An Expectation Maximization Algorithm for Inferring Offset-Normal Shape

Distributions
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The statistical analysis of shape has important application
in fields as diverse as biology, anatomy, genetics, medicin
archeology, geology, geography, agriculture, image analyx
sis, computer vision, pattern recognition and chemistry (seg
e.g. [9]). As an important example, we can represent an o
ject (e.g. a face, skull, etc.) as a collection of landmarks
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Abstract

The statistical theory of shape plays a promi-
nent role in applications such as object recogni-
tion and medical imaging. An important para-
meterized family of probability densities defined
on the locations of landmark-points is given by
the offset-normal shape distributions introduced
in [7]. In this paper we present an EM algorithm
for learning the parameters of the offset-normal
shape distribution from shape data. To improve
model flexibility we also provide an EM algo-
rithm to learn mixtures of offset-normal distribu-
tions. To deal with missing landmarks (e.g. due
to occlusions), we extend the algorithm to train
on incomplete data-sets. The algorithm is tested
on a number of real-world data sets and on some
artificially generated data. Experimentally, this
seems to be the first algorithm for which estima-
tion of the full covariance matrix causes no diffi-
culties. In all experiments the estimated distrib-
ution provided an excellent approximation to the
true offset-normal shape distribution.

INTRODUCTION

b-

clustering objects by their shape. The statistical analysis of
shape has a long history dating back to the late seventies
[15, 10, 11, 12, 1, 2, 3, 4].

The work that we will present here is based on a more re-
cent development in statistical shape analysis, namely the
introduction of theoffset-normaldistribution [14, 7, 8, 9].
Offset-normal probability densities describe the distribu-
tion of shapes as represented by collections of landmark
points in two dimensions. The assumption is that the land-
marks in figure space are normally distributed. Pose is re-
moved by mapping two landmarks to fixed positions (e.g.
(0,0) and(1,0)), while the remaining landmarks represent
the shape information. Perhaps surprisingly, this distribu-
tion over the remaining landmarks can be expressed in an-
alytic form [7]. However, a reliable method to infer the
distribution parameters from shape data in the most gen-
eral case (full covariance matrix), is not available. The fact
that certain singular normal distributions map to the same
offset-normal shape distribution has obstructed the formu-
lation of estimation procedures for general covariance ma-
trices.

In this paper we will derive EM update rules for unre-
stricted parameters of the offset-normal shape distribution,
i.e. a mean vector and a full covariance matrix. As it turns
out, both E- and M-step can be computed analytically, pro-
viding an efficient update scheme. In pattern recognition, it
may happen that landmarks are occluded. To deal with this
aifficulty which is often encountered in practical problems

Sve extend the EM procedure to learn from incomplete data.

For cases where the data are not well approximated by an
ffset-normal shape distribution, we provide EM-learning
rules formixturesof offset-normal shape distributions. We

anncIude with experiments on some real world data-sets.

certain positions (in figure space). To compare objects it

is then useful to discard differences in location, orientation

and scale. (i.e. their pose). The remaining degrees of fre THE OFFSET-NORMAL SHAPE

dom are called thehapeof an object. For a meaningful DISTRIBUTION

comparison of objects by their shape we need the tools of

“statistical shape analysis”. For instance, we may want tdn order to be self contained, we explain and re-derive the
know whether two objects agggnificantlydifferent (using  offset-normal shape distribution in this section. Some re-
a hypothesis test), or we may be interested in classifying osults in later sections will follow a similar derivation.



Let an object in two dimensions be represented by thevherel is the Jacobian of the transformation (3) and
positions{x;,y;} of p landmarks. Letx be distributed

according to &p dimensional normal distributiony ~ w7l — Lug - up 0 vz ooy
Noplv, Q. 0 —vz - —vp 1 uz - @)
We will first remove translational content by applying the The integration oveh is facilitated by rewriting? as,
following transformation, -
G=Mh-& T (h-§+g (8)
X = [gflwnaxpayla"'ayp]T — Lx (1) .
with
with
rt = wix'w (9)
L_|I- 1e1T0+ ejel - To , @ ¢ = TWis 1y (10)
— leg + eje; g = HTE—lu _ £T1-\—1£ (11)

