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Abstract

The statistical theory of shape plays a promi-
nent role in applications such as object recogni-
tion and medical imaging. An important para-
meterized family of probability densities defined
on the locations of landmark-points is given by
the offset-normal shape distributions introduced
in [7]. In this paper we present an EM algorithm
for learning the parameters of the offset-normal
shape distribution from shape data. To improve
model flexibility we also provide an EM algo-
rithm to learn mixtures of offset-normal distribu-
tions. To deal with missing landmarks (e.g. due
to occlusions), we extend the algorithm to train
on incomplete data-sets. The algorithm is tested
on a number of real-world data sets and on some
artificially generated data. Experimentally, this
seems to be the first algorithm for which estima-
tion of the full covariance matrix causes no diffi-
culties. In all experiments the estimated distrib-
ution provided an excellent approximation to the
true offset-normal shape distribution.

1 INTRODUCTION

The statistical analysis of shape has important applications
in fields as diverse as biology, anatomy, genetics, medicine,
archeology, geology, geography, agriculture, image analy-
sis, computer vision, pattern recognition and chemistry (see
e.g. [9]). As an important example, we can represent an ob-
ject (e.g. a face, skull, etc.) as a collection of landmarks at
certain positions (in figure space). To compare objects it
is then useful to discard differences in location, orientation
and scale. (i.e. their pose). The remaining degrees of free-
dom are called theshapeof an object. For a meaningful
comparison of objects by their shape we need the tools of
“statistical shape analysis”. For instance, we may want to
know whether two objects aresignificantlydifferent (using
a hypothesis test), or we may be interested in classifying or

clustering objects by their shape. The statistical analysis of
shape has a long history dating back to the late seventies
[15, 10, 11, 12, 1, 2, 3, 4].

The work that we will present here is based on a more re-
cent development in statistical shape analysis, namely the
introduction of theoffset-normaldistribution [14, 7, 8, 9].
Offset-normal probability densities describe the distribu-
tion of shapes as represented by collections of landmark
points in two dimensions. The assumption is that the land-
marks in figure space are normally distributed. Pose is re-
moved by mapping two landmarks to fixed positions (e.g.
(0, 0) and(1, 0)), while the remaining landmarks represent
the shape information. Perhaps surprisingly, this distribu-
tion over the remaining landmarks can be expressed in an-
alytic form [7]. However, a reliable method to infer the
distribution parameters from shape data in the most gen-
eral case (full covariance matrix), is not available. The fact
that certain singular normal distributions map to the same
offset-normal shape distribution has obstructed the formu-
lation of estimation procedures for general covariance ma-
trices.

In this paper we will derive EM update rules for unre-
stricted parameters of the offset-normal shape distribution,
i.e. a mean vector and a full covariance matrix. As it turns
out, both E- and M-step can be computed analytically, pro-
viding an efficient update scheme. In pattern recognition, it
may happen that landmarks are occluded. To deal with this
difficulty which is often encountered in practical problems
we extend the EM procedure to learn from incomplete data.
For cases where the data are not well approximated by an
offset-normal shape distribution, we provide EM-learning
rules formixturesof offset-normal shape distributions. We
conclude with experiments on some real world data-sets.

2 THE OFFSET-NORMAL SHAPE
DISTRIBUTION

In order to be self contained, we explain and re-derive the
offset-normal shape distribution in this section. Some re-
sults in later sections will follow a similar derivation.



Let an object in two dimensions be represented by the
positions{xi, yi} of p landmarks. Letx be distributed
according to a2p dimensional normal distribution,x ∼
N2p[ν,Ω].

