ < 0 and ∂3R̃ > 0. Since the theory of braid flows
(see Section 2.3) is defined using parabolic recurrence relations (i.e. ∂1R > 0 and ∂3R > 0),
we need to make a modification. In Section 2.1 we explained that f 4 can be written as a
composition of four orientation preserving positive twist maps fi. For each fi we can derive
the recurrence function Ri, which has the properties that

∂1Ri > 0 and ∂3Ri > 0.

This is equivalent to defining the functions Ri as follows

R0(x−1,x0,x1)
def
= R̃(−x−1,−x0,x1)

R1(x0,x1,x2)
def
= R̃(−x0,x1,x2)

R2(x1,x2,x3)
def
= −R̃(x1,x2,−x3)

R3(x2,x3,x4)
def
= −R̃(x2,−x3,−x4).



38 2. ORIENTATION REVERSING TWIST MAPS

It is easily verified that the recurrence functions are indeed parabolic and we define the
sequence {Ri} periodically: Ri+4 = Ri. This change of coordinates naturally also effects
the trajectory x= {xk}. To make this precise we define the transformation

λ(x)k =

{
−xk for k = 0,3 mod 4
xk for k = 1,2 mod 4 (2.4)

We call the transformation λ on sequences a flip. Clearly λ2 = id and it commutes with σ4,
where σ is the shift map σ(x)k = xk+1. Now x= {xk} solves R̃ = 0 if and only if λ(x) solves
Ri = 0.

LEMMA 2.7. Every solution x = {xk} of Ri = 0 yields a solution λ(x) of R̃ = 0, and thus
corresponds to a trajectory of f , namely

{(
λ(x)k,Y (λ(x)k,λ(x)k+1)

)}
.

2.3. Braid diagrams and the Conley index
Discretized braids and braid diagrams

In this section we define and describe the main topological structure which is used in
the proofs of Theorems 2.2 and 2.3. As pointed out in Section 2.1 the way we deal with
sequences is to consider them as piecewise linear functions by connecting the consecutive
points via linear interpolation.

DEFINITION 2.8 ([33]). The space of discretized period d braids on n strands, denoted Dn
d ,

is the space of all pairs (u,τ), where τ ∈ Sn is a permutation on n elements, and u is an
unordered collection of n strands u= {uα}nα=1, which satisfy the following properties:
(a) Each strand consist of d+ 1 anchor points: uα = (uα0 ,uα1 , . . . ,uαd ) ∈ Rd+1.
(b) periodicity – For all α= 1, . . . ,n, one has: uαd = uτ(α)

0 .
(c) transversality – For any pair of distinct strands α and α′ such that uαi = uα′i for some i,

we have:
(uαi−1−uα

′

i−1)(u
α
i+1−uα

′

i+1) < 0. (2.5)

We equip Dn
d with the standard topology of Rnd on the strands, and the discrete topol-

ogy with respect to the permutation τ, modulo permutations which change the order of the
strands (i.e., two pairs (u,τ) and (ũ, τ̃) are close if there exists a permutation σ ∈ Sn with
σ◦ τ̃= τ◦σ), such that uσ(α) is close to ũα (as points in Rnd) for all α.

We will say that two discretized braids u,u′ ∈Dn
d are of the same discretized braid class

(denoted [u] = [u′]) if they are in the same path component of Dn
d . The discrete topology on

the permutations leads to the following useful interpretation. Consider a continuous family
of braids and pick one of the permutations in the equivalence class (subsequently dropped
from the notation). These discretized braids of period d on n strands are then completely
determined by their coordinates {uαi }α=1...n

i=1...d , i.e., every discretized braid corresponds to a
point in the configuration space Rnd. We come back to this point of view later.

Let us now compare the notion of a discretized braid with that of a topological braid.
In topology a braid β on n strands is a collection of embeddings {βα : [0,1]→R3}nα=1 with
disjoint images such that (a) βα(0) = (0,α,0), (b) βα(1) = (1,τ(α),0) for some permutation
τ ∈ Sn, and (c) the image of each βα is transverse to all the planes {x= constant}.
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Figure 2.4: Example of a braid on three strands. [left] A braid with all crossings positive (bottom
over top), [middle] its 2-d projection, and [right] the associated piecewise linear braid diagram,
a discretized braid. Its braid word is σ2σ1σ2σ2

1σ
2
2.

The projection of a topological braid onto an appropriate plane, e.g. the (x,y)-plane, is
called a braid diagram if all crossings of strands are transversal in this projection. In this
braid diagram a marking (+) indicates a crossing which is “bottom over top”, whereas a
marking (−) indicates a crossing “top over bottom”. A positive (+) crossing of the i-th and
(i+ 1)-st strands corresponds to a generator σi, while a negative crossing corresponds to
σ−1
i . The use of these generators σi leads to a natural group structure (see e.g. [13] for more

background). The sequence of generators (“reading” the braid from left to right) is called
the braid word.

The link between discretized braids and topological braids is the following. Any dis-
cretized braid u can be interpreted as the braid diagram of a topological braid when we
use linear interpolation between the points (i,uαi ) ∈ R2, where uαi are the anchor points
of strand α. Here we choose the convention that all crossings in this discretized braid di-
agram are positive. The resulting positive piecewise linear braid diagram is denoted by
β(u). It is also useful to consider braid diagrams that are not piecewise linear. A (positive,
closed) topological braid diagram is a collection of strands {βα ∈ C([0,1])}nα=1 such that
(a) βα(1) = βτ(α)(0) for some permutation τ ∈ Sn, and (b) all intersections among pairs of
strands are isolated and topologically transverse. The topological braid class {u} is a path
component of β(u) in the space of positive topological braid diagrams. Figure 2.4 depicts a
braid in its various appearances. Since for positive braids the braid word consists of positive
generators only, it follows that the number of generators in the braid word, the braid word
length, is an invariant of a discretized braid class, and even of a topological braid class. For
a more detailed account we refer to [33].

Since discretized braids are periodic we extend all strands periodically:

uαi+d = uτ(α)
i for all i ∈ Z, α= 1, . . . ,n.

As explained above, Dn
d is a subset of a collection of copies of Rnd (one for each equivalence

class of permutations). Fixing an appropriate permutation, we may identify a discretized
braid class with a subset of Rnd , its configuration space. The connected components of Dn

d ,
i.e. the discretized braid classes, are separated by co-dimension-1 varieties in Rnd, called
the singular braids:

DEFINITION 2.9. Let Dn
d denote the collection of nd-dimensional vector spaces of all

discretized braid diagrams u satisfying properties (1) and (2) of Definition 2.8. Now
Σ

def
= Dn

d \Dn
d is the set of singular discretized braids.

The set Dn
d is the closure of Dn

d , hence its elements do not necessarily satisfy the
transversality condition (2.5). The braids in Σ are said to have a tangency. A moments
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reflection shows that in singular braids of sufficiently high co-dimension (m≥ d), different
strands can collapse onto each other. This set of specific singularities plays an important
role later on and is defined as

Σ− def
= {u ∈ Σ |uαi = uα

′

i ,∀i ∈ Z, for some α *= α′}.

If one wants to braid a strand, one needs something to braid it through. This leads us
to the introduction of a so-called skeleton braid through which we can braid so-called free
strands. Define u∪v ∈Dn+m

d , with u ∈Dn
d and v ∈Dm

d as the (unordered) union of strands.
Then for given a v ∈Dm

d we define

Dn
d rel v def

= {u ∈Dn
d |u∪v ∈Dn+m

d }.

It is important to remember that the transversality condition (2.5) is imposed on the strands
in u∪v.

The path components of Dn
d rel v form relative discretized braid classes, denoted by

[u rel v]. The braid v is usually called the skeleton, and u are called the free strands. Now
it is easy to define relative versions of the concepts presented above, i.e. Σ rel v, Σ− rel v,
Dn
d rel v, and {u rel v} (as topological relative braid class).

It is also possible that two classes [u rel v] and [u′ rel v′] are topologically the same.
The set of equivalent topological relative braid classes

{
u rel {v}

}
is defined by the relation

{u rel v} ∼ {u′ rel v′} if and only if there exist a continuous family of topological (positive,
closed) braid diagram pairs deforming (u,v) to (u′,v′). See [33] for more details.

Parabolic flows on braid diagrams
In [33] the topology of discretized braids is used to find solutions of parabolic recur-

rence relations. This is done by embedding the problem into an appropriate dynamical
setting. Before briefly explaining the ideas we recall the definition of parabolic recurrence
relations.

DEFINITION 2.10 ([33]). A sequence of functions R = (Ri)i∈Z, with Ri ∈C1(R3,R), sat-
isfying
(i) ∂1Ri > 0 and ∂3Ri ≥ 0 for all i ∈ Z,

(ii) for some d ∈ N we have Ri+d = Ri for all i ∈ Z,
is called a parabolic recurrence relation.

Here we only consider parabolic recurrence relations defined on R3, although one can
also study parabolic recurrence relations on more general domains, see Section 2.7.

Let R be a parabolic recurrence relation and consider the differential equation
dui
dt

= Ri(ui−1,ui,ui+1) where u(t) ∈ X= R
Z and t ∈ R.

It is straightforward to show that such an equation defines a (local) C1-flow ψt on X under
periodic boundary conditions, provided they are of period nd. We call such a flow, generated
by a parabolic recurrence relation, a parabolic flow on X. Notice that it is easy to regard
this flow as a flow on the space Dn

d by considering the equation
duαi
dt

= Ri(uαi−1,u
α
i ,u

α
i+1), where u ∈Dn

d . (2.6)
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u

Σ

i−1 i

[u rel v]

i+ 1

Figure 2.5: A schematic picture of a parabolic flow on a (bounded and proper) braid class.

This equation is well-defined by the periodicity requirement in Definition 2.10. The next-
neighbor coupling and the monotonicity of a parabolic recurrence relation have far reaching
consequences for the corresponding parabolic flow. Namely, along flow lines the total num-
ber of intersections in a braid, i.e. the braid word length, can only decrease in time (as
indicated in Figure 2.5). The following proposition is a precise statement of this property.

PROPOSITION 2.11 ([33]). Let ψt be a parabolic flow on Dn
d.

(a) For each point u ∈ Σ\Σ−, the local orbit {ψt(u) | t ∈ [−ε,ε]} intersects Σ uniquely at
u for all ε sufficiently small.

(b) For any such u, the braid word length of the braid diagram ψt(u) for t > 0 is strictly
less then that of the braid diagram ψt(u) for t < 0.

As a direct consequence of this proposition flow lines cannot re-enter a braid class after
leaving it. In other words, the dynamics of (2.6) obeys the natural co-orientation of the braid
classes, i.e., if we co-orient the boundary Σ\Σ− in the direction of decreasing intersection
number, then the vector field, and thus the flow, is co-oriented in the same way.

In Section 2.3 we will define the Conley index of a braid class, hence we need the
braid class to be isolating, i.e., the flow at the boundary should have no internal tangencies.
Proposition 2.11 shows that we are “in danger” when our system evolves near to Σ−, since
a parabolic flow displays invariant behavior in Σ−. For this reason, a discretized relative
braid class [u rel v] is called proper if its boundary (which is a subset of Σ rel v) does not
intersect Σ− rel v. Figure 2.6 gives a simple examples of a proper and an improper braid
class. Besides properness we also need the braid classes to be compact. A discretized
relative braid class [u rel v] is called bounded if the set [u rel v]⊂ R(n+m)d is bounded.

Conley index for braids
The Conley index is a powerful tool for studying the complexity of dynamical systems.

For braid classes the Conley index is defined in [33] and we refer to that paper for all details,
proofs and much additional information. For more details about the general setting of the
Conley index, see [20, 52]. Proposition 2.11 implies that cl([u rel v]) is isolating for the



42 2. ORIENTATION REVERSING TWIST MAPS

Figure 2.6: Two bounded braids with the same skeleton (black lines); the free strand is the gray
line. The braid on the left is improper (one can deform the free strand to one of the strands of
the skeleton), the one on the right is proper.

flow generated by a parabolic recurrence relation, provided the braid class is proper and
bounded. Let N denote cl([u rel v]), and let N− ⊂ ∂N be the exit set for a parabolic flow ψt .
Then the Conley index h(u rel v) is the homotopy type of the pointed space (N/N−, [N−]),
denoted by [N/N−]. Note that N− can also be characterized purely in terms of braids by
using the co-orientation of Σ\Σ−.

PROPOSITION 2.12 ([33]). Suppose [u rel v] is a bounded proper relative discretized braid
class and ψt is a parabolic flow that fixes the skeleton v. Then
(1) cl([u rel v]) is an isolating neighborhood for ψt , which yields a well-defined Conley

index h(u rel v,ψt).
(2) The index h(u rel v,ψt) is independent of the choice of the parabolic flow ψt as long as

ψt(v) = v. Therefore the index is denoted by h(u rel v).

REMARK 2.13. The Conley index is in fact an invariant of the topological relative braid
class {u rel v}, provided one slightly generalizes the definitions. First, the definitions of
proper and bounded are extended in a straightforward manner to {u rel v}. Furthermore,
an equivalence class of topological relative braids {u rel {v}} is proper/bounded if for all
v′ ∈ {v} any class {u′ rel v′} ∈ {u rel {v}} is proper/bounded.

Second, several discretized braid classes may be part of equivalent topological braid
classes. For fixed period d, let [u(0) rel v′] be a discretized braid class such that on the
topological level {u(0) rel v′} ∈

{
u rel {v}

}
. Let [u( j) rel v′], j = 0, . . . ,m denote all the

different discretized braid classes relative to v′ such that {u( j) rel v′} ∈
{
u rel {v}

}
. The

set Ñ =
⋃m
j=0 cl([u( j) rel v′]) is isolating for any parabolic flow fixing v′, and the exit set

is denoted by Ñ−. The Conley index H(u rel v′) of the topological relative braid class
{u rel v′} is the homotopy type of the pointed space (Ñ/Ñ−, [Ñ−]). It does not depend on
the period d, the choice of v′ or the parabolic flow. The Conley index H(u rel v′) is an
invariant of

{
u rel {v}

}
.

The homotopy index is usually not very convenient to work with and therefore we use
the homological Conley index

CH∗(u rel v) def
= H∗(N,N−)
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u0

u1

u0

u0

u1

⊂

Σ

Figure 2.7: In the relative braid on the left black lines denote the skeleton and gray lines the free
strand. In the middle its configuration space is shown and the direction of the parabolic flow on
the boundary is indicated. On the right we see how the configuration space is positioned with
respect to the stationary points of the skeleton, represented by the four dots.

where N = cl([u rel v]), N− is its exit set, and H∗ is the relative homology of the pair
(N,N−). One can assign to such an index a characteristic polynomial

CPt(u rel v) def
= ∑

k≥0
βktk,

where βk is a free rank ofCHk(u rel v). For the parabolic flows under consideration Morse
inequality can be used to draw conclusions from the characteristic polynomial about fixed
points and periodic orbits (see Section 7 of [33]). In this paper we use the only the simplest
consequence:

LEMMA 2.14. Let [u rel v] be a discretized relative braid class that is bounded and proper.
If CP−1(u rel v) is nonzero, then there is at least one stationary point in [u rel v] for any
parabolic flow ψt that leaves v invariant.

REMARK 2.15. A special situation occurs when the recurrence relation is exact, i.e., when
there exists a d-periodic sequence ofC2(R2) functions Si such that

Ri(ui−1,ui,ui+1) = ∂2Si−1(ui−1,ui)+∂1Si(ui,ui+1) for all i ∈ Z.

Note that a recurrence relation is exact if it originates from a composition of area preserving
twist maps, see Remark 2.5. The main example in our context is when the orientation
reversing twist map f is area preserving. SettingW (u) =∑d

i=1 Si(ui,ui+1) the corresponding
parabolic flow is a gradient flow: du

dt =∇W . This implies that invariant sets consists of fixed
points and connecting orbits only. The second order character of the recurrence relation
leads to the following strong result (see [33, section 7]): for an exact parabolic flow on a
bounded proper relative braid class [u rel v], the number of fixed points is bounded below
by the number of distinct nonzero monomials in the characteristic polynomial CPt(u rel v).

EXAMPLE 2.16. We calculate the homotopy index of the braid shown at the left in Fig-
ure 2.7. It is of period two and it is proper and bounded. A braid can evolve only in such a
way as to decrease the number of intersections (cf. Proposition 2.11 and Figure 2.5). Hence
along the flow the free anchor point u0 cannot cross the anchor points of skeleton since
this would lead to an increased number of crossing, i.e., u0 is “trapped” between anchor



44 2. ORIENTATION REVERSING TWIST MAPS

points of the skeleton. On the other hand, the middle point u1 of the free strand can evolve
in such a way that it crosses the nearest anchor points, since this decreases the number of
crossings. Of course, on crossing the anchor point of the skeleton, the free strand leaves the
braid class. The configuration space and the flow on the boundary are shown in the middle
in Figure 2.7. The exit set N− consists of the top and bottom boundaries. The homotopy
index of this braid class is [N/N−]) (S1,pt), hence CPt = t and any parabolic flow leaving
v invariant has at least one fixed point inside the braid class.

2.4. Period-4 points for orientation reversing twist maps
We now apply the theory of braids and parabolic flows to orientation reversing twist

maps. Let f be an orientation reversing twist map. As explained in the introduction and
Section 2.2 we can write it as the composition of four orientation preserving twist maps.
This leads to a parabolic recurrence relation R = (Ri)i∈Z which is 4-periodic: Ri+4 = Ri.
Lemma 2.7 gives the correspondence between trajectories of f and solutions of the recur-
rence relation via the flip transformation (2.4).

Suppose now that {(xi,yi)}4
i=1 is a period-4 orbit of f , i.e., its minimal period is four. Let

x = {xi}i∈Z, then the flipped sequence λ(x) is a solution of the recurrence relation R = 0.
Obviously, any shift σα(x) of the sequence x corresponds to the same period-4 orbit of
f . Hence λ(σα(x)) for α = 1,2,3,4 are four solutions of the parabolic recurrence rela-
tion R = 0, labeled v1,v2,v3,v4 respectively, and they thus form the four stationary strands
of a closed discretized braid diagram v= {vα} ∈D4

4. A priori v is only in D4
4, but if v ∈ Σ,

then necessarily v ∈ Σ−, since Proposition 2.11 implies there are no stationary points of a
parabolic flow on Σ \ Σ−. On the other hand, if v ∈ Σ−, then at least two of the strands
λ(σα(x)) coincide, hence the minimal period is smaller than four. However, we are assum-
ing that the initial orbit is a true period-4 orbit and hence the corresponding braid diagram
v is a discretized braid in D4

4.
The next question is: which braid classes do these period-4 orbits represent? Because

we need to make sure that we consider all possible cases, we start simply from the quadruple
(x0,x1,x2,x3). Assume, without loss of generality, that x0 = min{xi}. There are six non-
degenerate orderings (degenerate ones are discussed below), namely

x0 < x1 < x2 < x3, x0 < x1 < x3 < x2, x0 < x2 < x1 < x3,
x0 < x2 < x3 < x1, x0 < x3 < x1 < x2, x0 < x3 < x2 < x1.

(2.7)

For each of these six possibilities the procedure described above leads to a closed discretized
braid diagram. The easiest way to do this is depicted in Figure 2.8. Namely, one draws the
four iterates of the four shifts of the periodic solution. Then one inverts the order of the
points at the zeroth and third coordinates to obtain a braid diagram. It is perhaps good to
point out that the picture in the middle of Figure 2.8, i.e. before the flip, is not interpreted
as a braid diagram, since it is not related to a parabolic flow. For the six possible orderings
the resulting braid diagrams are shown shown in Figure 2.9.

The six discretized braid diagrams can be grouped in two distinct topological braid
classes, type I and type II, see Figure 2.9. We note that they are in four distinct discretized
braid classes in D4

4, but on the topologically level these reduce to two classes. Type I has
(periodic) braid word σ2

2σ
2
1σ

2
3σ

2
2σ

2
1σ

2
3 and corresponds to orderings x0 < x3 < x1 < x2 and

x0 < x1 < x3 < x2, while the (periodic) braid word of type II is σ2
1σ2σ2

1σ2σ2
3σ2σ2

3σ2.



2.4 PERIOD-4 POINTS FOR ORIENTATION REVERSING TWIST MAPS 45

flipped flipped flipped

i=0 i=1 i=2 i=3 i=4
(i=0)

i=0 i=1 i=2 i=3 i=4

Figure 2.8: Starting from an ordering of the points (x0,x1,x2,x3) on the left ( f permutes the
ordered points), one uses four iterates (middle) and then applies the flip (i.e. inverting the order
at the zeroth and third coordinates) to obtain the braid diagram on the right.

ty
pe

I
ty

pe
II

Figure 2.9: The six period-4 orbits and their corresponding braid diagrams.
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As discussed above, since the braid consists of stationary solutions of a parabolic flow,
the braid cannot have tangencies. Of course, anchor points can nevertheless coincide, which
corresponds to a degenerate case in the ordering of the quadruple x0,x1,x2,x3. That is, some
of the inequalities in (2.7) are replaced by equalities. Since tangencies in the braid diagram
are excluded and since we start from a true period-4 orbit, the only possible degenerate
cases turn out to be

x0 < x1 = x2 < x3 and x0 < x2 = x3 < x1,

which both lead to a braid of type II.

REMARK 2.17. The fact that we have four different discretized braid diagrams but only two
topological braid classes may lead to notational difficulties that we clarify here while we
are at it. The two discretized braid classes within one topological braid class are related by
a shift σ or a double shift σ2. We can thus go back and forth between the two by applying
shifts to both v and R. When we obtain results for a parabolic flow generated by R that has
stationary braid v, then these results carry over to σ(R) and σ(v), since σ(R) is a parabolic
recurrence relation that fixes σ(v). We may thus restrict our attention to just one of the
discretized braid classes in each topological braid class.

2.5. Positive topological entropy
We are ready to assemble the machinery previously presented in order to prove that a

twist map with a period-4 point of type I is chaotic. Throughout this section we assume
the infinite twist condition (2.2), which leads to a proof of Theorem 2.3, see Section 2.7 for
the case of a diffeomorphism. We will show that for f there exists a compact invariant set
Λ⊂ R2 on which f has positive topological entropy.

Our strategy is to first consider the second iterate f 2 and to show that there is a compact
set Λ1 ⊂ R2, invariant under f 2, on which it is semi-conjugate to the shift map on three
symbols, which has positive entropy. Standard results about the entropy then imply that
the map f also has positive entropy on Λ = Λ1 ∪ f (Λ1). The set of all sequences on three
symbols is denoted by Σ3 = {−1,0,+1}Z, and σ : Σ3 → Σ3 maps {an}n∈Z to the shifted
sequence {an+1}n∈Z.

Let z be a period-4 point of type I. According to Section 2.4 this means that we may
assume that the x-coordinates of its orbit, denoted by xi = πx f i(z), are ordered in a certain
way. In particular, in view of Remark 2.17 and considering an iterate of z if necessary, we
may without loss of generality assume that

x0 < x3 < x1 < x2.

Let S ⊂ R2 be the set of all complete orbits of f and define

Λ1
def
= {z ∈ S | πx f 2i(z) ∈ [x0,x2] and πx f 2i+1(z) ∈ [x3,x1] for all i ∈ Z}. (2.8)

Remark 2.4 shows that f−1 is well-defined (at least on the image of f ). We note that z and
f 2(z) are elements of Λ1. The set Λ1 is invariant under f 2 and it is bounded. By definition
the x-coordinates are uniformly bounded on Λ1, while boundedness of the y-coordinate
follows from the fact that the functions Y (x,x′) and Ỹ (x,x′) from Section 2.2 are continuous
on R2 and thus bounded on bounded sets. Furthermore, since f and f−1 are continuous
(differentiable) functions it is not hard to see that Λ1 is compact.
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Let ϕ : Λ1 → Σ3 be the function that assigns a symbol sequence to each point in Λ1 as
follows:

ϕ(z) = {an}n∈Z ⇐⇒






an = +1 if πx f 2n(z) ∈ (x1,x2],
an = 0 if πx f 2n(z) ∈ [x3,x1],
an =−1 if πx f 2n(z) ∈ [x0,x3).

(2.9)

The sequence {an}n∈Z will be called the symbolic description of a point (trajectory) in Λ1.
We note that

ϕ(z) = {(−1)n−1}n∈Z and ϕ( f 2(z)) = {(−1)n}n∈Z. (2.10)

Our goal is to show that ϕ is a semi-conjugacy. It follows from the construction that
ϕ◦ f 2(z) = σ◦ϕ(z) for all z ∈ Λ1. We still need to show that ϕ is surjective and continuous.
Continuity is proved in Lemma 2.21, while surjectivity follows from Lemma 2.20. Leading
up to that we first state and prove the crucial lemma, which uses the concepts of the flip
transformation, braid diagrams and their Conley index.

LEMMA 2.18. For any periodic symbol sequence {an}n∈Z ∈ Σ3 there exists a point in Λ1
that has {an}n∈Z as its symbolic description.

PROOF. Let p be the minimal period of the sequence {an}n∈Z, and let 4q denote the
smallest common multiple of 2p and 4.

Step 1. Construction of relative braid classes.
In Section 2.4 we explained in detail how a period-4 point yields a braid v ∈ D4

4 that is
stationary for the parabolic flow associated to the recurrence relation R = (Ri)i∈Z. In this
section v is assumed to be a type I braid. By concatenating v (just repeating it) we obtain
more stationary skeletons. To be precise, define #qv to be the q-concatenation of v. Clearly
#qv ∈D4

4q, and it is a stationary skeleton for R (cf. Figure 2.10).
Using the skeletons #qv we can now construct numerous relative braid classes by weav-

ing in a free strand with the skeletal strands. Given a periodic symbol sequence {an}, a free
strand u= (ui)

4q−1
i=0 can be characterized as follows:

(i) For i odd, ui ∈ (x3,x1) when i= 1 mod 4, and ui ∈ (−x1,−x3) when i= 3 mod 4.
(ii) The position of the even anchors is determined by the sequence {an}2q−1

n=0 :

if an = +1 then u2n ∈ (x1,x2) for n odd, and u2n ∈ (−x2,−x1) for n even;
if an = 0 then u2n ∈ (x3,x1) for n odd, and u2n ∈ (−x1,−x3) for n even;
if an = −1 then u2n ∈ (x0,x3) for n odd, and u2n ∈ (−x3,−x0) for n even.

Moreover, let u4q = u0. The subdivision of the range of n (basically n = 0,3 mod 4 and
n= 1,2 mod 4) is needed since we are working with the (flipped) coordinates for parabolic
recurrence relations. Figure 2.10 shows an example of a relative braid class obtained in
this way. Denote the equivalence class of the relative braids described above by [u rel #qv].
If an *≡ ±(−1)n, then the these braid classes are bounded and proper. For the sequences
an ≡±(−1)n the corresponding points in Λ1 are given by (2.10), and we will exclude these
special sequences from our considerations.

Step 2. Non-triviality of the Conley index.
We now calculate the Conley index for the braid classes described in step 1. Since each
coordinate ui can only move in the designated intervals as described above, the configuration
space N = cl([u rel #qv]) is a cartesian product of intervals, i.e. N ) I4q, a 4q-dimensional



48 2. ORIENTATION REVERSING TWIST MAPS

⇓

Figure 2.10: Braid diagrams corresponding to {. . . ,a0,a1,a2,a3,a4,a5,a6, . . .} =
{. . . ,0,+1,+1,0,−1,+1,0, . . .}. At the top is a generic non-symmetric situation, while
at the bottom the skeleton is deformed into a symmetric one, which has the same topological
information and has the advantage that it is a lot easier to survey. The homotopy type of this
braid class is the pointed space (S2,pt).

hypercube. We now proceed by determining N−, the exit set. As in Example 2.16 the flow
can only decrease the total number of intersections if u2n ∈ (x3,x1) or u2n ∈ (−x1,−x3).
Then the number of intersections decreases when u2n moves through the boundary of these
intervals. The number of anchor points for which this is possible is equal to the number of
zeroes in {an}2q−1

n=0 . Denote this number by k. This way N− consists only of opposite faces.
Therefore, h= [N/N−]) (Sk,pt). A standard result from homology theory then shows that

H∗(N,N−) = H∗((Sk,pt)) =

{
R if ∗= k,
0 otherwise,

and CPt(h) = tk, proving that the Conley index is non-trivial for any periodic symbol se-
quence {an} with an *≡ ±(−1)n. Such symbol sequences will be earmarked as non-trivial.

Step 3. Existence of periodic points.
From the previous step we have that CP−1(h) = (−1)k *= 0. Lemma 2.14 then proves that
there exists at least one stationary point, i.e. a solution of R = 0, in the relative braid class
[u rel #qv] that is associated to each of the non-trivial periodic symbol sequences {an}. The
considerations in Section 2.2, in particular Lemma 2.7, imply that the stationary solution
u constructed this way corresponds to a periodic point of f . Hence it corresponds to a 2q
periodic orbit of f 2 and the construction of the braid classes ensures that this periodic orbit
is in Λ1 and has symbolic description {an}. "
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The proof of Lemma 2.18 does not show that every periodic symbol sequences of min-
imal period p corresponds to a periodic trajectory with period p of f 2 (only when p is even
this is clear). Nor do we obtain uniqueness of points in Λ1 that have a particular periodic
symbolic description. However, since we are only building a semi-conjugacy, neither of
these points matter.

