(MI)NLPLib 2

Stefan Vigerske

16th July 2015

ISMP, Pittsburgh

Model instance collections

Collecting optimization problems has been a popular "hobby" for long time, e.g.,

first release	library	problem types
1985	Netlib	Linear Programming
1992	MIPLIB	Mixed-Integer Programming
1993	CUTE	Nonlinear Programming
1998	SDPLib	Semidefinite Programming
1999	CSPLib	Constraint Satisfaction Programming
199×	MacMINLP	Mixed-Integer Nonlinear Programming
2001	GAMS World	LP, MIP, NLP, MINLP, SOCP, MPEC
2003	COCONUT	Nonlinear and Constraint Satisfaction Programming
2008	mintOC	Mixed-Integer Optimal Control
2009	minlp.org	MINLP, General Disjunctive Programming
2011	POLIP	Mixed-Integer Polynomial Programming
2014	CBLIB	Conic Programming

- for solver developers, access to a wide set of interesting problem instances with different characteristics has always been important
- commercial solver vendors test their solver on thousands of test problems before releasing a new software version
- the evaluation of algorithmic improvements (w.r.t. robustness and efficiency) requires well-balanced test sets of significantly many real-world instances

MINLPLib and GLOBALLib

http://www.gamsworld.org

- Initiated in 2001 (as part of GamsWorld/MinlpWorld/GlobalWorld): M. Bussieck, A. Drud, and A. Meeraus
 MINLPLib – A Collection of Test Models for Mixed-Integer Nonlinear Programming INFORMS Journal on Computing 15, 114–119 (2003)
- "white-box" NLPs (GLOBALLib) and MINLPs (MINLPLib)

MINLPLib Model Statistics

Name	#Eqns	#Vars	#DVars	#NZ	#NNZ	BestInt	at Point
<u>4stufen</u>	99	150	48	319	87	116329.6706	<u>p1</u>
<u>alan</u>	8	9	4	24	3	2.9250	<u>p1</u>
batch	74	47	24	191	22	285506.5082	<u>p1</u>
<u>batchdes</u>	20	20	9	53	10	167427.6571	<u>p1</u>
beuster	115	158	52	398	159	116347.9503	<u>p1</u>
blendgap	360	332	66	1454	440	-19134.6103	<u>p1</u>
cecil 13	899	841	180	2812	360	-115656.4997	p2
chp partload	2517	2249	45	6940	1916	23.5537	p1
contvar	285	297	88	1281	530	809149.8272	<u>p1</u>
csched1	23	77	63	174	8	-30639.2578	<u>p1</u>
csched1a	23	29	15	78	7	-30430.1770	p1
csched2	138	401	308	958	58	-166101.9964	p1
<u>csched2a</u>	138	233	140	622	57	-165398.7013	<u>p2</u>

frequently used for testing, but also benchmarking

```
Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;
```

```
Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;
```

- varying from small scale (great for debugging!) to large scale real world instances (agricultural economics, chemical-, civil-, and electrical engineering, finance, management, OR)
- intentionally including instances from badly formulated models or different formulations of the same problem

```
Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;
```

- varying from small scale (great for debugging!) to large scale real world instances (agricultural economics, chemical-, civil-, and electrical engineering, finance, management, OR)
- intentionally including instances from badly formulated models or different formulations of the same problem
- including solution points for many instances

```
Variables x1,x2,b3,b4,b5,objvar;
Positive Variables x1,x2;
Binary Variables b3,b4,b5;
Equations e1,e2,e3,e4,e5,e6;
e1.. - 2*x1 - 3*x2 - 1.5*b3 - 2*b4 + 0.5*b5 + objvar =E= 0;
e2.. sqr(x1) + b3 =E= 1.25;
e3.. x2**1.5 + 1.5*b4 =E= 3;
e4.. x1 + b3 =L= 1.6;
e5.. 1.333*x2 + b4 =L= 3;
e6.. - b3 - b4 + b5 =L= 0;
```

- varying from small scale (great for debugging!) to large scale real world instances (agricultural economics, chemical-, civil-, and electrical engineering, finance, management, OR)
- intentionally including instances from badly formulated models or different formulations of the same problem
- including solution points for many instances
- solely an instance collection, i.e., consisting of instantiations of models by specific data sets

MINLPLib and GLOBALLib History

- instances were harvested from existing collections, initially:
 - GAMS Model Library
 - MacMINLP (Leyffer)
 - MINOPT library (Floudas)
 - Handbook of Test Problems in Local and Global Optimization (Floudas et.al.)
- ▶ 2001 2009: maintained by Michael Bussieck
- new instances were added
- new incumbent solutions were added
- ▶ in 2009: Michael "volunteered" me as maintainer

