
(MI)NLPLib 2

Stefan Vigerske

16th July 2015

ISMP, Pittsburgh

Model instance collections
Collecting optimization problems has been a popular “hobby” for long time, e.g.,

first release library problem types
1985 Netlib Linear Programming
1992 MIPLIB Mixed-Integer Programming
1993 CUTE Nonlinear Programming
1998 SDPLib Semidefinite Programming
1999 CSPLib Constraint Satisfaction Programming
199x MacMINLP Mixed-Integer Nonlinear Programming
2001 GAMS World LP, MIP, NLP, MINLP, SOCP, MPEC
2003 COCONUT Nonlinear and Constraint Satisfaction Programming
2008 mintOC Mixed-Integer Optimal Control
2009 minlp.org MINLP, General Disjunctive Programming
2011 POLIP Mixed-Integer Polynomial Programming
2014 CBLIB Conic Programming
I for solver developers, access to a wide set of interesting problem instances

with different characteristics has always been important
I commercial solver vendors test their solver on thousands of test problems

before releasing a new software version
I the evaluation of algorithmic improvements (w.r.t. robustness and efficiency)

requires well-balanced test sets of significantly many real-world instances 2 / 64

MINLPLib and GLOBALLib http://www.gamsworld.org

I Initiated in 2001 (as part of GamsWorld/MinlpWorld/GlobalWorld):
M. Bussieck, A. Drud, and A. Meeraus
MINLPLib – A Collection of Test Models for Mixed-Integer Nonlinear Programming
INFORMS Journal on Computing 15, 114–119 (2003)

I “white-box” NLPs (GLOBALLib) and MINLPs (MINLPLib)

I frequently used for testing, but also benchmarking

3 / 64

http://www.gamsworld.org

MINLPLib and GLOBALLib Instances
I scalar GAMS format

Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;

I varying from small scale (great for debugging!) to large scale real world
instances (agricultural economics, chemical-, civil-, and electrical engineering,
finance, management, OR)

I intentionally including instances from badly formulated models or different
formulations of the same problem

I including solution points for many instances
I solely an instance collection, i.e., consisting of instantiations of models by

specific data sets

4 / 64

MINLPLib and GLOBALLib Instances
I scalar GAMS format

Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;

I varying from small scale (great for debugging!) to large scale real world
instances (agricultural economics, chemical-, civil-, and electrical engineering,
finance, management, OR)

I intentionally including instances from badly formulated models or different
formulations of the same problem

I including solution points for many instances
I solely an instance collection, i.e., consisting of instantiations of models by

specific data sets

4 / 64

MINLPLib and GLOBALLib Instances
I scalar GAMS format

Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;

I varying from small scale (great for debugging!) to large scale real world
instances (agricultural economics, chemical-, civil-, and electrical engineering,
finance, management, OR)

I intentionally including instances from badly formulated models or different
formulations of the same problem

I including solution points for many instances

I solely an instance collection, i.e., consisting of instantiations of models by
specific data sets

4 / 64

MINLPLib and GLOBALLib Instances
I scalar GAMS format

Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;

I varying from small scale (great for debugging!) to large scale real world
instances (agricultural economics, chemical-, civil-, and electrical engineering,
finance, management, OR)

I intentionally including instances from badly formulated models or different
formulations of the same problem

I including solution points for many instances
I solely an instance collection, i.e., consisting of instantiations of models by

specific data sets

4 / 64

MINLPLib and GLOBALLib History
I instances were harvested from existing collections, initially:

I GAMS Model Library
I MacMINLP (Leyffer)
I MINOPT library (Floudas)
I Handbook of Test Problems in Local and Global Optimization (Floudas et.al.)

I 2001 – 2009: maintained by Michael Bussieck
I new instances were added
I new incumbent solutions were added
I in 2009: Michael “volunteered” me as maintainer

2003 2005 2007 2009 2011 2013
0

100

200

300

400

500

600

700
GLOBALLib + MINLPLib - Number of Instances

5 / 64

MINLPLib 2

Tasks:
I Adding new problem instances:

I both convex and nonconvex problems
I (MI)QPs, (MI)QCQPs, and (MI)NLPs
I easy solvable, solvable, difficult to solve, but not trivial

I Categorizing instances
I convexity
I problem type (quadratic, polynomial, general nonlinear)
I function types (powers, exp/log, trigonometric, ...)
I solved to global optimality?

I Providing feasible best known solutions

Work in progress, current version publicly available:
http://www.gamsworld.org/minlp/minlplib2/html/index.html.

6 / 64

http://www.gamsworld.org/minlp/minlplib2/html/index.html

New NLP and MINLP Instances

2003 2005 2007 2009 2011 2013 2015
0

200

400

600

800

1000

1200

1400
MINLPLib 2 - Number of Instances

GLOBALLib + MINLPLib 1

MINLPLib 2

7 / 64

Sources of newly added instances
Harvesting mainly from

I CMU-IBM open source MINLP project (convex MINLPs)
I minlp.org
I POLIP (polynomial MINLPs)

Vecchietti library
MINOPT Model Library
GAMS clients

Westerlund

MacMINLP

ANTIGONE test library

BARON bookminlp.org

Bonmin test library

Floudas e.a. handbook

GAMS Model Library

POLIP

other

MINLPLib 2 instance sources (1357 in total)

8 / 64

Instance Formats

Format #instances
GAMS .gms 1363
AIMMS .ams 1352 (no Gamma, latest additions missing)
AMPL .mod 1337 (no errorf/signpower/Gamma/...)
AMPL .nl 1331 (no errorf/signpower/Gamma/..., latest missing)
OSIL XML 1342 (no signpower/Gamma/...)
CPLEX LP .lp 667 (limited to quadratics)
PIP .pip 770 (limited to polynomial)