We will first remove translational content by applying the
following transformation,

x = [x1, ..., xp, y1, ..., yp]T → Lx (1)

with

L =
[

I− 1eT
1 + e1eT

1 0
0 I− 1eT

1 + e1eT
1

]
(2)

and integrate out the first landmark. In this equationI and
0 are thep × p dimensional identity and zero matrices re-
spectively,1 is ap×1 dimensional vector of ones ande1 is
thep×1 dimensional vector[1, 0, ..., 0]T . This transforma-
tion shifts all landmarks, except the first one, by an amount
x1, y1. Notice that if we had also shifted the first landmark,
it would be fixed at the location(0, 0), producing a singu-
lar probability distribution. Since the above transformation
is linear, the coordinatesLx are also normally distributed
with meanµ = Lν and covarianceΣ = LΩLT . Integrat-
ing out x1, y1 for a normal distribution is simply accom-
plished by deleting the corresponding entries in the mean
and covariance. The remaining coordinates are denoted by
x∗ = [x∗2, ..., x

∗
p, y

∗
2 , ..., y∗p ]T and have dimension2p− 2.

Next, we remove rotation and scale content by following a
similar procedure. First, we transformx∗ as follows,

u2 = x∗2, ui =
(x∗i x

∗
2 + y∗i y2)

x∗2
2 + y∗2

2 i = 3, ..., p

v2 = y∗2 , vi =
(y∗i x∗2 − x∗i y2)

x∗2
2 + y∗2

2 i = 3, ..., p (3)

This transformation would have moved the second land-
mark to the location(1, 0), not allowing any spread and
generating a singular pdf. Therefore, we will leave the sec-
ond landmark untouched, while treating all the other ones
as if the second landmark were moved to the reference po-
sition (1, 0). Finally, to remove information on orientation
and scale we need to integrate out the second landmark,
which we will do in the following.

We will simplify notation for the second landmark by writ-
ing x∗2 = h, while u = [u3, ...up, v3, ..., vp]T . In the coor-
dinates{h,u} the pdf is given by,

P (h,u) =
1

(2π)p−1
√

detΣ
exp[−1

2
G]| detJ|, (4)

with,

G = (Wh− µ)T Σ−1(Wh− µ), (5)

detJ = (h2
x + h2

y)p−2, (6)

whereJ is the Jacobian of the transformation (3) and

WT =
[

1 u3 · · · up 0 v3 · · · vp

0 −v3 · · · −vp 1 u3 · · · up

]
.

(7)
The integration overh is facilitated by rewritingG as,

G = (h− ξ)T Γ−1(h− ξ) + g (8)

with

Γ−1 = WT Σ−1W (9)

ξ = ΓWT Σ−1µ (10)

g = µT Σ−1µ− ξT Γ−1ξ (11)

We can simplify (4) further by transforming to the eigen-
basis ofΓ,

Γ = RDRT ,

ζ = RT ξ z = RT h. (12)

Noticing that the determinant of the Jacobian is invariant
with respect to rotations, this gives,

P (z,u) =
1

(2π)p−2

√
detΓ
detΣ

e−
1
2 g ×

× Nzx [ζx, σx] Nzy [ζy, σy] (z2
x + z2

y)p−2 (13)

where
σx =

√
Dxx σy =

√
Dyy (14)

Finally, we use the binomial expansion to rewrite the Jaco-
bian as,

(z2
x + z2

y)p−2 =
p−2∑

i=0

(
p− 2

i

)
z2i
x z2p−4−2i

y . (15)

We are now ready to perform the integrations overh, re-
quired for the definition of the offset-normal shape distrib-
ution,

PS(u) =
∫

dh p(h,u) =
∫

dz p(z,u) =

1
(2π)p−2

√
detΓ
detΣ

e−
1
2 g × (16)