MINLPLib 2

MINLPLib Instance Listing

Show All : entries

Name	Formats	Туре	(C)	#Vars	#BinVars	#IntVars #Cons	#SOS #5	Semi #NZ	CoefRange	S Dual Bound	Primal Bound Points
<u>4stufen</u>	ams mod ni osil	MBNLP		149	48	98		318	1.21e+11	102938.0658	116329.6706 <u>p1</u>
abel	<u>ams lp mod nl osil pip</u>	QP	*	30		14		100	2.86e+04	* 225.1946	225.1946 pl
<u>alan</u>	ams ip mod ni osil pip	MBQP	*	8	4	7		23	1.20e+01	* 2.9250	2.9250 pl
<u>alkvi</u>	ams mod ni osil	NLP		14		7		31	7.35e+03	-1.7650	-1.7650 <u>pl</u>
alkylation	ams mod nl osil	NLP		10		11		37	3.35e+05	* 1768.8073	1768.8070 <u>p1</u>
arki0001	ams le mod ni osil pip	QP	*	1030		513		3813	4.32e+09	* 40.7129	40.7129 pl

Tasks:

- Adding new problem instances:
 - both convex and nonconvex problems
 - (MI)QPs, (MI)QCQPs, and (MI)NLPs
 - easy solvable, solvable, difficult to solve, but not trivial
- Categorizing instances
 - convexity
 - problem type (quadratic, polynomial, general nonlinear)
 - function types (powers, exp/log, trigonometric, ...)
 - solved to global optimality?
- Providing feasible best known solutions

Work in progress, current version publicly available: http://www.gamsworld.org/minlp/minlplib2/html/index.html. Search

New NLP and MINLP Instances

Sources of newly added instances

Harvesting mainly from

- CMU-IBM open source MINLP project (convex MINLPs)
- minlp.org
- POLIP (polynomial MINLPs)

MINLPLib 2 instance sources (1357 in total)

Instance Formats

Format		#instance	S
GAMS	.gms	1363	
AIMMS	.ams	1352	(no Gamma, latest additions missing)
AMPL	.mod	1337	(no errorf/signpower/Gamma/)
AMPL	.nl	1331	(no errorf/signpower/Gamma/, latest missing)
OSIL	XML	1342	(no signpower/Gamma/)
CPLEX LP	.lp	667	(limited to quadratics)
PIP	.pip	770	(limited to polynomial)

Problem types

(top: Objective Gradient and Jacobian; bottom: Lagrangian Hessian)

Sparsity Pattern – Examples (cont.)

Jacobian densitymod (Density modification based on single-crystal X-ray diffraction data; 23529 vars, 550 cons.)

Jacobian lop97ic (Rail Line Optimization, MIQCQP)

milinfract (Solving Mixed-Integer Linear Fractional Programming Problems with Dinkelbach's Algorithm)

Objective Gradient + Jacobian

Lagrangian Hessian

(Non)Convexity Detection for Functions

Analyze the Hessian:

- Given twice differentiable function h(x) and variable bounds $[\underline{x}, \overline{x}]$.
- ► Compute the spectrum of the Hessian in one random point and conclude
 - convexity/concavity/indefiniteness if h(x) is quadratic
 - nonconvexity/nonconcavity if h(x) is general nonlinear

(Non)Convexity Detection for Functions

Analyze the Hessian:

- Given twice differentiable function h(x) and variable bounds $[\underline{x}, \overline{x}]$.
- ► Compute the spectrum of the Hessian in one random point and conclude
 - convexity/concavity/indefiniteness if h(x) is quadratic
 - nonconvexity/nonconcavity if h(x) is general nonlinear

Analyze the Algebraic Expression:

$$\begin{split} f(x) \ \text{convex} \Rightarrow \ a \cdot f(x) \begin{cases} \text{convex}, & a \ge 0\\ \text{concave}, & a \le 0 \end{cases} \\ f(x), g(x) \ \text{convex} \Rightarrow \ f(x) + g(x) \ \text{convex} \\ f(x) \ \text{concave} \Rightarrow \ \log(f(x)) \ \text{concave} \end{cases} \\ f(x) = \prod_{i} x_i^{e_i}, x_i \ge 0 \Rightarrow \ f(x) \begin{cases} \text{convex}, & e_i \le 0 \ \forall i \\ \text{convex}, & \exists j : e_i \le 0 \ \forall i \ne j; \ \sum_i e_i \ge 1 \\ \text{concave}, & e_i \ge 0 \ \forall i; \ \sum_i e_i \le 1 \end{cases} \end{split}$$

(Non)Convexity Detection for Functions

Analyze the Hessian:

- Given twice differentiable function h(x) and variable bounds $[\underline{x}, \overline{x}]$.
- ► Compute the spectrum of the Hessian in one random point and conclude
 - convexity/concavity/indefiniteness if h(x) is quadratic
 - nonconvexity/nonconcavity if h(x) is general nonlinear

