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Abstract

The desire to ever more e�ciently simulate physical phenomena using computers pro-

duces a demand for increased specialization of physical models, geometric & numeric

algorithms, and computing hardware/systems. This demand limits itself by trending

towards unmanagable complexity; manifesting as an inability to separate disciplinary

specialties via distinct parts of the simulation code. For parallelism in particular,

the interface along which this separation happens must necessarily take the form of a

language, separating compiler-programmers from simulation-programmers. Further-

more, such languages must exploit a more abstract and restricted data model than

random-access-memory in order to enable performant portability across di↵erent par-

allel systems.

I propose using a relational (algebraic) abstraction of simulation data in order

to give compiler programmers both su�cient freedom and information to success-

fully port applications onto parallel hardware, while maintaining high performance

(time and memory). I investigate three aspects of this problem, organized by the

metric-topology distinction from geometry, and explored by constructing language

prototypes: (1) Ebb, a language for local stencil computations on metric data; (2)

Seam, a language for local modification of topological data (i.e. remeshing); and (3)

Gong, a language for generation of topology from metric locality (i.e. collision de-

tection). These languages use a common relational abstraction of data, including

coupling of structured and unstructured mesh domains in a single program. Seam

additionally leverages the concepts of transactions and views from databases, while

Gong leverages the concepts of joins and indices. Database queries are extended by

treating actions on queries using parallelizable lock-free e↵ects beyond simple reading

v



and writing.

Experimental evaluation of prototype language implementations (with support for

GPUs) shows that the performance of highly-tuned implementations can be matched

to within a 1.25⇥ overhead at worst (for an Ebb implementation of a super-computing

benchmark; 1.15⇥ for a Gong implementation of an industrial collision detection

system). However, the ability to systematically port code to di↵erent platforms easily

allows 2�9⇥ accelerations of many simulation programs over the next best cpu/multi-

core implementations available. Ebb programs are usually less than half as long,

while automatic view maintenance in Seam yields 10⇥ reductions in complex pointer

manipulation code size.
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Chapter 1

The Simulation Expression

Problem

1.1 The Problem

Simulations of the physical world are inherently expensive computations. Consider

a fluid simulation, discretized on a 3-d grid, and integrated using an explicit Euler

scheme. Each timestep of this simulation requires computing the new velocity at each

grid cell by evaluating an arithmetic function of velocities at neighboring cells (often

referred to as a stencil computation). The accuracy of this simulation is limited by

its resolution, in space and time. In order to double the resolution (in a single spatial

dimension) we must use 23 = 8 times as many grid cells to represent the same volume

of space. Less obviously, the timestep length must also be halved in order to maintain

the same error bounds, requiring twice as much computation to simulate the same

duration of time. Summarizing this line of reasoning, in the general case simulations

of the physical world require O(n3) memory-space and O(n4) computation-time as

the resolution n increases.

Because of these asymptotics, simulations of the physical world can only be

1



2 CHAPTER 1. THE SIMULATION EXPRESSION PROBLEM

made faster and more e�cient by specialization to take advantage of phenomenon-

specific approximations, of appropriate geometric discretizations, of advanced numer-

ical methods, and of more complex kinds of parallel hardware. While these di↵er-

ent specializations are often interdependent (hardware-specific algorithms, numerical

techniques for specific discretizations and so on) the relevant methods and expertise

are just as often developed independently in di↵erent disciplines.

In the source code for simulations, these di↵erent disciplinary specialties get

slopped together as a tangle of spaghetti code. In order to port a fluid-chemical

simulation to a super-computer, a high-performance computing specialist might du-

plicate, and modify the inner loops of a program, introducing assembly intrinsics.

But then if a chemist wants to change the physical model, they must further copy

and/or modify these intrinsics whose purpose they have only a loose understanding

of. If a numerical analyst then wishes to change the method of integration, they must

again transform (and further complicate) this same code.

Repeated modification, adaptation and maintenance of simulation programs re-

sults in code that is incomprehensible to anyone insu�ciently educated in all the

relevant specialities; incomprehensible to anyone who is not a super-expert. For in-

stance, the Chemistry professor James Sutherland1 explained to me and a room of

super-computing experts that he must teach his students not only physics, but nu-

merical analysis and high performance computing before they are able to perform any

research in his lab. This imperative to teach students a little bit of everything drives a

regression towards a least-common-denominator of teachable techaniques across and

within professional communities.

Society (whether in formal education or on-the-job) can’t really produce super-

experts, so instead programs (software code) and programs (training of experts) un-

dergo a mutually reinforcing pressure that inhibits e↵ective specialization across com-

munities2. It is my view that these dynamics are the primary limit on the e�ciency

and utility of physical simulation on average, across applications.

1At a supercomputing tools conference called WEST hosted in Albuquerque during February
2016.

2It is important to note that many simulation application communities do specialize. For instance,
the rendering community within Computer Graphics has hyper-specialized around the problem of



1.2. PARALLELISM 3

I refer to this set of reinforcing problems as the Simulation Expression Prob-

lem in reference to the classic Expression Problem from the design of programming

languages [Wad98]. The classic expression problem considers the multiplicative in-

teraction in a compiler implementation between more types of AST nodes (loops,

branches, operators, &c.) and more functions (print, compile, &c.) defined on each

node. The expressivity of language features like sub-classing (object-oriented) and

type-classing (functional) can then be evaluated by how they refactor such code to

better modularize and asymptotically curb the amount of code that needs to be spec-

ified.

Analogously, the simulation expression problem is how to achieve a separation

of concerns in simulation source code, such that programs are better modularized,

code growth is asymptotically curbed, and programmers can focus on their specialty.

Unlike Wadler’s formulation of the expression problem, I have not explicitly specified

which concerns must be separated. My criterion is simply that disciplinary specialties3

must be separated.

1.2 Parallelism

Because all aspects of a simulation program, including the choice of physical mod-

el/equations can be changed to improve performance (this was our initial analysis),

light-transport. Largely, the graphics community is uninterested in other kinds of radiative/light-
transfer simulation (other applications) and those other physicists/engineers who work on light-
transport are unaware of more specialized techniques developed within the graphics community. In
this sense, there is a failure of specialization. Work and expertise is unevenly duplicated across
these divides in both code-bases and training programs; this is both redundant, and incomplete.
Likewise, the replication of work on geometric intersections and spatial joins across graphics, robotics,
computational geometry, and databases (GIS) provides a prime case study of this phenomenon.
To no avail, members of the Computational Geometry community identified this problem in the
90s[Cha96].

3This means that the Simulation Expression Problem is inherently a social problem. Most design
problems, and most certainly most questions of how to organize and design software are social. For
instance, Conway’s Law states that “Any organization that designs a system (defined broadly) will
produce a design whose structure is a copy of the organization’s communication structure.” That
Computer Science as a discipline chooses to address problems as technical, objective, and scientific (to
the exclusion of social dimensions) makes this no less true. However, in keeping with the discipline,
my goal will be to reduce—to the greatest degree possible—some aspect of this problem to those
(technical, objective, scientific) terms.
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we should accept that it is impossible to find a separation between performance as a

general concern and any other part of the simulation. What is possible is to separate

out particular kinds of performance considerations.

Changing programs to run on di↵erent kinds of parallel hardware is one such

potentially separable concern. Unfortunately despite four decades of research, par-

allelizing a program (in the general case) means rewriting the program for each new

kind of parallel hardware. In this way, if I have O(n) programs/applications and O(m)

distinct kinds of parallel hardware, I will end up writing and maintaining O(nm) dis-

tinct pieces of code. (or incurring the opportunity cost of not using some kinds of

hardware for some applications)

The demand for parallel computing has been increasing over the last decade, due

to fundamental trends in computer hardware. Since CPU clock speeds maxed out

around 20064[Rup19], chip manufacturers have shifted to more explicit parallelism

via multi-core architectures and SIMD vector instructions. At the same time, the

alternate architecture provided by GPUs has allowed for even more operations to

be performed by a given processor. Further physical limitations[EBA+11] suggest

further avenues for parallelism, in addition to even more complex architectures (e.g.

FPGAs and custom ASICs) being exposed to the hardware-software interface.

Still, no common, general purpose (i.e. for all kinds of programs) abstraction of

multi-core CPUs and GPUs (much less other architectures) appears to exist.

To see why, consider a simulation program written in a common high performance

computing language like Fortran. Data is expressed as large arrays that reference each

other and store simulation quantities5. Then, loop-heavy programs iterate over the

data in di↵erent ways, reading values, performing arithmetic, and writing values back

to arrays.

Consider a loop and the question “is it ok to parallelize this loop?” as well as the

question “will this loop be parallelized?” The first question is asked by a compiler

programmer, who must necessarily turn their attention to all valid programs. The

compiler programmer must reason about all programs that might be written. The

4This is due largely to hitting the Dennard scaling power-wall.
5In C or C++ variations on this theme, pointers might be used instead of array indices—to much

the same e↵ect
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second question is asked by an application programmer, who is trying to predict the

performance implications of their coding decisions when writing a specific application,

for translation to at least one, but preferrably multiple hardware platforms. (Of

course, this issue also appears more generally than just for loops.)

One approach to parallel abstractions is to automatically parallelize programs

written in sequential languages by placing the entire burden on the compiler pro-

grammer to develop sophisticated analyses6. That is, the compiler tries to figure

out which loops are safe to parallelize and then choose which to parallelize. This

approach leads to a communication breakdown on both sides. The compiler writer is

given the Sisyphean task of determining safety. The application programmer cannot

predict whether or not their code will be parallelized, and how well. It should not be

surprising that this kind of arrangement leads to a breakdown of trust between these

two groups—hence a failure of the abstraction[KKZ07].

Another approach is to not abstract, but require explicit parallelization of applica-

tions. Every loop must be declared sequential or parallel, including how to break up

that parallelism. In e↵ect, this is a non-solution. However, this approach does greatly

simplify the burden on the compiler programmer. Just, it does so by placing all re-

sponsibility for deciding both how to parallelize and whether it is safe to parallelize

in a particular way onto the application programmer. As a result, the application

programmer can now introduce arbitrary data races.

One major problem with incorrect (explicit) parallel programs arises when at-

tempting to port existing programs to new hardware. For instance, changes to

NVIDIA’s recent GPUs exposed subtle issues with the not totally synchronous be-

havior of warp-level (32-wide “SIMD”) instructions, which required fixes in CUDA

9[LG]. In fact, I had to fix bugs arising from this issue during software development

for Gong (§6.4.2). In a sense, the tables are turned from automatic parallelism. By

placing the responsibility for determining when parallelism is safe with the applica-

tion programmer, application programmers often come to rely on unspecified behavior

that just happens to be the case for the hardware they are currently targeting.

Often programmers argue for creating expressive abstractions, with the implied

6specifically, this will end up relying on aliasing analysis, which is well-known to be undecidable.
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meaning that the user of the abstraction is allowed to write a wider range of programs.

Unfortunately, this positive expressiveness also entails a negative expressiveness im-

posed on the implementer of that abstraction. An abstraction for parallelism must

reserve the expressive freedom of the implementer to change the execution order of

code, and consequently restrict the expressive freedom of the user in what programs

they may write. Lastly, this division, or separation of concerns implied by the ab-

straction must be evident and clearly understood by both the user and implementer.

If not, the prior problems are likely to recur.

Now it should be more clear why there are no general purpose abstractions of par-

allel hardware. There is a basic tradeo↵ between application generality and generality

across parallel hardware7. It should come as no surprise then, that restricting the do-

main of application has proven to be a promising approach to developing abstractions

for parallelism.

1.3 Domain-Specific-Languages

Rather than trying to abstract across specific kinds of parallel hardware, we can try

to abstract across parallelism in specific kinds of applications8. Within Computer

Graphics and Databases, this strategy has already been e↵ective.

7It’s worth noting that this argument does not preclude some technically non-general, but prag-
matically general abstraction from being discovered, any more than pragmatically general solutions
to the halting problem can be discovered. However, in that vein it is worth noting that SMT solvers
su↵er from problems directly analogous to those I describe under automatic parallelism. There are
no general rules or guidance that SMT implementers have for users to figure out why certain inputs
take a long time or fail to terminate.

8Exploring this inversion was the primary approach of Stanford’s Pervasive Parallelism Lab (PPL)
from 2009-2014. Presentations from PPL members often included a triangle with “performance,
productivity, and generality” used as a taxonomy with the claim: you can only have two[Olu11].
The diagram was then illustrated by assigning languages to edges of the triangle. However, this
triangle point of view is misleading. My argument for specialization in language or in abstraction
instead follows from a broader strategy of specialization—as necessary for performance. This need
for specialization holds independently of trade-o↵s between performance and productivity, which
always exist because optimization always requires more programmer time and e↵ort. Perhaps the
slogan ought to be “performance, productivity, generality: pick one!” Trying to classify languages
in this way, (as if variation due to programmer or application is negligible) is a conceptual dead end.
Asking how a language separates concerns instead pre-supposes variation in programmers (i.e. by
discipline) and variation in application.
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Shading languages[HL90, PMTH01] are used to specify material properties and

lighting models in 3-d rendering. These languages have always been coupled into

larger rendering systems/engines, which themselves have often taken advantage of spe-

cialized hardware. If we further consider that rendering APIs/libaries, like OpenGL

or DirectX are themselves DSLs9, then the utility of these DSLs in porting programs

across di↵erent hardware is apparent. GPUs initially started out as almost entirely

fixed-function hardware, developed programmable components, and are now being

specialized in new ways for neural networks and raytracing. Still, games and ap-

plications written over two decades ago can be executed on new hardware, taking

advantage of all the di↵erent kinds of parallelism on GPUs.

Another recent line of work on image processing DSLs[RKAP+12, RKBA+13,

HBD+14] shows similar promise. Halide has managed to subsume a wide variety of

di↵erent processors and e↵ectively specialize to idiosyncratic characteristics of their

memory/cache systems. Using similar abstractions Darkroom allows for writing im-

age processing programs that can be loaded onto FPGAs or taped out as custom

hardware.

These image processing languages bear a notable similarity to ZPL[Cha01], a lan-

guage from the 90s focused on a class of simulation programs built around “stencils”.

Stencils are local neighborhoods in grids, from which data can be computed. ZPL

was built around data-parallel operations (add this entire multi-dimensional array to

this entire other multi-dimensional array) and a language of o↵sets and subsets (in-

terior, boundary, &c.) of grids and sub-grids. Unlike more general purpose parallel

programming languages, ZPL was specialized only to these stencil computations.

Outside of computer graphics, SQL (Structured Query Language) has proven to

be a surprisingly stable and e↵ective abstraction for databases over the last 40 years.

SQL is a domain specific language—maybe one of the most important ones to have

ever been developed. While originally designed for magnetic drum and tape storage

media accessed by sequential processors, the same abstraction has now been extended

to run on geographically networked machines, with multiple processors, accessing data

9The argument that OpenGL, not just shading languages, is a DSL was first made by Pat
Hanrahan circa 2010 to the best of my knowledge
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stored on powered memory, and replicated to handle partial system failures seamlessly.

As suggested, all of these DSLs achieve flexibility in implementation by restricting

the flexibility of what kinds of programs may be written in them. What is less obvious

is how (on what criterion) they manage to e↵ectively abstract applications. SQL is

instructive in this regard. It abstracts not just code, but also the data on which that

code is executing.

If we turn our attention to the abstraction of data, we can see that all of the DSLs

we just considered replace a random-access-memory model with a domain-specific

data model. In the image processing languages, this is grids (multi-dimensional ar-

rays) of numbers. In the case of shading languages, this is triangle lists, fragments,

textures, and rays. In the case of SQL, the abstraction is relations—a set of structured

tuples.

Along with a specialized data model, these languages restrict the kinds of programs

that can be written on that data model. The image processing languages impose lo-

cality by restricting computations to stencils. Shading languages restrict programs

to specifying only the interaction of individual primitives (e.g. how to shade a sin-

gle fragment alone). Rendering Pipeline languages (and hardware-targeting image

languages) impose streaming constraints by restricting the temporal window of com-

putation. Lastly, SQL restricts computations on sets to set semantics which requires

that computations are insensitive to the order of relation elements.

This last concept of order insensitivity is especially important for parallelism. The

ability to commute two operations is a classic stand-in for the ability to execute the

operations in parallel[Ber66]10. Similarly, a function defined on a set properly, not

just a list or some other representation of a set, must be invariant/symmetric with

respect to the ordering of elements. This property implies potential data-parallelism.

It is this focus on set-based operations that underlies the unanticipated success of

porting SQL onto new parallel hardware[Hel16].

To put this in other terms, the criterion which allows DSLs to be parallelized

10Depending on the specific formulation, simple associativity of operations, or monotonicity may
be used in various ways to develop non-commutative criteria for parallelism. None are perfect formal
proxies for the concept.
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Figure 1.1: Topology vs. Metric: metric data gives this triangle mesh shape, and al-
lows for storing other quantities like temperature. Topology tells us what is connected
to what.

is the choice of a data-model and complimentary access language11. Rather than

simply try to parallelize a generic random-access view of data, we need to abstract

the application-relevant data-structures12.

1.4 Data in Simulations

The data modeled by physical simulations tends to be geometric, or geometrically

structured. One representative example is fluid velocity fields, and all other kinds of

fields used in varieties of continuum-mechanics. These fields must be discretized by a

choice of basis functions (tied to the discrete elements) covering the space, shape, or

region of interest. Another instructive example is discrete, mechanical objects (such

as boxes or particles) and tends to arise when modeling robots, rigid bodies, and other

kinds of physical systems with a finite number of degrees of freedom (and therefore

not needing further discretization).

In either event, we can use a fundamental distinction from Geometry: metric

vs. topological data. Consider a tetrahedral finite-element mesh of an engine cavity,

in which we want to model fluid flow. On the one hand, we need to keep track of

11A subtler point is that the “query” language actually defines the data model, because it is the
interface to it. This is similar to the way that an object-class’ method interface, not its representation
defines what an object is.

12This position was taken by Keshav Pingali’s group in their work on Galois[PNK+11]
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temperatures, velocities, pressures, &c. at every vertex/node of the mesh—as well

as the positions of each vertex. This is what we call the metric data. On the other

hand, we need to keep track of the mesh’s internal connectivity: which vertices each

tetrahedron spans. That is what we call the topological data. In type-theoretic

(programming) terms, we can loosely associate topological data with references or

pointers, and metric data with quantity types like counts and floating-point values.

Importantly, topology represents (combinatorially) a geometric concept of locality.

Locality is what other DSLs have used to improve memory performance and compile

to streaming models. Image DSLs define locality on the grid-topology. Rendering

pipelines use primitives like triangle-strips or fragment bundles/packets to re-use and

avoid redundant work.

Given this division of types of data, we can focus our attention on three di↵erent

classes of computation.

1. The computation of new metric data from existing metric data found in a topo-

logically local neighborhood. (This includes stencil computations, and most

sparse-matrix-vector multiplications.)

2. The computation of new topological data from existing metric and topological

data found in a topologically local neighborhood. (This is exemplified by the

problem of re-meshing.)

3. The computation of new topological data from existing metric data, absent any

restriction to local topologies. (This is exemplified by the problem of collision

detection.)

The fourth possibility in this matrix (the computation of metric data from metric

data) is either the trivial aggregation of global statistics, or the “embarassingly paral-

lel” computation of new values from strictly-local values, meaning without reference

to neighboring data (which would imply topology). That is, this fourth metric to

metric case simply reduces to the other cases.

Certainly, simulations make use of many other data structures at a lower level, such

as lookup-tables, dynamically resizable arrays, search trees, and the like. However,
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my focus on the topology vs. metric division arises from questions of geometric

modeling, not from implementation details. Therefore, we ought to expect that a

programming language for simulation will be at least expressive enough13 to capture

the above manipulations of its geometric data.

1.5 Applying Databases and Relational Algebra to

Simulation

The core idea of this thesis is that existing abstractions from databases—such as

relational algebra—can be adapted to abstract data in physical simulations. I explore

this idea through three prototype compilers, addressing each of the aforementioned

classes of computations from a database perspective.

With ebb, I show that encoding the geometric domain in a relational schema

allows us to implement stencil-like computations on an extensible range of di↵erent

geometries using a small, fixed data-modeling vocabulary. This includes coupling

unstructured meshes, particles, and grids together in single simulations.

With seam, I show that remeshing computations (more generally local topological

modifications) can be expressed via the concept of a transaction, ensuring memory-

safety of complicated pointer-manipulation at this aggregated, transactional scale of

operation. I further show how leveraging relational-algebraic rewrites allows for imple-

menting localized view-maintenance. Doing this produces combinatorial reductions

in how much code needs to be maintained.

With gong, I show how collision detection can be cast as a spatial join problem.

Doing so allows a three-way decomposition between the specification of a join, the safe

parallel implementation of its e↵ects, and the kind of acceleration structure/traversal

used to asymptotically accelerate the doubly nested loop.

Relational Algebra gives us at least three notable benefits, which stem from the

13Note that this is not an argument that the preceding taxonomy is universal for simulation
computations in the same meaning as saying a Turing machine is universal. For the sake of special-
ization, domain-specific languages for parallelism ought to be sub-Turing-complete. Given as much,
the question addressed here is “what range of computations ought we strive to support?”



12 CHAPTER 1. THE SIMULATION EXPRESSION PROBLEM

logical/physical data distinction, and from properties of algebras. First, the set-

orientation of relational algebra generates ample opportunity for data-parallelism.

This allows for straightforward GPU implementations of Ebb and Gong. Second, the

abstraction of keys (database-terminology)/references (programming-language termi-

nology) away from indices/pointers allows for analyzing where something is happen-

ing, and hence ensuring the absence of conflicts such as data-races. Such an analysis is

critical for producing high-performance lock-free code. Third, the ability to interpret

code via relational algebraic operations allows for making otherwise dramatic code

transformations.

I extend these benefits with a more explicit treatment of e↵ects, by which I mean

the actions taken on the results of a query. At the simplest level, these are reads,

writes, reductions, and so on. However, as we will see with Gong, this view of e↵ects

can extend to more elaborate schemes for how to safely create and manage new sets

of data in parallel, beyond the narrower per-memory-address operations.

