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Model instance collections
Collecting optimization problems has been a popular “hobby” for long time, e.g.,

first release library problem types
1985 Netlib Linear Programming
1992 MIPLIB Mixed-Integer Programming
1993 CUTE Nonlinear Programming
1998 SDPLib Semidefinite Programming
1999 CSPLib Constraint Satisfaction Programming
199x MacMINLP Mixed-Integer Nonlinear Programming
2001 GAMS World LP, MIP, NLP, MINLP, SOCP, MPEC
2003 COCONUT Nonlinear and Constraint Satisfaction Programming
2008 mintOC Mixed-Integer Optimal Control
2009 minlp.org MINLP, General Disjunctive Programming
2011 POLIP Mixed-Integer Polynomial Programming
2014 CBLIB Conic Programming
I for solver developers, access to a wide set of interesting problem instances

with different characteristics has always been important
I commercial solver vendors test their solver on thousands of test problems

before releasing a new software version
I the evaluation of algorithmic improvements (w.r.t. robustness and efficiency)

requires well-balanced test sets of significantly many real-world instances 2 / 64



MINLPLib and GLOBALLib http://www.gamsworld.org

I Initiated in 2001 (as part of GamsWorld/MinlpWorld/GlobalWorld):
M. Bussieck, A. Drud, and A. Meeraus
MINLPLib – A Collection of Test Models for Mixed-Integer Nonlinear Programming
INFORMS Journal on Computing 15, 114–119 (2003)

I “white-box” NLPs (GLOBALLib) and MINLPs (MINLPLib)

I frequently used for testing, but also benchmarking
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MINLPLib and GLOBALLib Instances
I scalar GAMS format

Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;

I varying from small scale (great for debugging!) to large scale real world
instances (agricultural economics, chemical-, civil-, and electrical engineering,
finance, management, OR)

I intentionally including instances from badly formulated models or different
formulations of the same problem

I including solution points for many instances
I solely an instance collection, i.e., consisting of instantiations of models by

specific data sets
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MINLPLib and GLOBALLib History
I instances were harvested from existing collections, initially:

I GAMS Model Library
I MacMINLP (Leyffer)
I MINOPT library (Floudas)
I Handbook of Test Problems in Local and Global Optimization (Floudas et.al.)

I 2001 – 2009: maintained by Michael Bussieck
I new instances were added
I new incumbent solutions were added
I in 2009: Michael “volunteered” me as maintainer
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MINLPLib 2

Tasks:
I Adding new problem instances:

I both convex and nonconvex problems
I (MI)QPs, (MI)QCQPs, and (MI)NLPs
I easy solvable, solvable, difficult to solve, but not trivial

I Categorizing instances
I convexity
I problem type (quadratic, polynomial, general nonlinear)
I function types (powers, exp/log, trigonometric, ...)
I solved to global optimality?

I Providing feasible best known solutions

Work in progress, current version publicly available:
http://www.gamsworld.org/minlp/minlplib2/html/index.html.
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New NLP and MINLP Instances
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Sources of newly added instances
Harvesting mainly from

I CMU-IBM open source MINLP project (convex MINLPs)
I minlp.org
I POLIP (polynomial MINLPs)

Vecchietti library
MINOPT Model Library
GAMS clients

Westerlund

MacMINLP

ANTIGONE test library

BARON bookminlp.org

Bonmin test library

Floudas e.a. handbook

GAMS Model Library

POLIP

other

MINLPLib 2 instance sources (1357 in total)
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Instance Formats

Format #instances
GAMS .gms 1363
AIMMS .ams 1352 (no Gamma, latest additions missing)
AMPL .mod 1337 (no errorf/signpower/Gamma/...)
AMPL .nl 1331 (no errorf/signpower/Gamma/..., latest missing)
OSIL XML 1342 (no signpower/Gamma/...)
CPLEX LP .lp 667 (limited to quadratics)
PIP .pip 770 (limited to polynomial)
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Problem types
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Sparsity Pattern – Examples
dosemin2d eg_all_s feedtray2 johnall mbtd qapw
Radiation Therapy Feed Tray Location Asset Management Quadratic Assigment

(top: Objective Gradient and Jacobian; bottom: Lagrangian Hessian)
11 / 64



Sparsity Pattern – Examples (cont.)
Jacobian densitymod (Density modification based on single-crystal X-ray diffraction data; 23529 vars, 550 cons.)

