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Abstract
Detecting out-of-distribution (OOD) inputs is crit-
ical for safely deploying deep learning models in
an open-world setting. However, existing OOD
detection solutions can be brittle under small ad-
versarial perturbations. In this paper, we propose
a simple and effective method, Adversarial Train-
ing with informative Outlier Mining (ATOM), to
robustify OOD detection. Our key observation
is that while unlabeled data can be used as auxil-
iary OOD training data, the majority of these data
points are not informative to improve the decision
boundary of the OOD detector. We show that, by
carefully choosing which outliers to train on, one
can significantly improve the robustness of the
OOD detector, and somewhat surprisingly, gener-
alize to some adversarial attacks not seen during
training. We provide additionally a unified evalu-
ation framework that allows future research exam-
ining the robustness of OOD detection algorithms.
ATOM achieves state-of-the-art performance un-
der a broad family of natural and perturbed OOD
evaluation tasks, surpassing previous methods by
a large margin. Finally, we provide theoretical
insights for the benefit of outlier mining.

1. Introduction
Out-of-distribution (OOD) uncertainty estimation has be-
come an indispensable part of building reliable open-world
machine learning models (Amodei et al., 2016). An OOD
detector determines whether an input is from the same dis-
tribution as the training data (in-distribution), or a different
distribution (out-of-distribution). The performance of the
OOD detector is central for safety-critical applications such
as autonomous driving (Eykholt et al., 2018) or rare disease
identification (Blauwkamp et al., 2019).

Despite exciting progress made in OOD detection, previous
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methods mostly focused on natural OOD data (Hendrycks
& Gimpel, 2016; Liang et al., 2017; Lee et al., 2018; Laksh-
minarayanan et al., 2017; Hendrycks et al., 2018; Mohseni
et al., 2020). Scant attention has been paid to the robust-
ness aspect of OOD detection. Recently, Sehwag et al.
demonstrated that OOD detection methods can be evaded by
worst-case adversarial perturbations (Papernot et al., 2016;
Goodfellow et al., 2014; Biggio et al., 2013; Szegedy et al.,
2013). For example, an OOD image (e.g., mailbox) can
be perturbed to be misclassified by the OOD detector as
in-distribution (traffic sign data). Such an adversarial OOD
example1 is then passed to the image classifier and trig-
ger undesirable prediction and action (e.g., speed limit 70).
Therefore, the failure mode leads to the following question:
how can we make out-of-distribution detection algorithm
robust in the presence of small perturbations to OOD inputs?

Motivated by this, we propose a method called Adversarial
Training with informative Outlier Mining (ATOM), which
achieves state-of-the-art performance on a broad family of
natural and perturbed OOD inputs. Our key observation is
that while unlabeled data (Hendrycks et al., 2018) provides
the abundance of OOD data to train on, the majority OOD
examples can be too easy to provide useful information
and meaningfully improve the decision boundary of OOD
detector. We show that, by carefully choosing which OOD
data to train on, one can significantly improve the robustness
of an OOD detector, and somewhat surprisingly, generalize
to unseen adversarial attacks.

Contributions. We provide a unified framework that allows
examining the robustness of OOD detection algorithms un-
der a broad family of OOD inputs, as illustrated in Figure 1.
Our evaluation goes beyond previous approaches that pri-
marily focus on natural OOD inputs. Under this taxonomy,
we extensively examine the robustness of eight common
OOD detection methods. Our experiments reveal that exist-
ing methods have heterogeneous performance across various
types of perturbations. In particular, we show that methods
relying on pre-trained neural networks (Hendrycks & Gim-
pel, 2016; Liang et al., 2017; Lee et al., 2018) are fragile
across all types of perturbations. While (Hein et al., 2019)
provides robustness against adversarial OOD examples gen-

1We note here that the adversarial OOD examples are con-
structed w.r.t the OOD detectors G(x), rather than the image clas-
sification model f(x).
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Figure 1: When deploying an image classification system (OOD detector G(x) + image classifier f(x)) in an open world, there can be
multiple types of out-of-distribution examples. We consider a broad family of OOD inputs, including (a) natural OOD, (b) adversarially
perturbed OOD under L∞ norm perturbation, and (c) corruption attacked OOD. In (b-d), a perturbed OOD input (e.g., a perturbed
mailbox image) can mislead the OOD detector to classify it as an in-distribution sample. This can trigger the downstream image classifier
f(x) to predict it as one of the in-distribution classes (e.g., speed limit 70). Through adversarial training with informative outlier mining
(ATOM), our method can robustify the decision boundary of OOD detector G(x), which leads to improved performance across all types
of OOD inputs. Solid lines are actual computation flow.

erated by L∞-norm bounded attacks, such defense can be
somewhat brittle under attacks not seen during training.

To this end, we devise a simple and effective method,
ATOM, which improves the OOD detection performance on
both clean and perturbed inputs. The key idea of our method
is to adaptively choose informative OOD training examples
that the OOD detector is mildly uncertain about. When
evaluating on natural OOD data, our method outperforms
state-of-the-art method SOFL (Mohseni et al., 2020) on all
datasets. On CIFAR-10, our method outperforms the best
baseline (Hein et al., 2019) by 60.55% (FPR) under L∞
attacked OOD inputs. Our method can generalize surpris-
ingly well to unknown corrupted OOD inputs, outperform-
ing the best baseline by 29.55% measured by FPR. Finally,
while almost every method fails under the strongest compo-
sitional attack, our method reduces the FPR by 61.78%. Our
method leads to improved OOD detection while maintaining
similar classification accuracy on in-distribution data as a
pre-trained model. We conduct ablation analysis to explore
the effect of informative outlier sampling.

Lastly, we provide theoretical analysis formalizing the in-
tuition behind our method. Under a Gaussian model of
the data, we show that using outlier mining helps learn a
correct detector in the presence of non-informative exam-
ples. Our theoretical results justify using auxiliary unlabeled
data and outlier mining for robust OOD detection. Our
code is available at: https://github.com/jfc43/

informative-outlier-mining.

2. Problem Statement
Preliminaries. We consider a training dataset Dtrain

in drawn
i.i.d. from a data distribution PX,Y , where X is the sample
space and Y = {1, 2, · · · ,K} is the set of labels. An classi-
fier f(x) is trained on the in-distribution PX , the marginal
distribution of PX,Y . The OOD examples are revealed dur-
ing test time, which are from a different distribution QX ,
potentially with perturbations added. Formally, let Ω(x) be
a set of small perturbations on an OOD example x. The task
of robust out-of-distribution detection is to learn a detector
G : x → {−1, 1}, which outputs 1 for x from PX, and
output −1 for the worst-case input inside Ω(x) given an
OOD example from QX. The false negative rate (FNR) and
false positive rate (FPR) are defined as:

FNR(G) =Ex∼PX
I[G(x) = −1],

FPR(G;QX,Ω) =Ex∼QX
max
δ∈Ω(x)

I[G(x + δ) = 1]. (1)

Robust OOD Evaluation Tasks. We consider the follow-
ing family of natural and adversarial OOD inputs:

• Natural OOD: This is equivalent to the classic OOD
evaluation where clean input x is used and Ω = Ø.

• L∞ attacked OOD (white-box): We consider small
L∞-norm bounded perturbations on x (Madry et al.,

https://github.com/jfc43/informative-outlier-mining
https://github.com/jfc43/informative-outlier-mining
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2017; Athalye et al., 2018), which induce the model to
produce high confidence scores (or low OOD scores)
for OOD inputs. The set of adversarial perturbations
is Ω∞,ε(x), where ε is the adversarial budget. We
provide attack algorithms for all eight OOD detection
methods in Appendix E.4.

• Corruption attacked OOD (black-box): We con-
sider a more realistic type of attack based on common
corruptions (Hendrycks & Dietterich, 2019), which
could appear naturally in the physical world. Some
corruptions include noise, blur, and weather, etc. We
provide details in Appendix E.4.

• Compositionally attacked OOD (white-box): Lastly,
we consider combining L∞ attack and corruption at-
tack, as considered in (Laidlaw & Feizi, 2019).

We show visualizations for four types of OOD samples in
Appendix E.5. To our knowledge, we are the first to study
the performance of OOD methods under all these tasks.

3. ATOM: Adversarial Training with
Informative Outlier Mining

In this section, we introduce our method, Adversarial Train-
ing with informative Outlier Mining (ATOM), for robust
OOD detection.

Training Objective. We consider a (K + 1)-way classifier
network f̂ , where the (K + 1)-th class label indicates out-
of-distribution class. Denote by F̂θ(x) the softmax output
of f̂ on x. The robust training objective is given by

minimize
θ

E(x,y)∼Dtrain
in

[`(x, y; F̂θ)]

+λ · Ex∼Dtrain
out

max
x′∈Ω∞,ε(x)

[`(x′,K + 1; F̂θ)], (2)

where ` is the cross entropy loss, and Dtrain
out is the OOD

training dataset. We use Projected Gradient Descent (PGD)
(Madry et al., 2017) to solve the inner max of the objective,
and apply it to half of a minibatch while keeping the other
half clean to ensure proper performance on both clean and
perturbed data. Once trained , the OOD detector G(x) can
be constructed by:

G(x) =

{
−1 if F̂ (x)K+1 ≥ γ,
1 if F̂ (x)K+1 < γ,

(3)

where γ is the threshold, and in practice can be chosen on the
in-distribution data so that a high fraction of test examples
are correctly classified by G. We call F̂ (x)K+1 the OOD
score of x. For an input that is labeled as in-distribution by
G, one can obtain its semantic label using F (x):

F (x) = arg max
y∈{1,2,··· ,K}

F̂ (x)y (4)

Informative Outlier Mining. When training a neural
network, we may not have data from the test out-of-
distribution QX, but instead, have an unlabeled auxiliary
datasetDauxiliary

out from distribution UX. While unlabeled data
gives rise to the abundance of OOD data to train, we observe
that the above training objective quickly converges to the so-
lution where OOD training data yield high OOD scores (see
Figure 2). Continuing the training process on these OOD
data points can no longer provide meaningful information
that improves the decision boundary of the OOD detector.

