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Abstract

Sample estimates of moments and cumulants are
known to be unstable in the presence of outliers.
This problem is especially severe for higher order
statistics, like kurtosis, which are used in algo-
rithms for independent components analysis and
projection pursuit. In this paper we propose ro-
bust generalizations of moments and cumulants
that are more insensitive to outliers but at the
same time retain many of their desirable proper-
ties. We show how they can be combined into se-
ries expansions to provide estimates of probabil-
ity density functions. This in turn is directly rel-
evant for the design of new robust algorithms for
ICA. We study the improved statistical properties
such as B-robustness, bias and variance while in
experiments we demonstrate their improved be-
havior.

1 INTRODUCTION

Moments and cumulants are widely used in scientific dis-
ciplines that deal with data, random variables or stochas-
tic processes. They are well known tools that can be used
to quantify certain statistical properties of the probability
distribution like location (first moment) and scale (second
moment). Their definition is given by,

µn = E[xn] (1)

whereE[·] denotes the average over the probability distri-
butionp(x). In practise we have a set of samples from the
probability distribution and compute sample estimates of
these moments. However, for higher order moments these
estimates become increasingly dominated by outliers, by
which we will mean the samples which are far away from
the mean. Especially for heavy tailed distributions this im-
plies that these estimates have high variance and are gener-
ally unsuitable to measure properties of the distribution.

An undesirable property of moments is the fact that lower
order moments can have a dominating influence on the
value of higher order moments. For instance, when the
mean is large it will have a dominating effect on the sec-
ond order moment,

E[x2] = E[x]2 + E[x− E[x]]2 (2)

The second term which measures the variation around the
mean, i.e. the variance, is a much more suitable statistic for
scale than the second order moment. This process of sub-
tracting lower order information can be continued to higher
order statistics. The resulting estimators are called central-
ized moments or cumulants. Well known higher order cu-
mulants are skewness (third order) measuring asymmetry
and kurtosis (fourth order) measuring ”peakiness” of the
probability distribution . Explicit relations between cumu-
lants and moments are given in appendix A (setµ0 = 1
for the classical case). Since cumulants are functions of
moments up to the same order, they also suffer from high
sensitivity to outliers.

Many statistical methods and techniques use moments and
cumulants because of their convenient properties. For in-
stance they follow easy transformation rules under affine
transformations. Examples in the machine learning liter-
ature are certain algorithms for independent components
analysis [3, 2, 1]. A well known downside of these algo-
rithm is their sensitivity to outliers in the data. Thus, there
is a need to define robust cumulants which are relatively in-
sensitive to outliers but retain most of the convenient prop-
erties that moments and cumulants enjoy. This will be the
topic of this paper.

2 MOMENTS AND CUMULANTS

A formal definition of the relation between moments and
cumulants to all orders can be given in terms the character-
istic function (or moment generating function) of a proba-
bility distribution,

Ψ(t) = E[eixt] =
∞∑

n=0

1
n!

µn(it)n (3)



where the last expression follows by Taylor expanding the
exponential. The cumulants can now be defined by

∞∑
n=0

1
n!

κn(it)n = ln Ψ(t) (4)

where we expand the right hand side in powers of(it) and
match terms at all orders.

The generalization of the above to the multivariate case is
straightforward. Moments are defined as expectations of
monomials,

µi1,...,im
= E[xi1 ....xim

] (5)

and the cumulants are again defined through the character-
istic function (see Eq.7), where in addition to the univariate
cumulants we now also have cross-cumulants.

From the definition of the cumulants in terms of the mo-
ments we can derive a number of interesting properties,
which we will state below. It will be our objective to con-
serve most of these properties when we define the robust
cumulants.

Lemma 1 The following properties are true for cumu-
lants:

I. For a Gaussian density, all cumulants higher than sec-
ond order vanish.

II. For independent random variables, all cross-
cumulants vanish.

III. All cumulants transform multi-linearly with respect to
affine transformations.

IV. All cumulants higher than first order are invariant
with respect to translations.

The proofs of these statements can for instance be found in
[9] and are very similar to the proofs for the robust cumu-
lants which we will present in the next section.

