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Abstract An undesirable property of moments is the fact that lower
order moments can have a dominating influence on the
value of higher order moments. For instance, when the
mean is large it will have a dominating effect on the sec-
ond order moment,

Sample estimates of moments and cumulants are
known to be unstable in the presence of outliers.
This problem is especially severe for higher order
statistics, like kurtosis, which are used in algo- E[z?] = E[z]* 4+ E[z — E[z]]? )
rithms for independent components analysis and
projection pursuit. In this paper we propose ro-
bust generalizations of moments and cumulants
that are more insensitive to outliers but at the
same time retain many of their desirable proper-
ties. We show how they can be combined into se-
ries expansions to provide estimates of probabil-
ity density functions. This in turn is directly rel-
evant for the design of new robust algorithms for
ICA. We study the improved statistical properties
such as B-robustness, bias and variance while in
experiments we demonstrate their improved be-
havior.

The second term which measures the variation around the
mean, i.e. the variance, is a much more suitable statistic for
scale than the second order moment. This process of sub-
tracting lower order information can be continued to higher
order statistics. The resulting estimators are called central-
ized moments or cumulants. Well known higher order cu-
mulants are skewness (third order) measuring asymmetry
and kurtosis (fourth order) measuring "peakiness” of the
probability distribution . Explicit relations between cumu-
lants and moments are given in appendix A (ggt= 1

for the classical case). Since cumulants are functions of
moments up to the same order, they also suffer from high
sensitivity to outliers.

Many statistical methods and techniques use moments and
1 INTRODUCTION cumulants because of their convenient properties. For in-

stance they follow easy transformation rules under affine
Moments and cumulants are widely used in scientific disiransformations. Examples in the machine learning liter-
ciplines that deal with data, random variables or stochas@ture are certain algorithms for independent components
tic processes. They are well known tools that can be use@nalysis [3, 2, 1]. A well known downside of these algo-
to quantify certain statistical properties of the probability [ithm is their sensitivity to outliers in the data. Thus, there
distribution like location (first moment) and scale (second!S & need to define robust cumulants which are relatively in-

moment). Their definition is given by, sensitive to outliers but retain most of the convenient prop-
erties that moments and cumulants enjoy. This will be the
pn = E[z"] (1) topic of this paper.

whereE[-] denotes the average over the probability distri-2  MOMENTS AND CUMULANTS
butionp(z). In practise we have a set of samples from the

probability distribution and compute sample estimates ofA formal definition of the relation between moments and
these moments. However, for higher order moments thesgumulants to all orders can be given in terms the character-

estimates become increasingly dominated by outliers, bystic function (or moment generating function) of a proba-
which we will mean the samples which are far away frompjlity distribution,

the mean. Especially for heavy tailed distributions this im- -
plies that_these estimates have hlg_h variance _an<_j are gener W(t) = B[] = Z ﬁun(lt) 3)
ally unsuitable to measure properties of the distribution. n

n=0



where the last expression follows by Taylor expanding theon an extensive body of literature [5][6] to compute robust
exponential. The cumulants can now be defined by estimates of location and scale.

oo
n=0

where we expand the right hand side in powergiofand  Definition 1 The robust moments are given by:
match terms at all orders.

As will become apparent in the following, a convenient
phn (i)™ = In W(¢) (4)  choice for the robust moments is given by the following
: expression,

SRR

The generalization of the above to the multivariate case is uif‘)ln =E |(ax;) ... (ax;,) plox) a>1 (6)
straightforward. Moments are defined as expectations of (%)
monomials, whereg(x) is the multivariate standard normal density.

#il7~--7i777, = E[I“Izm] (5)

and the cumulants are again defined through the charactel'® decaying factor is thus given bygr;

istic function (see Eq.7), where in addition to the univariatea® exp(—3 (o — 1)x”x), whered is the dimension of the
cumulants we now also have cross-cumulants. space. In the limitv — 1 we obtain the usual definition of

_ . moments.
From the definition of the cumulants in terms of the mo-

ments we can derive a number of interesting propertiesin order to preserve most of the desirable properties that
which we will state below. It will be our objective to con- cumulants obey, we will use the same definition to relate
serve most of these properties when we define the robugfoments to cumulants as in the classical case,

cumulants. o )
Definition 2 The robust cumulants are defined by:

Lemma 1 The following properties are true for cumu-

l o co M M 1
ants: Z Z e Z EHE?)M (itil) s (itin) =

n=0i1=1  ip=1

I. Fora Gaussian density, all cumulants higher than sec- o M

M
ond order vanish. In( Z Z o Z i,lug‘(:.)“j (itjl) . (itjm)) )
m. m “

H . m=07j,=1 im=1
Il. For independent random variables, all cross- 7 !

cumulants vanish. i i i i i
The right hand side can again be defined as the logarithm

1. All cumulants transform multi-linearly with respect to of the moment generating function for robust moments,
affine transformations.
P(ax)

$(x)

The explicit relation between robust moments and cumu-

The proofs of these statements can for instance be found ilr"?mtS up to fourth order is given in appendix A.

