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Abstract

We address the problem of building agents aim-
ing to satisfy out-of distribution (OOD) multi-
task instructions expressed in temporal logic
(TL) through deep reinforcement learning (DRL).
There exists evidence that the deep learning ar-
chitecture is a key feature when teaching a DRL
agent to solve OOD tasks in TL. Yet, the studies
on the performance of different networks are still
limited. Here, we first study the impact of intro-
ducing relational layers and key-value attention
in OOD safety-aware navigation TL tasks. Then,
we propose a novel architecture configuration that
induces a DRL agent to generate latent representa-
tions of its current task given its perception of the
environment and the formal instruction. We find
that inducing this latent goal representation signif-
icantly improves the performance of neural-based
agents in OOD environments.

1. Introduction

Building autonomous agents capable of learning from hu-
man instructions and apply this knowledge in a composi-
tional fashion is crucial goal of artificial intelligence (Lake,
2019; Hill et al., 2021). Lately, this goal is mainly pursued
through deep reinforcement learning (DRL) agents follow-
ing instructions expressed in natural language (Yu et al.,
2018; Mao et al., 2019). Unfortunately, generalisation in
DRL is linked to training the autonomous agents with large
numbers of instructions, requiring manually building natu-
ral expressions with corresponding reward functions, which
prevents them from scaling well (Vaezipoor et al., 2021).

This issue motivates ongoing research on agents learning
from formally specified instructions (Alshiekh et al., 2018;
Simao et al., 2021) as a replacement of natural language.
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Formal languages (Huth & Ryan, 2004) offer desirable prop-
erties such as unambiguous semantics and compositional
syntax, allowing to automatically generate large amounts of
training instructions and reward functions. Earlier contri-
butions in this area rely on the compositional nature of the
language, using large numbers of policy networks to execute
temporal logic (TL) instructions (Andreas et al., 2017; Icarte
et al., 2018; Kuo et al., 2020). Recent works (Ledn et al.,
2020; Vaezipoor et al., 2021) have presented DRL frame-
works that are capable of generalizing to out-of-distribution
(OQOD, i.e., never seen during training) instructions while
relying on a single policy network. Those studies provide ev-
idence that the particular neural network architecture within
the DRL agent is a key feature towards the final performance
of the agent. Still, we believe that no work has studied the
impact of networks using relational layers (Santoro et al.,
2018) and the key-value attention mechanism (Chen et al.,
2019) which have been successful in other domains when
tackling generalisation (Zambaldi et al., 2018).

Contributions. We study the generalisation performance
of DRL agents following formal instructions in OOD envi-
ronments, and explore the best network configurations in a
widely-used navigation benchmark (Andreas et al., 2017,
Toro Icarte et al., 2018; De Giacomo et al., 2019; Ledén
et al., 2020; Vaezipoor et al., 2021). More specifically,
our contributions are as follows: 1) We are first to assess
the extent whereby various relational and attention-based
modules are better suited than fully-connected layers to fol-
low safety-aware OOD instructions in temporal logic. We
find that, despite using a benchmark that encourages rela-
tional reasoning, a simple multi-layer perceptron (MLP)
outperforms various complex relational and attention-based
modules when using standard architectures. 2) We propose
a novel architecture configuration that induces the neural
network to generate latent representations of its current ob-
jective, and significantly improves the performance of all
the networks in the hardest OOD environments (up to 74%).

2. Background

Reinforcement Learning. Our p.o. environment is mod-
elled as a p.o. Markov decision process POMDP, a tu-
ple M = (S, A, P,R,Z,0,v) where (i) S is the set of



Relational Deep Reinforcement Learning and Latent Goals for Following Instructions in Temporal Logic

states s, s’,.... (ii) A is the set of actions a,a’, . ... (iii)
P(s|s,a) : S x Ax S — [0,1] is the (probabilistic)
transition function. (iv) R : S x A x S — R is the re-
ward function. (v) Z is the set of observations z, 2/, .. ..
(vi) O : S x A x S — Z is the observation function.
(vii) v € [0, 1) is the discount factor. Through the given
observations z; € Z, where t refers to a time step, the
goal of the RL agent is to choose a policy 7 that for every
state selects the action that maximizes the expected return
Q(s,a) =E[R: | st = s,a] (Sutton & Barto, 2018).

We also make use of relational networks, a particular form
of deep learning (Goodfellow et al., 2016) that incorporates
layers whose structures is explicitly designed for relational
reasoning. Due to space constraints we refer to Santoro et al.
(2017) for details about relational networks, and Bahdanau
et al. (2015) for the key-value attention mechanism, which
have proved to be an effective addition to relational networks
(Zambaldi et al., 2018; Shanahan et al., 2020).

