Description of the benchmark examples in COMPI:b 1.0

F. LEIBFRITZ * AND W. LIPINSKI f

Abstract. In this note, we state a short description of each individual test example which is contained in
COMPILib 1.0 — the COnstrained Matrix—optimization Problem library [37], [38]. The problems are drawn from a
variety of control systems engineering applications. The current version of COMPIib contains 124 problems coded
in standard MATLAB matrix format. The advantage of this format is the platform independence. The data of the
currently available test examples of COMPIib 1.0 are collected in the MATLAB file COMPleib.m which is available
over the internet. This file contains a single MATLAB function which returns the data of the individual examples.
For more details, we refer the interested reader to the user guide of COMPL:ib [38] and the companion paper [37]. In
particular, as discussed in [37], the test examples in COMPLib 1.0 can be used as a benchmark collection for a very
wide variety of algorithms solving (constraint) matrix optimization problems. For example, COMPLib can be used
for testing solvers for nonlinear semidefinite programs (NSDPs), bilinear matrix inequality (BMI) problems, linear
semidefinite programs (SDPs), Riccati or Lyapunov equations and other related matrix problems. An incomplete
list of such problems is given in [37] which is far from being exhaustive.

Key Words. collection of test examples; constrained matriz optimization—problem library
AMS subject classification.

1. Data structure of COMPLib . As described in [37], [38], release 1.0 of the constrained
matrix optimization problem library COMPLib consists of more than 120 examples collected from
the engineering literature and real-life (engineering) applications for LTT control systems. In
example, consider a LTI plant of order n, with state space realization:
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Az(t) + Byw(t) + Bu(t),
Z(t) = Olf(t) +D11w(t) +D12U(t>, (11)
Oaf(t) + D21w(t),
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where x € R", u € R™, y € R", z € R":, w € R™ denote the state, control input, measured
output, regulated output, and noise input, respectively. The current version of COMPLib consists
simply of the data matrices A € R"=*"= B; € R"=*"+ B € R"=*" () € R"=*"= Dj; € R"=*"v
Dy € R"=*" ,C' € R™*" and Dy; € R"=*"v, In particular, all 124 test problems in COMPI.ib
1.0 are coded and stored in standard MATLAB matrix format. We have decided to use this format,
since the main advantage of MATLARB is the platform independence. The heart of COMPLib is
the MATLAB function file COMPIleib.m. In a MATLAB environment, the data of the individual
test example of COMPILib can be accessed by calling the MATLAB function therein. For example,
in MATLAB, the command

>> [A,B1,B,C1,C,D11,D12,D21,nz,nw,nu,nz,ny] = COMPleib(’AC1’);

returns the real data matrices A, By, B, Cy, C, Dy1, D12 and Doy of (1.1) as well as the
integers (dimension parameters) n,, n.,, ny,, n. and n, of the COMPLib example ACI. To-
gether with the MATLAB function file COMPIleib.m, COMPIb is provided with several binary
MATLAB data files (MAT-files) which contains the data matrices of some individual (large)
test examples. In particular, release 1.0 of COMPIib contains also the following MAT-files:
acl0.mat, acl3-14.mat, acl8 mat, bdt2.mat, cbm.mat, cdp.mat, cml.mat — cm6.mat (6 files),
dlr2_8.mat, he6.mat, he7.mat, hf2d1.mat - hf2d18.mat (18 files), ih.mat, iss1_2.mat, jel.mat,
je2_3.mat, lah.mat, tl.mat. Note, the name of the MAT-file corresponds to the example name in
COMPILib . For more details we refer to the COMPIib user manual [38].

2. Benchmark examples in COMPLib . In this section we give a short overview of each
individual test example which is implemented in COMPI.ib 1.0. Moreover, we state some detailed
information about the source and the application (if any) of the COMPLib 1.0 benchmark problems.
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At the current stage, COMPLib is divided into problem sets and the problem sets are grouped into
problem classes. The problem classes and sets are listed in the tables and paragraphs below.
Table 2.1 provides a list of the first problem class. In this class are those examples which are
static output feedback (SOF) stabilizable (i. e. see [37] and the references therein). More detailed
information of each example in this class are given in Subsection 2.1.

Table 2.1:  Static output feedback control examples
Example ngy Ny Ny Structure of A Example Ny Ny Ny Structure of A
(AC1) 5 3 3 dense (WEC3) 10 3 4 dense
(AC2) 5 3 3 dense (HF1) 130 1 2 sparse
(AC3) 5 2 4 dense (BDT1) 11 3 3 sparse
(AC4) 4 1 2 dense (BDT2) 82 4 4 sparse
(AC5b) 4 2 2 dense (MFP) 4 3 2 dense
(ACS6) 7 2 4 dense (UWV) 8 2 2 dense
(ACT) 9 1 2 dense (1H) 21 11 10 sparse
(AC8) 9 1 5 dense (CSE1) 20 2 10 sparse
(AC9) 0 4 5 dense (CSE2) 60 2 30 sparse
(AC10) 55 2 2 sparse (EB1) 10 1 1 sparse
(AC11) 5 2 4 dense (EB2) 10 1 1 sparse
(AC12) 4 3 4 dense (EB3) 10 1 1 sparse
(AC13) 28 3 4 sparse (EB4) 20 1 1 sparse
(AC14) 40 3 4 sparse (EB5) 40 1 1 sparse
(AC15) 4 2 3 dense (EB6) 160 1 1 sparse
(AC16) 4 2 4 dense (PAS) 5 1 3 dense
(AC1T) 4 1 2 dense (TF1) 7 2 4 dense
(AC18) 10 2 2 dense (TF2) 7 2 3 dense
(HE1) 4 2 1 dense (TF3) 7 2 3 dense
(HE2) 4 2 2 dense (PSM) 7 2 3 dense
(HE3) 8 4 6 dense (TL) 256 2 2 dense
(HE4) 8 4 6 dense (CDP) 120 2 2 sparse
(HE5) 8 4 2 dense (NN1) 3 1 2 dense
(HES6) 20 4 6 dense (NN2) 2 1 1 dense
(HET7) 20 4 6 dense (NN3) 4 1 1 dense
(JE1) 30 3 5 partly sparse (NN4) 4 2 3 dense
(JE2) 21 3 3 dense (NN5) 7 1 2 dense
(JE3) 24 3 6 dense (NNG6) 9 1 4 dense
(REA1) 4 2 3 dense (NNT) 9 1 4 dense
(REA2) 4 2 2 dense (NN8) 3 2 2 dense
(REA3) 12 1 3 dense (NN9) 5 3 2 dense
(REA4) 8 1 1 dense (NN10) 8 3 3 dense
(DIS1) 8 4 4 dense (NN11) 16 3 5 dense
(DI1S2) 3 2 2 dense (NN12) 6 2 2 dense
(DIS3) 6 4 4 dense (NN13) 6 2 2 dense
(DI1s4) 6 4 6 dense (NN14) 6 2 2 dense
(DIS5) 4 2 2 dense (NN15) 3 2 2 dense
(TG1) 10 2 2 dense (NN16) 8 4 4 dense
(AGS) 12 2 2 sparse (NN17) 3 2 1 dense
(WEC1) 10 3 4 dense (NN18) 1006 1 1 sparse
(WEC2) 10 3 4 dense

Note, we subdivide this COMPIb class into the following problem sets:

Aircraft models (AC)

Helicopter models (HE)
Jet engine models (JE)
Reactor models (REA)

Decentralized interconnected systems (DIS)
Euler Bernoulli beams (EB)

Academic test problems (NN).
Moreover, some further examples from different applications in this class are, i. e. , wind energy
conversion models (WEC), binary distillation towers (BDT), terrain following models (TF), and a
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compact disk player (CDP).

Another group of COMPI.ib examples can be found in Table 2.2. These problems arise in
the design of (static) output feedback control laws for two dimensional heat flow models. The
original models are infinite dimensional control problems. Using a suitable discretization scheme
yields a corresponding (in general) large scale finite dimensional approximation of the original
problem. A detailed discussion and some case studies of the 2D heat flow models in COMPILib is
given in [37, Section 3] (see also the short discussion in Paragraph 2.2). The first nine examples
represent the approximation of the discretized 2D heat flow models, while the other nine are the
corresponding highly reduced order approximations of the large dimensional systems gained by the
proper orthogonal decomposition (POD) approach as discussed in [40].

TABLE 2.2
2D heat flow models [37, Section 3]

Large model (sparse) POD model (dense) Property of
Example N Ny Ny ) Example N Ny Ny ) A model
(IF2D1) 3796 2 3  0.3825 | (HF2D10) 5 2 3  0.3825 | unstable nonlinear
(HF2D2) 3796 2 3 0.5325 | (HF2D11) 5 2 3 0.5325 | unstable nonlinear
(HF2D3) 4489 2 4 0| (HF2D12) 5 2 4 0| stable linear
(AF2D4) 2025 2 4 0| (AF2D13) 5 2 4 0| stable linear
(HF2D5) 4489 2 4 0.3825 | (HF2D14) 5 2 4 0.3825 | unstable linear
(HF2D6) 2025 2 4 1.725 | (HF2D15) 5 2 4 1.725 | unstable  linear
(HF2D7) 4489 2 4 0.2775 | (HF2D16) 5 2 4 0.2775 | unstable nonlinear
(HF2D8) 2025 2 4 07575 | (HF2D17) 5 2 4  0.7575 | unstable nonlinear
(HF2D9) 3481 2 2 0.47813 | (HF2D18) 5 2 2 0.47813 | unstable linear

The examples listed in Table 2.3 represent so—called second order models which can be rewritten
into first order ODEs (see Subsection 2.3). Note, in this case, the system matrices have a special
structure. This is the reason why we have collected those problems in an extra class. But, note,
all currently COMPIib examples in this problem class are also SOF stabilizable which, in general,
is not always true for second order models.