Analyze the Algebraic Expression:

$$\begin{split} f(x) \text{ convex} &\Rightarrow a \cdot f(x) \begin{cases} \text{convex}, & a \geq 0\\ \text{concave}, & a \leq 0 \end{cases} \\ f(x), g(x) \text{ convex} &\Rightarrow f(x) + g(x) \text{ convex} \\ f(x) \text{ concave} &\Rightarrow \log(f(x)) \text{ concave} \end{cases} \\ (x) &= \prod_{i} x_{i}^{e_{i}}, x_{i} \geq 0 \Rightarrow f(x) \begin{cases} \text{convex}, & e_{i} \leq 0 \ \forall i \\ \text{convex}, & \exists j : e_{i} \leq 0 \ \forall i \neq j; \ \sum_{i} e_{i} \geq 1 \\ \text{concave}, & e_{i} \geq 0 \ \forall i; \ \sum_{i} e_{i} \leq 1 \end{cases} \end{split}$$

Analyze manually.

f

(Non)Convexity in MINLPLib

- ▶ Numerical analysis of (pointwise) Hessians by LAPACK.
- Symbolic analysis of expressions by SCIP.
- Mark additional 71 instances (5%) as convex.

MINLPLib instances convexity

Solution Points

MINLPLib instances traditionally come with known feasible solution points.

Solution Points

MINLPLib instances traditionally come with known feasible solution points.

For MINLPLib 2, we added

Feasibility checking:

- compute maximal (unscaled) violation of constraints, variable bounds, and discreteness restrictions
- uses GAMS/EXAMINER2

Solution Points

MINLPLib instances traditionally come with known feasible solution points.

For MINLPLib 2, we added

Feasibility checking:

- compute maximal (unscaled) violation of constraints, variable bounds, and discreteness restrictions
- uses GAMS/EXAMINER2
- Solution polishing: For a given point,
 - 1. project onto variable bounds
 - 2. round values for discrete variables to exact integers
 - 3. ensure that semicontinuity/semiintegrality and special-ordered-set constraints are exactly satisfied
 - run CONOPT on MINLP with all binary/integer/semi*/SOS variables fixed, start from updated point, scaling disabled, feasibility tolerance 10⁻⁹

Polished Solution Points

Polished Solution Points

Available in two formats:

GAMS Data Exchange (GDX)		ASCII (.sol)
Exercise Algorithm 24.2.0 r41922 A LFA Released SSep13 LEG x86 64/Linux Image: Solution n file 0 Image: Signature Solution File Solution	x1	1.11803398874989001754
040CG00? <u>BIBBEB</u> ATA_0000 <u>BIBBEB</u> ATA_0000 <u>BIBBEB</u> ATA_0000 <u>BIBBEB</u> ATA_0000 <u>BIBBE</u>	x2	1.31037069710444997739
	b4	1.0000000000000000000000000000000000000
国和時期のJVAFB国和時度的FMB」を設定11 国家設定11 UEL 国家にはして ncolcnt minrowcnt_UEL 客路CRO 客路ORS 客部OMS 多数の後を客部の	b5	1.0000000000000000000000000000000000000
	objvar	7.66718006881313041134

16 / 64

dual bound = $\begin{cases} \text{lower bound on optimal value,} & \text{if minimization} \\ \text{upper bound on optimal value,} & \text{if maximization} \end{cases}$

dual bound = $\begin{cases} lower bound on optimal value, & if minimization \\ upper bound on optimal value, & if maximization \end{cases}$

Collected dual bounds from

- solvers for general (MI)NLP (ANTIGONE, BARON, Couenne, Lindo, SCIP)
- solvers for convex MINLP on proven convex MINLPs (AlphaECP, Bonmin BB, Bonmin Hyb)

dual bound = $\begin{cases} lower bound on optimal value, & if minimization \\ upper bound on optimal value, & if maximization \end{cases}$

Collected dual bounds from

- solvers for general (MI)NLP (ANTIGONE, BARON, Couenne, Lindo, SCIP)
- solvers for convex MINLP on proven convex MINLPs (AlphaECP, Bonmin BB, Bonmin Hyb)

But: No way to verify correctness of bound!

dual bound = $\begin{cases} lower bound on optimal value, & if minimization \\ upper bound on optimal value, & if maximization \end{cases}$

Collected dual bounds from

- solvers for general (MI)NLP (ANTIGONE, BARON, Couenne, Lindo, SCIP)
- solvers for convex MINLP on proven convex MINLPs (AlphaECP, Bonmin BB, Bonmin Hyb)

But: No way to verify correctness of bound!

Conservative approach: Only trust a solvers dual bound claim if it has been verified by at least 2 other solvers.

"Open" instances

 $\mathsf{Feasible \ solution \ points \oplus trusted \ dual \ bounds \Rightarrow trusted \ gap}$

Query the MINLPLib

Simple script to select instances by specific criteria, e.g.:

- ▶ all large convex instances, show # var. and # cons.:
 - \$./query.py "(nvars > 4242) & (convex == True)" -c nvars -c ncons

	nvars	ncons
jbearing100	5304	0
squf1030-150	4530	4650
watercontamination0202	106711	107209
watercontamination0303	107222	108217

all quadratic instances:

./query.py "npolynomfunc == 0 & nsignomfunc == 0 & ngennlfunc == 0"

all instances with trigonometric functions:

./query.py "(opsin == True) or (opcos == True)"

all separable instances, sorted by problem type:

./query.py "nlaghessiannz == nlaghessiandiagnz" -s probtype -c probtype

all unsolved instances (w.r.t. "trusted" dual bounds), zipped up:

./query.py "gap > 0.1" -c gap -z open.zip

What to do with all these instances?