REMARK 2.19. For any z ∈ Λ1 the x-coordinates of the even iterates cannot be on the
boundary of the intervals distinguishing the different symbolic descriptions, i.e. πx f 2n(z) *=
x1,x3. Namely, suppose πx f 2n(z) = x1 or x3, then after applying the flip transformation and
interpreting the flipped trajectory of z as a strand in the braid diagram (see Figure 2.10),
this strand is stationary and has a tangency at anchor point 2n with one of the strands of the
skeleton. This is impossible, as stated in Proposition 2.11. An alternative is to compare the
trajectories of z and z and to use the twist property of the orientation reversing twist map f
to obtain a contradiction directly.

The periodic symbol sequences from Lemma 2.18 allow us to deal with the general
case.

LEMMA 2.20. For any sequence {an}n∈Z ∈ Σ3 there exist a point in Λ1 that has {an}n∈Z as
its symbolic description.

PROOF. Let a = {an}n∈Z be any sequence in Σ3. We can approach a by periodic se-
quences ak ∈ Σ3, where akn = an for |n| ≤ k with periodic extension akn = akn−2k−1 for all n.
Clearly ak→ a as k→ ∞, with ak being periodic (the metric is given explicitly in the proof
of the next lemma). Lemma 2.18 shows that there exist points zk ∈ Λ1 such that ϕ(zk) = ak.
Since Λ1 is compact, there exists a convergent subsequence zkm → z ∈ Λ1 as m→ ∞. Let
ϕ(z) = b ∈ Σ3, then we claim that b= a. For any fixed n ∈ Z, πx f 2n(z) is either in [x0,x3),
(x3,x1) or (x1,x2], because the values x1 and x3 are excluded by Remark 2.19. Hence it
follows that for m sufficiently large πx f 2n(zkm) is in the same of these intervals as πx f 2n(z).
Since the intervals encode the symbolic description, this implies bn = akmn for sufficiently
large m, and thus indeed b= a. "

LEMMA 2.21. The map ϕ defined in (2.9) is continuous.

PROOF. The arguments resemble the ones used in the previous proof. We use the metric
d(a,b) = 2−max{m|an=bn for |n|<m} on Σ3. Let zk be any convergent sequence in Λ1, zk →
z ∈ Λ1. Let ϕ(z) = b ∈ Σ3 and ϕ(zk) = bk. For any fixed n ∈ Z, πx f 2n(z) is either in
[x0,x3), (x3,x1) or (x1,x2], because the values x1 sand x3 are excluded by Remark 2.19.
Hence it follows that for k sufficiently large πx f 2n(zk) is in the same of these intervals as
πx f 2n(z), which implies bn = bkn for sufficiently large k. In particular, for any (large) m ∈N

there exists a K(m) ∈ N such that bn = bkn for all |n| ≤ m and k ≥ K. In other words,
|ϕ(z)−ϕ(zk)| ≤ 2−m−1 for k ≥ K, which establishes continuity. "

From the previous lemmas we conclude that ϕ as defined by (2.9) is a semi-conjugacy
from f 2|Λ1 to σ|Σ3 . To carry over this information to the map f we define

Λ def
= Λ1∪ f (Λ1),

which is invariant under f , and the entropy of f on Λ can be estimated in terms of the
entropy of the shift on three symbols.
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THEOREM 2.22. An orientation reversing twist map of the plane that satisfies the infinite
twist condition and that has a type I period-4 point, has positive topological entropy re-
stricted to the compact invariant set Λ.

PROOF. We use the semi-conjugacy ϕ to estimates the entropy h( f |Λ) of f on Λ. Stan-
dard properties of the entropy (e.g. see [24]) give the estimates

h( f |Λ) =
1
2
h( f 2|Λ)≥

1
2
h( f 2|Λ1)≥

1
2
h(σ|Σ3) =

1
2

ln(3).

"

REMARK 2.23. As an alternative strategy one can consider the fourth iterate of f instead of
the second one. This is perhaps more natural in view of the decomposition of f 4 in terms
of orientation preserving twist maps, as discussed in the introduction. On the other hand,
the notation becomes a bit more involved. Anyway, it is not difficult to see that arguments
analogous to the ones used for the second iterate lead to a semi-conjugacy of f 4|Λ1 to the
shift on the space Σ9 of sequences on nine symbols. This approach gives exactly the same
lower bound for the topological entropy of f :

h( f |Λ)≥
1
4
h( f 4|Λ1)≥

1
4
h(σ|Σ9) =

1
4

ln(9) =
1
2

ln(3).

2.6. Type II periodic points
In the previous section we have proved that a period-4 orbit of type I forces orientation

reversing twist maps to be chaotic. Now we will show that the theorem is “sharp” in the
sense that we construct an example of a map with a period-4 orbit of type II that has zero
topological entropy, i.e., the entropy of the dynamics restricted to any bounded invariant set
is zero.

We start with the well known quadratic family of one dimensional maps

xk+1 = λxk(1− xk),

where λ is a parameter. This map is a good starting point since it has a simple formula and
its dynamics has been studied extensively. The property of most interest to us is that for λ
slightly larger than

λ∗ = 1+
√

6,

the system has a period-4 orbit which is stable (the period-2 orbit undergoes a period dou-
bling bifurcation at λ= λ∗). Moreover, the topological entropy of the map on the maximal
bounded invariant set is zero.

We want to embed this system into R2 and turn it into an orientation reversing twist
map. To accomplish this we use the family of maps

fε :
(
x
y

)
→
(

y
εx+λy(1− y)

)
,

which are orientation reversing twist diffeomorphisms for all ε > 0, while for ε = 0 we
retrieve the quadratic family in disguise ( f0 is not a diffeomorphism). Notice that for ε= 0,
and λ slightly larger than λ∗, the period-4 orbit is of type II (cf. Section 2.4). Intuition
suggests that for small ε > 0 the perturbation εx will not change the dynamics much (in
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particular, the entropy remains zero). The remainder of this section is spent on making this
precise.

Since our aim is to show that the maps for ε > 0 have zero topological entropy we
prove that their non-wandering sets are all “the same”, and in a sense “copies” of the non-
wandering set at ε= 0, i.e., we will prove a version ofΩ-stability for this particular situation.
Let Sε be the set of all all points in R2 through which there is a complete bounded orbit of fε,
and let Ωε be the set of non-wandering points of fε. We start with proving that all interesting
dynamics is contained in the compact set N def

= [−1,2]× [−1,2].

LEMMA 2.24. For ε ∈ [0,1/2) and λ ∈ [1,4] it holds that Ωε ⊂ Sε ⊂ int(N).

PROOF. The case ε = 0 corresponds to the one-dimensional quadratic map and the
statements are easily seen to hold. We turn to the case ε∈ (0,1/2), for which fε is invertible.
First we show that Sε ⊂ N. Let us start with the bound xn,yn < 2. By contradiction, assume
that x0 ≥ 2, then since λyn(1− yn)≤ 1 we have

xn−2 ≥
xn−1
ε

.

Hence the sequence x−2k→∞, as k→∞. This contradicts the fact that trajectory is bounded,
so indeed xn < 2 for all n. Since yn = xn+1 we then also have yn < 2.

Next we prove that xn,yn >−1. If y0 ≤−1 then the inequality

yn+1 < λyn(1− yn)+ 1

implies that yk→−∞ as k→ ∞. Therefore yn >−1 and again the same holds for xn.
We now show that also Ωε ⊂ N. From the previous argument we see that if this is not

the case then there has to be some point (x0,y0) ∈ Ωε for which x0 ≥ 2. It then follows
that x−2k → ∞, and since x0 is non-wandering x−2m+1 has to be arbitrarily close to x0 ≥ 2
for some m ∈ N. The same reasoning as before then shows that x−2m+1−2k→ ∞ as k→ ∞,
contradicting the fact that (x0,y0) ∈ Ωε. We have thus established that Ωε ⊂ N. Finally, if
z ∈Ωε, then fε(z) ∈Ωε and f−1

ε (z) ∈Ωε, hence Ωε ⊂ Sε. "

InΩ-stability theory the concept of axiom A maps and the no-cycle property are usually
essential (see for example [61]). Let us recall their standard definitions. For a compact
manifold M, we say that a map f : M→M satisfies axiom A if the set Ω( f ) is hyperbolic
and the periodic points are dense inΩ( f ). When f satisfies axiom A then the non-wandering
set Ω( f ) can be written as a finite disjoint union Ω=Ω0∪ ·· · ∪Ωk of closed invariant sets
on which f is topologically transitive (the spectral decomposition theorem, cf. [61]). The
sets Ωi are called basic sets. We say that Ωi ≤ Ω j if (Ws(Ωi)\Ωi)∩ (Wu(Ω j)\Ω j) *= ∅,
where the stable and unstable sets are given by

Ws(Ωi) = {x ∈M | f n(x)→Ωi as n→ ∞}
Wu(Ωi) = {x ∈M | f−n(x)→Ωi as n→ ∞}.

A map f satisfying axiom A has the no-cycle property if for every choice of distinct indices
{ik}nk=1, n≥ 1 it is impossible to have the inequalities

Ωi1 ≤Ωi2 ≤ . . .≤Ωin ≤Ωi1 .
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Figure 2.11: The graph of the fourth power of the quadratic map. The parameter λ is set to
λ∗+ 0.04. The intervals A1, A2 and A3 (bounded by the extrema) are indicated.
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Figure 2.12: One of the two trapping regions of the period-4 orbit. We choose λ so close to λ∗
that the function is monotone between the three fixed points of F4

λ in the picture.

Since our case does not fit in the usual setting of diffeomorphisms on a compact mani-
fold we will now adapt these concepts to the family fε. For f0 the invariant set is

S0 = {(x,y) |x ∈ [0,λ/4] and y= λx(1− x)}.

For values of λ slightly larger than λ∗ there are two unstable fixed points, an unstable period-
2 orbit and stable period-4 orbit. For simplicity we write
• Ω1 – period-4 orbit;
• Ω2 – period-2 orbit;
• Ω3 – non-trivial fixed point;
• Ω4 – fixed point (0,0).
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We would like to show that these are the only non-wandering points. To analyze the dy-
namics we observe that for the fourth power F4

λ of quadratic map Fλ(x) = λx(1− x) even-
tually maps any point x0 ∈ (0,1) into the interval A = [Fλ(λ/4),λ/4] (cf. Figure 2.11).
On the other hand, in A we can distinguish three intervals A1 = [Fλ(λ/4),F3

λ (λ/4)],
A2 = (F3

λ (λ/4),F2
λ (λ/4)) and A3 = [F2

λ (λ/4),λ/4]. Monotonicity of F4
λ on A2∩(F4

λ )−1(A2)
guarantees that any point in A, with the exception of the fixed point Ω2, will eventually en-
ter A1 or A3 under iterates of F4

λ . Apart from the period-2 orbit any point in A1 and A3
approaches the period-4 orbit due to monotonicity of F4

λ on these intervals (cf. Figure 2.12).
Our choice of λ is sufficiently close to λ∗ so that the function F4

λ is monotone between
the three fixed points of F4

λ in A1 and A3. Since f0 mimics the dynamics of Fλ, it follows
that any point in S0 that is not eventually periodic has Ω3 as its ω-limit set. Moreover, we
have proved that there are no other non-wandering points then the orbits contained inΩi for
i= 1,2,3,4, i.e.

Ω0 =Ω1∪Ω2∪Ω3∪Ω4.

One can easily see that the eigenvalues of d f0 in a point in Ω0 are α1 = 0 and α2, which
is equal to the eigenvalue of the corresponding point of Fλ. Again, since for λ sufficiently
close to λ∗, and λ> λ∗, we have F ′λ *= ±1 at the fixed points, the period-2 and the period-4
orbit. Hence, they are all hyperbolic, and Ωi is hyperbolic for i= 1,2,3,4.

The reasoning above shows that f0 has a hyperbolic non-wandering set which only
consists of periodic orbits. Moreover, we have identified the basic sets to be Ωi with
i = 1,2,3,4. Now we turn to the no-cycle property. To simplify the notation we write
W̃ s(Ωi) =Ws(Ωi)\Ωi and W̃ u(Ωi) =Wu(Ωi)\Ωi. To exclude the existence of a cycle let us
start with the observation that W̃ s(Ω4)∩S0 = ∅. This ensures that Ωi *≤Ω4 for i= 1,2,3,4.
On the other hand W̃ u(Ω1) = ∅, so Ω1 *≤ Ωi for i = 1,2,3,4. From the arguments above
(illustrated in Figures 2.11 and 2.12) it follows that W̃ u(Ω3) ⊂ Ws(Ω1) ∪Ws(Ω2) and
W̃ u(Ω2) ⊂Ws(Ω1). Combining these observation we see that there are no cycles among
{Ωi}4

i=1. This reasoning shows that

LEMMA 2.25. For λ slightly larger than λ∗ the map f0 has a finite hyperbolic non-
wandering set, and there are no cycles among the basic sets.

We are now in a position to prove Ω-stability and in particular

LEMMA 2.26. There exists an ε∗ such that for all ε ∈ [0,ε∗] the set Ωε is finite.

PROOF. We will mimic the proof ofΩ-stability theorem for diffeomorphisms on a com-
pact set in [61]. From the lemmas above we know that Ω0 = per( f0) =Ω1∪Ω2∪Ω3∪Ω4.
It is well know that for f0 there exist a Lyapunov function (see [40]). So there exists a
function V : N → R satisfying the following conditions. It is decreasing along trajectories
of f0, except on Ωi, i= 1,2,3,4, whereV is constant. Furthermore, because of the no-cycle
property we may assume that V (Ωi) *= V (Ω j) for i *= j. Also, we can rescale V so that
V : N→ (1

2 ,41
2 ] and V (Ωi) = i. We define the (compact) sets

Mj
def
= V−1((−∞, j+ 1/2]) ∩ N.

The sets Mj have the properties of a filtration:
(1) N =M4 ⊃M3 ⊃M2 ⊃M1 ⊃M0 = ∅;
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(2) f0(Mj)⊂ int(Mj);
(3) Ω j ⊂ int(Mj \Mj−1);
(4) Ω j =

⋂∞
k=−∞ f k0 (Mj \Mj−1);

where f−k0 denotes the k-th pre-image. These properties follow from the definition of Mj
and the structure of Ω0. For simplicity denote

Uj
def
=Mj \Mj−1.

By the continuity of the family fε and the compactness of N we can choose ε1 so small that
property (2) holds for all ε≤ ε1, i.e. fε(Mj)⊂ int(Mj) for all j.

Since Ωi consists of a hyperbolic periodic orbit, Ωi continues under perturbations. The
perturbed periodic orbit, denoted by Ωε

i , is again hyperbolic for ε sufficiently small, say
ε ≤ ε2 ≤ ε1. Clearly Ωε

i ⊂ Ωε for all i. To conclude the proof we show the other inclusion
Ωε ⊂Ωε

1∪Ωε
2∪Ωε

3∪Ωε
4.

We will prove the two following claims. Firstly, for ε sufficiently small, Ωε
j = Sε(Uj),

where Sε(Uj) is the set of all points in R2 whose complete orbits lie entirely inUj. Secondly,
if z ∈Ωε∩Uj for some ε≤ ε2 and some j, then f iε(z) ∈Uj for all i ∈ Z. Let us assume for
the moment that the claims are true for ε ≤ ε∗ ≤ ε2. Let z0 ∈ Ωε for some ε ∈ (0,ε∗]. By
property (1) of the setsMj the point z0 has to be in someUj0 . By the second claim the whole
trajectory of z0 is contained inUj0 . Then the first claim shows that z0 ∈Ωε

j. This proves that
the non-wandering set for fε consists entirely of the perturbation of the non-wandering set
of f0. In particular, Ωε is finite. Now we return to the proof of the claims.

Claim 1: Ωε
j = Sε(Uj) for all j and all ε sufficiently small. Because of property (3) of

the set Mj we get Ωε
j ⊂ Sε(Uj) for ε sufficiently small. For the other inclusion we argue by

contradiction. Setting ε = 1/n we assume that for all n ≥ n0 ∈ N there is a zn ∈ S1/n(Uj)

such that zn *∈Ω
1/n
j . By the hyperbolicity of Ω j (and Ωε

j) there is a δ> 0 such that f k(n)1/n (zn)

is not in a δ-ball Bδ(Ω j) around Ω j for some k(n) ∈ Z. Set wn = f k(n)1/n (zn), then wn ∈
S1/n(Uj)\Bδ(Ω j). By compactness of N there exists a subsequence m0(n) so that wm0(n)→
v0 ∈ Uj \Bδ(Ω j). We want to show that v0 ∈ Uj and that there is an complete orbit in
Uj through v0. First we prove that f i0(v0) ∈ Uj for all i ≥ 0. If this would not be the
case then f i0(v0) ∈ Mj−1 for some i ≥ 0. From the property (2) of the sets Mj we get
f i+1
0 (v0)∈ int(Mj−1), and from the continuity of the family fε and the continuity of the map

it follows that f i+1
1/m0(n)(wm0(n)) ∈ int(Mj−1) for n large, which contradicts the assumption

that wm0(n) ∈Uj. We thus have that f i0(v0) ∈Uj for all i≥ 0. To get the same for pre-images
of v0 we need to extract further subsequences.

From the sequencem0(n) we extract yet another subsequencem1(n) such that f−1
1/m1(n)(wm1(n))

converges to, say, v−1. It easily follows that f0(v−1) = v0. Similarly, from the se-
quence m1(n) we can extract a subsequence m2(n) such that f−2

1/m2(n)(wm2(n))→ v−2, and
f0(v−2) = v−1. We can repeat this procedure inductively and we end up with a sequence
{vk}0

k=−∞ ⊂Uj and f0(v−k) = v−k+1. In fact, v−k ∈Uj (k ∈ N), because if v−k ∈Uj \Uj,
then v−k+1 = f (v−k) ∈ int(Mj−1), a contradiction.
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We have now constructed a whole trajectory {vk}0
k=−∞∪{ f

k
0 (v0)}∞k=0 of f0 contained in

S0(Uj). By property (4) of the sets Mj this trajectory has to be contained in Ω j, but since
v0 *∈ Bδ(Ω j) we get a contradiction, which concludes the proof of the claim 1.

Claim 2: For all z ∈ Ωε with ε ∈ (0,ε2] it holds that if z ∈ Uj, then f iε(z) ∈ Uj for
all i ∈ Z. It is worth recalling that ε ≤ ε2 implies that fε(Mj) ⊂ int(Mj). Assume that
z ∈Ωε∩Uj for some j.

Firstly, we show that f iε(z) ∈ Uj for all i ≥ 0. Since z is in Mj we know that f iε(z)
is in the interior of Mj for every positive i. Next, f iε(z) /∈ Mj−1 for all i > 0. Namely, if
f iε(z) ∈Mj−1 for some i> 0, then the next iterate is in the interior of Mj−1. The continuity
of the map guarantees that f i+1

ε (Bδ(z)) ⊂ int(Mj−1), for δ sufficiently small, which also
implies f i+1+k

ε (Bδ(z))⊂ int(Mj−1) for all k ∈ N. On the other hand, Bδ(z)∩Mj−1 = ∅, for
sufficiently small δ. Hence, f i+1+k

ε (Bδ(z))∩Bδ(z) = ∅ for all positive k and δ sufficiently
small, which contradicts z ∈Ωε.

Secondly, we show that also the negative iterates f−iε (z) ∈Uj, for all i > 0. We have
to show that f−iε (z) *∈ Mj−1 and that f−iε (z) *∈Uj+m, where i,m > 0. As above it follows
that if f−iε (z) ∈ Mj−1, then z = f−i+iε (z) ∈ int(Mj−1), whereas z ∈ Uj, which shows that
f−iε (z) *∈ Mj−1. To prove that f−iε (z) *∈Uj+m, m > 0, we observe that the non-wandering
set Ωε is invariant under fε and f−1

ε . If we would have that z̃ = f−iε (z) ∈Uj+m for some
i> 0 and some m> 0, then z̃ ∈Ωε and f kε (z̃) ∈Uj+m, for all k≥ 0, by the result on positive
iterates established above. This contradicts the fact that f iε(z̃) = z∈Uj, concluding the proof
of claim 2 and therefore the lemma. "

We have thus found our counterexample.

LEMMA 2.27. The orientation reversing twist maps fε, with λ slightly larger than λ∗ and ε
sufficiently small, which have a period-4 orbit of type II, have zero topological entropy (as
explained at the beginning of this section).

PROOF. Lemma 2.26 proves that the non-wandering set Ωε of fε is finite. Standard
results on the topological entropy show that the entropy of fε on Sε is equal to the entropy
on Ωε, and the entropy of the map on a finite set is zero (e.g. see [61]). "

2.7. Twist diffeomorphisms of the plane
We now extend our results to situations where the parabolic recurrence relation is not

defined on the whole of R3. Since this requires some careful analysis, this section is sub-
stantially more technical than the previous ones. We first introduce the necessary frame
work and in Section 2.7 we apply it to period-4 orbits of orientation reversing twist diffeo-
morphisms and we prove Theorem 2.2.

The domain of parabolic recurrence relations
We are interested in bijective orientation reversing twist maps. In the introduction it has

been explained that the fourth iterate can be decomposed in four orientation preserving pos-
itive twist maps, to which we can apply the theory of parabolic flows. We thus restrict our
attention here to orientation preserving twist diffeomorphisms, and compositions thereof.
We assume f is an orientation preserving twist diffeomorphism, i.e. f is bijective to R2,
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Figure 2.13: The domain D of the functions Yf and Ỹf for a twist diffeomorphism f .

d f *= 0, and ∂2(πx f ) > 0. By definition the function f−1 is defined on R2, it is differen-
tiable by the inverse function theorem, and ∂2(πx f−1) < 0, i.e. f−1 has negative twist.

We recall and refine some notation from Section 2.2. Let (x′,y′) = f (x,y), then there
are differentiable functions Yf and Ỹf with ∂2Yf > 0 and ∂1Ỹf < 0, such that

y= Yf (x,x′) and y′ = Ỹf (x,x′). (2.11)

Since f−1 has negative twist, the same reasoning as in Section 2.2 gives differentiable
functions Yf−1 and Ỹf−1 with ∂2Yf−1 < 0 and ∂1Ỹf−1 > 0, such that y′ = Yf−1(x′,x) and
y= Ỹf−1(x′,x). Obviously

Yf (x,x′) = Ỹf−1(x′,x) and Ỹf (x,x′) = Yf−1(x′,x).

Let us consider the domain D of Yf and Ỹf , and define
g(x) def

= lim
y→−∞

πx f (x,y) and h(x) def
= lim

y→∞
πx f (x,y). (2.12)

These are functions from R to [−∞,∞]. Since they are limits of monotone sequences of
continuous functions, g is upper semi-continuous and h lower semi-continuous, and g(x) <
h(x) for all x ∈ R. The domain of Yf and Ỹf is the open set given by

D= {(x,x′) |x ∈ R, g(x) < x′ < h(x)}.
When f is invertible we can use the same arguments for f−1. We define G(x) =
limy→∞ πx f−1(x,y) and H(x) = limy→−∞ πx f−1(x,y). The domain of Yf−1 and Ỹf−1 is given
by D̃= {(x′,x) |x′ ∈R, G(x′) < x<H(x′)}. Obviously (x,x′) ∈D if and only if (x′,x) ∈ D̃,
i.e. D̃ = D−1. This gives us a lot of information on g and h. In fact, the boundary ∂D of
D consists of at most four pieces, each of which is a monotone graph. This is depicted in
Figure 2.13.

It takes some notation to make this precise. The function h : R → (−∞,∞] is lower
semi-continuous; there is a point xh ∈ [−∞,∞] such that h(xh) = ∞ and h is non-decreasing
for x< xh, and non-increasing for x > xh. This means that h consists of at most two pieces
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of real-valued functions on (semi-)infinite intervals, a non-decreasing function h+ and a
non-increasing one h−. Since h and/or xh can be infinite, h− and/or h+ may be nonexistent.
The associated graphs are

h± = gr(h±) = ∂{(x,x′) ∈ R
2 |x ∈ dom(h±),x′ < h±(x)} ⊂ R

2.

In Figure 2.13 h+ is the northwest boundary and h− is the northeast boundary. A similar
description is valid for g, with g+ being non-decreasing (the southeast) and g− being non-
increasing (the southwest). The boundary of D ⊂ R2 thus consists of the (at most four)
graphs g± and h±.

Since the parabolic recurrence relation, and hence the parabolic flow, is not defined on
the boundary ∂D, we need to define (preferably smooth) approximations to it. We con-
struct here the smooth approximations to the northwest boundary h+. The other bound-
aries are dealt with similarly. Let h+ε be a cutoff/extension function of h+: h+ε(x) =
min{ε−1,h+(x)} for x ∈ dom(h+) and h+ε(x) = ε−1 for x /∈ dom(h+). We make it smooth
by using a one-sided mollification as follows. Let z(x) be a nonnegative function with sup-
port in [0,1] and integral

∫
R
z= 1; let zε(x) = ε−1z(x/ε). Define

h+
ε (x) = ε

arctanh(x)−1
2

+
∫

R

zε(y)h+ε(x− y)dy.

The ε-approximation h+
ε of h+ is smooth on R. Because of the one-sided mollification and

the addition of a small increasing term, h+
ε is increasing, hence h+

ε
′ > 0, and

h+(x− ε)− ε< h+
ε (x) < h+(x) (2.13)

provided x− ε ∈ dom(h+). This means that gr(h+
ε ) is

√
2ε-close to h+ on the piece where

h+
ε < ε−1. The cut-off along the x′ coordinate will cause no problems since we will only be

interested in bounded braid classes, i.e. bounded subset of R2. Furthermore, h+
ε is strictly

increasing in ε. It follows from (2.11), (2.12) and (2.13) that

lim
ε→0

Y (x,h+
ε (x)) = ∞ for all x ∈ dom(h+), (2.14a)

lim
ε→0

Ỹ ((h+
ε )−1(x′),x′) = ∞ for all x′ ∈ range(h+). (2.14b)

Since we are interested in compositions fd−1 ◦ fd−2 ◦ · · · ◦ f1 ◦ f0 of orientation preserv-
ing twist maps, we index the corresponding g and h accordingly. The ε-approximation of
the domain Di of Yi is thus

Di,ε = {(xi,xi+1) |g±i,ε(xi)≤ xi+1 ≤ h±i,ε(xi)}.

Restricted braid classes
The spaces of restricted braid diagrams are defined as (cf. [33])

End
def
= Dn

d ∩{u |(uαi ,uαi+1) ∈ Di for i= 0 . . .d−1 and α= 1 . . .n},
End

def
= Dn

d ∩{u |(uαi ,uαi+1) ∈ Di for i= 0 . . .d−1 and α= 1 . . .n},
ΣE

def
= End \End .

For u ∈ End the restricted braid class [u]E is defined as [u]∩E. For v ∈ Emd and u∪v∈Dn+m
d

the restricted relative braid class [u rel v]E is [u rel v]∩{u ∈ End}.
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Figure 2.14: (a) The northwest corner and its ε-approximation with the direction of the flow.
(b) Cartoon of the four pieces of boundary of the domain.

The boundary of a restricted relative braid class [u rel v]E consists of two parts,
namely the singular braids in ∂[u rel v]E∩ ΣE, and the braids that violate the restriction
in ∂[u rel v]E \ ΣE. The parabolic flow is well-defined on ∂[u rel v]E ∩ ΣE but not on
∂[u rel v]E \ΣE. To overcome this difficulty we may of course use the ε-approximations
of Section 2.7:

[u rel v]εE = [u rel v]E∩{u |(uαi ,uαi+1) ∈ Di,ε for i= 0 . . .d−1 and α= 1 . . .n}.
Now the flow is well-defined on the whole boundary ∂[u rel v]ε

E
.

As an example, let us suppose (uk,uk+1) is close to the northwest boundary h+ of Dk,
say uk+1 = h+

ε (uk) and ε→ 0. If all other pairs of coordinates (ui,ui+1), i *= k are not close
to the boundary, then, by (2.14), we have for sufficiently small ε that

duk
dt

= Yk(uk,uk+1)− Ỹk−1(uk−1,uk) > 0, (2.15)

duk+1
dt

= Yk+1(uk+1,uk+2)− Ỹk(uk,uk+1) < 0.

Since h′ε > 0 the flow is thus directed inwards at this point, see Figure 2.14a. On the other
boundaries similar arguments hold, which leads to the (mental) picture in Figure 2.14b.

However, we may have a problem when for example (uk−1,uk) also approaches a
boundary. If it approaches the southeast or northeast boundary then there is no problem,
since then Ỹk−1(uk−1,uk) < 0 and (2.15) still holds. On the other hand, if (uk−1,uk) ap-
proaches the northwest or southwest boundary then the two terms in (2.15) do not cooperate
and we can draw no conclusion about the sign. In that case we are unable to conclude that
[u rel v]εE is isolating for the parabolic flow. We therefore need to introduce the notion of
cooperation.

DEFINITION 2.28. A restricted relative braid class [u rel v]E is cooperating, if for any braid
u in the boundary piece ∂[u rel v]E\ΣE, the following holds:
(1) if (uαi ,uαi+1) ∈ h

±
i , then (uαi−1,u

α
i ) /∈ h+

i−1∪g
−
i−1;

(2) if (uαi ,uαi+1) ∈ g
±
i , then (uαi−1,u

α
i ) /∈ h−i−1∪g

+
i−1.
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We want to link the index of the restricted braid class to that of the unrestricted braid
class. For that purpose we need a stronger assumption, that also takes points in [u rel v] \
[u rel v]E into account.