TABLE 2.3
Second order models
Example Ny Ny Ny Structure of A Example Ny Ny Ny Structure of A
(CM1) 20 1 2 partly sparse (DLR1) 10 2 2 dense
(CM2) 60 1 2 partly sparse (DLR2) 40 2 2 sparse
(CM3) 120 1 2 partly sparse (DLR3) 40 2 2 sparse
(CM4) 240 1 2 partly sparse (ISS1) 270 3 3 sparse
(CMb) 480 1 2 partly sparse (1SS2) 270 3 3 sparse
(CM6) 960 1 2 partly sparse (CBM) 348 1 1 partly sparse
(TMD) 6 2 4 dense (LAH) 48 1 1 partly sparse
(FS) 5 1 3 dense

Briefly this class is divided into the following problem sets:

e six so—called cable mass models with very low damping (CM)

e three models of a space structure developed by the ”Deutsche Forschungsanstalt fiir Luft-
und Raumfahrt” (DLR)

e two instances of a component of the International Space Station (ISS)

e some other second order models, i. e. a tuned mass damper (TMD) example, a clamped
beam model (CBM), a flexible satellite (F'S) example, and, finally, a model of the Los
Angeles (university) hospital (LAH)

The last class of test examples in COMPILib 1.0 are so—called reduced order control (ROC)
problems. These instances are not SOF stabilizable, but they are at least stabilizable by a reduced
order output feedback control law of order n.. Table 2.4 gives an overview of the currently imple-
mented ROC problems (see also Paragraph 2.4). Therein, n. denotes the smallest possible order
of the reduced output feedback controller which can be used for stabilizing the control system.
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For more details on ROC problems, we refer the interested reader to [37], [40] and the references
therein.

TABLE 2.4
Reduced order control instances

Example nz mny ny ne | Structure of A Example nz mny ny ne | Structure of A
(ROC1) 9 2 2 1 dense (ROCS) 5 3 3 2 dense
(ROC2) 10 2 3 1 dense (ROCT) 5 2 3 1 dense
(ROC3) 11 4 4 2 dense (ROCS) 9 4 4 3 dense
(ROC4) 9 2 2 1 dense (ROC9Y) 6 3 3 2 dense
(ROC5) 7 3 5 1 dense (ROC10) 6 2 4 1 dense

2.1. Static output feedback control examples.

2.1.1. Aircraft models.

(AC1). This system is a variation of the one described by Y. S. Hung and A. G. J. MacFarlane.
It is a state—space model of the linearized vertical-plane dynamics of an aircraft with three inputs,
three outputs and five states. For further details see [34], p. 137/1609.

0 0 1.132 0 -1 0.03593 0 0.01672 00 0
0 —0.0538 —0.1712 0 0.0705 0 0.00989 0 0121 0
A= o0 0 0 1 0|,B; = 0 —0.07548 0|,B= 00 0],
0 0.0485 0 —0.8556 —1.013 0 0 0.05635 4.419 0 —1.665
0 —0.2909 0 1.0532 —0.6859 0.00145 0 0.06743 1.575 0 —0.0732
o L o 0 0 0 0 o0
Cl:[o 0 <0 0}’ DH_[U 0 0}’ Diz=| ¢ 20|
1 00 0 0 00 0
c=|0 10 0 0|, Dy=|0 0 0
00 1 0 0 00 0
(AC2). Like (AC1) with changes made in C;, D1y and Dys:
0 % 0 0 0 0 0 0 0o 0 0
o0 & 0 o0 0 0 0 0 g g
¢i=10o o 0 o0 0| Pu=]0 0 0, Dp=|va | ;
0 0 0 0 0 g g g 0 5 [1]
0 0 0 0 0 0o 0 I

(AC3). A lateral axis model of an L-1011 aircraft in cruise flight conditions presented by C.
Edwards and S. K. Spurgeon. For information about state, input and output vectors see [18].

0 0 1 0 0 0 0
0 —0.154 —0.0042 1.54 0 —0.744 —0.032 g [1] [1] g 7(1)
A= 0 0.249 -1 —5.2 0|,B= 0337 —-112 |,C= 00 0 1 0
0.0386 —0.996 —0.0003 —0.117 0 0.02 0 1 00 0 0

0 0.5 0 0 —0.5 0 0

(AC4). B. Fares, P. Apkarian and D. Noll presented the following autopilot control problem
for an air-to—air missile [20].

—0.876 1 —0.1209 0 0 0 0
8.9117 0 —130.75 0 0 0 0
A= 0 0 —150 0|’ Bi=1y9 ¢ |- B=| 150 |-
-1 0 0 —0.05 0 1 0
—025 0 0 3.487 0 0.25 0
01:{ 0 0 -3 U}’ D11:|:U 0], D12:[3]1

-1 0 0 0 0 1
C*{ 0 —100}’ D”*{o.m 0}



(AC5). A two—input, two—output, fourth—order plant which describes the motion of a Boeing
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B-747 aircraft flying at an altitude of 20,000 ft with a speed of Mach 0.8 [35].

0.9801 0.0003 —0.0980 0.0038
A— —0.3868 0.9071 0.0471 —0.0008
o 0.1591 —0.0015 0.9691 0.0003
—0.0198 0.0958 0.0021 1
(AC6). An L-1011 aircraft model.
0 0 1 0
0 —0.154 —0.0042 1.54
0 0.249 —1 —5.2
A= 0.0386 —0.996 —0.0003 —2.117
0 0.5 0 0
0 0 0 0
0 0 0 0
0 —0.154 —0.004
0 0.249 —
= 1 0
0 0

(AC7). A model for a modern transport airplane at an altitude of 35,000 ft, with a speed of
Mach 0.57 and with the center of gravity at the most aft location. The data with further details
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0.0012
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on the airplane and the flight conditions can be found in [26], Case study III 2), p.1006/1013.

Y

r —0.06254 0.01888 0 —0.56141 —0.02751 0 0.06254 —0.00123 07
0.01089 —0.9928 0.99795 0.00097 —0.07057 0 —0.01089 0.06449 0
0.07743 1.6754 —1.31111  —0.0003  —4.2503 0 —0.07743 —0.10883 0
0 0 1 0 0 0 0 0 0
A= 0 0 0 0 —20 20 0 0 0
0 0 0 0 0 -30 0 0 0
0 0 0 0 0 0 —0.88206 0 0
0 0 0 0 0 0 0 —0.88206 0.00882
L 0 0 0 0 0 0 0 —0.00882 —0.88206 |
r 0 0 0 017 07

0 0 0 0 ( 0

0 0 0 0 0

0 0 0 0 0

B = 0 0 0 0|, B= 0 |,

0 0 0 0 30

1.3282 0 0 0 0

0 1.62671 0 0 0

L 0 —68.75283 0 0 | L 0 |
C1 = % [ —0.00519 0.47604 0.00098 —0.00031 0.03378 0 0.00519 —0.03086 0], D11 = O1x4, D1z = [ % ] ,
C { —0.00519 0.47604 0.00098 —0.00031 0.03378 0 0.00519 —0.03086 0} Doy — { 000 0]
0 0 1 0 0 0 0 0 0|’ 0 001

(AC8). This model describes the same aircraft as in (AC7) at an altitude of 35,000 ft, with
a speed of Mach 0.8 and with the center of gravity at an aft location ( less than in (AC7) ). For

more information see again [26], Case study II, p.1001/1012.
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—0.01516
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A= 0
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0
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L 0

0.178
—0.752
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0

oo o o0

0.00017
1.001
—0.8725
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(N eNoBoN o]
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0.00127
0

(=N eNoNo BNl

—0.03726
—0.06311
—3.399

0

—20

0.01365
0.01516
—0.00107

—0.01311
0.05536
—0.00581
0

0

0

0
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—0.0044
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—0.4447




6 F. LEIBFRITZ, W. LIPINSKI

( 0 0 0 1 0 0 0 0 0 017 r 017
0 0 0 O 0 0 0 0 0 O 0
0 0 0 0 0 0 0 0 0 O 0
0 0 0 0 0 0 0 0 0 O 0
B, = 0 0 0 O 0 0 0 0 0 O0],B= 0 1,
0 0 0 0 50 0 0 0 0 O 50
0.9431 0 0 O 0 0 0 0 0 O 0
0 1.155 0 0 0 0 0 0 0 O 0
\. 0 —48.82 0 O 0 0 0 0 0 0 L 0 ]
C = [ 0.0032 0.16015 —0.01679 0 —0.0516 0 —0.00323 —0.01179 0 ] Di1 = 0 Dio — 0.5 ]
=1 05 0 00 00 —0.5 0 0| T TxI0 2 0.5 |
r 0.0064 0.3203 —0.03358 0 —0.1032 0 —0.00646 —0.02358 0 00000001007
1 0 0 0 00 -1 00 0000010000
C = | —0.01365 0.178 0.00017 —0.561 —0.03726 0 0.01365 —0.01311 0| , D21 ={0000001000
0 —13.58 0 13.58 00 0 00 0000000O0O01
L 0 0 1 0 00 0 00 00000000104
(AC9). A variation of (AC8) with one more state and four control variables instead of one.
[ —0.01365 0.178 0.00017 —-0.561 —0.03726 0 0.01365 —0.01311 0 —117
—0.01516  —0.752 1.001 0.00127 —0.06311 0 0.01516 0.05536 0 0
0.00107 0.07896 —0.8725 0 —3.399 0 —0.00107 —0.00581 0 0
0 0 1 0 0 0 0 0 0 0
A= 0 0 0 0 —-20 10.72 0 0 0 0
- 0 0 0 0 0 -50 0 0 0 0o |’
0 0 0 0 0 0 —0.4447 0 0 0
0 0 0 0 0 0 0 —0.4447 0.0044 0
0 0 0 0 0 0 0 —0.0044 —0.4447 0
L 0 0 0 0 0 0 0 0 0 0 |
( 0 0 0 1 0 0 0 0 0 07 r o 0 0 07
0 0 0 O 0 0 0 0 0 O 0 0 0 0
0 0 0 O 0 0 0 0 0 O 0 0 0 0
0 0 0 0 0 0 0 0 0 O 0 0 0 0
By = 0 0 0 O 0 0 0 0 0 O B= 0 0 0 0
0 0 0 0 500 0 0 0 0’ 50 0 0 0|’
0.9431 0 0 O 0 0 0 0 0 O 0 0.9431 0 0
0 1.155 0 0 0 0 0 0 0 O 0 0 1.155 0
L 0 —48.82 0 O 0 0 0 0 0 O 0 0 —48.82 0
0 0 1 0 0 0 0 0 0 0 L O 0 0 1]
Cr— 0.00646 0.3203 —0.03358 0 —0.1032 0 —0.00646 —0.02358 0 0 Dii—0 Dio — 1111
1 1 0 00 00 -1 000/’ 11 2x10, 12 11111
0.00646 0.3203 —0.03358 0 —0.1032 0 —0.00646 —0.02358 0 0 0000000100
1 0 0 0 00 -1 000 0000010000OC
C = | —-0.01365 0.178 0.00017 —0.561 —0.03726 0 0.01365 —0.01311 00|, D21 = (0000001000
0 —13.58 0 13.58 00 0 000 0000000001
0 0 1 0 00 0 000 0000000010

(AC10). This plant is an aeroelastic model of high dynamic order ( 55th—order ) with two
inputs and two outputs. It describes a modified Boeing B-767 airplane, at a flutter condition. A
detailed formulation can be found in [14]. The data—matrices A, By, B, C1, D12, C and Dy are
provided in file "ac10.mat”, while D1, is set 0.