Jacobian lop97ic (Rail Line Optimization, MIQCQP)

milinfract (Solving Mixed-Integer Linear Fractional Programming Problems with Dinkelbach’s Algorithm)

Objective Gradient + Jacobian Lagrangian Hessian
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(Non)Convexity Detection for Functions
Analyze the Hessian:

I Given twice differentiable function h(x) and variable bounds [x , x̄ ].
I Compute the spectrum of the Hessian in one random point and conclude

I convexity/concavity/indefiniteness if h(x) is quadratic
I nonconvexity/nonconcavity if h(x) is general nonlinear

Analyze the Algebraic Expression:

f (x) convex⇒ a · f (x)

{
convex, a ≥ 0
concave, a ≤ 0

f (x), g(x) convex⇒ f (x) + g(x) convex
f (x) concave⇒ log(f (x)) concave

f (x) =
∏
i

xeii , xi ≥ 0⇒ f (x)


convex, ei ≤ 0 ∀i
convex, ∃j : ei ≤ 0 ∀i 6= j ;

∑
i ei ≥ 1

concave, ei ≥ 0 ∀i ;
∑

i ei ≤ 1

Analyze manually.
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(Non)Convexity in MINLPLib
I Numerical analysis of (pointwise) Hessians by LAPACK.
I Symbolic analysis of expressions by SCIP.
I Mark additional 71 instances (5%) as convex.

convex
26%

nonconvex
71%

undecided
3%

MINLPLib instances convexity
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Solution Points

MINLPLib instances traditionally come with known feasible solution points.

For MINLPLib 2, we added

Feasibility checking:
I compute maximal (unscaled) violation of constraints, variable bounds, and

discreteness restrictions
I uses GAMS/EXAMINER2

Solution polishing: For a given point,
1. project onto variable bounds
2. round values for discrete variables to exact integers
3. ensure that semicontinuity/semiintegrality and special-ordered-set constraints

are exactly satisfied
4. run CONOPT on MINLP with all binary/integer/semi*/SOS variables fixed,

start from updated point, scaling disabled, feasibility tolerance 10−9
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Polished Solution Points
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Available in two formats:

GAMS Data Exchange (GDX) ASCII (.sol)

x1 1.11803398874989001754
x2 1.31037069710444997739
b4 1.00000000000000000000
b5 1.00000000000000000000
objvar 7.66718006881313041134
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Dual Bounds

dual bound =

{
lower bound on optimal value, if minimization
upper bound on optimal value, if maximization

Collected dual bounds from
I solvers for general (MI)NLP

(ANTIGONE, BARON, Couenne, Lindo, SCIP)
I solvers for convex MINLP on proven convex MINLPs

(AlphaECP, Bonmin BB, Bonmin Hyb)

But: No way to verify correctness of bound!

Conservative approach: Only trust a solvers dual bound claim if it has been
verified by at least 2 other solvers.
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“Open” instances
Feasible solution points ⊕ trusted dual bounds ⇒ trusted gap
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new in MINLPLib 2

0.0 , ≤ 10−9 1.0 , ≥ 1.0
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Query the MINLPLib

Simple script to select instances by specific criteria, e.g.:
I all large convex instances, show # var. and # cons.:

$ ./query.py "(nvars > 4242) & (convex == True)" -c nvars -c ncons
nvars ncons

jbearing100 5304 0
squfl030-150 4530 4650
watercontamination0202 106711 107209
watercontamination0303 107222 108217

I all quadratic instances:
./query.py "npolynomfunc == 0 & nsignomfunc == 0 & ngennlfunc == 0"

I all instances with trigonometric functions:
./query.py "(opsin == True) or (opcos == True)"

I all separable instances, sorted by problem type:
./query.py "nlaghessiannz == nlaghessiandiagnz" -s probtype -c probtype

I all unsolved instances (w.r.t. “trusted” dual bounds), zipped up:
./query.py "gap > 0.1" -c gap -z open.zip

19 / 64



What to do with all these instances?