In another departure from databases, I will also place emphasis on locality of

computations, in the sense of stencil computations. By restricting queries (which will

mean the same as looping) in this way, I give simulation-programmers a predictable

performance model for reasoning about their code execution.

1.6 Contributions

• A programming model (Ebb) for physical simulations on a range of di↵erent geo-

metric domains, including the interactions and coupling between these domains.

Notably, this includes simulations that mix structured (grids) and unstructured

(graph-like) geometric domains.

• A programming model extension (Seam) for re-meshing operations and other

local graph edits on the unstructured (graph-like) parts of domain models.

• A programming model extension (Gong) for writing collision detection via spa-

tial joins of these geometric domains, that decouples the join specification from

the choice of acceleration-structure/spatial-index.
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• A demonstration of how to organize common geometric domains into re-usable

and composable libraries, including modeling of triangle meshes, tetrahedral

meshes, polyhedral meshes, regular grids, particles, rigid bodies, and half-edge

meshes. Furthermore, demonstration of how the set of domains modeled may

be extended.

• A common means of ensuring data-race freedom and memory safety, based on

a relational analysis of program e↵ects.

• A system of views and incremental view maintenance compatible with the re-

meshing/local-graph-edit extensions to the programming model. I show how

incremental view maintenance can be implemented as a source-to-source code

transformation based on a relational semantics for e↵ects.

• Three prototype compiler implementations: an e�cient implementation of the

basic programming model on CPUs and GPUs; an e�cient implementation

of the re-meshing extension on CPUs; and an e�cient implementation of the

collision detection extension on CPUs and GPUs. (All CPU implementations

are serial)

• An evaluation of these implementations in comparison to a number of pre-

existing example programs at various degrees of optimization. This evaluation

measures comparisons of execution time, memory usage, and lines of code. Ex-

ecution times were within 1.1⇥ to 1.25⇥ slower than the most highly tuned

comparisons; and had up to 8 � 9⇥ speedups in most other cases.) No signif-

icant increase in lines of code are observed, with 2 � 3⇥ reductions in many

cases and 10⇥ reductions for Seam where features were explicitly included in

order to obviate simulation-programmer obligations.
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Chapter 2

Example Simulations & Programs

This chapter introduces the rest of thesis from the point of view of a simulation-

programmer using the proposed languages. Later chapters will assume the viewpoint

of a compiler-programmer or language designer, as appropriate.

2.0.1 Lua Primer

All of these examples are presented as Lua-embedded domain-specific languages1.

However, a very limited knowledge of Lua is necessary to understand the source-code

listings.

Lua is a dynamic, prototype-based object-oriented language in the tradition of

Smalltalk, most similar to the popular languages Python and Javascript, or the aca-

demic language Self. (Locally scoped) variable declaration is accomplished with the

local keyword. Empty objects (called ‘tables’2) are written {}. Objects may be

indexed using arbitrary values as keys, e.g. x[1], x['foo'], or x[y]. The syntax

x.foo can be read as sugar for the lookup x['foo']. A non-empty table can be

defined

-- this is a comment

local x = { a = 42, foo = 'bar' }

1In the interest of aesthetic consistency, syntax has been trivially modified from the original 3
language prototypes throughout this dissertation.

2To prevent confusion with my later, database inspired use of the term table, I will continue to
refer to Lua tables as objects in this primer.

15
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-- this print prints out 42

print(x.a)

which is equivalent to the more explicit, primitive program

local x = {}

x['a'] = 42

x['foo'] = 'bar'
print(x['a'])

Lastly, a table whose keys are a range of numbers 1, 2, . . . , n is called a list. A

non-empty list may be defined by listing the values without any keys

local x = { 'one', 'red', 32 }

-- prints 'red' because Lua uses 1-based indexing

print(x[2])

which is equivalent to

local x = {}

x[1] = 'one'
x[2] = 'red'
x[3] = 32

print(x[2])

The aesthetic parsimony of Lua is built around these objects. In the following

examples, I make use of two additional idioms. First, these objects may be used in

place of module/class namespaces. Second, the parser allows for an object literal to

be passed as the sole argument in a function call, absent the usual parentheses. This

allows for the function calls to appear to have “named arguments” via a simple bit

of syntax sugar. For example,

local MyModule = {}

function MyModule.foo( nm_args )

if nm_args.op == '+' then

return nm_args.lhs + nm_args.rhs

elseif nm_args.op == '*' then

return nm_args.lhs * nm_args.rhs

else

error('unrecognized op')
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end

end

local x = MyModule.foo { op ='+', lhs=19, rhs=23 }

-- prints 42

print(x)

and the final call here can be seen as simply sugar for

local tmp_arg = {}

tmp_arg.op = '+'
tmp_arg.lhs = 19

tmp_arg.rhs = 23

local x = MyModule.foo(tmp_arg)

print(x)

2.1 Ebb Examples (Local, Metric Computations)

2.1.1 Spring-Mass Systems

Ebb allows a programmer to write local stencil-like computations on a wide range

of geometric domains, including structured (grids) and unstructured (meshes, par-

ticles) domains, independently and coupled together. For instance, we may import

(require) a module (which we will examine shortly) defining tetrahedral meshes, and

get a mesh instance from it.

local Tetmesh = require 'domains.tetmesh'
local mesh = Tetmesh.instance()

Then, we may extend the tet-mesh data-model for the purposes of our specific

simulation. The ebb keyword signals that we are switching from Lua into the em-

bedded DSL; schema signals that we are in a data-definition block and SpringMass

names this data-definition.

local ebb schema SpringMass

const K : float = 1.0

const dt : float = 0.0001

global E : float = 0.0



18 CHAPTER 2. EXAMPLE SIMULATIONS & PROGRAMS

include mesh

field mesh.edges.rest_len : float

field mesh.vertices.mass : float

field mesh.vertices.x : vec3f

field mesh.vertices.v : vec3f

field mesh.vertices.force : vec3f

end

In the above listing, we start by defining 2 constants and a global (di↵ering by

whether their values are mutable). GPU shader programmers may recognize these

globals as uniforms. We then include the mesh (a previous data definition from the

module).

We extend the basic domain (mesh) that we included with fields: rest_len,

mass, x, v, and force. These fields are defined on relational tables, which are

explicit, finite sets of objects: mesh.edges, mesh.vertices. Each field consists of

a value for each element of the relation, as in the last line, which says “There is a

vector of 3 floats for each vertex, called ‘force’.”

Spreadsheet Metaphor. This concept—defining data in terms of relational tables—

is taken from Databases. We can think of each table as a spreadsheet with columns

and rows. Each row represents an element of the set in question (mesh.edges,

mesh.vertices, &c.). Each column represents a field of a given type.

Given a definition of the way data is organized, (the schema) we can define ebb

functions that belong to this schema. For instance, we can define a function to

compute the resting edge-length of each edge from the position of vertices (defined

by the Tet-mesh library)

ebb function SpringMass.initLen( e : mesh.edges )

var diff = e.head.pos - e.tail.pos

e.rest_len = magnitude(diff)

end

As before, ebb signals a transition from Lua into the embedded language. We define

the function with a name belonging to the SpringMass schema’s namespace, making
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all of the defined data names (mesh, dt, &c.) available. The function is defined as

centered on an edge of the mesh. Here e.head and e.tail are vertices on either

end of the edge, and pos is the position of a vertex as defined in the original tet-

mesh file. Note that unlike Lua, we use var in the embedded language for variable

declaration/definition.

Functions are launched as kernels over the sets of the data model. For instance,

we compute the resting lengths of edges with the invocation

mesh.edges.initLen()

which really means “run the function initLen for every edge in the mesh”. In this

way, Ebb simulation-programmers expose data-parallelism to the compiler-programmer.

For the sake of making this a simple example, we’ll use a simple explicit, forward-

Euler integrator. Let x
t be a vector of all the vertex positions at time-step t, vt

their velocities, and a
t their accelerations. Let xt

i denote the i
th vertex, and M

�1 the

inverse mass matrix defined by M
�1
ii = 1

mi
(the reciprocal mass of vertex i). And, let

�t represent the length of a timestep. Then, the equations of integration are

a
t�1 = M

�1
F

t(xt�1
, v

t�1)

v
t = v

t�1 +�t · at�1

x
t = x

t�1 +�t · vt�1

Letting K be the spring constant, and rij the resting edge length of the edge

between vertices i and j, the simple frictionless spring force model is

Fi(x, v) =
X

j where (i,j) is an edge

K · (rij � ||xj � xi||)
xj � xi

||xj � xi||

For a first attempt to write this in Ebb, lets try to write a single function that

will compute the time-step for a vertex.

-- this function will not compile; see below

ebb function SpringMass.take_step( v : mesh.vertices )
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v.force = {0f,0f,0f}

for e in v.edges do

var d_x = e.head.x - v.x

var m_x = magnitude(d_x)

var c = K * (e.rest_len - m_x) / m_x

force += c * d_x

end

var acc = force / v.mass

v.x += dt*v.v

v.v += dt*acc

end

In this function, notice the for loop that draw an edge e from the edges connected

to a vertex v.edges. For the time being, the meaning is clear. When we examine the

definition of the Tetrahedral Mesh module, we will see how this kind of abstraction

may be set up.

However more importantly, Ebb will NOT compile the function take_step. In-

stead, it will complain via an e↵ect-checker (similar to type-checking). It will give an

error like

READ of 'mesh.vertices.x'
var d_x = e.head.x - v.x

^

conflicts with REDUCE of 'mesh.vertices.x'
v.x += dt*v.v

^

In other words, this function contains a data race. Recall that we will invoke

take_step via a data-parallel loop over the mesh.vertices. When we do this, the

order in which the vertices are processed is not defined. So, consider two connected

vertices v1 and v2. If we run take_step on v1 first, then we will update v1.x so that

when we run on v2, d_x is computed using the updated, rather than old position of v1.

If we instead run take_step on v2 first, the situation is reversed. The compiler has

detected this inconsistency as an error. When compiled to various parallel execution

models, stranger executions may result, depending on the particular ways in which
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fragments of computations get interleaved and merged.

The most important feature of Ebb and all of the languages presented in this

dissertation is the ability to detect and prohibit these kinds of errors at compile time

independent of the hardware target. As a result, even if a simulation-programmer

develops, debugs, and verifies their code running serially, on the single core of a

personal computer, the program is still guaranteed to be safely portable to run on

a GPU (as I will demonstrate in this dissertation), to run on a super-computer (left

undemonstrated), or on other sorts of parallel hardware that can exploit the data-

parallel loops.

How can we write the integration code safely then? We must break it into two

functions, storing an intermediate of the computation in a field.

ebb function SpringMass.computeInternalForces( v : mesh.vertices )

for e in v.edges do

var d_x = e.head.x - v.x

var m_x = magnitude(d_x)

var c = K * (e.rest_len - m_x) / m_x

v.force += c * d_x

end

end

ebb kernel SpringMass.applyForces( v : mesh.vertices )

var acc = v.force / v.mass

v.x += dt*v.v

v.qd += dt*acc

v.force = {0,0,0}

end

This applyForces function still seems to contain read-write and read-reduce conflicts.

So why is it ok? Simply, the di↵erent accesses are all performed to a single vertex v,

and no neighbors. We can view this as granting each iteration of the parallel-for loop

an exclusive lock to its vertex’s data.

One unfortunate property of explicit forward-Euler integration is its tendency to

accrue error as steadily increasing kinetic energy above the analytic solution. For

instance, in our frictionless spring model, we would expect perfect conservation of
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kinetic energy (ignoring gravity). In order to track the empirical divergence, we can

compute the kinetic energy

ebb function SpringMass.measureKineticEnergy( v : mesh.vertices )

E += 0.5 * v.mass * dot(v.v, v.v)

end

This function reduces a per-vertex quantity into a global variable E. Like with non-

exclusive field accesses, e↵ect-checking ensures that a global cannot be read and

reduced simultaneously, but preserves the possibility to perform this reduction in

parallel.

Ebb also enables performance portability by abstracting over substantially di↵er-

ent implementations of the above reduction. On (at least older generations of) GPUs,

the preceding global reduction is most e�ciently performed using a reduction tree,

requiring multiple GPU kernel launches. On networked machines, special MPI reduc-

tion primitives (and special in-switch network hardware) can be used to accelerate

this kind of reduction.

Finally, to run this simulation, we must initialize the data and perform the basic

integration steps in a loop

-- Load data and constant fields

SpringMass.mesh.Load('dragon.off')
SpringMass.mesh.vertices.mass.Load('dragon_mass.data')
SpringMass.mesh.vertices.x.Load(SpringMass.mesh.vertices.pos)

SpringMass.mesh.vertices.v.Load('dragon_initvel.data')
SpringMass.mesh.vertices.force.Load({0,0,0})

-- initialize derived data

SpringMass.mesh.edges.initLen()

for i=0,10000 do

SpringMass.mesh.vertices.computeInternalForces()

SpringMass.mesh.vertices.applyForces()

if i % 1000 == 999 then

SpringMass.E.set( 0 )

SpringMass.mesh.vertices.measureKineticEnergy()
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print('energy: ', SpringMass.E.get())

end

end

In Ebb, we call the immediately preceding code the sequential program, which

orchestrates (via Lua or some other host language) the execution of the data-parallel

computations defined in Ebb proper, which defines the parallel part of the program.

In this way, Ebb programs resemble a bulk-synchronous parallel program from the

simulation-programmer’s point of view.

2.1.2 Embedding Strategies / The Host Program

Across the three prototypes of this thesis, I have used a few di↵erent language em-

bedding strategies. We just saw an example of embedding the syntax of Ebb into

Lua3 and also sequencing/orchestrating the sub-computations of our program from

Lua. An important alternative that I used in my other prototypes ends a Lua/DSL

file with a call to compile the schema and functions as a C-library. If we did this

instead, the sequential program would be written in C or C++. It would begin by

initializing a SpringMass object/store to hold all the data.

This library generation strategy looks something like the following. At the end

of the Lua/Ebb file, we call a DSL-supplied Lua function to compile the library.

(recall that the curly braces here su�ce to pass the table of named arguments into

the function call)

CompileLibrary {

schema = SpringMass,

functions = { SpringMass.initLen,

SpringMass.computeInternalForces,

SpringMass.applyForces,

SpringMass.measureKineticEnergy },

c_obj_file = 'SpringMass.o',
c_header_file = 'SpringMass.h',

}

3this was accomplished using the Terra DSL facilities to hijack the Lua lexer-stream at every
occurrence of the keyword ebb.
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This call generates the object and header files to be used by the C build process.

Then, the host program can be written in C something like the following

#include "SpringMass.h"

...

int main() {

SpringMass sm = Create_SpringMass();

mesh_LoadFile(sm, 'dragon.off');
mesh_vertices_mass_LoadFile(sm, 'dragon_mass.data');
mesh_vertices_x_LoadCopy(sm, 'mesh.vertices.pos');
mesh_vertices_v_LoadFile(sm, 'dragon_initvel.data');
mesh_vertices_force_LoadConst(sm, vec3f {0f,0f,0f} );

mesh_edges_initLen(sm);

for (int i=0; i<10000; i++) {

mesh_vertices_computeInternalForces(sm);

mesh_vertices_applyForces(sm);

if (i % 1000 == 999) {

mesh_E_set( sm, 0 );

mesh_vertices_measureKineticEnergy(sm);

printf("energy: %f\n", mesh_E_get(sm));

}

}

Destroy_SpringMass(sm);

return 0;

}

The Ebb prototype used Lua as a host-language, more aggressively than just

presented. Rather than compile the entire schema and functions, it deferred their

compilation until necessary, using a JIT compilation strategy. As such, data could

be loaded before defining functions on it. Results of computations on that data can

then be used to modulate constants and otherwise alter the later-defined functions.

Despite this, the entire Lua/DSL environment could be compiled into a C or C++
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program in the same way that Lua and Lua/Terra can.

While the tradeo↵s between these di↵erent hosting and embedding strategies for

a DSL are interesting (and important in practice) this dissertation did not set out to

learn anything novel about embedding. The reasons for adopting one or the other

strategy were incidental.

2.1.3 Coupling Domains — Tracer Particles

Lets look at how to augment an existing geometric domain with additional domains

and computations. To do a fluid simulation on a grid, we’ll load a grid module instead

of the tetrahedral mesh.

local GridLib = require 'domains.grid'
local grid2d = GridLib.Grid2d.instance()

As before we include the schema from the module into our simulation schema.

However, this time we add new tables as well as new fields to the schema. In partic-

ular, we create a new table to represent a set of tracer particles.

local ebb schema StableFluids

import grid2d

table particles

field particles.pos : vec3f

field particles.dual_cell : grid2d.dual_cells

end

As we did for vertices in the spring-mass system, we define a position field for our

particles. Yet, when we get to the next line we see something strange. The “type”

of dual_cell is a table from the grid2d schema, not a type as we might normally

think. This is really shorthand for the type row(grid2d.dual_cells), which is the

type of a reference4 to some row/element of the table dual_cells. We use this field

to track which (dual) cell of the grid each particle is currently located in.

4In C/C++ approximately a pointer, absent pointer arithmetic.
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Metric vs. Topological Data. Here we see the basic distinction between topo-

logical and metric data that runs through most of this dissertation. Topological fields

(i.e. data) are those fields with row(...) type. Metric fields are those fields with sim-

ple value types (float, int, double, &c.) or structured value types (vec3f, mat4d,

&c.). Topological fields tell us how the di↵erent tables of the schema are connected

together, while metric fields keep track of the quantities that represent the state of

the simulation.

Suppose we have defined a complete fluid simulator on the grid without referencing

the particles. (We will look at how to do this in more detail in the next example.)

How do we move the tracer particles in the flow, in order to visualize it?

Well, first suppose that the dual_cell data is accurate. Then, we can interpolate

the velocities from the four nearby grid cells, and advect the particle appropriately.

ebb function SpringMass.advect_partcles( p : particles )

var x1 = fmod(p.pos[0] - 0.5f)

var y1 = fmod(p.pos[1] - 0.5f)

var x0 = 1.0f - x1

var y0 = 1.0f - y1

var c = p.dual_cell.cell

var vel = x0 * y0 * c(0,0).vel

+ x1 * y0 * c(1,0).vel

+ x0 * y1 * c(0,1).vel

+ x1 * y1 * c(1,1).vel

p.pos += dt * vel

end

Observe that we specify o↵sets from the cell c using the syntax c(xoff,yoff) to

access the 4 cells at the corners of the particle’s dual-cell. The interpolation is a

simple bi-linear interpolation.

Generally, Ebb does not allow the user to safely change topological data during the

simulation (i.e. after initialization). However, Ebb allows us to make one important

exception for particle-like data. In order to use this feature, the following things must

be true. (Note that dual_cells is a grid-structured table.)

• The schema contains a table P and a grid G (a special kind of table, defined
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soon)

• There is a field P.g : G

• There is a way to compute the “position” of each row of P in the grid G

Given these conditions, Ebb allows us to use a PointLocate feature to recompute

the topological link.

-- add the following field to the schema

local ebb schema StableFluids

...

field particles.dc_index : vec2i

end

-- add the following to the particle update

ebb function SpringMass.advect_partcles( p : particles )

...

p.dc_index = vec2i(p.pos + {0.5f,0.5f}) -- offset for dual-cell

end

-- This call will update the dual_cell topological field

StableFluids.grid2d.dual_cells.PointLocate(

StableFluids.particles.dual_cell,

StableFluids.particles.dc_index

)

Lookups that go out of range of the grid are clamped back into range. (e.g. the lookup

to global index (�1, 1) would resolve to looking up cell (0, 1).)

When we get to the gong DSL, this special-case feature will be subsumed in a more

general mechanism for updating topology from geometric intersections. However, it’s

worth noting that special cases can be added without the general feature, and that

the special cases can be implemented very e�ciently.
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2.1.4 Subsets and Boundaries — Stable Fluids

In the previous example we made reference to an undescribed fluid simulator. This

simulator implemented Stable Fluids[Sta99], a semi-Lagrangian implicit fluid simu-

lation strategy on grids. In order to accomplish this, we need some way to solve

linear systems, to enforce boundary conditions, and to advect the velocity field (the

semi-Lagrangian step). We will now investigate these issues.

The state of our fluid simulation requires a per-cell velocity field, and then a few

copies of this field in order to orchestrate the computation.

local ebb schema StableFluids

...

field grid2d.cells.vel : vec3f

field grid2d.cells.vel_prev : vec3f

field grid2d.cells.vel_temp : vec3f

end

Velocity di↵usion accounts for viscosity phenomena—the friction of the fluid with

itself. Let v denote the velocity field (vij the velocity at cell (i, j)), r2
v the spatial

Laplacian of the velocity field, and ⌘ the viscosity of the fluid. Then the di↵usion

equation may be written
dv

dt
= �⌘r2

v

The spatial discretization of r2 on our grid produces the equation

(r2
v)i,j = vi,j �

1

4
(vi+1,j + vi�1,j + vi,j+1 + vi,j�1)

(assuming a cell width of length 1)

Then, using an implicit backwards-Euler discretization of the di↵erential equation,

we get the integration equations
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where in the last formulation, we have bundled all of the equations into a linear

system, to which we will apply an iterative linear solver.

However, first notice that this problem is ill-posed. vi�1,j is only meaningful if i

is greater than 0 (or whatever the bottom of the grid range is). In physical terms,

we need to decide what happens at the boundary of the grid by imposing boundary

conditions. One simple solution, useful for certain analytic problems is to assume the

grid simulation is infinitely repeating and symmetric by allowing the grid to “wrap

around”. This introduces various periodicities into the simulation results, and so is

called periodic boundary conditions. We could impose these by providing a directive

to ebb telling it to wrap around every out-of-range field access to the grid:

local ebb schema StableFluids

...

set periodic[0] grid2d.cells -- set x-wrapping

set periodic[1] grid2d.cells -- set y-wrapping

end

However, more often we want to model the boundaries as walls. Von-Neumann

boundary conditions allow us to accomplish this by specifying the velocity with re-

spect to the walls. We will specify that the velocity field should always be parallel

to the walls—that there should be zero velocity in the normal direction to the wall.