9 / 64

Problem types

quadratic polynomial signomial general
0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

in
st

a
n
ce

s

Equation Types

GLOBALLib + MINLPLib 1

new in MINLPLib 2

m
ul di

v
sq

r
lo
g

ex
p

vc
po

wer
sq

rt sin

po
werco

s

cv
po

wer

lo
g1

0

er
ro

rf
ab

s

rp
ow

er
m

odm
in

sig
np

ow
er

ce
nt

ro
py

ga
m

m
a

0

100

200

300

400

N
u
m

b
e
r

o
f

in
st

a
n
ce

s

Operands in general nonlinear functions

GLOBALLib + MINLPLib 1

new in MINLPLib 2

10 / 64

Sparsity Pattern – Examples
dosemin2d eg_all_s feedtray2 johnall mbtd qapw
Radiation Therapy Feed Tray Location Asset Management Quadratic Assigment

(top: Objective Gradient and Jacobian; bottom: Lagrangian Hessian)
11 / 64

Sparsity Pattern – Examples (cont.)
Jacobian densitymod (Density modification based on single-crystal X-ray diffraction data; 23529 vars, 550 cons.)

Jacobian lop97ic (Rail Line Optimization, MIQCQP)

milinfract (Solving Mixed-Integer Linear Fractional Programming Problems with Dinkelbach’s Algorithm)

Objective Gradient + Jacobian Lagrangian Hessian

12 / 64

(Non)Convexity Detection for Functions
Analyze the Hessian:

I Given twice differentiable function h(x) and variable bounds [x , x̄].
I Compute the spectrum of the Hessian in one random point and conclude

I convexity/concavity/indefiniteness if h(x) is quadratic
I nonconvexity/nonconcavity if h(x) is general nonlinear

Analyze the Algebraic Expression:

f (x) convex⇒ a · f (x)

{
convex, a ≥ 0
concave, a ≤ 0

f (x), g(x) convex⇒ f (x) + g(x) convex
f (x) concave⇒ log(f (x)) concave

f (x) =
∏
i

xeii , xi ≥ 0⇒ f (x)

convex, ei ≤ 0 ∀i
convex, ∃j : ei ≤ 0 ∀i 6= j ;

∑
i ei ≥ 1

concave, ei ≥ 0 ∀i ;
∑

i ei ≤ 1

Analyze manually.

13 / 64

(Non)Convexity Detection for Functions
Analyze the Hessian:

I Given twice differentiable function h(x) and variable bounds [x , x̄].
I Compute the spectrum of the Hessian in one random point and conclude

I convexity/concavity/indefiniteness if h(x) is quadratic
I nonconvexity/nonconcavity if h(x) is general nonlinear

Analyze the Algebraic Expression:

f (x) convex⇒ a · f (x)

{
convex, a ≥ 0
concave, a ≤ 0

f (x), g(x) convex⇒ f (x) + g(x) convex
f (x) concave⇒ log(f (x)) concave

f (x) =
∏
i

xeii , xi ≥ 0⇒ f (x)

convex, ei ≤ 0 ∀i
convex, ∃j : ei ≤ 0 ∀i 6= j ;

∑
i ei ≥ 1

concave, ei ≥ 0 ∀i ;
∑

i ei ≤ 1

Analyze manually.

13 / 64

(Non)Convexity Detection for Functions
Analyze the Hessian:

I Given twice differentiable function h(x) and variable bounds [x , x̄].
I Compute the spectrum of the Hessian in one random point and conclude

I convexity/concavity/indefiniteness if h(x) is quadratic
I nonconvexity/nonconcavity if h(x) is general nonlinear

Analyze the Algebraic Expression:

f (x) convex⇒ a · f (x)

{
convex, a ≥ 0
concave, a ≤ 0

f (x), g(x) convex⇒ f (x) + g(x) convex
f (x) concave⇒ log(f (x)) concave

f (x) =
∏
i

xeii , xi ≥ 0⇒ f (x)

convex, ei ≤ 0 ∀i
convex, ∃j : ei ≤ 0 ∀i 6= j ;

∑
i ei ≥ 1

concave, ei ≥ 0 ∀i ;
∑

i ei ≤ 1

Analyze manually.

13 / 64

(Non)Convexity in MINLPLib
I Numerical analysis of (pointwise) Hessians by LAPACK.
I Symbolic analysis of expressions by SCIP.
I Mark additional 71 instances (5%) as convex.

convex
26%

nonconvex
71%

undecided
3%

MINLPLib instances convexity

14 / 64

Solution Points

MINLPLib instances traditionally come with known feasible solution points.

For MINLPLib 2, we added

Feasibility checking:
I compute maximal (unscaled) violation of constraints, variable bounds, and

discreteness restrictions
I uses GAMS/EXAMINER2

Solution polishing: For a given point,
1. project onto variable bounds
2. round values for discrete variables to exact integers
3. ensure that semicontinuity/semiintegrality and special-ordered-set constraints

are exactly satisfied
4. run CONOPT on MINLP with all binary/integer/semi*/SOS variables fixed,

start from updated point, scaling disabled, feasibility tolerance 10−9

15 / 64

Solution Points

MINLPLib instances traditionally come with known feasible solution points.

For MINLPLib 2, we added

Feasibility checking:
I compute maximal (unscaled) violation of constraints, variable bounds, and

discreteness restrictions
I uses GAMS/EXAMINER2

Solution polishing: For a given point,
1. project onto variable bounds
2. round values for discrete variables to exact integers
3. ensure that semicontinuity/semiintegrality and special-ordered-set constraints

are exactly satisfied
4. run CONOPT on MINLP with all binary/integer/semi*/SOS variables fixed,

start from updated point, scaling disabled, feasibility tolerance 10−9

15 / 64

Solution Points

MINLPLib instances traditionally come with known feasible solution points.