DEFINITION 2.29. A restricted relative braid class [u rel v]E is strongly cooperating if for
any u ∈ cl([u rel v]) the following holds:

(1) if uαi+1 ≥ h±i (uαi ), then uαi < h+
i−1(u

α
i−1) and uαi > g−i−1(u

α
i−1);

(2) if uαi+1 ≤ g±i (uαi ), then uαi < h−i−1(u
α
i−1) and uαi > g+

i−1(u
α
i−1).

We are now ready to state the main result. The statement and proof are similar to Sec-
tion 8.3 in [33], where the restrictions on the domain were simpler and cooperation was
automatic.

THEOREM 2.30. Let [u rel v]E be a cooperating restricted braid class and let the unre-
stricted braid class [u rel v] be bounded and proper.

(a) Then the ε-approximation Nε = cl([u rel v]ε
E
) is an isolating neighborhood for the para-

bolic flow for all sufficiently small ε, which yields a well-defined Conley index, denoted
by h(u rel v,E).

(b) Moreover, if [u rel v]E is strongly cooperating, then the index of the restricted braid
class is the same as that of the unrestricted braid class: h(u rel v,E) = h(u rel v).

PROOF. Denote by R̃i the parabolic recurrence relation under consideration, with par-
abolic flow ψ̃t defined on Nε for all small ε. We first need to show that Nε is isolating for
sufficiently small ε. For any point u ∈ ∂Nε∩ΣE the flow ψ̃t leaves Nε in forward or back-
ward time by Proposition 2.11. For any point u ∈ ∂Nε \ΣE the flow ψ̃t leaves Nε in forward
or backward direction by the definition of a cooperating braid class and the arguments that
lead up to its Definition 2.29. We thus conclude that Nε is isolating, hence its Conley index
is well-defined and is independent of (sufficiently small) ε.

Next consider the unrestricted braid class [u rel v]. There exists a parabolic flow that
fixes v (see Appendix of [33]), given by a recurrence relation R0 defined on R3. We are
going to change the recurrence relation so that it still fixes v, while the invariant set is
guaranteed to be in the smaller set [u rel v]E. Clearly v ∈ E and also v ∈ E2ε for sufficiently
small ε. Let η∈C∞(R) such that η(x) = 0 for x≤ 0 and η(x) =Ke−1/x for x> 0, with large
K to be chosen later. We construct a nonnegative function ζi(x,x′) that is 0 on Di,2ε and that
is large in some sense (see below) on the complement of the slightly larger Di,ε. Namely,
we define

ζi(x,x′) = η
(
x′ −h+

i,2ε(x)
)
+η
(
x′ −h−i,2ε(x)

)
−η
(
g+
i,2ε(x)− x

′)−η
(
g−i,2ε(x)− x

′);

ξi(x,x′) = η
(
x′ −h+

i,2ε(x)
)
−η
(
x′ −h−i,2ε(x)

)
−η
(
g+
i,2ε(x)− x

′)+η
(
g−i,2ε(x)− x

′).

It is important that ∂2ζi ≥ 0 and ∂1ξi ≤ 0 (they mirror the behavior of Yi and Ỹi). For
any large square N in R2 we can choose ε sufficiently small, so that the four terms have
disjoint support in N. Additionally, for anyC> 0 there is (by a straightforward compactness
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argument) a sufficiently large K so that

ζi(x,x′) = η(x′ −h±i,2ε(x)) >C on N ∩{x′ ≥ h±i,ε(x)}; (2.16a)
ζi(x,x′) =−η(g±i,2ε(x)− x

′) <−C on N ∩{x′ ≤ g±i,ε(x)}; (2.16b)
ξi(x,x′) = ±η(x′ −h±i,2ε(x)) ≷ ±C on N ∩{x′ ≥ h±i,ε(x)}; (2.16c)
ξi(x,x′) =∓η(g±i,2ε(x)− x

′) ≶∓C on N ∩{x′ ≤ g±i,ε(x)}. (2.16d)

We define for s ∈ [0,1]

Rs
i(xi−1,xi,xi+1) = R0

i (xi−1,xi,xi+1)+ s
[
ζi(xi,xi+1)−ξi−1(xi−1,xi)

]
.

Let ψts be the flow generated by Rs. By computing ∂1R
s
i and ∂3R

s
i , it is not difficult to check

that Rs is a parabolic recurrence relation and ψts a parabolic flow for all s ∈ [0,1]. Since
Rs = R0 on E2ε the whole family fixes v. Since [u rel v] is bounded it is contained in a
large cube, say (uαi ,uαi+1) ∈ N for all i and α. Using the strongly cooperating property of
[u rel v] we can deduce from (2.16) that for sufficiently large K the recurrence relations R1

i
and R1

i+1 have fixed sign whenever (xi,xi+1) ∈ N \Di,ε, for example, R1
i > 0 and R1

i+1 < 0
when xi+1 ≥ h+

i,ε(xi). This implies that in forward or backward time the orbit through such
a point leaves N. Therefore the invariant set for ψt1 in [u rel v] is completely contained in
[u rel v]ε

E
.

We now use the fact that the Conley index is a property not only of an isolating neigh-
borhood, but also of an invariant set. Let S be the invariant set of [u rel v] under the flow
ψt1. Since [u rel v]ε

E
is also an isolating neighborhood of S for ψt1, we see that the Conley

indexes of [u rel v] and [u rel v]ε
E

are the same, namely the index of S.
Finally, consider the flows given by the interpolating parabolic recurrence relations

(1−λ)R̃+λR1, λ ∈ [0,1], with parabolic flow ψ̃tλ. Note that ψ̃t0 = ψ̃t and ψ̃t1 =ψt1, and the
whole family fixes v. Furthermore, [u rel v]ε

E
is an isolating neighborhood for ψ̃tλ for any

λ ∈ [0,1], since the signs of R1
i and R̃i on the restricting boundaries are the same. Hence

the Conley index does not change along the continuation from ψ̃t to ψt1:

h(u rel v,E) = h([u rel v]εE, ψ̃t) = h([u rel v]εE,ψt1) = h([u rel v],ψt1) = h(u rel v).

This finishes the proof. "

Positive entropy for bijective twist diffeomorphisms
Let us apply the theory developed in the previous section to prove Theorem 2.2. We

can try to emulate Section 2.5 up to the point where we need to calculate the Conley index,
which is now replaced by the restricted index h([u rel v],E). We need to be sure that the
restricted index is well-defined. The braid classes under consideration are bounded and
proper, but they might not all be cooperating.

Let us look at the shape of the domains Di. Since the skeleton v (cf. Figures 2.7 (right)
and 2.10) consists of stationary points, it must be that (vαi ,vαi+1) ∈ Di for α = 1,2,3,4.
These points are shown in Figure 2.15 for even and odd i. For each i the projection of the
unrestricted braid class [u rel v] under consideration onto the (ui,ui+1)-plane is one of the
three blocks indicated in Figure 2.15. As a consequence of the fact that (vαi ,vαi+1) ∈ Di
and of our knowledge about the shape of the boundary ∂Di, we see that the northeast and
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u2k

u2k+1

u2k+1

u2k+2

Figure 2.15: The dots represent the points (vαi ,vαi+1) ∈ Di, α= 1,2,3,4 for even i (left) and odd
i (right). The domain Di is indicated in gray. The projections of the unrestricted braid classes
onto the (ui,ui+1)-plane are hatched. Of the four boundaries of Di only two can intersect the
unrestricted braid classes.

southwest boundary never come into play for any of the braid classes under consideration,
see Figure 2.15 again.

According to the definition of cooperating braid classes we need to prevent that
(ui−1,ui) and (ui,ui+1) can be both on the northeast or both on the southwest bound-
ary. When one retraces the steps, in particular the application of a flip in the proof of
Lemma 2.18, one sees that this can only happen if in the associated symbol sequence −1 is
adjacent to −1 or +1 is adjacent to +1, and we thus need to exclude these possibilities. To
ensure the braid class is cooperating we therefore go back a step and replace the (full) shift
on three symbols by a subshift with adjacency matrix

A=




0 1 1
1 1 1
1 1 0



 .

In words, only sequences in which−1 is followed by 0 or +1, and +1 is followed by−1 or
0, are allowed. The corresponding braid classes are now all cooperating, and even strongly
cooperating, so the remainder of the proof follows the path described in Section 2.5, using
Theorem 2.30 to compute the restricted Conley index.

There is one more issue to deal with, namely compactness. The set Λ1 as defined
in (2.8) is not necessarily bounded, since, as should be clear at this point, it is harder to con-
trol the y-coordinates Y and Ỹ for diffeomorphisms than it is for maps with the infinite twist
condition. To resolve this problem, consider the set Λ2 of periodic orbits of f 2 that is “con-
structed” in the same way as in Lemma 2.18 with the restriction on the symbol sequences
due to the cooperating braid classes described above. To be more precise, for every sym-
bol sequence in the subshift defined by A the proof of Lemma 2.18 gives a corresponding
periodic point/orbit of f 2, and the collection of these orbits we call Λ2.
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Since Λ2 consists of orbits it is invariant under f 2 and we claim that it is also bounded.
Clearly the x-coordinates are uniformly bounded. The parameter ε, that is used to regularize
in Section 2.7, can be chosen in a uniform manner, since there are only four different maps
and four different domains Di,ε to consider. In the ε-approximations [u rel v]ε

E
of the braid

classes considered in Lemma 2.18, the pairs (xi,xi+1) are in a bounded subset of Di,ε, and
on these sets the continuous functions Y and Ỹ are bounded. Hence also the y-coordinates
of the points in Λ2 are uniformly bounded.

The set Λ1 in Section 2.5 is now replaced by the (smaller) compact set Λ̃1 = cl(Λ2),
which is invariant under f 2. Clearly this set Λ̃1 also suffices in Lemma 2.20, because that
lemma essentially consists of taking the closure of the periodic trajectories. Replacing Λ1
by Λ̃1 does not change any of the other arguments in Section 2.5. The resulting lower bound
on the entropy of the bijective twist map is half of the entropy of the subshift, which is log
of 1+

√
2, the largest eigenvalue of the matrix A (cf. [41]).



CHAPTER 3

Floer homology for relative braid classes

3.1. Hamiltonian systems on the 2-disc
Let D2 ⊂ R2 be the 2-disc given by D2 = {x = (p,q) ∈ R2 | |x|2 ≤ 1}, and let ω0 =

dp∧ dq be the standard area form on D2. The pair (D2,ω0) is a 2-dimensional symplectic
manifold. We consider a class of Hamiltonian functions H : R×R2 → R that satisfy the
following hypotheses (with respect to D2):

(h1) H ∈C2(R×R2;R);
(h2) H(t+ 1,x) = H(t,x) for all t ∈ R and all x ∈R2;
(h3) H(t,x) = 0 for all x ∈ ∂D2 and all t ∈ R.

We denote this class of Hamiltonians by H(D2), or H for short if there is no ambiguity
about the symplectic manifold.

For a given Hamiltonian H ∈H we define the time-dependent Hamilton vector field XH
by

iXHω0 =−dH.

In other words, XH(t,x) = J0∇H(t,x) =−Hq(t,x) ∂
∂p +Hp(t,x) ∂

∂q , and

J0 =

(
0 −1
1 0

)

is the standard symplectic matrix, which is defined via the relation 〈·, ·〉 = ω0(·,J0·). If R2

is regarded as the complex plane C then J0 corresponds to complex multiplication with i.
The vector field XH is aC1-function from R/Z×R2 to R2. We restrict XH to R/Z×D2.

Since the Hamiltonian H is 1-periodic in time (Hypothesis (h2)) closed characteristics
or trajectories of XH in R/Z×D2 correspond to n-periodic (n ∈ N) solutions

(
x(t + n) =

x(t), ∀t
)

of the Hamilton differential equations

xt = XH(t,x), (t,x) ∈ R/Z×D
2. (3.1)

This system has a variational structure. In particular, the 1-periodic solutions x(t) are critical
points of the Hamilton action functional

fH(x) =−
∫ 1

0
α0(xt(t))dt+

∫ 1

0
H(t,x(t))dt, (3.2)

63
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where α0 = pdq. The first variation is given by

d fH(x)ξ =
∫ 1

0
ω0
(
xt(t),ξ(t)

)
dt+
∫ 1

0
dH(t,x(t))ξ(t)dt

=
∫ 1

0
ω0

(
xt(t)−XH(t,x(t)),ξ(t)

)
dt.

REMARK 3.1. Hypothesis (h3) reflects that D2 is invariant for the Hamiltonian flow, and
so is ∂D2. In that setting, hypothesis (h3) is not a restriction on H . Namely, in order for
D2 to be invariant for the Hamilton equations (3.1) we need that H(t, ·)|∂D2 = constant for
each t ∈ R. For such Hamiltonians H , the same flow is obtained from the “normalized”
Hamiltonian H̃(t,x) = H(t,x)−H(t, ·)|∂D2 , which satisfies (h3). Therefore, we can assume
(h3) without loss of generality.

The initial value problem for Equation (3.1) defines the solution operator, or time-τ
map Ψ = Ψτ as follows: Ψ(x0)

def
= x(τ;x0), x ∈ D2. By compactness of D2 the initial value

problem yields solutions for τ ∈ [−τ0,τ0] for some τ0 > 0. Since the boundary ∂D2 ∼= S1

is invariant for Equation (3.1) solutions x(t;x0), x0 ∈ int(D2), cannot intersect the boundary
in finite time and therefore |x(t;x0)| < 1. This implies that τ0 = ∞ and the time-τ map is
defined for all τ ∈ R. The time-τ map Ψ is area preserving

Ψ∗ω0 = ω0.

At each x∈D2 it holds that det(dΨ(x)) = 1 and at each x∈D2, dΨ(x) is a symplectic matrix
with respect to ω0. Recall that symplectic 2×2 matrices S are defined by the relation

ST J0S = J0,

which is derived from the condition S∗ω0 = ω0, i.e. ω0(Sξ,Sη) = ω0(ξ,η). In particular,
for 2× 2 matrices this is equivalent to det(S) = 1. The symplectic 2× 2 matrices form a
group which is denoted by Sp(2,R), which (in dimension two) is equal to the special linear
group SL(2,R).

A 1-periodic solution of Equation (3.1) is equivalent to a fixed point of the time-1
map Ψ1. Let x(t+ 1) = x(t) be a solution of Equation (3.1), then Ψ1(x(t)) = x(t) for any
t ∈ R, and vice versa, if Ψ1(x0) = x0 then x(t;x0) is a 1-periodic solution of Equation (3.1).
For n-periodic solutions the same holds; n-periodic solutions are equivalent to n-periodic
points of the time-1 map Ψ1, i.e. x(t+ n) = x(t) implies that Ψn(x(t)) = x(t) for all t ∈ R

and if Ψn(x0) = x0 then x(t;x0) is an n-periodic solution.

3.2. Closed braids
In order to study n-periodic solutions of Equation (3.1) we exploit a topological struc-

ture that is available only in 2-dimensional Hamiltonian systems. Let x be a periodic so-
lution of Equation (3.1) of integer period n. By restricting t to the interval [0,1] we can
describe x via its translates

x1(t) = x(t), x2(t) = x(t+ 1), . . . , xn(t) = x(t+n−1),

see also Figure 3.1. Since x1, . . . ,xn are solutions of Equation (3.1), the uniqueness of the
initial value problem implies that, if the period n is minimal, the n ‘curves’, or strands, never
intersect, i.e. xk(t) *= xk′(t), for any k *= k′ and any t ∈ [0,1]. If the period is not minimal
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Figure 3.1: A periodic function with minimal period 2; a periodic function and its integer
translates; the restriction to the fundamental interval t ∈ [0,1].

then some strands coincide. Since the collection of curves or strands is constructed from an
n-periodic solution x it holds that

{
x1(1), . . . ,xn(1)

}
=
{
x1(0), . . . ,xn(0)

}

as (unordered) sets. Of course, if we consider a single periodic solution with minimal period
n, the values of xk(1) and xk(0) do not match pointwise in k. As a matter of fact given a
family of solutions curves (not 1-periodic) {xk(t)}nk=1 for which the end points are cyclicly
permuted, is equivalent to having an n-periodic solution x by concatenating the strands. As
such, appropriate collections of functions can be regarded as solutions of Equation (3.1).
This lead to the following definition.

DEFINITION 3.2. The space of closed braids on n strands, denoted Ωn, consists of pairs
(x,σ), where σ ∈ Sn is a permutation, and x an unordered collection of C0-functions
x = {xk}, k = 1, . . . ,n, with xk : [0,1] → D2, called strands, which satisfy the following
properties;

(i) for all k = 1, . . . ,n it holds that xk(1) = xσ(k)(0);1
(ii) for any pair of strands k *= k′, it holds that xk(t) *= xk′(t) for all t ∈ [0,1].

On Ωn we consider the standard (strong) metric topology of
(
C0([0,1];D2)

)n, and the dis-
crete topology with respect to permutations, modulo permutations that change the ordering
of strands. To be more specific, two braids (x,σ) and (x̃, σ̃) are close in the topology of Ωn

if and only if for some permutation θ ∈ Sn it holds that xθ(k) and x̃k are close inC0, for all k,
and σ̃= θ−1σθ.

We remark that identification of braids which are equivalent under permutation of the
strands is not necessary to develop the theory. On the one hand, it is elegant topologically,
but on the other hand, it is a bit cumbersome computationally. In most of the arguments
we shall (silently) order the strands, and it will be implicit that all arguments are invariant
under the choice of this ordering (i.e. choosing a representative). A collection x satisfying
Condition (i) in fact defines a permutation σ. Therefore, we often omit σ from the notation
if there is no ambiguity about the permutation

1 The action of σ is defined by σ
(
(1, . . . ,n)

)
= (σ(1), . . . ,σ(n)).
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In the spirit of this definition n-periodic solutions yield closed braids which can be
interpreted as a solutions of the product system of Equation (3.1).2 In general a closed n-
braid is a collection of periodic solution of Equation (3.1) if all its strands satisfy Equation
(3.1). The sets of strands that correspond to the same cycle of the permutation σ are called
the components of the braid. The number of components determines the number of periodic
solutions that is represented by the braid. In this context it is natural to extend any strand
xk(t), t ∈ [0,1] to all t ∈ R by requiring that

xk(t+ 1) = xσ(k)(t) for all t ∈ R and k = 1, . . . ,n. (3.3)

When n= 1, then Ω1 =Ω
1
=C0([0,1];D2). Condition (ii) makes Ωn disconnected for

all n≥ 2, and we are especially interested in the path components of Ωn.

DEFINITION 3.3. Two closed braids x and x′ in Ωn are in the same braid class, denoted
[x] = [x′], if and only if there exists a continuous path x(s) ∈Ωn, for all s ∈ [0,1], such that
x(0) = x and x(1) = x′.

The (C0-)closure ofΩn, denoted Ωn, can be characterized as the set of all maps x= {xk}
satisfying Condition (i) of the Definition 3.2 but not necessarily Condition (ii). The braids
failing to satisfy the Condition (ii) of Definition 3.2 are called singular braids.

DEFINITION 3.4. Σn =Ω
n \Ωn is the set of singular braids.

It is easy to see that, generically, a singular braid is a collection of strands x for which
xk(t0) = xk′(t0) for exactly one pair k *= k′ and exactly one t0 ∈ [0,1]. We will say that such
a collection of strands is a codimension 1 singularity and denote the set consisting of such
braids as Σn1 ⊂ Σn. We can also define Σnk ⊂ Σn as the set of codimension k singularities,
which consists of singular braids x with at most ‘k intersections’. The set Σn1 serves as the
‘walls’ between path components of Ωn.

At the other extreme, an important subset of singular braids are the so-called collapsed
singularities Σn− ⊂ Σn. This may happen in two slightly different ways; either a component
collapses into a braid with fewer strands, or two different components coalesce into one
component. To be more precise

Σn−
def
=
{
x ∈ Σn |xk(t) = xk

′
(t), for all t ∈R, for some k *= k′

}
.

Note that Σn− can be identified with the spaces Ωn′ , n′ < n, under the appropriate identifica-
tion of collapsed strands. When n= 1, then Σ1 = Σ1

− = ∅.
In the case n = 1 the variational principle for Equation (3.1) is given by the action

functional in (3.2). For closed n-braids we can adjust the variational principle as follows.
Given any x ∈Ωn define its action by

fH(x) =
n

∑
k=1

fH(xk), (3.4)

where fH is defined by (3.2). We may also regard the action as a Hamiltonian action for a
Hamiltonian system on (D2)n, with ω0 = ω0× ·· ·×ω0, and H(t,x) = ∑k H(t,xk), i.e. an

2 The product system is obtained by constructing an uncoupled system on (D2)n by repeating the equations
n times. The only coupling is in the boundary conditions as given by Condition (i) of Definition 3.2.
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uncoupled system with coupled boundary conditions. The functional fH is well-defined on
Ω
n∩C1. The stationary, or critical closed braids, including singular braids, are denoted by

CritH(Ω
n
) =
{
x ∈Ωn∩C1 | dfH(x) = 0

}
.

Since the boundary conditions are given by Condition (i) in Definition 3.2, the first variation
of the action yields that the individual strands satisfy Equation (3.1). We can establish the
following property with respect to critical points of fH on Ωn.

LEMMA 3.5. The set CritH(Ω
n
) is compact inΩn. As a matter of fact CritH(Ω

n
) is compact

in the C2-topology.

PROOF. From Equation (3.1) we derive that |xkt |= |∇H(t,xk)| ≤C, by the assumptions
on H . Since |xk| ≤ 1, for all k, we obtain the a priori estimate

‖x‖W 1,∞ ≤C,

which holds for all x ∈ CritH(Ω
n
). Via compact embeddings (Arzela-Ascoli) we have that

a sequence xn ∈ CritH converges in C0, along a subsequence, to a limit x ∈ Ω
n. Using

the equation we obtain the convergence in C1 and x satisfies the equation with the bound-
ary conditions given by Condition (i) of Definition 3.2. Therefore x ∈ CritH(Ω

n
), thereby

establishing the compactness of CritH(Ω
n
) in Ωn. The C2-convergence is achieved by dif-

ferentiating Equation (3.1) once. This concludes the compactness of CritH(Ω
n
) inC2. "

REMARK 3.6. The critical braids in CritH(Ω
n
) have one additional property that plays an

important role. For the strands xk of x ∈ CritH(Ω
n
) it holds that either |xk(t)| = 1, for all t,

or |xk(t)| < 1, for all t. This is a consequence of the uniqueness of solutions for the initial
value problem for (3.1). We say that a braid x in supported in int(D2) if |xk(t)| < 1, for all t
and for all k.

In the same spirit, we can define the subset of stationary braids restricted to a braid
class [x], notation CritH([x]). Due to the fact that strands can coalesce, this space is not
necessarily compact inΩn. By the same token, the union of all braid classes, i.e. CritH(Ωn),
is not necessarily compact and CritH(Ωn) ⊂ CritH(Ω

n
). The following proposition gives a

refined compactness statement for set of stationary braids. Before stating this result let us
first explain the conjugacy classes of permutations of closed braids. Let In = {1, . . . ,n},
and Sn is the group of permutations on In. A permutation σ′ ∈ Sl , for some l ≤ n, is said
to coarsen a permutation σ ∈ Sn, if there exist disjoint sets Ai ⊂ In, i = 1, . . . , l satisfying⋃
i Ai = In, such that

Aσ′(i) = σ(Ai)
def
=
{
σ(a) |a ∈ Ai

}
,

for all i= 1, . . . , l. In terms of braids, the coarsening means that the strands of one or more
components of the braid are identified.

PROPOSITION 3.7. The compact space CritH(Ω
n
) can be decomposed as follows:

CritH(Ω
n
) =

n⋃

l=1
CritH(Ωl).

Elements in CritH(Ωl), l < n, can occur as limits of sequences in CritH(Ωn) when strands
are counted with multiplicity. The compactness in CritH(Ω

n
) can, in view of the decompo-

sition above, be described as follows; let [x] be a braid class in Ωn, then for any sequence
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{(xm,σm)} ⊂ CritH([x]), σm ∈ [σ], there exists a subsequence {(xmj ,σ
′)} ⊂ CritH([x]) (i.e.

σ′ ∈ [σ]), and a braid (x̃, σ̃) ∈ CritH(Ωl), for some l ≤ n, such that σ̃ coarsens σ′ with
respect to a decomposition {Ai} of In, and

xkimj

C0
−→ x̃i, mj→ ∞,

for all ki ∈ Ai and for all i= 1, . . . , l. For the action it holds that

fH(xmj)−→
l

∑
i=1

|Ai| fH(x̃i), mj→ ∞,

where |Ai| is the number of elements in Ai.

PROOF. Compactness follows from Lemma 3.5, and the uniqueness of the initial value
problem for Equation (3.1) implies that limits are necessarily closed braids, possibly with
strands coalescing. Simple inspection of limits reveals how closed braids may collapse and
how the action of the limits relates the action along a sequence. "

3.3. The Cauchy-Riemann equations
The matrix J0 defines a compatible almost complex structure on D2. In general, a

constant compatible almost complex structure on D2 is a matrix J : TxD2 ∼= R2 → TxD2

satisfying
J2 =−Id,

and such that the quadratic form g(·, ·) = ω0(·,J·) defines a Riemannian metric, or inner
product g on R2.

The set of constant almost complex structures is denoted by J+, and it follows that J
is a symplectic matrix (for the constructions in this paper we only need J to be constant
matrix, i.e. independent of t or x). Indeed, let

J =

(
a b
c d

)
, then J2 =

(
a2 +bc b(a+d)
c(a+d) d2 +bc

)
=

(
−1 0
0 −1

)
,

which implies that d = −a and det(J) = −a2−bc = 1. The set of all matrices J for which
J2 =−Id is denoted by

J =

{
J =

(
a b
c −a

) ∣∣∣ a2 +bc=−1, a,b,c ∈ R

}
,

which is a smooth 2-dimensional submanifold of Sp(2,R) with two connected components
J+ = {J ∈ J | c> 0} and J− = {J ∈ J | c< 0}, of which J+ are the constant almost complex
structures. For instance J0 ∈ J+ corresponds to complex multiplication.

In terms of the standard inner product 〈·, ·〉 the metric g is given by g(ξ,η) = 〈−J0Jξ,η〉,
where −J0J is positive definite symmetric matrix when c > 0. With respect to the metric
g it holds that J∇gH = XH . The extended class of almost complex structures on D2 is
not needed in the present work, but it may be exploited in future applications (e.g., when
considering the connection between Cauchy-Riemann equations and parabolic heat flows).

In order to study 1-periodic solutions of Equation (3.1) the variational method due to
Floer and Gromov explores the perturbed (non-linear) Cauchy-Riemann equations

∂̄J,H(u) def
= us+ J

[
ut −XH(t,u)

]
= 0. (3.5)
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for functions u : R×R→ D2. In the case of 1-periodic solutions we invoke the boundary
conditions u(s, t + 1) = u(s, t). It is immediate that stationary solutions, i.e. u(s, t) = x(t),
are 1-periodic solutions of the Hamilton equations (3.1). The parameters in the equation
are H ∈H, and J ∈ J+. The latter yields another means of writing the Cauchy-Riemann
equations:

us+ Jut +∇gH(t,u) = 0, (3.6)
where ∇gH =−JXH .

In order to find closed braids as critical points of fH on Ω
n we invoke the Cauchy-

Riemann equations. The bounded ‘flowlines’ or solutions of the Cauchy-Riemann equa-
tions are used to devise a Morse type theory for critical points of fH in the spirit of Floer’s
construction [29]. A collection of C1-functions u(s, t) = {uk(s, t)} is said to satisfy the
Cauchy-Riemann equations if its components uk satisfy Equation (3.5) for all k and the
boundary conditions in t, given by Condition (i) of Definition 3.2, are satisfied for all s.
The Cauchy-Riemann equations for the collection u can be given the structure of Cauchy-
Riemann equations in the symplectic product

(
(D2)n,ω0

)
, where ω0 = ω0×·· ·×ω0. For

a given almost complex matrix J ∈ J+ the induced almost complex matrix J ∈ Sp(2n,R) is
defined by the relation

g(·, ·) = ω0(·,J·),
where g= g×·· ·×g. The equations

∂̄J,H(u) = us+ Jut +∇gH(t,u) = 0, (3.7)

are Cauchy-Riemann equations in
(
(D2)n,ω0

)
with almost complex matrix J and Hamilton-

ian H(t,u) =∑k H(t,uk). These form an uncoupled system of n identical equations coupled
only via the boundary conditions of Definition 3.2. In Section 3.7 we show that for generic
Hamiltonians H the set of stationary solutions is non-degenerate. By embedding Equation
(3.7) into Hamiltonian perturbations h on R/Z× (D2)n we can put the equations in gen-
eral position with respect to generic properties for connecting orbits, see Section 3.7. In
Floer’s original article [29] the Equations (3.7) are studied on ‘isolating neighborhoods’.
In the subsequent sections we adopt this philosophy by considering proper braid classes
as isolating neighborhoods. In this case the Equations (3.7) are put in general positions as
Cauchy-Riemann equations on (D2)n.

Define the set of entire solutions as

Fn
J,H =
{
u= {uk}nk=1

∣∣∣ uk ∈C1(R× [0,1];D2), ∂̄J,H(u) = 0
}

.