Skipping the derivation, the integration equation arising from this situation along the

negative x direction wall is

(1 +�t ⌘)vt(i,j) �
�t ⌘

4
(2vti+1,j + v

t
i,j+1 + v

t
i,j�1) = v

t�1
i,j

This suggests that we will have to perform some special kind of computation on the
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boundary of the grid, di↵erent from the computation on the interior. Ebb provides a

subset mechanism for this purpose.

local ebb schema StableFluids

...

subset grid2d.cells.interior

subset grid2d.cells.boundary

end

...

-- load data as if the subset was a Boolean field

StableFluids.grid2d.cells.interior.Load('interior_flags.data')
StableFluids.grid2d.cells.boundary.Load('boundary_flags.data')

Note that rather than provide a sophisticated set of language features for describ-

ing subsets, we simply let/require the user load arbitrary Boolean data. (Subset

management and computation was not a major focus of this dissertation research)

To solve the di↵usion system, we will rely on a Jacobi solver. Let p = v
t�1 be the

velocity at the previous timestep. Since the solver itself is iterative, we will need to

name the velocity at the current and next iteration. The current iteration velocity

will be denoted v and the next iteration velocity v
0. Then given a decomposition of

the system matrix A = D + R into its diagonal D and o↵-diagonal R entries, the

iteration equations for the Jacobi solver are

v
0 = D

�1(p�Rv)

v
0
i,j =

1

1 +�t ⌘
(pi,j � (Rv)i,j)

=
1

1 +�t ⌘

✓
pi,j +

�t ⌘

4
(vi+1,j + vi�1,j + vi,j+1 + vi,j�1)

◆

In the negative x boundary case, this is modified to

v
0
i,j =

1

1 +�t ⌘

✓
pi,j +

�t ⌘

4
(2vi+1,j + vi,j+1 + vi,j�1)

◆
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Our di↵usion solver will simply iterate this stencil computation multiple times for

each timestep that we advance the simulation.

ebb function StableFluids.diffuse_step( c : grid2d.cells )

var diag_coeff = 1 / (1 + dt * viscosity)

var edge_coeff = (dt * viscosity) / 4

var esum = c(-1, 0).vel + c( 1, 0).vel +

c( 0,-1).vel + c( 0, 1).vel

c.vel_temp = diag_coeff * (c.vel_prev - edge_coeff * esum)

end

We will need an additional modified version of the function for the boundary case.

ebb function StableFluids.diffuse_boundary_step( c : grid2d.cells )

var N_x = grid_size(grid2d.cells, 0)

var N_y = grid_size(grid2d.cells, 1)

var diag_coeff = 1 / (1 + dt * viscosity)

var edge_coeff = (dt * viscosity) / 4

var esum : float =

( (xid(c) == 0 )? c( 1, 0).vel else c(-1, 0).vel )

+ ( (xid(c) == N_x)? c(-1, 0).vel else c( 1, 0).vel )

+ ( (yid(c) == 0 )? c( 0, 1).vel else c( 0,-1).vel )

+ ( (yid(c) == N_y)? c( 0,-1).vel else c( 0, 1).vel )

c.vel_temp = diag_coeff * (c.vel_prev - edge_coeff * esum)

end

Then in order to solve for the velocity, we sequence these calls as

local function diffusion_solve()

StableFluids.grid2d.cells.Copy { from='vel', to='vel_prev' }

for i=1,20 do

StableFluids.grid2d.cells.interior.diffuse_step()

StableFluids.grid2d.cells.boundary.diffuse_boundary_step()

StableFluids.grid2d.cells.Copy { from='vel_temp', to='vel' }

end

end

The projection step of Stable Fluids, being a Poisson equation resolves into a similar
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Jacobi solver. The advection step however, uses a (possibly non-local, non-neighbor)

lookup into the grid in order to move the velocity field along itself. (This is the

Lagrangian part of “semi-Lagrangian”)

Using (or perhaps abusing) the previously described PointLocate feature, we can

accomplish advection. We extend the grid cells themselves, rather than the particles

with a topological field.

local ebb schema StableFluids

...

field grid2d.cells.adv_index : vec2i

field grid2d.cells.adv_cell : grid2d.dual_cells

end

ebb function StableFluids.advection_point( c : grid2d.cells )

-- we lookup backwards because we are using

-- backwards-Euler integration

var offset = -c.vel_prev

-- center is pre-defined by the Grid library

return c.center + dt * offset

end

ebb function StableFluids.set_advect_target( c : grid2d.cells )

-- 0.5f offsets are for dual-cell grid

c.adv_index = vec2i( advection_point(c) + {0.5f,0.5f} )

end

ebb function StableFluids.advect_velocities( c : grid2d.cells )

var lc = c.adv_cell.cell

var pt = advection_point(c)

var x1 = fmod(pt)

var y1 = fmod(pt)

var x0 = 1.0f - x1

var y0 = 1.0f - y1

c.vel = x0 * y0 * lc(0,0).vel_prev

+ x1 * y0 * lc(1,0).vel_prev

+ x0 * y1 * lc(0,1).vel_prev
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+ x1 * y1 * lc(1,1).vel_prev

end

local function do_advection()

StableFluids.grid2d.cells.Copy { from='vel', to='vel_prev' }

StableFluids.grid2d.cells.set_advect_target()

StableFluids.grid2d.dual_cells.PointLocate(

StableFluids.grid2d.cells.adv_cell,

StableFluids.grid2d.cells.adv_index

)

StableFluids.grid2d.cells.advect_velocities()

end

This example helps demonstrate the versitility of Ebb’s primitives. As we might

expect from any reasonable language design, the features can be repurposed to new

ends beyond their original intention.

2.1.5 Language Interoperability — Custom Solvers

Similar to other graphics languages, Ebb was developed to be used as only one part of

a larger application. To this end, we saw di↵erent strategies in §2.1.2 for embedding

the language. However, another important aspect is to interoperate with existing

code.

For instance, highly optimized packages for linear system solving exist on many

machines. While calling Ebb code from the host language is straightforward enough,

it’s less clear how to interact closely with the data model.

In Ebb I exposed data-layout-description meta-data objects to simulation-programmers.

While Ebb retains the freedom to layout data as it sees fit internally, these descriptors

allow simulation code to query Ebb about the layout it has chosen. When invoked

for a particular field these descriptors tell the simulation-programmer whether data is

located in the GPU or CPU memory, which order the dimensions of a grid are stored

in, as well as the address and strides the simulation-programmer should use to index

the field looking for a particular row’s datum.

For instance, here is a function designed to compute the di↵usion step in the



34 CHAPTER 2. EXAMPLE SIMULATIONS & PROGRAMS

frequency domain, by making use of CUFFT5, an optimized CUDA FFT library. We

could have likewise used FFTW6 if the data were located on the CPU

local gridFFT = GridLib.Grid2d.instance()

local ebb schema

...

field grid2d.cells.vel_x : float

field grid2d.cells.vel_y : float

include gridFFT

field gridFFT.cells.vel_x : vec2f -- complex number

field gridFFT.cells.vel_y : vec2f -- complex number

end

-- here we use terra as a C-like language to import C code

local C = terralib.includecstring "#include <cufft.h>"

-- definitions of extra ebb functions omitted for brevity

...

local function diffuseProjectGPU()

-- break velocity field into x and y components

StableFluids.grid2d.cells.separate_vel()

-- verify location

assert( grid2d.cells.vel_x.getDLD().proc == 'GPU',
"expected cells.vel_x data to be on the GPU" )

-- get pointer addresses

local cells = StableFluids.grid2d.cells

local FFTcells = StableFluids.gridFFT.cells

local x_GPU = cells.vel_x.getDLD().address

local y_GPU = cells.vel_y.getDLD().address

local x_FFT_GPU = FFTcells.vel_x.getDLD().address

local y_FFT_GPU = FFTcells.vel_y.getDLD().address

-- convert to freq. domain

5developer.nvidia.com/cuFFT
6↵tw.org/
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C.cufftExecR2C(x_GPU, x_FFT_GPU)

C.cufftExecR2C(y_GPU, y_FFT_GPU)

-- diffusion is separable in the frequency domain,

-- and so becomes a trivially parallel operation

-- operating on each frequency independently.

StableFluids.gridFFT.cells.FFT_diffusion()

-- convert back

C.cufftExecC2R(x_FFT_GPU, x_GPU)

C.cufftExecC2R(y_FFT_GPU, y_GPU)

-- re-pack

StableFluids.grid2d.cells.rejoin_vel()

end

2.2 Geometric Domain Libraries

2.2.1 The TriMesh library

As a running example, I will explain the construction of a standard triangle mesh

domain. To begin, we create three relational tables to model the triangles, (directed)

edges, and vertices of the mesh. As we do this, I will use a graphical notation to

visualize the schema we are describing. In the graphical notation, each box represents

a di↵erent table.

triangles vertices

edges

local ebb schema TriMesh

table triangles

table edges

table vertices

end
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In fact, we have already seen the declaration of tables in the special case of a table

of particles.

The most basic way to connect tables together is through using key-fields, aka.

topological fields, or row-type fields. These fields encode functional relationships such

as specifying the head or tail of an edge. Of course each edge must have one and

exactly one head (resp. tail) vertex. We set up these fields simply by declaring them,

as we have already seen done with the dual_cell field designating the cell in which

each particle is located.

triangles vertices

edges
head
tail

v[3]

local ebb schema TriMesh

...

field triangles.v : vertices[3]

field edges.head : vertices

field edges.tail : vertices

end

The visual notation for a key-field is simply an arrow labeled with the field’s name,

going from the base table for the field to the table of its destination type. Note in

particular here that we allow row-types to be grouped into vectors or matrices to

simplify our naming schemes.

In order to make use of a key-field in code, we simply “follow” the field, as in the

expression e.head or e.tail, which we saw in earlier uses of the TetMesh.

Note that loading in initial data for a key-field requires using integer values to

address the rows of other tables. While these specific values are important for ini-

tializing the data, the compiler-programmer can swap out the representation however

they like after that point.

We’ve already seen the previous concepts (tables and topological fields) used

directly. However, we never did get an explanation for how the for e in v.edges

construct works.
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We call theseQuery-loops. Setting up a seamless query loop like for e in v.edges

requires both the underlying modeling ideas, plus macro functionality to make it look

pretty for the user of the geometric-domain library. The full syntax would more ac-

curately resolve to something like

for e in edges where e.tail == v do ... end

or

for e in query(e, edges, e.tail == v) do ... end

which mean the same thing, but presents an important syntactic variation, highlight-

ing that e is ranging over the results of some “query”.

Field Macros. In the latter case, we can see how a macro that replaces v.edges

with query(e, Edges, e.tail == v) would su�ce to give us the desired syntax for

a user of the geometric domain library. We can accomplish this using a field macro

feature built into Ebb. The basic idea is taken from Terra’s macro design, using a

Lua function and quoted code to implement macros. In Ebb we write this...

TriMesh.vertices.NewFieldMacro('edges', function(v)

local edges = TriMesh.edges

return ebb �query(e, edges, e.tail == v)

end)

Now, whenever the “field” vertices.edges is accessed, the Ebb compiler will

execute the anonymous function bound via NewFieldMacro, and substitute the quoted

expression (ebb �...) in its place.

Returning to our discussion of query-loops, we can observe a general idea (“queries,

in the sense of relational databases can be embedded into programs via looping con-

structs”) and also a vastly more specific one (“topological fields may be ‘inverted’ in

the sense that we can loop over the pre-image of some element”). One of, if not the

central design decision in Ebb is to prohibit the general idea in favor of the specific

one.

In Ebb, queries must have the specific form query(x, X, x.f == y), where X is

a table7, x : X an element ranging over it, y : Y some specific element of table Y,

7not a grid-structured table either
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and finally X.f : Y a field linking the two. The query precisely specifies the pre-image

of y under the field f interpreted as a function X ! Y .

Ebb further imposes responsibility on the simulation-programmer by requiring

them to anticipate and pre-declare the way in which they want to query the data. In

order to invert a field X.f : Y with a query, the simulation-programmer must have

issued a data-modeling directive, telling Ebb to prioritize access to X via its f-values.

(We extend our visual notation with a dotted-arrow, labeled with group-by : tail.

This symbol is used to indicate where the schema has been prepared for fast querying.)

triangles vertices

edges
head
tail

v[3]

group-by: tail

local ebb schema TriMesh

...

set group_by edges.tail

end

Our restrictions and this directive together guarantee that queries can be answered

in constant time, using a single memory lookup.

In order to support a more complex query, like “all of the triangles around a

vertex” we need to do more extensive work setting up our domain-library. The

triangles.v field is really three fields, so we can’t just take the pre-image of a

vertex in v[0] or v[1] or any other field we come up with, since the relationship

between triangles and vertices isn’t functional.

Instead we have to represent this relationship as a table itself (the main idea of

relational data modeling). In Ebb, I informally refer to these metric-data-free tables

(that exist solely for the purposes of navigation) as auxiliary tables.
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triangles vertices

edges

TV

head
tail

v[3]

head vert

group-by: tail

group-by: vert

local ebb schema TriMesh

...

table TV -- triangle-vertex pairs

field TV.tri : triangles

field TV.vert : vertices

set group_by TV.vert

end

TriMesh.vertices.NewFieldMacro('triangles', function(v)

return ebb �query(tv, TriMesh.TV, tv.vert == v).tri

end)

Note the additional access (query(...).tri) post-fixed to the query in the macro.

This syntax is shorthand to immediately get the triangle component of the query

result, rather than a row of a table we’re looking to hide. In e↵ect, this desugars as

for t in query(tv, TriMesh.TV, tv.vert == v).tri do ... end

-- desugars to

for tv in query(tv, TriMesh.TV, tv.vert == v) do

var t = tv.tri

...

end

2.2.2 Data Loading

Data Loading is closely connected to questions of host-language, interoperability and

DSL embedding—all are “external” to the DSL in some sense. One approach is to

focus on supporting certain standard file formats. Such an approach can be good for

reducing code complexity. Another approach is to provide a generic mechanism for all
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file formats, and leave writing the loading/saving code to users. In practice, both are

required. However, the latter is in some sense more fundamental, since “standard”

formats can be built on top of a generic mechanism.

For each DSL prototype I exposed some choice or combination of by-row loading

and by-column loading. In the row case, a sequence of API calls are made, each of

which loads an entire row of a table, specified as a tuple. More useful (and potentially

more e�cient) is the column case, where a load call simply passes a pointer to an

array holding the entire contents of a table column. The by-column approach has

the additional benefit that it allows for easier modularization of loading when split

between libraries and simulations using those libraries, since simulations may extend

the base data model with additional fields.

Loading metric fields is relatively straightforward, but loading topological fields

presents an additional challenge. We must have a consistent way of refering to rows,

i.e. encoding keys. When loading data, we number rows of table X from 0 to n � 1,

where n is the number of rows in table X. However, in general there is no guarantee

that later API access to the data presents the rows in the same order. This presents

another subtle tension around interoperability that I left mostly unexplored. Many

instances of this issue can be resolved by simply loading an auxiliary id field, and

using that data to keep track of a consistent external identity. In some cases, this

may even be a 64-bit pointer to some “object” of a host program.

For the TriMesh library, I provide at least a standard loader from OFF files, which

consist of a “triangle list” (consisting of triples of vertex indices) and a “vertex list”

(consisting of triples of floating point values—coordinates of the points). As such, the

standard TriMesh library comes equipped with a standard pos : vec3f field holding

these coordinates.

When necessary, metric fields can be annotated in our graphical notation with a

labeled, dangling, circle-tipped arrow.

triangles vertices

edges
head
tail

v[3]

group-by: tail

pos : vec3f
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Note that the format of OFF files implies an evident but up-to-now ignored point:

once the vertices and triangles of a mesh are known, the edges may be derived from

that existing data. In Seam (§2.3.2) I will describe a view mechanism that exploits

this observation directly. However in the more basic, stripped-down data model of

Ebb we must handle the edge data derivation ourselves. Consequently, the loader

uses DSL-external data structures to build up and de-duplicate a set of mesh edges,

using a sparse-matrix/graph encoding.

2.2.3 The TetMesh library

If we simply collect all of the ideas from the triangle mesh and adapt them, we can

build our desired tetrahedral mesh. I will leave out extraneous detail, but include

some additional data necessary to execute the FEM example from the evaluation

section (§7.1.2).

vertices

edges
head
tail

v[4]

group-by: tail

tetrahedra

e[4][4]

local ebb schema TetMesh

table verts

table edges

table tets

field tets.v : verts[4]

field tets.e : edges[4][4]

field edges.head : verts

field edges.tail : verts

set group_by edges.tail

end

Similar to the triangle mesh, the tetrahedral mesh has 3 relations, tets, verts,

and edges. Key-fields are defined for tet vertices tets.v[4], and edge endpoints

tail and head. We group the edges by tail. We make the choice to include not only

directed edges, but also a self-loop edge per vertex. Rather than being principally
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geometric, edges of the tet mesh are used to model the support structure for sparse

matrices on the domain, and these self-loops correspond to diagonal entries. Since

updates to the edge operator are computed per-tetrahedron and reduced into the

appropriate edges, we further augment the tet relation with a matrix-organized key-

field tets.e[4][4] simplifying indexing code. To encode the sti↵ness matrix itself,

we store 3 ⇥ 3 matrix values per-edge in a sti↵ness field, producing, in aggregate, a

fairly sophisticated sparse block matrix encoding that can be easily addressed and

updated from the tetrahedra.

2.2.4 Render-mesh Coupling

Since geometric domains in Ebb are built out of a collection of relational tables, there

is no reason that simulation code can’t link relations of di↵erent domains together in

a given simulation. For instance, a common strategy for soft-body FEM simulations

in graphics is to embed a high resolution triangle mesh of an object inside of a lower

resolution tetrahedral mesh, on which the simulation actually occurs. To do this in

Ebb, a programmer only needs to set up one additional field TriMesh.vertices.tet

of TetMesh.tets-type. Then, vertices of the triangle mesh can update their position

by interpolating the positions of the containing tet’s vertices v.tet.v[k].pos for

k=0,1,2,3.

tet-mesh 
w/ 

trimesh 
embedded

tris verts
v[3]

tets verts
v[4]

tet

tetmesh

trimesh

Of particular interest with this example is the ability to provide a standard bind-

ing between the triangle-mesh schema and the rendering pipeline. In this mapping

triangles.v is simply the triangle list and vertices.pos the position data. Addi-

tional fields on the two tables can be bound as triangle attributes or vertex attributes
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respectively. For simulations entirely on the GPU, this coincidence between the stan-

dard rendering model and our relational model can allow us to directly render and

simulate without any extraneous data motion.

2.2.5 The Grid Library

In the implementation of the regular grid domain, I chose to provide multiple kinds

of elements (e.g. vertices, cells, dual-cells, &c.). As we will see, establishing topolog-

ical connections between grids requires no data. Consequently, creating a system of

multiple interrelated grids incurs no storage overhead. Besides a very small, constant

amount of metadata, each individual grid only uses space proportional to its number

of rows for each field defined on it.

dual_verts

cells
vert

dual_cells

verts
cell

cell

vert

dual dual dual dual

local ebb schema Grid2d

grid[2] cells

grid[2] verts

grid[2] dual_cells

grid[2] dual_verts

end

Grid declarations must state the number of grid indexing dimensions. Note that

in our graphical notation, we make no special annotations to distinguish grids from

tables, although grids cannot have group_by directives issued on them as targets,

and therefore edges out of grids cannot be inverted8.

Most connections between grids (including from a grid to itself) are more suc-

cinctly and computation-e�ciently described by arithmetic. For instance, “one grid

8This is because grids must be stored in grid-order. Where absolutely necessary, fields can be
inverted using the auxiliary table technique already shown.
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cell away in the positive-x direction” corresponds to “increment the x-index by one”

and “the minimum corner of this cell in all directions” corresponds to “re-interpret

the input indices—unmodified—as indexing a di↵erent grid.” We saw some of these

examples of using such links in the previous Stable Fluids example (§2.1.4). For in-

stance, given a cell c we expressed the x-o↵set as c(1,0), and given a dual-cell dc we

expressed the minimum of the four cells at its corners as dc.cell. As with query-

loops, these are both syntax macros abstracting a more basic underlying feature.

In general, Ebb allows us to express arbitrary a�ne-indexing transformations.

Such transformations cost some arithmetic, but zero memory accesses to perform.

Recall that an a�ne transformation of a vector c = [x, y] or c = [x, y, z] is expressable

as multiplication by a matrix, plus an o↵set vector.

Ac+ b =

"
a00 a01

a10 a11

#"
x

y

#
+

"
b0

b1

#

or

Ac+ b =

2

664

a00 a01 a02

a10 a11 a12

a20 a21 a22

3

775

2

664

x

y

z

3

775+

2

664

b0

b1

b2

3

775

Ebb provides a special primitive built-in function affine(G2,A,b,c) where c is

a row of grid G1, a d1-dimensional grid, where G2 is a d2-dimensional grid, A is a

d2 ⇥ d1-dimensional matrix, and b a d2-dimensional vector. Furthermore, A and b

must be constant and integer-valued9.

A�ne transformations are the most general set of transformations satisfying two

important properties. First, they are closed under composition, meaning that given a

sequence of a�ne transformations, the result can always be rewritten as a single a�ne

transformation. Second, they send linear inequalities on indices to linear inequalities

on indices. As a result, the question “is this access guaranteed to be valid?” can

be tractably analyzed for accesses to fields defined on grids10. Constant o↵sets alone

9While I never reached a conclusive decision on the question, rational-number coe�cients in the
transformation may also be allowed, with the specification that the transformation output is rounded
strictly down

10The question reduces to satisfiability of an integer linear program
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su�ce for the majority of applications, reducing A to an identity matrix.

In order to package this a�ne-indexing feature, we can use the existing field-macro

feature

Grid2d.dual_cells.NewFieldMacro('cell', function(c)

return ebb �affine(Grid2d.cells, {{1,0},{0,1}}, {0,0}, c)

end)

or when we want to use the c(1,0) syntax, we can use another macro syntax feature.

