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Abstract

In this work, techniques for classification
with missing or unreliable data are applied
to the problem of noise-robustness in Auto-
matic Speech Recognition (ASR). The pri-
mary advantage of this viewpoint is that it
makes minimal assumptions about any noise
background. As motivation, we review ev-
idence that the auditory system is capable
of dealing with incomplete data and, indeed,
does so in normal listening conditions. We
formulate the unreliable classification prob-
lem and show how it can be expressed in
the framework of Continuous Density Hidden
Markov Models for statistical ASR. We de-
scribe experiments on connected digit recog-
nition in noise in which encouraging results
are obtained. Results are improved by ‘soft-
ening’ the missing data decision. We ar-
gue that if the noise background is unpre-
dictable it is necessary to integrate primitive
processes which identify coherent spectral-
temporal regions likely to be dominated by
a single source with a generalised recognition
decode which searches for the best sub-set of
regions which match a speech source. We de-
scribe an implementation of a multi-source
decoder using missing data recognition and
show how it improves recognition results for
non-stationary noises.

1 Sensory Occlusion in the Auditory
System

The ‘missing data’ problem in computer vision, caused
by occlusion, has been the subject of a number of stud-
ies e.g. (Ahmad and Tresp, 1993; Ghahramani and
Jordan, 1994). The equivalent problem in audition
has received far less attention because it is counter to

intuition: while objects in a visual scene are predom-
inantly opaque, acoustic signals combine additively.
Consequently, techniques for robust automatic speech
recognition (ASR) typically aim for near-perfect allo-
cation of the acoustic mixture into additive contribu-
tions from constituent sources (see Furui (1997) for a
review), making use of noise source models.

This paper takes as its starting point the alternative
hypothesis - that incomplete data is a valid character-
isation of the normal listening situation. Our support-
ing argument is, in summary:

Listeners can cope with missing data. Natural speech
signals which have undergone deliberate spectro-
temporal excisions typically show remarkably little de-
crease in intelligibility (Strange et al., 1983; Steeneken,
1992; Warren et al., 1995; Lippmann, 1996). There are
counterparts to these experiments in everyday listen-
ing e.g. interfering signals, band-restricted transmis-
sion, channel noise over telephone lines, hearing disor-
ders.

Masked data is effectively missing data. The neu-
ral code for signal detection exhibits what has been
called the ‘capture effect’ (Moore, 1997), in that locally
more intense sound components dominate the neural
response. Weaker sound components do not contribute
to the neuronal output: they are masked and therefore
can be considered missing for the purposes of further
processing.

The auditory mervous system handles simultaneous
signals. The auditory system must do more than
process isolated speech sources. In Bregman’s terms
(Bregman, 1990), the ‘auditory scene analysis’ prob-
lem involves organising multiple, concurrent signals
into associated perceptual streams. However, the evi-
dence for each stream will frequently be incomplete.

Compressive acoustic representations make disjoint al-
location a good approrimation. Due to the large
dynamic range of speech signals and the compres-
sive representations that this dynamic range demands,



most spectral-temporal regions are dominated by one
source, and in regions where one source dominates the
noisy representation is very close to the clean repre-
sentation of that source.

Application of missing data techniques in robust ASR
requires a solution to two problems: (i) identification
of reliable spectro-temporal evidence; and (ii) modifi-
cation of recognition algorithms to handle incomplete
data. In the next section we address (ii).

2 Classification with Unreliable Data

The classification problem in general is to assign an
observation vector x to a class C'. In the missing data
case, a preceding process has partitioned z into reli-
able and unreliable parts, (z,,z,). We consider the
case in which the ‘true’ values of the unreliable data
can be confined by bounds : if z is a spectral energy
vector in which the unreliable channels are contam-
inated by additive noise, the speech energy in these
channels must lie between 0 and the observed value
Z,, . The likelihood f(z|C) cannot be evaluated in the
normal manner. There are two alternatives:

data imputation: estimate values for the unreliable
components of z, producing a complete observation
vector estimate Z, and to then proceed with classifica-
tion using f(£|C).

marginalisation: base classification solely on reliable
components, effectively integrating over the unreliable
components. In the case of complete ignorance of the
unreliable data classification is based on f(z,|C).