General Purpose Global Solvers Benchmark?
date GAMS ANTIGONE BARON COUENNE LINDO SCIP

07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

. . .
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Today: Go Columnwise
date GAMS ANTIGONE BARON COUENNE LINDO SCIP

08/11 23.7.3 – 9.3.1 0.3 6.1.1.588 –
04/12 23.8.2 – 10.2.0 0.4 7.0.1.421 2.1.1
11/12 23.9.5 – 11.5.2 0.4 7.0.1.497 2.1.2
02/13 24.0.2 – 11.9.1 0.4 7.0.1.497 3.0
07/13 24.1.3 1.1 12.3.3 0.4 8.0.1283.385 3.0
05/14 24.2.3 1.1 12.7.7 0.4 8.0.1694.498 3.0
09/14 24.3.3 1.1 14.0.3 0.4 8.0.1694.550 3.1
06/15 24.4.6 1.1 14.4.0 0.4 9.0.1983.157 3.1
07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

I ANTIGONE by R. Misener (Imperial College) and Ch. Floudas (Texas A&M)
I BARON by N. Sahinidis (CMU), M. Tawarmalani (Purdue), et.al.
I Couenne by P. Belotti (now FICO), et.al.; open-source (COIN-OR)
I Lindo API by Lindo Systems Inc.
I SCIP by Zuse Institute Berlin, TU Darmstadt, FAU Erlangen; free for academic use

Quantify Improvements of global MINLP solvers over the last 4 years!
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Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.
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Prune Instances by Tractability and Triviality Heuristic

1. Remove intractable instances
I consider only the 881 instances that are

marked as solved in MINLPLib 2
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Prune Instances by Tractability and Triviality Heuristic
2. For each solver separately:

I Remove instances that are solved within 60 seconds by the oldest solver
version (e.g., as in GAMS 23.7).

I Remove instances that the solver cannot handle (due to trigonometric
functions, SOS, . . .).

In case of SCIP:
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Prune Instances by Tractability and Triviality Heuristic
For SCIP, this leaves 312 instances:

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
csched1a
edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
ex4_1_5
ex4_1_6

ex6_1_1
ex6_1_3
ex6_2_12
ex6_2_14
ex6_2_8
ex6_2_9
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_2_4b
ex8_4_1
ex8_4_3
ex8_4_4
ex8_4_5
ex8_4_8_bnd
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
fo9_ar4_1

fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
graphpart_clique-30
graphpart_clique-40
gsg_0001
hda
heatexch_trigen

house
jbearing25
jbearing75
johnall
kall_circles_c6a
kall_circles_c6b
kall_circles_c7a
kall_circles_c8a
kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...
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Prune Instances by Tractability and Triviality Heuristic
For SCIP, this leaves 312 instances – obvious dominance by some models:

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
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blend852
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clay0204h
clay0205h
clay0303h

clay0304h
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crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
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edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
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emfl100_5_5
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ethanolm
ex1252a
ex14_1_1
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graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
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kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
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launch
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mathopt5_7
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mhw4d
milinfract
minlphix
minsurf100
...
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P.I.T.T.E.D. Heuristic: P.I.T.T. with Eased Dominance
3. Ensure uniqueness of 6-characters-prefix of instances names.

alkylation
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autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
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edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
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ex8_1_7
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ex8_4_5
ex8_4_8_bnd
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fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
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fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
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kall_circles_c6b
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kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...
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P.I.T.T.E.D. Heuristic: P.I.T.T. with Eased Dominance
3. Ensure uniqueness of 6-characters-prefix of instances names.