What to do with all these instances?

General Purpose Global Solvers Benchmark?

date	GAMS	ANTIGONE	BARON	COUENNE	LINDO	SCIP
07/15	24.5 α	1.1	15.6.5	0.5	9.0.1983.157	3.2.0

• • •

Today: Go Columnwise		
date GAMS ANTIGONE BARON COUENNE LI	INDO	SCIP
08/11 23.7.3 – 9.3 .1 0.3 6.	.1 .1.588	_
04/12 23.8.2 – 10.2 .0 0.4 7 .	.0 .1.421	2.1 .1
11/12 23.9.5 – 11.5 .2 0.4 7.	.0.1.497	2.1.2
02/13 24.0.2 – 11.9 .1 0.4 7.	.0.1.497	3.0
07/13 24.1.3 1.1 12.3 .3 0.4 8 .	.0 .1283.385	3.0
05/14 24.2.3 1.1 12.7 .7 0.4 8.	.0.1694.498	3.0
09/14 24.3.3 1.1 14.0 .3 0.4 8.	.0.1694.550	3.1
06/15 24.4.6 1.1 14.4 .0 0.4 9 .	.0 .1983.157	3.1
$07/15$ 24.5 α 1.1 15.6 .5 0.5 9.	.0.1983.157	3.2 .0

- ► ANTIGONE by R. Misener (Imperial College) and Ch. Floudas (Texas A&M)
- BARON by N. Sahinidis (CMU), M. Tawarmalani (Purdue), et.al.
- Couenne by P. Belotti (now FICO), et.al.; open-source (COIN-OR)
- Lindo API by Lindo Systems Inc.
- ▶ SCIP by Zuse Institute Berlin, TU Darmstadt, FAU Erlangen; free for academic use

Quantify Improvements of global MINLP solvers over the last 4 years!

Which instances to run?

Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

Which instances to run?

Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

✓ large number of instances

 \Rightarrow 40 solver versions \times 1363 instances = 54520 runs (!)

Which instances to run?

Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

 \checkmark large number of instances

 \Rightarrow 40 solver versions \times 1363 instances = 54520 runs (!)

 $\checkmark\,$ wide variety of applications
Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

- \checkmark large number of instances
 - \Rightarrow 40 solver versions \times 1363 instances = 54520 runs (!)
- \checkmark wide variety of applications
- × dominance of certain models, e.g.,
 - 32 block layout design problems
 - 60 small investor portfolio optimization instances
 - ▶ ...

Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

- ✓ large number of instances
 - \Rightarrow 40 solver versions \times 1363 instances = 54520 runs (!)
- \checkmark wide variety of applications
- × dominance of certain models, e.g.,
 - 32 block layout design problems
 - 60 small investor portfolio optimization instances
 - ► ...

imes many trivial, some hopeless, some numerically dubious instances

Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

- \checkmark large number of instances
 - \Rightarrow 40 solver versions \times 1363 instances = 54520 runs (!)
- \checkmark wide variety of applications
- × dominance of certain models, e.g.,
 - 32 block layout design problems
 - 60 small investor portfolio optimization instances
 - **١**...

imes many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.

Does the current MINLPLib 2 with its 1363 instances qualify as a good test set?

- ✓ large number of instances
 - \Rightarrow 40 solver versions \times 1363 instances = 54520 runs (!)
- \checkmark wide variety of applications
- × dominance of certain models, e.g.,
 - 32 block layout design problems
 - 60 small investor portfolio optimization instances
 - <u>►</u>

imes many trivial, some hopeless, some numerically dubious instances

Thus, need to select a reasonable subset of (e.g., 87) instances.

With 15 co-authors and 8 months of time, this would be no problem.

MIPLIB 2010

Mixed Integer Programming Library version 5

Thorsten Koch · Tobias Achterberg · Erling Andersen · Oliver Bastert · Timo Berthold · Robert E. Bixby · Emilie Danna · Gerald Gamrath · Ambros M. Gleixner · Stefan Heinz · Andrea Lodi · Hans Mittelmann · Ted Ralphs · Domenico Salvagnin · Daniel E. Steffy · Kati Wolter

But with 3 weeks until ISMP: Apply the P.I.T.T. heuristic.

Prune Instances by Tractability and Triviality Heuristic

1. Remove intractable instances

 consider only the 881 instances that are marked as solved in MINLPLib 2

Prune Instances by Tractability and Triviality Heuristic 2. For each solver separately:

- Remove instances that are solved within 60 seconds by the oldest solver version (e.g., as in GAMS 23.7).
- Remove instances that the solver cannot handle (due to trigonometric functions, SOS, ...).