3. Learning to Solve SATTL Instructions

The following section details the features shared across all
the agents tested in this work. We first introduce the specific
formal language used to procedurally generate instructions.
Then we detail the symbolic and neural modules used by
our framework. Last, we explain the empirical environment.

We are interested in agents learning compositionally TL
instructions in a similar fashion to Ledn et al. (2020) with
task temporal logic (TTL), a learning-oriented TL language
interpreted over finite episodes, which was originally in-
tended to deal only with reachability goals. However, here
we tackle safety constraints as well. Hence, we extend TTL
to safety-aware task temporal logic (SATTL).

Definition 1 (SATTL). Let AP be a set of propositional
atoms. The sets of literals [, atomic tasks «, and temporal
formulas T" in SATTL are inductiveley defined as follows:

I == 4p|-pl|lVl
a = (Ul
T == «a|T;T|TUT

Literals are positive (4p) or negative (—p) propositional
atoms, or disjunctions thereof. Atomic tasks « are obtained
by applying the temporal operator until (U) to pairs of liter-
als. An atom o« = [Ul’ is read as it is the case that | until
I" holds. Temporal formulas 7" are built from atomic tasks
by using sequential composition (;) and non-deterministic
choice (U). We use an explicit positive operator (+) so that
both positive and negative tasks have the same length. This
is beneficial for the learning process of the negation opera-
tor, as highlighted in (Ledn et al., 2020) with TTL. As TTL,
SATTL is interpreted over finite traces, i.e., finite sequences

of states and actions. Details about semantics and satis-
faction is given in Appendix D. Intuitively, an atomic task
a = c,Ug, is satisfied if the ’safety” condition c,, remains
true until g, is fulfilled. In the context of this work we are
not interested in strict safety warranties but in agents that are
trying to reach a goal while trying to minimize the violation
of additional conditions. Thus, we may say our agent has
satisfied o while it has not fulfilled ¢, at every time step be-
fore g,. Formally, in those cases we are considering traces
that are not starting at the beginning of the episode. An
example of a task we use is &1 = —soilU (+axe V +sword)
avoid soil until you reach an axe or a sword”.

Our framework consists of a symbolic module (SM) and
a neural module (NM). Given a formal instruction 7" in
SATTL, the SM decomposes 7" into a sequence of atomic
tasks a to be solved by the NM, which is instantiated as a
DRL algorithm. Once « is selected, the SM uses an internal
labelling function L7 : Z — 247 that maps observations
z to truth evaluations p. Intuitively, L7 acts as an event
detector that fires when the propositions in AP hold. L7
allows the SM to generate a reward function R for the NM:

—0.05 ifpy = cq;
Rr(p) =11 if pr = ga;
-1 otherwise.

where L(z;) = p; for any time step ¢. For further detail
about the SM see Appendix B. The neural module consists
of a DRL algorithm that interacts with the environment
given the current observation and task, aiming to maximize
the cumulative reward from R;. All the variants for the
NM use the A2C algorithm, a synchronous version of A3C
(Mnih et al., 2016) sharing the same hyperparemeters and
encoder, which are detailed in Appendix C. Note that the
encoder has been designed bearing in mind the resolution of
the tiles within so that the embedding (i.e., the outputs of the
encoder) of the tasks are independent from the embedding of
the original observation z. This inductive bias is exploited
in the architectures presented in Sec. 4.

Experimental setting. For the empirical evaluation we
use Minecraft-inspired environments (Andreas et al., 2017).
These are 2D grid-worlds (see Fig. 1 left), where the agent
has 4 possible actions Up, Down, Le ft, Right to move one
square from its current position, according to the given di-
rection. Specifically, we use a configuration where maps
are procedurally generated by randomly selecting objects
and starting positions, and where each tile within has a res-
olution of 9x9 values. At each time step the agent receives
an egocentric observation extended with the current task to
be solved (see Fig. 1 right). Since our goal is to test au-
tonomous agents with OOD objects and environment sizes,
we modified the environments to have maps of variable size.
While training, the generated maps have a size in the range
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Figure 1. Example of a procedurally generated training map (left)
of size 7x7 with its corresponding extended observation (right)
with the task “move through either soil or stone until reaching
an axe or a sword”. Tasks are specified by depicting the objects
themselves and the SATTL operators. Each position in the grid
has a resolution of 9x9 values. The total input size is 72x45.
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Figure 2. Architecture with inductive latent goals. The translator
modules generate a latent goal given the SATTL task and the ob-
servation, which is concatenated with the output of central module
2 (CM2) of the actuator. CM2 has no information of the task.