Motivated by this, we propose to adaptively choose OOD
training examples where the detector is mildly uncertain
about. We provide the complete training algorithm using
informative outlier mining in Appendix B. Our method
is different from random sampling as used in previous
works (Hendrycks et al., 2018; Hein et al., 2019; Meinke &
Hein, 2019; Mohseni et al., 2020). Specifically, during each
training epoch, we randomly sample N data points from the
unlabeled OOD dataset Dauxiliary

out , and use the current model
to infer the OOD scores . After that, we sort the data points
according to the OOD scores and select a subset of n < N
data points, starting with the qN th data in the sorted list. We
then use the selected samples as OOD training data Dtrain

out
for the next epoch of training. Intuitively, q determines the
informativeness of the sampled points w.r.t the OOD de-
tector. The larger q is, the less informative those sampled
examples become. Our empirical and theoretical studies
reveal the importance of outlier mining for the robust OOD
detection task. We report ablation analysis in Appendix A.

4. Experiments
4.1. Setup

In-distribution Datasets. we use CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) as in-distribution datasets.

Out-of-distribution Datasets. For auxiliary outlier dataset
Dauxiliary

out , we use 80 Million Tiny Images (Torralba et al.,
2008). For OOD test dataset, we follow the procedure in
(Liang et al., 2017; Hendrycks et al., 2018) and use six
natural image datasets: SVHN, Textures, Places365,
LSUN (crop), LSUN (resize), and iSUN.

Hyperparameters. We set λ = 1, N = 4 × 105, and
n = 105. The hyperparameter q is chosen on a validation
set from Tiny Images (Torralba et al., 2008), which does not
depend on test-time OOD data (see Appendix E.8). We set
q = 0.125 for CIFAR-10 and q = 0.25 for CIFAR-100.

Evaluation Metrics. We use two metrics: the false positive
rate (FPR) at 5% false negative rate (FNR) and the area
under the receiver operating characteristic curve (AUROC).

More details about experimental set up are in Appendix E.1.
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-
10

MSP 50.54 91.79 100.00 58.34 100.00 13.83 100.00 13.67
ODIN 21.72 94.72 99.30 52.32 99.99 0.17 100.00 0.01
Mahalanobis 28.50 89.60 94.58 37.76 97.67 3.90 99.93 0.32
SOFL 2.78 99.04 61.82 88.72 99.98 1.08 100.00 0.77
OE 3.66 98.82 56.44 90.66 99.95 0.35 99.99 0.16
ACET 13.13 97.61 68.54 88.00 75.86 77.66 97.86 52.99
CCU 3.39 98.92 56.50 89.34 99.90 0.36 99.98 0.21
ROWL 43.14 77.78 94.19 52.26 93.40 52.65 97.86 50.42
ATOM (ours) 2.07 99.11 26.95 94.96 15.31 97.33 36.08 93.78

CIFAR-
100

MSP 78.05 76.11 100.00 30.08 100.00 2.35 100.00 2.13
ODIN 53.03 84.45 100.00 36.36 100.00 0.40 100.00 0.01
Mahalanobis 43.25 85.65 96.62 33.47 95.13 26.71 99.91 10.32
SOFL 43.36 91.21 99.92 45.20 100.00 0.42 100.00 0.30
OE 49.21 88.05 99.96 45.10 100.00 0.97 100.00 0.59
ACET 47.69 88.47 99.86 43.38 79.33 50.59 98.60 24.96
CCU 43.04 90.95 99.90 48.32 100.00 0.78 100.00 0.47
ROWL 95.82 51.90 100.00 49.80 99.99 49.81 100.00 49.80
ATOM (ours) 34.06 93.79 99.08 72.27 52.89 82.61 96.83 68.93

Table 1: Comparison with competitive OOD detection methods. We evaluate on four types of OOD inputs: (1) natural OOD, (2)
corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked OOD inputs. ↑ indicates larger value is better, and ↓
indicates lower value is better. All values are percentages and are averaged over six OOD test datasets described in section 4.1. Bold
numbers are superior results.

4.2. Results

We show in Table 1 that ATOM outperforms existing meth-
ods on both natural and perturbed OOD evaluation tasks.
First, when evaluating on natural OOD data, ATOM outper-
forms current state-of-the-art method SOFL (Mohseni et al.,
2020). On CIFAR-10, our method outperforms the best
baseline ACET (Hein et al., 2019) by 60.55% (FPR) un-
der the L∞ attacked OOD task. While ACET is somewhat
brittle under unknown attacks, our method can generalize
surprisingly well to unknown corruption attacked OOD in-
puts, outperforming the best baseline by 29.55% measured
by FPR. Finally, while almost every method fails under
the strongest compositional attack, our method reduces the
FPR by 61.78%. The performance is noteworthy since our
method is not trained explicitly on corrupted OOD inputs.

We also conduct ablation study on the effect of outlier min-
ing, and provide details in Appendix A. The ablation reveals
that (1) using outlier mining considerably outperforms ran-
dom sampling, and (2) sampling from a mild range of OOD
scores is important.

5. Theoretical Insights
We provide analysis in a Gaussian model which formalizes
the intuition behind outlier mining. Detailed proofs and
additional results are deferred to Appendix D.

Gaussian data model. Given µ ∈ Rd, σ > 0, ν > 0, in our
model: (1) PX isN (µ, σ2I); (2)QX can be any distribution

from the family Q = {N (−µ+ v, σ2I) : v ∈ Rd, ‖v‖2 ≤
ν}; (3) the hypothesis class for detectors is G = {Gθ(x) =
sign(θ>x) : θ ∈ Rd}. Assume the following parameter
values: first choose an integer n0 > 0, then let

ε ∈ (0, 1/2), ‖µ‖22 = d� n0/ε
4, σ2 =

√
dn0, ν ≤ ‖µ‖2/4.

We consider the FNR and the FPR under `∞ perturbations
of magnitude ε. Since QX is not accessible during training
time, we bound supQX∈Q FPR(G;QX).

Now assume we have n in-distribution data, and n′ auxiliary
outliers from the distribution Umix, a uniform mixture of
N (−µ, σ2I) and N (−10µ, σ2I). Consider the following
algorithm: first average in-distribution data to get an inter-
mediate solution θ̂int, then select outliers x̃ with confidence
scores f(x̃) = 1/(1 + e−x̃

>θ̂int/d) ∈ [a, b], and the final
solution θ̂om is−1 times the average of the selected outliers.
By only picking points with mild confidence scores, we re-
move easy outliers far from in-distribution (e.g., most points
in N (−µo, σ2I)), and also difficult outliers (e.g., tail of
N (−µ, σ2I) in the support of in-distribution). This yields
a good detector:
Proposition 1. There exist thresholds a and b for θ̂om, and
a universal constant c such that for the parameter setting
(5) with

√
d/n0 ≥ c(log d + 1/ε2), we have that if n ≥

cn0 log d and n′ ≥ (d+ n0 · 4ε2)
√
d/n0, then

Eθ̂omFNR(Gθ̂om) ≤ 10−3

Eθ̂om sup
QX∈Q

FPR(Gθ̂om ;QX) ≤ 10−3.
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Supplementary Material

A. Ablation Study: Informative Outlier Mining
How does informative outlier mining compare to random sampling? We perform an ablation study on how different
informative outlier mining strategies affect the performance of ATOM. Table 2 shows the performance where we vary the
sampling interval with different q. First, we observe that using informative outlier mining leads to a more robust decision
boundary than random sampling. For example, on CIFAR-10, our method (q = 0.125) achieves FPR 26.95% under unseen
corrupted OOD inputs, compared to random sampling (45.70%). On natural OOD inputs, our method (q = 0.5) reduces the
FPR by 23.15% on more complex dataset CIFAR-100. We provide theoretical reasoning for the benefit of outlier mining in
Section 5.

How does the sampling parameter affect performance? The ablation also reveals the importance of sampling from a
mild range of OOD scores. On the one hand, training on OOD inputs primarily with large OOD scores (i.e., too easy
examples with q = 0.75) worsens the performance on CIFAR-10, which suggests the necessity to include examples on
which the OOD detector is uncertain. On the other hand, training on the hardest examples (i.e., q = 0) with lowest OOD
scores might be harmful since some of the data points resemble in-distribution data, as visually evidenced in Figure 2(c).

Dtest
in Model

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-
10

ATOM (rand. sample) 2.93 99.09 45.70 90.98 52.19 71.13 69.19 73.37
ATOM (q=0.0) 2.54 99.06 40.16 92.87 52.27 65.40 68.30 68.18
ATOM (q=0.125) 2.07 99.11 26.95 94.96 15.31 97.33 36.08 93.78
ATOM (q=0.25) 2.71 99.13 32.21 93.89 25.25 95.47 44.02 92.01
ATOM (q=0.5) 5.03 98.79 40.22 92.64 36.49 92.48 59.38 88.21
ATOM (q=0.75) 7.18 98.41 61.26 87.45 20.80 95.79 62.32 87.18

CIFAR-
100

ATOM (rand. sample) 54.16 88.96 99.88 54.58 62.29 69.94 95.95 44.99
ATOM (q=0.0) 57.46 88.28 99.94 49.84 60.33 76.27 96.56 45.43
ATOM (q=0.125) 47.38 91.62 99.57 63.98 44.75 89.44 90.10 65.54
ATOM (q=0.25) 34.06 93.79 99.08 72.27 52.89 82.61 96.83 68.93
ATOM (q=0.5) 31.01 93.27 97.01 64.05 63.77 76.53 95.87 59.25
ATOM (q=0.75) 33.18 92.46 96.90 64.85 53.16 86.13 96.78 64.63

Table 2: Ablation study on informative outlier mining. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values
are percentages and are averaged over six OOD test datasets mentioned in section 4.1.

B. ATOM: Extended Description

Algorithm 1 ATOM: Adversarial Training with informative Outlier Mining.

input Dtrain
in , Dauxiliary

out , F̂θ, m, N , n, q
output F , G

for t = 1, 2, · · · ,m do
Randomly sample N data points from Dauxiliary

out to get a candidate set S.
Compute OOD scores on S using current model F̂θ to get set V = {F̂ (x)K+1 | x ∈ S}.
Sort scores in V from the lowest to the highest.
Dtrain

out ← V [qN : qN + n] . {q ∈ [0, 1− n/N ]}
Train F̂θ for one epoch using the training objective of (2).

end for
Build G and F using objective (3) and (4) respectively.