×
p−2∑

i=0

(
p− 2

i

)
E[z2i

x |ζx, σx] E[z2p−4−2i
y |ζy, σy]

where,

E[zk|µ, σ] =

(√
2σ

2i

)k

Hk(
iµ√
2σ

), (17)

denotes a Gaussian expectation andHk denotes the Her-
mite polynomial of orderk. Equation (17) is the offset-
normal shape distribution [7], which is invariant with re-
spect to translations, rotations and scalings of the data. It is



expressed in terms of the parametersµ andΣ which are not
invariant with respect to orientation and scale changes (the
translations were taken out in going fromν → µ,Ω → Σ).
It follows that the parameter set must be redundant, i.e. ori-
entation and scale transformations of the parameters map
to the same offset-normal shape distribution. Technically,
this implies that the offset-normal shape distribution is de-
scribed by an equivalence class of parameters. Therefore,
when we mention in the rest of this paper that some ran-
dom variable is distributed according to an offset-normal
shape distribution with parametersµ andΣ, we refer to
the equivalence class of allµ andΣ that map to the same
offset-normal shape distribution. Sometimes it will be use-
ful to remove this ambiguity by defining a canonical para-
meter set,

µc = Kµ = [1, µ3x, ..., µpx, 0, µ3y, ..., µpy]T ,

Σc = KΣKT , (18)

where the mean of the second landmark has been mapped
to (1, 0). More study is required to see for which offset-
normal shape distributions the above transformation re-
moves all redundancies and which have a still larger set of
invariant transformations. It is important to notice the dif-
ference with the non-linear mapping (3). In contrast, (18)
is a linear transform, depending onµ2. In [7] it is observed
that also some singular normal pdfs or even non-normal
pdfs may map to the same offset-normal shape distribution,
enlarging further the redundancy. In this paper we will not
concern us with those.

Transformation Properties: We will now state two im-
portant properties of the offset-normal shape distribution,
which will help us derive the learning algorithm in the sub-
sequent sections.

Lemma 1 Let x = [x1, ..., xp, y1, ..., yp]T be a ran-
dom variable distributed according to a normal dis-
tribution with parametersν and Ω, and let u =
[u3, ..., up, v3, ..., vp]T be the corresponding shape random
variable, distributed according to the offset-normal shape
distribution with parameters

µ = Lp−1ν, Σ = Lp−1ΩLT
p−1, (19)

where Lp−1 is the matrix defined in (2) with the1st
and (p + 1)st row deleted. The random variablex′ =
[x′1, ..., x

′
p, y

′
1, ..., y

′
p]T = G x, whereG is a matrix of di-

mension2p × 2p, will be distributed according to a2p di-
mensional normal distribution with parametersν′ = Gν
andΩ′ = GΩGT . The corresponding shape random vari-
ablesu′ = [u′3, ..., u

′
p, v

′
3, ..., v

′
p]T will be distributed ac-

cording to an offset-normal shape distribution with para-
meters,

µ′ = Lp−1Gν, Σ′ = Lp−1GΩGT LT
p−1. (20)

The proof of this lemma is straightforward and relies on
some well known properties of normal pdfs [5]. It is ac-
tually not necessary to assume thatG is a square matrix.

In generalG can be of size2g × 2p, where2 < g ≤ p.
This is useful if we want to integrate out variables from the
offset-normal shape distribution [5].

Define the pair of baseline variables to be the ones which
are mapped to(0, 0) and (1, 0). By choosingG to be a
permutation matrix we can transform the offset-normal
shape distribution between any pair of baseline variables
in terms of the figure space parametersν andΩ. But does
this still hold if we only have access to the parameters of
the offset-normal shape distribution (i.e. the parameters
µ and Σ)? The following lemma answers this in the
affirmative:

Lemma 2 Let x = [x1, ..., xp, y1, ..., yp]T be a
random variable distributed according to a nor-
mal distribution with parametersν and Ω, and let
u = [u3, ..., up, v3, ..., vp]T be the corresponding shape
random variable, distributed according to the offset-
normal shape distribution with parametersµ andΣ.
Furthermore, let x′ =
[x′π(1), ..., x

′
π(p), y

′
π(1), ..., y

′
π(p)]

T = Px be a per-
mutation of x, which is distributed according to a
normal distribution with parametersν′ = P ν and
Ω′ = P Ω PT . Then, the shape random variables
u′ = [u′π(3), ..., u