(AC11). This linearized model of an CCV-type aircraft appears in [2].

—1.341 0.9933 —0.1689 —0.2518

0 0 0
0 0 1 0 0

43.223 —0.8693 0 —17.251 —1.5766 0 0
A= 1.341  0.0067 0 0.1689 02518 |, B=| 0 0|, C= 47.76 —0.268 0 —4.56 4.45
0 0 0 1 0
0 00 —20 0 20 0 0 00 0 1

0 00 0 —20 0 20
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(AC12). The linearized equations of motion for the longitudinal dynamics of an Advanced
Short Take—Off and Vertical Landing (ASTOVL) aircraft, valid at low speeds in the transition
zone from jet—borne to fully wing—borne flight [58].

—0.0017 0.0413 —5.3257 —9.7565 0.033 0 0 0.2086 —0.0005 —0.0271
A | 00721 ~0.3393 49.5146 ~1.0097 | o _ 00.048 —0.002 | _ | ~0.0005 0.2046 0.0139
~ | —0.0008 0.0138 —0.2032 0.0009 | * ' = | —0.064 0 0.340 | > 7 = | —0.0047 0.0023 0.1226 | °
0 0 1 0 0 0 0.006 0 0 0
01:[% 0 0 0], Dii=[0 0 0], Dia=|0 0 %],
0 0 57.2958 0 0 0 0
o— 0 0 0 57.2958 Dor — 0 0 0
- 0.1045 —0.9945  0.1375 51.5791 |° 2= 0 0 0
—~0.0002  0.0045 0 0 0.0212 0 0

(AC13). An augmented version of the ASTOVL aircraft model (AC12) of order 28. The data
matrices A, B and C are provided in file "ac13-14.mat”.

(AC14). An augmented version of the ASTOVL aircraft model (AC12) of order 40. The
complete data set consisting of A, By, B, Cy, D11, D15, C and D»; is given in file "ac13_14.mat”.

(AC15). This numerical data refers to a Mach 2.7 flight condition of a supersonic transport
aircraft. It was given by S. S. Choi and H. R. Sirisena [13].

—0.037 0.0123 0.00055 -1 0.00084  0.000236
0 0 1 0 0 0
A= —6.37 0 —0.23 0.0618 |’ B =14, B= 0.08 0.804 |°
1.25 0 0.016 —0.0457 —0.0862 —0.0665
_ Iy _ _ | Oax2
C1 = { Oaxd } ) D1y = Ogxa, Dy = [ I } s
01 0 0
C = 0 0 1 0 s D21 = 03><4
0 0 0 1

(AC16). A state feedback version of (AC15) with changed matrices C and Doy :

C = Iy, D321 = 04x4

(AC17). This example consists of a model of the lateral axis dynamic for a L-1011 aircraft.
For additional details see [25].

—2.98 0.93 0 —0.034 —0.032

—0.99 -0.21 0.035 —0.0011 0 0 0 1 0
A= 0 0 0 1]’ B= 0o |’ ¢= 0 0 0 1

0.39 —5.555 0 —1.89 -1.6

(AC18). Here we present a reduced system generated from the data given in (AC10). The
system has now an order of ten and again two inputs and two outputs. File "ac18.mat” contains
the matrices A, By, B, C1, D12, C and D4y, while Dy, is again set to 0.

2.1.2. Helicopter models.
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(HE1). The following model of the longitudinal motion of a VTOL helicopter for typical
loading and flight condition at the airspeed of 135 knots was introduced by S. N. Singh and A. A.
R. Coelho in [55]. (See also [36].)

—0.0366 0.0271 0.0188 —0.4555 0.04678 0 0.4422  0.1761
4 - | 00482 101 00024 -4.0208 | o _ | 004572 0.00988 | 3.5446 —7.5922
~ | 0.1002 0.3681 —0.707 142 |0 71T | 0.04369 0.00111 |’ —5.52 4.49 |’

0 0 1 0 —0.02179 0 0 0

VZ 0 0 0 0 7 0

Ci=| 4§ L g ¢l Pu= [ } y D12 = ‘(/)5 B E
V2 V2
c=[0 1 0 0], Dy=[0 0]

(HE2). These system matrices describe the longitudinal-vertical motion of an AH-64 heli-
copter at 130 knots. The model was borrowed from [21].

—0.0649 0.0787 0.1705 —0.5616 —0.9454 0.5313
A= 0.0386 —0.939 4.2277 0.0198 B = —8.6476 —10.769 C= 1 0 0 O
0.1121 —0.4254 —0.7968 0o |’ 19.0824 —2.8959 |’ 0 0 0 1

0 0 1 0 0 0

(HE3). In this example a Bell 201A-1 helicopter is considered. The linearized helicopter
dynamics are described by an eight order, four input, six output state space model. For details see
[29], p. 26.

—0.0046 0.038  0.3259 —0.0045 —0.402 —0.073 —9.81 0
—0.1978  —0.5667 0.357 —0.0378 —0.2149  0.5683 0 0
0.0039 —0.0029 —0.2947 0.007  0.2266  0.0148 0 0
A 0.0133 —0.0014 —0.4076 —0.0654 —0.4093  0.2674 0 9.81
= 0.0127 —0.01 —0.8152 —0.0397 —0.821  0.1442 0 0 |’
—0.0285 —0.0232  0.1064  0.0709 —0.2786 —0.7396 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0.0676 0.0676  0.1221 —0.0001 —0.0016
—1.1151 —1.1151  0.1055  0.0039  0.0035
0.0062 0.0062 —0.0682 0.001  —0.0035
B = | 0017 p_ | —0017 00049  0.1067  0.1692
—0.0129 |’ —0.0129  0.0106  0.2227 0.143 |’
0.139 0.139  0.0059  0.0326  —0.407
0 0 0 0 0
0 0 0 0 0
C1 = { 046;8 }, D1y = 010x1, Dy = { 06114 },
01 0 0 0 0 0O 0
00 0 00 O 1 0 0.1
00 00 0 0 0 1 0
C=19 0000 10 0] Da1 = 0
001 00 0 O0 O 0.05
00 0 01 00 0 0

(HE4). S. Skogestad and I. Postlethwaite present in [56], section 12.2.2, the following model of
a twin—engine, multi—purpose military helicopter. This eighth—order system represents the starting
point of their study. The authors in [39] used this model with four inputs and six outputs.
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0 0 0 0998  0.0534 0 0 0
0 0 1 —0.0032  0.0595 0 0 0
0 0 —11.5705 —2.5446 —0.0636  0.1068 —0.0949  0.0071
. 0 0 0.4394 —1.9982 0 0.0167 0.0185 —0.0012
- 0 0 —2.0409 —0.459 —0.735  0.0193 —0.0046  0.0021 |’
—32.1036 0 —0.5034  2.2979 0 —0.0212 -0.0212  0.0158
0.1022 32.0578  —2.3472 —0.5036  0.8349  0.0212 —0.0379  0.0004
—1.911  1.7138 —0.004 —0.0574 0 0.014 —0.0009 —0.2905
0 0 0 0
0 0 0 0
0.1243  0.0828 —2.7525 —0.0179
By=1 B | —00364 04751  0.0143 0
' 0.3045 0.015 —0.4965 —0.2067 |°
0.2877 —0.5445 —0.0164 0
—0.0191  0.0164 —0.5445  0.2348
—4.8206 —0.0004 0 0
C = [ 013 } , D11 = 01243, D> = { 081X4 } )
4% 8 4
0 0 0 0 0 0.0595 0.0533 —0.9968
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
C=10 0 0 -00535 1 0 0 o |’ Do1 = Osxs
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

(HE5). A variation of the system above with eight state, two measurement and four control
variables. The matrices A and B are the same as in (HE/).

001 00 0 0 O
Bf=|0 00 1 0 0 0 0],
00 00 1 0 0 O
000 0 0 0.0595 0.0533 —0.9968 0 0 0 100 0
1 00 0 0 0 0 0 0 0 0 01 00
Cir=19 1 o 0 0 0 0 o Pu=|o oo P2=]0 01 0]
0 0 0 —0.0535 1 0 0 0 0 0 0 00 0 1
001 00000 0.01 0 0
¢= 00010000}’ D”‘[ 0 001 0

(HE6). Starting from the helicopter model that was presented in (HE/) and (HE5) S. Skoges-
tad and I. Postlethwaite developed this ., mixed sensitivity design with four inputs, 20 states
and six outputs. [56], section 12.2.3. The matrices A, By, B, Cy, D11, D12, C and Ds; are given
in file "he6.mat”.

(HE7). Like (HE6) with a difference in the matrices By, Dy; and Dy; (disturbance rejection
design) [56], section 12.2.4. ”he7.mat” contains all data matrices.