3 ROBUST MOMENTS AND
CUMULANTS

In this section we will define robust moments and cumu-
lants by introducing an isotropic decay factor which down-
weights outliers. With this decay factor we will have intro-
duced a preferred location and scale. We therefore make
the following important assumption:The probability den-
sity function has zero-mean and unit-variance (or covari-
ance equal to the identity in the multivariate case). This
can always be achieved by a linear transformation of the
random variables. Analogously, data will need to be cen-
tered and sphered. One may worry that these preprocessing
steps are non-robust operations. Fortunately, we can rely

on an extensive body of literature [5][6] to compute robust
estimates of location and scale.

As will become apparent in the following, a convenient
choice for the robust moments is given by the following
expression,

Definition 1 The robust moments are given by:

µ
(α)
i1...in

= E
[
(αxi1) . . . (αxin

)
φ(αx)
φ(x)

]
α ≥ 1 (6)

whereφ(x) is the multivariate standard normal density.

The decaying factor is thus given byφ(αx)
φ(x) =

αd exp(− 1
2 (α2 − 1)xT x), whered is the dimension of the

space. In the limitα → 1 we obtain the usual definition of
moments.

In order to preserve most of the desirable properties that
cumulants obey, we will use the same definition to relate
moments to cumulants as in the classical case,

Definition 2 The robust cumulants are defined by:

∞∑
n=0

M∑

i1=1

. . .

M∑

in=1

1
n!

κ
(α)
i1...in

(iti1) . . . (itin) =

ln(
∞∑

m=0

M∑

j1=1

. . .

M∑

jm=1

1
m!

µ
(α)
j1...jm

(itj1) . . . (itjm)) (7)

The right hand side can again be defined as the logarithm
of the moment generating function for robust moments,

Ψ(α)(t) = E
[
exp(iαxT t)

φ(αx)
φ(x)

]
(8)

The explicit relation between robust moments and cumu-
lants up to fourth order is given in appendix A.

With the above definitions we can now state some impor-
tant properties for the robust cumulants. Since we assume
zero-mean and unit-variance we cannot expect the cumu-
lants to be invariant with respect to translation and scal-
ings. However, we will prove that the following properties
are still valid,

Theorem 1 The following properties are true for robust
cumulants:

I. For a standard Gaussian density, all robust cumulants
higher than second order vanish.

II. For independent random variables, robust cross-
cumulants vanish.

III. All robust cumulants transform multi-linearly with re-
spect to rotations.



Proof: I: For a standard Gaussian we can compute the mo-
ment generating function analytically givingΨ(α)(t) =
− 1

2t
T t, implying thatκ(α)

i1i2
= δi1i2 and all other cumu-

lants vanish.
II: We note that if the variables{xi} are independent,
Ψ(α)(t) factorizes into a product of expectations which the
logarithm turns into a sum, each term only depending on
oneti. Since cross cumulants on the left hand side of Eq.7
are precisely those terms which contain distinctti, they
must be zero.
III: From Eq.6 we see that since the decay factor is
isotropic, robust moments still transform multi-linearly
with respect to rotations. If we rotate both the moments
andt in the right-hand side of Eq.7, it remains invariant.
To ensure that the left-hand side of Eq.7 remains invari-
ant we infer that the robust cumulants must also transform
multi-linearly with respect to rotations,

κ
(α)
i1...in

→ Oi1j1 . . . Oinjn
κ

(α)
j1...jn

, OOT = OT O = I
(9)

This concludes the proof. £

4 ROBUST GRAM-CHARLIER AND
EDGEWORTH EXPANSIONS

Assuming we have computed robust cumulants (or equiv-
alently robust moments) up to a given order, can we com-
bine them to provide us with an estimate of the probability
density function? For the classical case it is long known
that the Gram-Charlier and Edgeworth expansions are two
possibilities [8]. In this section we will show that these ex-
pansions can be generalized to the robust case as well. To
keep things simple, we will discuss the univariate case here.
Multivariate generalizations are relatively straightforward.

Both robust Gram-Charlier and Edgeworth expansions will
be defined as series expansions in the scaled Hermite poly-
nomialsHn(αx).

p(x) =
∞∑

n=0

c(α)
n Hn(αx)φ(x) with (10)

c(α)
n =

1
n!