In this paper we concentrate on marginalisation. See
(Josifovski, 1999) for companion work and (Raj et al.,
2000) for other work on data imputation.

3 Application to Robust Automatic
Speech Recognition

In conventional Continuous Density Hidden Markov
Model Speech Recognition, each chosen speech unit
is represented by a trained HMM with a number of
states. The states correspond to the classes of the last
section. Each state is characterised by a multivariate
mixture Gaussian distribution over the components of
z, from an observation sequence X. The parameters
of these distributions, together with state transition
probabilities within models, are estimated in an EM
fashion, commonly using the Baum-Welch algorithm.
In our work, the models are trained on clean data:
there is no re-training for noise conditions. A decoder
(usually implementing the Viterbi algorithm) finds the
state sequence having the highest probability of gen-
erating X. We show in (Cooke et al., 1999) that in
these conditions the ‘bounded- marginal’ estimation of

f(z|C;) can be written as

F1(@|Cy) = Yply P(KIC:) f ek, C3) [ f(wulk, Ci)da

Where the P(k|C;) are the M mixture coefficients for
the distribution associated with C; .

The first term in this equation is the marginal distri-
bution over the reliable vector components. The inte-
gral term introduces constraints on the true values of
the unreliable components. In the complete ignorance
case it reduces to 1. In the bounded case it represents
counter-evidence against the hypothesis of class Cj;.
For multivariate Gaussians, the integral required to
evaluate the bounded marginal can be approximated
by a difference of error functions.

4 Speech Recognition Experiments

In the experiments reported here, the task is con-
nected digit recognition with controlled amounts of
added noise from various noise sources. This is a
popular testbed for robust ASR (Pearce and Hirsch,
2000). The TIDigits corpus of digit sequences was
used. Acoustic vectors were obtained via a 32 channel
auditory filter bank (Cooke, 1991) with centre frequen-
cies spaced linearly in ERB-rate from 50 to 8000 Hz.
The instantaneous Hilbert envelope at the output of
each filter was smoothed with a first order filter with
an 8 ms time constant, and sampled at a frame-rate of
10 ms (this is the same representation as employed in
(Cooke et al., 1999) except here 32 channels are being
used rather than 64). Finally, a cube root compres-
sion was applied to the frame of energy values. HTK
(Young and Woodland, 1993) was used for training,
and an in-house C++ decoder for recognition. Twelve
models (‘1’-‘9’, ‘oh’, ‘zero’ and ‘silence’) consisting of
8 no-skip, straight-through states with observations
modeled with a 10 component diagonal Gaussian mix-
ture were trained on clean speech. An additional 1-
state silence model was used to model the brief inter-
digit pauses that may occur during long digit strings.
Factory noise and Lynx helicopter noise from the NOI-
SEX database (Varga et al., 1992) were added (with
random start points) at SNRs from +20dB to 0dB to
a subset of the TIDigits test set consisting of 240 digit
strings. For bounded marginalisation, the lower bound
was set to 0 and the upper bound to the value of the
noisy speech mixture at each time-frequency point.

Results are shown in Figure 1 (Factory Noise) and Fig-
ure 2 (Lynx Helicopter Noise). In these figures,

e ‘Raw Filter Bank’ shows how performance with
models trained on clean data deteriorates rapidly
when these models are used for recognition in
noise.

e The ‘A Priori’ curve uses knowledge of clean
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Figure 1: Recognition results for Factory Noise.
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Recognition results for Lynx Helicopter

speech and noise prior to mixing to find the true
local SNR. A time/frequency ‘pixel’ is judged to
be reliable when its local SNR higher than some
fixed threshold, typically 7 dB. This defines a
missing data mask, illustrated in Figure 3. Us-
ing knowledge of the clean speech and the noise
is of course cheating but indicates the high per-
formance upper-bound, and provides a dramatic
proof of concept - recognition rates hold up to a
near-human level of performance even when very
few points pass through the mask.

e ‘MFCC+CMN’ (Mel Frequency Cepstral Coef-
ficients and Cepstral Mean Normalisation) is a
standard technique for improving ASR robustness
, for comparison.