C. Related Work
Discriminative Based Out-of-Distribution Detection. Hendrycks et al. (Hendrycks & Gimpel, 2016) introduced a baseline
approach for OOD detection using the maximum softmax probability from a pre-trained network. Several works attempt to
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Figure 2: On CIFAR-10, we train a DenseNet with objective (2) for 100 epochs without informative outlier mining. At epoch 30, we
randomly sample 400,000 data points from Dauxiliary

out , and plot the OOD score frequency distribution (a). We observe that the model
quickly converges to solution where OOD score distribution becomes dominated by easy examples with score closer to 1, as shown in (b).
Therefore, training on these easy OOD data points can no longer help improve the decision boundary of OOD detector. We also observe
that training on too hard examples with score closer to 0 might be harmful since those examples resemble in-distribution data (c).

improve the OOD uncertainty estimation by using deep ensembles (Lakshminarayanan et al., 2017), the calibrated softmax
score (Liang et al., 2017), and the Mahalanobis distance-based confidence score (Lee et al., 2018). Some methods also
modify the neural networks by re-training or fine-tuning on some auxiliary anomalous data that are or realistic (Hendrycks
et al., 2018; Mohseni et al., 2020) or artificially generated by GANs (Lee et al., 2017). Many other works (Subramanya et al.,
2017; Malinin & Gales, 2018; Bevandić et al., 2018) also regularize the model to have lower confidence for anomalous
examples. Worst-case aspects of OOD detection have previously been studied in (Hein et al., 2019; Meinke & Hein, 2019;
Sehwag et al., 2019). However, these papers are primarily concerned with L∞ norm bounded adversarial attacks. In this
paper, we consider a broader family of clean and perturbed OOD inputs to examine the robustness of OOD detection
algorithms.

Generative Modeling Based Out-of-distribution Detection. Generative models (Dinh et al., 2016; Kingma & Welling,
2013; Rezende et al., 2014; Van den Oord et al., 2016; Tabak & Turner, 2013) can be alternative approaches for detecting
OOD examples, as they directly estimate the in-distribution density and can declare a test sample to be out-of-distribution
if it lies in the low-density regions. However, as shown by (Nalisnick et al., 2018), deep generative models can assign a
high likelihood to out-of-distribution data. Deep generative models can be more effective for out-of-distribution detection
using alternative metrics (Choi & Jang, 2018), likelihood ratio (Ren et al., 2019; Serrà et al., 2019), and modified training
technique (Hendrycks et al., 2018). Recently, (Pope et al., 2019) shows that flow-based generative models are sensitive
under adversarial attacks. Note that we mainly considered discriminative-based approaches, which can be more competitive
due to the availability of label information (and, in some cases, auxiliary outlier data (Hein et al., 2019; Hendrycks et al.,
2018; Meinke & Hein, 2019; Mohseni et al., 2020)).

Adversarial Robustness. Adversarial examples (Goodfellow et al., 2014; Papernot et al., 2016; Biggio et al., 2013; Szegedy
et al., 2013) have received considerable attention in recent years. Many defense methods have been proposed to mitigate this
problem. One of the most effective methods is adversarial training (Madry et al., 2017), which uses robust optimization
techniques to render deep learning models resistant to adversarial attacks. (Carmon et al., 2019) shows that unlabeled data
can improve adversarial robustness on in-distribution via self-training. Our method is also related to self-training, but our
focus is to improve the generalization and robustness of OOD detection.

Hard Example Mining. Hard example mining was introduced in the work (Sung, 1996) for training face detection models,
where they gradually grow the set of background examples by selecting those examples for which the detector triggers
a false alarm. The idea has been used extensively for object detection literature (Felzenszwalb et al., 2009; Gidaris &
Komodakis, 2015; Shrivastava et al., 2016). (Bucher et al., 2016) uses hard negative mining for zero-shot classification. To
the best of our knowledge, we are the first to explore hard example mining for out-of-distribution detection.
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D. Theoretical Analysis
D.1. A General Error Bound

The interesting questions related to our method are: (1) why auxiliary data from UX helps? (2) why the detector G trained
on UX generalizes to different OOD distributions QX in test time?

To see what QX can benefit from the auxiliary data, we adopt the domain adaption framework (Ben-David et al., 2010).
Recall that in domain adaptation there are two domains s, t, each being a distribution over the input space X and label space
{−1, 1}. A classifier is trained on s then applied on t. At a high level, we view our OOD detection problem as classification,
where the source domain s is PX with labels 1 and UX with labels −1, and the target domain t is PX with labels 1 and QX

with label −1.

We focus on the FPR metric below; the argument for FNR is similar. Suppose we learn the OOD detector from a hypothesis
class G. Following (Ben-David et al., 2010), we define (a variant) of the divergence of QX and UX w.r.t. the hypothesis
class G as

dG(QX, UX) = sup
G,G′∈G

v(G,G′;QX)− v(G,G′;UX)

where

v(G,G′;D) = FPR(G;D,Ω)− FPR(G′;D,Ω)

is the error difference of G and G′ on the distribution D.

The divergence upper bounds the change of the hypothesis error difference between QX and UX. If it is small, then for any
G,G′ ∈ G where G has a smaller error than G′ in UX, we know that G will also have a smaller (or not too larger) error than
G′ in QX. That is, if the divergence is small, then the ranking of the hypotheses w.r.t. the error is roughly the same in both
distributions. This rank-preserving property thus makes sure that a good hypothesis learned in UX will also be good for QX.

Now we show that, if dG(QX, UX) is small (i.e., QX and UX are aligned w.r.t. the class G), then a detector G with small
FPR on UX will also have small FPR on QX.

Proposition 2. For any G ∈ G,

FPR(G;QX,Ω) ≤ inf
G∗∈G

FPR(G∗;QX,Ω) + FPR(G;UX,Ω) + dG(QX, UX).

Proof. For simplicity, we omit Ω from FPR(G;QX,Ω). For any G∗ ∈ G, we have

FPR(G;QX) = FPR(G∗;QX) + FPR(G;QX)− FPR(G∗;QX) (5)
= FPR(G∗;QX) + FPR(G;UX)− FPR(G∗;UX) (6)
+ [(FPR(G;QX)− FPR(G∗;QX))− (FPR(G;UX)− FPR(G∗;UX))]. (7)

The last term is

(FPR(G;QX)− FPR(G∗;QX))− (FPR(G;UX)− FPR(G∗;UX)) (8)
= v(G,G∗;QX)− v(G,G∗;UX) (9)
≤ dG(QX, UX). (10)

Therefore,

FPR(G;QX) ≤ FPR(G∗;QX) + FPR(G;UX) + dG(QX, UX). (11)

Taking inf over G∗ ∈ G completes the proof.

The error of the detector is bounded by three terms: the best error, the error on the training distributions, and the divergence
between QX and UX. Assuming that there exists a ground-truth detector with a small test error, and that the optimization
can lead to a small training error, the test error is then characterized by the divergence. So in this case, as long as the rankings
of the hypotheses (according to the error) on QX and UX are similar, detectors learned on UX can generalize to QX.
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Figure 3: An illustration example to explain why UX helps to get a good detector Gr . With UX, we can prune away hypotheses Gr for
any r ≥ 1.9. Thus, the resulting detector Gr can detect OOD samples from QX successfully and robustly.

An illustration example. In this example, the in-distribution PX is uniform over the disk around the origin in R2 with
radius 1, UX is uniform over the disk around (0, 3) with radius 1, and QX is uniform over the disk around (3, 0) with radius
1. Assume the adversary budget is ε = 0.1, i.e., Ω∞,ε = {‖δ‖∞ ≤ 0.1}. The hypothesis class for the detector contains all
functions of the form Gr(x) = 2I[‖x‖2 ≤ r]− 1 with parameter r. See Figure 3.

The example first shows the effect of the auxiliary outlier data: UX helps prune away hypotheses Gr for any r ≥ 1.9.
Furthermore, it also shows how learning over UX can generalize to QX. Although QX and UX have non-overlapping
supports, UX helps to calibrate the error of the hypotheses, so any good detector trained on PX and UX can be used for
distinguishing PX and QX. Formally, the dG is small in Proposition 2.

The analysis also shows the importance of training on perturbed instances from the unlabeled data UX. Not using
perturbation is equivalent to using Ω = {0}. In this case, the analysis shows that it only guarantees the error on unperturbed
instances from QX, even if QX and UX has small divergence and the learned detector can have small training error on UX.

D.2. Analysis in a Gaussian Model

To understand how the outlier training data affect the generalization, we study a concrete distributional model, which is
inspired by the models in (Schmidt et al., 2018; Carmon et al., 2019). In this model, we establish a separation of the
in-distribution sample sizes needed in the two cases: with and without auxiliary outlier data for training. We also demonstrate
the benefit of outlier mining when the auxiliary data consists of uninformative outliers.

While the theoretical model is simple (in fact, much simpler than the practical data distributions), its simplicity is actually
desired for our analytical purpose. More precisely, the separation of the sample sizes under this simple model suggests the
same phenomenon can happen in more complicated models. This then means the auxiliary outlier data not only help training
but are necessary for obtaining detectors with reasonable performance when in-distribution data is limited.

Gaussian Model. To specify a distributional model for our robust OOD formulation, we need in-distribution PX, family
of OOD distributions Q, and the hypothesis classH for the OOD detector G. When auxiliary data is available, we also need
to specify their distribution UX. Let µ ∈ Rd be the mean vector, σ > 0 be the variance parameter, and ν > 0 be a parameter.
In our (µ, σ, ν)-Gaussian model:

• PX is N (µ, σ2I).

• Q = {N (−µ+ v, σ2I) : v ∈ Rd, ‖v‖2 ≤ ν}.

• H = {Gθ(x) = sign(θ>x) : θ ∈ Rd}. Here Gθ(x) = 1 means it predicts x to be an in-distribution example, and
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Gθ(x) = −1 means it predicts an OOD example.

We are interested in the False Negative Rate FNR(G) and worst False Positive Rate supQX∈Q FPR(G;QX,Ω∞,ε(x)) over
QX ∈ Q under `∞ perturbations of magnitude ε. For simplicity, we denote them as FNR(G) and FPR(G;QX) in our
proofs.