[9] and are very similar to the proofs for the robust cumu-With the above definitions we can now state some impor-

T(t) =k {exp(iath) (8)

IV. All cumulants higher than first order are invariant
with respect to translations.

lants which we will present in the next section. tant properties for the robust cumulants. Since we assume
zero-mean and unit-variance we cannot expect the cumu-
3 ROBUST MOMENTS AND lants to be invariant with respect to translation and scal-
CUMULANTS ings. !—Iowgver, we will prove that the following properties
are still valid,

In this section we will define robust moments and cumu-rheqrem 1 The following properties are true for robust
lants by introducing an isotropic decay factor which down- ., mulants:

weights outliers. With this decay factor we will have intro-
duced a preferred location and scale. We therefore make
the following important assumptiorthe probability den-
sity function has zero-mean and unit-variance (or covari-
ance equal to the identity in the multivariate cas@his  |I. For independent random variables, robust cross-
can always be achieved by a linear transformation of the  cumulants vanish.

random variables. Analogously, data will need to be cen-

tered and Sphered_ One may worry that these preprocessidﬂ. All robust cumulants transform multi-linearly with re-
steps are non-robust operations. Fortunately, we can rely ~ SPect to rotations.

I. For a standard Gaussian density, all robust cumulants
higher than second order vanish.



Proof: I: For a standard Gaussian we can compute the mogiven by the following theorefn
ment generating function analytically giving(® (t) =

7%tTt’ implying thatnz(.ai) — &;,;, and all other cumu- Thgorem 2 The series gxpgnsion of adengify) in terms
lants vanish. 1 of its robust cumulants is given by

Il: We note that if the variableqz;} are independent, $(x) (Poo 1 g _yyn_an

¥()(t) factorizes into a product of expectations whichthe ~ P(z) = (oz)° n=0 miftn ™ p(ax)  (13)

logarithm turns into a sum, each term only depending on

onet;. Since cross cumulants on the left hand side of Eq.7 with ,ggla) = ’igza) — On,2 (14)
are precisely those terms which contain distihgtthey
must be zero. Proof: see appendix B.

To find an explicit expression up to a certain order in the

lll: From Eg.6 we see that since the decay factor is
isotropic, robust moments still transform multi-linearly robust cumulants, one expands the exponential and uses
(—1)"4¢(x) = H,(z)¢(x) to convert derivatives into

with respect to rotations. If we rotate both the moment
andt in the right-hand side of Eq.7, it remains invariant. ™ .

. ' L .Hermite polynomials.
To ensure that the left-hand side of Eq.7 remains invari- oy
ant we infer that the robust cumulants must also transfornf\nalogous to the classical literature we will talk about a

multi-linearly with respect to rotations, Gram-Charlier expansion when we expand:ﬁiﬁ and an
(@) (@) T T Edgeworth expansion when we expandzEﬁ). Their only
iy in = Oiggi - Oigjnby 5, 000 =070=1 difference is therefore in their convention to break the se-

_ (9)  ries off after a finite number of terms.
This concludes the proof. X . ] ] o
Whena = 1 the Hermite expansions discussed in this sec-

4 ROBUST GRAM-CHARLIER AND tion will be normalized, even when only a finite number of

terms is taken into account. This holds sinég = 1 and
EDGEWORTH EXPANSIONS co = 1/N ), 1 = 1, while all higher order polynomials

A , h d rob | _are orthogonal to1”. When generalizing to robust cumu-
Issulmlngbwe ave computed robust C”";“ ants (or equiVianis this however no longer holds true. To correct this we
alently robust moments) up to a given order, can we COMgi'2 4 an extra term to the expansion,

bine them to provide us with an estimate of the probability

density function? For the classical case it is long known R

that the Gram-Charlier and Edgeworth expansions are two ~ pr(x) = { _ ¢\ H,, (az) + ¢ (z)} (), (15)
possibilities [8]. In this section we will show that these ex- n=0

pansions can be generalized to the robust case as well. F,q correction factor can be computed by a Gram-Schmidt
keep things simple, we will discuss the univariate case hereprocedure resulting in,

Multivariate generalizations are relatively straightforward.