Grid2d.cells.NewApplyMacro(function(c,x,y)

return ebb �affine(Grid2d.cells, {{1,0},{0,1}}, {x,y}, c)

end)

As already discussed, we can declare subsets or periodicity of grids to enforce

boundary conditions, as well as introspect on cell values using x_id, y_id, &c. built-

in functions.

2.3 Seam Examples (Local Remeshing)

Seam allows a simulation programmer to write local topology-editing operations, such

as re-meshing. While Ebb assumed (with the exception of point-location in a grid)

static topology, Seam complements that model with a way to change topology in-

between the execution of Ebb functions.

Beyond the scope of this thesis, Seam provides a sketch of ways to support verified

synthesis of cyclic data-structure manipulation code via what I and my co-author

Manolis Papadakis have called local graph edits. Such an edit is an operation that

matches, deletes, replaces, and re-wires a local-neighborhood of some vertex in a

graph, or some row in a relational data model. Local meaning that elements touched

must lie within a constant number of hops away from the center element.

As such, I will first describe the applicaiton of Seam to a social network data

model described in the style of Ebb/Seam schemas.
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2.3.1 A Simple Social Network

Consider a simple social network with user accounts that follow one another. We can

model the schema for such a data structure in Seam. As in Ebb, the keyword table

indicates an unordered set of elements, and field defines per-element data stored

in that table. For instance, every Follow models a directed edge between accounts,

by specifying a src and a dst Account. (The basic outline ought to remind you of

vertices and edges in a triangle or tetrahedral mesh)

local seam schema SocialNet

table Account

table Follow

field Follow.src : Account

field Follow.dst : Account

...

end

Extending the data-model beyond Ebb, Seam programmers are allowed to specify

invariants by writing a function that asserts the properties defining the invariant.

Invariants are thus expressed using familiar control flow constructs, rather than a

separate logical specification language.

local seam schema SocialNet

...

invariant no_follow_yourself( f : Follow )

assert( f.src != f.dst )

end

end

Importantly, Seam restricts invariants to a single argument. This constraint makes it

di�cult to write non-local operations that have to doubly-loop over sets, ensuring that

invariants can be e�ciently checked at data-loading time. The no_follow_yourself

invariant above prohibits self-loops from the data-model.

Once a schema has been defined, a Seam programmer can write operations on

that schema, which we distinguish sharply from Ebb functions. While Ebb functions

are designed to be run in parallel for all rows of a table, Seam operations are expressly

intended to be run on a single row to the exclusion of all other rows. For instance, the
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operation SocialNet.Remove of our example schema removes a specific user account

from the network. Doing so requires not just delete-ing the account, but also all

follow relationships with that account as a source or destination.

seam operation SocialNet.Remove( a : Account )

delete a

for f in Follow where f.src == a do

delete f

end

for f in Follow where f.dst == a do

delete f

end

end

In Seam like Ebb, tables represent unordered sets. Consequently, our operation

definitions must be insensitive to the order in which the table elements are looped over.

Furthermore, to keep operations local, we only allow looping over elements connected

to a variable already in scope. These two decisions reproduce the constrained query-

loop construct from Ebb.

In order to simplify the writing of order-independent operations, we take Seam’s

semantics one step forward and make all e↵ects inside of an operation transactional.

That is, all the operation’s e↵ects on memory (delete, new, update) are deferred,

and applied atomically, after the body of the operation is done executing. So, even

though Seam operations are written as pseudo-imperative code, operation seman-

tics are actually declarative. This behavior further frees the programmer from the

responsibility of ensuring that e↵ects are correctly ordered. For instance, in the pre-

ceding operation SocialNet.Remove, Account a is deleted before being used in the

two loops.

Seam statically checks that all references to the deleted Account a have either been

removed or re-assigned at compile time. If we were using a database, we could have

handled this particular case by declaring an ON DELETE CASCADE policy [UGMW02]

between Accounts and Follows. However, such policies have the drawback of defining

behavior globally, rather than per-operation. We need only consider another basic

operation to see this drawback in practice.
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Suppose we realize that our network contains duplicate accounts; we decide to

implement an operation to merge accounts. This operation deletes one of the two ac-

counts, but rather than delete the connected Follows, it re-routes them to the retained

account. In this case, we update the dangling references rather than delete their hold-

ers. As this example shows, di↵erent applications, and—more importantly—di↵erent

operations within the same application, often require di↵erent policies to maintain

data integrity.

-- Incorrect version, will not compile

operation SocialNet.Merge( a1 : Account, a2 : Account )

delete a2

for f in Follow where f.src == a2 do f.src = a1 end

for f in Follow where f.dst == a2 do f.dst = a1 end

end

If we are in a rush, we might quickly code the account merge operation as shown

above, without realizing that it can violate the no_follow_yourself invariant. Seam

was designed to allow the application of formal methods via SMT solvers. As a

result, the Seam compiler is able to generate precise and complete error messages11

for operations. Here we receive

-- Compiler error message

Invariant 'no_follow_yourself' violated, on input:

Accounts = { a1, a2 }

Follows = { f1 }

f1.src = a1, f1.dst = a2

The compiler responds with a minimal network (containing two accounts) that satis-

fies the invariant, but will no longer do so after SocialNet.Merge executes.

In response we will modify the loops to check for follows between the merged

accounts, and delete rather than update those follows. Now we have an operation

that successfully compiles. Any schema that satisfies our invariant is guaranteed to

satisfy that invariant after any combination of account deletions and mergers, ensuring

closure under our defined set of operations.

-- Corrected version

11except in cases where the type-checker times out
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seam operation SocialNet.Merge( a1 : Account, a2 : Account )

delete a2

for f in Follow where f.src == a2 do

if f.dst == a1 then delete f else f.src = a1 end

end

for f in Follow where f.dst == a2 do

if f.src == a1 then delete f else f.dst = a1 end

end

end

As we add more types of elements, operations or invariants to our data structure,

Seam automatically checks for problems arising from their interactions.

group-by? In Seam, I made the decision to suppress the requirement for the simu-

lation programmer to explicity set group-by on tables before performing query-loops.

As we can see in SocialNet.Merge, topology editing (to a substantially greater degree

than stencil computations) frequently requires accessing a table via multiple distinct

fields. Furthermore, since the goal is to support editing topology, it’s no longer rea-

sonable to keep the definition of auxiliary tables externalized. These design tensions

will have crucial consequences for the underlying data model implementations (§6).

2.3.2 Triangle Mesh: Edge-Based Remeshing

Now, lets revisit our Triangle-Mesh schema from Ebb using new tools and ideas from

Seam. To be explicit, we’ll use individual fields for each vertex.

local seam schema TriMesh

table Tri -- triangles

table Vert -- vertices

field Tri.v0 : Vert

field Tri.v1 : Vert

field Tri.v2 : Vert

invariant non_degenerate( t : Tri )

assert( t.v0 != t.v1 and t.v1 != t.v2

and t.v0 != t.v2 )

end
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...

end

In Seam (as we just saw) we can define invariants. One of the most basic (but

often overlooked) invariants of a triangle mesh is that every triangle is combinatorially

non_degenerate, meaning that all three of each triangle’s vertices are distinct.

In the Ebb TriMesh, the Edges between vertices were defined as an additional

table of explicitly managed elements. However, this was redundant; once triangles

are specified, all the edges between their vertices are implicitly defined. To help ease

and automate the simulation programmer’s work in such situations, Seam leverages

the concept of a view from databases. A view is a set of typed tuples, along with

a function (viewdef) that computes the view’s content based on the content of the

basic tables. Such view definition functions take a single argument and use the

same control constructs as invariants and operations. However, they use emit

statements in place of assert or delete, new and update e↵ects.

Using views, we may now define the Edges, as well as two auxiliary tables tracking

incident triangle-vertex pairs, as well as incident triangle-edge pairs (where each edge

is reduced to a pair of vertices).

local seam schema TriMesh

...

view Edge : { hd:Vert, tl:Vert }

view TVV : { t:Tri, hd:Vert, tl:Vert }

view TV : { t:Tri, v:Vert }

viewdef( t : Tri )

emit { t, t.v0 } into TV

emit { t, t.v1 } into TV

emit { t, t.v2 } into TV

emit { t.v0, t.v1 } into Edge

emit { t, t.v0, t.v1 } into TVV

emit { t.v1, t.v2 } into Edge

emit { t, t.v1, t.v2 } into TVV

...

end

end
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Our goal with Seam is to implement adaptive remeshing—the continuous adap-

tation of a mesh, to adjust its resolution and fidelity over the course of a larger

simulation [NSO12, NPO13, PNdJO14, WTGT09, WTGT10, BB09, DBG14]. This

technique is critical in the simulation of certain phenomena, like folding and frac-

tures. One common approach to remeshing is to define two local edit operations:

edge-collapse and edge-split, to reduce and increase the resolution respectively.

(a) TriMesh.EdgeSplit (b) TriMesh.EdgeCollapse

Figure 2.1: Edge-based remeshing operations for a Triangle Mesh

The edge-split operation creates a new split vertex, and then replaces every triangle

connected to the edge with the two triangles resulting from splitting that edge. The

edge-collapse operation collapses one vertex into another by deleting it (similar to

account merging), then re-routing any connected triangles to the remaining vertex.

seam operation TriMesh.EdgeSplit( e : Edge )

let vh = e.hd

let vt = e.tl -- endpoints of e, head and tail

let sv = new Vert -- vertex splitting the edge

for t_e in TVV where t_e.hd == vh, t_e.tl == vt do

let t = t_e.t

-- the following line is a pattern-match

let vh, vt, vopp = t.v0, t.v1, t.v2

delete t

new t_h : Tri { v0=vh, v1=sv, v2=vopp }

new t_t : Tri { v0=sv, v1=vt, v2=vopp }

end

end

seam operation TriMesh.EdgeCollapse( e : Edge )

let vh = e.hd

let vt = e.tl -- edge end-points
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-- strategy: delete vt and redirect it to vh

delete vt

for t_v in TV where t_v.v == vt do

let t = t_v.t

if t.v0 == vh or t.v1 == vh or t.v2 == vh then

delete t

else

if t.v0 == vt then t.v0 = vh

elseif t.v1 == vt then t.v1 = vh

elseif t.v2 == vt then t.v2 = vh end

end

end

end

This example illustrates how the view mechanism eliminates a combinatorial in-

crease in the amount of code, as an application is extended. The views TV and TVV are

each used in only one of the two operations. Still, the Seam compiler generates code

to propagate updates to both views, and adds it to both operations. If we had instead

represented these views as base tables, we would have had to write update code for

the combination of each view and each operation, i.e. we would have had to maintain

a quadraticly rather than linearly growing amount of code, as new operations and

views are added.

Now suppose that after using the re-meshing in our code for a while, we discover

that re-meshing produces duplicate copies of triangles, which is causing strange be-

havior in another algorithm. We decide that we want to disallow this behavior, but

we’re not quite sure why it’s happening. With Seam, we have an unusual option of

where to begin: add an invariant.

local seam schema TriMesh

...

invariant unique_tri_key( t : Tri )

for t2 : Tri where t2.v0 == t.v0, t2.v1 == t.v1, t2.v2 == t.v2 do

assert(t == t2)

end

end

end
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This invariant loops over all triangles with the same vertices (a multi-constraint query-

loop) and complains if it finds anything other than the original triangle.

Having added this invariant, the EdgeSplit operation still compiles, but EdgeCollapse

doesn’t. The counter-example we get back to violate our new invariant is a well-known

edge case, which Seam identifies automatically: a triangle mesh on four vertices, form-

ing a tetrahedron (Figure 2.2).

?

Figure 2.2: Tetrahedral Collapse Edge Case

When one of the edges is collapsed, two triangles are deleted, but the remaining

two triangles coincide on the same three remaining vertices. In some papers [DBG14]

this issue is addressed by deleting one of the two triangles, e↵ectively merging them.

In other papers [BB09] this case is handled by deleting both triangles. Which rule

is appropriate depends on whether the mesh is modeling interfaces like the film of

a soap bubble (the former) or interfaces like a water-air boundary. Seam directs

the programmer’s attention to such edge cases, rather than trying to automatically

resolve fundamentally application-specific decisions.

Finally, this example illustrates how Seam helps support the safe evolution of data

structure code over time, as application requirements change. Consider the case of

the ArcSim code base, which was used in the publication of three successive research

papers [NSO12, NPO13, PNdJO14], on cloth, paper-folding, and paper-tearing sim-

ulation respectively—all relying on triangle mesh edge-based remeshing. As the code

base evolved, the schema changed. Initially, the triangle mesh (implemented as a

C++ data structure) resembled our TriMesh schema, without views. However, by

the third paper, a new requirement had been added. The triangle mesh would have

to track both its original topology as a planar sheet, as well as its torn topology. A

single “node” on the plane could now correspond to one or multiple vertices in the

torn topology, depending on whether the node was located on a tear. We could easily
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model this extension in Seam, by declaring a new Node table, and adding a node field

to the Vertex table. Then, instead of having to manually reason about the e↵ects

of this modeling change on all existing operations, we could rely on the compiler to

direct our attention to the minimal set of edge-cases that need to be addressed.

2.4 Gong Examples (Topology from Collision De-

tection)

Gong (the third language of this dissertation) is concerned with the computation of

new topological data (connectivity/locality) from metric data. Such problems usually

arise in the form of collision detection. Loosely speaking, these problems tend to have

the form “given two sets of objects, find all intersecting pairs” where “intersecting”

has a geometric meaning specified by an intersection predicate.

The idea of Gong is to render these computations into a relational formulation

as spatial joins. This idea (1) allows for a straightforward integration into Ebb and

Seam (which rely on relational data models), and (2) exposes potential parallelism

by abstracting the question of what we want computed from the precise order or way

in which it is computed.

2.4.1 Sphere-Sphere Collision

Consider the following simple collision detection problem: compute all pairs of inter-

secting spheres, where all spheres are of idential size/radius. While the problem is

austere, it lies at the core of a yarn simulation usable by knitters to visualize the con-

sequences of di↵erent knitting patterns[LWS+18]. To encode this sphere-intersection

problem we must (1) describe the input and output data; (2) describe the desired

join computation.

As with Ebb, we describe data via a schema. In addition to the table for our

input data (Spheres), we declare a Contacts table to hold the results of the join.

Each row of this output table is a di↵erent output pair, as indicated by its s0 and

s1 values. However, our computation can also easily record other useful information



2.4. GONG EXAMPLES (TOPOLOGY FROM COLLISION DETECTION) 55

from the collision, such as the normal vector of the contact between the two objects.

local gong schema SphereWorld

table Spheres

table Contacts

field Spheres.pos : vec3f

field Contacts.s0 : Spheres

field Contacts.s1 : Spheres

field Contacts.norm : vec3f

global radius : float

end

Given this schema, we can express a join computation as a function, whose first

two arguments are rows of the two tables being joined—in this case one and the same

table: Spheres. We can think of the body of this join as executing inside of a doubly-

nested loop over the set of Spheres. In the event that the join is a self-join between

a set and itself, (as it is here) the join will only loop over unique pairs (a, b) and not

their duplicate permutation (b, a). The if conditions filter out all non-intersecting

pairs. And then if all of these tests are passed, the emit e↵ect is triggered, outputting

a row into the set of Contacts.

gong join SphereWorld.sphere_self_isct(

s0 : Spheres, s1 : Spheres

)

if s0 != s1 then

var d = s1.pos - s0.pos

var d2 = d[0]*d[0] + d[1]*d[1] + d[2]*d[2]

if d2 <= 4*radius*radius then

emit { s0=s0, s1=s1, norm=d/sqrt(d2) } in Contacts

end

end

end
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2.4.2 Particle-Scene Collisions

The same concepts can be used to encode continuous collision detection between very

di↵erent kinds of objects. For instance, given a set of moving particles, and a static

triangle mesh, we can compute the first triangle (if any) each particle collides with.

First, we declare a schema as before. However, rather than form a table of output

contacts, we declare a per-particle triangle to encode the output topology12.

local gong schema ParticleScene

table Particles

table Vertices

table Triangles

field Triangles.v : Vertices[3]

-- pos0, p0 at initial time ; pos1, p1 at final time

field Vertices.pos0 : vec3f

field Vertices.pos1 : vec3f

field Particles.p0 : vec3f

field Particles.p1 : vec3f

field Particles.tri : Triangles

field Particles.collide_time : float

end

Here we omit the standard ray/edge-triangle intersection arithmetic. More impor-

tantly, if a collision is found for a particle, we want to record only the least collision

time and for that collision, which triangle was collided with. Gong provides the

argmin= operator for this purpose.

gong function ParticleScene.find_collision(...) ... end

gong join ParticleScene.particle_ccd(

p : Particles, t : Triangles

)

var success, time, pt = find_collision(p,t)

if success then

12Doing this requires us to store meaningless triangle data to begin with and for every particle
that does not collide. If I added Maybe types or nullable references to Gong, we could express
the “not valid” concept directly. In the interest of avoiding unnecessary complexity in the prototype,
I deferred this issue.



2.4. GONG EXAMPLES (TOPOLOGY FROM COLLISION DETECTION) 57

p.collide_time argmin= { collide_time = time, tri = t }

end

end

As we saw in Ebb, directly reading and writing fields is not generally safe to do

in parallel. For each particle p, there are potentially as many independent threads

of computation as the number of Triangles. Therefore, we must somehow safely

mediate their parallel contention over the same output value. The argmin operation

does this by defining the least thread with respect to the value of the reduced field

collide_time. In this example, the first triangle (in terms of the simulation time,

collide_time, not in terms of order of computation) that the particle collides with

gets to write its values.

While the particle-triangle continuous collision problem is framed as a collision de-

tection problem, it is very formally similar to ray-tracing/rendering visibility queries.

This connection can help illuminate some properties of the argmin e↵ect. While the

term armin comes from optimization problems, it has the same computational role

here as a Z-bu↵er does—guarding write-access to a number of other output “frame-

bu↵ers”/fields. Likewise, the same “glitch” a↵ecting early rasterizers a↵ects our

definition: Z-bu↵er fighting. Unless we can guarantee that every particle-triangle

pair produces a distinct collide_time value, the join output remains underspecified,

and hence non-deterministic. Internal row identifiers can be used to help stabilize

such non-deterministic behavior.

Lastly, observe that argmin may be implemented in signficiantly di↵erent ways

depending on the kind of hardware support available. If the join computation is

only parallelized over the Particles table, then no concurrency control is necessary

at all. Otherwise, atomic operations can be used to implement lock-free reductions.

At the most extreme end, given the ability to design custom hardware support, we

could exploit speculative hardware Z-bu↵er lookahead strategies to early exit from

computations.
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2.4.3 Persistent Box-Box Collisions

Finally, consider a more complicated example, simplified from a re-implementation

of parts of Bullet[Cou15]. In order to focus on the interesting modeling choices and

language features, we omit the functions obb_isct, best_match, and refresh_depth.

Every contact maintains a cache of up to 4 contact points, acting as a surrogate for

a more complex contact surface. Each of these points additionally stores a Lagrange

multiplier value, which is computed externally to Gong as part of solving for contact

forces.

local gong struct ContactPt {

depth : float

pos : vec3f

}

local gong schema BoxScene

table Boxes

table Contacts

field Boxes.pos : vec3f

field Boxes.qrot : vec4f

...

field Contacts.b0 : Boxes

field Contacts.b1 : Boxes

field Contacts.norm : vec3f

field Contacts.n_pts : uint

field Contacts.pts : ContactPt[4]

field Contacts.l_mult : float[4]

set primary_key(b0,b1) Contacts

end

Note the new primary_key directive/constraint. Giving a table a primary key means

that each row must be uniquely identifiable by the specified field values. In other

words, Contacts may contain at most one row for a given pair of b0, b1 values.

Even though we abstract the majority of the complicated arithmetic into the

obb_isct function, find_contacts contains a large, complicated piece of update
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code, replacing emit by merge. Why is this?

Getting high stability out of contact solvers is a challenging problem. One crucial

trick is to propagate solutions from one frame of simulation to the next, a technique

called warm starting. So long as a scene is static or mostly static, the normal forces

(and hence Lagrange multipliers for contacts) will not change or not change much.

However, when contacts break or form (a discrete change) this complicates the prob-

lem of how to correctly forward propagate the solution from the previous frame.

While working on Gong, I observed that this behavior was crucial to reproducing

the behavior of Bullet, and introduced the merge e↵ect13 to account for the behavior.

When merge is encountered, Gong looks for an existing row in the output table

(Contacts here) whose primary_key value corresponds to the join arguments. Either

this row is present (triggering the update case) or absent (triggering the new case).

The new case behaves like emit in creating a new row. The update case binds the

existing row to the specified variable (c here) and executes the specified code with

exclusive access privileges to the row c, allowing unrestricted reads and writes to its

immediate fields.

Lastly, I discovered that Bullet makes use of special behavior for rows that were

present in the output table previously, but were not detected in the current execution

of the join. These rows, which should be removed, are not always removed. Some-

times, Bullet keeps those rows around—when the contact has been only slightly (less

than EPSILON) broken. The remove case allows us to e↵ect this behavior.

gong function BoxScene.obb_isct( ... ) ... end

gong join BoxScene.find_contacts( b0:Boxes, b1:Boxes )

if b0 != b1 then

var n_pts, norm, contacts = obb_isct(b0,b1)

if n_pts > 0 then

merge in Contacts

new { norm = norm, n_pts = n_pts,

contacts = contacts,

l_mult = {0,0,0,0} }

13Some database systems call this kind of an operation update-or-insert, or upsert—names, neither
of which I can stomach.
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update(c)

c.norm = norm

for i=0,n_pts do

var j, is_eq = best_match(c,contacts,i)

c.contacts[j] = contacts[i]

if not is_eq then c.l_mult[j] = 0 end

end

...

c.norm = norm

c.n_pts = n_pts

end

remove(c)

var max_depth = -100

for i=0,c.n_pts do

var new_depth = refresh_depth(c,i)

c.contacts[i].depth = new_depth

max_depth max= new_depth

end

if max_depth > -EPSILON then

keep(c)

end

end

end end

end

In order to ensure safe parallel execution of the join, we must impose specific

restrictions on what can and cannot be done inside a merge e↵ect. First, the table

being targeted must have a primary_key. This constraint ensures that lookups for

updates will never find more than one row, and simplifies the syntax as an added

bonus. Second, the update and remove blocks are given “exclusive” read-write access

to their arguments, equivalent to the variable argument of an Ebb function. Third,

the remove block creates a fresh variable scope, since it must be safe to run after and

independent of the execution of the rest of the join.