In case of SCIP:

Prune Instances by Tractability and Triviality Heuristic For SCIP, this leaves 312 instances:

alkylation	clay0304h	ex6_1_1	fo9_ar5_1	house
arki0003	clay0305h	ex6_1_3	gasnet	jbearing25
arki0005	crudeoil_lee2_10	ex6_2_12	genpooling_meyer04	jbearing75
arki0006	crudeoil_lee3_07	ex6_2_14	ghg_1veh	johnall
arki0019	crudeoil_lee3_08	ex6_2_8	ghg_3veh	kall_circles_c6a
arki0024	crudeoil_lee3_09	ex6_2_9	glider100	kall_circles_c6b
autocorr_bern20-10	crudeoil_lee3_10	ex7_2_4	graphpart_2g-0066-0066	kall_circles_c7a
autocorr_bern20-15	crudeoil_li06	ex8_1_7	graphpart_2g-0077-0077	kall_circles_c8a
autocorr_bern25-06	csched1a	ex8_2_1b	graphpart_2g-0088-0088	kall_circlespolygons_c1
autocorr_bern25-13	edgecross10-060	ex8_2_4b	graphpart_2g-0099-9211	kall_circlespolygons_c1
autocorr_bern30-04	edgecross10-070	ex8_4_1	graphpart_2pm-0066-0066	kall_circlesrectangles_c
autocorr_bern35-04	edgecross10-080	ex8_4_3	graphpart_2pm-0077-0777	kall_circlesrectangles_c
batch0812_nc	edgecross14-039	ex8_4_4	graphpart_2pm-0088-0888	kall_congruentcircles_c
batchs201210m	edgecross14-058	ex8_4_5	graphpart_2pm-0099-0999	kall_diffcircles_10
bayes2_50	edgecross14-078	$ex8_4_8_bnd$	graphpart_3g-0334-0334	kall_diffcircles_5b
blend480	edgecross14-176	filter	graphpart_3g-0344-0344	kall_diffcircles_7
blend531	edgecross20-040	fin2bb	graphpart_3g-0444-0444	kall_diffcircles_8
blend718	edgecross22-048	flay05h	graphpart_3pm-0244-0244	kall_diffcircles_9
blend852	emf1050_5_5	fo7	graphpart_3pm-0333-0333	launch
carton7	emfl100_5_5	fo8	graphpart_3pm-0334-0334	lop97icx
casctanks	ethanolh	fo8_ar25_1	graphpart_3pm-0344-0344	mathopt5_7
cecil_13	ethanolm	fo8_ar2_1	graphpart_3pm-0444-0444	mathopt5_8
chem	ex1252a	fo9	graphpart_clique-30	mhw4d
clay0203h	ex14_1_1	fo9_ar25_1	graphpart_clique-40	milinfract
clay0204h	ex14_1_7	fo9_ar2_1	gsg_0001	minlphix
clay0205h	ex4_1_5	fo9_ar3_1	hda	minsurf100
clay0303h	ex4_1_6	fo9_ar4_1	heatexch_trigen	

Prune Instances by Tractability and Triviality Heuristic For SCIP, this leaves 312 instances – obvious dominance by some models:

alkylation d	clay0304h	ex6_1_1	fo9_ar5_1	house
arki0003 d	clay0305h	ex6_1_3	gasnet	jbearing25
arki0005 d	crudeoil_lee2_10	ex6_2_12	genpooling_meyer04	jbearing75
arki0006 d	crudeoil_lee3_07	ex6_2_14	ghg_1veh	johnall
arki0019 d	crudeoil_lee3_08	ex6_2_8	ghg_3veh	kall_circles_c6a
arki0024 d	crudeoil_lee3_09	ex6_2_9	glider100	kall_circles_c6b
autocorr_bern20-10 d	crudeoil_lee3_10	ex7_2_4	graphpart_2g-0066-0066	kall_circles_c7a
autocorr_bern20-15 d	crudeoil_li06	ex8_1_7	graphpart_2g-0077-0077	kall_circles_c8a
autocorr_bern25-06 d	csched1a	ex8_2_1b	graphpart_2g-0088-0088	kall_circlespolygons_c1
autocorr_bern25-13 e	edgecross10-060	ex8_2_4b	graphpart_2g-0099-9211	kall_circlespolygons_c1
autocorr_bern30-04 e	edgecross10-070	ex8_4_1	graphpart_2pm-0066-0066	kall_circlesrectangles_c
autocorr_bern35-04 e	edgecross10-080	ex8_4_3	graphpart_2pm-0077-0777	kall_circlesrectangles_c
batch0812_nc e	edgecross14-039	ex8_4_4	graphpart_2pm-0088-0888	kall_congruentcircles_c
batchs201210m e	edgecross14-058	ex8_4_5	graphpart_2pm-0099-0999	kall_diffcircles_10
bayes2_50 e	edgecross14-078	$ex8_4_8_bnd$	graphpart_3g-0334-0334	kall_diffcircles_5b
blend480 e	edgecross14-176	filter	graphpart_3g-0344-0344	kall_diffcircles_7
blend531 e	edgecross20-040	fin2bb	graphpart_3g-0444-0444	kall_diffcircles_8
blend718 e	edgecross22-048	flay05h	graphpart_3pm-0244-0244	kall_diffcircles_9
blend852 e	emf1050_5_5	fo7	graphpart_3pm-0333-0333	launch
carton7 e	emfl100_5_5	fo8	graphpart_3pm-0334-0334	lop97icx
casctanks e	ethanolh	fo8_ar25_1	graphpart_3pm-0344-0344	mathopt5_7
cecil_13 e	ethanolm	fo8_ar2_1	graphpart_3pm-0444-0444	mathopt5_8
chem e	ex1252a	fo9	graphpart_clique-30	mhw4d
clay0203h e	ex14_1_1	fo9_ar25_1	graphpart_clique-40	milinfract
clay0204h e	ex14_1_7	fo9_ar2_1	gsg_0001	minlphix
clay0205h e	ex4_1_5	fo9_ar3_1	hda	minsurf100
clay0303h e	ex4_1_6	fo9_ar4_1	heatexch_trigen	