R R
Both robust Gram-Charlier and Edgeworth expansions will 1 1y ooy &) N
be defined as series expansions in the scaled Hermite poly-w(x) ( 7;) MnCn (¢(a:c) T;) anHn(az)).

nomialsH,, (azx). a (16)
. with a, = =102 — 1)8 6,94 for k € {0,1,2,3,...}
) (@) p ) with 10 and(n—1)!! denotes the double factorial 0f — 1) defined
plw) nz::O n (az)(z) (10) by1-3-5..(n—1). The correction factor is thus orthog-
1 [ onal to all Hermite polynomiald?,, (ax) with n = 1..R
@) = 7'/ p(z)H, (ax)d(z) dug (11)  under the new measur,,. We can also show thaiz ()
oo always integrates tb and that whemy — 1 the correction
where we have defined the meastrg = ¢(az) dz and  t€rm will reduce to)(z) — crix Hpix(2) With K =1
used the following generalized orthogonality relation, when R is .Odd So”d[g = 2whenR is even. Fma;lly we
N note that sincg ™ ¢*(z)/¢(ax)dz = 1/(av2 — a?) the
/ Hy(ax)Hpy(ax) dvg = n! 6um (12) The equivalent result in the multivariate case is,
p(x)
Whenc™ is estimated by averaging over samples (Eq.25), p(x) = olax)
we see that the decay fact@éf;—“;) will again render them (Poe Pz_vlfﬂm Py 1@ (D" g )
n= 1= in=1 n!"i|...in az); aw);,
robust against outliers. € 1 P(ax)
. o Cwith &) =k 5,
We may also express the above series expansion directly in 1 R v

terms of the robust cumulants. The explicit expression is
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Proof: It is straightforward to compute the influence func-
tion defined in Eq.17,

n
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=
=

[F(z) = :L!Hn(ax)‘iga‘”)) el (18)

Since fora > 1 this I'F is finite everywhere, the result
2 follows. X

trace(Z) & (race(fl)
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-4 Bias for exponential density (a=4) Asymptotic variance & inverse Fisher information (a=4)
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Since cumulants are simple functions of e up to the
same order, we conclude that cumulants are also B-robust.
Itis important to notice that in the classical case£ 1) the
theorem does not hold, confirming that classical cumulants
\ are not robust. Analogously one can show that the sensitiv-

ity to shifting data-points is also bounded for> 1.
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We now turn to the analysis of bias and variance. It is well
known that the point-wise mean square error can be decom-
posed into a bias and a variance term,
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Figure 1:(a)-Bias as a function af? for a generalized Laplacian E [(Pg?, )(x) - PR(‘T))Q} + (pr(w) — P(x))z (19)
with @ = 1.5 (super-Gaussian). (b)-Asymptotic variance (solid
line) and inverse Fisher information (dashed line) as a function o

(N) ; i i
a? for a = 1.5. (c)-(d) Similar plots fora = 4 (sub-Gaussian) (NherepR is the estimate gbz using a sample of sizy.

The expectatiofi is taken over an infinite number of those
samples. Clearly, the first term represents the variance and
correction is only normalizable for? < 2, which is what  the second the bias which is independenf\of The vari-

we will assume in the following. ance term {') may be rewritten in terms of the influence
function,
5 CONSISTENCY, ROBUSTNESS, BIAS R
AND VARIANCE V=t 3 R, ) o) Ho(ax)6 (@) (20)
n,m=0

In this section we will examine the robustness, bias and oo

efficiency of our generalized expansion. Many definitions X (c(®, ¢{2)) :/ p(x)IF(z, SN IF (2, () dx (21)

in this section are taken from [5]. Our analysis will assume -

that the data arrive centered and sphered, which allows USg the variance decreasesla@v with sample size while

to focus on the analysis of the higher order statistics. FOghe data independent part is completely determined by
a thorough study of the robustness properties of first anghe asymptotic covariance matriwhich is expressed in
second order statistics see [5]. terms of the influence function.

First we mention that the estimatats’ [pr] for the trun-  Finally, by defining the Fisher information as,
cated series expansion (Eq.15) are Fisher consistent. This

can be shown by replacingz) in Eq.11 withpr(z) and 7/ (0) (@) _ g { 1 0 1 9
using orthogonality between(z) and the Hermite polyno- (e ) p(x) aCSLO‘)pR(m)p(I) 8657?)]93(1:)
mials H,,(cx) n = 1..R w.r.t. the measurév,,.