∫ ∞

−∞
p(x)Hn(αx)φ−1(x) dνα (11)

where we have defined the measuredνα = φ(αx) dx and
used the following generalized orthogonality relation,

∫ ∞

−∞
Hn(αx)Hm(αx) dνα = n! δnm (12)

Whenc
(α)
n is estimated by averaging over samples (Eq.25),

we see that the decay factorφ(αx)
φ(x) will again render them

robust against outliers.

We may also express the above series expansion directly in
terms of the robust cumulants. The explicit expression is

given by the following theorem1,

Theorem 2 The series expansion of a densityp(x) in terms
of its robust cumulants is given by

p(x) =
φ(x)
φ(αx)

e(
P∞

n=0
1
n! κ̃

(α)
n (−1)n dn

d(αx)n )φ(αx) (13)

with κ̃(α)
n = κ(α)

n − δn,2 (14)

Proof: see appendix B.

To find an explicit expression up to a certain order in the
robust cumulants, one expands the exponential and uses
(−1)n dn

dxn φ(x) = Hn(x)φ(x) to convert derivatives into
Hermite polynomials.

Analogous to the classical literature we will talk about a
Gram-Charlier expansion when we expand inc

(α)
n and an

Edgeworth expansion when we expand inκ
(α)
n . Their only

difference is therefore in their convention to break the se-
ries off after a finite number of terms.

Whenα = 1 the Hermite expansions discussed in this sec-
tion will be normalized, even when only a finite number of
terms is taken into account. This holds sinceH0 = 1 and
c0 = 1/N

∑
n 1 = 1, while all higher order polynomials

are orthogonal to “1”. When generalizing to robust cumu-
lants this however no longer holds true. To correct this we
will add an extra term to the expansion,

pR(x) = {
R∑

n=0

c(α)
n Hn(αx) + ψ(x)}φ(x), (15)

The correction factor can be computed by a Gram-Schmidt
procedure resulting in,

ψ(x) = (1−
R∑

n=0

n!anc(α)
n )(

φ(x)
φ(αx)

−
R∑

n=0

anHn(αx)).

(16)
with an = (n−1)!!

n! (α2 − 1)
n
2 δn,2k for k ∈ {0, 1, 2, 3, ...}

and(n−1)!! denotes the double factorial of(n−1) defined
by 1 · 3 · 5...(n − 1). The correction factor is thus orthog-
onal to all Hermite polynomialsHn(αx) with n = 1..R
under the new measuredνα. We can also show thatpR(x)
always integrates to1 and that whenα → 1 the correction
term will reduce toψ(x) → cR+KHR+K(x) with K = 1
whenR is odd andK = 2 whenR is even. Finally we
note that since

∫∞
−∞ φ2(x)/φ(αx)dx = 1/(α

√
2− α2) the

1The equivalent result in the multivariate case is,

p(x) =
φ(x)

φ(αx)
×

e
(
P∞

n=0
PM

i1=1...
PM

in=1
1
n! κ̃

(α)
i1...in

(−1)n d
d(αx)i1

... d
d(αx)in

)
φ(αx)

with κ̃
(α)
i1i2

= κ
(α)
i1i2

− δi1i2
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Figure 1:(a)-Bias as a function ofα2 for a generalized Laplacian
with a = 1.5 (super-Gaussian). (b)-Asymptotic variance (solid
line) and inverse Fisher information (dashed line) as a function of
α2 for a = 1.5. (c)-(d) Similar plots fora = 4 (sub-Gaussian)

correction is only normalizable forα2 < 2, which is what
we will assume in the following.

5 CONSISTENCY, ROBUSTNESS, BIAS
AND VARIANCE

In this section we will examine the robustness, bias and
efficiency of our generalized expansion. Many definitions
in this section are taken from [5]. Our analysis will assume
that the data arrive centered and sphered, which allows us
to focus on the analysis of the higher order statistics. For
a thorough study of the robustness properties of first and
second order statistics see [5].