P.I.T.T.E.D. Heuristic: P.I.T.T. with Eased Dominance

3. Ensure uniqueness of 6-characters-prefix of instances names.

P.I.T.T.E.D. Heuristic: P.I.T.T. with Eased Dominance 3. Ensure uniqueness of 6-characters-prefix of instances names.

alkylation clay0304h ex6_1_1 arki0003 clav0305h ex6 1 3 arki0005 crudeoil_lee2_10 ex6_2_12 arki0006 crudeoil lee3 07 ex6 2 14 arki0019 crudeoil lee3 08 ex6 2 8 arki0024 crudeoil_lee3_09 ex6_2_9 autocorr_bern20-10 crudeoil lee3 10 ex7 2 4 autocorr_bern20-15 crudeoil li06 ex8 1 7 autocorr bern25-06 csched1a ex8_2_1b autocorr_bern25-13 edgecross10-060 ex8 2 4b autocorr_bern30-04 edgecross10-070 ex8_4_1 autocorr_bern35-04 edgecross10-080 ex8_4_3 batch0812 nc edgecross14-039 ex8 4 4 batchs201210m edgecross14-058 ex8_4_5 bayes2_50 edgecross14-078 ex8 4 8 bnd blend480 edgecross14-176 filter blend531 edgecross20-040 fin2bb blend718 edgecross22-048 flav05h blend852 emf1050_5_5 fo7 carton7 emf1100 5 5 fo8 casctanks ethanolh fo8 ar25 1 cecil 13 ethanolm fo8_ar2_1 chem ex1252a fo9 clay0203h ex14 1 1 fo9 ar25 1 clav0204h ex14_1_7 fo9_ar2_1 clay0205h ex4 1 5 fo9 ar3 1 clav0303h ex4 1 6 fo9 ar4 1

fo9 ar5 1 house gasnet jbearing25 genpooling_meyer04 jbearing75 ghg_1veh johnall ghg_3veh kall_circles_c6a glider100 kall circles c6b graphpart_2g-0066-0066 kall_circles_c7a graphpart_2g-0077-0077 kall_circles_c8a graphpart 2g-0088-0088 kall circlespolvgons c1 graphpart_2g-0099-9211 kall_circlespolygons_c1 graphpart_2pm-0066-0066 kall_circlesrectangles_ graphpart_2pm-0077-0777 kall_circlesrectangles_ graphpart_2pm-0088-0888 kall_congruentcircles_c graphpart_2pm-0099-0999 kall diffcircles 10 graphpart_3g-0334-0334 kall_diffcircles_5b graphpart_3g-0344-0344 kall diffcircles 7 graphpart_3g-0444-0444 kall diffcircles 8 graphpart_3pm-0244-0244 kall_diffcircles_9 graphpart_3pm-0333-0333 launch graphpart_3pm-0334-0334 lop97icx graphpart_3pm-0344-0344 mathopt5_7 graphpart_3pm-0444-0444 mathopt5 8 graphpart_clique-30 mhw4d graphpart_clique-40 milinfract gsg_0001 minlphix hda minsurf100 heatexch trigen . . .

P.I.T.T.E.D. SCIP testset

In summary:

- 1. Keep only instances that are marked as solved in MINLPLib 2.
- 2. Keep only instances that take \geq 60s with oldest version of solver and that can be handled by solver.
- 3. Reduce instances with similar names.