% Hyp(ax)Hpy(ax)d(x)?
To prove B-robustness we need to define and calculate th_e/_oo p(x)
influence functionl F* for the estimatorg'™. Intuitively,
the influence function measures the sensitivity of the es;tiIhe (Q)W?ﬂ) kn(ivi/n (a)Crzimer-Rao bound  follows:
mators to adding one more observation at locatipn (en” em”) = I (en”, em”)-

In figure 1 we plot the bias and the total variation (trace
(17)  of the covariance) as a function af for a super-Gaussian
and a sub-Gaussian density (generalized Laplace density
An estimator is called B-robust if its influence function is p o« exp(—b|z|*) with unit variance and = 1.5 anda = 4
finite everywhere. We will now state the following result. respectively) . The trace of the inverse Fisher information

P

da (22)

(@)1 _ _ ()
t—0 t




was also plotted (dashed line). The model includ@ar- 450 Hitogram of sound data

ders in the expansion = 0, ...,9 plus the normalization 100
term (). All quantities were computed using numerical £
integration. We conclude thabth bias and efficiency im- 830

prove whern moves away from the classical case= 1. £
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6 INDEPENDENT COMPONENTS
ANALYSIS ¥

*(iO -5 0 5 10
X

Although robust moments and cumulants can potentially

find applications in a broad range of scientific disciplines, Figure 2:Histogram of sound-dat#(00 samples).

we will illustrate their usefulness by showing how they can

be employed to improve algorithms for independent com-

ponents analysis (ICA). The objective in ICA is to find a where# ), only differ from the usuak'®’; in second or-
new basis for which the data distribution factorizes into ader, () = x{*) — 1. These cumulants are defined on the
product of independent one-dimensional marginal distribrotated axis, = O”e;.

utions. To achieve this, one first removes first and sec- . .

ond order statistics from the data by shifting the samplewe. V_V'” now state a number of properhes that show the
mean to the origin and sphering the sample covariance tgahdlty of 1(O) as a contrast function for ICA,
be the identity matrix. These operations render the deta
correlatedbut higher order dependencies may still remain.
It can be shown [2] that if an independent basis exists, it . ) . S

must be a rotation away from the basis in which the data is I- 1(O) is maximal if the probability distribution on the
de-correlated, i.ex;., = OXeco, WhereO is a rotation. corresponding axis factors into an independent prod-
One approach to fin@ is to propose a contrast function uct of marginal distributions.

that, when maximized, returns a basis onto which the data .. . . . . S
distribution is a product of independent marginal distribu- ii. I(O) is minimal (|.¢.O) |f'the margma.I distributions
tions. Various contrast functions have been proposed, e.g. on the corresponding axis are Gaussian.

the neg-entropy [4] and the mutual information [1]. All

contrast functions share the property that they depend oRroof: To prove (i) we note that the following expression
the marginal distributions which need to be estimated fronis scalar (i.e. invariant) w.r.t. rotatiohs

the data. Naturally, the Edgeworth expansion [4, 3] and the

Gram-Charlier expansion [1] have been proposed for this Z (Rff)z)z = constant vn (24)
purpose. This turns these contrast functions into functions i1.in

of moments or cumulants. However, to obtain reliable esti- . . o

mates one needs to include cumulants of up to fourth orde}/é now note that this ex“pr_essmn can b? spI|t' nto two
It has been observed frequently that in the presence of Ou{@rms: a sum over the “diagonal terms” wheie =
liers these cumulants often become unreliable (e.qg. [7]).

Theorem 4 The following properties are true far(O):

15 = ... = i, and a sum over all the remaining cross-
cumulant terms. When all directions are independent all
We propose to use the robust Edgeworth and Grameross-cumulants must vanish by property Il of theorem 1.
Charlier expansions discussed in this paper instead of thghis minimizes the second term (since it's non-negative).
classical ones. As we will show in the experiments below,Hence, by the fact the sum of these terms is constant, the
it is safe to include robust cumulants to very high order infirst term, which equalg(O), must be maximal for inde-
these expansions (we have gone up to oedgrwhich ata  pendent directions.
moderate computational cost will have a significant impactTo prove (i) we invoke property | of theorem 1 that
on the accuracy of our estimates of the marginal distribfor Gaussian random variables all cumularits must
utions. We note that the derivation of the contrast func-vanish. X
tion in e.g. [4] crucially depends on properties LIl and IlI
from theorem 1. This makes our robust cumulants the ide

candidates to replace the classical ones. Instead of goilﬁgamhes E(D)Lmdepehndent d|rer(]:t|ofns and n_onl-Gau55|an di-
through this derivation we will argue for a novel contrast” ctions. serve however, that for practical reasons we

function that represents a slight generalization of the oml?"’“’e |gnored cgmulants of order h|gher. th;R” .Hence,.
proposed in [4], there will certainly be more than one distribution which