[7-10] squared. In test, maps can be either of size 7x7,
14x14 or 22x22. The global set of objects is referred to as
X, where the total number of objects is |X'| = 50. The set
is partitioned into a pretraining set | X;| = 35 a training set
|X2] = 20 and a test set |X3| = 15, where X = X; U X,
X, C X; and X;NX5; = (. Note that these environments are
specially suited for agents capable of relational reasoning
(Kemp & Tenenbaum, 2008), i.e., for an agent to perform
well it needs to 1) relate the objects and symbols within
the instruction and their relative positions and 2) relate the
instruction with what it perceives around itself. For more
details about the experiments we refer to Appendix C.

4. Relational Networks and Latent Goals

In this section we include the main contributions of our work.
First, we contrast the performance of various relational net-
works and provide evidence that, despite their theoretical
advantages, only specific relational modules outperform

a basic MLP following temporal logic instructions when
used within a standard architecture. Then we introduce in-
ductive latent goals, an inner sparse goal communication
architecture that yields stronger generalisation in OOD en-
vironments. Last we show the potential benefits of inducing
latent goals in existing hierarchical recurrent architectures
using a sparse attention mechanism for communication.

4.1. Relational Networks in Standard Architectures

Literature about relational networks applied to autonomous
agents commonly follows a standard network architecture
(see Figure 4 in Appendix) where the output of the encoder
is passed through a central module (CM), which in our con-
text is either a relational layer or an MLP, followed by a
recurrent layer (where we use an LSTM). In this section we
evaluate four different networks for the CM. The first one is
a relation net (RN) from (Santoro et al., 2017). The second
network is a multi-head attention net (MHA) (Zambaldi
et al., 2018), which combines relational connections with
key-value attention. The third one is a PrediNet (Shanahan
et al., 2020), that also combines relational and attention
operations but specifically designed to form propositional
representations of the output. For more details see Ap-
pendix C.3. The fourth module is an MLP consisting of a
single FC layer, which is meant to act as baseline. In or-
der to have a meaningful comparison between the different
CMs, every CM has the same input and output size.

Table 1 (up) shows the results obtained by the four networks.
Overall we see that the chosen CM has a significant impact
in the final performance. Notably the MHA is the only
“specialized” network that clearly outperforms a basic MLP
baseline when using a standard architecture.

4.2. Inducing Latent Goals

We propose improving standard architecture configurations
by modifying the input of the last recurrent layer and using
two input streams in that layer: 1) a task-agnostic or gen-
eral sensory input, that excludes the given instruction; 2) a
sparse latent representation of the current goal that uses the
whole input (sensors and instruction). Figure 2 depicts the
proposed configuration with the networks studied in Sec. 4
when using an small FC layer (acting as a bottleneck) for
the latent goal (LG). Note that we assume to be able to split
the instruction from the rest of the observation. Yet, we
believe this is not a strong limitation since most of the ex-
isting frameworks with DRL agents tackling human-given
instructions, either formally expressed (e.g., temporal logic)
or in natural language, work by communicating the tasks
through a separated instruction channel (Hill et al., 2020) or
through a handcrafted extension (Icarte et al., 2019).

Intuitively, we propose a configuration that aims to induce
the situated agent to “interpret” the human instructions in
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Table 1. Results with either training (train) and unseen (test) objects in 500 maps (per size) of different dimensions. Note that sizes 14 and
22 are OOD for all the agents. Results are mean and standard deviation from 10 independent runs (i.r.). Values are normalized so that 100
refers to the highest performance achieved by the best run globally in maps of that size.

Map size MLP RN MHA PrediNet Random
Train Test Train Test Train Test Train Test
7x7 33.4(7.9) 21.1(3.2) 5(1.9) 3.2 (1.6) 41.1(7.7) 36.6(4.3) 21.8(3.7) 16.1(3.5) 3.7(0.1)
14x14 38.7(6.5) 32(4.5) 8.3(2) 7.9(2.4) 51.7(9.3) 45.8 (7.6) 40.2(5) 31.9(6.2)  11.5(1.4)
22x22 47.8(3.6) 37.8(3.8) 9.2(1.5) 8.3(1.8) 56.9(10.7) 49.2(5) 48.7(10.3) 38(8.5) 11.1(0.5)
Map size MLPLG RNLG MHALC PrediNetC
Train Test Train Test Train Test Train Test
7x7 40.2(5.7)  24.7(2.6) 4.4(1) 4.2 (0.7) 35.2(5) 31.6(5.3)  55.2(17.6)  29.5(8.2)
14x14 41.7(5.1) 35.4(4.2) 13.1(2.6) 11.5(2.2) 48.1(4.4) 41.8 (4.9) 67(5.2) 51.7(6.5)
22x22 52.6(8.6) 41.3(7.7) 11.7(1.5) 10.7(2.1)  58.4 (4.5) 51.5(5.5) 77.5(9.1) 65.3(6.1)

Table 2. Five i.r. of a vanilla BRIM (BRIM), a BRIM with a residual connection (ResBRIM) and a BRIM with latent goals (BRIM™9).