2.1.3. Jet engines.

(JE1). This system represents a multivariable servomechanism problem for a J-100 jet engine.
It has three inputs, 30 states and five outputs [1], [15]. A, B and C are provided in file "jel.mat”.
Additionally we set

C 0
B = I3, C1 =Vv0.5 ) D11 = 0sx30, D12 = V0.5 53 D31 = 05x30
03x30 I3
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(JE2). We consider an aero—engine control problem that refers to a Rolls—Royce 2—spool re-
heated turbo fan, used to power modern military aircraft. The system has 21 states, three inputs
and three outputs. For more information about this model see [56]. The data matrices A, B and

C' are given in file 7je2_3.mat”

(JE3). S. Skogestad and I. Postlethwaite transformed the model above into a H, design with
24 states, three inputs and six outputs [56]. The complete data set A, By, B, C1, D11, D12, C and
D5, is provided again in file *je2_3.mat”.

2.1.4. Reactor models.

(REA1). In the next two examples we consider models of a chemical reactor, both introduced
in [34], p. 165. The data matrices are given by

1.38  —0.2077
A | 08814 —429
1.067 4.273
0.048 4.273

B =

6.715 —5.676

0 0.675
—6.654 5.893 |’

1.343 —2.104

0 0
5.679 0
1.136 —3.146 |’
1.136 0

(REA2). Obtained from (REA1) by leaving out the last row of the matrix C.
(REA3). A twelfth-order nuclear reactor model is given below [46]:

[—0.4044 0 0 0.4044 0 0 0 0 0 0
0 —0.4044 0 0 0.4044 0 0 0 0 0
0 0 —0.4044 0 0 0.4044 0 0 0 0
0.01818 0 0 —0.5363 0 00.4045 0 0 0
0 0.0818 0 0.4545 —0.5363 0 0 0 0 0
A= 0 0 0.0818 0 0.4545 —0.5363 0 0 0 0
0 0 0 0 0.15 0 —-0.15 0 0 0
0 0 0 0 0 0 0 0 0 0
0 —7.5 0 0 75 0 0600 —74.995 0.033
0 0 0 0 0 0 0 0 2.475-0.033
0 0 0 0 0 0 0 0 2595 0
L 0 0 0 0 0 0 0 0 46.57 0
00 0 0 0 0 1T 0O O0O OO0 O
¢c=|(0 0 0 0 0 0 0 1 0 0 0 O
00 0 0 0 0 0 O 1 0 0O

[=NeloloBoBoleNe]l

[=NeloloBoRoleNe]l

e}
w
~
(=2
o
(o2}
N
[

0
—0.346 0
0 —-0.621 |

o
OO O0OO R ODODODODODOOO

(REA4). Another model of a chemical reactor presented by P. M. Mékild [44]. The numerical
values for this eight order one—input, one—output system are

0.5623 —0.01642 0.01287 —0.0161 0.02094 —0.02988

0.102
0.1361  0.2523
A= 0.09951 0.2859  0.3476
~ | —0.04794 0.08708  0.3297
—0.1373 —0.1224  0.1705
—0.1497 —-0.1692 0.1165
0 0 0

C, = [70.0465 —0.1135 —0.1909 —0.2619 —0.2634 —0.1422 —0.0002 0.1856} , D11

C =] —0.0049 0.0049

0.0183 0.00874

0.6114 —0.02468 0.02468 —0.03005 0.04195—0.02559 0.03889
0.641—-0.03404 0.03292—-0.04296 0.02588 0.08467

0.6457—-0.03249 0.03316—0.01913 0.1103

0.6201—0.03015 0.01547 0.08457
0.5815—0.01274 0.05394

0.3102

0.3106 0.191

0.2962  0.1979 0.07631
0 0

—0.006 0.01

0

0.0263

0.3416

0.5242 0.04702
0 0.6065

0.6759

2.1.5. Decentralized interconnected systems.

7Bl

0],

—0.1774
—0.2156
—0.2194
—0.09543
0.0579 |’

0.09303
0.08962
0

—ococoococoo
ss]

=[0], D12 =[0.1001],

Doy =[1]
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(DIS1). A modification of the decentralized interconnected system of order eight presented by
H. Singh, R. H. Brown and D. S. Naidu [54].

0.144—0.058 0.056 0.042 0.12 2.1454 0 0.08 1 r—0.076 0.02 0 0
~0.506-0.236 —0.02—0.012 —0.06—0.909 1.093 —0.04 0 0.588-0.006 0 0
0 0-0.278 0.291 0 0 0 0.58 1 0 0.152 0 0
A 0 0 0 —0.33 0 0 0 of 5 _[0] 5_ 0 145 0 0
- 0 0 0.303 0.029 —1.67 0 0 0.092] 7t = |17~ 0 0 0 0.012]°
—0.154 0.133—0.006 —0.004—0.014—1.688 0.236 0.013 0 0 0 0.162 —0.002
—0.345 0.304—0.018—0.014—0.032—0.611—1.824—0.024 1 0 0 0.414 —0.008
0 0 0 0.247 0 0 0-1.978 0 L 0 0 0 0.248
e} 0 1
C1 = { Ouxs } ) D1y = 0gx1, Dy = 413:4 s
1 00 0 0 0 0 0
01 0 000 0 O
C=19 01000 0 0] Da1 = 0ax1
00 01 00 0O

(DIS2). The following presents a decentralized control system with 2 control stations as in-
troduced in [43].

—4 2 1 1 0
A= 3 2 5|, B=|10], cC= [ 8 (1) [1] ]
-7 0 3 0 1
(DIS3). A decentralized interconnected system provided by M. Saif and Y. Guan in the article
[51].
—1 0 0 0 0 0 0 1 0 0
-1 1 1 0 0 0 1 0 O 0 0O 1 0 0 0 O
1 -2 -1 -1 1 1 1 1 0 0 0O 0 1 0 0 O
A= 0 0 0 -1 0 0 » B= o 0 0 -1 » C= o 0 0 0 1 0
-8 1 -1 -1 =2 0 0 0 1 0 0O 0 0 0 0 1
4 —-0.5 0.5 0 0 -4 0 0 0 1
(DIS4). This sixth—order system consists of three subsystems [59].
0 1 0.5 1 0.6 0 1 0 0 O
-2 =3 1 0 0 1 1 0 0 O
0 2 0.5 1 1 0.5 0 3 0 0
A= 1 3 0 05 0 —05 | B=19 0 4 0" C=1s
0 1 1 0 1 0 0 0 0 2
-3 -4 0 05 0.5 0 0 0 0 3
(DIS5). Another decentralized control system introduced by M. C. de Oliveira, J. F. Camino

and R. E. Skelton in [16].

0.8189  0.0863  0.09 0.0813 0.0953 0 0 0.0045  0.0044
A 0.2524  1.0033 0.0313  0.2004 B — 0.0145 0 0 B 0.1001 0.01
—0.0545  0.0102 0.7901 —0.258 |° 0.0862 0 0 |° 0.0003 —0.0136 |’
—0.1918 —0.1034 0.1602  0.8604 —0.0011 0 0 —0.0051  0.0936
1 0 -1 0 0 0 0 0 0
ci=|0 0 o0 0|, Dy=|00 01|, Dp=|1 0],
00 0 0 0 00 0 1
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2.1.6. Other examples.
(TG1). This system is a two—input, ten—state, two—output state-space description of the dy-
namics of a 1072 MVA nuclear powered turbo—generator. It can be found in [34], p. 117/167.

( 0 1 0 0 0 0 0 0 0 07
0 —0.11323 —0.98109 —11.847 —11.847 —63.08 —34.339 —34.339 —27.645 0
324121  —1.1755 —29.101 0.12722 2.83448 -967.73 —678.14 —678.14 0 —129.29
—127.3  0.46167 11.4294 —1.0379 13.1237 380.079 266.341 266.341 0 1054.85
4 _ | —186.05  0.67475 167045 0.86092 —17.068 555.502 389.268 389.268 0 —874.92
T | 341917 1.09173  1052.75 756.465 756.465 —29.774 0.16507 3.27626 0 0|’
—30.748 —0.09817 —94.674 —68.029 —68.029 2.67753 —2.6558 4.88497 0 0
—302.36 —0.96543 —930.96 —668.95 —668.95 26.3292 2.42028 —9.5603 0 0
L 0 0 0 0 0 0 0 0 —1.6667 0
0 0 0 0 0 0 0 0 0 —10 |
- 0 0 -

0 0

0 0

0 0

B 0 O C_{ 1 0 0 0 0 00 0 0 O
- 0o 0|’ T | —0.49134 0 -0.63203 0 0 -020743 0 0 0 O

0 0

0 0

1.6667 0

L 0 10 J

(AGS). Another example by Y. S. Hung and A. G. J. MacFarlane [34], p. 27/163. The system
is a two—input, twelve—state, two—output model of an automobile gas turbine.

i 0 1 0 0 0 0 0 0 0 0 0 01 i 0 07
—0.202 —1.15 0 0 0 0 0 0 0 0 0 0 1.0439 4.1486
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 —2.36 —13.6 —12.8 0 0 0 0 0 0 0 —1.794 2.6775
A= 0 0 0 0 0 0 1 0 0 0 0 0 B = 0 0
- 0 0 0 0 0 0 0 1 0 0 0 o> 0 01’
0 0 0 0 0 —1.62 —9.4 —9.15 0 0 0 0 1.0439 4.1486
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
L 0 0 0 0 0 0 0 0 —188 —111.6 —116.4 720.8J L—1.794 2.6775J

C— 0.264 0.806 —1.42 —-15 0 0 0 0 0 0 0 0 ]
0 0 0 0 0 49 212 195 935 258 7.14 O
(WEC1). M. Steinbuch presents the following models for a wind energy conversion system at
different wind speed [57], Appendix A. The design goal is to minimize fluctuations in speed and
current of a wind turbine while reducing mechanical fatigue load. This first model refers to a wind
speed of 12 m/s.