′
π(p), v

′
π(3), ..., v

′
π(p)]

T are distributed
according to an offset-normal shape distribution with
parameters,

µ′ = Bµ, Σ′ = BΣBT B = Lp−1PE,
(21)

Here E is the 2p × 2p − 2 dimensional matrix,E =


0 · · ·
I 0
0 · · ·
0 I


 . This matrix has the effect of inserting ze-

ros at the position of the first landmark, i.e.µ →

[0,µT
x , 0, µT

y ]T and,Σ →




0 · · · 0 · · ·
... Σxx

... Σxy

0 · · · 0 · · ·
... Σyx

... Σyy




Proof of Lemma 2 To prove this it we need to show that
the following two transformations are equivalent:

Lp−1P = BLp−1
.= Lp−1PELp−1 (22)

We will multiply left and right with the identity as follows,

ET ELp−1P = ET ELp−1PELp−1 ET E = I
(23)

Next, we notice that we can rewrite the combinationELp−1

as,
ELp−1 = I− 1eT

1 (24)

i.e. it is the2p × 2p dimensional matrix which translates
the first landmark to the origin. Using this in eqn. 23 we
find,

ET
(
P− 1eT

1 P
)

= ET
(
P− 1eT

1 P
) (

I− 1eT
1

)
(25)



Writing this out and noting thatP1eT
1 = 1eT

1 and
1eT

1 1eT
1 = 1eT

1 , we verify that the left hand side is in-
deed identical to the right hand side, which then proves the
lemma.¤
The relevance of this lemma is that we can compute
the offset-normal shape distribution for an arbitrary pair
of baseline landmarks from the offset-normal shape-
parameters of a given pair of baseline landmarks. This will
allow us to estimate the parameters of the shape distribu-
tion, even if the data are presented in different reference
frames; a situation which may occur if one of the baseline
landmarks is occluded.

In the case where we only interchange the second land-
mark with higher labelled landmarks, leaving the first land-
mark in place, the lemma slightly simplifies. In that case,
PE = EPp−1, wherePp−1 is 2p−2×2p−2 dimensional
permutation matrix. Therefore, using,Lp−1E = I, we may
write instead of (21),

µ′ = Pp−1µ, Σ′ = Pp−1ΣPT
p−1, (26)

3 EM LEARNING ALGORITHM

Our main objective is to find parametersµ andΣ (or µc

and Σc) that maximize the log-likelihood of the offset-
normal shape distribution given a data-set{un} n =
1...N . The log-likelihood is given by,

L(µ,Σ) =
1
N

N∑
n=1

log PS(un|µ,Σ). (27)

Although the analytic form of the offset-normal shape
distribution is quite complicated, the joint distribution
P (h,u) is much simpler. Unfortunately,h is not observed
and may be considered a hidden variable for that reason.
This makes this estimation problem a school example of
the expectation maximization (EM) algorithm. In the EM
framework one iteratively optimizes the following family
of objective functions (depending on the iterationk),

Q(k|k − 1) =
1
N

N∑
n=1

∫
dh Pk−1(h|un) log Pk(h,un),

(28)
whereQ(k|k − 1) depends on the parametersµk andΣk

at iterationk, giventhe parametersµk−1 andΣk−1 at iter-
ationk−1. Maximization of the log-likelihood is obtained
by alternating an M-step whereQ is maximized with re-
spect to the parametersµk andΣk, and an E-step where
the posterior distributionp(h|un) is determined, given the
new parameters calculated in the previous M-step.

M-step: In the M-step we need to maximize
〈log P (h,un)〉n with respect toµk andΣk. Here〈.〉n de-
notes a posterior average,〈f(h)〉n =

∫
dh P (h|un)f(h).