We still need to incorporate the “periodicity” condition

{u1(1), . . . ,un(1)} = {u1(0), . . . ,un(0)} (3.8)

in our notion of solution. This requirement is fulfilled precisely by braids u(s, ·) ∈ Ωn for
all s. We therefore define the space of bounded solutions of (3.5) or (3.7) by

MJ,H = MJ,H (Ω
n
) =
{
u ∈ Fn

J,H ,σ ∈ Sn
∣∣ (u(s, ·),σ) ∈Ωn}

As before, we will drop the permutation σ from our notation. Note that solutions in MJ,H

extend toC1-functions uk : R×R→ D2, by periodic extension in t of u= {uk} (see (3.3)).
If there is no ambiguity about the dependence on J and H we abbreviate notation by writing
F and M.
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Compactness
The following statement is in essence Floer’s compactness theorem adjusted to the

present situation. We will give a self-contained proof here.

PROPOSITION 3.8. The space MJ,H is compact in the topology of uniform convergence
on compact sets in (s, t) ∈ R2, with derivatives up to order 1. Moreover, fH is uniformly
bounded along trajectories u ∈M, and

lim
s→±∞

|fH(u(s, ·))| = |c±(u)| ≤C(J,H),

∫

R

∫ 1

0
|us|2gdtds=

n

∑
k=1

∫

R

∫ 1

0
|uks |2gdtds≤C′(J,H),

for all u ∈MJ,H , and some constants c±(u), and C,C′ depending on J and H only.

PROOF. In this proof, the constant C changes from line to line. Define the operators

∂J =
∂
∂s
− J

∂
∂t

, ∂̄J =
∂
∂s

+ J
∂
∂t

.

Equation (3.6) can now be written as

∂̄Juk =−∇gH(t,uk) def
= f k(s, t), for all k.

By the hypotheses on H and the fact that |uk| ≤ 1 for all k we have that f k(s, t) ∈ L∞(R2).
The latter follows from the fact that the solutions uk can be regarded as functions on R2 via
periodic extension in t of the collection u= {uk}. From the interior regularity estimates due
to Douglis and Nirenberg for elliptic systems [26], and in particular the operators ∂J and ∂̄J
we have the following Lp-estimates for functions u ∈Wk+1,p

0 (B1(0)), 1 < p<∞, and 0≤ k:

‖u‖Wk+1,p
0

≤C(p,J)‖∂Ju‖Wk,p , ‖u‖Wk+1,p
0

≤C(p,J)‖∂̄Ju‖Wk,p ,

which also follow from the Calderon-Zygmund inequality for the Laplacian Δ = ∂̄J∂J =
∂J ∂̄J , see [34]. Using a partition of unity we derive the standard interior regularity estimates
for the Cauchy-Riemann operator from the above interior estimates, e.g. [62]. Let K ⊂⊂
G⊂ R2, with K,G compact domains, then

‖u‖W 1,p(K) ≤C(p,J,K,G)
(
‖∂̄Ju‖Lp(G) +‖u‖Lp(G)

)
, (3.9)

for 1 < p < ∞. Indeed, let ε < dist(K,∂G), then the compact set K can be covered by
balls Bε/2(x0) for finitely many x0 ∈ K. Furthermore, let {ωε,x0}x0 be a partition of unity
of
⋃
x0 Bε/2(x0) ⊃ K subordinate to {Bε(x0)}x0 . Recall that ‖ f g‖Lp ≤ ‖ f‖L∞‖g‖Lp , which

yields the estimate

‖ωε,x0u‖W 1,p ≤ C‖ωε,x0u‖W 1,p
0

≤ C‖∂̄J(ωε,x0u)‖Lp
≤ C‖ωε,x0 ∂̄Ju‖Lp +C‖u∂̄Jωε,x0‖Lp
≤ C‖∂̄Ju‖Lp(G) +C‖u‖Lp(G).
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Since {ωε,x0}x0 is a partition of unity it follows that

‖u‖W 1,p(K) =
∥∥∥∑
x0

ωε,x0u
∥∥∥
W 1,p(K)

≤∑
x0

‖ωε,x0u‖W 1,p(Bε(x0)),

which proves (3.9).
We apply these basic regularity estimates to the non-linear Cauchy-Riemann equation

(3.5) to obtain a prirori estimates on the Hölder norm ‖u‖C1,λ(R2). Define the nested sets

Gj
T = [T − j,T + j+ 1]× [− j, j+ 1], j = 0,1,2.

Note that T just represents a shift in the (periodic) variable t. Hence, although T is arbi-
trary, the estimates will be independent of T . Choose K = G1

T ⊂⊂ G2
T = G. It holds that

‖ f k‖Lp(G2
T )≤C0(p,H), since f k ∈ L∞. Similarly, ‖uk‖Lp(G2

T )≤C′0(p) by the assumption that
|uk| ≤ 1. Therefore,

‖uk‖W 1,p(G1
T ) ≤ C(p,J)

(
‖∂̄Juk‖Lp(G2

T ) +‖u
k‖Lp(G2

T )

)

= C(p,J)
(
‖ f k‖Lp(G2

T ) +‖u
k‖Lp(G2

T )

)
≤C1(p,J,H) < ∞.

In order to further bootstrap the regularity of solutions we argue as follows. Recall that
‖ f g‖W 1,p ≤C

(
‖ f‖W 1,p‖g‖L∞ +‖g‖W 1,p‖ f‖L∞

)
. As before, on balls Bε(x0) we obtain

‖ωε,x0u‖W 2,p = ‖ωε,x0u‖W 2,p
0
≤C‖∂̄J(ωε,x0u)‖W 1,p

≤ C‖ωε,x0 ∂̄Ju‖W 1,p +C‖u∂̄Jωε,x0‖W 1,p

≤ C‖∂̄Ju‖L∞(G) +C‖∂̄Ju‖W 1,p(G) +C‖u‖L∞(G) +C‖u‖W 1,p(G).

Since {ωε,x0}x0 is a partition of unity we obtain the estimate

‖u‖W 2,p(K) ≤C′(p,J,K,G)
(
‖∂̄Ju‖W 1,p(G) +‖u‖W 1,p(G) +‖∂̄Ju‖L∞(G) +‖u‖L∞(G)

)
,

for compact domainsK⊂⊂G, and 1 < p<∞. Now choose K=G0
T ⊂⊂G1

T =G. In order to
estimate the term ‖∂̄Juk‖W 1,p(G1

T ) in the above inequality, observe that ∂̄Juk = −∇gH(t,uk).
Then, by theW 1,p-interior estimates, the components

gk1(s, t)
def
= ∂s(−∇gH(t,uk)) =−dt,u∇gH(t,uk)(0,uks),

gk2(s, t)
def
= ∂t(−∇gH(t,uk)) =−dt,u∇gH(t,uk)(1,ukt ),

both lie in Lp(G1
T ), and thus also gk = (gk1,g

k
2) lies in Lp(G1

T ). From the W 2,p-interior
estimates it then follows that

‖u‖W 2,p(G0
T ) ≤C

′(p,J)
(
‖gk‖Lp(G1

T )

+‖uk‖W 1,p(G1
T ) +‖ f

k‖L∞(G1
T ) +‖u

1‖L∞(G1
T )

)
≤C2(p,J,H) < ∞.

Additional regularity is obtained from the Sobolev embeddings [1, Theorem 4.12],
W 2,p(G0

T )→C1,λ(G0
T ), for 0 < λ≤ 1−2/p. This yields the a priori estimate

‖u‖C1,λ(R2) ≤C
′(J,H). (3.10)
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The estimate for R2 makes use of the following fact. From the Sobolev embedding we
derive that ‖u‖C1,λ([T,T+1]×[d,d+1]) ≤C′(J,H), and thus ‖u‖C1,λ(B1(z)) ≤C

′(J,H), for any z ∈
R2. For functions ψ we have that

sup
z,z′∈R2

|ψ(z)−ψ(z′)|
|z− z′|λ

= max

{

sup
|z−z′|≤1

|ψ(z)−ψ(z′)|
|z− z′|λ

, sup
|z−z′|≥1

|ψ(z)−ψ(z′)|
|z− z′|λ

}

≤ sup
|z−z′|≤1

|ψ(z)−ψ(z′)|
|z− z′|λ

+ 2 sup
z∈R2

|ψ(z)|.

Consequently,

‖u‖C1,λ(R2) ≤ ‖u‖C1,λ(B1(z)) + 2‖∇u‖L∞(R×[0,1]) ≤ 3C′(J,H).

With these a priori estimates in place, we tackle the compactness assertion in the propo-
sition. Let un be a sequence in MJ,H . In view of the compactness of the embedding
C1,λ(R2) ↪→ C1,λ′(K), for any compact domain K ⊂ R2, and 0 ≤ λ′ < λ, there exists a
subsequence, again denoted by un, and a function û ∈C1,λ′ , such that.

un −→ û, in C1,λ′(K), as n→ ∞.

The limit function û satisfies the equation ∂̄J,H(û) = 0 and the periodicity condition (3.8),
and therefore û ∈MJ,H , which proves the compactness of the space of bounded trajectories
MJ,H .

Due to the a priori bound in C1,λ it holds for the action fH that |fH(u(s, ·))| ≤C(J,H).
Since

d
ds
fH(u(s, ·)) =−

∫ 1

0
|us|2gdt ≤ 0,

it follows then that the limits lims→±∞ fH(u(s, ·)) = c± exist and are a priori bounded by the
same C(J,H). Finally, for any T1,T2 > 0

∫ T2

−T1

∫ 1

0
|us|2gdtds=

n

∑
k=1

∫ T2

−T1

∫ 1

0
|uks |2gdtds = fH(u(T2, ·))− fH(u(−T1, ·)).

By the uniform boundedness of the action along all orbits u ∈MJ,H we obtain the estimate
∫

R

∫ 1

0
|us|2gdtds≤C(J,H),

which completes our proof. "

REMARK 3.9. In the compactness proof in [62] a condition on the symplectic manifolds M
is that ∫

S2
h∗ω0 = 0,

for any smooth mapping h : S2 → M. This property is used in the compactness proof for
more general symplectic manifolds M. It implies that holomorphic maps h : S2 →M must
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be constant due to the identity
∫
S2 h∗ω0 = 1

2
∫
S2 |∇h|2. This property is used in the blow-

up analysis to obtain a priori bounds on ∇u. For comparison, if M = D2, we have that
ω0 = dα0, and thus by Stokes Theorem

∫

S2
h∗ω0 =

∫

S2
h∗dα0 =

∫

S2
d(h∗α0) = 0.

Therefore, the topological condition on D2 is automatically satisfied.

REMARK 3.10. If we reverse time s 6→ −s and consider the conjugate action

f̄H(x) =
∫ 1

0
α0(xt(t))dt−

∫ 1

0
H(t,x(t))dt =− fH(x),

then the conjugate Cauchy-Riemann equations become

∂J,H(u) = us− Jut −∇gH(t,u) = 0,

which is again a negative gradient flow equation, i.e. d
ds f̄H(u(s, ·)) ≤ 0. We still assume

that J ∈ J+. All results discussed here also hold for the conjugate equation, except for an
occasional minus sign. We will point out these differences as we go along.

Additional compactness
Consider the non-autonomous Cauchy-Riemann equations

us+ J(s)ut +∇gH(s, t,u) = 0, (3.11)

where s 6→ J(s) is a smooth path in J+ and s 6→H(s, ·, ·) is a smooth path in H. Assume that
|Hs| ≤ κ(s)→ 0 as s→±∞ uniformly in (t,x) ∈R/Z×D2, with κ∈ L1(R). Moreover, both
paths have the property that the limits s→±∞ exists. Choose the change of variable u =
Φ(s)v, where the path s 6→ Φ(s) in GL(2,R) satisfies the identity J(s)Φ(s) =Φ(s)J0. Such
a smooth path in GL(2,R) can be chosen by solving the above matrix equation. Indeed, the
almost complex structure J(s) is given by

J(s) =

(
a(s) b(s)
c(s) −a(s)

)
, with a2 +bc=−1.

The space of matrices A satisfying the above matrix equation is given by

Φ=

(
λa(s)+µ −λ+µa(s)
λc(s) µc(s)

)
, λ,µ∈R,

and det(Φ) =
(
λ2 +µ2)c(s). By choosing λ and µ constant we obtain a path s 6→ Φ(s)

with det(Φ(s)) > 0, since J(s) is a path in J+ and therefore c(s) > 0. The positivity of
det(Φ(s)) will be used in Section 3.4. As matter of fact, since J(s) has limits it holds that
0 < c− ≤ c(s) ≤ c+, and the functions b(s) and a(s) are bounded as well.

The Cauchy-Riemann equations now transform to

vs+ J0vt −Φ−1(s)JJ0(Φ−1(s))T∇Ĥ(s, t,v) = 0,

where Ĥ(s, t,v) = H(s, t,Φ(s)v). This equation is again of the form ∂̄J0v = f (s, t). In the
new coordinates v is again a priori bounded in L∞ and the compactness for Equation (3.11)
follows from Proposition 3.8, using the bounds on a(s), b(s) and c(s). Define fH(s,x) as the
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action with Hamiltonian H(s, ·, ·). The first variation with respect to s can be computed as
in Section 3.1:

d
ds
fH(s,u(s, ·)) =

∂fH
∂s

+
n

∑
k=1

∫ 1

0
ω0
(
ukt −XH(t,uk),uks

)
dt

=
∂fH
∂s
−

n

∑
k=1

∫ 1

0
|ukt −XH(t,uk)|2gdt

=
∂fH
∂s
−
∫ 1

0
|us|2gdt.

The partial derivative with respect to s is given by

∂fH
∂s

=
n

∑
k=1

∫ 1

0

∂H
∂s

(
s, t,uk(s, t)

)
dt,

and
∣∣∣∂fH∂s
∣∣∣ ≤ Cκ(s) → 0 as s → ±∞. For a non-stationary solution u it holds that

∫ 1
0 |us|2gdt > 0, and thus for |s| sufficiently large d

ds fH(s,u(s, ·)) < 0 which proves that
the limits lims→±∞ fH(s,u(s, ·)) = c± exist. Since κ ∈ L1(R) we also obtain the integral∫

R

∫ 1
0 |us|2gdtds≤C(J,H).
This non-autonomous version of the Cauchy-Riemann equations will be used in Section

3.8 to establish continuation for Floer homology.

3.4. Crossing numbers and a priori estimates
We start with an important property of the Cauchy-Riemann equations in dimension

two. We consider Equation (3.5), or more generally Equation (3.6), and local solutions of
the form u :G⊂R2→R2, where G= [σ,σ′]× [τ,τ′]. For two local solutions u,u′ :G→R2

of (3.5) assume that
u(s, t) *= u′(s, t), for all (s, t) ∈ ∂G.

Intersections of u and u′, i.e. u(s0, t0) = u′(s0, t0) for some (s0, t0) ∈G, have special proper-
ties. Consider the difference function w(s, t) = u(s, t)−u′(s, t), then by the assumptions on
u and u′ we have that w|∂G *= 0, and intersections are given by w(s0, t0) = 0. The following
lemma is a special property of Cauchy-Riemann equations in dimension two.

LEMMA 3.11. Let u,u′ and G be as defined above. Assume that w(s0, t0) = 0 for some
(s0, t0) ∈G, then (s0, t0) is an isolated zero and

deg(w,G,0) > 0.

PROOF. We start with deriving an equation for w. Since H is C2 we can use Taylor
expansions as follows:

∇gH(t,u′) = ∇gH(t,u)+R1(t,u,u′ −u)(u′ −u),

where R1 is a continuous function of its arguments. Upon substitution this gives

ws+ J(s)wt +A(s, t)w= 0, w(s0, t0) = 0,

where A(s, t) = R1(t,u,−w). The function A(s, t) is continuous on G.
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Define complex coordinates z = s− s0 + i(t− t0). Then by [39, Appendix A.6], there
exists a δ< 0, sufficiently small, a disc Dδ = {z | |z| ≤ δ}, a holomorphic map h : Dδ→ C,
and a continuous mapping Φ : Dδ→ GLR(C) such that

det Φ(z) > 0, J(z)Φ(z) =Φ(z)i, w(z) =Φ(z)h(z),
for all z ∈ Dδ. Clearly, Φ can be represented by a real 2× 2 matrix function of invertible
matrices.

Since w=Φh, it holds that the condition w(z0) = 0 implies that h(z0) = 0. The analyt-
icity of h then implies that either z0 is an isolated zero in Dδ, or h ≡ 0 on Dδ. If the latter
holds, then also w≡ 0 on Dδ. If we repeat the above arguments we conclude that w≡ 0 on
G (compare analytic continuation), which is a contradiction with the boundary conditions.
Therefore, all zeroes of w in G are isolated, and there are finitely many zeroes zi ∈ int(G).

For the degree we have that, since detΦ(z) > 0,

deg(w,G,0) =
m

∑
i=1

deg(w,Bεi(zi),0) =
m

∑
i=1

deg(h,Bεi(zi),0),

and for an analytic function with an isolated zero zi it holds that deg(h,Bεi(zi),0) = ni ≥ 1,
and thus deg(w,G,0) > 0. "

For a curve Γ : I → R2 \ {(0,0)}, with I a bounded interval, we define the winding
number about the origin by3

W (Γ,0)
def
=

1
2π

∫

I
Γ∗α=

1
2π

∫

Γ
α,

where α = −qdp+pdq
p2+q2 is a closed 1-form on R2 \{(0,0)}. In particular, for curves w(s, ·) :

[τ,τ′]→ R2 \{(0,0)}, s= σ,σ′ we have the winding number

W (w(s, ·),0)
def
=

1
2π

∫

[τ,τ′]
w∗α=

1
2π

∫

w
α, for s= σ,σ′.

We denote these winding numbers byW [τ,τ′]
σ (w) andW [τ,τ′]

σ′ (w) respectively. In the case that
[τ,τ′] = [0,1] we simply write Wσ(w)

def
= W [0,1]

σ (w). Similarly, we have winding numbers
for the curves w(·, t) : [σ,σ′]→ R2 \{(0,0)}, t = τ,τ′, which we denote by W [σ,σ′]

τ (w) and
W [σ,σ′]
τ′ (w) respectively. The following lemma gives a relation between these (local) winding

numbers and degree of the map w : G→ R2.

LEMMA 3.12. Let u,u′ : G→ R2 be local solutions of Equation (3.5), with w|∂G *= 0. Then
[
W [τ,τ′]
σ′ (w)−W [τ,τ′]

σ (w)
]
−
[
W [σ,σ′]
τ′ (w)−W [σ,σ′]

τ (w)
]

= deg(w,G,0). (3.12)

In particular, for each zero (s0, t0) ∈ int(G), there exists an ε0 > 0 such that

W [τ,τ′]
s0+ε (w)−W [τ,τ′]

s0−ε (w) >W [s0−ε,s0+ε]
τ′ (w)−W [s0−ε,s0+ε]

τ (w),

3For closed curves Γ∈C\{0} we have that 1
2πi
∮
Γ

1
z dz= 1

2π
∫
Γα. For a general path Γ, with starting point

P and end point Q, we have
1

2πi

∫

Γ

1
z
dz+

1
2πi

log
( |P|
|Q|

)
=

1
2π

∫

Γ
α.
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t
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τ′

σ′σ

G

Figure 3.2: The contour around G.

for all 0 < ε≤ ε0.

PROOF. We abuse notation by regarding w as a map from the complex plane to itself.
Let the contour γ = ∂G be positively oriented, see Figure 3.2. The winding number of the
contour w(γ) about 0 ∈C in complex notation is given by

W (w(γ),0) =
1

2πi

∮

w(γ)

dz
z

= deg(w,G,0),

which is equal to the degree of w : G→ R2 with respect to the value 0. Using the special
form of the contour γ we can write out the the Cauchy integral using the 1-form α:

1
2πi

∮

w(γ)

dz
z

=
1

2π

∫

w(σ′,·)
α−

1
2π

∫

w(·,τ′)
α−

1
2π

∫

w(σ,·)
α+

1
2π

∫

w(·,τ)
α

=
[
W [τ,τ′]
σ′ (w)−W [τ,τ′]

σ (w)
]
−
[
W [σ,σ′]
τ′ (w)−W [σ,σ′]

τ (w)
]
,

which proves the first statement.
As for the second statement we argue as follows. Lemma 3.11 states that all zeroes

of w are isolated and have positive degree. Therefore, there exists an ε0 > 0 such that
Gε = [s0− ε,s0 + ε]× [τ,τ′] contains no zeroes on the boundary, for all 0 < ε ≤ ε0, from
which the second statement follows. "

On the level of comparing two local solutions of Equation (3.5) the winding number
behaves like a discrete Lyapunov function with respect to the time variable s. This can be
further formalized for solutions of Cauchy-Riemann on Ω

n. For a closed braid x ∈ Ωn,
define the total crossing number

Cross(x) def
=∑

k,k′
W
(
xk− xk

′
,0
)

= 2 ∑
{k,k′}
k *=k′

W
(
xk− xk

′
,0
)
,

where the second sum is over all unordered pairs {k,k′}, using the fact that the winding
number is invariant under the inversion (p,q)→ (−p,−q). The number Cross(x) is equal
to the total linking/self-linking number of all components in a closed braid x. The local
winding number as introduced above is not necessarily an integer. However, for closed
curves the winding number is integer valued. We claim that the number Cross(x) as defined
above is also an integer. One way to interpret Cross is via associated braid diagrams. One
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− +

t

Figure 3.3: The time direction and the convention for negative and positive crossings.

can always project x onto a plane by projecting the coordinates (p,q) onto a line L ⊂ R2

and counting the number positive and negative crossings.

LEMMA 3.13. The number Cross(x) is an integer, and
Cross(x) = # positive crossings−# negative crossings

The (braid) crossing number is an invariant for a braid class, i.e. Cross(x) = Cross(x′) for
all x,x′ ∈ [x].

PROOF. The expression for Cross(x) is twice the sum of
(
n
2

)
local winding num-

bers. On the unordered pairs {k,k′} there the exists the following equivalence relation.
Two pairs {k,k′} and {h,h′} are equivalent if for some integer d ≥ 0, {xk(d),xk′(d)} =
{xh(0),xh′(0)} as unordered pairs. The equivalence classes of unordered pairs {k,k′} are
denoted by π j and the number of elements in π j is denoted by |π j|, see Figure 3.4. For each
class π j define wπ j = xk − xk′ , for some representative {k,k′} ∈ π j. For t ∈ [0,2|π j|], the
functions wπ j(t) represent closed loops in R2 regardless of the choice of the representative
{k,k′} ∈ π j. Namely, note that {xk(|π j|),xk

′
(|π j|)} = {xk(0),xk′(0)} as unordered pairs,

which imlies that
xk(|π j|) = xk(0) or xk(|π j|) = xk

′
(0). (3.13)

For the crossing number we have

Cross(x) = 2∑
j

(
∑

{k,k′}∈π j
W
(
xk− xk

′
,0
))

= 2∑
j
W [0,|π j |](wπ j ,0) =∑

j
W [0,|2π j |](wπ j ,0),

(3.14)
where the (outer) sum is over all equivalence classes π j. For the final equality we have used
(3.13) and the invariance of the winding number under the inversion w→−w. Since the
latter winding numbers are winding numbers for closed loops about 0 (linking numbers),
they are all integers, and thus Cross(x) is an integer.

As for the expression in terms of positive and negative crossings we argue as follows.
Upon inspection W

(
xk − xk′ ,0

)
equals all positive minus negative crossings between the

two strands, see Figure 3.4. The invariance of Cross(x) with respect to [x] follows from the
homotopy invariance of the winding number. "

Using the representation of the crossing number for a braid in terms of winding num-
bers, we can prove a Lyapunov property. Before stating the result, we introduce the conju-
gate crossing number as

Cross∗(x) =−Cross(x),
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(3,4)

(4,1)

(2,3)

(1,2)
2 431

3

3 4

41

21

21

t

2 431

Figure 3.4: In this example the equivalence classes are π1 = {(1,2),(4,1),(3,4),(2,3)} and
π2 = {(1,3),(4,2)}. IS THE LAST PART OF THE FIGURE NEEDED?

which will be shown to be a decreasing Lyapunov function for the Cauchy-Riemann flow.
Note that elements u of M are not necessarily in Ωn for all s. Therefore Cross∗(u(s, ·)) is
only well-defined whenever u(s, ·) ∈Ωn.

PROPOSITION 3.14. Let u ∈ M, then Cross∗(u(s, ·)), where defined, is a non-increasing
function as s→∞. To be more precise, if uk(s0, t0) = uk′(s0, t0) for some (s0, t0) ∈R×R/Z,
and k *= k′, then either there exists an ε0 > 0 such that

Cross∗(u(s0− ε, ·)) > Cross∗(u(s0 + ε, ·)),

for all 0 < ε≤ ε0, or uk ≡ uk′ .

PROOF. Let u = {uk} ∈M, then Cross(u(s, ·)) is well-defined for all s ∈ R for which
u(s, ·) ∈ Ωn. As in the proof of Lemma 3.13 we define wπ j(s, t) = uk(s, t)− uk′(s, t) for
some representative {k,k′} ∈ π j. From the proof of Lemma 3.11 we know that (s0, t0)
is either isolated, or uk ≡ uk′ . In the case that (s0, t0) is an isolated zero there exists an
ε0 > 0, such that (s0, t0) is the only zero in [s0− ε,s0 + ε]× [t0− ε, t0 + ε], for all 0 < ε≤ ε0.
By periodicity it holds that wπ j(s, t + |π j|) = wπ j(s, t), for all (s, t) ∈ R2, and therefore
W [σ,σ′]
t0−ε+|π j |(wπ j ) =W [σ,σ′]

t0−ε (wπ j), for any σ< σ′. From Lemma 3.12 it then follows that

W [t0−ε,t0−ε+|π j |]
s0+ε (wπ j) >W [t0−ε,t0−ε+|π j |]

s0−ε (wπ j),

and since these terms make up the expression for Cross∗(u(s, ·)) in Equation (3.14), we
obtain the desired inequality. "

From Lemma 3.12 we can also derive the following a priori estimate for solutions of
the Cauchy-Riemann equations.

PROPOSITION 3.15. Let u : G→ D2 be a local solution of Equation (3.5), then either

|u(s, t)| = 1, or |u(s, t)| < 1,
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for all (s, t) ∈G. In particular, solutions u∈M have the property that components uk either
lie entirely on ∂D2, or entirely in the interior of D2.

PROOF. By the hypotheses (h3) the boundary of the disc is invariant for XH , and thus
consists of a solutions x(t), with |x(t)| = 1. Assume that u(s0, t0) = x(t0) for some (s0, t0)
and some boundary trajectory x(t). For convenience, we write u′(s, t) = x(t), and we con-
sider the difference w(s, t) = u′(s, t)− u(s, t) = x(t)− u(s, t). By the arguments presented
in the proof of Lemma 3.11, we know that either all zeroes of w are isolated, or w ≡ 0. In
the latter case u≡ x, hence |u(s, t)| ≡ 1. We consider the remaining possibility, namely that
(s0, t0) is an isolated zero of w, and we show that it leads to a contradiction.

We can choose a rectangle G = [σ,σ′]× [τ,τ′] containing (s0, t0), such that w|∂G *= 0.
From Lemma 3.12 we have that, with γ= ∂G positively oriented,

W (w(γ),0) = deg(w,G,0) ≥ 1.

The latter is due to the assumption that G contains a zero. Consider on the other hand the
loops u(γ) and u′(γ). By assumption

|(u′ −w)(γ)| = |u(γ)| < |u′(γ)| = 1.

If we now apply the ‘Dog-on-a-Leash’ Lemma4 from the theory of winding numbers, we
conclude that

1≤W (w(γ),0) =W (u′(γ),0) = 0,

which contradicts the assumption that u touches ∂D2. Hence |u(s, t)| < 1 for all (s, t). "

As a consequence of this proposition we have following result for connecting orbit
spaces. For x± ∈ Crit(Ωn

), define
Mx−,x+ =

{
u ∈M | lim

s→±∞
u(s, ·) = x±

}
.

COROLLARY 3.16. For u ∈Mx−,x+ , with |x±| < 1, it holds that
|u(s, t)| < 1,

for all (s, t) ∈R×R/Z.

This is an isolating property of the connecting orbit spaces that plays an important role
later on in the definition of Floer homology.

REMARK 3.17. To get a sense for the evolution of the (conjugate) crossing number, consider
the linear Cauchy-Riemann equations,

us+ iut + 2πu= 0,

where we identify uwith p+ iq∈C. Consider the solutions u1(s, t) = e−2πsz0 +e2πit , z0 *= 0,
and u2 ≡ 0, and the braid u = {u1,u2}. Then the conjugate crossing number Cross∗(u)
decreases from 0 as s→−∞ to −2 as s→ ∞. Similarly, for the solution u1 = e−4πs−2πit

and u2 = e2πs+4πit we have that Cross∗(u) is decreasing from 2 to −4. Finally, when u1 =
e−πs+πit and u2 =−e−πs+πit , then Cross∗(u) =−1 for all s.

4The ‘Dog-on-a-Leash’ Lemma [31] can be viewed as an extension Rouché’s theorem in the analytic case,
and states that if two closed paths Γ(t) — dog — and Γ′(t) — walker — in R2, parameterized over t ∈ I,
have the property |Γ′(t)−Γ(t)| < |Γ′(t)−P| — leash is shorter then the walkers distance to the pole P — then
W (Γ,P) =W (Γ′,P). Here we set P= (0,0), Γ= (u′ −u)(γ) = w(γ), and Γ′ = u′(γ).
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3.5. Relative braids
Given two braids x ∈Ωn, y ∈Ωm, one can define their union x∪y ∈Ωn+m, as the union

of all strands in x and y. If the collection of all strands x∪ y = {xk}∪ {y"} satisfies the
conditions in Definition 3.2, then x∪ y ∈ Ωn+m and x∪ y is a braid. The crossing number
Cross(x∪y) counts all crossings between strands in x, strands in y, and crossings between
strands in x and y.