Parameter Setting. The model parameters are set such that:

1. There exists a classifier that achieves very low errors FPR and FNR.

2. We need n1 in-distribution data from PX to learn a classifier with non-trivial robust errors.

3. Using n0 in-distribution examples from PX and nout auxiliary outliers from UX where n0 is much smaller than n1, we
can learn a classifier with non-trivial robust errors.

Here n0, n1, nout are sample sizes whose values are specified later in our analysis.

To achieve the three goals, the following parameter values are used (repeating (5)):

ε ∈ (0, 1/2), ‖µ‖22 = d� n0/ε
4, σ2 =

√
dn0, ν ≤ ‖µ‖2/4. (12)

To interpret the parameter setting, one can view ε as fixed and d/n0 as a large number. In the following subsections, we
show how these three goals are achieved.

D.2.1. EXISTENCE OF ROBUST CLASSIFIER

We give closed forms of the errors, and show that using θ = µ gives small errors under the chosen parameter setting in (5).

Closed Forms of the Errors. By definition, the FNR of a detector Gθ (on PX) is:

FNR(Gθ) = Px∼PX
[θ>x ≤ 0] = Px∼PX

[
N
(
µ>θ

σ‖θ‖2
, 1

)
≤ 0

]
=: Φ

(
µ>θ

σ‖θ‖2

)
(13)

where

Φ(x) :=
1√
2π

∫ ∞
x

e−t
2/2dt (14)

is the Gaussian error function.

Given a test OOD distribution Qv = N (−µ+ v, σ2I), the robust FPR of Gθ on Qv is:

FPR(Gθ;Qv) = Px∼Qv

[
inf

‖δ‖∞≤ε
θ>(x + δ) ≥ 0

]
(15)

= Px∼Qv
[
θ>x + ε‖θ‖1 ≥ 0

]
(16)

= Px∼Qv
[
N ((µ+ v)>θ, (σ‖θ‖2)2) ≥ −ε‖θ‖1

]
(17)

= Φ

(
(µ+ v)>θ

σ‖θ‖2
− ε‖θ‖1
σ‖θ‖2

)
. (18)

Then the worst robust FPR of Gθ on Q is:

sup
Qv∈Q

FPR(Gθ;Qv) = sup
‖v‖2≤ν

Φ

(
(µ+ v)>θ

σ‖θ‖2
− ε‖θ‖1
σ‖θ‖2

)
(19)

= Φ

(
µ>θ

σ‖θ‖2
− ν

σ
− ε‖θ‖1
σ‖θ‖2

)
(20)

≤ Φ

(
µ>θ

σ‖θ‖2
− ν

σ
− ε
√
d

σ

)
. (21)
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Small Errors of Gµ. Given the closed forms, we can now show that Gµ achieves small FNR and FPR in our parameter
setting.

FNR(Gµ) = Φ

(
‖µ‖2
σ

)
= Φ

((
d

n0

)1/4
)
≤ e− 1

2

√
d/n0 . (22)

sup
Qv∈Q

FPR(Gµ;Qv) ≤ Φ

(
‖µ‖2
σ
− ν

σ
− ε
√
d

σ

)
(23)

≤ Φ

((
1− 1

4
− ε
)(

d

n0

)1/4
)
≤ e− 1

32

√
d/n0 . (24)

Therefore, in the regime d/n0 � 1, the detector Gµ achieves both small FNR on PX and robust FPR on any test OOD
distribution in Q.

D.2.2. LEARNING WITHOUT AUXILIARY OUTLIER DATA

Given in-distribution data x1,x2, . . . ,xn, we consider the detector Gθ̂n given by

θ̂n =
1

n

n∑
i=1

xi. (25)

As shown in the closed form solutions, the key factor determining the errors is µ>θ̂n
σ‖θ̂n‖2

. To bound this term, we cite the
following lemma from existing work:
Lemma 1 (Lemma 1 in (Carmon et al., 2019) ). There exist numerical constants c0, c1, c2 such that under parameter setting
(5) and d/n0 > c0,

µ>θ̂n

σ‖θ̂n‖2
≥
(√

n0

d
+
n0

n

(
1 + c1

(n0

d

)1/8
))−1/2

(26)

with probability ≥ 1− e−c2(d/n0)1/4 min{n,(d/n0)1/4}.

This lemma leads to the following guarantee about learning the OOD detector from in-distribution data only.
Proposition 3. There exists a universal constant c such that for the parameter setting (5) with

√
d/n0 ≥ c/ε2, we have

that if n ≥ n0 · 4ε2
√
d/n0, then

Eθ̂nFNR(Gθ̂n) ≤ 10−3, Eθ̂n sup
QX∈Q

FPR(Gθ̂n ;QX,Ω∞,ε(x)) ≤ 10−3. (27)

Proof. By Lemma 1, we have

µ>θ̂n

σ‖θ̂n‖2
≥
(

2

(√
n0

n
+

√
n0

d

))−1/2

(28)

with probability ≥ 1− e−c2(d/n0)1/4 min{n,(d/n0)1/4}. The proposition then comes from the parameter setting (5) and the
closed form expressions (13) and (19) of the errors.

Next we show that the above sample size is nearly optimal (up to a logarithmic factor). That is, a sample size of order

n0 ·
ε2
√
d/n0

log d is necessary for all algorithms to obtain both non-trivial robust FPR and FNR. We emphasize that this lower
bound is information theoretic, i.e., it holds without restriction on the computational power of the learning algorithm and
the hypothesis class used for the OOD detector. In particular, it applies not only to the linear classifier considered in
Proposition 3 but also to any other learning algorithms.

*
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Proof. The key for the proof is the observation that robust classification is a special case of our robust OOD problem. More
precisely, consider the following robust classification problem. The data (x, y) with x ∈ Rd and y ∈ {−1,+1} is generated
as follows: first draw y uniformly at random, and then draw x from N (y · µ, σ2I). Given training data {(xi, yi)}ni=1, the
goal is to find classifier fθ(x) = sign(θ>x) with small robust classification error

err∞,ε(fθ) = E(x,y) max
‖δ‖∞≤ε

I[fθ(x + δ) 6= y]

under `∞ perturbation of magnitude ε. It has been shown that (Theorem 6 in (Schmidt et al., 2018) or Theorem 1 in (Carmon

et al., 2019)) that when µ ∼ N (0, I) and n ≤ n0 ·
ε2
√
d/n0

8 log d and with the parameter setting (5), for any learning algorithm
An

Eerr∞,ε(An(S)) ≥ 1

2
(1− d−1). (29)

Now consider the following variant of the robust OOD problem in the proposition. Suppose besides the data from PX, we
also have n i.i.d. samples from a test OOD distribution Q0 = N (−µ, σ2I). Then the above robust classification problem
can be reduced to this variant of robust OOD, by viewing the in-distribution data as with label +1 and viewing outliers as
with label −1. Furthermore, it is clear that the sum of the FNR and FPR is larger than the robust classification error. Then

E {FNR(An(S)) + FPR(An(S);Q0)} ≥ 1

2
(1− d−1). (30)

Since this variant can be reduced to the original robust OOD problem in the proposition and furthermore Q0 ∈ Q, the
statement then follows.

D.2.3. LEARNING WITH AUXILIARY OUTLIER DATA

Assuming we have access to auxiliary outliers from a distribution UX where:

• UX is defined by the following distribution: first draw v uniformly at random from the ball {v : v ∈ Rd, ‖v‖2 ≤ ν},
then draw x̃ from N (−µ+ v, σ2I).

Roughly speaking, UX is a uniform mixture of distributions in Q.

Given in-distribution data x1,x2, . . . ,xn from PX and auxiliary outliers x̃1, x̃2, . . . , x̃n′ from UX, we consider the detector
Gθ̂n,n′

given by

θ̂n,n′ =
1

n

n∑
i=1

xi −
1

n′

n′∑
i=1

x̃i. (31)

We will show that with n = n0 and sufficiently large n′, the detector has small errors.

Again, as shown in the closed form solutions, the key factor determining the errors is µ>θ̂n,n′

σ‖θ̂n,n′‖2
. The following lemma

bounds this term.

Lemma 2. There exist numerical constants c0, c1, c2 such that under parameter setting (5) and d/n0 > c0,

µ>θ̂n,n′

σ‖θ̂n,n′‖2
≥
(√

n0

d
+

n0

n+ n′

(
1 + c1

(n0

d

)1/8
))−1/2

(32)

with probability ≥ 1− e−c2(d/n0)1/4 min{n+n′,(d/n0)1/4} − e−c2n′ .

Proof. The proof follows the argument of Lemma 1 in (Carmon et al., 2019) but needs some modifications accommodating
the difference in learning θ. Recall the generation of x′i: first draw vi uniformly at random from the ball B(ν) := {v : v ∈
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Rd, ‖v‖2 ≤ ν}, then draw x̄′i from N (µ, σ2I), and finally let x′i = vi − x̄′i. So we have

θ̂n,n′ =
1

n+ n′

 n∑
i=1

xi +

n′∑
i=1

x̄′i

− 1

n+ n′

 n′∑
i=1

vi

 (33)

= µ+ δ + δv (34)

where

δ =
1

n+ n′

 n∑
i=1

xi +

n′∑
i=1

x̄′i

− µ ∼ N (0,
σ2

n+ n′
I), (35)

δv = − 1

n+ n′

 n′∑
i=1

vi

 . (36)

To lower bound the term µ>θ̂n,n′

‖θ̂n,n′‖2
, we upper bound its squared inverse:

‖θ̂n,n′‖22
(µ>θ̂n,n′)2

=
‖µ+ δ + δv‖22

(‖µ‖22 + µ>δ + µ>δv)2
(37)

=
1

‖µ‖22
+
‖δ + δv‖22 − 1

‖µ‖22
(µ>δ + µ>δv)

2

(‖µ‖22 + µ>δ + µ>δv)2
(38)

≤ 1

‖µ‖22
+

2‖δ‖22 + 2‖δv‖22
(‖µ‖22 + µ>δ + µ>δv)2

. (39)

For δ, we have

‖δ‖22 ∼
σ2

n+ n′
χ2
d and

µ>δ

‖µ‖2
∼ N

(
0,

σ2

n+ n′

)
. (40)

So standard concentration bounds give

P
(
‖δ‖22 ≥

σ2

n+ n′

(
d+

1

σ

))
≤ e−d/8σ

2

and P
(
µ>δ

‖µ‖2
≥ (σ‖µ‖)1/2

)
≤ 2e−(n+n′)‖µ‖2/2σ. (41)

For δv , by subguassian concentration bounds, we have

P
(
‖δv‖2 ≥

Cν√
n′

)
≤ e−cn

′
(42)

for some numeric constants c and C. Suppose the event ‖δv‖2 < Cν√
n′

is true. Then

|µ>δv| ≤ ‖µ‖2‖δv‖2 ≤
Cν‖µ‖2√

n′
. (43)

Plugging the concentration bounds in (37) and doing the same manipulation leads to the bound. To finish the proof, we also
need to show µ>θ̂n,n′ > 0, which can be shown by the same argument as in (Carmon et al., 2019).