and integrate out the f_irst Ia_ndmz?\rk. In this equaﬁ_czmd We can simplify (4) further by transforming to the eigen-
0 are thep x p dimensional identity and zero matrices re- pagis ofT,

spectively,1 is ap x 1 dimensional vector of ones awed is

thep x 1 dimensional vectofl, 0, ..., 0]7". This transforma- I' = RDR7,

tion shifts all landmarks, except the first one, by an amount ¢=RT¢ z—=RTh. (12)
x1,y1- Notice that if we had also shifted the first landmark,

it would be fixed at the locatiof0, 0), producing a singu- Noticing that the determinant of the Jacobian is invariant
lar probability distribution. Since the above transformationwith respect to rotations, this gives,

is linear, the coordinatebx are also normally distributed

with meany = Lv and covarianc& = LQL7. Integrat- P(z,u) = 1 [detT STV
ing outxy,y; for a normal distribution is simply accom- ’ (2m)P=2V det X
plished by_ deleting the cor_re_spondlng entries in the mean X N [Cor 00] N2y Gy 0] (2 + Zz)p—2 (13)
and covariance. The remaining coordinates are denoted by
x* = [25,...,2}, 95, ...,y;]" and have dimensiozyp — 2. where

, , 2=/ Das =./D 14
Next, we remove rotation and scale content by following a 7 Ty vy (14)
similar procedure. First, we transforxt as follows, Finally, we use the binomial expansion to rewrite the Jaco-

bian as,

(z725 + Y7 y2)

UQ:.’L';, Ui:ﬁ 223,,]) p—2 _9 ‘ 4
e (2472 =3 ( . ) i (1)
* YiZyg —TiY2) . i=0 )
v2 = y ) IU: = .5 .5 1= 37"'7p (3)

We are now ready to perform the integrations olerre-
This transformation would have moved the second langduired for the definition of the offset-normal shape distrib-
mark to the locatior(1,0), not allowing any spread and UYtion,

generating a singular pdf. Therefore, we will leave the sec-

ond landmark untouched, while treating all the other ones ~ Ps(u) = /dh p(h,u) = /dz p(z,u) =

as if the second landmark were moved to the reference po- ’ '

sition (1, 0). Finally, to remove information on orientation #‘ /ﬁg%g X (16)
and scale we need to integrate out the second landmark,  (2m)?72 V det X
which we will do in the following. p—2 p—2 0 ot
. E[2;'C(ey00) B[22y, 0y
We will simplify notation for the second landmark by writ- x 2 < i ) 23" [Cas 0] B2y |Cys 0]
ing x5 = h, whileu = [ug, ...uy, v3, ...,v,] L. In the coor-
dinates{h,u} the pdf is given by, where,
k
1 1 V20 1
Ph,u) = ————exp|—=G||det J|, 4 k = (M

(h,u) =W p[5 Gl . 4 E[*|u, o] ( 5 ) Hk,(ﬂa), (17)

with, denotes a Gaussian expectation dig denotes the Her-
et mite polynomial of orderk. Equation (17) is the offset-
G = (Wh—p) X (Wh-p), () normal shape distribution [7], which is invariant with re-

detJ = (h2+ hf/)””, (6)  spectto translations, rotations and scalings of the data. Itis



expressed in terms of the paramete@ndX which are not  In generalG can be of siz&g x 2p, where2 < g < p.
invariant with respect to orientation and scale changes (th&his is useful if we want to integrate out variables from the
translations were taken out in going fram— p, 2 — 30). offset-normal shape distribution [5].

