Analyzing the computational impact of individual MINLP solver components

Stefan Vigerske

joint work with Ambros M. Gleixner

Zuse Institute Berlin \cdot GAMS

MIP 2014, July 21, The Ohio State University

Analyzing MINLP solver components

- Software, Hardware, Methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Analyzing MINLP solver components

Software, Hardware, Methodology

Separation

Reformulation

Primal Heuristics

Tree search

Propagation

The Solver: SCIP

- ▷ a branch-cut-and-price framework
- a full-scale MIP and MINLP solver
- b free for academic purposes, source code available, http://scip.zib.de

MINLPLib

- ▷ a collection of MINLP instances (trivial ... challenging)
- $\triangleright\,$ GAMS scalar format, part of GAMS World / MINLP World

Next version (in development)

- ▷ more instances, more file formats, more statistics, ...
- currently 822 publicly available MINLP instances
- ▷ collected from MINLPLib 1, minlp.org, POLIP, ...
- b see http://www.gamsworld.org/minlp/minlplib2/html/

Firefox* 🙆 MINL	PLIb Model	Statistics	1	+				900 MINLPLib - Number of Instances
***	[MIN	ILP Wor	ld Home	<u>Boan</u> iamsWo	d Solv arid Gro	ers <u>MINLPLib</u> sup Search Co	Links ntact]	800-
1444								700-
4INLPLIB I	Model	Statist	ics					600-
lame Istufen	#Eqns 99	#Vars 4	40Vars 48	ØNZ 319	8NNZ 87	Bestint a 116329.6706	t Point	500-
an atch	8 74	9 47	4 24	24 191	3 22	2.9250 285506.5082	21 21	
itchdes suster	20	20 158	9 52	53 398	10 159	167427.6571 116347.9503	p1 p1	400-
ndgap d 13	360 899	332 841	65 180	1454 2812	440 360	-19134.6103 -115656.4997	p1 p2	300-
p partioad	2517	2249	45	6940 1281	1916	23.5537	p1	
ched1	285	77	63	174	8	-30639.2578	p1	200 MINI
chedla ched2	23	29 401	15 308	78 958	58	-30430.1770 -166101.9964	p1 p1	
sched2a	138	233	140	622	57	-165398.7013	p2	2002 2004 2006 2008 2010

If you have interesting instances, please consider contributing.

The Testset

- \triangleright take MINLPLib2 α (as of April'14): 789 instances
- run SCIP with default settings
- 475 instances solved within 2 hours
- ▷ 455 instances solved within 1 hour
- \Rightarrow subsequent experiments: the set of 475 instances, 1 hour time limit

Hardware

▷ Dell PowerEdge M1000e, 48 GB RAM, Intel Xeon X5672@3.2 GHz

Software

- ▷ SCIP 3.1.0.1
- ▷ SoPlex 2.0
- Ipopt 3.11.8
- CppAD 20140000.1

Instances vary widely in size, nonlinearity, ...

Instances vary widely in size, nonlinearity, ..., time to optimality

- arithmetic average: dominated by large times
- peric average: weights trivial and hard instances equally
- b shifted geometric average: which shift?

Instances vary widely in size, nonlinearity, ..., time to optimality

- arithmetic average: dominated by large times
- geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst	А	В	
1	10s	2s	
2	10s	2s	
3	10s	50s	
4	10s	50s	

Instances vary widely in size, nonlinearity, ..., time to optimality

- arithmetic average: dominated by large times
- geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst	А	В
1	5x	1x
2	5x	1x
3	1x	5x
4	1x	5x

Instances vary widely in size, nonlinearity, ..., time to optimality

- arithmetic average: dominated by large times
- geometric average: weights trivial and hard instances equally
- shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst	А	В
1	10s	2s
2	20s	100s
3	50s	10s
4	100s	500s

The Method: Filtered Performance Diagrams

Gradually exclude instances **solved by A and B** and compute speedup:

$$t \mapsto \frac{\mu(\{t_{A,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}{\mu(\{t_{B,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}$$

The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

$$t \mapsto \frac{\mu(\{t_{A,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}{\mu(\{t_{B,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}$$

In the following: μ = geometric mean

[See also Achterberg and Wunderling 2013]

The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

$$t \mapsto \frac{\mu(\{N_{A,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}{\mu(\{N_{B,i} : \max\{t_{A,i}, t_{B,i}\} \ge t\})}$$

In the following: μ = geometric mean

[See also Achterberg and Wunderling 2013]

Number of unsolved instances by time (default settings)

Analyzing MINLP solver components

Software, Hardware, Methodology

Separation

Reformulation

Primal Heuristics

Tree search

Propagation

Separation: MIP cutting planes

- \triangleright General: Gomory, cMIR, $\{0, 1/2\}$ -cuts, ...
- Problem-specific: knapsack, clique, multi commodity flow, ...