First we mention that the estimatorsĉ
(α)
n [pR] for the trun-

cated series expansion (Eq.15) are Fisher consistent. This
can be shown by replacingp(x) in Eq.11 withpR(x) and
using orthogonality betweenψ(x) and the Hermite polyno-
mialsHn(αx) n = 1..R w.r.t. the measuredνα.

To prove B-robustness we need to define and calculate the
influence functionIF for the estimatorŝc(α)

n . Intuitively,
the influence function measures the sensitivity of the esti-
mators to adding one more observation at locationx,

IF (x) = lim
t→0

c
(α)
n [(1− t)pR + tδx]− c

(α)
n [pR]

t
. (17)

An estimator is called B-robust if its influence function is
finite everywhere. We will now state the following result.

Theorem 3 The estimateŝc(α)
n [pR] are B-robust forα > 1.

Proof: It is straightforward to compute the influence func-
tion defined in Eq.17,

IF (x) =
1
n!

Hn(αx)
φ(αx)
φ(x)

− c(α)
n (18)

Since forα > 1 this IF is finite everywhere, the result
follows. £
Since cumulants are simple functions of thec

(α)
n up to the

same order, we conclude that cumulants are also B-robust.
It is important to notice that in the classical case (α = 1) the
theorem does not hold, confirming that classical cumulants
are not robust. Analogously one can show that the sensitiv-
ity to shifting data-points is also bounded forα > 1.

We now turn to the analysis of bias and variance. It is well
known that the point-wise mean square error can be decom-
posed into a bias and a variance term,

MSEx(p(N)
R (x)) = E

[
(p(N)

R (x)− p(x))2
]

=

E
[
(p(N)

R (x)− pR(x))2
]

+ (pR(x)− p(x))2 (19)

wherep
(N)
R is the estimate ofpR using a sample of sizeN .

The expectationE is taken over an infinite number of those
samples. Clearly, the first term represents the variance and
the second the bias which is independent ofN . The vari-
ance term (V ) may be rewritten in terms of the influence
function,

V =
1
N

R∑
n,m=0

Σ(c(α)
n , c(α)

m )Hn(αx)Hm(αx)φ2(x) (20)

Σ(c(α)
n , c(α)

m ) =
∫ ∞

−∞
p(x)IF (x, c(α)

n )IF (x, c(α)
m )dx (21)

So the variance decreases as1/N with sample size while
the data independent part is completely determined by
the asymptotic covariance matrixΣ which is expressed in
terms of the influence function.

Finally, by defining the Fisher information as,

J(c(α)
n , c(α)

m ) = E
[

1
p(x)

∂

∂c
(α)
n

pR(x)
1

p(x)
∂

∂c
(α)
m

pR(x)
]

p

=
∫ ∞

−∞

Hn(αx)Hm(αx)φ(x)2

p(x)
dx (22)

the well known Cramer-Rao bound follows:
Σ(c(α)

n , c
(α)
m ) ≥ J−1(c(α)

n , c
(α)
m ).

In figure 1 we plot the bias and the total variation (trace
of the covariance) as a function ofα2 for a super-Gaussian
and a sub-Gaussian density (generalized Laplace density
p ∝ exp(−b|x|a) with unit variance anda = 1.5 anda = 4
respectively) . The trace of the inverse Fisher information



was also plotted (dashed line). The model included10 or-
ders in the expansionn = 0, ..., 9 plus the normalization
termψ(x). All quantities were computed using numerical
integration. We conclude thatbothbias and efficiency im-
prove whenα moves away from the classical caseα = 1.