*

Proof. The proposition comes from Lemma 2, the parameter setting (5), and the closed form expressions (13) and (19) of
the errors.
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D.3. Benefit of Outlier Mining

The above Gaussian example shows the benefit of having auxiliary outlier data for training. All the auxiliary data given
in the example are implicitly related to the ideal parameter for the detector θ∗ = µ and thus are informative for learning
the detector. However, this may not be the case in practice: typically only part of the auxiliary outlier data are informative,
while the remaining are not very useful or even can be harmful for the learning. In this section, we study such an example,
and shows that how outlier mining can help to identify informative data and improve the learning performance.

Suppose the algorithm gets n in-distribution data {x1,x2, . . . ,xn} i.i.d. from PX and n′ auxiliary outliers {x̃1, x̃2, . . . , x̃n′}
for training. Instead of from UX specified above, the auxiliary outliers are i.i.d. from the distribution Umix.

• Umix is a uniform mixture of N (−µ, σ2I) and N (−µo, σ2I) for µo = 10µ.

That is, the distribution is defined by the following process: with probability 1/2 sample the outlier from the informative
part N (−µ, σ2I), and with probability 1/2 sample the outlier from the uninformative part N (−µo, σ2I). We also note that
µ0 = 10µ is chosen for simplicity of analysis. µ0 can also be cµ for some sufficiently large c > 1, or even µo = cµ+ c′µ⊥
for a sufficiently large c > 1, a small c′ and a unit vector µ⊥ perpendicular to µ.

Naı̈ve Method Without Outlier Mining. It is clear that naı̈vely applying the method in the previous section can lead to
high errors: with n in-distribution examples from PX and n′ = n auxiliary outliers from Umix, when n → ∞, we have
θ̂n,n′ → −7µ/4 which has the worst errors among all detectors.

With Outlier Mining. Here we analyze the following algorithm using the outlier mining approach. The algorithm is
simpler than what we used in Section 3 but shares the same intuition.

First, we use the n in-distribution data points to get an intermediate solution:

θ̂int =
1

n

n∑
i=1

xi. (44)

We define the confidence score of a point x̃ being in-distribution as:

f(x̃) = σ(t) =
1

1 + e−t
, where t(x̃) =

x̃>θ̂int

d
. (45)

Here σ(t) = 1
1+e−t is the sigmoid function. We then select outlier training data whose confidence fall into an interval [a, b]

and use them to learn the final solution:

θ̂om =

∑n′

i=1(−x̃i)I{f(x̃i) ∈ [a, b]}∑n′

i=1 I{f(x̃i) ∈ [a, b]}
(46)

where I{·} is the indicator function.

Proposition 1. There exist thresholds a and b for θ̂om, and a universal constant c such that for the parameter setting (5)
with

√
d/n0 ≥ c(log d+ 1/ε2), we have that if n ≥ cn0 log d and n′ ≥ (d+ n0 · 4ε2)

√
d/n0, then

Eθ̂omFNR(Gθ̂om) ≤ 10−3

Eθ̂om sup
QX∈Q

FPR(Gθ̂om ;QX) ≤ 10−3.

Proof. Let a = σ(−3/2), b = σ(−1/2). By definition we have

δom := θ̂om − µ =

∑n′

i=1(−µ− x̃i)I{f(x̃i) ∈ [a, b]}∑n′

i=1 I{f(x̃i) ∈ [a, b]}
. (47)

By the closed form expressions (13) and (19) of the errors, it is sufficient to lower bound the key term µ>θ̂om
‖θ̂om‖2

, which comes
down to show that δom is small.
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First, let’s consider θ̂int. Let δint := θ̂int − µ. Then

‖δint‖22 ∼
σ2

n
χ2
d and

µ>δint

‖µ‖2
∼ N

(
0,
σ2

n

)
. (48)

So standard concentration bounds give

P
(
‖δint‖22 ≥

σ2

n

(
d+

1

σ

))
≤ e−d/8σ

2

and P

(
|µ>δint|
‖µ‖2

≥
√
d

n

)
≤ 2e−d/2σ

2

. (49)

So with probability ≥ 1 − 3e−d/8σ
2

over the randomness of the n in-distribution points, we have the good event Gint:

‖δint‖22 ≤ σ2

n

(
d+ 1

σ

)
and |µ

>δint|
‖µ‖2 ≤

√
d
n .

Now, condition on a fix θ̂int satisfying Gint, and consider θ̂om. Define

zi := −µ− x̃i, (50)
I0i := I{f(x̃i) ∈ [a, b]}, (51)

I1i := I{x̃i is from N (−µ, σ2I)}, (52)

I2i := I{x̃i is from N (−µo, σ2I)}. (53)

For simplicity, let’s omit the subscript i and consider a sample x̃ from Umix, and the corresponding variables z, I0, I1, and
I2. Since I1 + I2 = 1,

(−µ− x̃)I{f(x̃) ∈ [a, b]} = zI0I1 + zI0I2. (54)

Case 1. Let’s first consider the case when x̃ is from N (−µ, σ2I). More precisely, we condition on a fixed θ̂int and
condition on I1 = 1. Then z ∼ N (0, σ2I) and it can be decomposed along the direction θ̄int := θ̂int/‖θ̂int‖2 as follows:

z = s · θ̄int + z2 (55)

where s ∼ N (0, σ2) and z2 is a Gaussian distribution in the subspace orthogonal to θ̄int. Then

t(x̃) =
x̃>θ̂int

d
= −µ

>θ̂int

d
− s‖θ̂int‖2

d
. (56)

Therefore, we have

E[zI0I1|I1 = 1, θ̂int] = E[s · θ̄intI0|I1 = 1, θ̂int] + E[z2I0|I1 = 1, θ̂int] (57)

Clearly the second term is 0 since z2I0 is symmetric. So

E[zI0I1|I1 = 1, θ̂int] = E[s · θ̄intI{f(x̃) ∈ [a, b]}|I1 = 1, θ̂int] (58)

= E
[
s · I{s ∈ [a′, b′]}|I1 = 1, θ̂int

]
· θ̄int (59)

= E [s · I{s ∈ [a′, b′]}] · θ̄int (60)
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where

a′ = − µ
>θ̂int

‖θ̂int‖2
− σ−1(b)d

‖θ̂int‖2
(61)

=
−2µ>θ̂int + d

2‖θ̂int‖2
(62)

=
−2µ>δint − d

2‖θ̂int‖2
, (63)

b′ = − µ
>θ̂int

‖θ̂int‖2
− σ−1(a)d

‖θ̂int‖2
(64)

=
−2µ>θ̂int + 3d

2‖θ̂int‖2
(65)

=
−2µ>δint + d

2‖θ̂int‖2
. (66)

By the bound on |µ>δint|, we have

|E [s · I{s ∈ [a′, b′]}] | ≤
∫ d

2σ‖θ̂int‖2
(1+2/

√
n)

d
2σ‖θ̂int‖2

(1−2/
√
n)

σt
1√
2π
e−t

2/2dt (67)

≤ σ d

σ‖θ̂int‖2
1√
2π
e
− 1

2

(
d

2σ‖θ̂int‖2
(1−2/

√
n)
)2

(68)

≤ d

‖θ̂int‖2
e
− d2

32σ2‖θ̂int‖22 (69)

Given the bound on ‖δint‖22, we have

‖θ̂int‖2 ≤ ‖µ‖2 + ‖δint‖2 ≤
√
d+

√
σ2

n

(
d+

1

σ

)
≤
√
d+

√
2σ2d

n
. (70)

Since n ≥ Cn0 log d and d ≥ C2n0 log2 d for a sufficiently large C, we have

σ2‖θ̂int‖22
d2

≤
σ2d(1 +

√
2σ2/n)2

d2
≤ 2

√
n0

d
+

4n0

n
≤ 6

C log d
(71)

and thus

|E [s · I{s ∈ [a′, b′]}] | ≤ 1

d2
. (72)

Combining with E[zI0I1|I1 = 0, θ̂int] = 0 we get

E[zI0I1|θ̂int] = c1 · θ̄int (73)

for some c1 satisfying |c1| ≤ 1/d2. Furthermore, zI0I1 | θ̂int is truncated Gaussian and thus is sub-Gaussian with
sub-Gaussian norm bounded by σ. Then by sub-Gaussian concentration bounds, we have

P

∣∣∣∣∣∣
n′∑
i=1

µ>ziI0iI1i −
n′∑
i=1

µ>E[ziI0iI1i|θ̂int]

∣∣∣∣∣∣ ≥ √n′d | θ̂int

 ≤ e−cd/σ2

, (74)

P

∥∥∥∥∥∥
n′∑
i=1

ziI0iI1i

∥∥∥∥∥∥
2

≥ 4σ
√
n′d+ 2

√
n′d | θ̂int

 ≤ e−d/σ2

. (75)
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for some constant c > 0. In other words, with probability ≥ 1− 2e−cd/σ
2

, we have∣∣∣∣∣∣
n′∑
i=1

µ>ziI0iI1i

∣∣∣∣∣∣ ≤ √n′d+
n′

d3/2
, (76)

∥∥∥∥∥∥
n′∑
i=1

ziI0iI1i

∥∥∥∥∥∥
2

≤ 6σ
√
n′d. (77)

Conditioned on I1 = 1, we also have

E[I0I1|I1 = 1, θ̂int] = P(s ∈ [a′, b′]) (78)

≥
∫ d

2σ‖θ̂int‖2
(1−2/

√
n)

d
2σ‖θ̂int‖2

(−1+2/
√
n)

1√
2π
e−t

2/2dt (79)

≥ 1− 2

∫ +∞

d
4σ‖θ̂int‖2

1√
2π
e−t

2/2dt (80)

≥ 1− 2

∫ +∞

√
C log d
12

1√
2π
e−t

2/2dt (81)

≥ 1− 1

d
. (82)

Let m = n′

2

(
1− 1

d

)
. Then by Chernoff’s bound, we have

P

∣∣∣∣∣∣
n′∑
i=1

I0iI1i −m

∣∣∣∣∣∣ ≥ 1

2
m

 ≤ e−c′m (83)

for an absolute constant c′ > 0. That is, with probality ≥ 1− e−cn′ , we have
∑n′

i=1 I0iI1i ≥ n′/5.