Across these examples, we can see not only considerable variation in what con-

stitutes a collision detection problem/query, but also widely varying requirements

imposed on how to output and store the results. This question of query e↵ects is
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where we find most of the complication in determining whether or not a given join is

parallel-portable, and in safely re-compiling for di↵erent kinds of parallel hardware.

2.4.4 Join Acceleration

The preceding examples specify logically accurate, and parallel portable joins, but do

nothing to encode strategies for accelerating those joins. Usually we do not want to

perform all nm explicit tests in order to find all intersecting pairs between tables of

size n and m. Using a spatial data structure and algorithm (e.g. a BVH, k-d tree,

grid, &c.) we ought to be able to do much better. How do we account for these

acceleration structures from the perspective of joins? In databases, this question—

how to make data more e�ciently accessible—is de-coupled into the choice of index

structure (e.g. B-tree, k-d tree, R-tree, &c.). While this connection is immediately

obvious from listing the data structures in question, it remains implicit at best in the

design of most graphics systems.

As a first example, suppose we want to accelerate the particle-mesh collision

(§2.4.2) using a BVH of axis-aligned bounding-boxes. In Gong we do this by cre-

ating BVH indices on the argument tables, and then specifying a joint traversal of

these BVHs. The BVH and traversal code is provided as a template specified inside

of the Gong compiler. However, this template needs to be filled out with problem

specific details.

Here, we supply a volume type (AABB3f) representing 3d single-precision axis-

aligned bounding-boxes, and functions for interepreting the geometry of these vol-

umes relative to the schema and to each other. That is, we provide an abstraction

function ParticleBox to fit a bounding box around each moving particle; likewise

with TriangleBox. Then we define the union of two boxes, whether or not they

intersect (isct) and the midpoint of a box.

local gong struct AABB3f { lo : vec3f, hi : vec3f }

gong function ParticleScene.ParticleBox( p : Particles ) : AABB3f

return { lo = min(p.p0, p.p1),

hi = max(p.p0, p.p1) }
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end

gong function ParticleScene.TriangleBox( t : Triangles ) : AABB3f

var lo = min( t.v[0].pos0, t.v[1].pos0, t.v[2].pos0,

t.v[0].pos1, t.v[1].pos1, t.v[2].pos1 )

var hi = max( t.v[0].pos0, t.v[1].pos0, t.v[2].pos0,

t.v[0].pos1, t.v[1].pos1, t.v[2].pos1 )

return { lo = lo, hi = hi }

end

local gong function AABB3f_union( a : AABB3f, b : AABB3f )

return { lo = min(a.lo, b.lo),

hi = max(a.hi, b.hi) }

end

local gong function AABB3f_isct( a : AABB3f, b : AABB3f )

return a.hi[0] >= b.lo[0] and

a.lo[0] <= b.hi[0] and ...

end

local gong function AABB3f_midpoint( a : AABB3f )

return 0.5 * (a.lo + a.hi)

end

Except for the abstraction of Particles and Triangles (application specific con-

cepts) we can supply the volume and functions via a standard library.

Using these functions we can create indices for each table, and a joint traversal

over the indices.

local ParticleBVH = BVH_Index {

base_table = ParticleScene.Particles,

volume = AABB3f,

abs = ParticleScene.ParticleBox,

union = AABB3f_union,

point = AABB3f_midpoint,

}

local TriangleBVH = BVH_Index {

base_table = ParticleScene.Triangles,

volume = AABB3f,

abs = ParticleScene.TriangleBox,

union = AABB3f_union,

point = AABB3f_midpoint,
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}

local ParticleTraverse = BVH_BVH_Traversal {

left = ParticleBVH,

right = TriangleBVH,

isct = AABB3f_isct,

}

ParticleScene.particle_ccd.set_traversal( ParticleTraverse )

The idea that we can safely plug code into a template without causing parallelism

issues or exposing the entire compiler to the template system is of particular interest

from a language design perspective. The Gong design accomplishes this feat by impos-

ing the constraint that all template parameter functions are granted strictly read-only

access to the underlying data. By then analyzing (the functions are written in Gong)

which fields are read, the compiler programmer can enforce that none of the join

e↵ects come into conflict with the additional acceleration structure reads. So, even

as we experiment with di↵erent accelration structure strategies, we are safeguarded

from introducing new, unsafe race conditions.

That said, the compiler programmer cannot so easily guarantee the template itself

and user-supplied functions are correct in the sense that they do not produce false

negatives (pairs that are colliding, but are not tested). They must trust that (we)

the simulation-programmers correctly wrote, say the ParticleBox function, without

typos, &c.

To alleviate this tension, the Gong compiler-programmer can supply advanced

debugging functionality. e.g. ParticleScene.particle_ccd.verify_index(true)

will transform the particle_ccd join so that it runs twice. First, it runs with the

BVH, causing normal e↵ects, but additionally caching every e↵ectful pair pair in a

temporary output bu↵er. On the second time through, the join runs slowly, with a

naive double-loop and e↵ects disabled. E↵ectful rows are checked against the bu↵ered

results for discrepancies, which are reported back to us. This kind of systematic

debugging support can be provided in Gong both because compilers can perform

code transformations, and because the language understands (and can diagnose errors
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relative to) the specific semantics of join computations.

As an example of a di↵erent acceleration structure/index, consider our original

SphereWorld example again. For each sphere, we can define a range (lo, hi) of grid

cells that the sphere overlaps. And then given the integer coordinates for such a cell

key : vec3i, we can define a function to hash that down into a linear key.

gong function SphereWorld.SphereRange( s : Spheres )

var r = {radius,radius,radius}

-- inverse grid cell width

var inv_w = 1.0f / (2.2*radius)

var lo = floor( inv_w * (s.pos - r) )

var hi = floor( inv_w * (s.pos + r) )

return lo, hi

end

local gong function hash3i( key : vec3i )

return bit_xor( key[0] * 73856093,

bit_xor( key[1] * 19349663,

key[2] * 83492791 ) )

end

SphereHash = Hash_Index(

base_table = SphereWorld.Spheres,

key = vec3i,

abs_range = SphereWorld.SphereRange,

hash = hash3i

}

SphereTraverse = Hash_Hash_Traversal(

left = SphereHash,

right = SphereHash

)

These functions allow us to define a spatial hash traversal strategy. Here the tem-

plate and functions are di↵erent, but the same overall template architecture applies.

We are able to incorporate our problem-specific knowledge (all spheres have identical

radius) into the hash function, ensuring that each sphere overlaps no more than 8
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grid cells in the worst case.
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Chapter 3

Language Design

In the last chapter (§2) I introduced the three DSL prototypes from the perspective

of a user—the simulation-programmer. In this chapter I will start to look at the

languages from the perspective of the implementer—the compiler-programmer. Be-

sides changing the point of view, I want to zoom out, and outline the limits of these

languages. What is or is not expressible? What is a valid program? What are all

valid programs?

This chapter provides two other good opportunities. Here, I can make explicit the

idea that these DSLs were designed as facets of, as elaboration on a single language.

We can ask precisely, “where and how do the languages di↵er?” And here I can

discuss design trade-o↵s that arise from including or excluding di↵erent features. How

do di↵erent designs shift burderns from the simulation-programmer to the compiler-

programmer or vice-versa?

I will forgo a formal semantics in this chapter, relying on descriptions in English

supplemented by formal syntactic grammars.

3.1 Base Language

I will describe the three prototype languages as variations on a single base language

(Figure 3.1). A “program” will be described as a hlibrary i consisting of a hschema i of
hschema stmt is and any number of supporting hfunc def iinitions; the list of functions

67
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to export is explicitly stated. Basic hschema stmt is either define a table, a field,

or a global. For simplicity, we may assume all constants have been inlined.

Recursive functions are categorically prohibited.

hlibrary i ::= hschema i hfunc def i⇤ export hname i⇤

hschema i ::= schema hschema stmt i⇤ end
hschema stmt i ::= table hname i

| field hname i . hname i : htype i
| global hname i : htype i

hfunc def i ::= function hname i ( harg i⇤ ) [ : htype i]? hstmt i end
harg i ::= hname i : htype i
htype i ::= bool | float | double

| int8 | int16 | · · · | uint8 | · · ·
| row( hname i )
| vector( hint i , htype i )
| struct { [hname i : htype i]⇤ }

Figure 3.1: Basic Language Top-Level

Types are distinguished in two major ways. First, the unstructured types include

primitive metric types (bool through uint) and the topological row type, which must

name a table defined in the schema. Second, the types may be structured using arrays

of constant size (vectors) and/or named structs. For simplicity, we will assume that

all row-types are non-structured, and that all metric types are struct-free, consisting

of a single base type potentially packed into a vector, matrix, &c. My experience with

varying these criteria across prototypes was that these kinds of details/features were

often very important for convenience but not semantically fundamental to the designs.

Statements (Figure 3.2) fall into two groups. On the one hand, there are struc-

tural/control statements, and on the other there are the basic e↵ect statements1

1in the concrete syntax, these e↵ects statements simply appear as assignment and reductions
such as x.f = y or g += z. I distinguish these statements here because it makes the semantics
clearer.
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hstmt i ::= hstmt i ; hstmt i
| var hname i = hexpr i
| hexpr i = hexpr i
| hname i ( hexpr i⇤ )
| if hexpr i then hstmt i [else hstmt i]? end
| for hname i in hquery i do hstmt i end
| while hexpr i do hstmt i end
| return hexpr i
| write hexpr i . hname i = hexpr i
| reduce( hreduce op i ) hexpr i . hname i = hexpr i
| global reduce( hreduce op i ) hname i = hexpr i

hquery i ::= query( hname i in hname i where hqcond i )
hqcond i ::= hqcond i and hqcond i

| hname i . hname i == hname i

Figure 3.2: Basic Language Statements

(write, reduce, global reduce). The global reduce statement must name a

global variable from the schema. Meanwhile write and reduce statements target

some field (.hname i) of a table T (the left hexpr i must have type row(T))2.

In a later chapter (§4), we will examine e↵ects explicitly: Which are allowed?

Which are allowed together?

if, while, and return have the usually expected meanings. While I have omitted

it here, the Ebb and Gong prototypes also included a for loop to iterate over fixed

ranges (e.g. for i=0,3 do ...). This is generally a good idea since it makes compiler

analysis and loop unrolling heuristics much simpler—even if only by carrying the form

through to the back-end compiler.

2Some of my prototypes handled writing or reducing to specific entries of a vector or struct
type; As mentioned, I will avoid these complications for the sake of clearer exposition.
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Query loops (for over a hquery i) are constrained by the choice of query lan-

guage. Our basic assumption is that every query filters a set (x in X) by a conjunc-

tion of inverse-field constraints. Namely, the hqcond i conjuncts must have the form

x.f == _, which amounts to asking for the pre-image of _ through the field f3.

In addition to the form of query loop, we also disallow unconstrained query-loops.

That is, a user cannot simply write for x in X do ... This constraint makes it

di�cult to write doubly-nested loops4. On the one hand, this design choice prohibits

important forms of dense-matrix computations that simulation-programmers may

want to express. On the other hand, this choice strongly encourages the simulation-

programmer to write local computations, since loops must be constrained to explicitly

connected elements.

Variable declaration and assignment (var and the following form) need to be care-

fully considered. At one extreme is the most compiler-friendly approach: eliminate

the re-assignment statement altogether, turning var into e↵ectively write-once let-

bindings. At the other extreme is totally unrestricted re-assignment. I took a middle

ground and allowed reassignment for metric-type variables. However, I disallowed

reassignment of topological row-type variables, since doing so complicates analysis of

the topology and locations of e↵ects.

Disallowing topological re-assignment places an implicit bound (stencil size) on

how many “hops” a function can take, since loops cannot be used to chain an arbitrary

number of topological field reads. In tandem with the restrictions on query-loops, this

constraint forces programs to be local in the sense of (grid-structured and unstruc-

tured) stencil computations.

The expressions from the base language (Figure 3.3) are even more straightfor-

ward. Besides literals and primitive operations, we have the ability to make function

3This specific design choice initially arose from implementation convenience (absent the conjunc-
tion) and was generalized to its current form in response to the analysis underlying the Emptyheaded
database system[ATOR16]. That system handles even worst-case cyclic joins using a nested-loop
structure by cleverly accelerating this primitive: loop over an intersection of pre-image sets.

4A clever simulation-programmer may realize that by creating a topological field T.f with a
constant value r in whatever other table, the query query(t in T where t.f == r) is
functionally equivalent to the whole table T; consequently the design advocated here does not make
“non-local” access impossible—only highly unnatural. More precisely, it requires defining a topology
in which everything is local—i.e. with a constant graph diameter.
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hexpr i ::= hname i | hnumber i | hboolean i
| - hexpr i | not hexpr i | hexpr i hop i hexpr i
| hname i ( hexpr i⇤ )
| { [hname i = hexpr i]⇤ } | hexpr i . hname i
| { hexpr i⇤ } | hexpr i [ hexpr i ]
| read hexpr i . hname i
| global read hname i

hreduce op i ::= + | * | and | or | min | max
hop i ::= hreduce op i | - | / | % | == | != | < | >

Figure 3.3: Basic Language Expressions

calls, construct/destruct data, and read data from the schema (with the same typ-

ing constraints as for write and reduce). struct and vector constructors mimic

the built-in Lua construction syntax for Lua-tables. structs are destructured using

field-name access, while vectors are destructured using indexing.

Unrestricted vector indexing can easily become an Achilles’ heel for what is oth-

erwise a memory-safe data-model. As compiler-programmers, either we need to con-

struct a careful system of constraints to ensure that no index can ever be out of

range, or we expose this problem to the simulation-programmer. In the prototypes

I constructed, I never came to any conclusive decision on how to treat this problem.

In Gong, I stress tested this problem by building out more robust support for small

tensors than in any of the other languages. Despite additional type-checking I had a

nasty bug that arose from an indexing error. One useful fallback for debugging is to

support injection of range-bound tests into every access. Because the small tensors

(vector) have constant size, bounds checking is at least well-defined.

3.2 Ebb (Stencil Language)

The main deviations in Ebb from the base language are to add grids and require

explicit group-by directives. (Figure 3.4) Grids are defined grid[n] foo, where n
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is a constant specifying the dimension of the grid (usually 2 or 3). Then, each grid

dimension can be made “periodic” (i.e. granted wrap-around indexing) by issuing the

periodic[k] foo directive to wrap-around the k-th dimension of the grid. In mixed

situations like an infinite tube, the infinite direction can be made periodic, while the

other directions (modeling walls) can be left with the normal behavior.

hschema stmt i ::= . . .

| grid[ hint i ] hname i
| subset hname i . hname i
| set hoption i

hoption i ::= periodic[ hint i ] hname i
| group_by hname i . hname i

Figure 3.4: Ebb Top-Level

subsets may be declared in Ebb. As mentioned previously, we chose not to try

to optimize the expression and handling of subsets5.

The group_by directive may only be issued on tables, and may only be issued

for at most one field of a table. In Ebb, I made the choice—debatable—to require

explicit group_by directives. However, in the later prototypes (Seam and Gong), I

relaxed this constraint. Let’s consider the two positions here.

The first (Ebb) design exposes the fact that table data-layout can only be max-

imally optimized for access by at most one of potentially many fields at once. In

databases, this concept is often refered to as clustering. A table may be clustered on

at most one column, implying that it is sorted (or at least roughly sorted) on the

values in that column. Consequently, memory-access locality is tied to the clustered

column values. Maintaining a table in this clustered order further eliminates one ad-

ditional layer of indexing data and one additional memory load (per looped row) from

5Of course, bounded range subsets of grids in particular would enable additional implementation
and analysis opportunities. For instance, dependent partitioning[TBS+16] in Legion considers a
more elaborate algebra of subsets; ZPL especially makes the expression of grid regions a primary
concern[Cha01].



3.2. EBB (STENCIL LANGUAGE) 73

the execution of query-loops. An explicit design goal of Ebb was to give simulation-

programmers su�cient control to ensure high-performance programs. Hiding these

trade-o↵s would seem to violate this goal.

In Ebb, additional group_bys consequently have to be built using auxiliary ta-

bles. Suppose we have a table with a field X.f : Y which is not the field it is

grouped on. Then, we can build a table XfY with fields XfY.x : X and XfY.y : Y.

Each row of this table corresponds to a row of X (the XfY.x value for the row) and

has the value XfY.y == XfY.x.f. Then this table may be group_by XfY.y. The

query query(xy in XfY where xy.y == _).x then becomes a stand-in for the in-

valid query query(x in X where x.f == _). This scheme does not really impose

additional runtime costs, but is incredibly inconvenient for a programmer.

In Seam and Gong, the tables targeted by these kinds of reverse-lookups are

assumed to have dynamic size/contents—elements are being created and/or deleted

as a normal part of the computation. By contrast Ebb assumes mostly static topology

(excepting point-location). When rows are being created and deleted, the strategy of

keeping the table sorted stops being a preferrable default over adding a slight bit of

indirection.

hexpr i ::= . . .

| affine( hname i , hexpr i , hexpr i , hexpr i )

Figure 3.5: Ebb Statements & Expressions

Along with grids, Ebb adds the affine(G,A,b,c) expression (Figure 3.5) to trans-

form a key to an element of one grid into a key to another element of the same or

another grid. The a�ne expression takes four arguments

• G the output grid. i.e. affine(G,A,b,c) : row(G)

• A and b a matrix and vector such that the coordinates of the output element

are A * c + b; Both are required to be constant values, so that the compiler

can analyze/inline them.
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• c the input grid element

If the computed cell coordinates are out of bounds, then in each dimension, the value

is either clamped or wrapped around. Enabling periodic switches from clamping to

wrapping behavior. In this way, memory safe access to grids is ensured.

Execution Model In Ebb, exported functions must have a row-type as their first

argument. These functions are then compiled to be invoked in parallel over that entire

table or some subset of it. As such, our e↵ect analysis will have to ensure that such

paralellization is always safe, regardless of the specific machine being targeted.

3.2.1 Expressivity and E�ciency of Ebb Data Modeling

Ebb’s data modeling relies on three key primitives

• topological fields express functional relationships in a way that is familiar to

most programmers thanks to pointers/indices/references in other languages.

• query-loops/group_by make a minimal extension to topological fields su�cient

to access variable numbers of neighbors.

• Lastly, affine-indexing/grid data allows for optimized access to highly struc-

tured data.

The choice of primitives in Ebb was a departure from most other language de-

signs. Lower-level imperative languages with manual memory management often ex-

pose explicit pointers or indices amenable to arithmetic and explicit memory layouts.

Higher-level object-oriented and functional languages often rely on opaque references

backed by a garbage collector. Meanwhile, databases discard the idea of references

altogether, instead relying on relations loosely linked by keys—which may or may not

be present in another table.

First, let’s consider Ebb relative to a language like C or Fortran. In these lan-

guages topological relationships like our fields are stored as arrays of either pointers

or integers, used to lookup data in other arrays. Both representations allow for arith-

metic, and with good reason! If we didn’t have indexing arithmetic, it would be
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very di�cult to e�ciently access multi-dimensional gridded arrays. However, in the

process we have lowered our level of abstraction too severely. As mentioned in the

introduction (§1) it is precisely this freedom of data model that makes heap and

pointer-analysis an obstacle to paralellizing these programs. Worse, it impedes many

useful optimizations by hard-coding access patterns into the code. Data referenced

by a pointer cannot be moved or sorted into a better order; nor can indexed arrays

be re-arranged.

Higher-level languages with opaque references and garbage collectors have two

shortcomings. For simulation data, they lose sight of the fact that elements are not

simply objects of a common class, but constitute a set/collection, whose layout can

be optimized on that basis. This tends to impede the use of column-storage layouts

(parallel arrays) and other tricks. They also obstruct the use of indexing for grids.

Still, because arrays are more or less essential for high-performance benchmarks, these

languages then expose un-boxed array primitives as an escape hatch. The resulting

code is similar to Fortran, and replicates the same problems there—often with less

consistent integration into the rest of the language.

Databases achieve a higher level of set-oriented data abstraction, which is exactly

what we are seeking. However, performance via SQL or general relational algebra

interfaces is highly unpredictable. Besides the problem of ensuring an e�cient query-

plan—which may produce even asymptotic ine�ciencies—SQL interfaces obscure rea-

soning about the relationship between code and expected memory throughput behav-

ior.

By contrast the Ebb primitives require 1 load per field-access, 2 loads per query-

loop and 0 loads per a�ne-index. Simulation-programmers used to reasoning about

the performance of imperative code are unlikely to be surprised. They should be able

to clearly relate the results of performance profiles to the code they write. Meanwhile,

memory safety is guaranteed.

Expressivity of Ebb may be demonstrated by example, as in the case of the tax-

onomy of Figure 3.6; it may also be demonstrated formally. For instance, we can

show that Ebb can model any directed one-to-many relationship from one table X to

another (potentially the original table) Y. Using the aforementioned auxiliary table
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2d

3d

structured semi-structured unstructured(regular) (irregular)

uniform elements

grids tri/tet-mesh poly-gon/hedrale.g.

Figure 3.6: Ebb’s relational model is su�ciently expressive to encode (at least) all
of the geometric domains in this taxonomy, while also taking advantage of specific
details like dimensionality or regularity. (This taxonomy is not exhaustive; Ebb can
also e�ciently express other domains, such as particles.)

strategy, we can create a table R with fields R.x : X and R.y : Y. Then, grouping

R by R.x, we can easily query-loop over all elements y of Y related by R. Thus, we

can be assured that Ebb loses no fundamental flexibility to express data relative to a

standard relational model.