For SCIP, this reduces from 1363 to 881 to 123 instances:

alkylation arki0003	emf1050_5_5 emf1100_5_5	fo9_ar25_1 gasnet	milinfract minlphix	pinene50 pointpack08	sssd12-05
arki0003 autocorr_bern20-10 batch0812_nc batch0812_10m bayes2_50 blend480 blend531 blend718 blend852 carton7 casctanks cecil_13 chem clay0203h clay0303h crudeoil_lee2_10 csched1a	emfl100_5_5 ethanolh ex1252a ex14_1_1 ex4_1_5 ex6_1_1 ex6_2_12 ex7_2_4 ex8_1_7 ex8_2_1b ex8_4_1 filter fin2bb flay05h fo7 fo8 fo8 ar25_1	<pre>gasnet genpooling_meyer04 ghg_1veh ghg_3veh glider100 graphpart_2g-0066-0 gsg_0001 hda heatexch_trigen house jbearing25 johnal1 kall_circles_c6a kall_diffcircles_10 launch lop97icx mathopt5_7</pre>	<pre>minlphix minsurf100 multiplants_mtg1a no7_ar3_1 nous1 000609 nvs22 o7 o7_2 o7_ar25_1 o7_ar3_1 o7_ar4_1 o7_ar5_1 008_ar4_1 o9_ar4_1 oil oil2</pre>	<pre>pointpack08 pooling_epa1 prob07 process procsyn prolog qp3 routingdelay_bigm rsyn0805m02h sepasequ_convent sfacloc2_2_80 slay07h slay09h slay10h smallinvDAXr1b020- sporttournament14 squf1010-025</pre>	sssd12-05 sssd15-04 sssd16-07 sssd18-06 sssd20-04 st_e35 stockcycl1 supplycha: syn10m03h syn15m02h syn20m02h syn30h syn30m02h
edgecross10-060	fo9	mhw4d	parallel	sssd08-04	

PITT test set for each solver

Removed easy and unsolvable instances:

PITTED test set for each solver

Removed easy and unsolvable instances, then filter by name:

Run jobs

date	GAMS	ANTIGONE	BARON	COUENNE	LINDO	SCIP
08/11	23.7.3	-	9.3 .1	0.3	6.1 .1.588	_
04/12	23.8.2	-	10.2.0	0.4	7.0.1.421	2.1 .1
11/12	23.9.5	-	11.5 .2	0.4	7.0.1.497	2.1.2
02/13	24.0.2	-	11.9.1	0.4	7.0.1.497	3.0
07/13	24.1.3	1.1	12.3.3	0.4	8.0.1283.385	3.0
05/14	24.2.3	1.1	12.7.7	0.4	8.0.1694.498	3.0
09/14	24.3.3	1.1	14.0 .3	0.4	8.0.1694.550	3.1
06/15	24.4.6	1.1	14.4 .0	0.4	9.0 .1983.157	3.1
07/15	24.5α	1.1	15.6.5	0.5	9.0.1983.157	3.2 .0

```
for GAMS in $GAMSS ; do
for SOLVER in $SOLVERS($GAMS) ; do
for INSTANCE in $TESTSET($SOLVER) ; do
    sbatch --exclusive --time=0:1800 $GAMS $INSTANCE SOLVER=$SOLVER
    done
    done
done
```

Hardware: Dell PowerEdge M1000e, 48GB RAM, Intel Xeon X5672@3.2GHz

BARON: Fails

A solver failed, if it

- crashed, or
- ▶ reported an infeasible point as feasible (tolerance: 10⁻⁴), or
- ▶ reported a suboptimal solution as optimal (tolerance: 10⁻⁴)

BARON: Solved

Solved: solver did not fail and reports a relative optimality gap $\leq 10^{-4}$

BARON: Solved – What happened?

From the release notes:

- 11.0: "This version comes with a wealth of new branching, relaxation, convexity exploitation, local search, and range reduction techniques."
- 11.5: "Improvements in local search" (dive-and-round heuristic for MINLPs, automatically select and switch back and forth between NLP solvers)
- 12.3: "New relaxations for certain types of quadratic problems", "Improved integer presolve", "Incorporation of convex envelopes for certain low-dimensional functions"
- 14.0: "Significant advances in the handling of integer programs." (integer cutting planes, calls to MIP solvers, hybrid LP/MIP/NLP relaxations)

BARON: Found optimal solution

BARON: Solving time on instances that never failed (163)

Overall speedup: 9.00

12.7: "Automatic setting of many options based on problem characteristics and learning algorithms."

BARON: Solving time on instances solved by all vers. (69)

Overall speedup: 3.67

ANTIGONE: Fails

ANTIGONE: Solved

ANTIGONE: Found optimal solution

ANTIGONE: Solving time on instances that never failed (177)

ANTIGONE: Solving time on instances solved by all (110)

COUENNE: Fails

COUENNE: Solved

COUENNE: Found optimal solution

COUENNE: Solving time on instances that never failed (65)

Overall speedup: 1.35

COUENNE: Solving time on instances that never failed (65)

[Couenne] Couenne stable release 0.4

Pietro Belotti <u>pbelott at clemson.edu</u> Mon Aug 8 05:13:15 EDT 2011

- Next message: [Couenne] stable/0.4 does not compile
- Messages sorted by: [date] [thread] [subject] [author]

Dear Couenne users,

this is to announce the 0.4 stable version of Couenne. There are a number of additions and improvements, including:

1) a Feasibility Pump heuristic for non-convex MINLP, developed with Timo Berthold at the ZIB institute.