For MINLPLib 2, we added

Feasibility checking:
I compute maximal (unscaled) violation of constraints, variable bounds, and

discreteness restrictions
I uses GAMS/EXAMINER2

Solution polishing: For a given point,
1. project onto variable bounds
2. round values for discrete variables to exact integers
3. ensure that semicontinuity/semiintegrality and special-ordered-set constraints

are exactly satisfied
4. run CONOPT on MINLP with all binary/integer/semi*/SOS variables fixed,

start from updated point, scaling disabled, feasibility tolerance 10−9

15 / 64

Polished Solution Points

10-15 10-13 10-11 10-9 10-7 10-5 10-3 10-1 101 103 105 107 109

Infeasibility

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f

p
o
in

ts

MINLPLib 1 solution points w.r.t. infeasibility

10-1510-1310-1110-9 10-7 10-5 10-3 10-1 101 103 105 107 109

Infeasibility

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

p
o
in

ts

MINLPLib 2 solution points w.r.t. infeasibility

Available in two formats:

GAMS Data Exchange (GDX) ASCII (.sol)

x1 1.11803398874989001754
x2 1.31037069710444997739
b4 1.00000000000000000000
b5 1.00000000000000000000
objvar 7.66718006881313041134

16 / 64

Polished Solution Points

10-15 10-13 10-11 10-9 10-7 10-5 10-3 10-1 101 103 105 107 109

Infeasibility

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f

p
o
in

ts

MINLPLib 1 solution points w.r.t. infeasibility

10-1510-1310-1110-9 10-7 10-5 10-3 10-1 101 103 105 107 109

Infeasibility

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

p
o
in

ts

MINLPLib 2 solution points w.r.t. infeasibility

Available in two formats:

GAMS Data Exchange (GDX) ASCII (.sol)

x1 1.11803398874989001754
x2 1.31037069710444997739
b4 1.00000000000000000000
b5 1.00000000000000000000
objvar 7.66718006881313041134

16 / 64

Dual Bounds

dual bound =

{
lower bound on optimal value, if minimization
upper bound on optimal value, if maximization

Collected dual bounds from
I solvers for general (MI)NLP

(ANTIGONE, BARON, Couenne, Lindo, SCIP)
I solvers for convex MINLP on proven convex MINLPs

(AlphaECP, Bonmin BB, Bonmin Hyb)

But: No way to verify correctness of bound!

Conservative approach: Only trust a solvers dual bound claim if it has been
verified by at least 2 other solvers.

17 / 64

Dual Bounds

dual bound =

{
lower bound on optimal value, if minimization
upper bound on optimal value, if maximization

Collected dual bounds from
I solvers for general (MI)NLP

(ANTIGONE, BARON, Couenne, Lindo, SCIP)
I solvers for convex MINLP on proven convex MINLPs

(AlphaECP, Bonmin BB, Bonmin Hyb)

But: No way to verify correctness of bound!

Conservative approach: Only trust a solvers dual bound claim if it has been
verified by at least 2 other solvers.

17 / 64

Dual Bounds

dual bound =

{
lower bound on optimal value, if minimization
upper bound on optimal value, if maximization

Collected dual bounds from
I solvers for general (MI)NLP

(ANTIGONE, BARON, Couenne, Lindo, SCIP)
I solvers for convex MINLP on proven convex MINLPs

(AlphaECP, Bonmin BB, Bonmin Hyb)
But: No way to verify correctness of bound!

Conservative approach: Only trust a solvers dual bound claim if it has been
verified by at least 2 other solvers.

17 / 64

Dual Bounds

dual bound =

{
lower bound on optimal value, if minimization
upper bound on optimal value, if maximization

Collected dual bounds from
I solvers for general (MI)NLP

(ANTIGONE, BARON, Couenne, Lindo, SCIP)
I solvers for convex MINLP on proven convex MINLPs

(AlphaECP, Bonmin BB, Bonmin Hyb)
But: No way to verify correctness of bound!

Conservative approach: Only trust a solvers dual bound claim if it has been
verified by at least 2 other solvers.

17 / 64

“Open” instances
Feasible solution points ⊕ trusted dual bounds ⇒ trusted gap

0.0 0.2 0.4 0.6 0.8 1.0
Trusted Gap

0

200

400

600

800

1000
N

u
m

b
e
r

o
f

in
st

a
n
ce

s

MINLPLib histogram w.r.t. trusted gap

GLOBALLib + MINLPLib 1

new in MINLPLib 2

0.0 , ≤ 10−9 1.0 , ≥ 1.0

18 / 64

Query the MINLPLib

Simple script to select instances by specific criteria, e.g.:
I all large convex instances, show # var. and # cons.:

$./query.py "(nvars > 4242) & (convex == True)" -c nvars -c ncons
nvars ncons

jbearing100 5304 0
squfl030-150 4530 4650
watercontamination0202 106711 107209
watercontamination0303 107222 108217

I all quadratic instances:
./query.py "npolynomfunc == 0 & nsignomfunc == 0 & ngennlfunc == 0"

I all instances with trigonometric functions:
./query.py "(opsin == True) or (opcos == True)"

I all separable instances, sorted by problem type:
./query.py "nlaghessiannz == nlaghessiandiagnz" -s probtype -c probtype

I all unsolved instances (w.r.t. “trusted” dual bounds), zipped up:
./query.py "gap > 0.1" -c gap -z open.zip

19 / 64

What to do with all these instances?

General Purpose Global Solvers Benchmark?
date GAMS ANTIGONE BARON COUENNE LINDO SCIP

07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

. . .

20 / 64

What to do with all these instances?