However, using auxiliary tables in this way is debatable (beyond just the afore-

mentioned question of dropping the explicit group_by). On the side of the design I

propose here is the principle of parsimony—no new feature need be added to the lan-

guage. On the countervailing side is the objection that auxiliary tables will need to be

created representing “things” that are unnatural to model. For instance, the auxiliary

table supporting the concept “all triangles touching a given vertex” requires a list of

“triangle-verts” which unlike triangles or vertices are not geometrically self-evident6

elements of the mesh. Geometric domain libraries can help here to some degree—by

abstracting over and hiding these kinds of non-intuitive parts of a data-model.
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hschema stmt i ::= . . .

| view hname i { [hname i : htable name i]⇤ }
| viewdef ( harg i ) hstmt i end
| invariant hname i ( harg i ) hstmt i end

hfunc def i ::= . . .

| operation hf name i ( harg i⇤ ) hstmt i end

Figure 3.7: Seam Top-Level

3.3 Seam (Remeshing Language)

In Seam we chose to draw a sharper distinction between topological and metric data.

In part this was practical. Allowing metric data to influence the logic of topological

operations would have complicated formal verification goals for Seam. Ultimately,

that may be a worthwhile compromise to make in service of ease-of-programming for

simulation-programmers.

Seam substitutes operations, views/viewdefinitions, and invariants instead of

Ebb’s functions as the only function-like object. functions are retained in a very

limited fashion. In order to write metric data to fields, simulation-programmers

are allowed to call a read-only function, i.e. a function which reads but does not

write or otherwise modify any data. These functions behave internally with Ebb-

like statements and semantics. Having eliminated metric data computation from

operations, we may then get rid of variable re-assignment, switching to let bindings,

and simplify our expression language significantly.

However, Seam code has fundamentally di↵erent execution semantics. In Seam,

sequencing of two statements s1 ; s2 does not mean “do s1 and then do s2.” Instead

it means “Do s1 and s2 concurrently.” That is, all e↵ects inside of Seam operations

are fully re-orderable. This is enabled using log-execution semantics: all e↵ects are

postponed (logged) until the completion of the operation, at which point they all take

6it is interesting to note that these are sometimes called triangle corners, and can serve as a useful
basis for functions that are linear on triangles, but frequently discontinuous at edges or vertices.
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hstmt i ::= hstmt i ; hstmt i
| var hname i = hexpr i
| hexpr i = hexpr i
| hname i ( hexpr i⇤ )
| let hname i = hkexpr i
| if hcond i then hstmt i [else hstmt i]? end
| for hname i in hquery i do hstmt i end
| while hexpr i do hstmt i end
| return hexpr i
| reduce( hreduce op i ) hname i = hexpr i
| global reduce( hreduce op i ) hname i = hexpr i
| write hkexpr i . hname i = hname i ( hkexpr i⇤ )
| new hname i : hname i
| update hkexpr i . hname i = hkexpr i
| delete hkexpr i
| emit { [hname i = hkexpr i]⇤ } in hname i
| assert( hcond i )
| abort

Figure 3.8: Seam Statements

e↵ect simultaneously. Therefore, we can think of an operation as reading a single

consistent view of the data, and planning a set of changes to make. These semantics

free Seam programmers from having to reason about the intermediate state of the

data in the middle of an operation.

In other words, Seam operations are transactional.

Depending on whether we are in an operation, viewdef, or invariant di↵erent

e↵ects are available. A viewdef may only use the emit e↵ect to output rows into

views. An invariant similarly may only use the assert e↵ect to state conditions which

must be true. The remaining e↵ects belong to operations. These are: write (metric

data), new (row in a table), update (topological data), delete (row in a table), and
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hquery i ::= query( hname i in hname i where hqcond i )
hqcond i ::= hqcond i and hqcond i

| hname i . hname i == hname i
hcond i ::= not hcond i | hcond i and hcond i | hcond i or hcond i

| hkexpr i == hkexpr i | hkexpr i != hkexpr i
| forall hname i in hquery i . hcond i

hkexpr i ::= hname i
| read hkexpr i . hname i

Figure 3.9: Seam Expressions

finally abort. The abort e↵ect is provided for convenience. It causes the log to be

destroyed without having any e↵ect, and signals to the caller that something went

wrong. Formally, it may be replaced with if statements, leading to a silently failing

operation, but pragmatically it is better to have aborts be explicit.

In Seam viewdefs, it is possible to emit the same row into the same view more

than once. Yet, as shown in the example of representing the edges of a mesh as a

view, the desired behavior is usually to de-duplicate these resulting rows. We adopt

this convention as the standard semantics for all Seam views.

We also add an unfamiliar conditional-expression concept. forall works like a

query-loop, but wrapped around a conditional-expression rather than a statement.

This construct is needed in order to conditionally take an action based on the neigh-

bors of an element—but without also acting once for each of those neighbors. In the

negated form not forall . . . not hexpr i the expression is of course equivalent to

“there exists” which allows for useful conditionals like “if there exists an element ref-

erencing the current element, then don’t delete it.” For example, detecting collapsing

tetrahedra in edge-collapse operations (§2.3.2) requires this construct.
Note significantly that querys remain unmodified from Ebb. The same reasoning

about locality applies to Seam. However, the practical consequences are somewhat

di↵erent in scope. To see why, it helps to explain how each of the major function-like

definitions are executed/used.
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While invariants and views are kept internal, operations are exported from Seam.

Unlike exported Ebb functions, operations are compiled to be invoked on a single

binding of its arguments at a time with locked, atomic, transactional access to any

data touched. In this context, the locality of query-loops is equivalent to the idea that

each operation touches only a local neighborhood of the argument element(s). As a

result, these operations are good candidates for scheduling with fine-grained locking

schemes.

However, when initial data is loaded into a Seam schema, invariants must be

checked and views generated. To ensure these computations can be accomplished

e�ciently, viewdefs and invariants are required to have exactly one row-type argu-

ment, which is implicitly looped over. Seam thus restricts simulation-programmers

to expressing only locally derived data and locally verifiable properties.

In contrast to database systems which might express these concepts with queries or

logics, Seam also implicitly requires the simulation programmer to provide an explicit

plan by virtue of writing views and invariants in the form of pseudo-imperative code.

If data takes too long to load, the simulation-programmer can directly reason about

why that might be.

Seam has a much more flexible and challenging to implement data model compared

to Ebb. Seam has (1) tables of varying size, (2) no group_by directives, and (3)

will have to somehow incrementally maintain the views. Considered together, these

abstractions leave a lot of room for the compiler to change and optimize the data

representation. The flip side of this is that the simulation-programmer gets far less

specific control over these choices.

Previous experience writing re-meshing code suggested that this was the right

tradeo↵ to make. For most programmers, manually managing a complex mutable

graph-like data structure becomes such a challenge in and of itself that little to no

attention will be paid to alternative strategies if those strategies require sweeping

changes through the code base. By raising the abstraction level to the level of schemas,

Seam provides a way to handle complex mutable data without imposing the resulting

data-representation complexity on other parts of a simulation.
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3.4 Gong (Collision Detection Language)

hlibrary i ::= hschema i hfunc def i⇤ hacc def i⇤ export hname i⇤

hfunc def i ::= . . .

| join hname i ( harg i⇤ ) htraversal i hstmt i end
| set hoption i

hoption i ::= primary_key( hname i , hname i ) hname i

Figure 3.10: Join Extension Top-Level

As another language largely driven by metric data, Gong remains closer to Ebb in

more ways than Seam. It introduces the concept of a join instead of either functions

or operations. At their simplest, these joins may be thought of as special doubly-

nested loops. As such, the first two arguments of each join must be of row-type,

specifying (similar to exported Ebb functions) which two tables are looped over—

potentially which single table is looped over twice. This situation changes which

e↵ects are safe, and the intended application (collision detection) changes which e↵ects

are necessary.

For instance, the inner loop of the double-loop does not grant exclusive access to

the first nor second element being looped over, and so directly writing to those rows

is disallowed. Reducing is allowed however, which we saw expanded via the added

argmin construct.

For simplicity of exposition, assume that there is a single join written in Gong,

joining some number of base tables and potentially changing the contents of some

number of derived tables whose contents are computed by the join itself. In this view

of things, there will generally be topological fields on the derived tables pointing

back into the base-table portion of the schema, but there will not be fields going the

other way. These assumptions may be relaxed as overly strong, but they will let us

more easily explain the major kinds of e↵ects joins may have without worrying too

much about pathological cases.

Consider a join that has at most a single e↵ect for every input pair (a, b). This
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e↵ect may either be (1) a reduction reduce(op) a .f = ... into a field of some base

table, an argmin reduction into a base table, (2) an emit producing an output row

of a derived table, or (3) a merge controlling updates to a derived table.

In the case of reductions, the e↵ect is safe, so long as the table being reduced into

(more precisely the fields being reduced into) is not also being read or targeted by

an emit or merge. In the case of argmin, the right-hand-side expression must be a

record-literal specifying which fields must be updated and with what values (including

the field being minimized over). Unlike Ebb, this construct allows topological fields to

be written to. Doing-so may invalidate internal data-structures built for supporting

query-loops.

hstmt i ::= . . .

| argmin hexpr i . hexpr i = hexpr i
| emit hexpr i
| merge hname i

new hexpr i
update ( hname i ) hstmt i end

[ remove ( hname i ) hstmt i end ]?

| keep hexpr i

Figure 3.11: Join Extension Statements & Expressions

An emit e↵ect will cause its target table to be cleared of its contents prior to

running the join. Consequently, the emitted table will be re-built every time the join

is run. This behavior may cause problems if the target table is used as the base table

for another join, since the results of that join will immediately become invalid—they

may contain dangling pointers to no longer existing rows. For this reason, I disallowed

a table from being both a source of and a target of di↵erent joins. Unlike argmin,

emit must generate a value for every defined field.

A merge e↵ect targets a derived table which can be uniquely indexed by the pair of

keys that the join is looping over. (see below for a longer discussion of primary_key)

merge may occur at most once inside of a join, and may not occur inside of a loop or



3.4. GONG (COLLISION DETECTION LANGUAGE) 83

other construct which could cause it to be executed more than once for a given pair

of keys.

Let S denote the set of rows/key-pairs in the table targeted by merge prior to

running the join. Let S
0 denote the set of rows/key-pairs which reach the merge

statement when executing the join. Then R = S � S
0 is the set of rows to be

removed; N = S
0 � S is the set of new rows; and U = S \ S

0 is the set of rows to be

updated.

The new { name1 = expr1, . . . } behaves like emit for any previously absent row.

It must specify the values of all fields on the target table except the primary_key

fields, whose values are just the join parameters. (They are automatically filled in.)

The update(c) block runs for every already existing row and grants exclusive

access to this row, allowing for arbitrary read/write e↵ects on its fields. These read-

/write e↵ects may not change the primary_key of the row.

The remove(c) block runs without any enclosing lexical scope on every row to

be removed. Because it runs without this outer scope, it may only refer to the row

to be removed and data accessible on it alone. It may optionally choose to keep

the row, which will prevent it from being removed. In that event, the remove block

may arbitrarily rewrite the row’s data, excepting the primary_key which remains

immutable.

Ensuring that primary_keys are maintained requires that all joins maintain them.

Therefore if a table has a primary_key, then all joins emit-ing into that table are

subject to similar restrictions as merge. Only one such emit may exist in a join, and

strictly outside of loops. Furthermore the values of the primary key fields are omitted

from the record specifying the contents of the emitted row—they are instead inferred

from the join parameters

3.4.1 Acceleration Structures

Every join must be supplied with a traversal strategy, which itself refers to acceleration

structures. By default, this is simply scan, which performs the naive double-loop.

If a join is a self-join, then for a given pair (a, b) that is scanned over, (b, a) will
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not also be scanned over. The scan traversal strategy has the virtue of always being

correct. Therefore it can serve as a point of comparison for di↵erential testing.

In principle any number of other spatial data structures and traversal algorithms

could be incorporated. However, I chose to supply two parameterized strategies:

bounding volume hierarchies (BVHs) and hash tables. The latter is su�cient to rep-

resent both grids and spatial hashing strategies depending on how it’s parameterized.

hacc def i ::= scan hname i ( table = htable name i )
| BVH hname i ( table = htable name i

volume = htype i
abstract = hfunc name i
vol_union = hfunc name i
point = hfunc name i )

htraversal i ::= scan_scan ( left = hacc name i, right = hacc name i )
| bvh_bvh ( left = hacc name i, right = hacc name i

vol_isct = hfunc name i )

Figure 3.12: Join Scan/BVH-Acceleration Structures & Traversals

The BVH interface (Figure 3.12) is based around abstraction of rows from a

table into volumes. The rest of the functions supplied make the designated volume

behave like an object class in an object-oriented language. The volume type may be

arbitrarily selected. For instance,

• A 3-d axis-aligned bounding-box

AABB3f = struct { lo : vector(3,float), hi : vector(3,float) }

• A 7-degree-oriented-polyhedron

DOP = struct { lo : vector(7,float), hi : vector(7,float) }

• A bounding sphere

Sphere = struct { pt : vector(3,float), radius : float }
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If table = A and volume = V, (V_L and V_R distinguishing which side of a traver-

sal a volume is from) then the types of the di↵erent functions are required to be

abstract : A -> V

vol_union : V x V -> V

point : V -> vector(3,float)

vol_isct : V_L x V_R -> bool

Some volumes and associated functions are supplied in the standard Gong li-

brary (e.g. axis-aligned bounding-boxes) reducing the minimum application-specific

interface to supplying the abstract function. Even if we specialized the interface

down towards axis-aligned bounding-boxes (or some other scheme) the simulation-

programmer will always have to supply at least some information to allow their id-

iosyncratic data schema to be interpreted by any given acceleration structure scheme.

The full set of constraints for these functions to be sound is too tricky to check

via most any kind of formal method, even if they can be stated formally. Consider a

predicate P (a, b) which is true whenever the pair (a, b) 2 A⇥B causes some e↵ect in a

given join. In general the traversal/acceleration scheme must ensure that it traverses

over every pair (a, b) where P (a, b). Such a traversal is sound.

Let ↵(x) be shorthand for abstract(x), \(x, y) be shorthand for vol_isct(x,y),

and [(x, y) be shorthand for vol_union(x,y). We say that vol_isct is sound rel-

ative to abstract i↵. P (a, b) =) \(↵(a),↵(b)). We say that vol_union is sound

relative to vol_isct i↵. 8a, a0, b. \ (a, b) =) (\([(a, a0), b) ^ \([(a0, a), b)). The

lack of commutativity and/or associativity for vol_isct and vol_union may lead

to non-determinism in the e↵ectiveness of the traversal, but should not invalidate

soundness. The behavior of point helps guide the acceleration structure construc-

tion, so while it may a↵ect quality it ought not a↵ect soundness even if it just returns

a constant coordinate triple.

Currently, the choice of traversal and build strategies are left up to the imple-

mentation without simulation-programmer input or control (outside of the above

functions).

The BVH builds a tree by recursively covering objects with bounding volumes.

By contrast Hash structures attempt to partition the set of intersections, potentially
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hacc def i ::= . . .

| Hash hname i ( table = htable name i
key = htype i
[abs_range = hfunc name i]?

[abs_point = hfunc name i]?

hash = hfunc name i
[brute_force = hfunc name i]? )
[BIN_TO_ROW = hnumber i]? )

htraversal i ::= . . .

| hash_hash ( left = hacc name i, right = hacc name i
hash_first = ['left'|'right'] )

Figure 3.13: Join Hash-Acceleration Structure & Traversal

introducing duplication of rows. Usually, this splitting is based on a partition of

space—which is why some objects may straddle multiple bins of the partition.

The Hash interface (Figure 3.13) relies on a key of int or vector(k,int) type,

expressing a logically distinct hash location. A given row of the table is abstracted

into a single key (abs_point) or range of keys (abs_range). Then keys are converted

into linear bin ids via a hash function. As an escape hatch, a row of the table can be

identified as requiring brute_force instead, preventing it from being converted into

an unreasonably large range of keys (e.g. preventing hashing a ground-plane object).

The size of the hash-table (i.e. number of linear bins) can be set as a linear multiple

(BIN_TO_ROW) of the number of rows in the underlying table.

A traversal between two hash-tables must have identical choices of key, but may

have di↵ering choices of abs_point or abs_range, as well as di↵erent brute_force

predicates. The choice of which side to hash_first will a↵ect which hash table gets

materialized; which side probes the other side’s table.

If table = A and key = K, then the types of the functions in the interface must

be the following. Either abs_range or abs_point may be supplied, but never both.

And brute_force is optional—when not supplied, it is as if brute_force always
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returns false.

abs_range : A -> K x K

abs_point : A -> K

hash : K -> uint

brute_force : A -> bool

As with the BVH, hash functions may be supplied in a standard library, but any

function of the underlying table (i.e. abs_range or abs_point) inherently depends

on the simulation-programmer’s idiosyncratic schema, and must be supplied. Also

like the BVH, this may lead to incorrectness in the traversal beyond the ability of

formal methods to automatically check for problems. Still we may give soundness

criteria relative to P (x, y).

Given a hash on table X, let AX(x, k) be a relational-predicate between rows

x of X and key-values k. If abs_range is supplied, then AX(x, k) is true i↵. k is

in the range of abs_range(x). If abs_point is supplied, then AX(x, k) is true i↵.

abs_point(x) = k. Let Y be the right-hand-side of the join and AY (y, k) be the

associated relation-predicate. Then we may say that the two hashes are jointly sound

relative to the predicate P i↵. P (x, y) =) 9k. AX(x, k)^AY (y, k). In other words,

there must always be some matching key shared between two rows that ought to be

joined.
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Chapter 4

E↵ects

I use e↵ects to abstract the ways in which a piece of code accesses the data model.

Such an abstraction serves at least two purposes. First, it abstracts the data model

from the perspective of the simulation code. This allows the compiler-programmer

to reason about whether or not a given set of e↵ects is safe to execute in parallel—

without having to be aware of the details of the data model’s implementation. So,

as compiler-programmers, we can implement e↵ect checking, a sound race detection

analysis, independent of our choice of data structure and compile target. Second,

it abstracts the code from the data model, so that the compiler-programmer knows

which primitive operations they need the data structure to expose without having to

worry about control, looping and other code structures.

Especially, note that given a collection of Ebb, Seam and Gong programs, the

aggregation of all e↵ects used defines a set of requirements for a common schema

representation that could be shared between them.

4.1 Basic E↵ects

The following is a list of all basic e↵ects that we will want to keep track of. These

e↵ects may be parameterized by the table (tbl) they act on, the field (fld) they act

on, and the specific row they act at, among other parameters. On the one hand, we

can view these as argument parameters to code macros, provided by the data model

89
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to the code generator. On the other hand, by statically abstracting dynamic values

(e.g. row) we can view these e↵ects as symbolic representations of privileges.

SCAN(tbl) loop over tbl in parallel

IDX_SCAN(tbl,fld,row) loop over entries in tbl where
tbl.fld == row

READ(tbl,fld,row) read the value of tbl.fld at row

REDUCE(op,tbl,fld,row,val) op-reduce into tbl.fld at row

WRITE(tbl,fld,row,val) write into tbl.fld at row

GLOBAL_READ(glob) read the value of glob

GLOBAL_REDUCE(op,glob,val) op-reduce into glob

NEW(tbl) create a new row in tbl

UPDATE(tbl,fld,row,val) write a new topological value into
tbl.fld at row

DELETE(tbl,row) remove the row from tbl

ASSERT_ERROR() raise a failed assertion error

EMIT(tbl,new_rec) add a row to tbl with the contents
new_rec

MERGE(tbl,row0,row1) see below

KEEP(tbl,row) see below

ARG_MIN(tbl,fld,row,val,new_rec) overwrite tbl.fld at row if val is
smaller, and overwrite the field values
in new_rec too. Similarly for ARG_MAX

Figure 4.1: E↵ect Definitions

4.1.1 Bagging up E↵ects

To a more precise degree than in either Ebb or Gong, Seam’s semantics allow us to

describe not just e↵ects occuring, but to describe multisets/bags/relations of e↵ects

caused by an operation, view, &c. That is, rather than an isolated invocation of an

e↵ect on an isolated row, we can describe an entire relation with each row correspond-

ing to another invocation of the given e↵ect. For instance, deleting every “follow”
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connected to an “account” a in the social network schema could be expressed as

{ DELETE(Follow, f) | f : Follow, f.src = a }

In Ebb and Gong, we care much less about this kind of precise quantification of

where an e↵ect is occurring. Instead, we simply want to know if it is happening (1)

multiple times, and (2) whether it is happening at the primary loop-variable row or

not.

Given a function that loops over a : A, we say that EFFECT(a) is centered. If

the e↵ect occurs within a loop, we say it is looped and if it occurs more than once

by any other means we say it is repeated. Using this vocabulary, we can describe the

rules for e↵ect-checking.

4.2 E↵ect Checking

E↵ect-checking is based on a syntactic pass over the code to extract e↵ects associated

with specific statements. These translations are succinctly captured by a simple

tabulation. (Figure 4.2) Depending on the language and especially its code execution

model, we have to make di↵erent considerations for which combinations of e↵ects are

safe to occur simultaneously/in-parallel.

Tagging E↵ects When doing e↵ect-checking in Gong or Ebb, we need to annotate

the e↵ects with additional information. If an e↵ect occurs inside of any loop, we tag it

with the looped modifier. In an Ebb function, we track the parameter a:A, allowing

us to tag all reads, writes, and reductions to it. Such e↵ects are tagged centered. In a

Gong join, we do not track the parameters a:A,b:B for centering, since we expect the

same row to be referenced in multiple threads of the double-loop. However, once we

enter an update or remove block in a merge, that parameter x:X is tracked the same

way as the first argument to an Ebb function, tagging e↵ects that use it as centered.