The reason to consider braids with a split into two sub-braids is dictated by the appli-
cation to the Hamilton equations Equation (3.1). One can think of y as a stationary braid of
(3.1), i.e. these strands y are periodic solutions of the Hamilton equations. Now we try to
find new solutions x that are weaved through y in a certain way. Question: Can y, called a
skeleton, force additional solutions? This leads us to the following definitions.

Relative braid classes and components
Consider the space

Ωn,m =
{
(x,y) ∈Ωn×Ωm | x∪y ∈Ωn+m}.

In particular, for (x,y)∈Ωn,m it holds that x∈Ωn and y∈Ωm. OnΩn,m define the projection

π : Ωn,m→ Ωm, (x,y) 6→ y.

The projection π is surjective.

DEFINITION 3.18. The path connected components ofΩn,m are called relative braid classes
and are denoted by !x rel y". The elements (x,y) in !x rel y" are called relative braids and
are usually denoted by x rel y. For a given y′ ∈ π

(
!x rel y"

)
, the fiber

[x′] rel y′ = π−1|!x rel y"(y′)

is called a relative braid class with fixed skeleton y′. The fibers [x] rel y are not necessarily
path connected. For any given y ∈ Ωm, the fiber π−1(y) = Ωn rel y denotes the space of
relative braid classes with fixed skeleton y.

Relative braid classes have the property that two relative braids x rel y,x′ rel y ∈
!x rel y" lie in the same [x] rel y if they lie in the same path component in [x] rel y, but also,
more generally, if there exists a continuous path (x(s),y(s)) in !x rel y", for all s ∈ [0,1],
and x(0) rel y(0) = x rel y and x(1) rel y(1) = x′ rel y.

This can also be characterized in terms of the invariants Cross(x), Cross(y), and
Cross(x∪y). A fourth dependent invariant can added to the list:

Cross(x,y) = Cross(x∪y)−Cross(x)−Cross(y),

and is called the relative crossing number.
For the purpose of defining invariants for !x rel y" we need to understand the closure of

fiber Ωn rel y. As before this is achieved by allowing braids x∪y which do not necessarily
satisfy Condition (ii) of Definition 3.2, and the closure is denoted by Ωn rel y. The singular
braids are

Σn rel y=Ω
n rel y\Ωn rel y,
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x

y

π

y′y′′

[x] rel y′′

[x] rel y′

[x rel y]

Figure 3.5: The relative braid classes [x] rel y and !x rel y".

and in particular contain the set Σn. The condition that x∪ y is a braid, puts additional
restriction on Ωn, so that Ωn rel y can be regarded as ‘putting up’ additional walls (the set
Σn rel y\Σn). The collapsed relative braids can be defined as

Σn− rel y def
= Σn+m− ∩

(
Σn rel y

)
,

which are singular braids for which xk(t) ≡ xk′(t), k *= k′, or xk(t) ≡ y"(t), for all t ∈ [0,1].
This leads to the following essential definition.

DEFINITION 3.19. A relative braid class !x rel y" is called proper if
(i) for any x′ rel y ∈ cl

(
[x] rel y

)
it holds that |xk(t)| *≡ 1 for any strand;

(ii) cl
(
[x] rel y

)
∩
(
Σn− rel y

)
= ∅,

for any y ∈ π
(
!x rel y"

)
supported in int(D2). The ‘closure’ is with respect to the topology

described in Definition 3.2. A relative braid x rel y in a proper braid class is called a proper
braid.

An intuitive way of looking at this definition is that a braid class is proper when strands
in x cannot collapse on each other, nor on strands of y, nor on the boundary D2× [0,1].
Moreover, this has to be the case for any fiber in !x rel y". Note that braid classes [x] are
never proper.

Isolation for proper relative braid classes
For proper braid classes [x] rel y introduced in the previous section, the Cauchy-

Riemann equations have special properties. The most important property is that proper
braid classes ‘isolate’ the set of bounded solutions of Cauchy-Riemann inside a relative
braid class. Before stating the main result of this section, let us first introduce some nota-
tion. Following Floer [29] we define the set of bounded solutions inside a proper relative
braid class [x] rel y:

M
(
[x] rel y

) def
=
{
u ∈M(Ω

n
) | u(s, ·) ∈ [x] rel y, ∀ s ∈ R

}
.
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We are also interested in the paths traversed (as a function of s) by these bounded solutions
in phase space, hence we define, since the Cauchy-Riemann equations (3.5) are autonomous
when seen as a flow in s,

S
(
[x] rel y

) def
=
{
x= u(0, ·) | u ∈M

(
[x] rel y

)}
.

If there is no ambiguity about the relative braid class we simply write S. We recall that
M carries the C1

loc(R× [0,1];D2)n topology, while S is endowed with the C1([0,1],D2)n

topology.

PROPOSITION 3.20. For any proper relative braid class [x] rel y the set M
(
[x] rel y

)
is

compact, and S is a compact isolated set in [x] rel y, i.e. (i) |u(s, t)| < 1, for all s, t and (ii)
u(s, ·)∩Σn rel y= ∅, for all s.

PROOF. The set M
(
[x] rel y

)
is contained in the compact set M(Ω

n
) (Proposition 3.8).

Let {um} ⊂ M
(
[x] rel y

)
be a sequence, then for any compact interval I, the limit u =

limm′→∞um′ lies in M(Ω
n
) and has the property that u(s, ·) ∈ cl

(
[x] rel y

)
, for all s ∈ I. We

will show now that u(s, ·) is in the relative braid class [x] rel y, by eliminating the possible
boundary behaviors.

If |uk(s0, t0)| = 1, for some (s0, t0), and k, then Proposition 3.15 implies that |uk| ≡ 1,
hence |ukm′ | → 1 as m′ →∞ uniformly on compact sets in (s, t). This contradicts the fact that
[x] rel y is proper, and therefore the limit satisfies |u| < 1.

If uk(s0, t0) = uk′(s0, t0) for some (s0, t0) and some pair {k,k′}, then by Proposition 3.14
either Cross∗(u(s0− ε, ·)) > Cross∗(u(s0 + ε, ·)), for some 0 < ε ≤ ε0, or uk ≡ uk′ . The
former case will be dealt with a little later, while in the latter case u∈ Σn− rel y, contradicting
that x rel y is proper as before.

If uk(s0, t0) = y"(t0) for some (s0, t0) and k and y" ∈ y, then by Proposition 3.14 either
Cross∗(u(s0− ε, ·)∪ y) > Cross∗(u(s0 + ε, ·)∪ y), for some 0 < ε ≤ ε0, or uk ≡ y". Again,
the former case will be dealt with below, while in the latter case u ∈ Σn− rel y, contradicting
that x rel y is proper.

Finally, the two statements about the conjugate crossing numbers imply that both u(s0−
ε, ·),u(s0 + ε, ·) ∈ Ωn rel y, and thus u(s0− ε, ·),u(s0 + ε, ·) ∈ [x] rel y. On the other hand,
since at least one crossing number at s0−ε has strictly decreased at s0 +ε, the braids u(s0−
ε, ·) and u(s0 + ε, ·) cannot belong to the same relative braid class, which is a contradiction.
As a consequence u(s, ·) rel y∈ [x] rel y for all s, which proves that M

(
[x] rel y

)
is compact,

and therefore also S⊂ [x] rel y is compact. "

3.6. The Maslov index for braids and Fredholm theory
The action fH defined on Ωn has the property that stationary braids have a doubly un-

bounded spectrum, i.e., if we consider the d2fH(x) at a stationary braid x, then d2fH(x)
is a self-adjoint operator whose (real) spectrum consists of isolated eigenvalues and is not
bounded from above nor below. The classical Morse index for stationary braids is therefore
not well-defined. The theory of the Maslov index for Lagrangian subspaces can be used
to replace the classical Morse index [29, 60, 59]; in combination with Fredholm theory the
Maslov index will play the same role the Morse index.
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The Maslov index
Let (E,ω) be a (real) symplectic vector space of dimension dimE = 2n, with compat-

ible almost complex structure J ∈ Sp+(E,ω). An n-dimensional subspace V ⊂ E is called
Lagrangian if ω(v,v′) = 0 for all v,v′ ∈ V . Denote the space of Lagrangian subspaces of
(E,ω) by L(E,ω), or L for short.
LEMMA 3.21. A subspace V ⊂ E is Lagrangian if and only if V = range(X) for some linear
map X :W → E of rank n and some n-dimensional (real) vector space W, with X satisfying

XTJX = 0, (3.15)
where the transpose is defined via the inner product 〈·, ·〉 def

= ω(·,J·).
PROOF. Let V = [v1, · · · ,vn] which yields a map X : Rn→ E of rank n such that V =

X(Rn). This establishes that any n-dimensional subspace is of the form X(W ). Let V =
X(W ) and suppose V is Lagrangian. Then ω

(
Xw,Xw′

)
= 0 for all w,w′ ∈W . It holds that

ω
(
Xw,Xw′

)
=
〈
Xw,−JXw′

〉
=
〈
w,−XTJX w′

〉
= 0, ∀w,w′ ∈W,

which implies that XTJX = 0.
Conversely, if X :W → E is given and satisfies XTJX = 0 then

〈
w,−XTJX w′

〉
= 0 for

all w,w′ ∈W and V = X(W ) is Lagrangian by retracing the steps above. "

The map X is called a Lagrangian frame forV . If we restrict to the special case (E,ω) =
(R2n,ω0), with standard J0 ∈ J+, then for a point x in R2n one can choose symplectic
coordinates x = (p1, · · · , pn,q1, · · · ,qn) and the standard symplectic form is given by ω0 =
dp1∧dq1 + · · ·+dpn∧dqn, see Section 3.3. In this case a subspace V ⊂R2n is Lagrangian

if X =

(
P
Q

)
, with P,Q n× n matrices satisfying PTQ = QTP, and X has rank n. The

condition on P and Q follows immediately from Equation (3.15).
For any fixed V ∈ L, the space L can be decomposed in strata Ξk(V ):

L =
n⋃

k=0
Ξk(V ).

The strata Ξk(V ) of Lagrangian subspacesV ′ which intersectV in a subspace of dimension k
are submanifolds of co-dimension k(k+ 1)/2. The Maslov cycle is defined as

Ξ(V ) =
n⋃

k=1
Ξk(V ).

Let Λ(t) be a smooth curve of Lagrangian subspaces and X(t) a smooth Lagrangian frame
for Λ(t). A crossing is a number t0 such that Λ(t0) ∈ Ξ(V ), i.e., X(t0)w = v ∈V , for some
w ∈W , v ∈ V . For a curve Λ : [a,b] → L, the set of crossings in compact, and for each
crossing t0 ∈ [a,b] we can define the crossing form on Λ(t0)∩V :

Γ(Λ,V, t0)(v)
def
= ω
(
X(t0)w,X ′(t0)w

)
.

A crossing t0 is called regular if Γ is a nondegenerate form. If Λ : [a,b]→L is a Lagrangian
curve that has only regular crossings then the Maslov index of the pair (Λ,V ) is defined by

µ(Λ,V ) =
1
2

sign Γ(Λ,V,a)+ ∑
a<t0<b

sign Γ(Λ,V, t0)+
1
2

sign Γ(Λ,V,b),
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where Γ(Λ,V,a) and Γ(Λ,V,b) are zero when a or b are not crossings. The notation ‘sign’ is
the signature of a quadratic form, i.e. the number of positive minus the number of negative
eigenvalues and the sum is over the crossings t0 ∈ (a,b). Since the Maslov index is homo-
topy invariant and every path is homotopic to a regular path the above definition extends
to arbitrary continuous Lagrangian paths, using property (iii) below. In the special case of
(R2n,ω0) we have that

Γ(Λ,V, t0)(v) = ω0
(
X(t0)w,X ′(t0)w

)

= 〈P(t0)w,Q′(t0)w〉− 〈P′(t0)w,Q(t0)w〉.
A list of properties of the Maslov index can be found (and is proved) in [59], of which we
mention the most important ones:
(i) for any Ψ ∈ Sp(E), µ(ΨΛ,ΨV ) = µ(Λ,V );5

(ii) for Ψ : [a,b]→L it holds that µ(Λ,V ) = µ(Λ|[a,c],V )+µ(Λ|[c,b],V ), for any a< c< b;
(iii) two paths Λ0,Λ1 : [a,b] → L with the same end points are homotopic if and only if

µ(Λ0,V ) = µ(Λ1,V );
(iv) for any path Λ : [a,b]→ Ξk(V ) it holds that µ(Λ,V ) = 0.

The same can be carried out for pairs of Lagrangian curves Λ,Λ† : [a,b] → L. The
crossing form on Λ(t0)∩Λ†(t0) is then given by

Γ(Λ,Λ†, t0)
def
= Γ(Λ,Λ†(t0), t0)−Γ(Λ†,Λ(t0), t0).

For pairs (Λ,Λ†) with only regular crossings the Maslov index µ(Λ,Λ†) is defined in the
same way as above using the crossing form for Lagrangian pairs. By setting Λ†(t) ≡ V
we retrieve the previous case, and Λ(t) ≡ V yields Γ(V,Λ†, t0) = −Γ(Λ†,V, t0). Consider
the symplectic space (E,ω) = (E×E,(−ω)×ω), with almost complex structure (−J)×J.
A crossing Λ(t0)∩Λ†(t0) *= ∅ is equivalent to a crossing (Λ×Λ†)(t0) ∈Ξ(Δ), where Δ⊂ E
is the diagonal Lagrangian plane, and Λ×Λ† a Lagragian curve in E, which follows from

Equation (3.15) using the Lagrangian frame X(t) =

(
X(t)
X†(t)

)
. Let v = (v,v) = X(t0)w,

then
Γ(Λ×Λ†,Δ, t0)(v) = ω

(
X(t0)w,X ′(t0)w

)

= −ω
(
X(t0)w,X ′(t0)w

)
+ω
(
X†(t0)w,X†′(t0)w

)

= −Γ(Λ,Λ†(t0), t0)(v)+Γ(Λ†,Λ(t0), t0)(v).
This justifies the identity

µ(Λ,Λ†) = µ(Δ,Λ×Λ†). (3.16)
Equation (3.16) is used to define the Maslov index for continuous pairs of Lagrangian
curves, and is a special case of the more general formula below. Let Ψ : [a,b] → Sp(E)
be a symplectic curve, then

µ(ΨΛ,Λ†) = µ(gr(Ψ),Λ×Λ†), (3.17)
where gr(Ψ) = {(x,Ψx) | x ∈ E} is the graph of Ψ. The curve gr(Ψ)(t) is a Lagrangian

curve in (E,ω) and XΨ(t) =

(
Id
Ψ(t)

)
is a Lagrangian frame for gr(Ψ). Indeed, via (3.15)

5This property shows that we can assume E to be the standard symplectic space without loss of generality.
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we have
(

Id ΨT (t)
)( −J 0

0 J

)(
Id
Ψ(t)

)
=ΨT (t)JΨ(t)− J = 0,

which proves that gr(Ψ)(t) is a Lagrangian curve in E. Via E×E the crossing form is given
by

Γ
(
gr(Ψ),Λ×Λ†, t0

)
= Γ
(
gr(Ψ),(Λ×Λ†)(t0), t0

)
−Γ
(
Λ×Λ†,gr(Ψ)(t0), t0

)
.

and upon inspection consists of the three terms making up the crossing form of (ΨΛ,Λ†) in
E . More specifically, let ξ= XΨ(t0)ξ0 = X(t0)η0 = η, so that ΨXη0 =Ψξ0 = X†η0, which
yields

Γ
(
gr(Ψ),(Λ×Λ†)(t0), t0

)
(ξ) = ω(Ψ(t0)ξ0,Ψ

′(t0)ξ0)

= ω(Ψ(t0)X(t0)η0,Ψ′(t0)X(t0)η0),

and

Γ
(
Λ×Λ†,gr(Ψ)(t0), t0

)
(η)

= −ω
(
X(t0)η0,X ′(t0)η0

)
+ω
(
X†(t0)η0,X†′(t0)η0

)

= −ω
(
Ψ(t0)X(t0)η0,Ψ(t0)X ′(t0)η0

)
+ω
(
X†(t0)η0,X†′(t0)η0

)

which proves Equation (3.17). The crossing form for a more general Lagrangian pair of
the form (gr(Ψ),Λ), where Λ(t) is a Lagrangian curve in E, is given by Γ

(
gr(Ψ),Λ, t0

)
as

described above. In the special case that Λ(t)≡V ×V , then

Γ
(
gr(Ψ),Λ, t0

)
(v) = ω(Ψ(t0)w,Ψ′(t0)w),

where v= XΨ(t0)w.
A particular example of the Maslov index for symplectic paths is the Conley-Zehnder

index on (E,ω) = (R2n,ω0), which is defined as µCZ(Ψ)
def
= µ(gr(Ψ),Δ) for paths Ψ :

[a,b]→ Sp(2n,R), with Ψ(a) = Id and Id−Ψ(b) invertible. It holds that Ψ′ = J0K(t)Ψ,
for some smooth path t 6→ K(t) of symmetric matrices. An intersection of gr(Ψ) and Δ is
equivalent to the condition det(Ψ(t0)− Id) = 0, i.e. for ξ0 ∈ ker (Ψ(t0)− Id) it holds that
Ψ(t0)ξ0 = ξ0. The crossing form is given by

Γ(gr(Ψ),Δ, t0) (ξ0) = ω0(Ψ(t0)ξ0,Ψ′(t0)ξ0)

= 〈Ψ(t0)ξ0,K(t0)Ψ(t0)ξ0〉
= 〈ξ0,K(t0)ξ0〉.

In the case of a symplectic pathΨ : [0,τ]→ Sp(2n,R), withΨ(0) = Id, the extended Conley-
Zehnder index is defined as µCZ(Ψ,τ) = µ(gr(Ψ),Δ).

The permuted Conley-Zehnder index
We now define a variation on the Conley-Zehnder index suitable for the application to

braids. Consider the symplectic space

E = R
2n×R

2n, ω= (−ω0)×ω0.
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In E we choose coordinates (x, x̃), with x= (p1, · · · , pn,q1, · · · ,qn) and x̃= (p̃1, · · · , p̃n, q̃1, · · · , q̃n)
both in R2n. Let σ ∈ Sn be a permutation, then the permuted diagonal Δσ is defined by:

Δσ
def
=
{
(x, x̃) | (p̃k, q̃k) = (pσ(k),qσ(k)), 1≤ k ≤ n

}
. (3.18)

It holds that Δσ = gr(σ), where σ =

(
σ 0
0 σ

)
and the permuted diagonal Δσ is a La-

grangian subspace of E . Let Ψ : [0,τ]→ Sp(2n,R) be a symplectic path with Ψ(0) = Id. A
crossing t = t0 is defined by the condition ker (Ψ(t0)−σ) *= {0} and the crossing form is
given by

Γ(gr(Ψ),Δσ, t0)(ξσ0 ) = ω0(Ψ(t0)ξ0,Ψ
′(t0)ξ0)

= 〈Ψ(t0)ξ0,K(t0)Ψ(t0)ξ0〉
= 〈σξ0,K(t0)σξ0〉= 〈ξ0,σ

TK(t0)σξ0〉, (3.19)
where ξσ0 = Xσξ0, and Xσ the frame for Δσ. The permuted Conley-Zehnder index is defined
as

µσ(Ψ,τ)
def
= µ(gr(Ψ),Δσ). (3.20)

Based on the properties of the Maslov index the following list of basic properties of the
index µσ can be derived.

LEMMA 3.22. Let Ψ : [0,τ]→ Sp(2n,R) be a symplectic path with Ψ(0) = Id, then
(i) µσ(Ψ×Ψ†,τ) = µσ(Ψ,τ)+µσ(Ψ†,τ);

(ii) let Φk(t) : [0,τ]→ Sp(2n,R) be a symplectic loop (rotation) given by Φk(t) = e
2πk
τ J0t ,

then µσ(ΦkΨ,τ) = µσ(Ψ,τ)+ 2kn,

PROOF. Property (i) follows from the fact that the equations for the crossings uncouple.
As for (ii) we argue as follows. Consider the symplectic curves (using Ψ(0) = Id)

Ψ0(t) =

{
Φk(t)Ψ(t) t ∈ [0,τ]

Ψ(τ) t ∈ [τ,2τ],
Ψ1(t) =

{
Φk(t) t ∈ [0,τ]

Ψ(t− τ) t ∈ [τ,2τ].

The curves Ψ0 and Ψ1 are homotopic via the homotopy

Ψλ(t) =

{
Φk(t)Ψ((1−λ)t) t ∈ [0,τ]

Ψ
(
τ+λ(t−2τ)

)
t ∈ [τ,2τ],

with λ ∈ [0,1], and µσ(Ψ0,2τ) = µσ(Ψ1,2τ). By the definition of Ψ0 it follows that
µσ(ΦkΨ,τ) = µσ(Ψ0,2τ). Using property (iii) of the Maslov index mentioned before, we
obtain

µσ(ΦkΨ,τ) = µσ(Ψ0,2τ) = µσ(Ψ1,2τ) = µ(gr(Ψ1),Δσ)

= µ
(
gr(Φk)|[0,τ],Δσ

)
+µ
(
gr(Ψ(t− τ))|[τ,2τ],Δσ

)

= µ
(
gr(Φk)|[0,τ],Δσ

)
+µσ(Ψ,τ).

It remains to evaluate µ
(
gr(Φk)|[0,τ],Δσ

)
. Recall from [59], Remark 2.6, that for a La-

grangian loop Λ(t + 1) = Λ(t) and any Lagrangian subspace V the Maslov index is given
by

µ(Λ,V ) =
α(1)−α(0)

π
, det(P(t)+ iQ(t)) = eiα(t),
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where X = (P,Q)t is a unitary Lagrangian frame for Λ. In particular, the index of the loop
is independent of the Lagrangian subspace V . From this we derive that

µ
(
gr(Φk)|[0,τ],Δσ

)
= µ
(
gr(Φk)|[0,τ],Δ

)
,

and the latter is computed as follows. Consider the crossings of Φk: det
(
e

2πk
τ J0t0 − Id

)
= 0,

which holds for t0 = τn
k , n = 0, · · · ,k. Since Φk satisfies Φ′k = 2πk

τ J0Φk, the crossing form
is given by Γ(gr(Φk),Δ, t0)ξ0 =

〈
ξ0,

2πk
τ ξ0
〉

= 2πk
τ |ξ0|2, with ξ0 ∈ ker(Ψ(t0)− Id) *= {0},

and sign Γ(gr(Φk),Δ, t0) = 2n (the dimension of the kernel is 2n). From this we derive that
µ
(
gr(Φk)|[0,τ],Δ

)
= 2kn and consequently µ

(
gr(Φk)|[0,τ],Δσ

)
= 2kn. "

Fredholm theory and the Maslov index for closed braids
The main result of this section concerns the relation between the permuted Conley-

Zehnder index µσ and the Fredholm index of the linearized Cauchy-Riemann operator

∂̄K,Δσ =
∂
∂s

+ J0
∂
∂t

+K(s, t),

where K(s, t) is a family of symmetric6 2n× 2n matrices parameterized by R×R/Z. The
matrix J0 is the standard symplectic on R2n, with 〈·, ·〉= ω0(·,J0·〉. The operator ∂̄K,Δσ acts
on functions satisfying the non-local boundary conditions

(
ξ(s,0),ξ(s,1)

)
∈ Δσ, or in other

words ξ(s,1) = σξ(s,0). On K we impose the following hypotheses:
(k1) there exist continuous functions K± : R/Z→ M(2n,R),7 such that lims→±∞K(s, t) =

K±(t), uniform in t ∈ [0,1];
(k2) the solutions Ψ± of the initial value problem

d
dt
Ψ±− J0K±(t)Ψ± = 0, Ψ±(0) = Id,

have the property that gr
(
Ψ±(1)
)

is transverse to Δσ.
Hypothesis (k2) can be rephrased as det

(
Ψ±(1)−σ

)
*= 0. It follows from the proof below

that this is equivalent to saying that the mappings L± =−J0
d
dt −K±(t) are invertible.

In [60] the following result was proved. Define the function spaces

W 1,2
σ ([0,1];R2n)

def
=
{
η ∈W 1,2([0,1]) |

(
η(0),η(1)

)
∈ Δσ
}

W 1,2
σ (R× [0,1];R2n)

def
=
{
ξ ∈W 1,2(R× [0,1]) |

(
ξ(s,0),ξ(s,1)

)
∈ Δσ
}
.

PROPOSITION 3.23. Suppose that Hypotheses (k1) and (k2) are satisfied. Then the operator
∂̄K,Δσ :W 1,2

Δσ
→ L2 is Fredholm and the Fredholm index is given by

ind ∂̄K,Δσ = µσ(Ψ+,1)−µσ(Ψ−,1).

As a matter of fact ∂̄K,Δσ is a Fredholm operator fromW 1,p
σ to Lp, 1 < p<∞, with the same

Fredholm index.

6The theory also holds for families K(s,t) for which only the limits are symmetric.
7The 2n×2n real matrices are denoted by M(2n,R).
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PROOF. In [60] this result is proved that under Hypotheses (k1) and (k2) on the operator
∂̄K,Δσ . We will sketch the proof adjusted to the special situation here. Regard the linearized
Cauchy-Riemann operator as an unbounded operator

DL =
d
ds
−L(s),

on L2(R;L2([0,1];R2n)
)
, where L(s) = −J0

d
dt −K(s, t) is a family of unbounded, self-

adjoint operators on L2([0,1];R2n), with (dense) domain W 1,2
σ ([0,1];R2n). In this special

case the result follows from the spectral flow of L(s), which can be described as follows.
For the path s 6→ L(s) a number s0 ∈R is a crossing if ker L(s) *= {0}. On ker L(s) we have
the crossing form

Γ(L,s0)ξ
def
= (ξ,L′(s)ξ)L2 =−

∫ 1

0

〈
ξ(t),

∂K(s, t)
∂s

ξ(t)
〉
dt,

with ξ∈ ker L(s). If the path s 6→ L(s) has only regular crossings — crossings for which Γ is
non-degenerate — then the main result in [60] states that DL is Fredholm and the Fredholm
index is given by

ind DL =−∑
s0

sign Γ(L,s0)
def
= −µspec(L).

Let Ψ(s, t) be the solution of the parametrized (by s) family of ODEs
{
L(s)Ψ(s, t) = 0,
Ψ(s,0) = Id.

Note that ξ ∈ ker L(s) if and only if ξ(t) = Ψ(s, t)ξ0 and Ψ(s,1)ξ0 = σξ0, i.e. ξ0 ∈
ker(Ψ(s,1) − σ). The crossing form for L can be related to the crossing form for
(gr(Ψ),Δσ). We have that L(s)Ψ(s, ·) = 0, and thus by differentiating

∂K(s, t)
∂s

Ψ(s, t)+K(s, t)
∂Ψ(s, t)
∂s

=−J0
∂2Ψ(s, t)
∂s∂t

.

From this we derive

−
〈
Ψ(s, t)ξ0,

∂K(s, t)
∂s

Ψ(s, t)ξ0

〉

=
〈
Ψ(s, t)ξ0,K(s, t)

∂Ψ(s, t)
∂s

ξ0

〉
+
〈
Ψ(s, t)ξ0,J0

∂2Ψ(s, t)
∂s∂t

ξ0

〉

=
〈
K(s, t)Ψ(s, t)ξ0,

∂Ψ(s, t)
∂s

ξ0

〉
+
〈
Ψ(s, t)ξ0,J0

∂2Ψ(s, t)
∂s∂t

ξ0

〉

=−
〈
J0
∂Ψ(s, t)
∂t

ξ0,
∂Ψ(s, t)
∂s

ξ0

〉
+
〈
Ψ(s, t)ξ0,J0

∂2Ψ(s, t)
∂s∂t

ξ0

〉
,

which yields that

−
〈
Ψ(s, t)ξ0,

∂K(s, t)
∂s

Ψ(s, t)ξ0

〉
=

∂
∂t

〈
Ψ(s, t)ξ0,J0

∂Ψ(s, t)
∂s

ξ0

〉
.
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Figure 3.6: The symplectic contour in R2 and as cylinder [−T,T ]×R/Z.

We substitute this identity in the integral crossing form for L(s) at a crossing s= s0:

Γ(L,s0)(ξ) = −
∫ 1

0

〈
ξ(t),

∂K(s, t)
∂s

ξ(t)
〉
dt

= −
∫ 1

0

〈
Ψ(s, t)ξ0,

∂K(s, t)
∂s

Ψ(s, t)ξ0

〉
dt

=
〈
Ψ(s, t)ξ0,J0

∂Ψ(s, t)
∂s

ξ0

〉∣∣∣
1

0
=
〈
Ψ(s,1)ξ0,J0

∂Ψ(s,1)

∂s
ξ0

〉

= −ω0

(
Ψ(s,1)ξ0,

∂Ψ(s,1)

∂s
ξ0

)
=−Γ
(
gr(Ψ(s,1),Δσ,s0

)
(ξσ0 ).

The boundary term at t = 0 is zero since Ψ(s,0) = Id for all s. The relation between the
crossing forms proves that the curves s 6→ L(s) and s 6→Ψ(s,1) have the same crossings, and
µ(gr(Ψ(s,1)),Δσ) = −µspec(L). We assume that Ψ(±T, t) = Ψ±(t), and that the crossings
s = s0 are regular, as the general case follows from homotopy invariance. The symplectic
path along the boundary of the cylinder [−T,T ]×R/Z⊂ R×R/Z yields

µ(Δ,Δσ)+µσ(Ψ+,1)+µspec(L)−µσ(Ψ−,1) = 0.