Map size BRIM ResBRIM BRIM™C (ours)
Train Test Train Test Train Test
7x7 27.9(6.3) 15.6(2.8) 58.6(10.4) 15.8(2.3) 77.2(19.5) 26.4(7.0)
14x14 37.9(8.2) 26.5(6.7) 63.5(5.5) 39.6(7.0)  77.3(21.3) 46.8(8.1)
22x22 41.5(84) 2934.1) 60.6(10.4) 40.78.2) 79.8(17.0) 58.4(14.8)

its current context and “sparsely” communicate a latent goal
to the network layers deciding the action to take. Sparsity in
the latent goal communication forces the network to produce
more general representations of the task, and is achieved
either through a relatively small FC layer (which acts as a
communication bottleneck) or a top-k attention mechanism
(see Section 4.3). We believe that inducing latent goals may
become a default architecture configuration for multi-task
agents aimed for OOD generalisation.

From table 1 (down) we see that inducing latent goals im-
proves the performance of all the networks in the hardest
test environments (22x22). Unlike with the standard archi-
tectures, here all the relational modules that use attention
(MHA and PrediNet) outperform an MLP. Notably, the two
most opposed results come from the these two networks
(MHA and PrediNet). From our results in an ablation study
(see Appendix A), we find that the element-wise comparison
in the detected objects is a key feature within the PrediNet
yielding a better performance.

4.3. Latent goals in hierarchical architectures

We demonstrate that inducing latent goals can improve the
performance of hierarchical architectures. Specifically, we
show that giving both instruction and visual input to the
bottom layer of a hierarchical network, while giving a task-
agnostic representation of the environment to the top layer,
improves the performance of the architecture. Here we fix
the PrediNet as the central module and substitute the LSTMs

by a bidirectional independent recurrent network (BRIM)
(Mittal et al., 2020). A BRIM is a modularized hierarchical
network that has shown strong OOD generalisation perfor-
mance in several tasks. A particularly interesting feature of
BRIMs in this work is that they employ a sparse attention
mechanism to communicate between different hierarchies
of layers. Specifically, each layer is composed of various
modules, and at each time step only the top k£ modules (ac-
cording to the key-value attention mechanism) will be able
to communicate with modules from different layers, where
k is a hyperparameter. An illustration of the architectures
using BRIMs is given in Appendix C.3. Table 2 contrasts
the performance when using a vanilla BRIM layer against
using a residual connection (He et al., 2016) or latent goals.
We see that inducing the latent goals significantly improves
the performance of the hierarchical network in all the maps.

5. Conclusions

Inducing neural architectures to generate sparsely-
communicated latent goals can yield stronger generalisation
when agents are aiming to solve novel instructions in OOD
environments. This includes deep hierarchical networks
such as BRIMs where latent goals proved to be more ben-
eficial than classic residual connections. We believe that
these findings may have a broad impact within the commu-
nities working with DRL, OOD generalisation and formal
methods. Future work can investigate how well DRL agents
generalize when the symbolic part cannot always provide
reliable feedback on task progression.
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A. Ablation studies
A.1. A Study on PrediNet"¢

This section is devoted to do a deeper analysis on the per-
formance of attention-based relational networks when gen-
erating latent goals. Specifically, we aim to identify what
feature (or features) within the PrediNet makes it a better
choice for architectures inducing latent goals as suggested
by the results in Sec. 4.2. We tackle this analysis by extend-
ing the contrast of the MHA (Zambaldi et al., 2018) and
PrediNet (Shanahan et al., 2020) networks since both use
relational and attention layers. Theoretically, we observe
that the most significant design difference comes from a
channeling of the input information present only within the
PrediNet. That network encourages a kind of the semantic
separation of the representations that it learns, making an
element-wise subtraction between the detected elements not
present in the MHA. Additionally, we see that the PrediNet
modifies its output to explicitly represent the positions of
the pair of features selected by each of its heads. Also this
operation is not present in the MHA.