We also track whether e↵ects occur inside of a Gong update/remove block, tagging

them as in_update or in_remove, respectively.
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hstmt i effect

function ( a : A, . . . ) . . . end SCAN(A)

for x in X where x.f == y do . . . end IDX_SCAN(X,f,y)

write r.f = v, (with r : R) WRITE(R,f,r,v)

reduce(op) r.f = v, (with r : R) REDUCE(op,R,f,r,v)

global reduce(op) g = v GLOBAL_REDUCE(op,g,v)

read r.f, (with r : R) READ(R,f,r)

global read g GLOBAL_READ(g)

new x : X NEW(X)

update r.f = v, (with r : R) UPDATE(R,f,r,v)

delete r, (with r : R) DELETE(R,r)

emit rec in X EMIT(X,rec)

assert(false) ASSERT_ERROR()

join ( a : A, b : B, . . . ) . . . end SCAN(A), SCAN(B)

argmin r.f = rec, (with r : R) ARGMIN(R,f,r,rec.f,rec)

merge X

new rec

update ( x ) . . . end

[ remove ( x ) . . . end ]?

MERGE(X,a,b,rec)

keep r, (with r : R) KEEP(R,r)

Figure 4.2: E↵ect Extraction

4.2.1 Ebb

Consider e↵ect-checking of a function to be exported, with first parameter a : A.

Under the Ebb execution model, we should imagine that this function will be si-

multaneously called for every a element of A. Assume for simplicity of exposition

that all other function calls have been in-lined so that we are dealing with a single

statement-block of code.

In Ebb, we have a collection of read-only e↵ects SCAN, IDX_SCAN, and READ, in

addition to REDUCE and WRITE e↵ects, with global variants of read and reduce. As

such, we can produce potential conflicts between reads, reductions and writes. The

following 3 cases outline the only assuredly safe situations:
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• If a data location is only read, there is no conflict.

• If a data location is only reduced to using a single operator, then there is no

conflict.

• If a data location is only ever accessed by one thread, then there is no conflict.

In all other cases, re-ordering the execution of individual e↵ects will cause the

resulting value at the data location or the result of a read-e↵ect to di↵er.

(SCAN and IDX_SCAN are mostly inert here, because they do not touch the actual

field data. In the case of IDX_SCAN the field(s) used by the query may be considered

“read” although since we have ruled out modifications to topological fields, the point

is moot.)

Analysis may proceed on a strict per-field basis. For each field, we first check

whether all e↵ects are centered. If so, we have exclusive access and are done. Failing

that, if all e↵ects are reductions using the same operation we are ok. Failing that, if

all e↵ects are reads we are ok. Otherwise an error is reported. Two conflicting e↵ects

may be selected for the error report, directing the simulation-programmer’s attention

to two definitely conflicting sites in the code.

Global reads and reductions follow the same rules, with the exception that centered

accesses are impossible.

After the development of Ebb, I realized that there is a further, more subtle

problem posed by the semantics of query-loops, which remained unhandled. Centered

e↵ects inside of a query-loop might cause the result of the computation to depend on

the order in which the query loop executed. So, while the results obtained from the

prototype were likely to appear deterministic, the semantics specify more flexibility.

The query-loop should be able to iterate the contents of the query in any order.

One way to resolve this shortcoming is to imagine that a thread encountering a

query-loop forks into multiple threads for each iteration of the loop body. As such,

the formerly centered argument variable a is not centered—in the sense that it is

in one-to-one correspondence with the threads. This can be hacked back into the

analysis by dropping the centered tag whenever the looped tag is present.
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This approach is sound, but now rules out some perfectly safe computations.

Consider the following:

ebb function TriMesh.F_Update( v : Vertices )

v.F = {0,0,0}

for e in v.edges do

v.F += K * (e.hd.pos - v.pos)

end

end

The proposed modification to e↵ect-checking will prohibit this function because it

now contains a centered-write combined with an uncentered-reduction of the field F.

The limitations of the informal approach to e↵ect-checking presented in this chap-

ter should now be more apparent. A more careful, formal treatment of this notion of

e↵ect-checking might uncover other inconsistencies or needless restrictions.

4.2.2 Gong

Consider e↵ect-checking of a join to be exported, with parameters a:A and b:B.

Unlike with Ebb functions, it would be incorrect to tag e↵ects on these parameters

with centered. In the Gong execution model, a join may be thought of as one

thread simultaneously launched for each a,b pair, meaning that each a or b value is

necessarily referenced by multiple threads. As with Ebb, we may assume that all

functions used in the join have been inlined for simplicity of exposition.

Acceleration Structures. Unlike Ebb, we have a unique feature: acceleration of

double-loops (i.e. joins) using spatial data structures. These structures are parame-

terized by Gong functions which are passed to them, which cannot simply be inlined

for the purposes of e↵ect analysis. These functions are constrained to be read-only in

their e↵ects. Therefore, we can abstract their e↵ect by adding all of their extracted

read e↵ects into the e↵ect analysis of every join using the acceleration structure.

We have read, reduce and write e↵ects—like in Ebb. However, we also have EMIT,

MERGE and ARG_MIN e↵ects, which significantly complicate our analysis. We have to

revisit our dismissal of SCAN e↵ects in light of this. On top of that, we have the
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additional primary_key(f,g) constraint on the data model that must be enforced.

Essential to this analysis is adding a refining concept to the data schema—one

which we can extract automatically. We tag a table as derived if it is the target of

an EMIT or MERGE in any join. The schema is then considered invalid if there is any

derived table Y and some field X.f : Y. In other words, derived Gong tables may

not be referred to by other tables. This constraint ensures that the deletion of rows

induced by EMIT and MERGE does not produce dangling references/pointers/keys.

An EMIT targeting a table is mutually exclusive with any other kind of e↵ect on

the table, including all reads, reductions and writes, as well as SCAN/IDX_SCAN and

MERGE. Likewise, a MERGE is mutually exclusive with any other kind of e↵ect on the

table—with a notable exception for e↵ects contained within the update and remove

cases within that merge. As mentioned previously, a merge on a table without a

primary_key is prohibitted.

The primary_key constraint then acts back on the EMIT and MERGE e↵ects, con-

straining their usage. Of note, the EMIT e↵ect will always fill in the join parameters

a,b for the primary key, as will the MERGE. This constraint (enforced by making

those entries of the new-record implicit) ensures that no two threads of the join can

emit/merge rows with identical primary-keys. Thus we recover an analogue of Ebb’s

centered accesses. In order to make this concept sound, we additionally prohibit

multiple or looped EMIT/MERGE e↵ects within a single join that target tables with

primary_keys.

Digging into the body of update and remove cases of the MERGE e↵ect, we are

able to perform any number and kind of centered accesses to fields of the merged

table X. We may additionally walk from there into the rest of the schema (though

not query-loop back into X) where data accesses are handled by the prior uncentered

rules. Of particular note, a KEEP e↵ect is only valid when issued in a remove block

on a centered variable.

Finally, we may reduce ARGMIN to an elaborate form of a reduction e↵ect. Specifi-

cally, construct a signature consisting of ARGMIN, the field begin minimized over, and

then every other field being written. Treat this signature as its own special reduction

operation, and then apply the usual reduction rules. That is, an argmin will conflict
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with any other e↵ect which is not identical in the sense of minimizing the same field

and writing the exact same set of fields. Every field touched by the argmin may then

be considered to be “reduced” by this special reduction operator.

These rules (excepting the schema constraints of derived tables) are collected by

the following list.

• If a field is only read, there is no conflict.

• If a field is only reduced to using a single operator, then there is no conflict.

• A field may only have KEEP performed on it inside of a remove clause, and on

a centered variable.

• A table targeted by EMIT or MERGE may not be SCAN/IDX_SCANned.

• A table targeted by MERGE may only have centered accesses performed upon it.

• A table with a primary key may be targeted by at most one MERGE or EMIT

e↵ect, which may not be looped.

4.2.3 Seam

Unlike Ebb and Gong, Seam has a very fine-grained analysis of e↵ects, tied to a di↵er-

ent execution model and more precise analysis of safe topology manipulations. While

Seam has “derived” tables (i.e. views), it seeks to allow complicated manipulations

of the “base” tables directly—which is often unsafe.

With Seam, the idea that we can form multi-set relations of e↵ects becomes ex-

plicit rather than partially-characterized by looped, centered and other tags. This

translation is accomplished by a symbolic execution of Seam code[PBS+17]. The

means of performing that translation and ensuring safety lie outside the scope of this

thesis. However, I will state their guarantees relative to the execution model here.

Unlike Ebb or Gong, whose functions and joins can be viewed as loops, Seam

operations are applied one at a time, executing on specific elements of the data; the

external view of a seam operation becomes sequential rather than data-parallel. At
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the same time, Seam changes how we interpret the code in the body of an operation

relative to functions and joins. Seam operations are assumed to be fully atomic

and transactional. Any output/mutable e↵ects are postponed until the end of the

operation’s execution—when they are assumed to take simultaneous e↵ect.

Therefore, we can think of a Seam operation as generating an e↵ect log—a list of

e↵ect calls with specific values filled in. From a parallelism perspective, this allows

us to encapsulate the safety of Seam programs by three maxims:

• The mutating e↵ects of a Seam operation (i.e. not reads or scans) must not

conflict—that is, any reordering of a valid e↵ect log must cause the same change

in the underlying data model. (note certain unavoidable constraints on the need

to create new rows before referencing them.)

• The resulting data model must continue to be well defined. All tables must

represent sets and all fields must represent (total) functions. e.g. there may not

be any dangling references, since that would result in a partial function.

• The resulting data model must satisfy any user-specified invariants.

These principles and the e↵ects of the code can be translated into first-order

predicate logic on set-and-function models. In this way, SMT solvers[DRK+14] can

be leveraged to check the properties.

In the following chapter we will see how the ability to state clear multiset semantics

for Seam code can also be used to implement incremental view maintenance as a

source-to-source code transformation.
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Chapter 5

Relational Semantics & View

Maintenance

In this chapter, I will explain how the relational semantics of Seam programs enable an

interesting approach to incremental view maintenance. To do this, I extend Christoph

Koch’s recasting[Koc10] of relational algebra (on multi-sets) as operations on a ring1

of databases.

5.1 Preliminaries

5.1.1 Normalized Seam Views

In order to explain this transformation, we must first re-formulate the grammar of

Seam views. I will assume certain normalizations of the code prior to the transfor-

mation. Using let expressions, all complex hkexpr iessions will be broken down into

primitive forms, analogous to single-static-assignment. not may be fully pushed down

into hcond iitions. forall-expressions are disallowed inside of views.

Lastly, disjunctions of the form if A or B then s1 end, pose an interesting

point of flexibility for multi-set semantics. Because Seam views are de-duplicated, we

can rewrite the conditional on a disjunction into a pair of conditionals

1in the abstract algebra sense
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if A then s1 end ;

if B then s1 end

The simple set semantics of the two programs (assuming deduplication) are equiv-

alent, even though their multi-set semantics are not. Therefore, we are permitted to

perform this transformation so long as it is done in a consistent way for all code prior

to multi-set interpretation—in both view-generation and view-maintenance.

Conjunctions in conditionals can be broken down without these worries by simply

nesting if-statements. e.g. if A and B then s1 end becomes

if A then

if B then s1 end

end

Using the prior tricks we may reduce the grammar of Seam views into a normalized

form. (Figure 5.1) (You may assume for simplicity of exposition that each view-def

emits into a single, rather than multiple views.) In this grammar, I use hvar i, hfield i
and htable i as more informative synonyms for hname i.

Note that this grammar converts let bindings from a terminal statement into a

wrapping statement, analogous to if and for. This leaves the emit e↵ect as the

sole terminal statement. This transformation is justified by observing that each let

binding is implicitly scoped over the remainder of the statement block it’s contained

in.
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hviewdef i ::= viewdef( hvar i : htable i ) hstmt i end
hstmt i ::= hstmt i ; hstmt i

| let hvar i : htable i = hvar i in hstmt i
| let hvar i : htable i = hvar i . hfield i in hstmt i
| if hcond i then hstmt i [else hstmt i]? end
| for hvar i in htable i where hqcond i do hstmt i end
| emit { [hfield i = hvar i]⇤ } in hname i

hqcond i ::= hqcond i and hqcond i
| hvar i . hfield i == hvar i

hcond i ::= hvar i == hvar i | hvar i != hvar i

Figure 5.1: Normalized Seam View Definitions

5.1.2 Multi-sets

First, let’s consider the (abstract algebra) ring of multi-sets. The elements of the

algebra are multi-sets. Each multi-set has a type-signature given by an unordered

tuple of row-type variables. For instance, {t : Tris, v0 : Verts, v1 : Verts}.

Then we say that a function which assigns a count integer for every assignment of row-

values is a multi-set. For instance, Suppose we have a database with 2 triangles (Tris

= {t_A, t_B}) and 4 vertices (Verts = {v_0, v_1, v_2, v_3}). Then there are 2⇥4⇥4

possible assignments of row-values to the variables t, v0, v1. A multi-set assigns a

count to each such joint row-value, with count 0 implied if no other count is specified.

For instance, a multi-set R might be specified by R(t = tA, v0 = v1, v1 = v2) = 3,

R(t = tA, v0 = v2, v1 = v3) = 1 and R(t = tB, v0 = v2, v1 = v1) = 1. Although I will

not make use of it, we can neatly tabulate multi-sets in the following way, making

their connection to databases and tables explicitly visible.
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t v0 v1 Z

tA v1 v2 3

tA v2 v3 1

tB v2 v1 1

Multi-sets are counting functions, Tuple ! Z (for appropriate interpolations of

Tuple), which we can use to define the standard relational operators on them: union,

(Cartesian) product, join, selection and projection.

projection. Consider a multi-set R with type-signature {a : A, b : B}. The pro-

jection of R onto a : A, written ⇡a:AR is defined as a multi-set with type-signature

{a : A} defined by the equation

(⇡a:AR)(a) =
X

b:B

R(a, b)

This operation may be extended to larger tuples with multiple variables retained/projected-

onto and multiple variables summed/projected-out.

selection. Consider a multi-set R with type-signature {a : A, b : B}. And consider

some logical predicate P (a, b) that may ignore one or more of its arguments. Then

selection by the predicate P is written �PR and defined as another multi-set with

identical type-signature to R defined by the equation

(�PR)(a, b) =

(
R(a, b), P (a, b)

0, otherwise

This operation may be trivially extended to wider or narrower type-signatures.

(Cartesian) product. Consider two multi-setsR and S with disjoint type-signatures:

{a : A} and {b : B}. Then the product multi-set has signature {a : A, b : B} and is

written R⇥S. It is defined by the product-of-counts of the components, given in the
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equation

(R⇥ S)(a, b) = R(a) · S(b)

As with other operators, this one may be extended to di↵erent size type-signatures.

However, we will mostly be interested in the case where one side of the product is a

singleton type-signature, as this corresponds to the addition of one variable name.

join. Joins may expressed as simply a (Cartesian) product followed by a selection,

using a predicate that spans the two sides of the product. Given predicate P (a, b),

the join by P of R and S (as given in the product definition) is written R ./P S,

meaning �P (R⇥ S).

union. Consider two multi-sets R and S with the same type-signature: {a : A, b :

B}. The union under multi-set semantics di↵ers crucially from the standard set

semantics of relational algebra by tracking the number of duplicates encountered.

This is the key definition allowing us to treat relational algebra as defining a ring

proper, with additive inverses. We write union as R]S to emphasize this distinction.

It is defined by the equational rule

(R ] S)(a, b) = R(a, b) + S(a, b)

The operator may be trivially extended to wider or narrower type-signatures.

negation and minus. By allowing negative counts, multi-sets gain the ability to

be negated (�R)(a, b) = �(R(a, b)) and subtracted R� S = R ] (�S).

Multi-sets form a ring with ] as the addition operator and ⇥ as the product.

Associativity and commutativity of both operators are inherited from addition and

multiplication of integers, as is distributivity between the two operators. The constant

zero-function (i.e. the empty multi-set) for a given type-signature functions as a zero in

the algebra2. Crucially, we may have multi-sets with negative counts, and therefore

2The fact that we have multiple zeros, coupled with the fact that type-signatures force our
operators to be partial functions on the collection of all multi-sets means that properly speaking
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may define �R for any relation R, such that R ] �R = 0; this property gives us

additive inverses, the last major requirement for a ring. We may define a special

multi-set on the empty type-signature as a kind of multiplicative unit. We will write

{} for this multiplicative unit.

As we will see shortly, these properties allow us to define a finite-di↵erence oper-

ation that resembles an algebraically defined derivative on the ring.

5.1.3 Multi-set Combinators

The syntactic behavior of multi-set operators will be inconvenient to work with as

an intermediate representation in the compiler. Consequently, we define multi-set

combinators instead. Each of these combinators will take a multi-set as input and

return a multi-set as output. Let’s see how we may translate each operator into a

combinator.

projection. ⇡[a : A](R) = ⇡a:AR

selection. �[P ](R) = �PR

product. Let R be a relation with a signature not already using variable name a.

Then, ⇥[a : A](R) = {a : A} ⇥ R where {a : A} is a multi-set version of the set A

with the specified type-signature and count 1 for each element of A. We could have

defined product as a binary operation on combinators. However, this asymmetric

version of product will be more useful for translating to and from code.

composition. Let F and G be multi-set combinators with the output signature of

F the same as the input signature of G. Then (F �G)(R) = G(F (R)). This syntactic

convention of “do the left, then the right” will be important later, even if it feels

counter-intuitive.

this is not a ring. The issue is analogous to the di↵erence between a group and groupoid. I am not
su�ciently well versed to say exactly what this is. However, the idea of an “algebroid” seems to
apply.
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join. This is now defined directly as a composition of combinators. Let R and a : A

be as in the definition of product. Then ./ [a : A|P ](R) = (⇥[a : A] � �[P ])(R).

union. Let F and G be multi-set combinators with the same input and output

signatures. Then (F ]G)(R) = F (R) ]G(R).

In order to incorporate e↵ects, we will allow for special terminal e↵ect combinators

to be mixed in. These combinators may be interpreted as outputting a special “e↵ect”-

typed multi-set to which no further operations may be applied. Crucially, this slight

abuse of notation will allow us to write down formal “sums” of e↵ects, such as EFF1[a]]
EFF2[a].

5.2 Translating Between Views and Combinators

This translation uses two basic ideas. First, execution contexts may be abstracted

by multi-sets. Second, the semantics of a program statement is just a multi-set

combinator.

Imagine a Seam program in the middle of execution. At a given point in the

program, a set of variables have been bound to values of given types, defining an

execution context. Every time the execution returns to this point in the program, the

same set of variable names (and types) will be bound—potentially to di↵erent values.

In other words, the set of executions that reach a program point may be abstracted

as a multi-set of execution contexts.

Now consider two such program points separated by a single statement. For

instance, consider the execution before and after a for-loop.

viewdef( z : E )

let y = z.tl in {y : V, z : E | y = z.tl}
for x in E where x.hd == y do

{x : E, y : V, z : E | y = z.tl ^ x.hd = y}
...

end

end

The multiset of execution contexts before and after the for loop are related. For
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each context that reaches the loop, we extend it with a binding for x : E, provided

that x.hd = y. This may produce no inner loop bodies if there are no x : E with

y pointed to. It may also produce a very large number of execution contexts when

many x satisfy this condition. Whichever way, this is the correct multi-set to express

the set of executions reaching this program point.

Now, consider the statement itself (the for loop) independent of the specific multi-

set expressions that precede and succeed it. Its meaning can be precisely captured

by the combinator ⇥[x : E] � �[x.hd = y], or even more succinctly

./ [x : E | x.hd = y]

Each statement in our normalized Seam view program grammar may be given a

combinator translation. (Figure 5.2)

J viewdef( x : X ) s end K ⇥[x : X] � JsK
Js1 ; s2K Js1K ] Js2K

Jlet x : X = y in sK ./ [x : X | x = y] � JsK
Jlet x : X = y.f in sK ./ [x : X | x = y.f ] � JsK
Jif x == y then s endK �[x = y] � JsK
Jif x != y then s endK �[x 6= y] � JsK

Jfor x in X where x.f == y and ... do s endK ./ [x : X | x.f = y ^ ...] � JsK
Jemit { f1 = x1, ... } in Y K ⇡[x1, ...] � EMIT(Y, {f1 = x1, ...})

Figure 5.2: Seam translation from view programs to multi-set combinators

This translation preserves the tree-structure of the program’s AST. Nesting is

translated to � composition, which reads cleanly in left-to-right fashion. Branch-

ing due to concurrent e↵ects (i.e. ;) translates to ] which sticks together branches

terminating in EMIT.

Thanks to the algebraic properties of combinators, we can now consider rather

drastic rewrites of programs. All joins can be broken down into their constituent

Cartesian product and selection combinators, allowing selection combinators to float
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freely up and down the tree—subject only to name-scoping constraints. Likewise, the

products may be distributed inside of sums or factored out of them. For instance,

the earlier viewdef translates to the following combinator:

⇥[z : E] � ⇥[y : V ] � �[y = z.tl] � ⇥[x : E] � �[x.hd = y] � · · ·

If we re-arrange this combinator’s order of variable introduction, we get an equivalent

combinator

⇥[y : V ] � ⇥[z : E] � �[z.tl = y] � ⇥[x : E] � �[y = x.hd] � · · ·

which translates back out into code as

viewdef( y : V )

for z in E where z.tl == y do

for x in E where x.hd == y do

...

end

end

end

It may come as some surprise that a let-expression has been transformed into a for-

loop. Yet it computes.

5.3 Updates via Derivatives of Combinators

Having settled on the multi-set interpretation of views, we may alternatively think

of EMIT e↵ects as modifying a multi-set representation by incrementing the count

associated to a particular set of keys. Let INCR(tbl,rec,count) be used to refer to

this kind of e↵ect.

The fundamental idea of treating an incremental view update as a derivative is

to express the change in a view as a function of some change to the underlying data.

Let R1 be the view multi-set after this change and R0 the view multi-set before the

change. In terms of multi-sets, we want to compute �R such that R1 = R0 ] �R.



108 CHAPTER 5. RELATIONAL SEMANTICS & VIEW MAINTENANCE

�R contains exactly the INCR operations we must perform to update the view in

response to the underlying change.