By the above theorem we see thElO) simultaneously

R 2For vectors this reduces to the statement that an inner product
I(0) = Z Z wn(/%io‘)z)Q wy, > 0, (23)  is scalar. To prove the general case we G8€O = I for every
index separately.

n=11:=1
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Figure 3:(a)-Expansion coefficients for classical Gram-Charlier Figure 4: Top row: Generalized Laplace distributions with (a)
expansion ¢ = 1). (b)-Density estimate fooe = 1 after four a = 1, (b) a = 4. Bottom row: Mixture of Gaussians with (c)
orders. The negative tails signal the onset of a diverging seriess = 0.3,c=3,d =0and (d)u = 0.5,c =3,d = 2.
(c)-Decreasing expansion coefficients tor= 1.8. (f)-Density

estimate aftet0 orders fora = 1.8.

for heavy tailed distributions. Yet at the same time they
maximizesl (O) (for instance distributions which only dif- carry the relevant information of the probability density, i.e.
fer in the statistics of order higher thdt). Good objective  they combine into an accurate estimate of it. This exercise
functions are discriminative in the sense that there are onlis also relevant for cumulant based algorithms for indepen-
few (relevant) densities that maximize it. We can influencedent components analysis because they rely on the fact that
the ability of I(O) to discriminate by changing the weight- the Gram-Charlier or Edgeworth expansions describe the
ing factorsw,,. Doing this allows for a more directed search source distributions well.
towards predefined qualities, e.g. a search for high kurtosig ;4 Data

directions would imply a large,. We downloaded recordings from music CI¥sand ex-

A straightforward strategy to maximizEO) is gradient ~ tracted5000 samples from it. The histogram is shown in
ascent while at every iteration projecting the solution backfigure 2. Due to the presence of outliers we expect the clas-
onto the manifold of rotations (e.g. see [10]). A more ef-Sical expansion to break down. This can be observed from
ficient technique which exploits the tensorial property offigure (3a) where the coefficientscreasewith the order of
cumulants (i.e. property Il of theorem 1) was proposed inthe expansion. In figure (3b) we see that the density esti-
[3]. This technique, called Jacobi-optimization, iteratively mate has become negative in the tails afterders, which

solves two dimensional sub-problems analytically. is an indication that the series has become unstable. In fig-
ures (3c,d) we see that for the robust expansian at1.8
7 EXPERIMENTS the coefficients decrease with order and the estimate of the

] _ ) density is very accurate afté6 orders.
The following set of experiments focus on density es-

timates based on the Gram-Charlier expansion (Eq. 10pynthetic Data

generalized Laplace densitigs eXp( blx|*) (figures

A ¢ 4a,b) and from two mixtures of two Gaussians parameter-
&) = Z (0z4) 25)  ized
Nn' ized as
Pmog (%) = pag(az + b) + (1 — p)g(cz + d) (figures
The reason we focus on this task is that we can demonstrate,d). These include super-Gaussian distributions (figures
robustness by showing that low order robust statistics are
always dominant over higher order robust statistics, even >http://sweat.cs.unm.edu/bap/demos.htm|
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cumulants invariance w.r.t. translations was lost and the
class of transformations under which they transform multi-
linearly was reduced from affine to orthogonal (i.e. rota-
tions). However, all other cumulant properties were con-
(©) (d) veniently preserved. We argue that by first centering and

Figure 5:T totalL dist bet . d estimat dsphering the data (using robust techniques described in the
:Top row: tota istance between true and estimated . L -

degr]lsities as Ff)unction af? 2l‘or generalized Laplace density with literature [5]), multi-linearity w.r.t. orthogonal transforma-

@a = 1, (b)a = 4. Bottom row: same as top row for the tons is all we need, which could make the trade-off with

mixture of Gaussians distributions with (€)= 0.3,¢c = 3,d =0  improved robustness properties worthwhile.