General Purpose Global Solvers Benchmark?
date GAMS ANTIGONE BARON COUENNE LINDO SCIP

07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

. . .

20 / 64

Today: Go Columnwise
date GAMS ANTIGONE BARON COUENNE LINDO SCIP

08/11 23.7.3 – 9.3.1 0.3 6.1.1.588 –
04/12 23.8.2 – 10.2.0 0.4 7.0.1.421 2.1.1
11/12 23.9.5 – 11.5.2 0.4 7.0.1.497 2.1.2
02/13 24.0.2 – 11.9.1 0.4 7.0.1.497 3.0
07/13 24.1.3 1.1 12.3.3 0.4 8.0.1283.385 3.0
05/14 24.2.3 1.1 12.7.7 0.4 8.0.1694.498 3.0
09/14 24.3.3 1.1 14.0.3 0.4 8.0.1694.550 3.1
06/15 24.4.6 1.1 14.4.0 0.4 9.0.1983.157 3.1
07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

I ANTIGONE by R. Misener (Imperial College) and Ch. Floudas (Texas A&M)
I BARON by N. Sahinidis (CMU), M. Tawarmalani (Purdue), et.al.
I Couenne by P. Belotti (now FICO), et.al.; open-source (COIN-OR)
I Lindo API by Lindo Systems Inc.
I SCIP by Zuse Institute Berlin, TU Darmstadt, FAU Erlangen; free for academic use

Quantify Improvements of global MINLP solvers over the last 4 years!

21 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

22 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

22 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications

× dominance of certain models, e.g.,
I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

22 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

22 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

22 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.

With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

22 / 64

Which instances to run?
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

X large number of instances
⇒ 40 solver versions × 1363 instances = 54520 runs (!)

X wide variety of applications
× dominance of certain models, e.g.,

I 32 block layout design problems
I 60 small investor portfolio optimization instances
I ...

× many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.
With 15 co-authors and 8 months of time, this would be no problem.

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.
22 / 64

Prune Instances by Tractability and Triviality Heuristic

1. Remove intractable instances
I consider only the 881 instances that are

marked as solved in MINLPLib 2

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

0.0 0.2 0.4 0.6 0.8 1.0
Trusted Gap

0

200

400

600

800

1000

N
u
m

b
e
r

o
f

in
st

a
n
ce

s

MINLPLib histogram w.r.t. trusted gap

GLOBALLib + MINLPLib 1

new in MINLPLib 2

23 / 64

Prune Instances by Tractability and Triviality Heuristic
2. For each solver separately:

I Remove instances that are solved within 60 seconds by the oldest solver
version (e.g., as in GAMS 23.7).

I Remove instances that the solver cannot handle (due to trigonometric
functions, SOS, . . .).

In case of SCIP:

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

24 / 64

Prune Instances by Tractability and Triviality Heuristic
For SCIP, this leaves 312 instances:

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
csched1a
edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
ex4_1_5
ex4_1_6

ex6_1_1
ex6_1_3
ex6_2_12
ex6_2_14
ex6_2_8
ex6_2_9
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_2_4b
ex8_4_1
ex8_4_3
ex8_4_4
ex8_4_5
ex8_4_8_bnd
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
fo9_ar4_1

fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
graphpart_clique-30
graphpart_clique-40
gsg_0001
hda
heatexch_trigen

house
jbearing25
jbearing75
johnall
kall_circles_c6a
kall_circles_c6b
kall_circles_c7a
kall_circles_c8a
kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...

25 / 64

Prune Instances by Tractability and Triviality Heuristic
For SCIP, this leaves 312 instances – obvious dominance by some models:

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
csched1a
edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
ex4_1_5
ex4_1_6

ex6_1_1
ex6_1_3
ex6_2_12
ex6_2_14
ex6_2_8
ex6_2_9
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_2_4b
ex8_4_1
ex8_4_3
ex8_4_4
ex8_4_5
ex8_4_8_bnd
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
fo9_ar4_1

fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
graphpart_clique-30
graphpart_clique-40
gsg_0001
hda
heatexch_trigen

house
jbearing25
jbearing75
johnall
kall_circles_c6a
kall_circles_c6b
kall_circles_c7a
kall_circles_c8a
kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...

25 / 64

P.I.T.T.E.D. Heuristic: P.I.T.T. with Eased Dominance
3. Ensure uniqueness of 6-characters-prefix of instances names.

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
csched1a
edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
ex4_1_5
ex4_1_6

ex6_1_1
ex6_1_3
ex6_2_12
ex6_2_14
ex6_2_8
ex6_2_9
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_2_4b
ex8_4_1
ex8_4_3
ex8_4_4
ex8_4_5
ex8_4_8_bnd
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
fo9_ar4_1

fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
graphpart_clique-30
graphpart_clique-40
gsg_0001
hda
heatexch_trigen

house
jbearing25
jbearing75
johnall
kall_circles_c6a
kall_circles_c6b
kall_circles_c7a
kall_circles_c8a
kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...