Default Settings

- run certain separators during root node
- no separation during tree search

Separation: MIP cutting planes

- \triangleright General: Gomory, cMIR, $\{0, 1/2\}$ -cuts, ...
- Problem-specific: knapsack, clique, multi commodity flow, ...

Default Settings

- $\triangleright\,$ run certain separators during root node
- no separation during tree search
- Alternative Setting I: off

Alternative Setting II: aggressive

- run separators also during tree search
- > run previously disabled separators during root node

Separation: MIP cutting planes

Distribution of Speedups

Separation: Approximation of Nonlinearities

Gradient cuts for convex terms

- feasibility enforced without branching
- exploit integer information for univariate convex terms

Linear underestimators for nonconvex terms

concave functions

1.0 0.5 -0.5 -1.0

Alternative setting:

- off during fractional branching
- ▷ thus, weak relaxation of nonlinearities while branching on fractionalities

 $x|x|^{n}, n \ge 0$

Separation: Approximation of Nonlinearities

Separation: Approximation of Nonlinearities

Distribution of Speedups

Analyzing MINLP solver components

Software, Hardware, Methodology

Separation

Reformulation

Primal Heuristics

Tree search

Propagation

Reformulation

Expression graph reformulation

- ▷ merge expressions, e.g., polynomials
- replace subexpressions with new variables
- when switched off, only a very simple relaxation based on interval gradients is generated

Reformulation

Expression graph reformulation

- merge expressions, e.g., polynomials
- replace subexpressions with new variables
- when switched off, only a very simple relaxation based on interval gradients is generated

Products with binary variables

linearize using big-M

$$\begin{aligned} x \cdot \sum_{k} a_{k} y_{k} & \text{with} \quad x \in \{0, 1\} \\ \downarrow \\ M^{L} x \leq w \leq M^{U} x, \\ \sum_{k} a_{k} y_{k} - M^{U} (1-x) \leq w \leq \sum_{k} a_{k} y_{k} - M^{L} (1-x) \end{aligned}$$

Reformulation

Distribution of Speedups

Analyzing MINLP solver components

- Software, Hardware, Methodology
- Separation
- Reformulation
- **Primal Heuristics**
- Tree search
- Propagation

Besides waiting for feasible LP solutions

Standard MIP heuristics applied to MIP relaxation

- ▷ rounding, diving, feasibility pump, ...
- ▷ large neighborhood search (RENS, RINS, ...)

NLP local search

- ▷ for integer and LP feasible solutions
- fix integers and solve remaining NLP (Ipopt)

MINLP heuristics

- NLP diving
- RENS [Berthold 2013]
- Undercover [Berthold and Gleixner 2013]

▷ ...

Primal Heuristics

Distribution of Speedups

Distribution of Speedups

Analyzing MINLP solver components

- Software, Hardware, Methodology
- Separation
- Reformulation
- Primal Heuristics
- Tree search
- Propagation

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, \dots]

¹ Inference branching: prefer variables where branching resulted in high number of domain propagation before

² VSIDS: prefer variables used to produce recent conflict constraints

Alternative settings for spatial branching

inference¹, most infeasible, random

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, ...]

¹ Inference branching: prefer variables where branching resulted in high number of domain propagation before

² VSIDS: prefer variables used to produce recent conflict constraints

Spatial Branching

			a	ill in the second s	maxtin	${\sf ne} \ge 100$
	setting	solved	time	nodes	time	nodes
	inference	-27	+31%	+34%	+167%	+176%
	most inf	-24	+30%	+38%	+165%	+209%
	random	-24	+30%	+28%	+145%	+130%
0.8						
1		— 🧰 infer	ence 🔵	most inf	random	
0.6						
0.4						
0.2	and the second se			<u></u>		
0		·····		· · · · · · ·		
	0 6	00 1	,200	1,800	2,400	3,000 3,6

Distribution of Speedups

Node selection

Tasks

- improve primal bound
- keep computational effort small
- improve global dual bound

Best estimate with plunging

 select node Q with best/minimal (pseudo cost) estimate value for feasible solution objective value

$$ar{z}_Q + \sum_{k:ar{x}_k ext{fractional}} \min\{\Psi^- f^-, \Psi^+ f^+\}$$

plunge (diving with single backtrack)