6 INDEPENDENT COMPONENTS
ANALYSIS

Although robust moments and cumulants can potentially
find applications in a broad range of scientific disciplines,
we will illustrate their usefulness by showing how they can
be employed to improve algorithms for independent com-
ponents analysis (ICA). The objective in ICA is to find a
new basis for which the data distribution factorizes into a
product of independent one-dimensional marginal distrib-
utions. To achieve this, one first removes first and sec-
ond order statistics from the data by shifting the sample
mean to the origin and sphering the sample covariance to
be the identity matrix. These operations render the datade-
correlatedbut higher order dependencies may still remain.
It can be shown [2] that if an independent basis exists, it
must be a rotation away from the basis in which the data is
de-correlated, i.e.xica = Oxdecor whereO is a rotation.
One approach to findO is to propose a contrast function
that, when maximized, returns a basis onto which the data
distribution is a product of independent marginal distribu-
tions. Various contrast functions have been proposed, e.g.
the neg-entropy [4] and the mutual information [1]. All
contrast functions share the property that they depend on
the marginal distributions which need to be estimated from
the data. Naturally, the Edgeworth expansion [4, 3] and the
Gram-Charlier expansion [1] have been proposed for this
purpose. This turns these contrast functions into functions
of moments or cumulants. However, to obtain reliable esti-
mates one needs to include cumulants of up to fourth order.
It has been observed frequently that in the presence of out-
liers these cumulants often become unreliable (e.g. [7]).

We propose to use the robust Edgeworth and Gram-
Charlier expansions discussed in this paper instead of the
classical ones. As we will show in the experiments below,
it is safe to include robust cumulants to very high order in
these expansions (we have gone up to order20), which at a
moderate computational cost will have a significant impact
on the accuracy of our estimates of the marginal distrib-
utions. We note that the derivation of the contrast func-
tion in e.g. [4] crucially depends on properties I,II and III
from theorem 1. This makes our robust cumulants the ideal
candidates to replace the classical ones. Instead of going
through this derivation we will argue for a novel contrast
function that represents a slight generalization of the one
proposed in [4],

I(O) =
R∑

n=1

M∑

i=1

wn(κ̃(α)
i...i)

2 wn ≥ 0, (23)
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Figure 2:Histogram of sound-data (5000 samples).

whereκ̃
(α)
i...i only differ from the usualκ(α)

i...i in second or-

der, κ̃(α)
ii = κ

(α)
ii − 1. These cumulants are defined on the

rotated axise′i = OT ei.

We will now state a number of properties that show the
validity of I(O) as a contrast function for ICA,

Theorem 4 The following properties are true forI(O):

i. I(O) is maximal if the probability distribution on the
corresponding axis factors into an independent prod-
uct of marginal distributions.

ii. I(O) is minimal (i.e.0) if the marginal distributions
on the corresponding axis are Gaussian.

Proof: To prove (i) we note that the following expression
is scalar (i.e. invariant) w.r.t. rotations2,

∑

i1...in

(κ̃(α)
i1...in

)2 = constant ∀n (24)

We now note that this expression can be split into two
terms: a sum over the “diagonal terms” wherei1 =
i2 = . . . = in and a sum over all the remaining cross-
cumulant terms. When all directions are independent all
cross-cumulants must vanish by property II of theorem 1.
This minimizes the second term (since it’s non-negative).
Hence, by the fact the sum of these terms is constant, the
first term, which equalsI(O), must be maximal for inde-
pendent directions.
To prove (ii) we invoke property I of theorem 1 that
for Gaussian random variables all cumulantsκ̃ must
vanish. £
By the above theorem we see thatI(O) simultaneously
searches for independent directions and non-Gaussian di-
rections. Observe however, that for practical reasons we
have ignored cumulants of order higher thanR. Hence,
there will certainly be more than one distribution which

2For vectors this reduces to the statement that an inner product
is scalar. To prove the general case we useOT O = I for every
index separately.
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Figure 3:(a)-Expansion coefficients for classical Gram-Charlier
expansion (α = 1). (b)-Density estimate forα = 1 after four
orders. The negative tails signal the onset of a diverging series.
(c)-Decreasing expansion coefficients forα = 1.8. (f)-Density
estimate after10 orders forα = 1.8.

maximizesI(O) (for instance distributions which only dif-
fer in the statistics of order higher thanR). Good objective
functions are discriminative in the sense that there are only
few (relevant) densities that maximize it. We can influence
the ability ofI(O) to discriminate by changing the weight-
ing factorswn. Doing this allows for a more directed search
towards predefined qualities, e.g. a search for high kurtosis
directions would imply a largew4.

A straightforward strategy to maximizeI(O) is gradient
ascent while at every iteration projecting the solution back
onto the manifold of rotations (e.g. see [10]). A more ef-
ficient technique which exploits the tensorial property of
cumulants (i.e. property III of theorem 1) was proposed in
[3]. This technique, called Jacobi-optimization, iteratively
solves two dimensional sub-problems analytically.