Indeed, since the loop is contractible the sum of the terms is zero. The individual terms
along the boundary components are found as follows, see Figure 3.6: (i) for −T ≤ s ≤ T ,
it holds that Ψ(s,0) = Id, and thus gr(Ψ(s,0)) = Δ and µ(gr(Ψ(s,0)),Δσ) = µ(Δ,Δσ); (ii)
for 0≤ t ≤ 1, we have Ψ(T, t) =Ψ+(t), and therefore µ(gr(Ψ+),Δσ) = µσ(Ψ+,1); (iii) for
−T ≤ s ≤ T (opposite direction) the previous calculations with the crossing form for L(s)
show that µ(gr(Ψ(s,1)),Δσ) =−µspec(L); (iv) for 0≤ t ≤ 1 (opposite direction), it holds that
Ψ(−T, t) =Ψ−(t), and therefore µ(gr(Ψ−),Δσ) = µσ(Ψ−,1). Since ind DL =−µspec(L) we
obtain

ind DL = ind ∂̄K,Δσ = µσ(Ψ+,1)−µσ(Ψ−,1)+µ(Δ,Δσ).

Since Δσ and Δ are both constant Lagrangian curves, it follows that µ(Δ,Δσ) = 0, which
concludes the proof of the Theorem. "
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We recall from Section 3.3 that the Hamiltonian for multi-strand braids is defined as
H(t,x(t)) = ∑nk=1H(t,xk(t)). The linearization around a braid x is given by

Lx
def
= d2fH(x) =−J0

d
dt
−d2H(t,x). (3.21)

Define the symplectic path Ψ : [0,1]→ Sp(2n,R) by
dΨ
dt
− J0d2H(t,x(t))Ψ = 0, Ψ(0) = Id. (3.22)

For convenience we write K(t) = d2H(t,x(t)), so that the linearized equation becomes
d
dtΨ− J0K(t)Ψ= 0.

LEMMA 3.24. If det
(
Ψ(1)−σ

)
*= 0, then µσ(Ψ,1) is an integer.

PROOF. Since crossings between gr(Ψ) and Δσ exactly occur when det
(
Ψ(t)−σ

)
= 0,

the only endpoint that may lead to a non-integer contribution is the starting point. There the
crossing form is given by, see (3.19),

Γ(gr(Ψ),Δσ,0)(ξσ) = ω(ξ,σTK(0)σξ),

for all ξ ∈ ker(Ψ(0)−σ). The kernel of Ψ(0)−σ = Id−σ is even dimensional, since in
coordinates (3.18) it is of the form

ker(Id2n−σ) = ker(Idn−σ)×ker(Idn−σ).

Therefore, sign Γ(gr(Ψ),Δσ,0) is always even, and µσ(Ψ,1) is an integer. "

The non-degeneracy condition leads to an integer valued Conley-Zehnder index for
braids.

DEFINITION 3.25. A stationary braid x is said to be non-degenerate if det
(
Ψ(1)−σ

)
*= 0.

The Conley-Zehnder index of a non-degenerate stationary braid x is defined by
µ(x) def

= −µσ(Ψ,1),

where σ ∈ Sn is the associated permutation of x.

3.7. Transversality and connecting orbit spaces
Central to the analysis of the Cauchy-Riemann equations are various generic non-

degeneracy and transversality properties. The first important statement in this direction
involves the generic non-degeneracy of critical points.

Generic properties of critical points
Define

CritH ([x] rel y) def
= CritH(Ω

n
)∩ [x] rel y.

PROPOSITION 3.26. Let [x] rel y be a proper relative braid class. Then, for any Hamilton-
ian H ∈H, with y ∈ CritH(Ω

m
), there exists a δ∗ > 0 such that for any δ< δ∗ there exists a

nearby Hamiltonian H ′ ∈H satisfying ‖H−H ′‖C2 < δ, with y ∈ CritH′(Ω
m
) and such that

CritH′ ([x] rel y) consists of only finitely many non-degenerate critical points for the action
fH′ .
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Nε(y)

Dε

D2

Figure 3.7: Tubular neighborhoods of a skeleton y [left] and a cross section indicating the set
Aε [right].

S

(R/Z×D2)\A2ε

S

Figure 3.8: The invariant set T avoiding both Nε(y) and Dε [left] and a cross section which
shows how T is contained in R/Z×D2\A2ε [right].

We say that the property that CritH ([x] rel y) consists of only non-degenerate critical
points is a generic property, and is satisfied by generic Hamiltonians in the above sense.

PROOF. Given H ∈H we start off with defining a class of perturbations. For a braid
y ∈Ωm, define the tubular neighborhood Nε(y) of y in R/Z×D2 by :

Nε(y) =
⋃

k=1,··· ,m
t∈[0,1]

Bε(yk(t)).

If ε > 0 is sufficiently small, then a neighborhood Nε(y) consists of m disjoint cylinders.
Let Dε = {x ∈D2 | 1− ε< |x| ≤ 1} be a small neighborhood of the boundary, and define

Aε = Nε(y)∪
(
R/Z×Dε

)
, Acε =

(
R/Z×D

2)\Aε,

see Figure 3.7. Let TJ,H ([x] rel y) represent the paths in the cylinder traced out by the
elements of SJ,H([x] rel y):

TJ,H([x] rel y) def
=
{
xk(t)
∣∣ 1≤ k ≤ n, t ∈ [0,1], x ∈ SJ,H([x] rel y)

}
.

Since [x] rel y is proper, there exists an ε∗ > 0, such that for all ε ≤ ε∗ it holds that
TJ,H ([x] rel y)⊂ int(Ac2ε), see Figure 3.8. Now fix ε ∈ (0,ε∗]. Let

Vε
def
= {h ∈C2(R/Z×D

2;R) | supph⊂ Acε},
Vδ,ε

def
= {h ∈ Vε | ‖h‖C2 < δ},



92 3. FLOER HOMOLOGY FOR RELATIVE BRAID CLASSES

and consider Hamiltonians of the form H ′ = H + hδ ∈ H, with hδ ∈ Vδ,ε. Then, by con-
struction y ∈ CritH′(Ω

m
), and by Proposition 3.20 the set SJ,H

′
([x] rel y) is compact and

isolated in the proper braid class [x] rel y for all perturbation hδ ∈ Vδ,ε. A straightfor-
ward compactness argument, using the compactness result of Proposition 3.20, shows that
TJ,H+hδ([x] rel y) converges to TJ,H([x] rel y) in the Hausdorff metric as δ→ 0. Therefore,
there exists a δ∗ > 0, such that TJ,H+hδ([x] rel y)⊂ int(Ac2ε), for all 0≤ δ≤ δ∗. In particular
CritH+hδ,ε ⊂ int(Ac2ε), for all 0≤ δ≤ δ∗. Now fix δ ∈ (0,δ∗].

The Hamilton equations for H ′ are xkt − J0∇H(t,xk)− J0∇h(t,x) = 0, or

−J0xkt −∇H(t,xk)−∇h(t,x) = 0,

with the boundary conditions given in Definition 3.2. Define Uε ⊂W 1,2
σ ([0,1];R2n) to be

the open subset of functions x = {xk} such that xk(t) ∈ int(Ac2ε) and define the nonlinear
mapping

G : Uε×Vδ,ε→ L2([0,1];R2n),

which represents the above system of equations and boundary conditions. Explicitly,

G(x,h) =−J0xt −∇H(t,x)−∇h(t,x),

where H(t,x) = ∑k H(t,xk), and the same for h. The mapping G is linear in h. Since G is
defined on Uε and both H and h are of classC2, the mapping G is of classC1. The derivative
with respect to variations (ξ,η) ∈W 1,2

σ ([0,1];R2n)×Vε is given by

dG(x,h)(ξ,η) = −J0ξt−d2H(t,x)ξ−d2h(t,x)ξ−∇η(t,x)
= Lxξ−∇η(t,x),

where Lx = −J0
d
dt −d

2H(t,x)−d2h(t,x), analogous to (3.21) in the previous section. We
see that there is a one-to-one correspondence between elements Ψ in the kernel of Lx and
symplectic paths described by (3.22) with det

(
Ψ(1)−σ

)
= 0. In other words, the stationary

braid x is non-degenerate if and only if Lx has trivial kernel.
The operator Lx is a self-adjoint operator on L2([0,1];R2n) with domainW 1,2

σ ([0,1];R2n)
and is Fredholm with ind(Lx) = 0. Therefore Gh

def
= G(·,h) is a (proper) nonlinear Fredholm

operator with
ind(Gh) = ind(Lx) = 0.

Define the set
Z =
{
(x,h) ∈ Uε×Vδ,ε | G(x,h) = 0

}
= G−1(0),

and we show that Z is a Banach manifold. In order to prove this we show that dG(x,h) is
surjective for all (x,h) ∈ Z. Since dG(x,h)(ξ,η) = Lxξ−∇η(t,x), and the (closed) range
of Lx has finite codimension, we need to show there is a (finite dimensional) complement of
R(Lx) in the image of ∇η(t,x). It suffices to show that ∇η(t,x) is dense in L2([0,1];R2n).

Recall that for any pair (x,h) ∈ Z, it holds that x ∈ CritH′ ⊂ int(Ac2ε). As before con-
sider a neighborhood Nε(x), so that Nε(x) ⊂ int(Acε) and consists of n disjoint cylinders
Nε(xk). Let φkε(t,x) ∈ C∞0 (Nε(xk)), such that φkε ≡ 1 on Nε/2(xk). Define, for arbitrary
f k ∈C∞(R/Z;R2),

η(t,x) =
n

∑
k=1

φkε(t,x)〈 f k(t),x〉L2 .
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Since φkε(t,xk(t)) ≡ 1 it holds that η(t,x) = ∑n
k=1〈 f k(t),xk〉L2 for x ∈ CritH′ , and therefore

the gradient satisfies ∇η(t,x) = f = ( f k) ∈C∞(R/Z;R2n). Moreover, η ∈ Vε by construc-
tion, and because C∞(R/Z;R2n) is dense in L2([0,1];R2n) it follows that dG(x,h) is surjec-
tive.

Consider the projection π : Z → Vδ,ε, defined by π(x,h) = h. The projection π is a
Fredholm operator. Indeed, dπ : T(x,h)Z→ Vε, with dπ(x,h)(ξ,η) = η, and

T(x,h)Z =
{

(ξ,η) ∈W 1,2
σ ×Vε | Lxξ−∇η= 0

}
.

From this it follows that ind(dπ) = ind(Lx) = 0. The Sard-Smale Theorem [66] implies that
the set of perturbations h ∈ V

reg
δ,ε ⊂ Vδ,ε for which h is a regular value of π is an open and

dense subset. It remains to show that h ∈ V
reg
δ,ε yields that Lx is surjective. Let h ∈ V

reg
δ,ε , and

(x,h) ∈ Z, then dG(x,h) is surjective, i.e., for any ζ ∈ L2([0,1];R2n) there are (ξ,η) such
that dG(x,h)(ξ,η) = ζ. On the other hand, since since h is a regular value for π, there exists
a ξ̂ such that dπ(x,h)(ξ̂,η) = η , (ξ̂,η) ∈ T(x,h)Z, i.e. Lxξ̂−∇η= 0. Now

Lx(ξ− ξ̂) = dG(x,h)(ξ− ξ̂,0)

= dG(x,h)
(
(ξ,η)− (ξ̂,η)

)
= ζ−0 = ζ,

which proves that for all h ∈ V
reg
δ,ε the operator Lx is surjective, and hence also injective,

implying that x is non-degenerate. "

For x± ∈ CritH , let M
J,H
x−,x+([x] rel y) be the space of all bounded solutions in u ∈

MJ,H ([x] rel y) such that lims→±∞u(s, ·) = x±(·), i.e., connecting orbits in the relative
braid class. If x− = x+ then the set consists of just this one critical point. The space
S
J,H
x−,x+([x] rel y), as usual, consists of the corresponding trajectories.

LEMMA 3.27. Let [x] rel y be a proper braid class and let H ∈H be a generic Hamiltonian.
Then

MJ,H ([x] rel y)⊂
⋃

x±∈CritH

MJ,H
x−,x+([x] rel y),

where CritH = CritH([x] rel y).

PROOF. Using the a priori estimate (3.10) we establish that bounded solutions have
limits:

lim
s→±∞

u(s, t) = x±,

for some x± in CritH([x] rel y), where the convergence is uniform in t, and lims→±∞us(s, t)
goes to 0, uniformly in t. Indeed, by assuming the contrary we have a sequence (sn, tn),
with |sn| → ∞, such that u(sn, tn) stays strictly away from x(tn) for any of the finitely many
x ∈ CritH(x rel y) as n→ ∞. We may assume that tn→ t∗, and thus

|û(0, t∗)−x(t∗)| ≥ δ> 0 for all x ∈ CritH([x] rel y). (3.23)
Define un(s, t) = u(s+ sn, t). For the sequence {un} we have the a priori estimate

‖un‖C1,λ(R2) ≤C(J,H), n→ ∞,

where 0 < λ≤ 1−2/p. In view of the compactness of the embedding

C1,λ(R2) ↪→C1,λ′(K),
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for any compact domain K ⊂ R2 and 0≤ λ′ < λ, there exists a subsequence, again denoted
by un, and a function function û ∈C1,λ′(K) such that

un −→ û, in C1,λ′(K), as n→ ∞.

The limit function û satisfies the equation ∂̄J,H(û) = 0 and the boundary conditions, and
therefore û∈MJ,H . For any T > 0 we have that

∫ T
−T
∫ 1

0 |ûs|2dtds= limn→∞
∫ T
−T
∫ 1

0 |(un)s|2dtds.
By definition, since |sn| → ∞, it holds that

lim
n→∞

∫ T

−T

∫ 1

0
|(un)s|2dtds= lim

n→∞

∫ T−sn

−T−sn

∫ 1

0
|us|2dtds= 0.

Therefore, the limit function û is independent of s and û ∈ CritH([x] rel y), contradic-
tion (3.23). "

COROLLARY 3.28. Let [x] rel y be a proper relative braid class and let H be a generic
Hamiltonian with y ∈ CritH(Ω

m
). Then the space of bounded solutions is given by

MJ,H ([x] rel y) =
⋃

x±∈CritH

MJ,H
x−,x+([x] rel y).

PROOF. The key observation is that since x± rel y ∈ [x] rel y, also u(s, ·) rel y ∈
[x] rel y, for all s ∈ R (the crossing number cannot change). Therefore, any u ∈
M

J,H
x−,x+([x] rel y) is contained in [x] rel y, and thus M

J,H
x−,x+([x] rel y)⊂MJ,H([x] rel y). The

remainder of the proof follows from Lemma 3.27. "

Note that the sets M
J,H
x−,x+([x] rel y) are not necessarily compact in Ω

n. The fol-
lowing corollary gives a more precise statement about the compactness of the spaces
M

J,H
x−,x+([x] rel y), which will be referred to as geometric convergence [62].

COROLLARY 3.29. Let [x] rel y be a proper relative braid class and H be a generic
Hamiltonian with y ∈ CritH(Ω

m
). Then for any sequence {un} ⊂M

J,H
x−,x+([x] rel y) (along

a subsequence) there exist stationary braids xi ∈ CritH([x] rel y), i = 0, · · · ,m, orbits
ui ∈M

J,H
xi,xi−1([x] rel y) and times sin, i= 1, · · · ,m, such that

un(·+ sin, ·)−→ ui, n→ ∞,

in C1
loc(R×R/Z). Moreover, x0 = x+ and xm = x− and fH(xi) > fH(xi−1) for i= 1, · · · ,m.

The sequence un is said to geometrically converge to the broken trajectory (u1, · · · ,um).

REMARK 3.30. In the case of smooth Hamiltonian H ∈H∩C∞ we can find generic Hamil-
tonians in the same smooth class H∩C∞. Then Proposition 3.26 holds with respect to
smooth Hamiltonians.

Generic properties for connecting orbits
As for critical points, non-degeneracy can also be defined for connecting orbits. This

closely follows the ideas in the previous subsection. SetW 1,p
σ =W 1,p

σ (R× [0,1];R2n) and
Lp = Lp(R× [0,1];R2n). In order to define transversality of connecting orbits we embed the
Cauchy-Riemann equations for braids in R2n. Recall that ω0 =ω0×·· ·×ω0 is the standard
symplectic form on (D2)n and J ∈ Sp+(2n,R) is defined from J ∈ J+ ⊂ Sp(2,R) via the
relation ω0(·,J·) = g(·, ·), where g=

(
g×·· ·×g

)
. Define XH via the relation iXHω0 =−dH.
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DEFINITION 3.31. Let x−,x+ ∈CritH(Ω
n
) be non-degenerate stationary braids. A connect-

ing orbit u ∈M
J,H
x−,x+ is said to be non-degenerate, or transverse, if the linearized Cauchy-

Riemann operator
∂
∂s

+ J
∂
∂t
− JdXH(t,u(s, t)) : W 1,p

σ → Lp,

is a surjective operator (for all 1 < p< ∞).

For smooth perturbations h ∈ C∞
(
R/Z× (D2)n;R

)
, consider the following extension

of the nonlinear Cauchy-Riemann equations

us+ Jut +∇gH(t,u)+∇gh(t,u) = 0.

Note that we allow perturbations h that change the dynamics for each of the n strands in
a (slightly) different way. The space of bounded solutions and trajectories are denoted by
MJ,H,h and SJ,H,h, respectively. The compactness properties of these spaces are completely
analogous to the ones of MJ,H and SJ,H . In order to get genericity for connecting orbits we
start off with smooth Hamiltonians and smooth braids, i.e. we assume that y is a smooth
skeleton. OnC∞ we define a Banach space structure by defining the norm

‖h‖C∞
def
=

∞

∑
k=0

εk‖h‖Ck ,

for a sufficiently fast decaying sequence εk > 0, such that equipped with this norm C∞ is a
separable Banach space, that is dense in L2.

PROPOSITION 3.32. Let [x] rel y be a proper relative braid class and let x−,x+ ∈
CritH([x] rel y) be non-degenerate stationary braids for some Hamiltonian H ∈ H∩C∞.
Then there exists a δ∗ > 0 such that for any δ≤ δ∗ there exists a Hamiltonian perturbation
h ∈C∞(R/Z× (D2)n;R), with ‖h‖C∞ < δ, so that that

(i) S
J,H,h
x−,x+([x] rel y) is isolated in [x] rel y;

(ii) x± ⊂ CritH+h([x] rel y);
(iii) M

J,H,h
x−,x+([x] rel y) consists of non-degenerate connecting orbits;

(iv) M
J,H,h
x−,x+([x] rel y) are smooth manifolds without boundary and

dimMJ,H′′
x−,x+ = µ(x−)−µ(x+),

where µ is the Conley-Zehnder index defined in Definition 3.25.

PROOF. By assumption S
J,H
x−,x+ is isolated in [x] rel y. In order to prove that the same

holds for S
J,H,h
x−,x+ when δ∗ is sufficiently small we argue by contradiction. Suppose no such δ∗

exists, then there is sequence δk→ 0 as k→∞, functions hk with ‖hk‖C∞ < δk and solutions
uk ∈M

J,H,hk
x−,x+ ([x] rel y) such that either

(a) |uk(sk, tk)| = 1 for some (sk, tk) ∈ R× [0,1], or
(b) uk(sk, ·)∩Σn rel y *= ∅ for some sk.
By shifting with sk in s we may assume without loss of generality that sk = 0. By compact-
ness limk→∞uk = u ∈MJ,H([x] rel y) with either (a) or (b) satisfied. This contradicts the
isolation of S

J,H
x−,x+ and proves (i).
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As for the transversality properties we refer to Salamon and Zehnder [63], where per-
turbations in in R2n are considered. The proof is similar in spirit to the genericity of critical
points. We sketch the main steps based on the proof in [63].

Denote by C∞0 (R/Z× (D2)n,H) the subset of C∞ of perturbations h whose support is
bounded away from CritH([x] rel y). Therefore CritH+h([x] rel y) = CritH([x] rel y) for h
small enough (by the compactness properties). As in the proof of Proposition 3.26 define
the Cauchy-Riemann equations

G(u,h) = us+ Jut +∇gH(t,u)+∇gh(t,u).

Based on the a priori regularity of bounded solutions of the Cauchy-Riemann equations we
define for 2 < p< ∞ the affine spaces

U1,p(x−,x+)
def
=
{
γ+ξ | ξ ∈W 1,p

σ
}
, (3.24)

and balls U
1,p
ε = {u ∈ U1,p |‖ξ‖W 1,p

σ
< ε}, where γ(s, t) ∈ C2(R× [0,1];(D2)n

)
is a fixed

connecting path such that lims→±∞ γ(s, ·) = x± and γ(s, t)∈ int(D2)n for all (s, t)∈R× [0,1].
Therefore, for p> 2, functions u ∈U

1,p
ε (x−,x+) satisfy the limits lims→±∞u(s, ·) = x± and

if ε> 0 is chosen sufficiently small then also u(s, t) ∈ int(D2)n for all (s, t) ∈R× [0,1]. The
mapping

G : U
1,p
ε (x−,x+)×C∞0 → Lp(R× [0,1];R2n),

is a smooth mapping. Define

Zx−,x+
def
=
{
(u,h) ∈ U

1,p
ε (x−,x+)×C∞0 | G(u,h) = 0

}
= G−1(0),

which is Banach manifold provided that dG(u,h) is onto on for all (u,h) ∈ Zx−,x+ , where

dG(u,h)(ξ,δh) = d1G(u,δh)ξ+∇gδh.

We summarize the most important ingredients of the proof and for details we refer to
[63]. Assume that dG(u,h) is not onto. Then there exists a non-zero function η ∈ Lq which
annihilates the range of dG(u,h) and thus also the range of d1G(u,h), which is a Fredholm
operator of index µ(x−)−µ(x+), see Proposition 3.23. The relation 〈d1G(u,h)(ξ),η〉 = 0
for all ξ implies that

d1G(u,h)∗η=−ηs+ Jηt +d∇gH(t,u)η= 0,

and since also 〈dG(u,h)(ξ,δh),η〉 = 0 it follows that
∫ ∞

−∞

∫ 1

0
〈η(s, t),∇gδh〉R2ndtds= 0, for all δh. (3.25)

Due to the assumptions on h and H the regularity theory for the linear Cauchy-Riemann
operator implies that η is smooth. It remains to show that no such non-zero function η
exists.

Step 1: Since η satisfies a perturbed Laplace’s equation it follows from Aronszajn’s
unique continuation [8] theorem that η(s, t) *= 0 for almost all (s, t) ∈ R× [0,1].

Step 2: The vectors η(s, t) and us(s, t) are linearly dependent for all s and t. Suppose
not, then these vector are linearly independent in some small neighborhood of (s0, t0). This
allows the construction of δh(u, t) ∈C∞0 which violates the integral condition in (3.25). See
[63] for the details.
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Step 3: The previous step implies the existence of a function λ : R× [0,1]→ R such
that

η(s, t) = λ(s, t)
∂u
∂s

(s, t),

for all s, t for which η(s, t) *= 0. Using a contradiction argument with respect to equation
(3.25) yields that

∂λ
∂s

(s, t) = 0,

for almost all (s, t). In particular we obtain that λ is s-independent and we can assume that
λ(t)≥ δ> 0 for all t ∈ [0,1] (follows again from Aronszajn’s unique continuation theorem).

Step 4: This final step provides a contradiction to the assumption that dG is not onto. It
holds that

∫ 1

0

〈
∂u
∂s

(s, t),η(s, t)
〉
dt =
∫ 1

0
λ(t)
∣∣∣∣
∂u
∂s

(s, t)
∣∣∣∣
2
dt ≥ δ
∫ 1

0

∣∣∣∣
∂u
∂s

(s, t)
∣∣∣∣
2
dt > 0.

The functions us and η satisfy the equations

d1G(u,h)us = 0, d1G(u,h)∗η= 0,

respectively. From these equations we can derive expressions for uss and ηs from which we
get that

d
ds

∫ 1

0

〈
∂u
∂s

(s, t),η(s, t)
〉
dt = 0.

Combining this with the previous estimate yields that
∫ ∞
−∞
∫ 1

0 |us(s, t)|2dt =∞, which, com-
bined with the compactness properties, contradicts the fact that u ∈ Mx−,x+ , and thus
dG(u,h) is onto for all (u,h) ∈ Zx−,x+ .

We can now apply the Sard-Smale theorem as in the proof of Proposition 3.26. The
only difference here is that application of the Sard-Smale requires (µ(x−)− µ(x+) + 1)-
smoothness of G which is guaranteed by the smoothness of y, H and h. "

For generic pairs (H,h) the convergence of Corollary 3.29 can be extended with esti-
mates on the Conley-Zehnder indices of the stationary braids.

COROLLARY 3.33. Let [x] rel y be a proper relative braid class and H be a generic
Hamiltonian with y ∈ CritH(Ω

m
). If un geometrically converges to the broken trajectory

(u1, · · · ,um), with ui ∈M
J,H
xi,xi−1([x] rel y), i= 1, · · · ,m and xi ∈CritH([x] rel y), i= 0, · · · ,m,

then
µ(xi) > µ(xi−1),

for i= 1, · · · ,m.

Since Proposition 3.32 provides a dense set of perturbations h the intersection of dense
sets over all pairs (x−,x+) yields a dense set of perturbations h for which (i)-(iv) in Propo-
sition 3.32 holds for all pairs pairs (x−,x+) and thus for all of MJ,H,h([x] rel y).

The above proof also carries over to the Cauchy-Riemann equations with s-dependent
Hamiltonian H(s, ·, ·). The only difference will be that one needs to consider perturbations
h : R×R/Z×(D2)n→R. Exploiting the Fredholm index property for the s-dependent case
we obtain the following corollary. Let s 6→H(s, ·, ·) be a smooth path in H with the property
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Hs = 0 for |s| ≥ R. We have the following non-autonomous version of Propostion 3.32,
see [63].

COROLLARY 3.34. Let !x rel y" be a proper relative braid class with fibers [x−] rel y−,
[x+] rel y+ in !x rel y". Let s 6→H(s, ·, ·) be a smooth path inH such thatCritH±([x±] rel y±),
with H± =H(±∞, ·, ·), consist of non-degenerate stationary braids andMJ,H±([x±] rel y±)
of only non-degenerate connections. Then there exists a δ∗ > 0 such that for any δ ≤ δ∗
there exist s-dependent perturbations h ∈ C∞(R×R/Z× (D2)n;R), with ‖h‖C2 ≤ δ and
hs = 0 for |s| ≥ R (and h± = h(±∞, ·, ·)), so that for x′±CritH±([x±] rel y±)

(i) S
J,H± ,h±
x′−,x′+

([x±] rel y±) are isolated in [x±] rel y± respectively;
(ii) CritH±+h±

([x±] rel y±) = CritH±([x±] rel y±);
(iii) M

J,H,h
x′−,x′+

consist of non-degenerate connecting orbits with respect to the s-dependent
Cauchy-Riemann equations;

(iv) M
J,H,h
x′−,x′+

are smooth manifolds without boundary with

dimM
J,H,h
x′−,x′+

= µ(x′−)−µ(x′+)+ 1,

where µ(x′±) are the Conley-Zehnder indices with respect to the Hamiltonians H±.

3.8. Floer homology for proper braid classes
Since proper relative braid classes have the property that the sets S([x] rel y) are isolated

in [x] rel y we can assign Floer homology groups following the celebrated construction of
building a chain complex due to Floer [29]. As pointed out before the isolating neighbor-
hoods are found via proper relative braid classes [x] rel y and we embed the defining system
of Cauchy-Riemann equations ∂̄J,H(u) = 0 as Cauchy-Riemann equations in the symplectic
product

(M,ω) =
(
D

2×·· ·×D
2,ω0×·· ·×ω0

)
,

which are given in (3.7). In [29] the idea of defining Floer homology for isolating neigh-
borhoods was introduced and it provides the natural framework for relative braid classes. In
this section we outline the definition of Floer homology for isolating neighborhoods applied
to proper braid classes.

Definition
Let y ∈ Ωm be a smooth braid and [x] rel y a proper relative braid class. Let H ∈

H∩C∞ be a generic Hamiltonian with respect to the proper braid class [x] rel y (Proposition
3.26). Then the set of bounded solutions MJ,H([x] rel y) is compact, CritH([x] rel y) is non-
degenerate and SJ,H([x] rel y) is isolated in [x] rel y. Since CritH([x] rel y) is a finite set we
can define the chain groups

Ck
(
[x] rel y,H;Z2

) def
=
⊕

x′∈CritH ([x] rel y)
µ(x′)=k

Z2 ·x′, (3.26)

which are free abelian groups isomorphic to Z2×·· ·×Z2. In order to have a chain complex
also a boundary operator ∂k : Ck → Ck−1 is needed. By Proposition 3.32 we can choose
a perturbation h such that the set SJ,H,h([x] rel y) is isolated in [x] rel y and the orbits u ∈
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M
J,H,h
x−,x+([x] rel y) are non-degenerate for all pairs x−,x+ ∈ CritH([x] rel y). Let M̂

J,H,h
x−,x+ =

M
J,H,h
x−,x+/R be the equivalence classes of orbits identified by translation in the s-variable.