For the ‘MD Discrete’ results, an estimate of the lo-
cal SNR is obtained by using the first 10 frames (pre-
ceding the speech) to derive a noise estimate for each
frequency band. The noise is assumed to be statisti-
cally stationary. We have experimented with more ad-
vanced noise estimators (Vizinho et al., 1999). A mask
obtained by this technique is compared to an a priori
mask in Figure 3. Results for noise estimate masks
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Figure 3: Comparison of the ‘a priori’ mask and the
SNR mask.

are superior to the standard techniques and, for Lynx
helicopter noise, come encouragingly close to that for
a Priori Masks, except in severe noise conditions. Re-
sults are worse for factory noise, which contains some
unpredictable components (e.g. hammer blows). We
return to this point in section 6.

5 Using soft decisions for separation

In realistic conditions, we will only be able to obtain an
imperfect statistical estimate of the noise, and for any
individual pixel the real noise will in any case differ
from the mean estimate. If we accept error in our
noise estimate, we accept error into the judgement of
whether it is the speech or the noise that dominates
a particular spectro-temporal region. These errors are
made concrete and irreversible when using a discrete
mask.

We therefore ‘soften’ the missing data mask (Barker
et al., 2000b). Rather than use either 0 or 1, we use
a continuous value in the range [0.0, 1.0] which is in-
terpreted in the missing data probability calculation
as “the probability that the point is dominated by the
speech signal”.

For missing data with discrete masks, each compo-
nents of the feature vector, z, is first classified as ei-
ther reliable or unreliable (i.e. masked by the noise).
The contribution each feature makes to the likelihood
of the observation, f(z|C), will depend on how that
feature is classified. Assuming an f(z|C) where the
components of z are independent:

7o) = [[#@l0 [ + [ Hiwlons,
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With a mask containing soft decisions the probabil-
ity due to each feature vector component becomes a
weighted sum of the reliable and unreliable probabil-
ity terms:

N
H wzfz $z|k (1 _wz / fz $z|k)d$z)

As spectral features are, in practice, not independent,
following section 3, we extend the above to employ a
Gaussian mixture model in which the full distribution
f(z|C) is composed of a weighted sum of Gaussian
distributions in which the features are independent.

M

> P(k|C) f(z|C, k)

k=1

f(=|C) =

5.1 Generating fuzzy masks

In the current work we employ a simple stationary
noise estimate for all noise types. For non-stationary
noises the error in the estimate is likely to have a non-
Gaussian distribution. Accepting this, we have not
attempted to estimate ideal fuzzy masks, but have
instead generated a mask of values between 0 and 1
by compressing with a simple sigmoid function (illus-
trated in Figure 3) with empirically derived parame-
ters. The mapping is of the form:

N
1+ e—a(z—5)

flz) =

where « is the sigmoid slope, and 3 is the sigmoid cen-
ter. Appropriate values for these parameters are found
via a series of tuning experiments. For large values of
a the sigmoid becomes steep and the resultant fuzzy
mask approximates a discrete missing data mask. In
this case we are implicitly assuming a small variance
in the noise estimation error. At the other extreme, as
the value of a tends to 0, we approach a mask where
all values are 0.5. If o = 0, we are assuming no knowl-
edge of the noise and admitting maximum uncertainty
into the mask.

Our use of fuzzy masks has parallels with the work of
Renevey and Drygajlo in which a fuzzy mask is used
in conjunction with missing data imputation (Renevey
and Drygajlo, 2000).