The derivatives are given by,

∂

∂µk

Q(k|k − 1) =
1
N

N∑
n=1

Σ−1
k (Wn〈h〉n − µk) (29)

∂

∂Σ−1
k

Q(k|k − 1) = (30)

1
2

1
N

N∑
n=1

(Σk −Wn〈hhT 〉nWT
n + 2Wn〈h〉nµT

k − µkµT
k )

resulting in the following simple update rules:

µk =
1
N

N∑
n=1

Wn〈h〉n (31)

Σk =
1
N

N∑
n=1

Wn〈hhT 〉nWT
n − µkµT

k (32)

After every M-step we also map the parametersµ andΣ
to the canonical parametersµc and Σc, defined in (18),
to avoid drifting. Because the offset-normal shape distri-
bution is invariant with respect to this transformation, the
log-likelihood will not change either.

E-step: In the E-step we need to calculate the mean
〈h〉n and covariance〈hhT 〉n of the posterior distribution
P (h|un). Using Bayes rule it is easily found that,

P (h|un) =
P (h,un)
PS(un)

, (33)

wherePS(un) is simply the offset-normal shape distribu-
tion evaluated atun. Calculation of the sufficient statistics
thus involves the following integrals,

〈h〉n =
1

PS(un)

∫
dh h P (h,un) (34)

〈hhT 〉n =
1

PS(un)

∫
dh hhT P (h,un) (35)

These integrals can be solved following the same strategy
as the one used to calculate the offset-normal shape dis-
tribution in section 2. Again, we will transform to thez
coordinates defined in (12) and notice that,

〈h〉n = Rn〈z〉n, (36)

〈hhT 〉n = Rn〈zzT 〉nRT
n . (37)

Using the binomial expansion (15) and the result (17) we
can calculate the following posterior averages,

〈za
xzb

y〉n =

∑p−2
i=0

(
p− 2

i

)
En[z2i+a

x ] En[z2p−4−2i+b
y ]

∑p−2
j=0

(
p− 2

j

)
En[z2j

x ] En[z2p−4−2j
y ]

(38)



Using (38) for the pairs {(a, b) =
(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} allows us to perform the
E-step.

Initialization: To initialize the parameters we use the
approximation described in [7]. If the variances of
the landmarks are small compared to the mean length
of the baseline, then the offset-normal shape distribu-
tion becomes similar to a normal distribution with mean
λ = [µc3x, ..., µcpx, µc3y, ..., µcpy]T and covarianceΛ =
FΣcFT , whereµc andΣc are are the canonical parameters
andF is the2p− 4× 2p− 2 dimensional matrix,

F =




λ1 I γ1 0
...

...
λ2p−4 0 γ2p−4 I




γ = [µ3y, ..., µpy,−µ3x, ...,−µpx]T (39)

To initialize our algorithm we therefore calculate the
sample mean and covariance of the shape data,λ =
1
N

∑N
n=1 un andΛ = 1

N−1

∑N
n=1(un − λ)(un − λ)T .

The initial values of the meanµ andΣ are then given by,

µ = [1, λx, 0,λy] (40)

Σ = F+ΛFT
+, F+ = FT (FFT )−1 (41)

whereF+ is the pseudo-inverse ofF.

4 MIXTURE DISTRIBUTIONS

In practice it might happen that the data in figure-space are
not well described by a normal distribution. In that case,
we may approximate it by a mixture of Gaussians. The
corresponding distribution in shape-space turns out to be a
mixture of offset-normal shape distributions according to
the following lemma [5]

Lemma 3 Under a multivariate normal mixture model for
the figure-space coordinates,

PMoG(x) =
M∑

a=1

N2p[x|µa,Σa] πa, (42)

the joint probability distribution function of the shape vec-
tor u is a mixture of offset-normal shape distributions,

PMoS(u) =
M∑

a=1

PS [u|µa,Σa] πa (43)

The proof is simple if one realizes that every mixture com-
ponent is mapped to an offset-normal shape distribution,
which are then combined using the a priori probabilities
πa. To find update rules for the parametersπa, µa andΣa

we start with the log-likelihood,

L =
1
N

N∑
n=1

log
M∑

a=1

PS(un|a; µa,Σa) πa. (44)