Consequently, M̂
J,H,h
x−,x+ are smooth manifolds of dimension dimM̂

J,H,h
x−,x+ = µ(x−)−µ(x+)−1.

LEMMA 3.35. If µ(x−)−µ(x+) = 1, then M̂
J,H,h
x−,x+([x] rel y) consists of finitely many equiv-

alence classes.

PROOF. From the compactness Theorem 3.8 and the geometric convergence in Corol-
laries 3.29 and 3.33 we derive that for any sequence {un} ⊂M

J,H,h
x−,x+([x] rel y) geometrically

converges to a broken trajectory (u1, · · · ,um), with ui ∈M
J,H
xi,xi−1([x] rel y), i= 1, · · · ,m and

xi ∈ CritH([x] rel y), i = 0, · · · ,m, such that µ(xi) > µ(xi−1), for i = 1, · · · ,m. Since by
assumption µ(x−) = µ(x+) + 1 it follows that m = 1 and un converges to a single orbit
u1 ∈M

J,H,h
x−,x+([x] rel y). Therefore, the set M̂

J,H,h
x−,x+([x] rel y) is compact. From Proposition

3.32 it follows that the orbits in M̂
J,H,h
x−,x+([x] rel y) occur as isolated points and therefore

M̂
J,H,h
x−,x+([x] rel y) is a finite set. "

Define the boundary operator by

∂k(J,H,h)x def
= ∑

x′∈CritH ([x] rel y)
µ(x′)=k−1

n(x,x′;J,H,h)x′, (3.27)

where

n(x,x′;J,H,h) =
[
# M̂

J,H,h
x,x′
]

mod 2 ∈ Z2.

The boundary operator ∂k can be represented by a matrix consisting of 0’s and 1’s. The
final property that the boundary operator has to satisfy is ∂k−1 ◦∂k = 0. Let us compute the
expression

∂k−1
(
∂kx) = ∂k−1



 ∑
x′∈CritH (x rel y)

µ(x′)=k−1

n(x,x′;J,H,h)x′





= ∑
x′∈CritH (x rel y)

µ(x′)=k−1

n(x,x′;J,H,h)∂k−1x′

= ∑
x′∈CritH
µ(x′)=k−1

n(x,x′;J,H,h)



 ∑
x′′∈CritH
µ(x′′)=k−2

n(x′,x′′;J,H,h)x′′





= ∑
x′′∈CritH
µ(x′′)=k−2

∑
x′∈CritH
µ(x′)=k−1

n(x,x′;J,H,h)n(x′,x′′;J,H,h)x′′.

The sum ∑ x′∈CritH
µ(x′)=k−1

n(x,x′;J,H,h)n(x′,x′′;J,H,h) = m(x,x′′) is the number of ‘broken con-

nections’ from x to x′′ modulo 2.
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LEMMA 3.36. If µ(x−)−µ(x+) = 2, then M̂
J,H,h
x−,x+([x] rel y) is a smooth 1-dimensional man-

ifold with finitely many connected components. The non-compact components can be iden-
tified with (0,1) and the “closure” with [0,1]8. The limits (“boundary”) {0,1} correspond
to unique pairs of distinct broken trajectories

(u1,u2) ∈M
J,H,h
x−,x′ ([x] rel y)×M

J,H,h
x′,x+ ([x] rel y),

and
(ũ1, ũ2) ∈M

J,H,h
x−,x′′([x] rel y)×M

J,H,h
x′′,x+([x] rel y),

with µ(x′′) = µ(x′) = µ(x−)−1.
PROOF. As in the proof of Lemma 3.35, from the compactness Theorem 3.8 and the

geometric convergence in Corollaries 3.29 and 3.33 we derive that any sequence {un} ⊂
M

J,H,h
x−,x+([x] rel y) geometrically converges to a broken trajectory (u1,u2).

The results by Floer [29] show that for each pair (u1,u2)∈ M̂
J,H,h
x−,x′ ×M̂

J,H,h
x′,x+ there exists

a unique local family of connecting orbits u′′ ∈ M̂
J,H,h
x−,x+ — the gluing construction. Due to

the local uniqueness of the gluing construction, the ‘ends’ 0 and 1 cannot coincide, and the
“closure” of the non-compact components can be identified with [0,1]. "

This implies that the total number of broken connections from x to x′′ is even and thus
m(x,x′′) = 0, which proves that ∂k−1 ◦∂k = 0. Consequently,

(
C∗
(
[x] rel y,H;Z2

)
,∂∗(J,H,h)

)

is a (finite) chain complex.
The homology of the chain complex (C∗,∂∗) is defined as

FHk
(
[x] rel y,J,H,h;Z2

) def
=

ker∂k
im∂k+1

, (3.28)

and is called the Floer homology of
(
[x] rel y,J,H,h

)
. The Floer homology takes values in

Z2 and is finite. It is not clear at this point that FH∗ is independent of J,H,h and whether
FH∗ is an invariant for proper relative braid class !x rel y".

Continuation
Floer homology has a powerful invariance property with respect to ‘large’ variations in

its parameters [29]. Let [x] rel y be a proper relative braid class and consider almost complex
structures J, J̃ ∈ J+, generic Hamiltonians H,H̃ such that y ∈ CritH ∩CritH̃ and functions
h, h̃ such that the connecting orbits are non-degenerate. Then the Floer homologies

FH∗
(
[x] rel y,J,H,h;Z2

)
and FH∗

(
[x] rel y, J̃,H̃, h̃;Z2

)
,

are well-defined.
PROPOSITION 3.37. Given a proper relative braid class [x] rel y it holds that

FH∗
(
[x] rel y,J,H,h;Z2

)∼= FH∗
(
[x] rel y, J̃,H̃, h̃;Z2

)
,

under the hypotheses on (J,H,h) and (J̃,H̃, h̃) as stated above.

8This can more easily be formalized by considering the corresponding set S
J,H ,h
x−,x+ , but we do not go into

details here.
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In order to prove the isomorphism we follow the standard procedure in Floer homology.
Consider the chain complexes

(
C∗
(
[x] rel y,H;Z2

)
,∂∗(J,H,h)

)
and
(
C∗
(
[x] rel y,H̃;Z2

)
,∂∗(J̃,H̃.h̃)

)

and construct homomorphisms hk satisfying the commutative diagram

· · · −−−−→ Ck(H)
∂k(J,H,h)−−−−−→ Ck−1(H)

∂k−1(J,H,h)−−−−−−→ Ck−2(H) −−−−→ ·· ·

hk
S hk−1

S hk−2

S

· · · −−−−→ Ck(H̃)
∂k(J̃,H̃,h̃)−−−−−→ Ck−1(H̃)

∂k−1(J̃,H̃,h̃)−−−−−−→ Ck−2(H̃) −−−−→ ·· ·
To define hk consider the homotopies λ 6→ (Jλ,Hλ,hλ) in J+×H×C∞ with λ ∈ [0,1].

In particular choose Hλ = (1− λ)H + λH̃ so that y ∈ CritHλ for all λ ∈ [0,1] and hλ =

(1− λ)h + λh̃. It is important to notice that at the end points λ = 0,1 the systems are
generic, but this is not necessarily true for all λ ∈ (0,1). Define the smooth function λ(s) as
a function that satisfies 0≤ λ(s)≤ 1 and

λ(s) =

{
0 for s≤−R
1 for s≥ R,

for some R> 0. The non-autonomous Cauchy-Riemann equations in (D2)n then are
us+ Jλ(s)ut +∇gHλ(s)(t,u)+∇ghλ(s)(t,u)+∇gh

′(s, t,u) = 0, (3.29)

where h′ is a perturbation as described in Corollary 3.34. By setting J(s) = Jλ(s), H(s, ·, ·) =
Hλ(s) and h(s, ·, ·) = hλ(s) then Equation (3.29) fits in the framework of Equation (3.7) and
for generic perturbations h′ the bounded orbits are non-degenerate. To simplify notation we
will write h′λ = hλ +h′.

As before, denote the space of bounded solutions of the augmented Cauchy-Riemann
equations by MJλ,Hλ ,h′λ = MJλ ,Hλ,h′λ(Ω

m
), and we derive the following basic compactness

result.

PROPOSITION 3.38. The spaceMJλ ,Hλ,h′λ is compact in the topology of uniform convergence
on compact sets in (s, t) ∈ R2, with derivatives up to order 1. Moreover, fHλ is uniformly
bounded along trajectories u ∈MJλ ,Hλ,h′λ , and

lim
s→±∞

|fHλ(u(s, ·))| = |c±(u)| ≤C(J,H),

∫

R

∫ 1

0
|us|2dtds=

n

∑
k=1

∫

R

∫ 1

0
|uks |2dtds≤C′(J,H),

for all u ∈M. Moreover,

lim
s→−∞

u(s, ·) ∈ CritH , and lim
s→+∞

u(s, ·)CritH̃ ,

for any u ∈MJλ,Hλ ,h′λ .

PROOF. The compactness follows from the estimates in Section 3.3 and the compact-
ness in Proposition 3.8. Due to genericity, bounded solutions have limits in CritH ∪CritH̃ ,
see Corollary 3.28. "
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We can define a homomorphism hk = hk(Jλ,Hλ,h
′
λ) Via the non-autonomous Cauchy-

Riemann equations between the chain groups as follows. We recall that when we write µ(x)
for x ∈ CritH or x ∈ CritH̃ , then this is the Conley-Zehnder index µ(x) with respect to the
Hamiltonian H or H̃, respectively. For any x ∈ CritH with µ(x) = k we define

hkx= ∑
x′∈CritH̃
µ(x′)=k

n(x,x′;Jλ,Hλ,h
′
λ)x

′,

where
n(x,x′;Jλ,Hλ,h

′
λ) =
[
# M̂

Jλ ,Hλ,h′λ
x,x′
]

mod 2 ∈ Z2.

LEMMA 3.39. The homomorphisms hk defined above are chain homomorphisms, i.e.,

∂k(J̃,H̃, h̃)◦hk = hk−1 ◦∂k(J,H,h),

for all k ∈ Z.

PROOF. As for the boundary operator it holds that

∂k(J̃,H̃, h̃)(hkx) = ∑
x′′∈CritH̃
µ(x′′)=k−1

∑
x′∈CritH̃
µ(x′)=k

n(x,x′;Jλ,Hλ,h
′
λ)n(x

′,x′′; J̃,H̃, h̃)x′′,

and
hk−1
(
∂k(J,H,h)x

)
= ∑

x′′∈CritH̃
µ(x′′)=k−1

∑
x′∈CritH
µ(x′)=k−1

n(x,x′;J,H,h)n(x′,x′′;Jλ,Hλ,h
′
λ)x

′′,

We need to show that

∑
x′∈CritH̃
µ(x′)=k

n(x,x′;Jλ,Hλ,h
′
λ)n(x

′,x′′; J̃,H̃, h̃)

= ∑
x′∈CritH
µ(x′)=k−1

n(x,x′;J,H,h)n(x′,x′′;Jλ,Hλ,h
′
λ) mod 2 (3.30)

In order to establish this, one has to investigate space M
Jλ,Hλ,h′λ
x−,x+ , with µ(x−) = µ(x+)+ 1;

see [?] for all details. As before we use the characterization of M
Jλ,Hλ ,h′λ
x−,x+ and a non-

autonomous version of the gluing lemma. From genericity and compactness we conclude
that dimM

Jλ ,Hλ,h′λ
x−,x+ = 1 and the closure of non-compact components can be identified with

[0,1]. A sequence {un} ⊂M
Jλ,Hλ ,h′λ
x−,x+ geometrically to broken trajectories (u1,u2) in either

M
J,H
x−,x×M

Jλ,Hλ,h′λ
x,x+ or M

Jλ ,Hλ,h′λ
x−,x̃ ×M

J̃,H̃
x̃,x+ , with x ∈ CritH or x̃ ∈ CritH̃ , respectively. A non-

autonomous version of the gluing principle shows that near broken trajectories of the above
type there exist unique connecting orbits in M

Jλ,Hλ ,h′λ
x−,x+ . This reveals three possible possible

types of boundaries for the non-compact components, see Figure 3.9. The left and right
diagrams contribute a broken connection to each of the sums in (3.30), whereas the middle
one contributes two broken connections to the sum on the lefthand side, and none to the
righthand side. Consequently, the sums in (3.30) can only differ by an even integer, which
proves the lemma. "
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(J̃, H̃)(J̃, H̃)

(J,H)(J,H) (J,H)

(J̃, H̃)(Jλ,Hλ,h
′
λ)

(Jλ,Hλ,h
′
λ)

(Jλ,Hλ,h
′
λ) (Jλ,Hλ,h

′
λ)

(Jλ,Hλ,h
′
λ) (Jλ,Hλ,h

′
λ)

x̃′ x̃x̃

x−

Figure 3.9: The three types of boundary behavior of non-compact components.

The mappings hk are chain homomorphisms and induce a homomorphisms h∗k on Floer
homology:

h∗k(Jλ,Hλ,h
′
λ) : FH∗(x rel y;J,H,h)→ FH∗(x rel y; J̃,H̃, h̃).

From a further analysis of the non-autonomous Cauchy-Riemann equations the standard
procedures in Floer homology theory show that any two homotopies (Jλ,Hλ,h

′
λ) and

(Ĵλ,Ĥλ, ĥ
′
λ) between (J,H,h) and (J̃,H̃, h̃) yield the same homomorphism in Floer homol-

ogy:

LEMMA 3.40. It holds, for any two homotopies (Jλ,Hλ,h
′
λ) and (Ĵλ,Ĥλ, ĥ

′
λ) between

(J,H,h) and (J̃,H̃, h̃), that

h∗k(Jλ,Hλ,h
′
λ) = h∗k(Ĵλ,Ĥλ, ĥ

′
λ).

Moreover, for a homotopy (Jλ,Hλ,h
′
λ) between (J,H,h) and (J̃,H̃, h̃) and a homotopy

(Ĵλ,Ĥλ, ĥ
′
λ) between (J̃,H̃, h̃) and (J̌,Ȟ, ȟ) the induced homomorphism between the Floer

homologies is given by
h∗k : FH∗([x] rel y,J,H,h)→ FH∗([x] rel y, J̌,Ȟ, ȟ′),

where h∗k = h∗k(Ĵλ,Ĥλ, ĥ
′
λ)◦h

∗
k(Jλ,Hλ,h

′
λ).

PROOF. Let (Jλ,Hλ,h
′
λ) and (Ĵλ,Ĥλ, ĥ

′
λ) be two generic homotopies from (J,H,h) to

(J̃,H̃, h̃) and h∗ and ĥ∗ the corresponding chain homomorphisms. We will define a sequence
of homomorphisms φk : Ck([x] rel y,H)→Ck+1([x] rel y,H̃) such that

ĥk−hk = ∂k+1(J̃,H̃, h̃)◦φk−φk−1 ◦∂k(J,H,h). (3.31)
Since φ is thus a chain homotopy between h and ĥ, it follows from standard arguments that
h and ĥ induce the same homomorphisms on homology. We start with the definition of
φk. Let Jνλ ,H

ν
λ ,h

ν
λ, ν ∈ [0,1], be a smooth homotopy between (Jλ,Hλ,h

′
λ) and (Ĵλ,Ĥλ, ĥ

′
λ).

Consider the spaces

Mν
x−,x+ =

{
(ν,u) | ν ∈ [0,1], u ∈M

Jνλ ,Hν
λ ,hνλ

x−,x+
}
,

for any x− ∈ CritH([x] rel y) and x+ ∈ CritH̃([x] rel y). For generic homotopies Jνλ ,H
ν
λ ,h

ν
λ

the space Mν
x−,x+ is a smooth manifold with boundary of dimension dimMν

x−,x+ = µ(x−)−
µ(x+)+1. If µ(x−)−µ(x+)+1 = 0 then Mν

x−,x+ consists of finitely many pairs (νi,ui) and
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ν

U1,p(x−,x+)

10

Figure 3.10: A schematic picture of Mν
x−,x+ and the different possible connected components.

since the ‘ends’ are regular, M
Jνλ ,Hν

λ ,hνλ
x−,x+ = ∅ for ν = 0,1. Now define, for x ∈ CritH with

µ(x) = k,
φk(Jνλ ,H

ν
λ ,h

ν
λ)x= ∑

x′∈CritH̃
µ(x′)=k+1

n(x,x′;Jνλ ,H
ν
λ ,h

ν
λ)x

′,

where
n(x,x′;Jνλ ,H

ν
λ ,h

ν
λ) =
[
# Mν

x,x′
]

mod 2 ∈ Z2.

Let us start with ĥk−hk:
[
ĥk−hk
]
x= ∑

x′′∈CritH̃
µ(x′′)=k

(
n
(
x,x′′; Ĵλ,Ĥλ, ĥ

′
λ

)
−n
(
x,x′′;Jλ,Hλ,h

′
λ

))
x′′,

and for ∂̃k+1 ◦φk−φk−1 ◦∂k:
[
∂̃k+1 ◦φk−φk−1 ◦∂k

]
x

= ∑
x′′∈CritH̃
µ(x′′)=k

∑
x′∈CritH̃
µ(x′)=k+1

n(x,x′;Jνλ ,H
ν
λ ,h

ν
λ)n(x

′,x′′; J̃,H̃, h̃)x′′

− ∑
x′′∈CritH̃
µ(x′′)=k

∑
x′∈CritH
µ(x′)=k−1

n(x,x′;J,H,h)n(x′,x′′;Jνλ ,H
ν
λ ,h

ν
λ)x

′′.

In order to prove that the two expressions are equal modulo 2 we consider the spaces
Mν
x−,x+ with µ(x−) = µ(x+). Then Mν

x−,x+ is a smooth manifold with boundary with
dimMν

x−,x+ = 1. As a matter of fact Mν
x−,x+ ⊂ U1,p(x−,x+), see (3.24), and it is schemat-

ically depicted in Figure 3.10. The connected components are identified with either [0,1],
S1, [0,∞), (−∞,1], or (−∞,∞). Via yet another version of the gluing principle the ‘open’
ends are identified with broken trajectories [?]. Let us go through the different cases in
order to prove the desired identity. Components diffeomorphic to S1 do not contribute to
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′
λ)1

x− x− x−
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(J̃, H̃)

Figure 3.11: The three types of boundary behavior of non-compact components.

x+

or or
(Ĵλ, Ĥλ, ĥ

′
λ)(Ĵλ, Ĥλ, ĥ

′
λ)

x̃x

x+

x−x−

(Jνλ ,H
ν
λ ,h

ν
λ)

(Jνλ,H
ν
λ ,h

ν
λ)

(Jλ,Hλ,h
′
λ)(Jλ,Hλ,h

′
λ)

(J̃, H̃)

(J,H)

Figure 3.12: The two types of boundary behavior of non-compact components.

the above expressions. If a component corresponds to a closed interval [0,1] then the limits
(0,u) and (1,u) lie in M

Jλ,Hλ,h′λ
x−,x+ or M

Ĵλ,Ĥλ,ĥ′λ
x−,x+ respectively. Therefore,

[
n
(
x,x′′; Ĵλ,Ĥλ, ĥ

′
λ

)
−n
(
x,x′′;Jλ,Hλ,h

′
λ

)]
mod 2

counts the ‘closed’ ends modulo 2. For components corresponding to (−∞,∞) we have
to following cases of geometric convergence to the ‘open’ ends: the broken trajectories
(u1,u2) lie in either M

J,H,h
x−,x ×M

Jνλ ,H
ν
λ ,hνλ

x,x+ , or M
Jνλ ,Hν

λ ,hνλ
x−,x̃ ×M

J̃,H̃,h̃
x̃,x+ . Figure 3.11 shows the dif-

ferent possibilities. The terms in ∂̃k+1 ◦φk−φk−1 ◦∂k obtain an even contribution from the
ends described in Figure 3.11. Modulo 2 these terms contribute 0 in ∂̃k+1 ◦φk− φk−1 ◦ ∂k.
Finally for components corresponding to [0,∞), or (−∞,1] the broken trajectories also lie in
either M

J,H,h
x−,x ×M

Jνλ ,H
ν
λ ,hνλ

x,x+ , or M
Jνλ ,Hν

λ ,hνλ
x−,x̃ ×M

J̃,H̃,h̃
x̃,x+ . Figure 3.12 shows the different possibil-

ities. Clearly, the broken trajectories are balanced by trajectories in M
Jλ,Hλ ,h′λ
x−,x+ or M

Ĵλ,Ĥλ,ĥ′λ
x−,x+ ,

and therefore modulo 2 the terms in ∂̃k+1 ◦ φk − φk−1 ◦ ∂k add up to
(
ĥk−hk
)

modulo 2,
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which proves the identity. The identity implies now that ĥ∗k = h∗k as induced homomor-
phisms in Floer homology.

To prove the composition property we construct yet another homotopy. Let (Jλ,Hλ,h
′
λ)

and (Ĵλ,Ĥλ, ĥ
′
λ) be two homotopies from (J,H,h) to (J̃,H̃, h̃) and form (J̃,H̃, h̃) to (J̌,Ȟ, ȟ)

respectively. Define

(JRλ ,HR
λ ,hRλ) =

{ (
Jλ(s+R),Hλ(s+R, ·, ·),h′λ(s+R, ·, ·)

)
for s≤ 0,(

Ĵλ(s−R),Ĥλ(s−R, ·, ·), ĥ′λ(s−R, ·, ·)
)

for s≥ 0,

for R sufficiently large. Using convergence and the gluing principle we conclude that for R
sufficiently large it holds that

hRk = ĥk ◦hk
where hk, ĥk are chain homomorphisms corresponding to (Jλ,Hλ,h

′
λ) and (Ĵλ,Ĥλ, ĥ

′
λ) re-

spectively. By the previous we know that the choice of homotopy is arbitrary, and therefore
(hRk )

∗= ĥ∗k ◦h
∗
k is the homomorphism between FH∗([x] rel y,J,H,h) and FH∗([x] rel y, J̌,Ȟ, ȟ′).

"

PROOF. (of Proposition 3.37). The properties given by this lemma guarantee that h∗k is
an isomorphism. To be more precise, consider the homotopties

h∗k : FH∗(x rel y;J,H,h)→ FH∗(x rel y; J̃,H̃, h̃),

and
h̄∗k : FH∗(x rel y; J̃,H̃, h̃)→ FH∗(x rel y;J,H,h),

then
h̄∗k ◦h∗k : FH∗(x rel y;J,H,h)→ FH∗(x rel y;J,H,h).

Since a homotopy from (J,H,h) to itself induces the identity homomorphism on homology,
it holds that h̄∗k ◦h

∗
k = Id. By the same token it follows that hk ◦ h̄∗k = Id, which proves that

h̄∗k = (h∗k)
−1 and therefore the proposition. "

3.9. Admissible triples and independence of the skeleton
By proposition 3.37 the Floer homology of [x] rel y, under the assumption that y is

smooth and y ∈ CritH for some Hamiltonian H ∈ H, is independent of a generic triple
(J,H,h), which justifies the notation FH∗([x] rel y;Z2). It remains to show that, firstly, for
any braid class [x] rel y a triple exists, and thus the Floer homology is defined, and secondly
that the Floer homology only depends on the braid class !x rel y".

LEMMA 3.41. Let y ∈Ωm∩C3, then there exists a Hamiltonian H ∈H such that y ∈ CritH.
In particular, when y is smooth, then H can be chosen to be inH∩C∞.

PROOF. Let y = {yk}mk=1 and define Hk(t,x) =
〈
ykt ,J0x
〉
, which is a C2-function on

R×R2. Note that Hk(t+1,x) =Hσ(k)(t,x), and Hk is smooth if y is smooth. The strand yk
is a solution of the Hamilton equations forHk. This construction works for any k= 1, . . . ,m.
Define tubular neighborhoods Akε =

⋃
t∈RBε(yk(t)) ⊂ R×D2, and Dε = {x ∈ D2 | 1− ε<

|x| ≤ 1}. Choose ε> 0 so small that the sets {Akε}mk=1 and Dε are all disjoint.
Define a cut-off function λε ∈ C∞([0,∞),R) such that λ(r) = 1 for 0 ≤ r ≤ ε/4 and

λ(r) = 0 for r ≥ ε/2. Let λkε(t,x) = λε(|x− yk(t)|). Then λkε is a C3 function with support
in Akε, and λkε(t+ 1,x) = λσ(k)

ε (t,x).
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Now define

H(t,x) def
=

m

∑
k=1

λkε(t,x)H
k(t,x).

We claim that H ∈H. Indeed,

H(t+ 1,x) =
m

∑
k=1

λkε(t+ 1,x)Hk(t+ 1,x)

=
m

∑
k=1

λσ(k)
ε (t,x)Hσ(k)(t,x) =H(t,x).

By the construction of H , it holds that ykt = XHk(t,yk) = XH(t,yk), since H restricts to Hk in
a neighborhood of yk. "

Lemma 3.41 establishes that the Floer homology FH∗([x] rel y) is defined for any
proper relative braid class [x] rel y∈Ωn rel ywith y∈Ωm∩C∞. In order to refer to the Floer
homology as an invariant we need to establish independence of the braid class in !x rel y",
i.e. the Floer homology is the same for any two relative braid classes [x] rel y, [x′] rel y′such
that !x rel y" = !x′ rel y′". This leads to the first main result of this paper.

THEOREM 3.42. Let !x rel y" be a proper relative braid class. It holds that

FH∗([x] rel y)∼= FH∗([x]′ rel y′),

for any two fibers [x] rel y and [x′] rel y′ that are both in !x rel y". In particular,

FH∗(!x rel y";Z2)
def
= FH∗([x] rel y)

is an invariant of !x rel y".

PROOF. Let y,y′ ∈Ωm∩C∞ and let (x(λ),y(λ)), λ ∈ [0,1] be a smooth path9 !x rel y"
which connects the pairs x rel y and x′ rel y′. Since x(λ) rel y(λ) ∈ !x rel y", for all
λ∈ [0,1], the sets Nλ = [x(λ)] rel y(λ) are isolating neighborhoods for all λ. Choose smooth
Hamiltonians Hλ such that y(λ) ∈ CritHλ . The construction in the proof of Lemma 3.41 al-
lows us to construct Hλ such that Hλ depends smoothly on the parameter λ. There are two
philosophies one can follow now to prove this theorem. On the one hand, using the gener-
icity theory in Section 3.7 (Corollary 3.34) we can choose a generic family (Jλ,Hλ,h

′
λ), for

any smooth homotopy of almost complex structures Jλ. Then by repeating the proof (of
Proposition 3.37) for this homotopy, we conclude that

FH∗([x] rel y)∼= FH∗([x′] rel y′).

On the other hand, without having to redo to homotopy theory we note that SJλ ,Hλ([x(λ)] rel y(λ))
is compact and isolated in Nλ. Due to compactness and isolation there exists an ελ for each
λ∈ [0,1] such that Nλ isolates S(x(λ′) rel y(λ′)) for all λ′ in [λ−ελ,λ+ελ]. Fix λ0 ∈ (0,1),
then, by arguments similar to those used in the proof of Proposition 3.37, we have

FH∗(Nλ0 ,Jλ0 ,Hλ0 ,hλ0)
∼= FH∗(Nλ0 ,Jλ′ ,Hλ′ ,hλ′),

9A property of the braid class !x rel y" is that continuous paths can be approximated arbitrarily close by
smooth paths.
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for all λ′ ∈ [λ0− ελ0 ,λ0 + ελ0 ]. A compactness argument shows that, for ε′λ0
sufficiently

small, the sets of bounded solutions MJλ′ ,Hλ′ ,hλ′ (Nλ′) and MJλ′ ,Hλ′ ,hλ′ (Nλ0) are identical, for
all λ′ ∈ [λ0− ε′λ0

,λ0 + ε′λ0
]. Together these imply that

FH∗
(
[x(λ′) rel y(λ′)]

)∼= FH∗
(
[x(λ0) rel y(λ0)]

)

for |λ′ −λ0| ≤min{ελ0 ,ε
′
λ0
}. Since [0,1] is compact, any covering has a finite subcovering,

which proves that FH∗([x] rel y)∼= FH∗([x′] rel y′).
Finally, since any skeleton y in π(!x rel y") can be approximated by a smooth skeleton

y′, the isolating neighborhood N = π−1(y)∩ !x rel y" is also isolating for y′, i.e., we can
define FH∗(N)

def
= FH∗(N′). This defines FH∗([x] rel y) =FH∗(N) for any y∈ π(!x rel y").

"



CHAPTER 4

Properties and applications

4.1. Properties and interpretation of the braid class invariant
The braid class invariant FH∗(!x rel y") for proper relative braid classes has specific

properties with respect to braided solutions of the Hamilton equations (3.1) on the 2-disc
D2; non-triviality of the invariant yields braided solutions.

THEOREM 4.1. Let H ∈H and let y ∈ CritH(Ω
m
). Let !x rel y" be a proper relative braid

class. If
FH∗(!x rel y") *= 0,

then CritH([x] rel y) *= ∅.