M -5 0 0 0 0 0 0 0 0 07 5 0 07
0 0 1 0 0 0 0 0 0 0 00 0
—5.5005—-1479.1-3.2812—-0.017889 0 0 169.68 36.137 36.137 144.83 00 0
0 1416.4 3.125 0 0 0—-169.68 —36.137 —36.137 —144.83 00 0
A= 0 0 0 0.095493 —10 0 0 0 0 0 B= 00 0
- 0 0 0 0 0 -10 0 0 0 of’" "~ (o010 0’
0 0 0 7.8416 0 0.11552—-1257.1 1015.1 1011.1 499.09 0 0—-305.65
0 0 0 4.6042 0 2.096 —693.13 559.33 631.31 306.18 0 0-166.27
0 0 0 5.7968 0 —1.8671—-976.81 788.51 708.25 355.08 0 0-—-239.88
L 0 0 0 —2.8663 0-—0.047856 413.58 —343.35—341.63—212.45] L0 0 96.02]

0 0 0
0 0 0
0 0.045455 0.045455
9 0.027025 0

oo o=
o O oo
oo ~=Oo
o O oo
[l lie)
[l lie)

12.24
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(WEC2). The wind energy conversion system at a wind speed of 16 m/s.

A(3,1:4) = [ —33.69 —1479.1 —3.3531 —0.089802 } ,

Rest of A, B and C like in (WEC1).
(WEC3). The wind energy conversion system at a wind speed of 20 m/s.

A(3,1:4)=1] —70.878 —1479.1 —3.4321 —0.16877 |,

Rest of A, B and C like in (WEC1).
(HF1). A very simple one-dimensional example which describes the control of the heat flow
in a thin rod [32], ex. 4.1. The input u of the system acts at one of the ends of the rod. The

chosen order in this case is n, = 130.

-1 1
1 —2 0 !
A=t 1 2 € R130x130 Bi1 = B, B = [ 12i3><1 }’ h = ,
h ) ) n ng +1
-1
1 -2
0
Cy = C, D11 = 02x1, Dl?z{ 1 }’
1 0
C = 0 02x63 1 O2x65 |, D1 = 02x1

(BDT1). This model represents a fairly realistic model of a binary distillation tower with
pressure variation included in the model’s description. The system is multivariable, with three
control inputs and three outputs, and includes one disturbance input. It was taken from E. J.
Davison [14].

" —0.014 0.0043 0 0 0 0 0 0 0 0 07
0.0095 —0.0138 0.0046 0 0 0 0 0 0 0 0.0005
0 0.0095 —0.0141 0.0063 0 0 0 0 0 0 0.0002
0 0 0.0095 —0.0158 0.011 0 0 0 0 0 0
0 0 0 0.0095 —0.0312 0.015 0 0 0 0 0
A= 0 0 0 0 0.0202 —0.0352 0.022 0 0 0 0],
0 0 0 0 0 0.0202 —0.0422 0.028 0 0 0
0 0 0 0 0 0 0.0202 —0.0482 0.037 0 0.0002
0 0 0 0 0 0 0 0.0202 —0.0572 0.042 0.0005
0 0 0 0 0 0 0 0 0.0202 —0.0483 0.0005
\_ 0.0255 0 0 0 0 0 0 0 0 0.0255 —0.0185J
" 0 " r 0 0 0 7
0 0.000005 —0.00004 0.0025
0 0.000002 —0.00002 0.005
0 0.000001  —0.00001 0.005
0.01 0 0 0.005
B = 0ol|, B= 0 0 0.005 |,
0 —0.000005 0.00001 0.005
0 —0.00001 0.00003 0.005
0 —0.00004 0.000005 0.0025
L 0 —0.00002 0.000002 0.0025
0 J 0.00046 0.00046 0 J
012[00 }, D11 = 0gx1, D12:{U3IX3 ],
3x11 3
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(BDT2). Another model of a binary distillation tower by S. Skogestad and I. Postlethwaite.
It has four inputs, four outputs, two disturbances and 82 states. A detailed description of this
model can be found in [56], section 12.4. The matrices A, By, B, Cy, D13 and C are given in file
”bdt2.mat”, while D1y and Ds; are set to be 0.

(MFP). This system is a moored floating platform. The platform is anchored to the bottom of
the ocean and equipped with two thrusters. The goal is to minimize the drift resulting from wave
action by appropriate master control. It is described by C. Scherer, P. Gahinet and M. Chilali in
[52].

0 0 1 0 0 0 0
A 0 0 0 N 0 0 0| o_[1 000
T | —0.101 —0.1681 —0.04564 —0.01075 |* 7 ~ | 0.1179 0.1441 0.1476 |> " |0 1 0 0

0.06082 —2.1407 —0.05578  —0.1273 0.1441 1.7057 —0.7557

(UWYV). We consider in this problem a control surface servo for an underwater vehicle. A
detailed description of this model can be found in [14].

0 850 0 0 0 0 0 0 0 0 0 0
—850 —120 —4100 0 0 0 0 0 9900 0 4.6 99000
33 0 -33 0 —-700 0 0 0 0 0 0 0
0 0 0 0 1400 0 0 0 0 0 0 0

A 0 0 1600 —450 —110 0 0 o | B = o o|'B=| o 0|’
0 0 0 81 0 -1 0 —900 0 0 0 0
0 0 0 0 0 o0 0 110 0 0 0 0
0 0 0 0 0 12 -11 —22 0 99 0 0

Ci=[0 0 0 0 0 0 1 0], Dip=[0 0], Dpp=[1 0],
0000 O0 1 00 0
“=lo 0o 0000 1 0 } D= [ 0 0 }

(IH). The data presented here describes a mathematical model of position and velocity control
for a string of high—speed vehicles. The problem is also known as ”smart highway” or ”intelligent
highway” and was borrowed from J. Abels and P. Benner [1]. The here chosen version has eleven
inputs, 21 states and ten outputs. The matrices A, B and C' are given in file ”ih.mat”. Furthermore
we defined

C

O1x21

By = I, C = \/5[ ] ) D11 = 010x21, D1y =v0.5 Iy, D31 = 010x21.

(CSE1). This is a model of a string consisting of coupled springs, dashpots and masses. The
inputs are two forces, one acting on the left end of the spring, the other on the right end [1], [31].
Here we set the order equal to 20 (I = 10).

1 =10, u=4, 0 =4, k=1,

M = phi, L =4I, N=1, P=1

1 -1 1 0

-1 2 -1 0 0
K=k ’ D= ’

-1 2 —1 0 0

-1 1 0 —1
0 T 0

A:[,]\/[liaK —Ml—lL:|’ B; = —0.02 B(:,2), B:|:f]\4l>121D:|’
¢ 01x2
@ = D11 =04 Dis =

' { 0221 }’ 1= Ya+2)x1s 12 [ nll

c=[ N P], Doy = 011
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(CSE2). Like above with I = 30 and therefore a resulting order of 60.
(EB1). This example consists of a simple supported Euler-Bernoulli beam. It was adopted
from [27]. The damping coefficient was set to £ = 1072 (low damping).

( 0 1 0 0 0 0 0 0 0 01 r 007 r 07
-1 —-0.02 0 0 0 0 0 0 0 0 0.9877 0 0.9877
0 0 0 1 0 0 0 0 0 0 00 0
0 0 —16 —0.08 0 0 0 0 0 0 —0.309 0 —0.309
0 0 0 0 0 1 0 0 0 0 00 0
A=15 0 0 0 —81 —0.18 0 0 0 0 Br=1_os91 0| P=| 0801 |
0 0 0 0 0 0 0 1 0 0 00 0
0 0 0 0 0 0 —256 —0.32 0 0 0.5878 0 0.5878
0 0 0 0 0 0 0 0 0 1 00 0
L 0 0 0 0 0 0 0 0 —625 —0.5 L 0.7071 0] L 0.7071 |
c — [0 0809 0 —09511 0 0309 0 05878 0 -1 D[]0 0 Deo 0
=10 0 0 0 0 0 0 00 0| =19 0| 2= 1 19 |°
C=1]0 09877 0 -0.309 0 -0.891 0 0.5878 0 0.7071 |, Day=[0 19]

(EB2). Like (EB1) with different performance criteria yielding a change in the following ma-
trices:

0.809 0 -—-09511 0 0.309 0O 05878 0 -1 0 0
C = , Di2 = )

0 0 0 0 0 0 0 0 0 O 0.5

(EB3). Like (EB2) with a damping coefficient set to ¢ = 107 (very low damping). This
causes a change in matrix A:

o
|
-

o
|
~

o
|
o
—ococoo

1 —18-107

_H OO OoOOO

56 —32.10"7
0
0 —

OO O OO o oo

cocoocoocoo L~

OO0 OO0 O OO

cocoocoo . .~ooO

|

OO OO g OO O OO

ooNocoocooooO
coococoocoocoo
~—ocoococoocoocoo

o O oo
[=2)

25 —50-10"7 J

(EBJ). Like (EB2) with a damping coefficient set to ¢ = 10~ 7 (very low damping) and an
increased order from ten to 20.

(EB5). Like (EB2) with a damping coefficient set to ¢ = 10~7 (very low damping) and an
increased order of 40.

(EB6). Like (EB2) with a damping coefficient set to ¢ = 10=7 (very low damping) and an
increased order of 160.

(PAS). This model describes a piezoelectric bimorph actuator system design. For detailed
information about this case study see [11], p. 283. The data matrices are given by

0 1 000 0 o0 0
—274921.63 —73.2915 —274921.63 0 0 —274921.63 0 0.12841
A= 0 0  —0.9597 0 0|, Bi= 0 0|, B=|-339561-10"7 |,
1 0 000 0 -1 0
0 0 010 0 0 0
Ci=[0 0 0 0 1], Di=[0 0], Di=[0],
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(TF1). E. Gershon, U. Shaked and I. Yaesh present this terrain following model in [28].