Table 3 shows the impact of eliminating the cited features.
In PrediNet;% ., we replaced the element-wise subtraction
by an FC layer, while in PrediNet;$hos the position mapping
is replaced by a constant value. We also tested two hybrid
networks called PNMHA'C (using a PrediNet in CM1
to generate the latent goal and an MHA in CM2 for the
task-agnostic representation) and MHAPNLC (with an MHA
in CMI1 and a PrediNet in CM2). The hybrid networks
serve to verify whether the PrediNet is better suited only for
a specific central module or not. Contrasting the test results
from PrediNet;$s., and PrediNeth$ho, (Table 3) with the
ones from PrediNetC (Table 1) we see that eliminating the
output positions (PrediNet5$hos) had a smaller impact in the
performance (a drop in the range [0.2-8.9]) w.r.t. replacing
the element-wise subtraction by an FC layer (PrediNetiS.p,
a drop in the range [6.7-18.9]). Moreover, by removing the
element-wise subtraction, the PrediNet;S,, has a similar
performance to one of an MHA"C in the hardest OOD maps.
All of this suggests that the element-wise comparison is a
key feature that enhances the PrediNet to be used within
architectures inducing latent goals. Moving to the results
of the PNMHAC® and MHAPN!C from Table 3, we see
that MHAPN'C tends to show better performance than
PNMHALC. Yet, the best results still come from using
a PrediNet in both central modules, i.e., from using the
PrediNet to generate both data-streams (latent goals and
task-agnostic).

A.2. Compositional Learning

Here we want to assess whether our agents are learning com-
positionally from the SATTL instructions and whether they
are following the given safety constraints when applied to

OOD objects or they are simply learning to navigate towards
the goal. Moreover, it is of special relevance to analyse
their performance with negated constraints. Compositional
learning (Lake, 2019) (also known as systematic learning
(Hill et al., 2020)) refers to the ability of understanding and
producing novel utterances by combining already known
primitives (Chomsky & Lightfoot, 2002). In our context,
an agent that is learning compositionally should be able to
solve the instruction —c U + p/ if the primitives c and p are
known and it already learnt to solve —c'U + p'.

Table 4 shows the results from a control experiment, where
we track the performance of the agents according to tasks of
the form —c U + p when giving reliable, partially occluded
or deceptive instructions. Specifically, every row shows the
test performance of the agents trained in Sec. 4 and 4.2 when
providing rewards according to the instruction —cU + p,
which intuitively means “avoid ¢ until reaching p”. The
first row shows the performance of the agents when the SM
provides reliable instructions to the NM, i.e., the instruction
provided is the one used to provide rewards. The second row
shows the performance under the same setting, but where
the extended observation provided to the NM is a reacha-
bility goal (true U + p). Intuitively, for the second row the
agents are given the right goal p but not the safety constraint,
i.e., partially occluding information of the real task. The
third row shows the performance when the SM gives decep-
tive information abut the safety constrain (+cU + p), i.e.,
the SM is “telling” the NM to go through the objects that
actually have to be avoided. Agents learning systematically
should show worse performance with partially occluded in-
structions than with the reliable ones, but still better than a
random walker. Additionally, the worst performance should
be when provided deceptive instructions.

From Table 4 we see that all the variants using the MHA
and MLP modules follow the rule 1°* row > 2"¢ > 374
(compositional rule, or c.r. for short). Notably, the best
performance comes from a variant that does not use rela-
tional networks nor attention (the MLP"O). Still, this does
not imply that MLPs are better suited for negation since
agents were trained in a much wider variety of tasks and the
MHA, MHAL€ and PrediNet© outperformed the MLP-¢
in the general evaluation test. In the case of the RN, the c.r.
is satisfied but the general low performance and the small
difference between the results of the first and the second
rows (14 and 13.3 respectively) indicates a weak generalisa-
tion. This is worse with the RNMC and the PrediNet having
both equal or better performance with partially occluded
instructions than when receiving the real task as input. This
suggests that these networks are not correctly generalising
negated instructions. This is not the case for the PrediNet-©,
whose results correctly follow the c.r.. In addition, the
worse performance of the PrediNet"C than the MHA with
partially occluded and deceptive instructions suggests that
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Table 3. Ablation study of PrediNet™® (5 i.r. per variant). PrediNet:%,, and PrediNet:$o, are variants of PrediNet™C that eliminate the
element-wise subtraction and the feature coordinates respectively. PNMHAC uses an MHA in the CM2 of PrediNet"®, while MHAPN™C

uses an MHA in CM1.
Map size PrediNet5Sup PrediNeth$os PNMHALG MHAPNLG
Train Test Train Test Train Test Train Test
7x7 41(8) 22.8(2.8) 50.6(9.9) 29.3 (5) 39.3(7.6)  29.2(6.2) 49(10) 36.6(7.5)
14x14 64.7(7.9) 42.3(6.9) 68.2(10.8) 48.1(5.4) 52.8(3.9) 46.5(7.9) 59.9(9.8) 45.6(4.9)
22x22 63.7(7.8) 46.4(8.1) 70.6(9.3) 56.4(9.2) 64.6(6.7) 45.2(10) 57.4(6.4) 51.6(7.6)