We will consider the labelsa and the variablesh hidden.
The function to be iteratively maximized is therefore given
by,

Q(k|k − 1) = (45)

1
N

N∑
n=1

M∑
a=1

∫
dh Pk−1(a,h|un) log{Pk(h,un|a) πa

k} =

1
N

N∑
n=1

M∑
a=1

Pk−1(a|un)
∫

dh Pk−1(h|un, a)×

× {log Pk(un,h|a) + log πa
k},

where we used,P (h, a|u) = P (a|u) P (h|u, a). The M-
step involves again maximizing this expression at every it-
eration with respect toπa

k , µa
k andΣa

k. Taking derivatives
with respect to these variables and equating them to zero
we find,

πa
k =

1
N

N∑
n=1

Pk−1(a|un), (46)

µa
k =

∑N
n=1 Pk−1(a|un) Wn〈h〉an∑N

m=1 Pk−1(a|um)
, (47)

Σa
k =

∑N
n=1 Pk−1(a|un) Wn〈hhT 〉anWT

n∑N
m=1 Pk−1(a|um)

− µa
kµaT

k ,

(48)

where we have defined,

〈f(h)〉an =
∫

dh P (h|un, a)f(h). (49)

These update rules are very similar to (31) and (32). In the
mixture case however, the influence of every data point on
µa

k andΣa
k is weighted by a factor Pk−1(a|un)PN

m=1 Pk−1(a|um)
which

expresses the probability that mixture componentP (un|a)
is responsible for the generation of datumun.

The E-step involves the calculation ofP (a|un), 〈h〉an and
〈hhT 〉an. P (a|un) is simply given by,

P (a|un) =
PS(un|a) πa∑M
b=1 PS(un|b) πb

, (50)

wherePS(un|a) is an offset-normal shape distribution with
parametersµa andΣa. According to (49), the calculation
of 〈h〉an and〈hhT 〉an is identical to those described in sec-
tion 3, where we use parametersµa andΣa for µ andΣ.
We thus see that the learning rules for a mixture of offset-
normal shape distributions are straightforward generaliza-
tions of the one component learning rules.

5 INCOMPLETE DATA

In practice, it may happen that landmarks are occluded and
only incomplete data are provided. First, we will assume



that the missing information does not concern the baseline
points (i.e. landmarks 1 and 2). This will be generalized to
arbitrary missing landmarks later in this section.

Assume that we haveN , possibly incomplete samples,
{un}, n = 1...N . For every sample we define an index
m denoting the missing dimensions, and an indexo denot-
ing the observed dimensions. We will always assume that
both thex and they component of a landmark are missing,
implying thatm ando are necessarily even dimensional.
We thus haveun = [um

n ,uo
n]T (the dependence ofm ando

on n is omitted for notational convenience). The question
we want to answer is;Can we use the information of in-
complete data-vectors in the estimation of the parameters
of the offset-normal shape distribution ?To answer this,
we first write the log-likelihood,

L(µ,Σ) =
1
N

N∑
n=1

log PS(uo
n|µ,Σ), (51)

which now only depends on the observed data. This im-
plies that we may treat the missing dimensions as hid-
den variables, alongside the variablex∗2. Thus, for every
n, we have a different set of hidden variables, denoted
by hn = [x∗2,n,um

n ]. In fact, it turns out to be more
convenient to represent the unobserved landmarks in fig-
ure space, so that the set of missing variables becomes
hn = [x∗2,n,x∗mn ]. The auxiliary functionsQ(k|k − 1)
in terms of the above variables are given by,

Q(k|k − 1) =
1
N

N∑
n=1

∫
dh Pk−1(h|uo

n) log Pk(h,uo
n).