Case 2. Next, let’s consider the case when x̃ is from N (−µo, σ2I). More precisely, we condition on a fixed θ̂int and
condition on I2 = 1. Similar to case 1, we have

z = 9µ+ s · θ̄int + z2 (84)

where s ∼ N (0, σ2) and z2 is a Gaussian distribution in the subspace orthogonal to θ̄int. So

E[(z − 9µ)I0I2|I2 = 1, θ̂int] = E[sI0|I2 = 1, θ̂int] · θ̄int. (85)

For this,

E[sI{f(x̃) ∈ [a, b]}|I2 = 1, θ̂int] · θ̄int = E [s · I{s ∈ [a′′, b′′]}] · θ̄int (86)

where

a′′ =
−20µ>δint − 19d

2‖θ̂int‖2
, (87)

b′′ =
−20µ>δint − 17d

2‖θ̂int‖2
. (88)
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By the bound on |µ>δint| and ‖δint‖2, we have

|E [s · I{s ∈ [a′, b′]}] | ≤

∣∣∣∣∣∣
∫ −d

2σ‖θ̂int‖2
(17−20/

√
n)

−d
2σ‖θ̂int‖2

(19+20/
√
n)

σt
1√
2π
e−t

2/2dt

∣∣∣∣∣∣ (89)

≤ σ 20d

σ‖θ̂int‖2
1√
2π
e
− 1

2

(
16d

2σ‖θ̂int‖2

)2

(90)

≤ 20d

‖θ̂int‖2
e
− 32d2

σ2‖θ̂int‖22 (91)

≤ 1

d2
. (92)

We also have ∣∣∣E [I0I2|I2 = 1, θ̂int

]∣∣∣ = |E [I{s ∈ [a′, b′]}] | (93)

≤
∫ −d

2σ‖θ̂int‖2
(17−20/

√
n)

−d
2σ‖θ̂int‖2

(19+20/
√
n)

1√
2π
e−t

2/2dt (94)

≤ d

2σ‖θ̂int‖2
(2 + 40/

√
n)

1√
2π
e
− 1

2

(
16d

2σ‖θ̂int‖2

)2

(95)

≤ 1

d3
. (96)

Combining the above, we have

E[(z − 9µ)I0I2|θ̂int] = c1 · θ̄int (97)

for a constant c1 satisfying |c1| ≤ 1/d2. Furthermore, (z − 9µ)I0I2 | θ̂int is truncated Gaussian and thus is sub-Gaussian
with sub-Gaussian norm bounded by σ. Then by sub-Gaussian concentration bounds, we have

P

∣∣∣∣∣∣
n′∑
i=1

µ>(zi − 9µ)I0iI2i −
n′∑
i=1

µ>E[(zi − 9µ)I0iI2i|θ̂int]

∣∣∣∣∣∣ ≥ √n′d | θ̂int

 ≤ e−cd/σ2

, (98)

P

∥∥∥∥∥∥
n′∑
i=1

(zi − 9µ)I0iI2i

∥∥∥∥∥∥
2

≥ 4σ
√
n′d+ 2

√
n′d | θ̂int

 ≤ e−d/σ2

, (99)

for some constant c > 0. Also by Hoeffding’s bound, we have

P

∣∣∣∣∣∣
n′∑
i=1

I0iI2i −
n′∑
i=1

E[I0iI2i|θ̂int]

∣∣∣∣∣∣ ≥√n′d/σ2 | θ̂int

 ≤ 2e−2d/σ2

. (100)

In other words, with probability ≥ 1− 4e−cd/σ
2

, we have∣∣∣∣∣∣
n′∑
i=1

µ>ziI0iI2i

∣∣∣∣∣∣ ≤ √n′d+ 9d
√
n′dσ2 +

n′

d2

√
d+ 9d · n

′

d3
≤
√
n′d

(
1 +

9d

σ

)
+

n′

d3/2
, (101)

∥∥∥∥∥∥
n′∑
i=1

ziI0iI2i

∥∥∥∥∥∥
2

≤ 6σ
√
n′d+ 9

√
d

(√
n′d

σ2
+
n′

d3

)
≤
√
n′d

(
6σ + 9

√
d

σ2

)
+

9n′

d5/2
. (102)
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Combining (74)(75)(83) and (101)(102) together, we get with probability ≥ 1− Ce−cd/σ2

,

|µ>δom| ≤ C
√
d

n′

(
1 +

9d

σ

)
+

C

d3/2
, (103)

‖δom‖2 ≤ C
√
d

n′

(
6σ + 9

√
d

σ2

)
+

C

d5/2
. (104)

Then µ>θ̂om
‖θ̂om‖2

can be lower bounded by

µ>θ̂om

‖θ̂om‖2
=
µ>µ+ µ>δom

‖µ+ δom‖2
(105)

≥ µ>µ+ µ>δom

‖µ‖2 + ‖δom‖2
(106)

≥ d(1− 1/
√
d)√

d(1 + 1/
√
d)

(107)

≥
√
d

(
1− 2√

d

)
. (108)

The proof is completed by plugging the above into the closed form expressions (13) and (19) of the errors.

E. Details of Experiments
E.1. Experimental Settings

Software and Hardware. We run all experiments with PyTorch and NVDIA GeForce RTX 2080Ti GPUs.

Number of Evaluation Runs. We run all experiments once with fixed random seeds.

In-distribution Dataset. We use CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) as in-distribution datasets that have
10 and 100 classes, respectively. Both datasets consist of 50,000 training images and 10,000 test images.

OOD Test Dataset. We provide the details of OOD test datasets below. All images are of size 32× 32.

1. SVHN. The SVHN dataset (Netzer et al., 2011) contains color images of house numbers. There are ten classes of digits
0-9. The original test set has 26,032 images. We randomly select 1,000 test images for each class and form a new test
dataset of 10,000 images for evaluation.

2. Textures. The Describable Textures Dataset (DTD) (Cimpoi et al., 2014) contains textural images in the wild. We
include the entire collection of 5640 images for evaluation.

3. Places365. The Places365 dataset (Zhou et al., 2017) contains large-scale photographs of scenes with 365 scene
categories. There are 900 images per category in the test set. We randomly sample 10,000 images from the test set for
evaluation.

4. LSUN (crop) and LSUN (resize). The Large-scale Scene UNderstanding dataset (LSUN) has a testing set of 10,000
images of 10 different scenes (Yu et al., 2015). We construct two datasets, LSUN-C and LSUN-R, by randomly
cropping image patches of size 32× 32 and downsampling each image to size 32× 32, respectively.

5. iSUN. The iSUN (Xu et al., 2015) consists of a subset of SUN images. We include the entire collection of 8925 images
in iSUN.

Architectures and Training Configurations. We use the state-of-the-art neural network architecture DenseNet (Huang
et al., 2017). We follow the same setup as in (Huang et al., 2017), with depth L = 100, growth rate k = 12 (Dense-BC) and
dropout rate 0. All neural networks are trained with stochastic gradient descent with Nesterov momentum (Duchi et al.,
2011; Kingma & Ba, 2014). Specifically, we train Dense-BC for 100 epochs with momentum 0.9 and `2 weight decay
with a coefficient of 10−4. The initial learning rate of 0.1 decays by 0.1 at 50, 75, 90 epoch. We use batch size 64 for
in-distribution data and 128 for out-of-distribution data. To solve the inner max of the robust training objective, we use PGD
with ε = 8/255, the number of iterations of 5, the step size of 2/255, and random start.



Robust Out-of-distribution Detection via Informative Outlier Mining

Method Training Evaluation
MSP 2.5 h 4 h
ODIN 2.5 h 4 h
Mahalanobis 2.5 h 20 h
SOFL 14 h 4 h
OE 5 h 4 h
ACET 17 h 4 h
CCU 6.7 h 4 h
ROWL 24 h 4 h
ATOM (ours) 21 h 4 h

Table 3: The estimated average runtime for each result. h means hour. For MSP, ODIN, and Mahalanobis, we use standard training. The
evaluation includes four OOD detection tasks listed in Section 2.

E.2. Average Runtime

We run our experiments using a single GPU on a machine with 4 GPUs and 32 cores. The estimated average runtime for
each method is summarized in Table 3.

E.3. OOD Detection Methods

Maximum Softmax Probability (MSP). Hendrycks et al. (Hendrycks & Gimpel, 2016) propose to use maxi Fi(x) as
confidence scores to detect OOD examples, where F (x) is the softmax output of the neural network.

ODIN. Liang et al. (Liang et al., 2017) computes calibrated confidence scores using temperature scaling and input
perturbation techniques. We choose temperature scaling parameter T and perturbation magnitude η by validating on a
random noise data, which does not depend on prior knowledge of test OOD datasets. In all of our experiments, we set
T = 1000. We set η = 0.0014 for CIFAR-10, and η = 0.0028 for CIFAR-100.

Mahalanobis. Lee et al. (Lee et al., 2018) propose to use Mahalanobis distance-based confidence scores to detect OOD
samples. We use 500 examples randomly selected from Dtrain

in and adversarial examples generated by FGSM (Goodfellow
et al., 2014) with perturbation size of 0.05 to train the Logistic Regression model and tune the noise perturbation magnitude
η. η is chosen from 21 evenly spaced numbers between 0 and 0.004, and the optimal parameters are chosen to minimize the
FPR at FNR 5%.