 Orbital Branching for MINLP, developed with Jim Ostrowski and Leo Liberti.

 Fixed Point Bound tightening, a bound reduction procedure developed with Sonia Cafieri, Jon Lee, and Leo Liberti.

4) "semi-auxiliaries", i.e., auxiliary variables defined as $y \ge f(x)$ or $y \le f(x)$ instead of just y = f(x). The purpose is to save on the number of auxiliaries generated and hence on the size of the LP relaxation.

5) "Two-Implied bound tightening", a new bound reduction procedure described in http://www.optimization-online.org/DB_FILE/2011/02/2931.pdf

6) various bug fixes.

Release 0.4.0 is a snapshot of the new stable version. The new features will soon be documented in Couenne's user manual, available at <u>http://www.coin-or.org/Couenne/couenne-user-manual.pdf</u>

Happy MINLPing, Pietro

Pietro Belotti Dept. of Mathematical Sciences Clemson University email: <u>pbelott at clemson.edu</u> phone: 864-656-6765 web: myweb.clemson.edu/~pbelott

- 1. Feasibility Pump
- 2. Orbital Branching
- 3. Fixed Point BT
- 4. "semi-auxiliaries"
- 5. Two-Implied BT
- 6. various bug fixes

COUENNE: Solving time on instances that never failed (65)

[Couenne] Couenne stable release 0.4

Pietro Belotti <u>pbelott at clemson.edu</u> Mon Aug 8 05:13:15 EDT 2011

- Next message: [Couenne] stable/0.4 does not compile
- Messages sorted by: [date] [thread] [subject] [author]

Dear Couenne users,

this is to announce the 0.4 stable version of Couenne. There are a number of additions and improvements, including:

1) a Feasibility Pump heuristic for non-convex MINLP, developed with ${\sf Timo}$ Berthold at the ZIB institute.

 Orbital Branching for MINLP, developed with Jim Ostrowski and Leo Liberti.

 Fixed Point Bound tightening, a bound reduction procedure developed with Sonia Cafieri, Jon Lee, and Leo Liberti.

4) "semi-auxiliaries", i.e., auxiliary variables defined as $y \ge f(x)$ or $y \le f(x)$ instead of just y = f(x). The purpose is to save on the number of auxiliaries generated and hence on the size of the LP relaxation.

5) "Two-Implied bound tightening", a new bound reduction procedure described in http://www.optimization-online.org/DB_FILE/2011/02/2931.pdf

6) various bug fixes.

Release 0.4.0 is a snapshot of the new stable version. The new features will soon be documented in Couenne's user manual, available at <u>http://www.coin-or.org/Couenne/couenne-user-manual.pdf</u>

Happy MINLPing, Pietro

Pietro Belotti Dept. of Mathematical Sciences Clemson University email: <u>pbelott at clemson.edu</u> phone: 864-656-6765 web: mvweb.clemson.edu/~pbelott

- Feasibility Pump feasibility_pump no
- 2. Orbital Branching orbital_branching no
- Fixed Point BT fixpoint_bt 0
- 4. "semi-auxiliaries" use_semiaux yes
- 5. Two-Implied BT two_implied_bt 0
- 6. various bug fixes

COUENNE: Solving time on instances solved by all (16)

Overall speedup: 2.16

LINDO: Fails

LINDO: Solved

LINDO 8.0: improvements in primal heuristics for MIP (feas. pump) and nonconvex NLP (multistart)

LINDO: Found optimal solution

LINDO: Solving time on instances that never failed (72)

Overall speedup: 5.48
LINDO: Solving time on instances solved by all vers. (16)

Overall speedup: 3.02

SCIP: Fails

SCIP: Solved

SCIP: Found optimal solution

SCIP: Solving time on instances that never failed (96)

Overall speedup: 4.49

SCIP: Solving time on instances solved by all vers. (31)

Overall speedup: 2.42

"Virtual Best" Solver

- common subset of instances
- ▶ for each instance and GAMS version, pick best results among all solvers

Virtual Best: Fails

Virtual Best: Solved

Virtual Best: Solving time on instances that never failed (70)

Overall speedup: 14.84

Overall speedup: 14.84

Virtual Best: Solving time on instances solved by all (17)

Overall speedup: 14.30

http://www.gamsworld.org/minlp/minlplib2/html/

Future Work:

- ▶ add more NLPs (from PrincetonLib, COCONUT, NEOS, ...)
- semi-automatic identification of duplicates
- more structure recognition, e.g., second-order cones
- define interesting subsets, especially a benchmark set for global solvers

Call for contributions:

- Contribute your own (MI)NLP instances! (Or send your model to minlp.org!)
- Ideally from a model for a real life problem.
- Also infeasible instances are welcomed.
- Any (well-known) format is good (e.g., AMPL, GAMS, ZIMPL, BARON, CPLEX LP, MPS, PIP, OSiL).
- MINLPLib instances are anonymized (scalar format using generic names).
- Your benefit: Solver developers may test and tune their solver for your problem.