(52)
The formula forP (h,uo) is very similar to (4) with 2 im-
portant differences. Firstly, since more variables are de-
fined in figure space, the Jacobian of the transformation is
slightly different,

| detJ| = (x∗2
2 + y∗2

2)p−2−q, (53)

whereq denotes the number of missing landmarks (which
may be different for each data casen). Assuming for a mo-
ment that the missing dimensions have the lowest indices
(i.e. m = 3, 4, . . .), we define,

WT =2
666666664

1 0 0 · · · uq+1 · · · up 0 0 0 · · ·
0 1 0 · · · 0 · · · 0 0 0 0 · · ·
...

...
0 0 0 · · · −vq+1 · · · −vp 1 0 0 · · ·
0 0 0 · · · 0 · · · 0 0 1 0 · · ·
...

...

· · · vq+1 · · · vp

· · · 0 · · · 0
...

· · · uq+1 · · · up

· · · 0 · · · 0
...

3
777777775

(54)

To generalize this to arbitrary missing dimensions we sim-
ply need to permute the columns ofWT .

The M-step of the EM algorithm proceeds exactly as ex-
plained in section (3), where averages are now taken w.r.t.
the posterior distributionP (h|uo

n). Evaluating these av-
erages, which is part of the E-step, proceeds analogously
as in section (3). Using equations (34) and (35) we note
that the difficult part of that calculation is computing the
following expectations,
∫

dh f(h)P (h,uo) = C E[f(h) (h2
1+h2

q+1)
2−p+q| ξ,Γ],

(55)
whereE[. | ξ,Γ] denotes taking the average over a mul-
tivariate normal pdf with meanξ and covarianceΓ and
f(h) = h or f(h) = hhT . Unfortunately, the transfor-
mation in eqn. (12) will not leave the Jacobian invariant,
since

h2
1 + h2

q+1 = hT Ωh Ω = e1eT
1 + eq+1eT

q+1 (56)

is not invariant with respect toh → z = RT h. However,
if we transform,

Γ = RDRT .= FFT

ζ = = F−1ξ = UD− 1
2 RT ξ

z = F−1h (57)

then the normal distribution transforms to,Nh[ξ,Γ] →
Nz[ζ, I] while we can still choose the orthonormal matrix
U such that the Jacobian remains as simple as possible,

hT Ωh = zT FT ΩFz = zT Λz (58)

The matrixΛ can be chosen diagonal by using the follow-
ing eigenvalue decomposition,FT ΩF = VHVT which is
always possible becauseFT ΩF is a symmetric rank-2 ma-
trix. Thus, by choosingΛ = H andU = VT we obtain
the desired result. We now need to expand the Jacobian in
a binomial series expansion and use eqns. (34) and (35) to
arrive at an expression for the desired averages similar to
eqn. (38).

Alternatively, a good approximation can be obtained by
sampling from the normal distributionN [h | ξ,Γ] and sub-
sequent calculation of the sample average.

Missing Baseline Landmarks: Next, we treat the case
where one or both of the baseline landmarks is missing
from the data. For such a data case, the locations of the
other landmarks should be represented in a different ref-
erence frame, i.e. using a different (observed) baseline
pair. In that frame, the situation reduces to the case treated
above. It remains to be understood how to incorporate data
in different reference frames in the estimation process. We
will first choose one, arbitrary, baseline pair and invoke
lemma 2 (section 2) to write the distribution in any other



frame as,

PS(u′| µ′,Σ′) = PS(u′|Bµ,BΣBT ), (59)

whereB = Lp−1PE andLp−1, P andE are defined in
section 2. Since every data point may be defined in a dif-
ferent reference frame,B depends onn. Taking derivatives
with respect toµ andΣ in the M-step then generates the
following update rules,

µk =
1
N

N∑
n=1

B−1
n Wn〈h〉n (60)

Σk =
1
N

N∑
n=1

B−1
n Wn〈hhT 〉nWT

nB−T
n − µkµT

k ,

(61)

where Wn and 〈.〉n are defined in their own reference
frame.