Outlier Exposure (OE). Outlier Exposure (Hendrycks et al., 2018) makes use of a large, unlabeled dataset Dauxiliary
out

to enhance the performance of existing OOD detection. We train from scratch for 100 epochs with λ = 0.5, and use
in-distribution batch size of 64 and out-distribution batch size of 128 in our experiments.

Self-Supervised OOD Feature Learning (SOFL). Mohseni et al. (Mohseni et al., 2020) add an auxiliary head to the
network and train in for the OOD detection task. They first use a full-supervised training to learn in-distribution training data
for the main classification head and then a self-supervised training with OOD training set for the auxiliary head. Following
the original setting, we set λ = 5 and use an in-distribution batch size of 64 and an out-distribution batch size of 320 in all
of our experiments. In CIFAR-10, we use 5 reject classes, while in CIFAR-100, we use 10 reject classes. In CIFAR-10 and
CIFAR-100, we train the model for 100 epochs with the full-supervised training and then continue to train for 100 epochs
with the self-supervised OOD feature learning. We use the large, unlabeled dataset Dauxiliary

out as out-of-distribution training
dataset.

Adversarial Confidence Enhancing Training (ACET). Hein et al. (Hein et al., 2019) propose Adversarial Confidence
Enhancing Training to enforce low model confidence for the OOD data point, as well as worst-case adversarial example in
the neighborhood of an OOD example. We use the large, unlabeled dataset Dauxiliary

out as an OOD training dataset instead of
using random noise data for a fair comparison. In all of our experiments, we train for 100 epochs and set λ = 1.0. For both
in-distribution and out-distribution, we use a batch size of 128. To solve the inner max of the training objective, we also
apply PGD with ε = 8/255, the number of iterations of 5, the step size of 2/255, and random start to a half of a minibatch
while keeping the other half clean to ensure proper performance on both perturbed and clean OOD examples for a fair
comparison.
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Certified Certain Uncertainty (CCU). Certified Certain Uncertainty (Meinke & Hein, 2019) gives guarantees on the
confidence of the classifier decision far away from the training data. We use the same training set up as in the paper and
code, except for an architectural difference (DenseNet).

Robust Open-World Deep Learning (ROWL). Sehwag et al. (Sehwag et al., 2019) propose to introduce additional
background classes for OOD datasets and perform adversarial training on both the in- and out-of- distribution datasets
to achieve robust open-world classification. When an input is classified as the background classes, it is considered as an
OOD example. Thus, ROWL gives binary OOD scores (either 0 or 1) to the inputs. In our experiments, we only have one
background class and randomly sample data points from the large, unlabeled dataset Dauxiliary

out to form the OOD dataset. To
ensure data balance across classes, we include 5,000 OOD data points for CIFAR-10; while for CIFAR-100, we include 500
OOD data points. During training, we mix the in-distribution data and OOD data, use a batch size of 128, and train for 100
epochs. To solve the inner max of the training objective, we use PGD with ε = 8/255, the number of iterations of 5, the step
size of 2/255, and random start.

E.4. Adversarial Attacks for OOD Detection Methods

We propose adversarial attack objectives for different OOD detection methods. We consider a family of adversarial
perturbations for the OOD inputs: (1) L∞-norm bounded attack (white-box attack); (2) common image corruptions attack
(black-box attack); (3) compositional attack which combines common image corruptions attack and L∞ norm bounded
attack (white-box attack).

L∞ norm bounded attack. For data point x ∈ Rd, the L∞ norm bounded perturbation is defined as

Ω∞,ε(x) = {δ ∈ Rd
∣∣ ‖δ‖∞ ≤ ε ∧ x + δ is valid}, (109)

where ε is the adversarial budget. x + δ is considered valid if the values of x + δ are in the image pixel value range.

For MSP, ODIN, OE, ACET, and CCU methods, we propose the following attack objective to generate adversarial OOD
example on a clean OOD input x:

x′ = arg max
x′∈Ω∞,ε(x)

− 1

K

K∑
i=1

logF (x′)i (110)

where F (x) is the softmax output of the classifier network.

For Mahalanobis method, we propose the following attack objective to generate adverasrial OOD example on OOD input x:

x′ = arg max
x′∈Ω∞,ε(x)

− log
1

1 + e−(
∑
` α`M`(x′)+b)

, (111)

where M`(x
′) is the Mahalanobis distance-based confidence score of x′ from the `-th feature layer, {α`} and b are the

parameters of the logistic regression model.

For SOFL method, we propose the following attack objective to generate adversarial OOD example for an input x:

x′ = arg max
x′∈Ω∞,ε(x)

− log

K+R∑
i=K+1

F̄ (x′)i (112)

where F̄ (x) is the softmax output of the whole neural network (including auxiliary head) and R is the number of reject
classes.

For ROWL and ATOM method, we propose the following attack objective to generate adverasrial OOD example on OOD
input x:

x′ = arg max
x′∈Ω∞,ε(x)

− log F̂ (x′)K+1 (113)

where F̂ (x) is the softmax output of the (K+1)-way neural network.
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Dtest
in Method FNR Pred. End-to-end.

Acc. Pred. Acc.

CIFAR-10

MSP 5.01 94.39 91.76
ODIN 5.01 94.39 91.02
Mahalanobis 5.01 94.39 89.71
SOFL 5.01 95.11 91.60
OE 5.01 94.79 91.86
ACET 5.01 91.70 88.64
CCU 5.01 94.89 91.88
ROWL 1.30 89.45 89.45
ATOM (ours) 5.01 94.98 91.14

CIFAR-100

MSP 5.01 75.05 73.87
ODIN 5.01 75.05 73.50
Mahalanobis 5.01 75.05 71.20
SOFL 5.01 74.37 72.62
OE 5.01 75.28 73.74
ACET 5.01 74.99 73.43
CCU 5.01 76.04 74.60
ROWL 0.40 67.53 67.53
ATOM (ours) 5.01 75.49 73.57

Table 4: The performance of OOD detector and classifier on in-distribution test data. We use three metrics: FNR, Prediction Accuracy
and End-to-end Prediction Accuracy. We pick the threshold for the OOD detectors such that 95% of in-distribution test data points are
classified as in-distribution. Prediction Accuracy measures the accuracy of the classifier on in-distribution test data. End-to-end Prediction
Accuracy measures the accuracy of the open world classification system (detector+classifier), where an example is classified correctly if
and only if the detector treats it as in-distribution and the classifier predicts its label correctly.

We use PGD with ε = 8/255, the number of iterations of 40, the step size of 1/255 and random start to solve these attack
objectives.

Common Image Corruptions attack. We use common image corruptions introduced in (Hendrycks & Dietterich, 2019).
We apply 15 types of algorithmically generated corruptions from noise, blur, weather, and digital categories to each OOD
image. Each type of corruption has five levels of severity, resulting in 75 distinct corruptions. Thus, for each OOD image,
we generate 75 corrupted images and then select the one with the lowest OOD score (or highest confidence score to be
in-distribution). Note that we only need the outputs of the OOD detectors to construct such adversarial OOD examples; thus
it is a black-box attack.

Compositional Attack. For each OOD image, we first apply common image corruptions attack, and then apply the
L∞-norm bounded attack to generate adversarial OOD examples.

E.5. Visualizations of Four Types of OOD Samples

We show visualizations of four types of OOD samples in Figure 4.

E.6. Histogram of OOD Scores

In Figure 5, we show histogram of OOD scores for model snapshots trained on CIFAR-10 (in-distribution) using objective
(2) without informative outlier mining. We plot every ten epochs for a model trained for a total of 100 epochs. We observe
that the model quickly converges to a solution where OOD score distribution becomes dominated by easy examples with
scores closer to 1. This is exacerbated as the model is trained for longer.

E.7. Performance of OOD Detector and Classifier on In-distribution Data

We summarize the performance of OOD detector G(x) and image classifier f(x) on in-distribution test data. See Table 4.

E.8. Choose Best q Using Validation Dataset

We create a validation OOD dataset by sampling 10,000 images from the 80 Million Tiny Images (Torralba et al., 2008),
which is disjoint from our training data. We choose q from {0, 0.125, 0.25, 0.5, 0.75}. The results on the validation dataset
are shown in Table 5. We select the best model based on the average AUROC across four types of OOD inputs. Based on
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-
10

ATOM (q=0.0) 5.39 98.35 39.65 92.47 35.24 91.06 60.44 80.65
ATOM (q=0.125) 5.15 98.30 30.32 93.85 5.19 98.26 31.38 93.81
ATOM (q=0.25) 6.02 98.06 33.79 92.55 22.56 95.12 43.66 91.04
ATOM (q=0.5) 9.55 97.48 39.54 91.58 18.95 95.73 51.01 89.88
ATOM (q=0.75) 13.98 96.61 56.88 87.00 14.10 96.61 57.02 87.09

CIFAR-
100

ATOM (q=0.0) 45.25 91.53 98.84 58.54 43.14 90.22 94.68 55.53
ATOM (q=0.125) 40.06 92.59 98.01 67.20 36.90 92.79 89.09 68.94
ATOM (q=0.25) 35.84 92.61 96.31 73.40 35.03 92.70 94.63 71.67
ATOM (q=0.5) 35.48 91.29 91.13 69.07 64.43 77.86 91.39 62.93
ATOM (q=0.75) 43.13 88.42 89.83 63.89 43.17 88.45 90.05 63.84

Table 5: Evaluate models on validation dataset. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages and are averaged over six OOD test datasets mentioned in section 4.1.

the results, the optimal q is 0.125 for CIFAR-10 and 0.25 for CIFAR-100.