1 0 0 0 0 O O
00 0 1 0 0 0], D1 = 03x2
0 0 0 0 1 0 O

(TL). This example describes a transmission line which is a circuit model of the impendence of
interconnect structures accounting for both the charge accumulation on the surface of conductors
and the current travelling along conductors [10], [42], [45]. The system has two inputs, 256 states
and two outputs. The data matrices A, B, C' and E are provided in file “tl.mat”. Note, the linear
model is of descriptor type with regular E, i. e. E& = Az + Bu, y = Cz. The matrices provided

by our MATLAB-file are therefore already set to:

A:=FE"1A, By := E7!I, B:=E~'B

-1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
A= 0 0 00 0 0 0|, Bi= 0|,B=
0 0 0 1 -1 0 0 0
—0.088 0.0345 0 0 1 —0.0032 0 0
0 0 0.05 0 0 0 —0.00001 —0.05
0 0 0 0 O 0 1 0 [ o
0 0 0 0 0 223 O 0 0
“=10 0 0 0 o0 0o o> Pu=|o| Do V3
0 0 0 0 O 0 0 L O
0001 0 0 00 0.04 W
0 1.0 0 0 0 O 0
“=lo o000 00 1| Pu=] ¢
0 0 0 0 0 1 0 (U
(TF2). Like (TF1) with a different sensor matrix C.
0 01 0 0 0 O 0.04
c=(0 1 0 0 0 0 0|, Dy = 0
0 0 0 1 0 0 O 0
(TF3). Another sensor matrix C for the terrain following model.
0 01 0 0 0 O 0.04
c=|(0 0 0 1 0 0 0], Dy = 0
0 0 0 0 0 0 1 0
(PSM). A model of a two-area interconnected power system [60], [22].
—0.04165 0 4.92 —4.92 0 0 0 r o 0
—5.21 —12.5 0 0 0 0 0 12.5 0
0 3.33 -3.33 0 0 0 0 0 0
0.545 0 0 0 —0.545 0 0|, B = o ol,B
0 0 0 4.92 -0.04165 0 4.92 0 0
0 0 0 0 —-5.21 —-12.5 0 0 12.5
0 0 0 0 0 333 —3.33 L 0 0
c [0
Ci = ) D11 = 0s5x2, Dip=| %% |,
O2x7 | D2

DO OO OO~
(=
o

—4.92

OO OO OO

—-4.9

oSO NO O OO
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(CDP). A 120th—order model of a compact disk player with two inputs and two outputs. The
control task is to achieve track following, which basically amounts to pointing the laser spot to the
track of pits on the CD that is rotating. The challenge is to find a low—cost controller that can
make the servo-system faster and less sensitive to external shocks [10], [17]. The matrices A, B
and C are given in file “edp.mat”. The other system matrices are defined as follows.

_ _ C _ _ 022 _ 0 1
B1 =001B, C= { 024120 ] s D1 =0ax2, Di2= \/5{ I ] » D= [ 0.03  0.00002

2.1.7. Academic test problems .
(NN1). This first simple example was presented by L. F. Miller et al. [46]. The system
matrices are

0
0 5 -1
0 } > O= [ -1 -1 0 ]
(NN2). A classical example in the output feedback literature [41] is given by
0 1 1 0 0
I ER R A
01:[[1] 8}, Duz[gg}, D12:[(1)}1

c=[0 1], Dyy=[0 0]

(NN3). C. W. Scherer introduced the following system [53]:

0.5 1 1.5 1 0 0
-1 3 2.1 2 0 0
A= 1 -1 -06 1 |° Bi=141> B=1y9|>

-2 2 -1 1 0 1

01:[1 0 0 U}, DIIZ[U}; D12:[0},
c=[0 0 0 1], Du=[0]

(NN4). A fourth-order example from [46] is given by
0 1 0 0 0 0
1 0 0 O
0 —2.93 —-4.75 -0.78 0 -3.91
A= 0.086 0 —-0.11 -1 » B= 0.035 0 , O= 8 (1) ? 8 :|

0 —0.042 2.59 —-0.39 —2.53 0.31

(NN5). The following system represents a seventh—order, single-input, two—output model of
a Saturn V booster, which was presented in [46].

0 1 0 0 0 0 0 0
00 0.2 —0.65 —0.002 2.6 0 0
~0.014 1 —0.041 0.0002 —0.015 —0.033 0 0
A= 0 0 0 0 1 0 o|, B=1|01|,
00 0 —45  —0.13 255 0 0
00 0 0 0 0 1 0
00 0 0 0 50  —10 1
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(NN6). H. P. Horisberger and P. R. Bélanger introduced the following ninth—order system
with one input and four outputs [33].

0 1 0 0 0 0 0 0 0 W ( 0 W
0 —20 —-42 0 445 125 0 100 0 0
0 0 0 1 0 0 0 0 0 0
0 47 835 0 —1.1 0 0 0 0 0
A=10 0 0 0 -33 0 0 0 0|, By = V0.1 Iy, B=1 33 |,
0 0 0 0 0 0 1 0 0 0
0 10.9 0 0 —-255 —250 0 0 0 0
0 0 0 0 0 0 0 0 1 0
Lo 5.9 0 0 -1.39 0 0 —3700 0 J L 0 J
0
C1 =10 Ig, D11 = Ogxo, D> = [ 8?6 ] )
1 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0
“=19 0 1 0 0 066 0 1.2 o0 |’ Dor = 0axo
00 0 1 0 0 066 0 1.2

(NN7). A modification of (NN6) (changes in By, Cy, D11, D12 and Day).

(0 1 0 0 0 0 0 0 01 (0.145 0478 0 0 07 o0
0 —20 —-42 0 445 125 0 100 0 0 00 -1 0 0
0 0 0 1 0 0 0 0 0 0.0523 01 00 0
0 47 835 0 —1.1 0 0 0 0 0 00 0 1 0
A=10 0 0 0 -33 0 0 0 0|, By = 0 00 00O0]|,B=|33],
0 0 0 0 0 0 1 0 0 0 0598 0 1 0 0
0 10.9 0 0 —255 —250 0 0 0 1 00 00 0
0 0 0 0 0 0 0 0 1 0 00 00 0
Lo 5.9 0 0 —1.39 0 0 —3700 0 | L 0 01 0 0] L 0]
1 0 0 0 0 0 0 0 O 0
ct=10 10 0 0 0 0 0 0], D11 = O3x5, D=0 |,
00 0000 OO0 O 1
1 0 0 0 0 0 0 0 0
01 0 0 O 0 0 0 0
C=19 0 1 0 0 066 0 1.2 o0 |’ Da1 = Oaxs
00 0 1 0 0 066 0 1.2
(NN8).
-02 01 1 0o 1
A=| 005 o o, B=|o0 07|, CZH (1) 8}
0 0 -1 1 0
(NN9). This system was introduced by B. M. Chen [11] p. 110/119.
1 1 1 0 1 5 17 0 0 0
01 0 0 1 0 0 0 0 0
A=]0 1 1 0 1|, Bi=|0 0of|, B=|1 0 0],
11 1 1 1 2 3 0 0 1
1 1 1 1 0 1 4 ] 01 0
00 1 0 O 0 0] 1 0 0
00 0 0 1 0 0 0 0 0
Gi=|g 1 00 0l Pu=|g o Pe=]g ¢ ol
00 1 0 O 0 0 0 0 0
0 -2 -3 -2 -1
C = ] ) Day { 0 0 ]
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(NN10). A three-input, three-output system of order eight taken from [61].

0 -1 0 0 0 0 0 1 0o 1 2
1 2 00 1 0 0 -2 10 1
0 -1 0 0 5 0 0 0 1 -1 -3
0 0 1 0 -7 0 0 =2 10 1
A=19 1 01 40 0 2| Bi = Osx3, B= 0 2 4|
0 -2 00 2 0 0 3 2 1 5
0 0 0 0 -1 1 0 =2 -1 1 1
0 -1 0 0 1 0 1 -1 1 -1 -1

Cr = ) D11 = 02x3, D12 = 02x3,

Q
I
[ev i en)
o =
oo
oo
|
= N
oo
oo
oo

D21 = 03x3

o
(=)
o
o
o
o
o
—_

(NN11). A larger problem of order sixteen given by P. Appkarian and H. D. Tuan [4].

r—101-99.9 0 0 0 0 0 0 0 0 0 0 0 0 0 ow
0 —101 © 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0—101 —99.9 0 0 0 00 0 0 0 0 0 0 0
0 0 0 —101 0 0 0 00 0 0 0 0 0 0 0
0 0 o 0o -1 0 0 01 0 0 0 0 0 o0 0
0 0 o 0 0o -1 0 00 1 0 0 0 0 0 0
0 0 o 0 0 0 ~1 0 0 0 1 0 0 0 0 0
0 0 o 0 0 0 0 -1 0 0 0 10 0 0 0
0 0 0 0 0 0 427.098 —46.8341 —1 0 0.4271 —0.0468 0 0 0 0
0 0 o 0 0 0 232.0719 120.4649 0—1 0.2321 0.1205 0 0 0 0
0 0 o 0 0 0—764.2456 854154 0 0—1.7642 0.0854 0 0 0 0
0 0 o0 0 0 0 166.827 —264.7739 0 0 0.1668 —1.2648 0 0 0 0
0 0 o0 0 0.3162 0 0 00 0 0 0—1.1-0.0759 0 0
0 0 0 0-0.125 0 0 00 0 0 0 0 -1 0 0
0 0 o 0 0 0.3162 0 00 0 0 0 0 0—1.1-0.0759
L o 0 o 0 0-0.125 0 00 0 0 0 0 0 0 71J
( 0 —0.001 0 7 r 0 —9.995 07
0 —0.001 0 0.199 —9.995 0
0 0 —0.001 0.211 0 —9.995
0 0 —0.001 —0.233 0 —9.995
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
B, — 0 0 0 B_ 0 0 0
0.1787 0.0003 0.0001 |~ 0 2.7173 1.4274 |’
—0.8364  0.0001  0.0003 0  1.4274  2.8382
0.0818 —0.0005 —0.0003 0 —4.7909 -2.6032
0.3577  0.0001 —0.0003 0  1.0261 —2.6393
0 —0.3162 0 0.11 0 0
0 0.125 0 0 0 0
—0.3162 0 0 0 0 0
L 0 0 0.125 | L 0.01 0 0 |
00O0O0O0O0 1.5564 3.4834 0 0 0.0016 0.0035 00 00
=1000000 0 000 0 0 —0.4743 0 00|, D1y =03x3, D12 = 03x3,
000000 0 000 0 0 00 —0.3479 0
0000 0 0 0 00 0 0 —0.3162 0 0 0
0 0 0 0 O 0 0 0 O 0 0 0 0 —-0.3162 0
0 0 0 0 0 1.5564 3.4834 0 0 0.0016 0.0035 0 0 0 0 |, Dy =05x3
0 0 0 0 O 0 0 0 O 0 0 —-0.4743 0 0 0
00 00 0 0 0 0 0 0 0 0 0 —0.3479 0

Q
Il
cocoocoo
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(NN12). A two—input, two—output system which can be found in [50], example 3.21.