It follows that the parameter set must be redundant, i.e. ori-, .. . . . .
X . Define the pair of baseline variables to be the ones which
entation and scale transformations of the parameters m

a )
to the same offset-normal shape distribution. Technicall ate mapped {¢0, 0) and(1,0). By choosingG to be a

y : ; ]

this implies that the offset-normal shape distribution is de_permuta.tmr.\ mgtnx we can transfgrm the OﬁSEt nqrmal

scribed by an equivalence class of parameters. Thereforghape dlstnbutlpn between any pair of baseline variables

when we mention in the rest of this paper that some ran[ﬁ_terms of th? figure space parameterand(2. But does
X N ) this still hold if we only have access to the parameters of

dom variable is distributed according to an offset-normal L .

shape distribution with parametersand 3, we refer to the offset-normal shape distribution (i.e. the parameters

, 5 : o
the equivalence class of gl andX¥ that map to the same Zﬁi?rzc;t?/)e.' The following lemma answers this in the
offset-normal shape distribution. Sometimes it will be use- '

. . . .. . T
ful to remove this ambiguity by defining a canonical para-Lemma 2 Let x = [z1,...2p,51,., 4" be a
meter set, random variable distributed according to a nor-

mal distribution with parametersyr and Q, and let
Bo =K =[1, 130, oyl 05 135 s fipy] u = [ug,...,up, 3, ...,v,]T be the corresponding shape
>, =KXIK7, (18) random variable, distributed according to the offset-
normal shape distribution with parametetisand 3.

where the mean of the second landmark has been mapp ,
urthermore, let b'e =

to (1,0). More study is required to see for which offset- p , ' T Z Px be a per-
normal shape distributions the above transformation relxa%ili)t’iar']’ xgépyy%ﬂi’éﬁ.,li/g(p&istribate q a)lcccor din F;o a
moves all redundancies and which have a still larger set of X . , 9

. X : . : .. normal distribution with parameters’ = P v and
invariant transformations. It is important to notice the dif- & — P O PT. Then the shape random variables
ference with the non-linear mapping (3). In contrast, (18)°, ! o . , pT are distributed
is a linear transform, depending pi. In [7] it is observed Ur(3)r “ﬂ#%’ Un(3) o Un

. ﬁﬂ > distributed
. ?ccordmg to an offset-normal shape distribution with
that also some singular normal pdfs or even non-norma

pdfs may map to the same offset-normal shape distributiorﬁ) arameters,
enlarging further the redundancy. In this paper we will not ' = Bp, > =BXB? B=L, PE,
concern us with those. (21)

Transformation Properties: We will now state two im-  Here B is_the 2p x 2p — 2 dimensional matrix. & =

portant properties of the offset-normal shape distribution,| ' 0

which will help us derive the learning algorithm in the sub- 0 .. . This matrix has the effect of inserting ze-
sequent sections. 0 I
Lemma 1letx = [v1,...,7p,1,..,5p]" be aran- o5 at the position of the first landmark, iepu —
dom variable distributed according to a normal dis- 0 --- 0
tribution with parametersy and ©, and letu = . :
[ug, ..., up, vs, ..., v,]" be the corresponding shape random [ ;7 o ;7|7 and,® — | Yoo 1 Xy
variable, distributed according to the offset-normal shape Y 0 - 0 -
distribution with parameters LS. %,
p=L, v, Y= Lp_lﬂL;F_l, (19)  Proof of Lemma 2 To prove this it we need to show that
where L,_; is the matrix defined in (2) with thast the following two transformations are equivalent:
and (p + 1)st row deleted. The random variabie = L, .=BL, ; =L, ;PEL,_; (22)

[, .2, 0, yp)T = G x, whereG is a matrix of di-
mensiorgp x 2p, will be distributed according to ap di-
mensional normal distribution with parametars = Gv ETELp_lp = ETELp_lPELp_l ETE=1
andQ’ = GQGT. The corresponding shape random vari- (23)
ablesu’ = [u, ..., u), v3, ..., v,]" will be distributed ac-  Next, we notice that we can rewrite the combinafiéi,
cording to an offset-normal shape distribution with para- as,

We will multiply left and right with the identity as follows,

meters EL, , =1-1e] (24)
u =L, 1Gv, ¥ =L, .GQG'L]_,. (20) ie. itis the2p x 2p dimensional matrix which translates
The proof of this lemma is straightforward and relies onltr:]%flrSt landmark to the origin. Using this in eqn. 23 we

some well known properties of normal pdfs [5]. It is ac-
tually not necessary to assume tiGtis a square matrix. E" (P—1e{P)=E" (P —1e{P) (I-1e{) (25)