7 EXPERIMENTS
The following set of experiments focus on density es-
timates based on the Gram-Charlier expansion (Eq.10)
where we replace Eq.11 with a sample estimate,

ĉ(α)
n =

1
N

1
n!

N∑

A=1

φ(αxA)
φ(xA)

Hn(αxA) (25)

The reason we focus on this task is that we can demonstrate
robustness by showing that low order robust statistics are
always dominant over higher order robust statistics, even

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Exponential density (a=1)

x

p
(x

)

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Exponential density (a=4)

x

p
(x

)

(a) (b)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mixture of Gaussians (µ=0.3, c=3, d=0)

x

p
(x

)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Mixture of Gaussians (µ=0.5, c=3, d=2)

x

p
(x

)

(c) (d)

Figure 4: Top row: Generalized Laplace distributions with (a)
a = 1, (b) a = 4. Bottom row: Mixture of Gaussians with (c)
µ = 0.3, c = 3, d = 0 and (d)µ = 0.5, c = 3, d = 2.

for heavy tailed distributions. Yet at the same time they
carry the relevant information of the probability density, i.e.
they combine into an accurate estimate of it. This exercise
is also relevant for cumulant based algorithms for indepen-
dent components analysis because they rely on the fact that
the Gram-Charlier or Edgeworth expansions describe the
source distributions well.

Sound Data
We downloaded recordings from music CD’s3 and ex-
tracted5000 samples from it. The histogram is shown in
figure 2. Due to the presence of outliers we expect the clas-
sical expansion to break down. This can be observed from
figure (3a) where the coefficientsincreasewith the order of
the expansion. In figure (3b) we see that the density esti-
mate has become negative in the tails after4 orders, which
is an indication that the series has become unstable. In fig-
ures (3c,d) we see that for the robust expansion atα = 1.8
the coefficients decrease with order and the estimate of the
density is very accurate after10 orders.

Synthetic Data
In this experiment we sampled5000 data-points from two
generalized Laplace densitiesp ∝ exp(−b|x|a) (figures
4a,b) and from two mixtures of two Gaussians parameter-
ized as
pmog(x) = µaφ(ax + b) + c(1 − µ)φ(cx + d) (figures
4c,d). These include super-Gaussian distributions (figures

3http://sweat.cs.unm.edu/bap/demos.html
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Figure 5:Top row: totalL2 distance between true and estimated
densities as function ofα2 for generalized Laplace density with
(a) a = 1, (b) a = 4. Bottom row: same as top row for the
mixture of Gaussians distributions with (c)µ = 0.3, c = 3, d = 0
and (d)µ = 0.5, c = 3. The corresponding densities are shown
in figure 4. Dashed line indicates the best estimate over all orders.

4a,c), a sub-Gaussian density (figures 4b) and an asymmet-
ric density (figures 4d). We plot the totalL2 distance be-
tween the estimate and the true density as we varyα (fig-
ures 5a,b,c,d). Shown is the best estimate over all orders or-
ders (dashed line) and the final estimate after20 orders. In
both cases it is observed that the best estimates are obtained
aroundα2 ≈ 2 (but recall thatα2 < 2, see section 4. We
also plot theL2 distance between true and estimated den-
sity as a function of the order of the expansion forα2 = 1
andα2 = 1.9 (a = 1) in figures (6a,b). Clearly, the robust
expansion converges while the classical expansion is un-
stable. Finally, in figure 7 we compare the best estimated
PDFs for the general Laplace density ata = 1 with α2 = 1
(a) andα2 = 1.9 (b).

The general conclusion from these experiments is that in
all cases (super- or sub-Gaussian PDF, symmetric or asym-
metric PDF) we find that the quality (inL2-norm) of the
estimated densities improves considerably when we use the
robust series expansion with a setting ofα2 close to (but
smaller than)2. This effect is more pronounced for super-
Gaussian densities than for sub-Gaussian densities.