Table 4. Study on compositional learning with zero-shot objects and instructions. Results show the performance obtained by each network
in 200 test maps when rewards are given according to the “’real goal”, while the symbolic module provides the “given instruction” to the
neural module. An agent learning compositionally should have 1% row > 2"% row > 3" row for the values within its column. Also,
values lower than random are only acceptable in the third row (deceptive instruction).

Real goal: —cU +p

Given instruction MLP M-MLP RN M-RN
—cU+p 44.6(10.5)  70.6(11.9) 14(1.1) 13.9 (1)
trueU + p 20.3(5.7) 18.0(4.6) 13.3(0.9) 13.9(1.4)
+cU +p 8.7(1.6) 11.0(2.6) 7.9(2.2) 5.6(1.2)

MHA M-MHA PrediNet =~ M-PrediNet = Random
55.8(6.1)  43.8(7.3) 17.5(1.2) 43.6(9.3) 12.5(0.7)
16.93.0) 19.9(6.3) 19.9(3.4) 17.5(3.8) 12.5(0.7)
10.8(2.6)  15.0(3.6) 8.2(1.8) 8.4(1.2) 12.5(0.7)

the PrediNet“® advantage over the MHA in maps of OOD
size that we saw in Table 1 comes from a better ability of
the former to satisfy constraints when compared with the
later. Note that the larger the map the harder it is to find p;
thus the bigger chances of accumulating penalizations due
to “violations” of the task.

Discussion To the best of our knowledge, the only two
works that include some empirical evidence of emergent
compositional learning with negation, i.e., achieving a per-
formance 50% better than chance are (Hill et al., 2020; Le6n
et al., 2020). However, in those works negated instructions
are interpreted as “something different from”, e.g., ’not
p” intuitively meant ”get something different from p”. In-
stead, here we have an interpretation of negated atoms more
aligned with propositional and temporal logic, and also to
natural language, where “not p” intuitively means that p
must be false. Hence, we believe this is the first work to
show that DRL agents are capable of learning the abstract
operator of negation in its classical interpretation and suc-
cessfully apply it to new utterances.

B. The Symbolic Module

Here we detail the symbolic module (SM) and the main
functions within it.

Symbolic Module. Formally, the first functionality of the
SM is the extractor £ (see Algorithm 1), which transforms
the complex formula 7" into a list C consisting of all the
possible sequences of (Markovian) atomic tasks « that sat-
isfy T'. As is common in the literature (Icarte et al., 2018;

De Giacomo et al., 2018; Icarte et al., 2019; Leédn et al.,
2020; Kuo et al., 2020) we assume that the SM have access
to an internal labelling function L7 : Z — 24P that acts
as an event detector by firing when the propositions in AP
hold in the environment. The second functionality is the
progression function P (see Algorithm 2), which given the
output of L7 and the current C selects the next task o for
the NM and updates K. Once « is selected, the NM aims
to follow the given instruction until it is satisfied or until
the time horizon is reached, while the role of the SM is to
evaluate the fulfillment of the task based on the outputs from
L. This is used to generate the internal reward function
R; detailed in the main document.

C. Experiment details

In this section we provide further details to facilitate the
reproduction of the experiments we performed in the main
document. Code is available at ht tps://github.com/
bgLeon/Latent-Goal-Architectures.git.

C.1. Experiment Architecture

This is devoted to give more details about the experiment
procedure. All the tested deep learning architectures share
the same encoder, a 3-layer convolutional network with a
kernel of 3x3 in the first and second layers and 1x1 in the
third one. The number of channels in each layer are 8, 16
and 1 while the strides are 3, 3 and 1 respectively. We
made use of our knowledge of the tile resolution and, conse-
quently, the encoder is designed to generate an embedding
were the instruction is independent from the observation.


https://github.com/bgLeon/Latent-Goal-Architectures.git
https://github.com/bgLeon/Latent-Goal-Architectures.git
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Figure 3. Training plots of the networks studied in Sec 4. Continuous lines correspond to the 50°" percentiles while the shadowed areas
are the 25" and 75" percentiles. Note that good train performances do not yield to similarly good test results as detailed in the main

text.
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Figure 4. Standard neural network architecture. The encoder is a
3-layer CNN that receives observations with tasks as input. The
central module can be either a fully connected layer (MLP), an
RN, an MHA or a PrediNet. Outputs 7(a;) and V; refer to the
actor and critic respectively (Mnih et al., 2016).