Writing this out and noting thatPlel = 1e! and  The derivatives are given by,
1ef1el = 1ef, we verify that the left hand side is in-
deed identical to the right hand side, which then proves the 9

N
(k1) =+ S S (Wl ) (29)

lemma.d Oty
The relevance of this lemma is that we can compute §
the offset-normal shape distribution for an arbitrary pairFQ(Wf -1)= (30)

of baseline landmarks from the offset-normal shape-
parameters of a given pair of baseline landmarks. This will 1
allow us to estimate the parameters of the shape distrib@- vV
tion, even if the data are presented in different reference
frames; a situation which may occur if one of the baselineresulting in the following simple update rules:
landmarks is occluded.

N
> (B = Wo(hh"), W + 2W, (h) i — pypf)

N
In the case where we only interchange the second land- e = 1 an<h>n (31)
mark with higher labelled landmarks, leaving the first land- N el
mark in place, the lemma slightly simplifies. In that case, L
PE = EP,_;, whereP,,_; is2p—2 x 2p— 2 dimensional S = — Z W, (hh™), WT — p, u? (32)
. . . B ’ N L
permutation matrix. Therefore, using,_;E = I, we may n=1

write instead of (21),
1) After every M-step we also map the parametgrand 3

=P, 1pu, Y = prlzp;ﬂl’ (26)  to the canonical parameters, and 3., defined in (18),
to avoid drifting. Because the offset-normal shape distri-

bution is invariant with respect to this transformation, the
3 EMLEARNING ALGORITHM log-likelihood will not change either.

E-step: In the E-step we need to calculate the mean
(h),, and covariancéhh®),, of the posterior distribution
P(h|u,). Using Bayes rule it is easily found that,

Our main objective is to find parameteusand X (or p,,
and X.) that maximize the log-likelihood of the offset-
normal shape distribution given a data-§et,} n =

1...N. The log-likelihood is given by, P(h,u,)

P(h‘un) = PS(un) 5

(33)
N
1
L(p,X) ==Y logPs(u,|u,X). 27 . o
(1, %) N ; 0g Ps(un|p, %) @7) where Ps(u,,) is simply the offset-normal shape distribu-
tion evaluated ati,,. Calculation of the sufficient statistics

Although the analytic form of the offset-normal shape thus involves the following integrals,
distribution is quite complicated, the joint distribution

P(h,u) is much si_mpler. Unfortunately; is not observed (h), = 1 /dh h P(h,u,) (34)
and may be considered a hidden variable for that reason. Ps(uy)

This makes this estimation problem a school example of T B 1 T

the expectation maximization (EM) algorithm. In the EM (hh™), = Ps(u,) /dh hh™ P(h,u,) (35)

framework one iteratively optimizes the following family
of objective functions (depending on the iteration These integrals can be solved following the same strategy
as the one used to calculate the offset-normal shape dis-
1 X tribution in section 2. Again, we will transform to the
Qklk—1) = & Z/dh Py_1(h|u,) log P.(h,u,),  coordinates defined in (12) and notice that,

n=1

(28) (W), = R(z), (36)
where@Q(k|k — 1) depends on the parametgrs and X, T ™ =T
at iterationk, giventhe parameterg,, ;, andX;_; at iter- (hh™), = Rn(zz )R, (37)
ationk — 1. Maximization of the log-likelihood is obtained
by alternating an M-step whei@ is maximized with re-
spect to the parameters, and X, and an E-step where

Using the binomial expansion (15) and the result (17) we
can calculate the following posterior averages,

the posterior distributiop(h|u,,) is determined, given the o p—=2 ‘ -
new parameters calculated in the previous M-step. \ PR ( ; ) B[22 B[0P~ 47 2010]
M-step: In the M-step we need to maximize (2o2yin = p—2( P—2 B[220 B, [52—4-2
(log P(h,u,)), with respect tqu, andX. Here(.),, de- 2j=o j nle’] Enlzy }

notes a posterior averagg(h)), = [ dh P(h|u,)f(h). (38)