26 / 64

P.I.T.T.E.D. Heuristic: P.I.T.T. with Eased Dominance
3. Ensure uniqueness of 6-characters-prefix of instances names.

alkylation
arki0003
arki0005
arki0006
arki0019
arki0024
autocorr_bern20-10
autocorr_bern20-15
autocorr_bern25-06
autocorr_bern25-13
autocorr_bern30-04
autocorr_bern35-04
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0204h
clay0205h
clay0303h

clay0304h
clay0305h
crudeoil_lee2_10
crudeoil_lee3_07
crudeoil_lee3_08
crudeoil_lee3_09
crudeoil_lee3_10
crudeoil_li06
csched1a
edgecross10-060
edgecross10-070
edgecross10-080
edgecross14-039
edgecross14-058
edgecross14-078
edgecross14-176
edgecross20-040
edgecross22-048
emfl050_5_5
emfl100_5_5
ethanolh
ethanolm
ex1252a
ex14_1_1
ex14_1_7
ex4_1_5
ex4_1_6

ex6_1_1
ex6_1_3
ex6_2_12
ex6_2_14
ex6_2_8
ex6_2_9
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_2_4b
ex8_4_1
ex8_4_3
ex8_4_4
ex8_4_5
ex8_4_8_bnd
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo8_ar2_1
fo9
fo9_ar25_1
fo9_ar2_1
fo9_ar3_1
fo9_ar4_1

fo9_ar5_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
graphpart_2g-0077-0077
graphpart_2g-0088-0088
graphpart_2g-0099-9211
graphpart_2pm-0066-0066
graphpart_2pm-0077-0777
graphpart_2pm-0088-0888
graphpart_2pm-0099-0999
graphpart_3g-0334-0334
graphpart_3g-0344-0344
graphpart_3g-0444-0444
graphpart_3pm-0244-0244
graphpart_3pm-0333-0333
graphpart_3pm-0334-0334
graphpart_3pm-0344-0344
graphpart_3pm-0444-0444
graphpart_clique-30
graphpart_clique-40
gsg_0001
hda
heatexch_trigen

house
jbearing25
jbearing75
johnall
kall_circles_c6a
kall_circles_c6b
kall_circles_c7a
kall_circles_c8a
kall_circlespolygons_c1p12
kall_circlespolygons_c1p13
kall_circlesrectangles_c1r12
kall_circlesrectangles_c1r13
kall_congruentcircles_c71
kall_diffcircles_10
kall_diffcircles_5b
kall_diffcircles_7
kall_diffcircles_8
kall_diffcircles_9
launch
lop97icx
mathopt5_7
mathopt5_8
mhw4d
milinfract
minlphix
minsurf100
...

26 / 64

P.I.T.T.E.D. SCIP testset
In summary:
1. Keep only instances that are marked as solved in MINLPLib 2.
2. Keep only instances that take ≥ 60s with oldest version of solver and that can

be handled by solver.
3. Reduce instances with similar names.

For SCIP, this reduces from 1363 to 881 to 123 instances:

alkylation
arki0003
autocorr_bern20-10
batch0812_nc
batchs201210m
bayes2_50
blend480
blend531
blend718
blend852
carton7
casctanks
cecil_13
chem
clay0203h
clay0303h
crudeoil_lee2_10
csched1a
edgecross10-060

emfl050_5_5
emfl100_5_5
ethanolh
ex1252a
ex14_1_1
ex4_1_5
ex6_1_1
ex6_2_12
ex7_2_4
ex8_1_7
ex8_2_1b
ex8_4_1
filter
fin2bb
flay05h
fo7
fo8
fo8_ar25_1
fo9

fo9_ar25_1
gasnet
genpooling_meyer04
ghg_1veh
ghg_3veh
glider100
graphpart_2g-0066-0066
gsg_0001
hda
heatexch_trigen
house
jbearing25
johnall
kall_circles_c6a
kall_diffcircles_10
launch
lop97icx
mathopt5_7
mhw4d

milinfract
minlphix
minsurf100
multiplants_mtg1a
no7_ar3_1
nous1
nvs09
nvs22
o7
o7_2
o7_ar25_1
o7_ar3_1
o7_ar4_1
o7_ar5_1
o8_ar4_1
o9_ar4_1
oil
oil2
parallel

pinene50
pointpack08
pooling_epa1
prob07
process
procsyn
prolog
qp3
routingdelay_bigm
rsyn0805m02h
sepasequ_convent
sfacloc2_2_80
slay07h
slay09h
slay10h
smallinvDAXr1b020-022
sporttournament14
squfl010-025
sssd08-04

sssd12-05
sssd15-04
sssd16-07
sssd18-06
sssd20-04
sssd25-04
st_e35
stockcycle
supplychainp1_020306
syn10m03h
syn15m02h
syn20m02h
syn30h
syn30m02h
syn40h
syn40m02h

tln5
tln6
tln7
torsion100
tspn05
waste
wastewater05m1
water4
watercontamination0202
waternd1
watertreatnd_flow
weapons

27 / 64

PITT test set for each solver

Removed easy and unsolvable instances:

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

ANTIGONE

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

BARON

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

COUENNE

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

LINDO

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

SCIP

28 / 64

PITTED test set for each solver

Removed easy and unsolvable instances, then filter by name:

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

ANTIGONE

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

BARON

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

COUENNE

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

LINDO

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

SCIP

29 / 64

Run jobs

date GAMS ANTIGONE BARON COUENNE LINDO SCIP

08/11 23.7.3 – 9.3.1 0.3 6.1.1.588 –
04/12 23.8.2 – 10.2.0 0.4 7.0.1.421 2.1.1
11/12 23.9.5 – 11.5.2 0.4 7.0.1.497 2.1.2
02/13 24.0.2 – 11.9.1 0.4 7.0.1.497 3.0
07/13 24.1.3 1.1 12.3.3 0.4 8.0.1283.385 3.0
05/14 24.2.3 1.1 12.7.7 0.4 8.0.1694.498 3.0
09/14 24.3.3 1.1 14.0.3 0.4 8.0.1694.550 3.1
06/15 24.4.6 1.1 14.4.0 0.4 9.0.1983.157 3.1
07/15 24.5α 1.1 15.6.5 0.5 9.0.1983.157 3.2.0

for GAMS in $GAMSS ; do
for SOLVER in $SOLVERS($GAMS) ; do
for INSTANCE in $TESTSET($SOLVER) ; do
sbatch --exclusive --time=0:1800 $GAMS $INSTANCE SOLVER=$SOLVER

done
done

done

Hardware: Dell PowerEdge M1000e, 48GB RAM, Intel Xeon X5672@3.2GHz

30 / 64

BARON: Fails
A solver failed, if it

I crashed, or
I reported an infeasible point as feasible (tolerance: 10−4), or
I reported a suboptimal solution as optimal (tolerance: 10−4)