SO O =O

0

oo~ oo

0

_— 00000

Konstantinov [29], p. 15.

—1
-2
—6
—8
2
3

A=

LUt © & O

0
(NN18). This sixth-order system was presented by D.-W. Gu, P. Hr. Petkov and M. M.

_ OO OO

_— 00000

4 5
7 -2
50
7 -1
8 -9
8 0
2 —4
5 -1
0 -8
9 -3
{ 0 1

F. LEIBFRITZ, W. LIPINSKI

0
-1
0
0
0

0

N = O N = Wwhow

[ | |
O~ W

| |
N =W

oo oo

0

—2

-3

0
1

-1
—1

0

-3
2
-5

-3
1

(NN14). The same as (NN13) with these changes:

D1y = 03x3, Dy = [

state space matrices:

—4
1
0

-1
0
1

—4

-7
—6

—2
-2

-3

D2y

:|, D2y =

(NN15). A space backpack model that has been used in [49]. It is described by the following

-3
0
-4

|
:{8

) D12=|:

1 0
0 1

| |
DO =N

(=]

0 1 0 0 0 0
A=| —79.285 —0.113 0 |, By = | 0.041 |, B=| 0.041 —0.0047 |,
28.564 0.041 © | —0.03 —0.03 —0.0016
0 0 1 [0 0 0
1 0 0 0 0 0
C = 0 0 o |- D1 = K D> = 0.1 e
0 0 0 | 0 0 0.1
0 0 1 0
o=V 0 o] =0

(NN16). The next example illustrates an application for a large space structure. The model

was taken from [9].

0
—0.42
0

oo O oo

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 —0.1849 0 0 0 0

0 0 0 0 1 0

0 0 0 —441 0 0

0 0 0 0 0 0

0 0 0 0 0 —4.84

0.065 0 0 0 0 O

Ci = 0 0065 0 0O 0 O
O2xs

0 -—-1.8 0 1.3 0

c_| 0 —27 0 320

- 0 1.8 0 1.3 0

0o —-27 0 -32 0

o= O 000 oo

[ i)

2.9
—2.1
2.9

0 0

—-0.92 -14

0 0

0.65 1.6

Bl = IS: B = 0 0

1.4 —1

0 0

2 -0.8

) D11 = 04xs, Dia = Iy,
0 4.1
0 —-1.6
0 —4.1 |° D21 = 04x8

0 -—1.6

0.92

0.65

1.4

-2

—0.8
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(NN17). A simple example by P. Gahinet and A. J. Laub with a rank—deficient matrix D,
[24].

0 -1 2 1 1 0
A=|1 -2 3|, Bi=| -1, B=|0o o],

0 1 0 0 0 -1

1 0 1 0 1
012[1 0 1}, D11—|:U:|; D12—|:U U}’

c=[1 0 0], Dy =1]0]

(NN18). This example is a dynamical system of order 1006 with one input and one output.
[10], [48]. Note that matrix A is provided in a sparse format.

Ay
_ A, _ [ -1 100 _ [ =1 200 [ -1 400
A= A; =A1_{—100 —1}=A2_{—200 —1}”43_{—400 —1}’
Ay
Ay = —diag(1,2,...,1000), B"=C=[10..101..1], B;=0.01-B
N N~
6 1000

C

011006

0
Cl=[ }; Di1 = 0241, D12=[1}, Dy =0

2.2. 2D heat flow examples [37] .

(HF2D1) - (HF2D18). In this paragraph we state a quick discussion of the (original) infinite
dimensional 2D heat flow models which are currently implemented in COMPIib . Using standard
discretization schemes we obtain large scale finite dimensional approximations to the infinite di-
mensional control problems (i, e. see [37, Section 3]). In COMPLib we state the data matrices of
the corresponding discretized control problems. In particular, the discretization of the two dimen-
sional heat flow models stated in [37, Section3], [40] yields (in general) a large scale nonlinear and
perturbed control system of the following form:

Ei(t) = (A+0A4)x(t) + G(x(t)) + Byw(t) + Bu(t), z(0) = zo,
Z(t) = C’lm(t) + Dlg’u(t), (21)
y(t) = Cuxlt),

where E € R"*"= ig a regular diagonal matrix and the matrices C; and Dis are defined by
Ci1 = 0.5¢q [I, Onuxnz]T, D1y = /0.5d; [0n, xn,, Inu]T with given positive scalars ¢1,d; € R.
If A = 0 the system matrix A is not affected by a perturbation, and, if G(z(t)) = 0, the system
is linear. Depending on the corresponding heat flow model, one get linear or nonlinear control
systems which can be controlled by a static output feedback control law of the form u(t) = Fy(t),
where F' € R™*™ denotes an unknown SOF gain. For more details, we refer the interested reader
to the case studies of these models in [37, Section3] and [40].

The first nine examples represent the approximation of the discretized 2D heat flow models,
while the other nine are the corresponding highly reduced order approximations of the large di-

mensional systems gained by the proper orthogonal decomposition (POD) approach as discussed
in [40].
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Due to the regularity of the so—called descriptor matrix F, it is possible to reduce the more
general control system (2.1) to (1.1). In particular, if applicable, neglecting the nonlinear term
G(z(t) in (2.1), and redefining the data matrices A + §A, By, B by

A:=EY(A+464), B,:=E'B;, B:=E'B

yields the equivalent standard linear system format (1.1) of COMPILib . Thus, in COMPIib , the
corresponding MATLAB function returns the redefined data matrices of the (equivalent linearized)
system if we call one of these heat flow models. The last column of Table 2.2 refers to the property of
the data matrix A (stable/unstable) and states the source of the original model (linear/nonlinear).
Finally, note, we have subdivided this group into following two problem sets: the first set contains
all large scale and typically sparse models (HF2D1 — HF2D9) while the second problem set collects
the low dimensional POD approximations (HF2D10 — HF2D18) of the large dimensional models.

2.3. Second order models. This example class of COMPLib represents so—called second
order models of the form:

M{+ D+ Sq= Bu, M mass, D damping, S stiffness matrix (2.2)

which can be transformed into the first order standard system (1.1) by defining:

w=[3:| A::[_Mlg —Mlé}’ B::[MOIB}. (2.3)

Note, in this case, the system matrices have a special structure. This is the reason why we have
collected those problems in an extra class. But, note, all currently COMPIib examples in this
problem class are also SOF stabilizable which, in general, is not always true for second order
models. Finally, this COMPIib problem class consists of the following problem sets:

e six so—called cable mass models with very low damping (CM)

e three models of a space structure developed by the ”Deutsche Forschungsanstalt fiir Luft-
und Raumfahrt” (DLR)

e two instances of a component of the International Space Station (ISS)

e some other second order models, i. e. a tuned mass damper (TMD) example, a clamped
beam model (CBM), a flexible satellite (F'S) example, and, finally, a model of the Los
Angeles (university) hospital (LAH)

(CM1). The cable mass model is borrowed from [7] and [47]. It describes a hybrid distributed
parameter system and represents the non—linear dynamic response of a relief valve used to protect
a pneumatic system from overpressure. The damping coefficient has been chosen to be 5-107°
(low damping). It is a one—input, two—output model, with an order depending on the subdivision
of a distance interval. Here we present an 20th—order model. The data—matrices A, By, B, C1,
D1, D13, C and D3y are provided in file "em1.mat” and are of the form:

B

1 0 0
O3x9 0 O3x9 1 ) D11 = 03x1, D1~ 0 )
0 0 1.2247

c=[oo [4] o [2]] 2u-[Y]

(CM2). The to (CM1) corresponding example of order 60. Data given in file "cm2.mat”.
(CM3). The to (CM1) corresponding example of order 120. Data given in file ”¢m8.mat”.

A:{Ommq 110}’ 31:{01%1}: B:|:010~><1:|=

Cy =
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(CM4). The to (CM1) corresponding example of order 240. Data given in file “em4.mat”.

(CM5). The to (CM1) corresponding example of order 480. Data given in file “cm5.mat”.

(CM6). The to (CM1) corresponding example of order 960. Data given in file ”cm6.mat”.

(TMD). We present here the design of a two-degree-of-freedom tuned-mass—damper to atten-
uate a motion of a single mode of a primary system, developed by L. Zuo and A. Nayfeh. For the
choice of the parameters and a detailed description of this model see the provided MATLABfile
and [63].

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0.01 0 0
A 0 0 0 0 0 o | B1= o |+ B=1| —1625 0625 |
0 0 0 0 0 0 0 0.625 —1.625
0 0 —06 0 0 —0.01 0.5999 0.2 0.2
00 1 0 0 0
SO I R D IR L
1= 0 0 0 0 0 0 ) 11 = 0 ) 12 = 1 )
00 0 0 0 0
1 0 -1 0 0 0 0
00 0 1 0 -1 —0.01
C=19 1 -1 00 o] Do1 = 0
00 0 0 1 -1 —0.01

(FS). A control system design for a flexible satellite presented by H. Buschek and A. J. Calise
[8].