Using (38) for the pairs {(a,b) = We will consider the labels and the variable& hidden
(1,0),(0,1),(2,0),(1,1),(0,2)} allows us to perform the The function to be iteratively maximized is therefore given
E-step. by,

Initialization:  To initialize the parameters we use the Qklk —1) = (45)

approximation described in [7]. If the variances ofhl N M

the landmarks are small compared to the mean length™ dh Pv_1(a.hla) logf P.(h ay _
. L. - y n g yUp|Q) T g =

of the baseline, then the offset-normal shape distribu-V' ngl(; e-1(@ ijun) log{Fi( o) i)

tion becomes similar to a normal distribution with mean N M

: 1
A = [fezgs s Hepas Hegys -+ fepy) . @Nd covarianced = — Z Zpk,l(amn) /dh Py_1(h|u,,a) x
FX .FT, whereu,, andX. are are the canonical parameters N n=1a=1
andF is the2p — 4 x 2p — 2 dimensional matrix, x {log Px(uy, hla) + log 7},
AT om0 where we usedP(h, a|u) = P(alu) P(h|u,a). The M-
F = : : step involves again maximizing this expression at every it-

eration with respect tay, ui andX¢. Taking derivatives
T with respect to these variables and equating them to zero
v = [/“Lf’)ya'nvlipyv_,U'SIa"'a_/“LpI} (39) we find,

Aop—a 0 7vyops 1

To initialize our algorithm we therefore calculate the 1N
samp]l{e mean and covariancjs of the shape data= T = NZPk_l(a|un), (46)
3w, andA = A= 30 (w, — A)(u, — AT n=1
The initial values of the mean andX are then given by, ZN L Pe_1(au,) W, (h)¢ 47)
pip = = a7
po= (12,0, (40) Yom—1 Pr1(alun)
S o= FAFL P =FFFO)T @) o, S Pealalun) WabhTEWE L g
ko~ N - FPEFE >
whereF , is the pseudo-inverse @. >om=1 Pe-1(altim)
(48)
4 MIXTURE DISTRIBUTIONS where we have defined,
In practice it might happen that the data in figure-space are (f())e = /dh P(hluy,,a)f(h). (49)
not well described by a normal distribution. In that case,

we may approximate it by a mixture of Gaussians. TheThese update rules are very similar to (31) and (32). In the
corresponding distribution in shape-space turns out to be gixture case however, the influence of every data point on

mixture of offset-normal shape distributions according 10,2 andx¢ is weighted byafaCtOPNPk—I;(a|un) which
the following lemma [5] o _m=1 Pr-1(alum)
o ) expresses the probability that mixture compon@t,, |a)
Lemma 3 Under a multivariate normal mixture model for g responsible for the generation of datuy
the figure-space coordinates,
The E-step involves the calculation 8fa|u,,), (h)¢ and

M T\a P ;
(hh*)¢. P(a|u,,) is simply given by,
PMOG(X) = ZN2P[X|:U'(17 Ea] Ta, (42)
a= P n a
- o | Plafu,) = —pount) Te__ (50)
the joint probability distribution function of the shape vec- > 1 Ps(un|b) m

tor u is a mixture of offset-normal shape distributions, wherePs (u,|a) is an offset-normal shape distribution with

M parameterg.* andX®. According to (49), the calculation
Pros(w) =Y Ps[ulp,, Za] 7 (43)  of (h)? and(hh7)? is identical to those described in sec-
a=1 tion 3, where we use parametgré andX@ for p andX.
We thus see that the learning rules for a mixture of offset-

The proof is simple if one realizes that every mixture com- LHIs Ik ) >
ponent is mapped to an offset-normal shape distributionnormal shape distributions are straightforward generaliza-

which are then combined using the a priori probabilitiestions of the one component learning rules.
m,. TO find update rules for the parametets p, andX,
we start with the log-likelihood, 5 INCOMPLETE DATA

N M
1 In practice, it may happen that landmarks are occluded and
L=— lo Ps(uy|a; p*, ) . 44 p ' y happ
N ; g; s(tnla; )m (“44) only incomplete data are provided. First, we will assume



that the missing information does not concern the baselin€lo generalize this to arbitrary missing dimensions we sim-
points (i.e. landmarks 1 and 2). This will be generalized toply need to permute the columnsf”'.