E.9. Complete Experimental Results

We report the performance of OOD detectors on each of the six OOD test datasets in Table 6 (CIFAR-10) and Table 7
(CIFAR-100).
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(a) Natural OOD (b) L∞ OOD

(c) Corruption OOD (d) Comp. OOD

Figure 4: Examples of four types of OOD samples.
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Figure 5: On CIFAR-10, we train the model with objective (2) for 100 epochs without informative outlier mining. For every 10 epochs,
we randomly sample 400,000 data points from the large unlabeled dataset and use the current model snapshot to calculate the OOD scores.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

LSUN-
C

MSP 27.34 96.30 100.00 71.64 100.00 13.76 100.00 13.68
ODIN 1.86 99.51 98.57 72.44 100.00 0.05 100.00 0.00
Mahalanobis 17.79 93.30 96.83 36.41 98.97 1.61 99.91 0.49
SOFL 0.39 99.40 55.61 93.09 100.00 2.52 100.00 1.96
OE 0.97 99.52 41.19 93.96 99.98 0.42 100.00 0.27
ACET 2.10 99.37 36.04 94.85 48.20 90.03 91.77 68.88
CCU 0.62 99.65 33.57 94.59 99.93 0.39 100.00 0.05
ROWL 22.65 88.02 95.46 51.62 80.54 59.08 97.40 50.65
ATOM (ours) 0.34 99.57 11.35 97.31 0.36 99.64 11.08 97.51

LSUN-
R

MSP 43.89 93.93 100.00 64.35 100.00 13.74 100.00 13.66
ODIN 3.33 99.17 98.94 64.72 100.00 0.11 100.00 0.00
Mahalanobis 6.68 98.04 98.77 37.01 97.98 4.87 100.00 0.06
SOFL 1.67 99.29 55.99 90.62 100.00 0.55 100.00 0.43
OE 0.99 99.43 51.61 92.22 99.98 0.14 100.00 0.04
ACET 4.35 99.03 78.49 86.79 72.93 82.95 99.87 47.92
CCU 1.53 99.28 57.05 90.50 100.00 0.03 100.00 0.10
ROWL 55.82 71.44 98.74 49.98 99.16 49.77 99.77 49.46
ATOM (ours) 0.79 99.10 26.39 95.60 37.87 94.48 50.63 92.45

iSUN

MSP 46.18 93.58 100.00 62.57 100.00 13.94 100.00 13.66
ODIN 4.64 98.96 98.85 62.93 100.00 0.29 100.00 0.00
Mahalanobis 8.28 97.83 98.01 40.70 94.85 9.22 100.00 0.09
SOFL 2.24 99.22 53.64 90.99 100.00 0.54 100.00 0.50
OE 1.14 99.40 47.94 92.52 99.98 0.19 100.00 0.04
ACET 7.09 98.51 75.71 86.55 80.94 78.98 99.82 46.59
CCU 1.74 99.27 52.32 91.01 100.00 0.06 100.00 0.14
ROWL 58.38 70.16 98.35 50.17 99.51 49.60 99.79 49.46
ATOM (ours) 1.10 99.17 23.06 95.96 41.97 93.35 49.77 92.08

Textures

MSP 64.66 87.64 100.00 51.85 100.00 14.20 100.00 13.72
ODIN 51.68 85.26 99.56 39.44 99.96 0.57 100.00 0.07
Mahalanobis 29.50 90.49 77.75 51.80 94.43 7.04 99.66 0.83
SOFL 3.78 99.04 57.16 89.41 99.89 2.22 99.98 1.41
OE 6.24 98.43 53.90 88.84 99.79 1.34 99.96 0.61
ACET 12.66 97.86 56.29 89.91 66.67 76.56 95.94 54.61
CCU 5.83 98.45 54.54 86.23 99.47 1.63 99.88 0.94
ROWL 24.59 87.05 82.30 58.20 85.39 56.65 92.55 53.07
ATOM (ours) 1.95 99.43 22.94 94.80 3.44 99.06 26.47 94.29

Places365

MSP 62.03 88.29 100.00 57.74 100.00 13.67 100.00 13.66
ODIN 42.67 90.63 99.90 54.15 100.00 0.01 100.00 0.00
Mahalanobis 86.40 65.89 99.54 20.39 99.91 0.34 100.00 0.13
SOFL 7.73 97.81 60.46 88.28 100.00 0.50 100.00 0.26
OE 11.08 97.00 68.24 87.47 100.00 0.02 100.00 0.02
ACET 17.59 96.12 79.85 84.84 92.44 67.11 99.85 45.70
CCU 8.49 97.63 66.43 85.79 99.99 0.04 100.00 0.01
ROWL 61.01 68.84 98.49 50.10 99.31 49.69 99.77 49.46
ATOM (ours) 6.95 97.82 35.37 92.95 6.95 97.88 36.11 93.03

SVHN

MSP 59.15 90.99 100.00 41.88 100.00 13.66 100.00 13.66
ODIN 26.12 94.78 100.00 20.26 100.00 0.00 100.00 0.00
Mahalanobis 22.36 92.08 96.57 40.23 99.91 0.32 99.99 0.31
SOFL 0.85 99.47 88.09 79.91 100.00 0.13 100.00 0.09
OE 1.55 99.16 75.77 88.96 100.00 0.01 100.00 0.01
ACET 35.00 94.80 84.86 85.07 93.96 70.31 99.89 54.24
CCU 2.14 99.25 75.10 87.94 100.00 0.00 100.00 0.00
ROWL 36.42 81.14 91.78 53.46 96.49 51.10 97.86 50.42
ATOM (ours) 1.27 99.59 42.61 93.18 1.26 99.60 42.43 93.35

Table 6: Comparison with competitive OOD detection methods. We use CIFAR-10 as in-distribution dataset. We evaluate the performance
on all four types of OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked
OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are percentages. Bold numbers are superior
results.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

LSUN-
C

MSP 62.03 84.78 100.00 32.56 100.00 2.73 100.00 2.49
ODIN 10.54 98.13 99.99 50.42 100.00 0.76 100.00 0.03
Mahalanobis 38.69 91.18 98.55 42.44 99.08 24.72 99.95 11.86
SOFL 17.38 96.66 100.00 51.63 100.00 1.42 100.00 0.64
OE 14.75 97.33 99.98 54.39 100.00 1.67 100.00 0.69
ACET 13.69 97.55 99.78 59.52 42.55 88.00 97.34 39.64
CCU 12.03 97.84 99.66 61.38 100.00 1.01 100.00 0.52
ROWL 95.61 52.00 100.00 49.80 99.98 49.81 100.00 49.80
ATOM (ours) 32.72 95.13 98.36 81.30 32.43 95.20 95.84 79.86

LSUN-
R

MSP 77.48 76.40 100.00 32.23 100.00 1.98 100.00 1.81
ODIN 31.96 94.04 100.00 41.10 100.00 0.55 100.00 0.00
Mahalanobis 16.58 95.92 99.87 27.36 93.77 36.07 100.00 9.02
SOFL 50.27 90.28 99.85 50.26 100.00 0.12 100.00 0.20
OE 56.25 84.35 99.97 41.30 100.00 0.70 100.00 0.52
ACET 51.59 86.09 99.87 37.13 99.41 13.29 99.65 9.48
CCU 38.44 91.83 99.94 50.62 100.00 0.61 100.00 0.47
ROWL 92.38 53.61 100.00 49.80 100.00 49.80 100.00 49.80
ATOM (ours) 24.28 96.15 99.00 74.58 82.34 64.04 95.90 66.73

iSUN

MSP 78.87 75.69 100.00 31.77 100.00 2.14 100.00 1.83
ODIN 34.89 93.08 100.00 39.49 100.00 0.82 100.00 0.00
Mahalanobis 18.66 95.22 99.74 29.69 88.37 39.44 100.00 9.25
SOFL 53.51 89.27 99.92 48.59 100.00 0.20 100.00 0.22
OE 61.59 81.51 99.96 40.04 100.00 0.82 100.00 0.55
ACET 54.34 84.75 99.92 36.81 99.37 14.89 99.64 11.97
CCU 40.97 90.89 99.97 49.04 100.00 0.78 100.00 0.44
ROWL 94.55 52.52 100.00 49.80 100.00 49.80 100.00 49.80
ATOM (ours) 27.05 95.66 99.25 71.68 81.39 62.63 96.97 64.48

Textures

MSP 85.57 70.08 100.00 26.02 100.00 2.74 100.00 2.30
ODIN 81.24 71.69 100.00 27.26 99.98 0.23 100.00 0.01
Mahalanobis 41.91 84.82 82.85 45.78 89.75 27.95 99.50 12.49
SOFL 57.00 87.35 99.75 43.98 99.98 0.62 100.00 0.39
OE 59.86 86.17 99.91 43.10 100.00 1.55 100.00 0.70
ACET 61.90 85.13 99.77 41.71 83.42 54.10 98.32 31.48
CCU 60.80 86.34 99.88 44.85 100.00 1.36 100.00 0.58
ROWL 97.11 51.25 100.00 49.80 99.98 49.81 100.00 49.80
ATOM (ours) 45.25 90.68 98.74 66.76 49.11 88.26 97.30 65.24

Places365

MSP 83.65 73.71 100.00 32.23 100.00 1.87 100.00 1.94
ODIN 80.25 76.20 100.00 36.22 100.00 0.01 100.00 0.00
Mahalanobis 94.52 59.41 99.82 16.47 99.94 11.19 100.00 8.02
SOFL 60.49 87.57 99.99 40.21 100.00 0.09 100.00 0.16
OE 58.37 86.39 99.97 50.91 100.00 0.56 100.00 0.54
ACET 56.81 86.75 99.82 48.27 92.20 51.07 98.41 27.41
CCU 55.23 87.21 99.98 44.11 100.00 0.47 100.00 0.42
ROWL 96.52 51.54 100.00 49.80 100.00 49.80 100.00 49.80
ATOM (ours) 52.63 88.67 99.24 69.22 49.92 89.02 97.95 66.64

SVHN

MSP 80.71 76.00 100.00 25.65 100.00 2.62 100.00 2.39
ODIN 79.27 73.55 100.00 23.68 100.00 0.00 100.00 0.00
Mahalanobis 49.15 87.33 98.91 39.10 99.84 20.90 100.00 11.25
SOFL 21.50 96.15 100.00 36.52 100.00 0.09 100.00 0.19
OE 44.47 92.58 100.00 40.87 100.00 0.54 100.00 0.55
ACET 47.80 90.55 100.00 36.84 59.05 82.17 98.25 29.76
CCU 50.79 91.59 100.00 39.94 100.00 0.45 100.00 0.41
ROWL 99.05 50.28 100.00 49.80 100.00 49.80 100.00 49.80
ATOM (ours) 22.42 96.43 99.91 70.09 22.15 96.50 97.01 70.64

Table 7: Comparison with competitive OOD detection methods. We use CIFAR-100 as in-distribution dataset. We evaluate the perfor-
mance on all four types of OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally
attacked OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are percentages. Bold numbers are
superior results.
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