77511  248.1 0 0 0 0 1
M*[248.1 1}’ D*{o 0.002288]’ K*[o 0.098696]’ B*[o]’
0
O2x2 Iy 02x1 0 1 0 0 0 O
A=| —-M~'K —-M~'D 03x1 |, B= M-1g |» €=|0 0 1 0 0
1 0 0 0 0 0 o 0 0 0 1

(DLR1). This model developed by J. Bals and the ”Deutsche Forschungsanstalt fiir Luft- und
Raumfahrt” (DLR, Oberpfaffenhofen, Germany) describes the so—called ”plate experiment” for
the active vibration damping of large flexible space structures [5]. This already reduced system is
of order ten.

r 0 0 0 0 0 1 0 0 0 01
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
. 0 0 0 0 0 0 0 0 0 1
= | -—8.4268 0  9.6557 0 —5.083 —0.0253 0 0.0155 0 —0.0112 |’
0 —20.2022 0 20.0736 0 0 —0.0244 0 0.0151 0
—23.9425 0 —10.7354 0 —147.0685 —0.0049 0 —0.0359 0 —0.0849
0 126.1547 0 —132.8028 0 0 0.0947 0 —0.1089 0
—39.905 0 6.607 0 —188.4411 —0.0247 0 0.0016 0 —0.1368J
( 0 07 ( 0 07
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Bi=1 _0.0076 —0.0076 | B=1" _g001 —0.001 |
—0.0351  0.0351 —0.0133 0.0133
0.0972  0.0972 0.048  0.048
L —0.1824  0.1824 L —0.0516 0.0516
0.0748  0.0748 | 0.0213 0.0213 |
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o = 0 1 0 0 00 00 0 O Do [0 0 D10
=1 —0.8084 0 0.7509 0 —0.9501 0 0 0 0 0 |’ =149 o |° 2=19 1|

c_[0 0 0 0 0 00115 -0053 09713 —0.2009 —0.5746 Dor — 0 0
10 0 0 0 0 00115 0.0536 0.9713  0.2009 —0.5746 |’ ~2'~ | 0.0972 0.7509

(DLR2). The original system of order 40 corresponding to (DLR1). The data matrices A, By,
B, Cy, D11, D12, C and D»; are given in “dIr2-3.mat”.

(DLR3). Like (DLR2) with a change in the sensor structure, i.e. the matrix C. The complete
data set is given in the same file as above.

(ISS1). A structural model of component 1R (the Russian service module) of the International
Space Station (ISS) [10], [30]. It has 270 states, three inputs and three outputs. File "iss1_2.mat”
contains the data matrices A, B and C. We added:

03x270 I3 0.05

(1S52). The first and the second half of row one in the sensor matrix C from (I551) have been
exchanged, while all other matrices are like in the previous case.

(CBM). The clamped beam model has 348 states and is a single input, single output system.
The input represents the force applied to a structure, and the output the resulting displacement
[3], [10]. A, B and C are given in file “cbm.mat”. We added:

0
I 0
Bi =0.01 B(:,1), Cy = /100000 { 270 } , D11 =0273x1, Di2= { 2703 } , Doy = |: 0 :|

C 0
B1 =0.09 B, C) = [ 01y 348 } ; D11 = 02x1, Di2 = { V2 ] ) Dy; =0.05

(LAH). An 48th order, one-input, one—output model of a building (the Los Angeles University
Hospital) with eight floors each having three degrees of freedom, namely displacement in z and
y directions and rotation [10], [3]. The matrices A, B and C are provided in file ”lah.mat”.
Additionally we defined:

1 1
[ 0 :| 03x23 [ 0
0 0

2.4. Reduced order control examples . The last class of examples in COMPIib 1.0 are
so—called reduced order control problems. These instances are not SOF stabilizable, but they are
at least stabilizable by a reduced order output feedback control law of order n. < n,. Using a well
known system augmentation technique, the considered system has the following form

0

By =0.01B, C = O3x23 |, D11 =03x1, D12—|:U , D21 =0.05

1

0= 100 L]+ [3]we + [38] [56)]
v <ten ]+ owo el [4]
] = [22] [20] + [ wo
and the reduced order (dynamic) output feedback control law
[ :'cclft) } :F{ :ccy(t) } . F = [ é gz } (2.5)

looks like a static output feedback controller, where z, € R", A, € R"*", B, € R"*",
C. € R"*" D. € R"™*"™ and n, denotes the ROC state. Note: n. = 0 leads to the original
SOF control law. For more details, we refer the interested reader to [37], [40] and the references
therein.
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(ROC1). This four—disk control system from [62] can be stabilized with a reduced order con-
troller of order n. = 1.

r—0.161 —6.004 —0.58215 —9.9835 —0.40727 —3.982 0 0 b rt 01 1 7
1 0 0 0 0 000 00 ’- 0
0 1 0 0 0 000 00 0
0 0 1 0 0 000 0 00 0 0
A= 0 0 0 1 0 000 ' . Bi=]00|,B=]| %" 0o |,
0 0 0 0 1 000 00 0
0 0 0 0 0 100 00 0
0 0 0 0 0 010 00 0
L O1xs O1x1 J L O1x2 | thl O1x1 J
Cy = |: 8 g g g 0.00053 0.01(1] 0.0013(2) 0.0lg Onx1 } . D= [ 8 g } . Dy = [ Onx1 (1] ’
C= [ O1x8 I1x1 } Doy = { O1x2 |
0 0 0.0064432 0.0023196 0.071252 1.0002 0.10455 0.99551 O1x1 ’ 0 1 |

(ROC2). The third model of the aircraft presented in [26], Case study III 1), p. 1006/1013.
The system represents the same airplane as in (AC7) at an altitude of 25,500 ft and with a speed
of Mach 0.87.

—0.00702 0.06339 0.00518 —0.55566 —0.06112 0 0.00712 —0.00566 0 b
(70.01654 —0.38892 1.0057 0.00591 —0.04632 0 0.01654 0.04018 0
0.00061 0.3521 —0.47381 0 1.7862 0 —0.00061 —0.03638 0
0 0 1 0 0 0 0 0 0
A= 0 0 0 0 —20 20 0 0 0
- 0 0 0 0 0 -30 0 0 0 Ogx1 ’
0 0 0 0 0 0 —0.55454 0 0
0 0 0 0 0 0 0 —0.55454 0.00555
0 0 0 0 0 0 0 —0.00555 —0.55454
\_ O1x9 O1x1
r 0 0 0 017 " 0

0 0 0 O 0

0 0 0 O 0

0 0 0 O 0

0 0 0 O Ogx1 0

Bi = 0 01 0|’ B= 30 |

1.0531 0 0 O 0

0 1.28981 0 O 0

0 —-54514 0 O 0

L O1x4 J L Iix1  O1x1 |

C1 = % [ 0.005 0.11679 —0.00172 0 -—0.01413 0 —-0.005 —0.01207 O O1x1 } s

Di=[0 0 0 0], Du=[0xa 7],

O1x9 Tix1 O1x
C'= 0005 011679 —0.00172 0 —0.01413 0 —0.005 —0.01207 0 ,Dar= |0 0
0 0 10 00 0 0o o 2x! 0 0

O O

1

(ROC3). The following two—input, two—output system of order nine appears in [50]. It was
stabilized with n. = 2.
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(ROCY). The next instance is an augmented four disk control system ( coupled rotating discs
[6] ). This system can be stabilized by ROC of order n, = 1.

( ~0161 1 0 0 0 0 0 O . r 0 01
—6004 0 1 0 0 0 0 O 0 0
—05822 0 0 1 0 0 0 0 0.0064 0
-9.9835 0 0 0 1 0 0 0 o 0.00235 0
A=| —04073 0 0 0 0 1 0 0 ' | By=| 00713 0|,B
~3982 0 0 0 0 0 1 O 1.002 0
000 000 0 1 0.1045 0
000 0 0 0 0 0 0.995 0
L O1x8 O1x1 | L O1x2 J
0 0 0 0 055 11 1.32 0 0
Cl:[o 0 0 0 0 0 0 02“}’ D“:[o 0
O1xs Inx1
C*[l 0 0 00 0 0O olxl]’ Dﬂ*[o

(ROCS5). The next model describes

O1x2

Osx1

\. Iix1

a

0
0
0.0064
0.00235

0.0713 |,
1.002
0.1045
0.995

O1x1 J

}, D12:[02><1 g},

a Free Gyro—Stabilized Mirror System that can be used

to stabilize electro—optical sensors which are mounted on vehicles such as aircraft, helicopter and
tanks and therefore subjected to vibrations introduced by these platforms. A detailed description

of the system design can be found in [11], p. 309.
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(ROC6). P. Gahinet presented the following system in [23].

1 -1 0

1 1 -1

A= 0 1 -2
O2x3
0 0
Cy = 1 1
- 0

C =

O3x2

O2x2

O3x2 },
_[0
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1

1 2 0
0 -1 0
- 1 1 0 ’ B
O2x3 ]
0 0 0]
D=0 0 0], Dis =
0 0 0|

Ioxo
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_ O2x3
Dm_{o 0

| 3
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(ROC7). This flexible actuator example describes a cart fixed to a vertical plane by a linear
spring and constrained to move only along one axis. An embedded mass actuator is attached to
the center of mass of the cart and can be rotated in the horizontal plane. For further details on

the design of the plant see [20].

0 1 0
-1 0 O
A= 0 0 O
02 0 O
01x4
0.1 0
C1 = 0 0
0 0

(=

0 0
1 0 —0.2
By = 0|, B=| ! 0,
—-0.2 1
01x1 Iix1 O1x1
0 [ 0
Dyp=|0 |, Di2 = | 0O3x1 0,
0 i 0.2
I1x1 01x1 i
Dy = 0
02)(1 ) 21 0

(ROC8). Here we present a three-mass—spring system as discussed by El Ghaoui et al in [19].
It consists of three unit masses connected by a linear spring of unit spring constant. The input
acts on the left mass, and the position of the right mass is measured. The optimal ROC gain
was computed to be n, = 3 for the corresponding augmented system. Particularly, the augmented
three-mass—spring system has the plant matrices
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(ROCY). An augmented two—mass—spring system adapted from M. Chilali and P. Gahinet
[12].

0 1 0 0 0 0
-1 0 1 0 0 0 0 1
A= 00 o0 1 ™| B = 0 ., B=| ™ g ,
1 0 -1 0 1 0
O2x4 O2x2 O2x1 TIoxo  0O2x1
1 0 0 O 0 0
0 1 0 O 0 0
Ci=|0 0 1 0 O05x2 |, Dyp=| 0 |, Di2 = | 052 0 |,
0 0 0 1 0 0
0 0 0 O 0 1
02x4 Inxo O2x1
“=10o 0 1 o0 01x2 } ' Dar = [ 1 ]

(ROC10). This control problem describes an arm—driven inverted pendulum. It is a two-link
system consisting of an actuated arm (first link) and a non-actuated pendulum (second link). The
main control objective is to maintain the pendulum in the vertical position using the rotation of
the arm. For further details see [4].

0 1 0 0 0 0 0 0
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C=11 0 -1 00 031 |° P27 0 0
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