arbitrary missing landmarks later in this section. The M-step of the EM algorithm proceeds exactly as ex-

Assume that we haveV, possibly incomplete samples, plained in section (3), where averages are now taken w.r.t.
{u,}, n = 1..N. For every sample we define an index the posterior distributiorP(h|u?). Evaluating these av-

m denoting the missing dimensions, and an indelenot-  erages, which is part of the E-step, proceeds analogously
ing the observed dimensions. We will always assume thaas in section (3). Using equations (34) and (35) we note
both thexr and they component of a landmark are missing, that the difficult part of that calculation is computing the
implying thatm ando are necessarily even dimensional. following expectations,

We thus haver,, = [u”,u?]” (the dependence af ando

onn is omitted for nptatlonal convenlence). Th.e question [ gh f(h)P(h,u°) = C E[f(h) (h3+h2,,)> P+ €,

we want to answer isCan we use the information of in-
complete data-vectors in the estimation of the parameters (55)

of the offset-normal shape distribution Po answer this, WNereE[. | £, I denotes taking the average over a mul-
we first write the log-likelihood tivariate normal pdf with meag and covariancd® and

f(h) = hor f(h) = hh”. Unfortunately, the transfor-

N A . . . . .
1 o mation in eqn. (12) will not leave the Jacobian invariant,
L. Z) = 1 D logPs(w|w. %), (51)  gjnee
n=1
which now only depends on the observed data. This im- hf 4 h(21+1 =h7TQh Q= elelT + eq+1eqT+1 (56)

plies that we may treat the missing dimensions as hid-

den variables, alongside the varialsie. Thus, for every s not invariant with respect th — z = R”h. However,
n, we have a different set of hidden variables, denotedfwe transform,

by h, = [x},,u;]. In fact, it turns out to be more
convenient to represent the unobserved landmarks in fig- I = RDR'" = FF”
ure space, so that the set of missing variables becomes ¢ = =Fl¢g= UD‘%RTS

h, = [x3,,x;"]. The auxiliary functionsQ(k|k — 1)

n

: . ) = F'n 7
in terms of the above variables are given by, z &7

1 X then the normal distribution transforms t8/,[¢,T'] —
Q(klk—1) = N Z/dh Py_1(hluy) log Pr.(h,u3).  AN,[¢, 1] while we can still choose the orthonormal matrix
n=1 (52) U such that the Jacobian remains as simple as possible,

The formula forP(h, u®) is very similar to (4) with 2 im- hT0h = 2TFTOFz = 2T Az (58)
portant differences. Firstly, since more variables are de-
fined in figure space, the Jacobian of the transformation ighe matrixA can be chosen diagonal by using the follow-
slightly different, ing eigenvalue decompositioR; QF = VHVT which is

| det J| = (xzz 4 y;Q)p72fq’ (53) always possible becau® QF is a symmetric rank-2 ma-

whereq denotes the number of missing landmarks (whichtrix' Thus, by choosing\ = H andU = V' we obtain
may be different for each data case Assuming for a mo- the desired result. We now need to expand the Jacobian in

ment that the missing dimensions have the lowest indiced Pinomial series expansion and use eqns. (34) and (35) to

(i.,e.m = 3,4,...), we define, arrive at an expression for the desired averages similar to
w7l — egn. (38).
2 1 00 «+  ug1 - u 0 0 0 - Alternatively, a good approximation can be obtained by
0 1 0

0o - 0000 - sampling from the normal distributiok[h | £, I'] and sub-
: sequent calculation of the sample average.