PROOF. Let Hn ∈H be a sequence of Hamiltonians such that Hn→ H in H, i.e. con-
vergence inC2(R/Z×D2;R). If FH∗(!x rel y") *= 0, thenC∗([x] rel y,Hn;Z2) *= 0, for any
n since

H∗
(
C∗([x] rel y,Hn;Z2),∂∗

)∼= FH∗(!x rel y") *= 0,

where ∂∗ = ∂∗(J,Hn,hn) (see Section 3.8). Consequently, CritHn([x] rel y) *= ∅. The strands
xkn satisfy the equation xkn

′
= XHn(t,xkn) and therefore ‖xkn‖C1([0,1]) ≤C. By the compactness

of C1([0,1]) ↪→ C0([0,1]) it follows that (along a subsequence) xkn → xk ∈ C0([0,1]). The
right hand side of the Hamilton equations now converges, i.e., XHn(t,xkn(t))→ XH(t,x(t))
pointwise in t ∈ [0,1], and thus also xkn→ xk in C1([0,1]). This holds for any strand xk and
therefore produces a limit x ∈ CritH([x] rel y), which proves the theorem. "

Let βk = dimFHk(!x rel y";Z2) be the Z2-Betti numbers of the braid class invariant. Its
Poincaré series is defined as

Pt(!x rel y") = ∑
k∈Z

βk(!x rel y")tk.

A fundamental property of the braid class invariant can be expressed as follows.

THEOREM 4.2. Let !x rel y" be a proper relative braid class. Then, there exists an integer
n0 ≥ 0 such that

tn0Pt(!x rel y") ∈ Z
+[t],

i.e. tn0Pt is polynomial with coefficients in Z+.

109
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PROOF. Assume without loss of generality that y is a smooth skeleton and choose
a smooth generic Hamiltonian H such that y ∈ CritH . Since the Floer homology is the
same for all braid classes [x] rel y ∈ !x rel y" and all Hamiltonians H satisfying the above,
FH∗([x] rel y,J,H,h) ∼= FH∗(!x rel y"). Let ck = dimCk, then by definition of the Betti
numbers

ck([x] rel y,H)≥ dimkerCk ≥ βk([x] rel y,J,H,h) = βk(!x rel y").

Since H is generic, all critical points are non-degenerate, and it follows from compactness
that ∑k ck < ∞. Therefore ck < ∞, and ck *= 0 for finitely many k. By the above bound
βk ≤ ck <∞, which proves the finiteness of the Floer homology. Now choose n0 = min{n≥
0 | ck = 0, ∀k <−n} > 0, which completes the proof. "

In the case that H is a generic Hamiltonian a more detailed result follows. Both⊕
k FHk(!x rel y";Z2) and

⊕
kCk([x] rel y,H;Z2) are graded Z2-modules and their Poincaré

series are well-defined and

Pt
(
CritH([x] rel y)

)
= ∑

k∈Z

ck([x] rel y,H)tk,

where ck = dimCk([x] rel y,H;Z2).

THEOREM 4.3. Let !x rel y" be a proper relative braid class and H a generic Hamiltonian
such that y ∈ CritH 1 for a given skeleton y. Then

Pt
(
CritH([x] rel y)

)
= Pt(!x rel y")+ (1+ t)Qt, (4.1)

where Qt ≥ 0. In addition, # CritH([x] rel y)≥ P1(!x rel y").

PROOF. Let y′ be a smooth skeleton that approximates y arbitrarily close inC2 and let
H ′ be an associated smooth generic Hamiltonian. We start by proving (4.1) in the smooth
case. Define Zk = ker∂k, Bk = im ∂k+1 and Bk ⊂ Zk ⊂Ck([x] rel y′,H ′) by the fact that ∂∗ is
a boundary map. This yields the following short exact sequence

0 Id−−−−→ Bk
ik−−−−→ Zk

jk−−−−→ FHk =
Zk
Bk

0−−−−→ 0.

The maps ik and jk are defined as follows: ik(x) = x and jk(x) = {x}, the equivalence class
in FHk. Exactness is satisfied since ker ik = 0 = im Id, ker jk = Bk = im ik and ker 0 =
FHk = im jk. Upon inspection of the short exact sequence we obtain that

dimZk = dimBk+ dimFHk.

Indeed, by exactness, Zk ⊃ ker jk = Bk and im jk = FHk (onto) and therefore dimZk =
dimker jk + dimim jk = dimBk+ dimFHk. Similarly, we have the short exact sequence

0 Id−−−−→ Zk
ik−−−−→ Ck

∂k−−−−→ Bk−1
0−−−−→ 0.

Hence Ck ∼= Zk⊕Bk−1, and it holds that

dimCk = dimZk+ dimBk−1.

1We do not assume that y is a smooth skeleton!
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Combining these equalities gives dimCk = dimFHk + dimBk−1 + Bk. On the level of
Poincaré series this gives

Pt(⊕kCk) = Pt(⊕kFHk)+ (1+ t)Pt(⊕kBk),

which proves (4.1) in the case of smooth skeletons.
Now choose sequences yn→ y and Hn→ H in C2 (Hn generic). For each n the above

identity is satisfied and since also H is generic (by assumption), it follows from hyperbol-
icity that Pt

(
CritHn([x] rel yn)

)
= Pt
(
CritH([x] rel y)

)
for n large enough. This then proves

(4.1). Using the fact that all series are positive, the substitution t = 1 gives the lower bound
on the number of stationary braids. "

An important question is whether FH∗(!x rel y") also contains information about
CritH([x] rel y) in the non-generic case besides the result in Theorem 4.1. In [33] such
a result was indeed obtained for the Conley index of discretized relative braid classes, and
a detailed study of the spectral properties of stationary braids will most likely reveal a sim-
ilar property here. We conjecture that # CritH([x] rel y) ≥ length

(
FH∗(!x rel y")

)
, where

length(FH∗) equals the number of monomial terms in Pt(!x rel y")
)
.

4.2. Homology shifts and Garside’s normal form
In this section we show that composing a braid class with full twists yields a shift in

Floer homology.

Full twists and homology shifts
In the Definition 3.25 the Conley-Zehnder index of a stationary braid x ∈ CritH was

defined as the permuted Conley-Zehnder index of the symplectic pathΨ : [0,1]→ Sp(2n,R)
defined by

dΨ
dt
− J0d2H(t,x(t))Ψ = 0, Ψ(0) = Id. (4.2)

Consider the symplectic path S : [0,1]→ Sp(2,R) defined by S(t) = e2πJ0t , which rotates
the variables over 2π as t goes from 0 to 1. On the product R2×·· ·×R2 ∼= R2n this yields
S(t) = e2πJ0t , which is a path in Sp(2n,R). Let x̂= S(t)x, or equivalently x= S(−t)x̂, then
x̂ ∈ CritĤ , where Ĥ(t, x̂) =H(t,e−2πJ0t x̂)+π|x̂|2−π and Ĥ ∈H. Indeed, upon substitution
in (3.1) we obtain the transformed Hamilton equations for x̂:

x̂kt − e2πJ0tJ0∇H(t,e−2πJ0t x̂k)−2πJ0x̂k = 0, (4.3)

which are the Hamilton equations for Ĥ. There exists a relation between the Conley-
Zehnder indices µ(x) and µ(x̂):

LEMMA 4.4. Let x ∈ CritH and x̂= S(t)x, with x̂ ∈ CritĤ , then

µ(x̂) = µ(x)+ 2n, (4.4)

where n equals the number of strands in x. More generally, for any g∈ Z and x̂= Sg(t)x it
holds that µ(x̂) = µ(x)+ 2ng.
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PROOF. In order to compute the Conley-Zehnder index of x̂we linearize Equation (4.3)
in x̂, which yields

dΨ̂
dt
−S(t)J0d2H(t,S(−t)x̂(t))S(−t)Ψ̂−2πJ0Ψ̂= 0, Ψ̂(0) = Id.

One verifies that Ψ in Equation (4.2) and Ψ̂ are related as follows: Ψ = S(−t)Ψ̂. From
Lemma 3.22 and the fact that µ(e2πJ0t) = 2, it follows that

µ(x̂) = µσ(Ψ̂,1) = µ(SΨ,1)

= µσ(Ψ,1)+µ(S) = µσ(Ψ,1)+nµ(e2πJ0 t)

= µ(x)+ 2n.
The proof of the second statement is a straightforward generalization of this argument. "

Consider the braid class !x rel y" and define the rotation

(x̂, ŷ) := Sg(t)(x,y) =
(
Sgn(t)x,S

g
m(t)y
)
,

Via the rotation Sg we can relate the Floer homologies of !x rel y" with Hamiltonian H and
!x̂ rel ŷ" with Hamiltonian Ĥ via the index shift in Lemma 4.4. Since the Floer homologies
do not depend on the choice of Hamiltonian we obtain the following relation.

THEOREM 4.5. Let !x rel y" be a proper relative braid class and let !x̂ rel ŷ" be as defined
above. Then

FHk(!x̂ rel ŷ")∼= FHk−2ng(!x rel y"), ∀k ∈ Z,

for any g ∈ Z.

PROOF. The Floer homology for !x rel y" is defined by choosing a generic Hamiltonian
H . From Lemma 4.4 we have that µ(x̂) = µ(x)+ 2ng and therefore

Ck([x̂] rel ŷ,Ĥ;Z2) =Ck−2ng([x] rel y,H;Z2).

Since the solutions û ∈MJ,Ĥ ,ĥ are obtained from the solutions u ∈MJ,H,h via û = Sgn(t)u,
it also holds that

∂k(J,Ĥ, ĥ) = ∂k−2ng(J,H,h),

and thus FHk(!x̂ rel ŷ")∼= FHk−2ng(!x rel y"). "

Garside’s normal form
For a given braid x ∈ Ωn denote by β(x) ∈ Bn a representation of x in the braid group,

and let βi be the positive generators of Bn. For any given closed braid x ∈Ωn there exists a
unique representation of the form

β(x) = Δg ·β+ = β̂+ ·Δg, g ∈ Z, β+ ∈ Sn, (4.5)
where Δ = (β1 · · ·βn−1)(β1 · · ·βn−2) · · · (β1β2)β1 represents a (positive) half-twist, or Gar-
side element, in braid group Bn and β+ is a unique word in Sn, the semi-group of positive
braids in Bn. The word β̂+ is found from β+ by replacing all βi by βn−i. The integer g
is called the power of β, and β+ the tail of β. Equation (4.5) is referred to as the Garside
normal form of β, see e.g. [?], [32]. Roughly speaking g is the largest integer such that
Δ−g ·β(x) is equivalent in Bn to a positive braid word. The unique choice of the positive
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word β+ follows from the algorithm, see [?], [32]. The Garside normal form provides a
solution to the word problem in Bn: two words β,β′ ∈Bn are equivalent in Bn if and only
if their Garside normal forms coincide.

For example consider B3 with generators β1 and β2 and consider the word β= β1β−1
2 ;

its Garside normal form is given by

β= Δ−1 ·β2
2β1 = β2

1β2 ·Δ−1.

Since Ωn consists of equivalence classes of closed braids, the braid class [x] corresponds to
the conjugacy class of [β(x)] in the braid group Bn. For instance the words β= β1β

−1
2 and

β′ = β−1
2 β1 are conjugate in B3 but the left normal forms are different:

β= Δ−1 ·β2
2β1, β′ = Δ−1 ·β2β

2
1.

Clearly, the Garside normal form is not a normal form for conjugacy classes and therefore
not suited to solving the conjugacy problem in Bn. However, in a similar spirit one can
derive normal forms for conjugacy classes from Garside’s normal form. These are used to
solve the more complicated conjugacy problem, see e.g. [?], [32].

A second unique normal form of a braid x ∈Ωn is obtained by considering full twists:

β(x) = !
@g/2A · (Δrβ+), g ∈ Z, β+ ∈ Sn, (4.6)

where ! = Δ2 = (β1 · · ·βn−1)n represents a full twist, and generates the center of the braid
group Bn, @g/2A is the largest integer less or equal to g/2, and r = g− 2@g/2A ∈ {0,1}.
This form is derived from the Garside normal form for β. Slightly abusing terminilogy, we
will again call this the Garside normal form. Since full twists generate the center of Bn they
commute with all elements in Bn.

LEMMA 4.6. Let x, x̂ ∈Ωn be such that β(x̂) = !
" ·β(x), for some " ∈ Z. Then S"

(t)x ∈ [x̂].
If " is sufficiently large then β(x̂) is conjugate to a positive braid word and [x̂] is a positive
braid class.

PROOF. Define the homotopy λ 6→ x1+(ε−1)λ in [x], λ ∈ [0,1], where

x1+(ε−1)λ(t) =

{
x
(
t/(1+(ε−1)λ)

)
for t ∈ [0,1+(ε−1)λ]

x(1) for t ∈ [1+(ε−1)λ,1].

If ε > 0 is sufficiently small then β(S"
(t)xε) is a composition of β(xε) = β(x) with " full

twists:
β
(
S"

(t)xε
)

= !
" ·β(xε) = !

" ·β(x) = β(x̂).

By construction S"
(t)x1+(ε−1)λ is a path in Ωn, and therefore S"

(t)x is homotopic to S"
(t)xε,

i.e.,
[
S"

(t)xε
]
=
[
S"

(t)x
]
, and consequently

β
(
S"

(t)x
)

= β
(
S"

(t)xε
)

= β(x̂),

which proves that S"
(t)x ∈ [x̂]. From (4.6) we choose " = −@g/2A, which then guarantees

that β(x̂) represents a positive conjugacy class. "
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If we apply the above to x∪y, we obtain a minimal integer " such that

β(x+∪y+) = !
" ·β(x∪y)

is a positive braid, and for the pair (x̂, ŷ) = S"
(t)(x,y) it holds that x̂ rel ŷ ∈ !x+ rel y+".

This yields the following theorem that relates the Floer homology of arbitrary proper braid
classes to the Floer homology of proper positive relative braid classes.

THEOREM 4.7. Let !x rel y" be a proper relative braid type, and its Garside normal form
be given by β(x∪y) = !

−" ·β(x+∪y+). Then !x+ rel y+" is a proper positive relative braid
class, and

FHk(!x rel y")∼= FHk+2n"(!x+ rel y+"), for all k ∈ Z.

PROOF. Let (x̂, ŷ) = S"
(t)(x,y), then by Lemma 4.6 x̂ rel ŷ ∈ !x+ rel y+", and since

FH∗ is an invariant of !x+ rel y+" it follows that FHk(!x+ rel y+") ∼= FHk(!x̂ rel ŷ"). By
Theorem 4.5, FHk(!x̂ rel ŷ") ∼= FHk−2n"(!x rel y"), which proves the second part of the
theorem.

We still need to prove that !x+ rel y+" is proper. Suppose, by contradiction, that
!x+ rel y+" is not proper. Then there is a fiber [x+] rel y+ ⊂ !x+ rel y+" such that there
is a “collapsing” continuous path xs, s ∈ [0,1], i.e., xs ∈ [x+] rel y+ for s ∈ [0,1), whereas
x1 ∈ (Σ− rel y+)∪∂D2.

Let us define the "-rotated extension of x as

E"(x)(t) =

{
x(2t) 0≤ t ≤ 1

2 ,

S"
(2(t− 1

2))x(1) 1
2 ≤ t ≤ 1.

For any integer " and any braid x, the rotated extension E"(x) is again a braid, since
E"(x)k(1) = xk(1) = xσ(k)(0) = E"(x)σ(k)(0). Similarly, if x rel y is a relative braid, then
E"(x∪y) is a braid, hence E"(x) rel E"(y) is again a relative braid.

We conclude that E−"(xs) is a collapsing path in the fiber [E−"(x+)] rel E−"(y+) ⊂
!x rel y", contradicting the properness of the relative braid class !x rel y". "

4.3. Cyclic braid classes and their Floer homology
In this section we compute the Floer homology groups of various braid classes of cyclic

type. The cases we consider here can be computed by continuing the skeletion and the
Hamiltonians to a Hamiltonian system for which the space of bounded solutions can be
determined.

Single-strand rotations and symplectic polar coordinates
Consider Hamiltonians of the form

H(x) = F(|x|)+ωδ(|x|)G
(
arg(x)
)
,

where arg(x) = θ is the argument and G(θ+2π) =G(θ). The cut-off function ωδ is chosen
such that ωδ(|x|) = 0 for |x| ≤ δ and |x| ≥ 1−δ, and ωδ(|x|) = 1 for 2δ≤ |x| ≤ 1−2δ. In
the special case that G(θ)≡ 0, then the Hamilton equations are given by

xt = J0∇H(x) = J0
f (|x|)
|x|

x,
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where f (r) =F ′(r). Solutions of the Hamilton equations are given by x(t) = l(rcos l( f (r)r t+
θ0

r),r sin
(
f (r)
r t+θ0

r)
)

, where r= |x|. This yields a relation between the period T and the
radius r: T = 2πr

f (r) . Since H is autonomous all solutions of the Hamilton equations occurs
as circles of solutions. On order to compute Floer homology from an explicit system we
need the autonomous Hamiltonians given above, i.e. choose G appropriately. To construct
such a Hamiltonian we perform a change of coordinates. The Cauchy-Riemann equations
are given by

us+ J0ut +∇H(u) = 0. (4.7)
Choose symplectic polar coordinates (I,θ) via the relation p=

√
2I cos(θ), q=

√
2I sin(θ),

and define Ĥ(I,θ) =H(p,q). In particular,

Ĥ(I,θ) = F(
√

2I)+ωδ(
√

2I)G(θ).

Under this symplectic change of coordinates the Cauchy-Riemann equations become

Is−2Iθt + 2IĤI(I,θ) = 0, (4.8)

θs+
1
2I
It +

1
2I
Ĥθ(I,θ) = 0. (4.9)

If we restrict x to the annulus A2δ = {x ∈ D2 : 2δ ≤ |x| ≤ 1− 2δ}, the particular choice of
H described above yields the following equations

Is−2Iθt +
√

2I f (
√

2I) = 0,

θs+
1
2I
It +

1
2I
g(θ) = 0,

where g=G′. Before giving a general result for braid classes for which x is a single-strand
rotation we employ the above model to get insight into the Floer homology of !x rel y".

Floer homology of the annulus
The formal calculation in the above example indicates the Floer homology of a the

relative braid class !x rel y" described above. We will now prove a theorem about the Floer
homology of a larger set of braid classes of which the above example is a special case. To
do this we will employ the Floer homology of a annulus.

In the example above to method to compute the Floer homology of the given braid class
is to continue to a special system for which explicit knowledge of the space of bounded
solutions gives the Floer complex. Note that we cannot continue to the case of contracted
loops as is done in Floer homology of symplectic manifolds [29]. The reason is that the free
strands x in !x rel y" are not contractible. By employing the result about composing braids
with full twist we can relate the Floer homology of certain relative braid class to a situation
in which the free strands are contractible.

As for the 2-disc we can consider an annulus A = Aδ. The boundary orientation
is the canonical Stokes orientation and the orientation form on ∂A is given by λ =
inω.Hamiltonians H satisfy the hypotheses:
(a1) H ∈C2(R×R2;R);
(a2) H(t+ 1,x) = H(t,x) for all t ∈R and all x ∈ R2;
(a3) H(t,x) = 0 for all x ∈ ∂A and all t ∈R.
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This class of Hamiltonians is denoted by H(A). We will consider Floer homology of the
annulus in the case that H has prescribed behavior on ∂A.

(a4+) iXHλ> 0 on ∂A;
(a4-) iXHλ< 0 on ∂A.

The class of Hamiltonians that satisfy (a1)-(a3), (a4+) is denoted by H+ and those satisfying
(a1)-(a3), (a4-) are denoted by H−. For Hamiltonians in H+ the boundary orientation
induced by XH is coherent with the canonical orientation of ∂A, and for Hamiltonians in
H− the boundary orientation induced by XH is opposite to the canonical orientation of ∂A.

THEOREM 4.8. For the pairs (J,H) ∈ J+×H+(A) the Floer homology FH∗(A;J,H) is
denoted by FH∗(A;H+) and there is a natural isomorphism

FHk(A;H+)∼= Hk+1(A) =

{
Z2 for k =−1,0
0 otherwise.

Similarly, for the pairs (J,H) ∈ J+×H−(A) the Floer homology FH∗(A;J,H) is denoted
by FH∗(A;H−) and there is a natural isomorphism

FHk(A;H−)∼= Hk(A) =

{
Z2 for k = 0,1
0 otherwise,

where H∗ denotes the singular homology with coefficients in Z2.

PROOF. Let us start with Hamiltonians in the class H+. Consider A = Aδ and choose
H = F+ωG, with F(r) = 1

2
(
r− 1

2
)2− 1

2
(
δ− 1

2
)2 and G(θ) = εcos(θ). Using the symplec-

tic polar coordinates we obtain that

∇gĤ(I,θ) =

(
2I− 1

2
√

2I+ ε
√

2Iω′(
√

2I)cos(θ)
− ε

2Iω(
√

2I)sin(θ)

)
.

For 1
2δ

2 ≤ I ≤ 2δ2 and for 1
2(1−2δ)2 ≤ I ≤ 1

2(1−δ)2 it holds that |
√

2I− 1
2 | ≥

1
2 −2δ and

thus if we choose ε< 1
4δ −1 all zeroes of ∇gĤ lie in the annulus set A2δ ⊂ Aδ. The zeroes

of ∇gĤ are found at I = 1
8 and θ = 0,π, which are both non-degenerate critical points.

Linearization yields

d∇gĤ(1/8,0) =

(
1 0
0 −4ε

)
, d∇gĤ (1/8,π) =

(
1 0
0 4ε

)
,

an index-1 saddle point and a minimum (index-0). For τ ≤ 1 the Conley-Zehnder indices
of the associated symplectic paths defined by Ψt = J0d∇gĤΨ are given by µσ(Ψ,τ) =
0,1. Therefore the index µτ(I,θ) = −µσ(Ψ,τ) = 0,−1 for (I,θ) equal to (1

8 ,0) and (1
8 ,π)

respectively.
Next consider Hamiltonians of the form τH and the associated Cauchy-Riemann equa-

tions are us+J0ut +τ∇H(u) = 0. Rescale τs→ s, τt→ t and u(s/τ, t/τ)→ u(s, t) , then the
satisfies the Cauchy-Riemann equations in (4.7) again with periodicity u(s, t+ τ) = u(s, t).
The 1-periodic solutions of the Cauchy-Riemann equations with τH are transformed to τ-
periodic solutions of (4.7). Note that if τ is sufficiently small then all τ-periodic solutions
of the stationary Cauchy-Riemann equations (4.7) are independent of of t and thus critical
points of H .



4.3 CYCLIC BRAID CLASSES AND THEIR FLOER HOMOLOGY 117

If we linearize around t-independent solutions of (4.7) then d
ds + d∇H(u(s)) is

Fremholm and thus also

∂̄K,Δ =
∂
∂s

+ J
∂
∂t

+K,

with K = d∇H(u(s)), is Fredholm, see [63]. We claim that if τ is sufficiently small then
all contractible τ-periodic bounded solutions u(s, t+ τ) = u(s, t) of (4.7) are t-independent,
i.e. solutions of the equation us = −∇H(u). Let us sketch the argument following [63].
Assume by contradiction that there exists a sequence of τn→ 0 and bounded solutions un
of Equation (4.7). If we embed A into the 2-disc D2 we can use the compact results for
the 2-disc. One can assume without loss of generality that un ∈MJ0,H(A;τ) = MJ0,τH(A).
Following the proof in [63] we conclude that for τ > 0 small all solutions in M are t-
independent. The system (J,H)can be continued to (J0,τH) for which we know MJ0 ,τH(A)
explicitly via us+ τ∇H = 0 and gives the desired homology.

As for Hamiltonians in H− we choose F(r) =− 1
2 l(r−

1
2r)2 + 1

2
(
δ− 1

2
)2. The proof is

identical to the previous case except for the indices of the stationary points. Here we have
that µτ(I,θ) =−µσ(Ψ,τ) = 1,0 for (I,θ) equal to (1

8 ,0) and (1
8 ,π) respectively, which gives

the homology indicated above. "

Floer homology for single-strand cyclic braid classes
We apply the results in the previous subsection to compute the Floer homology of fam-

ily of cyclic braid classes !x rel y". The skeletons y consist of two braid components y1 and
y2. The first component can be described as follows. In complex notation p+ iq we have

y1 =
{
r1e

2πn
m it ,r1e

2π
m i(nt−1), · · · ,r1e

2π
m i(nt−m+1)

}
,

where 0 < r1 < 1. In the braid group Bm the braid y1 is represented by the word β1 =
(σ1 · · ·σm−1)n, m≥ 2, and n ∈ Z. In a similar fashion we define the braid y2:

y2 =
{
r2e

2πn′
m′ it ,r2e

2π
m′ i(n

′t−1), · · · ,r2e
2π
m′ i(n

′t−m′+1)
}

,

where 0 < r1 < r2 < 1. In the braid group Bm′ the braid y2 is represented by the word
β2 = (σ1 · · ·σm′−1)n

′ ,m′ ≥ 2, and n′ ∈Z. In order to describe the relative braid class !x rel y"
with the skeleton defined above we consider a single strand braid x= {x1(t)} with

x1(t) = re2πgit

where 0 < r1 < r < r2 < 1 and g ∈ Z. We now consider two cases for which x rel y is a
representative.

The case n
m < g< n′

m′ . The relative braid class !x rel y" is a proper braid class since the
inequalities are strict. We have

LEMMA 4.9. The Floer homology is given by

FHk(!x rel y",Z2) =

{
Z2 for k =−2g−1,−2g
0 otherwise.

The Poincaré polynomial is given by Pt(!x rel y") = t−2g−1 + t−2g.
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PROOF. Since FH∗(!x rel y",Z2) is independent of the representative we consider the
class [x] rel y with x and y as defined above. Apply −g full twists to x rel y: (x̂, ŷ) =

S−g(x,y). Then by Theorem 4.5

FHk(!x̂ rel ŷ")∼= FHk+2g(!x rel y"). (4.10)

We now compute the homology FHk(!x̂ rel ŷ") using Theorem 4.8. The free strand x̂ in
x̂ rel ŷ is unlinked with the y1 and can be deformed to the constant strand x1(t) = r. Consider
an explicit Hamiltonian H(x) = F(|x|) +ω(|x|)G(arg(x)). Choose F such that F(r1) =
F(r2) = 0 and

f (r1)

2πr1
=
n
m
−g< 0, and

f (r2)

2πr2
=
n′

m′
−g> 0.

Clearly y∈CritH and the circles |x|= r1 and |x|= r2 are invariant for the Hamiltonian vector
field XH . Therefore MJ0,H([x̂] rel y) = MJ0 ,H(A). It holds that H ∈H+ and by Theorem 4.8
it follows that FH−1([x̂] rel ŷ)∼= FH−1(A;H+) = Z2 and FH0([x̂] rel ŷ)∼= FH0(A;H+) =
Z2. This proves, using (4.10), that FH−2g−1([x] rel y) = Z2 and FH−2g([x] rel y) = Z2
which completes the proof. "

The case n
m > g> n′

m′ . The relative braid class !x rel y" with the reversed inequalities is
also a proper braid class. We have

LEMMA 4.10. The Floer homology is given by

FHk(!x rel y",Z2) =

{
Z2 for k =−2g,−2g+ 1
0 otherwise.

The Poincaré polynomial is given by Pt(!x rel y") = t−2g+ t−2g+1.

PROOF. The proof is identical to the proof of Lemma 4.9. Because the inequalities are
reversed we construct a Hamiltonian such that

f (r1)

2πr1
=
n
m
−g> 0, and

f (r2)

2πr2
=
n′

m′
−g< 0.

This yields a Hamiltonian in H− and we therefore repeat the above argument using the
homology FH∗(A;H−), which proves the lemma. "

REMARK 4.11. If we define the Floer homology for braid class with respect to the conjugate
equations by reflecting the time s→−s, the homology in the Lemmas 4.9 and 4.10 becomes

FHk(!x rel y",Z2) =

{
Z2 for k = 2g,2g+ 1
0 otherwise,

when n
m < g< n′

m′ , and

FHk(!x rel y",Z2) =

{
Z2 for k = 2g−1,2g
0 otherwise,

when n
m > g> n′

m′ . This agrees with the calculations in [33] for positive relative braid classes.
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Applications to disc maps
Let Ψ = x(1; ·) : D2 → D2 be the time-1 map for a Hamiltonian system xt = XH on

(D2,ω0) with H ∈H(D2). Then Ψ is an area and orientation preserving map (diffeomor-
phism) of the 2-disc D2.

THEOREM 4.12. Let y′ ∈ [y], with y as described above with n
m *=

n′
m′ . Assume that y

′ ∈
CritH, then for any g ∈ Z such that

n
m

< g<
n′

m′
, or

n
m

> g>
n′

m′
,

the associated time-1 mapΨ has distinct fixed points.

PROOF. The existence of a stationary relative braid follows from Theorem 4.1 since by
Lemmas 4.9 and 4.10 the Floer homology of !x rel y" is non-trivial. A stationary strand x
yields a fixed point for Ψ. "

As a direct consequence of Theorem 4.12 we obtain the following corollary.

COROLLARY 4.13. Let y′ ∈ [y], with y as described above with n
m *=

n′
m′ . Assume that

y′ ∈ CritH, then for any g ∈ Z and k ∈ N such that
n
m

<
g
k

<
n′

m′
, or

n
m

>
g
k

>
n′

m′
,

the associated time-1 map Ψ has distinct k-periodic points, i.e. Ψk(x) = x (see Figure 4.1
below).

PROOF. Consider the Hamiltonain kH , then the time-1 map associated with Hamilton-
ian system xt = XkH is equal to Ψk. Applying Theorem 4.12 gives the desired result. "

REMARK 4.14. As pointed out in Section 4.1 we conjecture that the Floer homology implies
the existence of at least two fixed points. This agrees with Figure 4.1.

TO BE DRAWN

Figure 4.1: The k-periodic points circle around the skeletal points and the k-periodic points
occur in pairs, i.e. saddle-like and elliptic points (figure is taken from J. José and E. Saletan,
Classical Dynamics).
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