9.3 10.2 11.5 11.9 12.3 12.7 14.0 14.4 15.6
0

20

40

60

80

100

4.3 4.8 3.2 4.3 5.3
1 1.6 1.1 1

BARON version

%
fa
ile
d
in
st
an
ce
s
(o
ut

of
18
8)

same as previous version
additional to previous version

31 / 64

BARON: Solved
Solved: solver did not fail and reports a relative optimality gap ≤ 10−4

9.3 10.2 11.5 11.9 12.3 12.7 14.0 14.4 15.6
0

20

40

60

80

100

45.2 47.9

60.1 62.8
67.1 68.6

79.2
83.5 84.6

BARON version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
18
8)

same as previous version
additional to previous version

only in previous version

32 / 64

BARON: Solved – What happened?

9.3 10.2 11.5 11.9 12.3 12.7 14.0 14.4 15.6
0

20

40

60

80

100

45.2 47.9

60.1 62.8
67.1 68.6

79.2
83.5 84.6

BARON version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
18

8)

From the release notes:
11.0: “This version comes with a wealth of new branching, relaxation, convexity

exploitation, local search, and range reduction techniques.”
11.5: “Improvements in local search” (dive-and-round heuristic for MINLPs,

automatically select and switch back and forth between NLP solvers)
12.3: “New relaxations for certain types of quadratic problems”, “Improved integer

presolve”, “Incorporation of convex envelopes for certain low-dimensional
functions”

14.0: “Significant advances in the handling of integer programs.” (integer cutting
planes, calls to MIP solvers, hybrid LP/MIP/NLP relaxations)

33 / 64

BARON: Found optimal solution

9.3 10.2 11.5 11.9 12.3 12.7 14.0 14.4 15.6
0

20

40

60

80

100

66 63.8
68.6 67

71.3
76

87.8
93.1 93.1

BARON version

%
fo
un

d
op

tim
al

so
lu
tio

n
(o
ut

of
18
8)

same as previous version
additional to previous version

only in previous version

34 / 64

BARON: Solving time on instances that never failed (163)

9.3 10.2 11.5 11.9 12.3 12.7 14.0 14.4 15.6
0

5

10

15

20

25
nan

1.56

1.43

1.48
1.18

0.74

2.02

2.12 0.77

BARON version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 9.00
12.7: “Automatic setting of many options based on problem characteristics and learning
algorithms.“

35 / 64

BARON: Solving time on instances solved by all vers. (69)

9.3 10.2 11.5 11.9 12.3 12.7 14.0 14.4 15.6
0

0.2

0.4

0.6

0.8

nan

1.46
1.06 1.00

1.13
1.20

1.25

1.58 0.88

BARON version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0
5
10

20

50

75

100

10
0
×

W
ilc
ox
on

p-
va
lu
e

wilcoxon p

Overall speedup: 3.67
36 / 64

ANTIGONE: Fails

1.1 1.1 1.1 1.1 1.1
0

20

40

60

80

100

2.6 2.6 2.6 6.3 6.3

ANTIGONE version

%
fa
ile
d
in
st
an
ce
s
(o
ut

of
18
9)

same as previous version
additional to previous version

37 / 64

ANTIGONE: Solved

1.1 1.1 1.1 1.1 1.1
0

20

40

60

80

100

61.9 62.4 62.4 59.3 59.3

ANTIGONE version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
18
9)

same as previous version
additional to previous version

only in previous version

38 / 64

ANTIGONE: Found optimal solution

1.1 1.1 1.1 1.1 1.1
0

20

40

60

80

100

83.6 85.2 84.6
80.4 80.4

ANTIGONE version

%
fo
un

d
op

tim
al

so
lu
tio

n
(o
ut

of
18
9)

same as previous version
additional to previous version

only in previous version

39 / 64

ANTIGONE: Solving time on instances that never failed (177)

1.1 1.1 1.1 1.1 1.1
0

2

4

6

8

10

12

nan

1.18 1.00 1.05 1.00

ANTIGONE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

40 / 64

ANTIGONE: Solving time on instances solved by all (110)

1.1 1.1 1.1 1.1 1.1
0

0.5

1

1.5

2

nan

1.19 1.03 0.99 1.00

ANTIGONE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0
5
10

20

50

75

100

10
0
×

W
ilc
ox
on

p-
va
lu
e

wilcoxon p

41 / 64

COUENNE: Fails

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

20

40

60

80

100

16.9

37.1

20.9 22.6 20.1 20.1 19.3 17.7 14.6

COUENNE version

%
fa
ile
d
in
st
an
ce
s
(o
ut

of
12
4)

same as previous version
additional to previous version

only in previous version

42 / 64

COUENNE: Solved

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

20

40

60

80

100

29
21.8

27.5 25 25 25.8 26.6 26.6
34.7

COUENNE version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
12
4)

same as previous version
additional to previous version

only in previous version

43 / 64

COUENNE: Found optimal solution

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

20

40

60

80

100

46

35.5

45.2 43.5 42.7 40.3 41.9 41.9 43.6

COUENNE version

%
fo
un

d
op

tim
al

so
lu
tio

n
(o
ut

of
12
4)

same as previous version
additional to previous version

only in previous version

44 / 64

COUENNE: Solving time on instances that never failed (65)

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

200

400

600

800
nan

1.25 0.98 1.00
0.94 1.03 1.02 1.00

1.11

COUENNE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 1.35
45 / 64

COUENNE: Solving time on instances that never failed (65)
[Couenne] Couenne stable release
0.4
Pietro Belotti pbelott at clemson.edu
Mon Aug 8 05:13:15 EDT 2011

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [date] [thread] [subject] [author]

Dear Couenne users,

this is to announce the 0.4 stable version of Couenne. There are a number
of additions and improvements, including:

1) a Feasibility Pump heuristic for non-convex MINLP, developed with Timo
Berthold at the ZIB institute.