5.2 Experiments with fuzzy masks

Within the same experimental framework as section
4, a preliminary series of tuning experiments was run
to find appropriate values for the parameters and of
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Figure 4: The difference between discrete and fuzzy
missing data masks.

the sigmoid function employed in the fuzzy mask tech-
nique. Informal tests were conducted to find a suitable
range of values, and then tests with a set of 240 utter-
ances were run over a grid of a and § values in these
ranges. These tuning experiments were run using both
the Lynx helicopter noise and the factory noise cor-
rupted data, and at a range of SNRs. It was found
that the optimal o and 3 values were largely indepen-
dent of SNR but were dependent on noise type. This
point is discussed further below.

The curves labelled ‘MD fuzzy’ in Figure 1 and Figure
2 show results for factory and Lynx helicopter noise at
the range of SNRs tested. Consider first the factory
noise results, (Figure 1). Moving from a discrete mask
to a fuzzy mask leads to further performance improve-
ment with the largest gains made at the lower SNRs
(the 0 dB result increases from 46% to 60%). The
fuzzy mask results here use a sigmoid that has been
tuned using the factory noise corrupted data.

For Lynx helicopter noise, we see a roughly similar
pattern of improvements though starting from a higher
baseline. The Lynx helicopter noise is more stationary
and hence the baseline missing data system performs
better. The result of 85% accuracy at 0dB, without
model re-training, is particularly noteworthy.

Although fuzzy masks ameliorate the problems of dis-
crete masks and poor noise estimates, they are not
the full solution to the robust recognition problem.
Fuzzy masks soften noise estimation errors but ideally
we would like the mask construction to be informed
by top-down knowledge from the speech models them-
selves. This is the topic of the next section.

6 Decoding Multiple Sources

In contrast to conventional decoding, where all the
observations are assumed to belong to the source be-
ing recognized, the task of a multi-source (MS) de-
coder (Barker et al., 2000a) is to determine the most
likely model state sequence at the same time as decid-
ing which observations to use, and which to ignore as



‘background’.

We assume that we have models for the speech source,
but in contrast with approaches such as Parallel Model
Combination (Gales and Young, 1993) and HMM de-
composition (Varga and Moore, 1990) we do not re-
quire models for the acoustic background.

The input to the MS decoder is a set of coherent source
fragments. Such fragments consist of parameters such
as energy estimates in some arbitrary time-frequency
region. These fragments have been marked as belong-
ing to a single source by an earlier bottom-up or ‘prim-
itive’ process (Bregman, 1990). Due to speech energy
dynamics, it is feasible to find regions with favourable
local SNR even if the global SNR is low. Typical prim-
itive processes are those studied in Auditory Scene
Analysis: forming time-frequency elements into tracks,
or tracks into groups of harmonics with a common fun-
damental, or exploiting common onset or location in
space. In this study we use extremely simple primitive
processing, described further in section 7.

MS decoding relies on the missing data recognition
techniques developed in earlier sections: each source
fragment must be considered as either part of the
speech source, in which case the regions it does not
contain are interpreted as missing, or belonging to
some other source, in which case the fragment itself
is missing data.

The result of a multi-source decoding is to establish
both the most likely word sequence and also the op-
timal present/missing labelling. In Bregman’s terms,
the MS decoder implements schema-driven grouping
(Bregman, 1990).

6.1 Decoding evidence fragments

A brute-force approach to recognising speech from a
set of evidence fragments is to evaluate every possi-
ble combination of fragments over an entire utterance.
Unfortunately, there are 2V subsets of N fragments,
and N could typically become rather large. An alter-
native approach is to merge decoder hypotheses every
time a fragment ends. The complexity then reduces to
2M where M is the maximum number of simultaneous
fragments. This is tractable if primitive processes de-
liver evidence fragments above some minimum gran-
ularity, say over some tens of milliseconds duration.
Crucially, although N increases with utterance length,
M remains essentially constant. Based on the exam-
ples in section 7, N can exceed 40 even for short ut-
terances, while M rarely exceeds 6.