and (d)u = 0.5, ¢ = 3. The corresponding densities are shown . s
in figure 4. Dashed line indicates the best estimate over all orders! N€re is two well-known limitations of cumulants that one

needs to be aware of. Firstly, they are less useful as statis-

tics characterizing the PDF if the mass is located far away
4a,c), a sub-Gaussian density (figures 4b) and an asymmetom the mean. Secondly, the number of cumulants grows
ric density (figures 4d). We plot the total, distance be- exponentially fast with the dimensionality of the problem.
tween the estimate and the true density as we waffjg-  With these reservations in mind, many interesting problems
ures 5a,b,c,d). Shown is the best estimate over all orders oremain, even in high dimensions, that are well described by
ders (dashed line) and the final estimate &iteorders. In  cumulants of low dimensional marginal distributions, as the
both cases it is observed that the best estimates are obtaingtiA example has illustrated.

arounda? ~ 2 (but recall thatv? < 2, see section 4. We Th nsitivity & tier n be tuned with th rameter
also plot theL, distance between true and estimated den- € sensitivity to outliers can be tune € paramete

2 ; ; o
sity as a function of the order of the expansionddr=1 ¢ € [1,2). Our experiments haye show_n that if one in
anda? = 1.9 (a = 1) in figures (6a,b). Clearly, the robust cludes many orders in the expansion, optimal performance

i 2
expansion converges while the classical expansion is unyas obtained when” was close to (but smaller thaf)

stable. Finally, in figure 7 we compare the best estimate@lthomgh lénmlsttr;ke_ably stor?e |5_form?rt]|on IS |gnoretd .by
PDFs for the general Laplace densityat 1 with o? = 1 weighting down th€ Impact of outliers, th€ experiments in-
(@) anda? = 1.9 (b). dicated that the relevant information to estimate the PDF

was mostly preserved. In future experiments we hope to
The general conclusion from these experiments is that ighow that this phenomenon is also reflected in improved
all cases (super- or sub-Gaussian PDF, symmetric or asynperformance of ICA algorithms based on robust cumulants.
metric PDF) we find that the quality (ih.-norm) of the

estimated densities improves considerably when we use the

robust series expansion with a settingcdf close to (but

smaller than®. This effect is more pronounced for super- A ROBUST MOMENTS AND
Gaussian densities than for sub-Gaussian densities. CUMULANTS TO 4'TH ORDER

o
=3
2
[N)

—distance between pdf and estimate
—distance between pdf and estimate

Ly
Ly

=)
-

8 DISCUSSION

This appendix contains the definition of the cumulants in
In this paper we have proposed robust alternatives to highgerms of the moments and vice versa for generalWe
order moments and cumulants. In order to arrive at robushave not denoted: explicitely in the following for nota-



Best estimate for exponential density (a=1,0=1) Best estimate for exponential density (a=1,0=1.9)

08 08 generating functiorf p(x). We can find an expression for
p(x) if we invert the Fourier transform,

ag(z) 1
o(ax) 27
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Next, we use the relation between the cumulants and the
moments (Eq.7) to write,

0.2 i 0.2

0.1 0.1

E = E = 00
%o 5 0 5 0 o 5 0 5 10 ( ) B Oé(b(l’) i/ o—icat epzc;o %f@ﬁ{”(it)" Qb
—o0

) =
(@) (b) ¢(ax) 2m
(29)
Figure 7:Best estimates for the generalized Laplace density aBy defining R = gl - dn,2 We can separate a factor
a = 1. In (a) we plot the best classical estimate which is found #(t) (Gaussian) inside the integral,
after four orders of Hermite polynomials are taken into account

(i.e. Ho(zx),..., Hs(z)). For higher orders, the series becomes ag(z) 1 S o 1 a(a)/ipm
unstable and the calculation of the expansion coefficients is to@(x) = —/ emioxt o To mrknT(it) @(t) dt.
sensitive to sample fluctuations. The best estimate from the robust plax) V2 J oo
expansion is depicted in (b). In that case the best estimate is found ] (30)
when all orders are taken into account, i.e. 20. Finally, we will need the result
. . — 17/ V 21 dm
tional convenience. Fla) o)) = — (*Und(ax)nﬂm) (31)
H1 H2 H1 . - .
Ko = In g K1 = — Ky = — — (7)2 If we expand the exponential containing the cumulants in a
13 L1112 UOMI 5 Ko Ho Taylor series, and do the inverse Fourier transform on every
K3 = /7 - 37 + 2(/7) term separately, after which we combine the terms again in
0 0 0 ) an exponential, we find the desired result (Eq.14).
ja= B g(H2y2 g MBS olaH2 gLy
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