2) Orbital Branching for MINLP, developed with Jim Ostrowski and Leo
Liberti.

3) Fixed Point Bound tightening, a bound reduction procedure developed
with Sonia Cafieri, Jon Lee, and Leo Liberti.

4) "semi-auxiliaries", i.e., auxiliary variables defined as y >= f(x) or y
<= f(x) instead of just y = f(x). The purpose is to save on the number of
auxiliaries generated and hence on the size of the LP relaxation.

5) "Two-Implied bound tightening", a new bound reduction procedure
described in http://www.optimization-online.org/DB_FILE/2011/02/2931.pdf

6) various bug fixes.

Release 0.4.0 is a snapshot of the new stable version. The new features
will soon be documented in Couenne's user manual, available at
http://www.coin-or.org/Couenne/couenne-user-manual.pdf

Happy MINLPing,
Pietro

--
Pietro Belotti
Dept. of Mathematical Sciences
Clemson University
email: pbelott at clemson.edu
phone: 864-656-6765
web: myweb.clemson.edu/~pbelott

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [date] [thread] [subject] [author]

More information about the Couenne mailing list

[Couenne] Couenne stable release 0.4 http://list.coin-or.org/pipermail/couenne/2011-A...

1 of 1 07/14/2015 06:00 AM

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

200

400

600

800
nan

1.25 0.98 1.00
0.94 1.03 1.02 1.00

1.11

COUENNE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

1. Feasibility Pump

feasibility_pump no

2. Orbital Branching

orbital_branching no

3. Fixed Point BT

fixpoint_bt 0

4. “semi-auxiliaries”

use_semiaux yes

5. Two-Implied BT

two_implied_bt 0

6. various bug fixes
46 / 64

COUENNE: Solving time on instances that never failed (65)
[Couenne] Couenne stable release
0.4
Pietro Belotti pbelott at clemson.edu
Mon Aug 8 05:13:15 EDT 2011

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [date] [thread] [subject] [author]

Dear Couenne users,

this is to announce the 0.4 stable version of Couenne. There are a number
of additions and improvements, including:

1) a Feasibility Pump heuristic for non-convex MINLP, developed with Timo
Berthold at the ZIB institute.

2) Orbital Branching for MINLP, developed with Jim Ostrowski and Leo
Liberti.

3) Fixed Point Bound tightening, a bound reduction procedure developed
with Sonia Cafieri, Jon Lee, and Leo Liberti.

4) "semi-auxiliaries", i.e., auxiliary variables defined as y >= f(x) or y
<= f(x) instead of just y = f(x). The purpose is to save on the number of
auxiliaries generated and hence on the size of the LP relaxation.

5) "Two-Implied bound tightening", a new bound reduction procedure
described in http://www.optimization-online.org/DB_FILE/2011/02/2931.pdf

6) various bug fixes.

Release 0.4.0 is a snapshot of the new stable version. The new features
will soon be documented in Couenne's user manual, available at
http://www.coin-or.org/Couenne/couenne-user-manual.pdf

Happy MINLPing,
Pietro

--
Pietro Belotti
Dept. of Mathematical Sciences
Clemson University
email: pbelott at clemson.edu
phone: 864-656-6765
web: myweb.clemson.edu/~pbelott

Next message: [Couenne] stable/0.4 does not compile
Messages sorted by: [date] [thread] [subject] [author]

More information about the Couenne mailing list

[Couenne] Couenne stable release 0.4 http://list.coin-or.org/pipermail/couenne/2011-A...

1 of 1 07/14/2015 06:00 AM

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

200

400

600

800
nan

1.25 0.98 1.00
0.94 1.03 1.02 1.00

1.11

COUENNE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

1. Feasibility Pump
feasibility_pump no

2. Orbital Branching
orbital_branching no

3. Fixed Point BT
fixpoint_bt 0

4. “semi-auxiliaries”
use_semiaux yes

5. Two-Implied BT
two_implied_bt 0

6. various bug fixes
46 / 64

COUENNE: Solving time on instances solved by all (16)

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5
0

20

40

60

80

100

120

nan

2.10
0.91 1.00

0.87
1.14

1.09 1.02 1.04

COUENNE version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0
5
10

20

50

75

100

10
0
×

W
ilc
ox
on

p-
va
lu
e

wilcoxon p

Overall speedup: 2.16
47 / 64

LINDO: Fails

6.1 7.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0
0

20

40

60

80

100

5.5
14.8

24.2 23.4

6.2 8.6 8.6
12.4 12.5

LINDO version

%
fa
ile
d
in
st
an
ce
s
(o
ut

of
12
8)

same as previous version
additional to previous version

only in previous version

48 / 64

LINDO: Solved

6.1 7.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0
0

20

40

60

80

100

39.1
35.2 34.4 32.8

48.4 48.5 46.9
43 43

LINDO version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
12
8)

same as previous version
additional to previous version

only in previous version

LINDO 8.0: improvements in primal heuristics for MIP (feas. pump) and
nonconvex NLP (multistart)

49 / 64

LINDO: Found optimal solution

6.1 7.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0
0

20

40

60

80

100

59.4
53.1

47.6 46.1

64.8 63.3 66.4
62.5 62.5

LINDO version

%
fo
un

d
op

tim
al

so
lu
tio

n
(o
ut

of
12
8)

same as previous version
additional to previous version

only in previous version

50 / 64

LINDO: Solving time on instances that never failed (72)