0 0 0 —Vg+1 o —vp 1 0 0 Missing Baseline Landmarks: Next, we treat the case
000 0 00 10 where one or both of the baseline landmarks is missing
from the data. For such a data case, the locations of the
3 other landmarks should be represented in a different ref-

fate US erence frame, i.e. using a different (observed) baseline
pair. In that frame, the situation reduces to the case treated
u o (54)  above. It remains to be understood how to incorporate data
‘”(1) 0 in different reference frames in the estimation process. We
will first choose one, arbitrary, baseline pair and invoke
lemma 2 (section 2) to write the distribution in any other



frame as, . Data and estimated DM density in shape space Multivariate DM density in shape space

Ps(u'| ', =) = Ps(u'|Bu, BEBY),  (59)

0 . 0
.

whereB = L, ,PE andL,_,, P andE are defined in S @ s > @\)
section 2. Since every data point may be defined in a dil / // . ' /@
ferent reference fram@ depends om. Taking derivatives { a

with respect tou and X in the M-step then generates the B
following update rules,

L35 0 05 1 15 35 0 05 1 15 2

1 N Data and estimated DM density in shape space Multivariate DM density in shape space
1 0. 02
me = 5 Y B,'W,(h), (60) | 0
n=1
N 02 -02
1 ; :
—1 T To—T T 0.4 0.4
X = N E Bn W"<hh >anBn — KM, -
n=1 o . < —>%
(6 1) -0.8] -08

] e ] =

where W,, and (.),, are defined in their own reference
fram e . -1#’0 0.2 04 0.6 08 1 12 1 ElNO 02 04 0.6 08 1 12 14

Data and estimated DM density in shape space Multivariate DM density in shape space
0.8

In the E-step we compute the posterior mean and covat o
ance as usual, using parametgrs = B,,u andX; =
B, B! for data case.

0.6] 0.6]

0.4 0.4

A 00
6 EXPERIMENTS

0 . 0

To test the algorithm on real world data, we downloade(., 02
5 data-sets from the web Some data-sets contain data
directly in shape space, while others have data in figur{:o 020060 n o a e er 0 s 08
space, which we converted to shape space by mapping two

landmarks to location§0, 0) and (1, 0) respectively. Be- Figure 1:Estimation of offset-normal shape distributions for the
fore transforming to shape space we extracted the sampfellowing data-sets provided in figure space (from top to bottom):

mean and covariance to establish ‘ground truth’, since thesé"1zalina", “Globorotalia” and "Mouse vertebrae (small group)".
’ he first column depicts the data overlaid with the offset-normal

a_re t_he Parameters which describe the. offset-normal Shaﬂﬁstributions estimated in shape space, while the second column
distribution. Note however that many different normal dis- shows the offset-normal distributions estimated in figure space.

tributions map to the same offset-normal shape distribution,

so that comparing the parameters directly is not very mean-

ingful. be computed, resulting in unfavorable scaling behavior for
Ig\rge amounts of data.

Figure 1 shows the results when the sample mean an
covariance were available in figure space. The data-set#/e have encountered no problems in the estimation of the
used in Figure 1 are “Brizalina”, ‘Globorotalia’ (described full covariance matrix, as described in [7], [9]. Also, few

in [4]) and ‘Mouse vertebrae’ (Small group) (described data are needed to find a reliable estimate of the distribution
in [9]). Figure 2 shows the results on the datasets ‘Go{around 20).

rilla skulls’ (female) (described in [9]) and ‘Rat calvar-

ial growth’ (studied in [4]). These data-sets are defined

in shape space, which implies that we have no access tz DISCUSSION

ground truth. Finally, in figure 3, we present an example

where we artificially generated 100 samples from a ‘chal-n this paper we have shown how to infer the parameters
lenging’ offset-normal shape distribution. of a full covariance offset-normal shape distribution using

. - . . the expectation maximization algorithm. In addition, we
The algorithm usually converges W'th!n 20 iterations. NO'have addressed to important issues which open the door
tice however, that for every data-point a SVD needs toto practical applications. Firstly, the data may not be well
" IThe data-sets can be found at: described by an offset-normal shape distribution and sec-
http://www.amsta.leeds.ac.iknhd/Shape-S/datasets.html ondly, the data may be incomplete, e.g. due to occlusion.
http://life.bio.sunysb.edu/morph/index.html The first problem was addressed by providing a learning
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Figure 2:Estimation of offset-normal shape distributions for the
following data-sets provided in shape space (left to right): “Go-
rilla Skulls (female)” and “Rat calvarial growth” (small group).
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