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
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edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
ex4_1_5
ex4_1_6

ex6_1_1
ex6_1_3
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ex6_2_14
ex6_2_8
ex6_2_9
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_2_4b
ex8_4_1
ex8_4_3
ex8_4_4
ex8_4_5
ex8_4_8_bnd
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
fo9_ar4_1

fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
graphpart_clique-30
graphpart_clique-40
gsg_0001
hda
heatexch_trigen

house
jbearing25
jbearing75
johnall
kall_circles_c6a
kall_circles_c6b
kall_circles_c7a
kall_circles_c8a
kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...
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P.I.T.T.E.D. SCIP testset
In summary:
1. Keep only instances that are marked as solved in MINLPLib 2.
2. Keep only instances that take ≥ 60s with oldest version of solver and that can

be handled by solver.
3. Reduce instances with similar names.

For SCIP, this reduces from 1363 to 881 to 123 instances:

alkylation
arki0003
autocorr_bern20-10
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0303h
crudeoil_lee2_10
csched1a
edgecross10-060

emfl050_5_5
emfl100_5_5
ethanolh
ex1252a
ex14_1_1
ex4_1_5
ex6_1_1
ex6_2_12
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_4_1
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo9

fo9_ar25_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
gsg_0001
hda
heatexch_trigen
house
jbearing25
johnall
kall_circles_c6a
kall_diffcircles_10
launch
lop97icx
mathopt5_7
mhw4d

milinfract
minlphix
minsurf100
multiplants_mtg1a
no7_ar3_1
nous1
nvs09
nvs22
o7
o7_2
o7_ar25_1
o7_ar3_1
o7_ar4_1
o7_ar5_1
o8_ar4_1
o9_ar4_1
oil
oil2
parallel

pinene50
pointpack08
pooling_epa1
prob07
process
procsyn
prolog
qp3
routingdelay_bigm
rsyn0805m02h
sepasequ_convent
sfacloc2_2_80
slay07h
slay09h
slay10h
smallinvDAXr1b020-022
sporttournament14
squfl010-025
sssd08-04

sssd12-05
sssd15-04
sssd16-07
sssd18-06
sssd20-04
sssd25-04
st_e35
stockcycle
supplychainp1_020306
syn10m03h
syn15m02h
syn20m02h
syn30h
syn30m02h
syn40h
syn40m02h

tln5
tln6
tln7
torsion100
tspn05
waste
wastewater05m1
water4
watercontamination0202
waternd1
watertreatnd_flow
weapons
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PITT test set for each solver

Removed easy and unsolvable instances:
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PITTED test set for each solver

Removed easy and unsolvable instances, then filter by name:
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Run jobs

date GAMS ANTIGONE BARON COUENNE LINDO SCIP

08/11 23.7.3 – 9.3.1 0.3 6.1.1.588 –
04/12 23.8.2 – 10.2.0 0.4 7.0.1.421 2.1.1
11/12 23.9.5 – 11.5.2 0.4 7.0.1.497 2.1.2
02/13 24.0.2 – 11.9.1 0.4 7.0.1.497 3.0
07/13 24.1.3 1.1 12.3.3 0.4 8.0.1283.385 3.0
05/14 24.2.3 1.1 12.7.7 0.4 8.0.1694.498 3.0
09/14 24.3.3 1.1 14.0.3 0.4 8.0.1694.550 3.1
06/15 24.4.6 1.1 14.4.0 0.4 9.0.1983.157 3.1
07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

for GAMS in $GAMSS ; do
for SOLVER in $SOLVERS($GAMS) ; do
for INSTANCE in $TESTSET($SOLVER) ; do
sbatch --exclusive --time=0:1800 $GAMS $INSTANCE SOLVER=$SOLVER

done
done

done

Hardware: Dell PowerEdge M1000e, 48GB RAM, Intel Xeon X5672@3.2GHz
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BARON: Fails
A solver failed, if it