The resulting decoder is based on the standard token-
passing Viterbi algorithm with the following modifica-
tions:

e Tokens keep a record of the fragment assignments
they have made i.e. each token stores its labelling
of each fragment encountered as either speech or
background.

e When a new fragment starts all existing tokens
are duplicated. In one copy the new fragment is
labelled as speech and in the other it is labelled
as background.

e When a fragment ends we compare, for each state,
pairs of tokens that differ only in the label of the
fragment that is ending. The less likely token is
deleted.

e At each time frame tokens propagate through the
HMM as usual. However, each state can hold as
many tokens as there are different labellings of the
currently active fragments. When tokens enter a
state, only those with the same labelling of cur-
rent active fragments are directly compared. The
token with the highest likelihood score survives
and the others are deleted.

The scheme may also be seen as a parallel set of normal
Viterbi decoders (i.e. with one token for each state)
but when a new fragment starts each decoder is dupli-
cated, and when a fragment ends pairs of decoders are
merged.

Decoders |

time

Figure 5: The evolution of a set of parallel decoders.
Each parallel path represents a separate decoder, and
shaded dots indicate which ongoing fragments are con-
sidered as speech. Note that there are at most 4 active
decoders, not the 8 required to decode every possible
subset of 3 fragments.

6.2 The merging problem

When a fragment ends and decoders are merged, to-
kens from each decoder are paired up and their like-
lihoods are compared. However, there is a problem
inherent in this comparison: these tokens have arisen
from decoders with different speech/background la-
bellings, and as such are calculating missing-data fits
based on different patterns of present and missing
data. The missing data framework treats the two types



of data somewhat differently: the match score for
present data is the likelihood calculated by marginal-
ising the full model probability density function over
the missing features. However, for the missing data
we calculate the ‘bounded’ probability of the speech
being less energetic than the observed background - a
true probability rather than a likelihood, and as such
not directly comparable. This difficulty has been over-
come in previous missing data work, where the amount
of present and missing data is the same for each com-
peting hypothesis, by the simple expedient of a scaling
factor. However, when comparing decoder hypotheses
with differing foreground/background interpretations,
a better solution is required.

As a pragmatic solution, the evaluation systems pre-
sented in section 7 adopt a scaling of the missing data
probabilities by dividing them by the integration range
over which they were computed e.g. if the observed
value of the background is X, then the speech energy
is assumed to lie between 0 and X, and the model
probability is computed by integrating the pdf be-
tween 0 and X. An ‘average likelihood’ (i.e. the av-
erage value of the pdf over the integration range) is
formed by dividing the probability by X, something
comparable (when scaled by a fixed constant) with
the likelihood values constituting the match core for
present data.Further discussion of this issue along with
a more principled solution are presented in (Barker et
al., 2000a).

7 Multisource Decoder Experiments

The MS decoder architecture is again tested on the
connected digit recognition task.

The experiments we report evaluate the new decoding
algorithm while using a naive technique to perform
the dissection of the spectrogram. This establishes a
baseline against which to compare future work that
will employ more principled auditory scene analysis
techniques.

After deriving the noise estimate mask following the
procedure in section 4, the present data mask is dis-
sected by first dividing it into four frequency bands and
then labelling contiguous regions within each subband
as the separate fragments. This set of fragments and
the noisy speech representation are then passed to the
MS decoder. Spectro-temporal regions that are not
contained in any fragment are assigned a fixed back-
ground label.