6.1 7.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0
0

200

400

600

nan

2.01
1.10 1.04

1.85
1.32 1.06 0.93 1.00

LINDO version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 5.48
51 / 64

LINDO: Solving time on instances solved by all vers. (16)

6.1 7.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0
0

50

100

150

200
nan

1.57 1.06 0.98

2.37
0.80 0.91 1.07 1.00

LINDO version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0
5
10

20

50

75

100

10
0
×

W
ilc
ox
on

p-
va
lu
e

wilcoxon p

Overall speedup: 3.02
52 / 64

SCIP: Fails

2.1 2.1 3.0 3.0 3.0 3.1 3.1 3.2
0

20

40

60

80

100

13
9 10.5 8.9 8.1

1.6 1.6 1.6

SCIP version

%
fa
ile
d
in
st
an
ce
s
(o
ut

of
12
3)

same as previous version
additional to previous version

only in previous version

53 / 64

SCIP: Solved

2.1 2.1 3.0 3.0 3.0 3.1 3.1 3.2
0

20

40

60

80

100

32.5 34.2

44.7 48 45.5

55.3 52 54.5

SCIP version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
12
3)

same as previous version
additional to previous version

only in previous version

54 / 64

SCIP: Found optimal solution

2.1 2.1 3.0 3.0 3.0 3.1 3.1 3.2
0

20

40

60

80

100

61.8 60.2
65.1 66.6 68.3

75.6 73.2
77.2

SCIP version

%
fo
un

d
op

tim
al

so
lu
tio

n
(o
ut

of
12
3)

same as previous version
additional to previous version

only in previous version

55 / 64

SCIP: Solving time on instances that never failed (96)

2.1 2.1 3.0 3.0 3.0 3.1 3.1 3.2
0

200

400

600

nan 1.03

2.53 0.97 1.01

1.67 0.90
1.17

SCIP version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 4.49

56 / 64

SCIP: Solving time on instances solved by all vers. (31)

2.1 2.1 3.0 3.0 3.0 3.1 3.1 3.2
0

50

100

150

200

nan
1.10

2.78
0.87 0.99 1.07 0.92 0.93

SCIP version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0
5
10

20

50

75

100

10
0
×

W
ilc
ox
on

p-
va
lu
e

wilcoxon p

Overall speedup: 2.42
57 / 64

“Virtual Best” Solver
I common subset of instances
I for each instance and GAMS version, pick best results among all solvers

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

ANTIGONE

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

BARON

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

COUENNE

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

LINDO

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

SCIP

100 101 102 103

100

101

102

103

104

Number of Discrete Variables (+1)

N
um

be
r
of

N
on

lin
ea
r
N
on

ze
ro
s
in

Ja
co
bi
an

Virtual Best

58 / 64

Virtual Best: Fails

23.7 23.8 23.9 24.0 24.1 24.2 24.3 24.4 24.5
0

5

10

15

20

1.4
0 0 0 0 0 0 0 0

GAMS version

%
fa
ile
d
in
st
an
ce
s
(o
ut

of
71
)

same as previous version
additional to previous version

59 / 64

Virtual Best: Solved

23.7 23.8 23.9 24.0 24.1 24.2 24.3 24.4 24.5
0

20

40

60

80

100

GAMS version

%
so
lv
ed

in
st
an
ce
s
(o
ut

of
71
)

virt.best ANTIGONE BARON COUENNE LINDO API SCIP

60 / 64

Virtual Best: Solving time on instances that never failed (70)

23.7 23.8 23.9 24.0 24.1 24.2 24.3 24.4 24.5
0

200

400

600

800

1,000

1,200

nan

3.10
0.87

3.33 1.00 0.73
2.22 1.32 0.85

GAMS version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 14.84
61 / 64

Virtual Best: Solving time on instances that never failed (70)

23.7 23.8 23.9 24.0 24.1 24.2 24.3 24.4 24.5
0

200

400

600

800

1,000

1,200

nan

3.10
0.87

3.33 1.00 0.73
2.22 1.32 0.85

GAMS version

m
ea
n
so
lv
in
g
tim

e
(s
)

virt.best ANTIGONE BARON COUENNE LINDO SCIP

0

20

40

60

80

100
wilcoxon p virt. best

Overall speedup: 14.84

62 / 64

Virtual Best: Solving time on instances solved by all (17)

23.7 23.8 23.9 24.0 24.1 24.2 24.3 24.4 24.5
0

50

100

150

200

nan

4.30
0.76

2.33 0.94 1.12
1.56 1.19 0.96

GAMS version

m
ea
n
so
lv
in
g
tim

e
(s
)

mean time, speedup

0

20

40

60

80

100

wilcoxon p

Overall speedup: 14.30
63 / 64

End.
http://www.gamsworld.org/minlp/minlplib2/html/

Future Work:
I add more NLPs (from PrincetonLib, COCONUT, NEOS, ...)
I semi-automatic identification of duplicates
I more structure recognition, e.g., second-order cones
I define interesting subsets, especially a benchmark set for

global solvers

Call for contributions:
I Contribute your own (MI)NLP instances! (Or send your model to minlp.org!)
I Ideally from a model for a real life problem.
I Also infeasible instances are welcomed.
I Any (well-known) format is good (e.g., AMPL, GAMS, ZIMPL, BARON, CPLEX

LP, MPS, PIP, OSiL).
I MINLPLib instances are anonymized (scalar format using generic names).
I Your benefit: Solver developers may test and tune their solver for your

problem.
64 / 64

http://www.gamsworld.org/minlp/minlplib2/html/
minlp.org