I crashed, or
I reported an infeasible point as feasible (tolerance: 10−4), or
I reported a suboptimal solution as optimal (tolerance: 10−4)
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BARON: Solved
Solved: solver did not fail and reports a relative optimality gap ≤ 10−4
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BARON: Solved – What happened?
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From the release notes:
11.0: “This version comes with a wealth of new branching, relaxation, convexity

exploitation, local search, and range reduction techniques.”
11.5: “Improvements in local search” (dive-and-round heuristic for MINLPs,

automatically select and switch back and forth between NLP solvers)
12.3: “New relaxations for certain types of quadratic problems”, “Improved integer

presolve”, “Incorporation of convex envelopes for certain low-dimensional
functions”

14.0: “Significant advances in the handling of integer programs.” (integer cutting
planes, calls to MIP solvers, hybrid LP/MIP/NLP relaxations)
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BARON: Found optimal solution
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BARON: Solving time on instances that never failed (163)
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Overall speedup: 9.00
12.7: “Automatic setting of many options based on problem characteristics and learning
algorithms.“
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BARON: Solving time on instances solved by all vers. (69)
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Overall speedup: 3.67
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ANTIGONE: Fails
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ANTIGONE: Solved

1.1 1.1 1.1 1.1 1.1
0

20

40

60

80

100

61.9 62.4 62.4 59.3 59.3

ANTIGONE version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
18
9)

same as previous version
additional to previous version

only in previous version

38 / 64



ANTIGONE: Found optimal solution
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ANTIGONE: Solving time on instances that never failed (177)
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ANTIGONE: Solving time on instances solved by all (110)
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COUENNE: Fails
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COUENNE: Solved

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

20

40

60

80

100

29
21.8

27.5 25 25 25.8 26.6 26.6
34.7

COUENNE version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
12
4)

same as previous version
additional to previous version

only in previous version

43 / 64



COUENNE: Found optimal solution
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COUENNE: Solving time on instances that never failed (65)

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

200

400

600

800
nan

1.25 0.98 1.00
0.94 1.03 1.02 1.00

1.11

COUENNE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 1.35
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COUENNE: Solving time on instances that never failed (65)
[Couenne] Couenne stable release
0.4
Pietro Belotti pbelott at clemson.edu
Mon Aug 8 05:13:15 EDT 2011

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]

Dear Couenne users,

this is to announce the 0.4 stable version of Couenne. There are a number 
of additions and improvements, including:

1) a Feasibility Pump heuristic for non-convex MINLP, developed with Timo 
Berthold at the ZIB institute.

2) Orbital Branching for MINLP, developed with Jim Ostrowski and Leo 
Liberti.

3) Fixed Point Bound tightening, a bound reduction procedure developed 
with Sonia Cafieri, Jon Lee, and Leo Liberti.

4) "semi-auxiliaries", i.e., auxiliary variables defined as y >= f(x) or y 
<= f(x) instead of just y = f(x). The purpose is to save on the number of 
auxiliaries generated and hence on the size of the LP relaxation.

5) "Two-Implied bound tightening", a new bound reduction procedure 
described in http://www.optimization-online.org/DB_FILE/2011/02/2931.pdf

6) various bug fixes.

Release 0.4.0 is a snapshot of the new stable version. The new features 
will soon be documented in Couenne's user manual, available at 
http://www.coin-or.org/Couenne/couenne-user-manual.pdf

Happy MINLPing,
Pietro

--
Pietro Belotti
Dept. of Mathematical Sciences
Clemson University
email: pbelott at clemson.edu
phone: 864-656-6765
web:   myweb.clemson.edu/~pbelott

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]

More information about the Couenne mailing list

[Couenne] Couenne stable release 0.4 http://list.coin-or.org/pipermail/couenne/2011-A...