While pretraining we use only reachability goals of the form
ol = trueUl, with objects from X; (the train set). This
pretraining stage helps the encoder to differentiate objects
within the environment. Once pretrained, the encoder re-
mains frozen to prevent overfitting. The training stage is
70M time steps in maps of training size and populated with
items from X5. For testing, all the training parameters are
frozen and the agents are evaluated in sets of 500 maps
populated with OOD objects from X3. At the beginning of

each episode, a task « is procedurally generated (e.g., oy or
ao above). Tasks are generated with objects either from X5
in training or X3 in testing. Hence, tasks used for testing
are also OOD (they combine learned SATTL operators with
unseen objects). Once we selected a task, a new map is
generated where the agent is placed in an aleatory position,
some or all the goal objects are randomly placed and some
or all the objects for the constraint are also randomly placed.
Additional items from the corresponding set (either X5 or
AX3) are also included in the map. As stated in the main text,
objects are represented by a matrix of 9x9 values. These
values were procedurally generated with pseudo-aleatory
numbers (we used a fixed seed) to ensure that each new
object was different from the previous one.

While we do not have optimal performance metrics given the
procedural nature of the benchmark, visualizing the agents
we observe that their behavior is not always optimal. Still
we believe that with further hyperparameter exploration and
given a larger training time the agents could achieve optimal
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Algorithm 1 Extractor function that obtains the the list of
all the possible sequences of tasks

1: Function &, Input: T’

2: Initialize the list for the sequences of tasks K

3: for each atomic task o € T" do

4: if «is atomic positive or negative then
5 for all Seq € K do
6: Seg.append(«)
7 end for
8: else
9 // This is a non-deterministic choice
10: Initialize choice list: C'L
11: LK + length(K)
12: for all Seq € K do
13: for all choice € o do
14: C L.append(choice)
15: Generate a clone per choice Seq’ < Seq
16: K.append(Seq’)
17: end for
18: end for
19: Initialize counter ¢ <— —1
20: for ¢ in range(length(K)) do
21: if i% LK == 0 then
22: c+=1
23: end if
24: We append a different choice to each sequence
cloned K[i].append(CL]c])
25: end for
26:  endif
27: end for
28: return K

performance. Still, optimality in these benchmarks was
not within our goals. Instead we assess the general ability
of different deep learning architectures towards OOD task
generalisation.

C.2. RL hyperparameters

All of our agents were trained for 70M time-steps with
A2C and all using the same hyperparameters. Most of the
selected hyperparameters were extracted from (Le6n et al.,
2020). Specifically, we used a discount factor v = 0.99, a
value loss weight of 0.5 and a batch size of 128. The we
used an scheduled learning rate with a starting value of 8¢ >,
6e~° at the step 30 M, and 4e° at 55 M. These scheduled
values offered the best results when testing in a range values
between 1le~° and 1e~3. The entropy-exploration term was
fixed to H = le™? after testing with values in the range
[le=® 1e72].

Algorithm 2 Progression function that returns the next task
to be solved.
1: Function P, Input:/C, p,,

2: if p, # () then
3:  forall Seq € K do
4: if p,, fulfills Seq[0] then
5: Seq.pop(Seq[0])
6: else
7: KC.pop(Seq)
8: end if
9: end for
10: end if

11: o + ()

12: if K == () then

13:  return o/

14: else

15:  Select the head of the first sequence: o « K[0][0]
16: for all Seq € K do

17: // look for a non-deterministic choice
18: if o’ & Seq[0] can be combined then
19: o' + o' U Seq[0]

20: end if

21:  end for

22: end if

23: return o’

C.3. Networks

In Sec.4 we stated that all the central modules (CMs) were
designed to have the same input and output size. The spe-
cific values selected were the same as in (Shanahan et al.,
2020). Particularly, in the case of the MLP we used a single
fully-connected layer with 640 units. For the RN we used a
central hidden size of 256 units and an output size of 640
units. The MHA employs 32 head with a key size of 16 and
value size of 20. Last, the PrediNet has 32 heads, with key
and relation sizes of 16.

We did not perform any hyperparameter exploration with
BRIMs and used directly the same configuration from the
RL experiments in Mittal et al. (2020). Specifically, each
BRIM layer has 6 modules with 50 units and four modules
active (k) at a given time step.