If the actual noise is non-stationary the noise spec-
trum estimates, and hence the local SNR estimates,
are often grossly inaccurate. A local peak in noise en-
ergy can lead to a spectro-temporal region that is mis-
takenly labelled as having high local SNR. This error

"1754" + noise

Mask based on
stationary noise estimate
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‘Grouping’ applied within bands:
Spectro-Temporal Proximity
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Figure 6: An overview of the multi-source recognition
system.

then generates a spurious region in the present data
mask, usually causing poor recognition. In the new
approach, the MS decoder should reject these frag-
ments and label them as background, thereby produc-
ing a better recognition hypothesis. This effect is il-
lustrated in Figure 7, where broad-band noise bursts
have been artificially added to the noisy data repre-
sentation. These unexpected components appear as
bands in the present data mask and hence disrupt the
standard missing data recognition technique (“1159” is
recognised as “81085898”). The third image in the fig-
ure shows how the mask is now dissected before being
passed into the MS decoder. The final panel shows a
backtrace of the fragments that the MS decoder marks
as present in the winning hypothesis. We see that
the noise pulse fragments have been dropped (i.e. rela-
belled as “background”). Recognition performance is
now much improved (“1159” is recognised as “61159”).

An initial multisource decoder experiment was run on
the same connected digit recognition task of earlier
sections, except that a 24 channel filter bank repre-
sentation was used rather than 32 channels, and deci-
sions were hard not soft. The results in figure 8 com-
pare standard missing data with the new multi-source
technique. The scaling constant required to balance
missing and present data scores as described in 6.2
was optimally tuned, but a single value sufficed for all
noise levels.

It can be seen that multi-source decoding provides a
significant improvement at the lower SNRs, e.g. at 5db
recognition accuracy is improved from 70.1% to 78.1%
— a word-error rate reduction from 29.9% to 21.9%, or
26.7% relative.

One possible cause of the remaining performance gap
compared to a priori results is that the fragments sup-
plied to the multi-source decoder are not sufficiently
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Figure 7: An example of the multi-source system per-
formance when applied to data corrupted by artificial
transients (see text).

coherent. In this work we have used a simple set of
fragments generated by clumping high energy regions
in the SNR mask. If the noise and speech sources oc-
cupy adjoining spectro temporal regions this technique
will not be able to separate them. This is evident in
figure 7 where, as a result of both noise and speech be-
ing mixed in the same fragment, a lot of clean speech
energy has been removed from the masks and some of
the noise energy has survived.

8 Conclusion

Most work on robust speech recognition has been
based on the idea of ‘reducing the mismatch’ between
training and test conditions. This leads to the use of
noise models and their deployment in techniques such
as Spectral Subtraction (Lockwood and Boudy, 1991),
HMM decomposition (Varga and Moore, 1990) and
Parallel Model Combination (Gales and Young, 1993).
If some predictable noise source is present, then it is
appropriate to use its statistics in this way, and we
have indeed made use of simple noise models in defin-
ing our ‘missing data masks’. However, if speech is
to be recognised within an arbitrary ‘auditory scene’,
such as in a street or at a meeting, the sound sources
will not be pre-determined, and they will change in
location and with time. For this general case, missing
data coupled with multisource decoding has a number
of attractions:

e The first stage, the identification of reliable ev-
idence fragments, can be based on processing
which exploits only the predictable noise compo-
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nents and low-level constraints such as harmonic-
ity and common onset/offset. There is no need,
for instance, to make any assumption about how
many sources are present.

e The reliable evidence decision does not have to
be right all the time, because it can be expressed
probabilistically rather than in a discrete way.

e Multisource decoding provides a way in which
primitive processing can interact with schema-
driven processing, so that the initial grouping
stage does not have the responsibility of deciding
what belongs to what source.

The scheme we have presented is, arguably, both a
competitive robust ASR system and a computational
implementation of a psycho-acoustic model.

Much work remains to be done: in the medium terms
we plan to

e Use computational auditory scene analysis algo-
rithms to identify evidence fragments.

e Couple the grouping provided by these algorithms
with noise estimates to deal with unpredictable
sources.

e Develop the more principled formulation of the
multisource merging problem outlined in (Barker
et al., 2000a).
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