1 of 1 07/14/2015 06:00 AM
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1. Feasibility Pump

feasibility_pump no

2. Orbital Branching

orbital_branching no

3. Fixed Point BT

fixpoint_bt 0

4. “semi-auxiliaries”

use_semiaux yes

5. Two-Implied BT

two_implied_bt 0

6. various bug fixes
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COUENNE: Solving time on instances that never failed (65)
[Couenne] Couenne stable release
0.4
Pietro Belotti pbelott at clemson.edu
Mon Aug 8 05:13:15 EDT 2011

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]

Dear Couenne users,

this is to announce the 0.4 stable version of Couenne. There are a number 
of additions and improvements, including:

1) a Feasibility Pump heuristic for non-convex MINLP, developed with Timo 
Berthold at the ZIB institute.

2) Orbital Branching for MINLP, developed with Jim Ostrowski and Leo 
Liberti.

3) Fixed Point Bound tightening, a bound reduction procedure developed 
with Sonia Cafieri, Jon Lee, and Leo Liberti.

4) "semi-auxiliaries", i.e., auxiliary variables defined as y >= f(x) or y 
<= f(x) instead of just y = f(x). The purpose is to save on the number of 
auxiliaries generated and hence on the size of the LP relaxation.

5) "Two-Implied bound tightening", a new bound reduction procedure 
described in http://www.optimization-online.org/DB_FILE/2011/02/2931.pdf

6) various bug fixes.

Release 0.4.0 is a snapshot of the new stable version. The new features 
will soon be documented in Couenne's user manual, available at 
http://www.coin-or.org/Couenne/couenne-user-manual.pdf

Happy MINLPing,
Pietro

--
Pietro Belotti
Dept. of Mathematical Sciences
Clemson University
email: pbelott at clemson.edu
phone: 864-656-6765
web:   myweb.clemson.edu/~pbelott
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2. Orbital Branching
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two_implied_bt 0

6. various bug fixes
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COUENNE: Solving time on instances solved by all (16)
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Overall speedup: 2.16
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LINDO: Fails
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LINDO: Solved

6.1 7.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0
0

20

40

60

80

100

39.1
35.2 34.4 32.8

48.4 48.5 46.9
43 43

LINDO version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
12
8)

same as previous version
additional to previous version

only in previous version

LINDO 8.0: improvements in primal heuristics for MIP (feas. pump) and
nonconvex NLP (multistart)
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LINDO: Found optimal solution
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LINDO: Solving time on instances that never failed (72)
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Overall speedup: 5.48
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LINDO: Solving time on instances solved by all vers. (16)
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Overall speedup: 3.02
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SCIP: Fails
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SCIP: Solved
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SCIP: Found optimal solution
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SCIP: Solving time on instances that never failed (96)
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Overall speedup: 4.49
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SCIP: Solving time on instances solved by all vers. (31)
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Overall speedup: 2.42
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“Virtual Best” Solver
I common subset of instances
I for each instance and GAMS version, pick best results among all solvers
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Virtual Best: Fails
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Virtual Best: Solved
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Virtual Best: Solving time on instances that never failed (70)
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Overall speedup: 14.84
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Virtual Best: Solving time on instances that never failed (70)
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Overall speedup: 14.84
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Virtual Best: Solving time on instances solved by all (17)
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Overall speedup: 14.30
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End.
http://www.gamsworld.org/minlp/minlplib2/html/

Future Work:
I add more NLPs (from PrincetonLib, COCONUT, NEOS, ...)
I semi-automatic identification of duplicates
I more structure recognition, e.g., second-order cones
I define interesting subsets, especially a benchmark set for

global solvers

Call for contributions:
I Contribute your own (MI)NLP instances! (Or send your model to minlp.org!)
I Ideally from a model for a real life problem.
I Also infeasible instances are welcomed.
I Any (well-known) format is good (e.g., AMPL, GAMS, ZIMPL, BARON, CPLEX

LP, MPS, PIP, OSiL).
I MINLPLib instances are anonymized (scalar format using generic names).
I Your benefit: Solver developers may test and tune their solver for your

problem.
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