8 DISCUSSION

In this paper we have proposed robust alternatives to higher
order moments and cumulants. In order to arrive at robust
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Figure 6:L2-distance as a function of the order of the expansion
for (a)α2 = 1 and (b)α2 = 1.9 for the generalized Laplace PDF
with a = 1.

cumulants invariance w.r.t. translations was lost and the
class of transformations under which they transform multi-
linearly was reduced from affine to orthogonal (i.e. rota-
tions). However, all other cumulant properties were con-
veniently preserved. We argue that by first centering and
sphering the data (using robust techniques described in the
literature [5]), multi-linearity w.r.t. orthogonal transforma-
tions is all we need, which could make the trade-off with
improved robustness properties worthwhile.

There is two well-known limitations of cumulants that one
needs to be aware of. Firstly, they are less useful as statis-
tics characterizing the PDF if the mass is located far away
from the mean. Secondly, the number of cumulants grows
exponentially fast with the dimensionality of the problem.
With these reservations in mind, many interesting problems
remain, even in high dimensions, that are well described by
cumulants of low dimensional marginal distributions, as the
ICA example has illustrated.

The sensitivity to outliers can be tuned with the parameter
α2 ∈ [1, 2). Our experiments have shown that if one in-
cludes many orders in the expansion, optimal performance
was obtained whenα2 was close to (but smaller than)2.
Although unmistakeably some information is ignored by
weighting down the impact of outliers, the experiments in-
dicated that the relevant information to estimate the PDF
was mostly preserved. In future experiments we hope to
show that this phenomenon is also reflected in improved
performance of ICA algorithms based on robust cumulants.

A ROBUST MOMENTS AND
CUMULANTS TO 4’TH ORDER

This appendix contains the definition of the cumulants in
terms of the moments and vice versa for generalα. We
have not denotedα explicitely in the following for nota-
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Figure 7: Best estimates for the generalized Laplace density at
a = 1. In (a) we plot the best classical estimate which is found
after four orders of Hermite polynomials are taken into account
(i.e. H0(x), ..., H4(x)). For higher orders, the series becomes
unstable and the calculation of the expansion coefficients is too
sensitive to sample fluctuations. The best estimate from the robust
expansion is depicted in (b). In that case the best estimate is found
when all orders are taken into account, i.e. 20.

tional convenience.
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B PROOF OF THEOREM 2

The characteristic function or moment generating function
of a PDF is defined by:

Ψ(t) =
∫ ∞

−∞
eixtp(x) dx =

∞∑
n=0

1
n!

µn(it)n = F [p(x)]

(26)
where the last term follows from Taylor expanding the ex-
ponential andF denotes the Fourier transform. For arbi-
traryα we have,

Ψ(α)(t) =
∫ ∞

−∞
eiαxtp(x)

φ(αx)
φ(x)

dx

=
∞∑

n=0

1
n!

µ(α)n(it)ndx = F [p(x)
φ(αx)
αφ(x)

]. (27)

Where in the last equality the definition of the generalized
moments (Eq.6) was used.Ψ(α) is the (robust) moment

generating functionof p(x). We can find an expression for
p(x) if we invert the Fourier transform,

p(x) =
αφ(x)
φ(αx)

1
2π

∫ ∞

−∞
e−iαxtΨ(α)(t) dt. (28)

Next, we use the relation between the cumulants and the
moments (Eq.7) to write,

p(x) =
αφ(x)
φ(αx)

1
2π

∫ ∞

−∞
e−iαxt e

P∞
n=0

1
n! κ

(α)
n (it)n

dt.

(29)
By defining κ̃

(α)
n = κ

(α)
n − δn,2 we can separate a factor

φ(t) (Gaussian) inside the integral,

p(x) =
αφ(x)
φ(αx)

1√
2π

∫ ∞

−∞
e−iαxt e

P∞
n=0

1
n! κ̃

(α)
n (it)n

φ(t) dt.

(30)
Finally, we will need the result

F−1[(it)nφ(t)] =
√

2π

α
(−1)n dn

d(αx)n
φ(αx). (31)

If we expand the exponential containing the cumulants in a
Taylor series, and do the inverse Fourier transform on every
term separately, after which we combine the terms again in
an exponential, we find the desired result (Eq.14).
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