In the E-step we compute the posterior mean and covari-
ance as usual, using parametersµ′n = Bnµ andΣ′

n =
BnΣBT

n for data casen.

6 EXPERIMENTS

To test the algorithm on real world data, we downloaded
5 data-sets from the web1. Some data-sets contain data
directly in shape space, while others have data in figure
space, which we converted to shape space by mapping two
landmarks to locations(0, 0) and(1, 0) respectively. Be-
fore transforming to shape space we extracted the sample
mean and covariance to establish ‘ground truth’, since these
are the parameters which describe the offset-normal shape
distribution. Note however that many different normal dis-
tributions map to the same offset-normal shape distribution,
so that comparing the parameters directly is not very mean-
ingful.

Figure 1 shows the results when the sample mean and
covariance were available in figure space. The data-sets
used in Figure 1 are “Brizalina”, ‘Globorotalia’ (described
in [4]) and ‘Mouse vertebrae’ (Small group) (described
in [9]). Figure 2 shows the results on the datasets ‘Go-
rilla skulls’ (female) (described in [9]) and ‘Rat calvar-
ial growth’ (studied in [4]). These data-sets are defined
in shape space, which implies that we have no access to
ground truth. Finally, in figure 3, we present an example
where we artificially generated 100 samples from a ‘chal-
lenging’ offset-normal shape distribution.

The algorithm usually converges within 20 iterations. No-
tice however, that for every data-point a SVD needs to

1The data-sets can be found at:
http://www.amsta.leeds.ac.uk/ĩand/Shape-S/datasets.html
http://life.bio.sunysb.edu/morph/index.html
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Figure 1:Estimation of offset-normal shape distributions for the
following data-sets provided in figure space (from top to bottom):
“Brizalina”, “Globorotalia” and “Mouse vertebrae (small group)”.
The first column depicts the data overlaid with the offset-normal
distributions estimated in shape space, while the second column
shows the offset-normal distributions estimated in figure space.

be computed, resulting in unfavorable scaling behavior for
large amounts of data.

We have encountered no problems in the estimation of the
full covariance matrix, as described in [7], [9]. Also, few
data are needed to find a reliable estimate of the distribution
(around 20).

7 DISCUSSION

In this paper we have shown how to infer the parameters
of a full covariance offset-normal shape distribution using
the expectation maximization algorithm. In addition, we
have addressed to important issues which open the door
to practical applications. Firstly, the data may not be well
described by an offset-normal shape distribution and sec-
ondly, the data may be incomplete, e.g. due to occlusion.
The first problem was addressed by providing a learning
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Figure 2:Estimation of offset-normal shape distributions for the
following data-sets provided in shape space (left to right): “Go-
rilla Skulls (female)” and “Rat calvarial growth” (small group).
These data-sets are only provided in shape-space, so no figure
space estimates are available.
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Figure 3:As in figure 1 with artificially generated data.

algorithm for mixtures of offset-normal shape distributions
which improves model flexibility. The second issue was
addressed by showing how to incorporate incomplete data
into the estimation process.

We think the presented learning algorithms could find im-
portant applications in the field of object (class) and pattern
recognition. In [6] a face recognition system was proposed
where the geometry of certain feature detectors (e.g. eye-
corner, nose) was described by the offset-normal shape dis-
tribution. This model also accounts for uncertainties in the
labelling and the positions of the landmarks. The parame-
ters of that model were determined infigure space. This
was possible only because the data were acquired under
carefully controlled circumstances. In more realistic situ-
ations, we want to learn the model using (possibly incom-
plete) shape data, which is precisely the topic of the present
paper.

An important generalization of the offset-normal shape dis-
tribution is the affine invariant shape distribution proposed
in [13]. There, a third landmark is mapped to a fixed posi-
tion (e.g.(x, y) = (0, 1)), rendering the resulting distribu-
tion invariant with respect to affine transformations. The
presented EM algorithm is easily extended to cover that
case as well, which will be described in a future publica-
tion.
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