Alternative setting: breadth first search

Distribution of Speedups

Conflict analysis / "nogood" learning

Analyse reason for pruning a node

- branchings and propagations
- infeasible and bound exceeding LP relaxation: dual ray heuristic
- derive short nogoods/conflict constraints
- most nonlinear constraints do not participate in conflict analysis yet

Use subsequently

- to cut off other nodes
- to enable further propagations
- for VSIDS in branching

$$x_1-x_3\leq 0$$

Conflict analysis / "nogood" learning

Distribution of Speedups

Analyzing MINLP solver components

- Software, Hardware, Methodology
- Separation
- Reformulation
- Primal Heuristics
- Tree search
- Propagation

Bound tightening/propagation

Particularly important for nonconvex MINLP

- branching on continuous variables/infinite domains
- \triangleright tight domains \rightsquigarrow tight relaxation

Primal and dual reductions

- reduced cost
- probing on binaries
- FBBT: feasibility-based bound tightening
- OBBT: optimization-based bound tightening and Lagrangian variable bounds:

$$x_k \geq \sum_{i:r_i>0} r_i \underline{x}_i + \sum_{i:r_i<0} r_i \overline{x}_i + \mu c^T x^* + \lambda^T b$$

[Ryoo and Sahinidis 1996, Belotti et al. 2009, Gleixner and Weltge 2013, ...]

Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of $x_k \ge \underline{r}^T \underline{x} + \overline{r}^T \overline{x} + \mu c^T x^* + \lambda^T b$ is tightened

- if some variable lower bound \underline{x}_i increases for $\underline{r}_i > 0$
- if some variable upper bound \overline{x}_i decreases for $\overline{r}_i < 0$
- if a better primal solution x^* is found and $\mu < 0$

Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of $x_k \ge \underline{r}^T \underline{x} + \overline{r}^T \overline{x} + \mu c^T x^* + \lambda^T b$ is tightened

- if some variable lower bound \underline{x}_i increases for $\underline{r}_i > 0$
- if some variable upper bound \overline{x}_i decreases for $\overline{r}_i < 0$
- ▶ if a better primal solution x^* is found and $\mu < 0$

Learn LVBs during root OBBT and propagate again

- Iocally at nodes of the branch-and-bound tree
- globally if a better primal solution is found
- compare "duality-based reduction" [Tawarmalani and Sahinidis 2004]

Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of $x_k \ge \underline{r}^T \underline{x} + \overline{r}^T \overline{x} + \mu c^T x^* + \lambda^T b$ is tightened

- if some variable lower bound \underline{x}_i increases for $\underline{r}_i > 0$
- if some variable upper bound \overline{x}_i decreases for $\overline{r}_i < 0$
- ▶ if a better primal solution x^* is found and $\mu < 0$

Learn LVBs during root OBBT and propagate again

- Iocally at nodes of the branch-and-bound tree
- globally if a better primal solution is found
- compare "duality-based reduction" [Tawarmalani and Sahinidis 2004]

Computational Experience

- on every other MINLP, at least one nontrivial LVB from every 2nd OBBT LP
- \blacktriangleright LVB propagation typically $\leq 2\%$ of total running time, when implemented efficiently

This promises a computationally cheap approximation of OBBT in the tree.

[Gleixner and Weltge 2013]

Bound tightening/propagation

Distribution of Speedups

Distribution of Speedups

Summary

		а	II	$maxtime \geq 100$	
setting	solved	time	nodes	time	nodes
nonlin sepa off	-102	+302%	+695%	+1964%	+5569%
expr reform off	-69	+160%	+322%	+1386%	+3631%
propagation off	-48	+ <mark>90</mark> %	+129%	+397%	+461%
MIP cuts off	-39	+65%	+107%	+333%	+395%
inference branching	-27	+31%	+34%	+167%	+176%
OBBT off	-25	+47%	+ <mark>93%</mark>	+303%	+607%
most inf branching	-24	+30%	+38%	+165%	+209%
random branching	-24	+30%	+28%	+145%	+130%
breadth first search	-22	+42%	+29%	+136%	+81%
all heur off	-19	+7%	+36%	+84%	+144%
MIP cuts aggr	-11	-7 %	-10%	-18%	-23%
only NLP heur	-11	-4%	+22%	+33%	+22%
LNS heur off	-10	+4%	+20%	+51%	+71%
bin reform off	-9	+8%	-11%	+20%	-21%
LVB off	-4	+6%	+9%	+20%	+19%
heur aggressive	-2	+27%	-4%	+28%	+86%
conflict off	-2	+2%	+9%	+11%	+27%