C4. Training complexity and computing time

The number of procedurally generated training tasks is
~200000 and ~65000 in testing. We used gridworlds where
the state-space size is ~ 1° in training and ~ 154 in testing
(as a guideline, chess has ~ 146 states). The number of pro-
cedurally generated training tasks is ~200000 and ~65000
in testing.

Figure 3 shows the training plots of the standard (top), latent-
goal (middle) and BRIM (bottom) configurations. For train-
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Figure 5. Left: vanilla BRIM and ResBRIM (without and with the residual connection respectively). Green cells within the BRIM
layer refer to activated modules while gray cells are deactivated. The bottom layer receives as input the output of the central module (a

PrediNet) and the hidden state from the upper layer in the previous time step (hy_

1)- The upper layer receives the output of the from the

bottom layer (h:). Only strong connections (the ones between activated modules) are shown. In the case of ResBRIM the upper layer also
receives the output of the PrediNet. Right: BRIM"C. The architecture is similar to the ResBRIM but the top layer receives an input an
embedding from the observation only. Consequently, the top layer has only access to the current goal through the lower BRIM layer.

ing we used various computing clusters with GPUs such as
Nvidia Tesla K80, Tesla T4 or TITAN Xp. We employed
Intel Xeon CPUs and consumed 5 GB of RAM per every
three independent runs working in parallel. Running con-
currently, each experiment typically takes 4 days to train, 5
days in the case of multi-module configurations.

D. SATTL and LTL;

We finish by giving formal details about SATTL. Given a
trace ), i.e., a sequence of states and actions, we denote time
steps, i.e., instants, on the trace as A[j], for 0 < j < |A],
where || is the length of the trace. A[i, j] is the (sub)trace
between instants ¢ and j. A model is a tuple N' = (M, L),
where M is aPOMDP,and L : S — 24P isa labelling of
states in .S’ with sets of atoms in AP.

Definition 2 (Satisfaction). Let N be a model and )\ a
finite path. We define the satisfaction relation |= for literals

l, atomic tasks o, and temporal formulas T in path )\ as
follows:

WA Etp e LO).

(N, A) | —p iffp & L(A[0]).

NN EIVE ff (NN Elor (NN L

NN WY AT AT
E U, and for every t € [0, j),
WA — 1)) L

NN ET; T iff for some 0 < j < ||, (N, A0, 7])
=T and (N, \j+1,\]) =T

NN ETUT iff NN ETor (NN ET.

Intuitively, by Def. 2 an atomic task o« = ¢, U g,, is satisfied
if the “’safety” condition c,, remains true until g, is fulfilled.
In the context of this work we are not interested in strict
safety warranties but in agents that are trying to reach a
goal while trying to minimize the violation of additional

conditions. Thus, we may say our agent has satisfied «
while it has not fulfilled ¢, at every time step before g,.
Formally, in those cases we are considering traces that are
not starting at the beginning of the episode. Still, the agent
is penalised for this behaviour through its reward function
(Sec. 3)

‘We now demonstrate that SATTL is a fragment of the widely-
used LTL ;. The syntax of LTL; is defined as follows:

e = ploele1 A2 Oplp1Up:
Since both LTL; and SATTL are defined ofer finite traces,
we can directly introduce the following translations:

e = ploeler A | Op | erUp,
Definition 3. Translations T from Task Temporal Logic to
LTL; are defined as follows:

7() = v
T(TUuT) = 7(T)Vv7(T)
w Ar(T)) if T = U
(1:17) = 7(Tv; (T, 1)) T =TT
(T T U (Te: T')) ifT =T UTs

We immediately prove that translation 7 preserve the inter-
pretation of formulae in SATTL.

Proposition 1. Given a model N and trace )\, for every
formula T in SATTL,

N NET i (N,A) E(T)

Proof. The proof is by induction on the structure of formula
T'. The base case follows immediately by the semantics of
SATTL and LTL;.
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As for the induction step, the case of interest is for formulae
of type T'; 7. In particular, (N, X) = T; T iff for some
0<7 <A, (WN,A0,5]) ET and (N, A\[j+1,|\]) ET".
By induction hypothesis, this is equivalent to (N, A[0, 7]) =
U and (N, A\[j +1,|)\]) = 7(T") in the case of T' = [U1'.
Finally, this is equivalent to (N, \) = IU (I’ A 7(T")). The
cases for T' = Ty;T5 and T = Ty U Ty are dealt with
similarly.

Finally, the case for T'U T” follows by induction hypothesis
and the distributivity of V. [