More precisely, what we have prior to loading any data is not really any of these

multi-sets, but a combinator for computing them from base data. That is, R0 = R({})
when R is supplied with base tables and fields via a collection of implicit arguments

M . R0 = R[M0]({}) and R1 = R[M1]({}). Suppose then that M0 and M1 are related

by a primitive change such as an individual new, delete, or update, which we could

(waving our hands a bit) notate as �M = M1 � M0. Then, what we really want

to find is a combinator �R[M,�M ] so that �R[M,�M ]({}) = R1 � R0. Ideally

such a combinator (once translated back to executable code) will be much cheaper to

compute than simply recomputing the whole view from scratch.

At this point a very non-obvious but crucial digression is necessary. View updates

may be performed before or after the update to the underlying data. However, the

computation will di↵er in subtly important ways depending on which formulation we

use. In the case of delete operations it is much simpler to perform the view update

before hand because the element we want to delete still exists in the underlying

data with a stable identifier. In the case of new operations the situation is reversed.

Unless we have already executed the new operation we have no clear identifier for

the element to be added. (The update situation is more ambivalent.) To clarify this

whole situation, I will assume that the view update for each new operation will be

processed immediately after the new and otherwise right before the e↵ect.

5.3.1 deletions

Consider delete dx with dx:X. After the e↵ect the updated set will be X1 = X �
{dx}. Given a combinator R for the view, parameterized by the set X, we have the

equation R[X1] = R[X0] ]�-dxR[X0] as a definition of the derivative.

Before we figure out how to arrive at the isolated � expression, we observe that

we can write down R[X1] without reference to X1. We simply replace every instance

of ⇥[x : X1] with the expanded ⇥[x : X0]� ./ [x : X0 | x = dx]. Alternately, we could

collapse these terms into the joint ./ [x : X0 | x 6= dx]. Both forms will be useful.
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Obtaining the � expression then, involves recursively separating out a copy of R[X0]

from the remaining terms which express the update proper. Doing so will be trivial

except in the case of the product.

Consider a combinator of the form R[X] = ⇥[x : X] � S[X]. Using the preceding

equations in a recursive form, we can re-express R[X1]:

R[X1] = ⇥[x : X1] � S[x : X1]

= ⇥[x : X1] � (S[X0] ]�-dxS[X0])

= ⇥[x : X1] � S[X0]

] ⇥ [x : X1] ��-dxS[X0]

= (⇥[x : X0]� ./ [x : X0 | x = dx]) � S[X0]

] ./ [x : X0 | x 6= dx] ��-dxS[X0]

= ⇥[x : X0] � S[X0]

� ./ [x : X0 | x = dx]) � S[X0]

] ./ [x : X0 | x 6= dx] ��-dxS[X0]

The first term of this expression is of course just R[X0], meaning the latter two terms

are �-dxR[X0].

To perform this separation recursively, we write a transformation which takes a

combinator as input and returns a combinator representing the o↵set. This transfor-

mation is a “derivative.”3 (Figure 5.3)

In order to remove negations from the combinator, they may be pushed down until

we arrive at �INCR(Y, {f1 = x1, ...}, c), which is simply equivalent to INCR(Y, {f1 =

x1, ...},�c), i.e. we need simply flip the sign of the increment count.

As written, this transformation will cause at most a quadratic increase in code

size of the combinator. We can also read out the logic of the branching structure

3Note that the derivative of a product produces something quite di↵erent than the Leibniz rule.
We must account for a “higher-order” e↵ect by adding the x 6= dx condition on the further derivative
branch.
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�-dxJ�[p] � SK ! �[p] ��-dxJSK
�-dxJ⇡[x, . . .] � SK ! ⇡[x, . . .] ��-dxJSK
�-dxJ⇥[y : Y ] � SK ! ⇥[y : Y ] ��-dxJSK

�-dxJ⇥[x : X] � SK !

0

@ � ./ [x : X0 | x = dx] � S
] ./ [x : X0 | x 6= dx] ��-dxJSK

1

A

�-dxJR ] SK ! �-dxJRK ]�-dxJSK
�-dxJINCR(Y, {...}, c)K ! NONE

Figure 5.3: delete derivative of a combinator

induced. At every variable introduction (product combinator) which could possibly

be the deleted variable, either it is the first occurrence of the deleted variable, or it

isn’t the deleted variable. At the very end, if we have repeatedly decided that none

of the variables are the deleted variables, then there is no possible e↵ect.

The resulting combinator leaves the variable dx free. As we will see shortly, this

fact will allow us to rewrite the combinator as a function of dx—ultimately a localized

function.

5.3.2 new/insertions

For an individual new-e↵ect new dx : X, the updated set equation is X1 = X]{dx}.
Given a combinator R for the view, parameterized by the set X, then the derivative is

similarly defined by R[X1] = R[X0]]�+dxR[X1]. Note crucially that for new-e↵ects,

we express the derivative as a function of the updated set, and not the original set.

Given ⇥[x : X1], we can rewrite it as ⇥[x : X0]] ./ [x : X1 | x = dx], which has the

desired form. However, we will see that the derivation will be a bit more complicated.
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Consider a combinator of the form R[X] = ⇥[x : X] � S[X].

R[X1] = ⇥[x : X1] � S[x : X1]

= ⇥[x : X1] � (S[X0] ]�+dxS[X1])

= ⇥[x : X1] � S[X0]

] ⇥ [x : X1] ��+dxS[X1]

= (⇥[x : X0] ] ./ [x : X1 | x = dx]) � S[X0]

] ⇥ [x : X1] ��+dxS[X1]

= ⇥[x : X0] � S[X0]

] ./ [x : X1 | x = dx] � S[X0]

] ⇥ [x : X1] ��+dxS[X1]

= R[X0]

] ./ [x : X1 | x = dx] � (S[X1]��+dxS[X1])

] ⇥ [x : X1] ��+dxS[X1]

= R[X0]

] ./ [x : X1 | x = dx] � S[X1]

� ./ [x : X1 | x = dx] ��+dxS[X1]

] ⇥ [x : X1] ��+dxS[X1]

= R[X0]

] ./ [x : X1 | x = dx] � S[X1]

](⇥[x : X1] � ./ [x : X1 | x = dx]) ��+dxS[X1]

= R[X0]

] ./ [x : X1 | x = dx] � S[X1]

](./ [x : X1 | x 6= dx]) ��+dxS[X1]

With a similar product rule in hand, we may similarly express the derivative with

respect to a newly created element. (Figure 5.4)
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�+dxJ�[p] � SK ! �[p] ��+dxJSK
�+dxJ⇡[x, . . .] � SK ! ⇡[x, . . .] ��+dxJSK
�+dxJ⇥[y : Y ] � SK ! ⇥[y : Y ] ��+dxJSK

�+dxJ⇥[x : X] � SK !

0

@ ./ [x : X1 | x = dx] � S
] ./ [x : X1 | x 6= dx] ��+dxJSK

1

A

�+dxJR ] SK ! �+dxJRK ]�+dxJSK
�+dxJINCR(Y, {...}, c)K ! NONE

Figure 5.4: new derivative of a combinator

This transformation has a nearly identical form to deletions, with only the sign

changed—even though the precise meaning and derivation di↵er substantially.

5.3.3 updates

Updates induce changes to some selection combinators, but not to the Cartesian

product. Consider the update dx.f = dy1 e↵ect for field X.f : Y. We will let dy0

represent the value at dx.f before the update and dy1 represent the value afterwards.

This will induce a change to the atomic predicate x.f = y, replacing it with

((x.f = y) ^ ¬(x = dx ^ y = dy0)) _ (x = dx ^ y = dy1)

As a truth table over variables x and y, we can think of this as making two spot

updates, flipping the x = dx/y = dy0 entry from true to false and the x = dx/y = dy1

entry from false to true. This implies certain logical dominance and independence

relationships between the three components of the predicate. In turn, that means

that we can safely drop certain terms from the inclusion-exclusion expansion of the
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predicate:

P0 = x.f = y

P
� = x = dx ^ y = dy0

P
+ = x = dx ^ y = dy1

�[P1] = �[(P0 ^ ¬P�) _ P
+]

= �[P0]� �[P�] ] �[P+]

= �[P0] ] (�[P+]� �[P�])

Using the same derivation technique as before for the recursive rule, we consider

a multi-set combinator R[f ] = �[x.f = y] � S[f ] and attempt to re-express R[f1] in

terms of R[f0] ]�fR[f0].

R[f1] = �[P1] � S[f1]

= �[P1] � (S[X0] ]�fS[f0])

= �[P1] � S[f0]

] �[P1] ��fS[f0]

= (�[P0] ] (�[P+]� �[P�])) � S[f0]

] �[P1] ��fS[f0]

= �[P0] � S[f0]

](�[P+]� �[P�]) � S[f0]

] �[P1] ��fS[f0]

In order to rule out exponential increases in code size we would need to keep com-

binator expressions like (�[P+] � �[P�]) together rather than split them apart (and

duplicate S[f0]). I chose not to tackle this issue when implementing the prototype. I
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simply expanded sums and pushed negations down to the leaves. However, fixing this

issue exposes interesting questions about the interpretation of combinators as code.

This transformation can be packaged into a full, recursive derivative transforma-

tion as follows. (Figure 5.5)

�fJ�[x = y] � SK ! �[x = y] ��fJSK
�fJ�[x.g = y] � SK ! �[x.g = y] ��fJSK

�fJ�[x.f = y] � SK !

0

@ (�[P+]� �[P�]) � S[f0]
] �[P1] ��fS[f0]

1

A

where

P1 = ((x.f = y ^ ¬P�) _ P
+)

P
� = (x = dx ^ y = dy0)

P
+ = (x = dx ^ y = dy1)

�fJ⇡[x, . . .] � SK ! ⇡[x, . . .] ��fJSK
�fJ⇥[x : X] � SK ! ⇥[x : X] ��fJSK

�fJR ] SK ! �fJRK ]�fJSK
�fJINCR(Y, {...}, c)K ! NONE

Figure 5.5: update derivative of a combinator

5.4 Re-rooting the derivative combinators

At this point, we have all the tools to create multi-set combinators that correctly

express the multi-set of increments that need to be performed to maintain a given

view. However, we want to transform these combinators back into code. Specifically,

we want this code to be a function parameterized by the free variables introduced by

the derivative. The resulting function can then be invoked as the e↵ect log is played

back to incrementally maintain the view.

At the same time we want to try to maintain the locality property of the view code

that we constrained the programmer by. Each new variable ought to be introduced
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via a join to already defined variables. Doing this will prevent any unbounded loops.

So long as the data structure graph has a non-trivial diameter4 the view updates, like

the view expression and the operations themselves will touch only a small fraction of

the entire data-structure.

Note that this locality is possible because the original constraints on the view

program ensure that all variables are defined by connection to other variables. (Other

than the intial argument variable, which simply gives a starting point.)

In order to build intuition for the desired transformation, first consider the case of

a perfectly linear combinator expression R without any ] branches in it. Let dx be

the variable we want to re-root the combinator at. Then, somewhere in R there is a

first selection �[p] referencing dx, of the form �[dx = z], �[dx.f = z], or �[dx = z.f ].

There is also a ⇥[z : Z] occuring somewhere before that. Then, if R0 is the combinator

R with those selection and product combinators snipped out, R = ./ [z : Z | p] � R0.

In other words, we can simply percolate out the first variable joined to dx—or to any

other defined variable for that matter.

The last observation allows us to bootstrap the transformation recursively from

the free-variables. If we start a downward search through a combinator chain for

something connected to a defined variable, then we can recursively add that new

variable to the set of defined variables and repeat the search on the remaining part

of the combinator.

This idea works for linear combinator chains, but not for ]. As a naive but

su�cient strategy we simply break apart ] branches as we encounter them. Often

this will increase code size yet again. I simply did not have reason to explore more

sophisticated code optimization that is sensitive to this concern. However, note that

the duplication of breaking apart a tree cannot increase code size by more than a

quadratic amount as a worst-case bound.

Let JR kN kS kV K denote the re-rooting transformation. R is the combi-

nator being re-rooted; N is a set of variables introduced by product combinators

somewhere in the stack of selectors; S is a stack of selector combinators for holding

4diameter meaning the maximum number of hops between any two elements. Of course, just
connecting everything through a super-node makes “locality” less meaningful.
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un-transformed parts of the expression; and V is a set of variables defined outside

this working context. In order to re-root a combinator R at variable dx we would

invoke JR k ; k id k {dx} K. If we have more than one free variable (as in the case

of an update) we may throw all free variables into the initial defined variable set.

For a given primitive predicate p let V ar(p) be the set of variables referenced in

the predicate. Note that #V ar(p) = 2, so V#p = #(V ar(p) \ V ) is either 0, 1 or 2.

We will apply di↵erent rules depending on this tri-partite division.

JR1 ]R2 kN kS kV K ! JR1 kN kS kV K ] JR2 kN kS kV K
J⇥[x : X] �R kN kS kV K ! JR kN [ {x : X} kS kV K

J�[p] �R kN kS kV K ! �[p]� JR kN kS kV K
where V#p = 2

J�[p] �R kN kS kV K ! JR kN kS � �[p] kV K
where V#p = 0

J�[p] �R kN kS kV K ! ./ [x : X | p] �
JS �R kN � {x : X} k id kV [ {x} K

where V#p = 1 and V ar(p)� V = {x}
J⇡[...] �R k ; k id kV K ! ⇡[...] �R

Figure 5.6: re-rooting transformation for multi-set combinators

Note that the last rule here relies on the specific structure of combinators that we

generate from the prior transformations. Projection only occurs at the leaves of the

combinator tree expression, right before an e↵ect, and right before every e↵ect.

The last rule also makes a true claim which I do not prove. By the time the

transformation reaches a leaf, all of the intermediate stacks have been cleared—all

variables have been defined/re-ordered successfully.
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5.5 Translating Back to code

The translation from a transformed combinator back into code simply inverts the

translation already given in Figure 5.2. Before doing that, a very minor optimization

pass attempts to collect as many selection predicates as possible that could be merged

into the defining predicate for each variable (without breaking any more ] structures).

For a product ⇥[x : X] if any of these selection predicates are of the form �[x = e]

for any expression e, then we merge that selection alone as ./ [x : X | x = e], which

will be code-generated back into a let-binding. Otherwise, as many selections of the

form �[x.f = y] as possible are gathered together, to give the generated query-loop

the most possible material to work with later on.
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Chapter 6

Prototype Implementations

I constructed1 three prototype compilers for this thesis. All three languages were pro-

totyped as Lua-embedded domain specific languages using Terra[DHA+13]. There are

two complimentary ways to view these prototypes. First, each prototype is its own

software artifact with important idiosyncracies of its design; this view is important so

that I can accurately describe the basis for the experimental evaluations in the next

chapter. The second way of viewing the prototypes is as continued iterations approx-

imating an unconstructed joint language. In this second view the code generation of

a data model representation is of particular interest. In aggregate, what is required

and required by di↵erent DSLs of a common data model?

6.1 Common Compiler Features

As mentioned, all compilers were implemented in Lua, making use of the Terra[DHA+13]

metaprogramming framework for both code-generation and Lua parser hijacking.

The front-end of all the compilers mimiced design features of the Terra language

itself, being organized into a series of relatively standard passes: (1) parsing, (2)

1I inherited the Ebb compiler, which was heavily the work of Zach DeVito, Crystal Lemire, and
Chinmayee Shah as well. The Seam compiler (especially the SMT translation) was built along with
Manolis Papadakis.

119
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specialization, (3) type-checking, and (4) e↵ect-checking2. Aside from parsing, which

happens when the Lua file itself is parsed, all of these passes occur at definition-time3

meaning the point in the execution of the enclosing Lua script when the thread of

control passes over the lexical occurrence of Ebb, Seam, or Gong code. This definition

returns a Lua object which encapsulates the processed, typed, and e↵ect-analyzed

AST. The object is bound to a Lua variable for later use.

The front-end processes and reduces out syntax sugar, macros and other con-

venience features. In particular, the addition of the specialization pass (mimicing

Terra) makes it easier to resolve names and capture values from the enclosing Lua

environment of the definition. The pass is defined by this responsibility to resolve

and remove all free variable references in the code. Like with Terra, macros are re-

solved at type-checking time so that all arguments to a macro may be typed prior to

invocation.
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Figure 6.1: Compiler Architecture. E↵ect-analysis acts as a stronger form of type-
checking and governs the abstraction between data-structure generation and code-
generation in the back-end.

The backend of the compilers varies much more wildly. For instance, Ebb main-

tains a dynamic runtime that interleaves execution with the Lua script, whereas Seam

and Gong generate a C-library for later use.

However, all of the back-ends are structured around two interacting components:

the code-generator and the data-store-generator. (Data-store runtime for Ebb) These

two components are largely intermediated by the e↵ects of Chapter 4. The e↵ects

2In Ebb this was called phase-checking in keeping with Liszt terminology. The meaning is iden-
tical.

3In Seam, the more sophisticated e↵ect-checking is post-poned till compilation.
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essentially specify the signature of calls from the code-generator into the data storage

component. The data storage returns a snippet of code that implements the desired

e↵ect while hiding the details of data-representation from the code generator module.

6.2 Ebb

In Ebb, schema construction was exposed to the Lua script as a series of API func-

tions to register new relations, add fields, &c. This meant that the data structure

representation and code generation were required to be extensional. The program

could always add new tables and fields to the schema, or new functions to compute

on the data. Where choices had to be fixed (e.g. group_by or periodic) the im-

plementation had to have ways of committing those decisions and raising errors on

attempts to change those settings after functions had been defined on the tables.

6.2.1 Data Layout and Management

An Ebb data store may be thought of as Lua metadata (for the schema) backed by

explicitly memory managed arrays for the data. Each table (or grid) is given a Lua

object, with Lua objects for each field defined on it. The field objects additionally

keep pointers to arrays of backing data. Each global is given a Lua object that

keeps a pointer to a chunk of data in which the global is stored. On the GPU, the

pointed-to data is mirrored.

Keys. One fundamental implementation question is simply “how are references to

rows of a table represented?” Answering this question will constrain the layout

decision from there. I used simple unsigned integers to represent indices in Ebb.

However, both grids and the dynamic runtime exposed opportunities for optimiza-

tion of this representation. The Ebb prototype requires the simulation-programmer

to supply the fixed, static size of each table (or grid dimensions) when they de-

clare it. With this information, the Ebb runtime chooses whether to use uint8,

uint16, uint32, or uint32 values to encode keys. For grids, the compiler packs
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these into a struct, so that for instance a 128⇥ 128⇥ 1024 grid can be packed into a

{ _0:uint8, _1:uint8, _2:uint16 } struct, which neatly fits into 4-bytes.

For grids there is an additional question of how these multi-dimensional key values

get linearized. I used a simple lexicographic order between the coordinates, without

any tiling or blocking.

Column Storage. This layout corresponds to column-storage in databases, also

known as struct-of-arrays in GPU programming. This approach contrasts to row-

storage (or array-of-structs). For instance, given a table with two fields X.f : int32

and X.g : double, the row-storage pattern determines the layout of a row (4 bytes

for f, followed by 4 dead bytes, followed by 8 bytes for g) and then repeats this pattern

n times for a table with n rows. The column-store instead lays out a contiguous region

of 4 · n bytes to store f as n int32 values and separately a contiguous region (8 · n
bytes) for g.

Column storage has two important benefits in Ebb’s design. First, “struct-of-

arrays” is recognized as good practice on GPUs because it allows for coallesced data

reads and writes to or from a field. The 32 di↵erent threads in a CUDA warp will

often all hit the same read instruction. Pulling a contiguous 4 · 32 byte line out of

cache or DRAM will induce less wasted memory tra�c than if the read values are

strided. This only becomes more true the more fields are defined on a given table.

Second, column storage allows the data representation to become extensional with

respect to adding fields to a table after computations have already been performed.

Unlike row-storage, column storage allows for the di↵erent columns to be separately

allocated by a memory manager.

CPU/GPU data transfer. The Lua metadata objects must keep track of whether

the CPU, GPU, both or neither backing memories are valid. When data is written

either on the CPU or GPU, the alternate memory must be invalidated. Given these

tags, a simple lazy data movement policy is implemented. If data is needed for a GPU

or CPU computation but that copy of the data is not valid, then the data is copied

over. Generally I did not try to analyze write-over behavior inside of Ebb functions
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as distinct from read-write access. This certainly leads to some level of superfluous

data movement. However, data movement was already su�ciently complicated that

I didn’t want to complicate it any further.

Subsets. In addition to fields, tables may define subsets. Subsets are provided

with two possible representations: masked or indexed. The implementation chooses

between these two representations based on the size of the subset. If the subset

consists of less than 1
10 of the rows of the original table, then it is indexed. Otherwise

it is masked.

Masked subsets are represented by additional hidden fields on the table of type

bool, encoded somewhat wastefully as 8-bit values. Whenever a function is launched

on the subset instead of the full table, a di↵erent verison of the function is compiled,

with an “if this row is not masked out” guard around the body.

Indexed subsets are represented by a list of keys for the row in question, so that

there is one key for each row in the subset. Because subsets were primarily used to

handle special boundary region processing, most subsets tended to be either almost

the entire table (e.g. the interior of a grid) or a fraction of the table much smaller than
1
10 (e.g. the boundary of a grid). On the GPU, using a mask-based encoding would

ensure that most 32-wide warps would have either 0 or 2 active lanes, yielding roughly
1
16 occupancy before considering data or control divergence between warp-lanes.

Indices. In Ebb, a table X with a group_by X.f option set requires extra data to

be stored in order to facilitate fast execution of query-loops. These bits of data are

tricky to associate to an individual table. Viewed from one point of view the index

of X by f ought to belong to X. But there is an equally good claim that the index

ought to belong to Y when X.f : Y: namely that the index consists of an array of

size n+ 1 when Y is a table of size n. To avoid the predicament, it is better to think

of indices as edge objects connecting the table objects in a graph.

The contents of the array representing a given index are a compressed and inverted

representation of the f field. For row j of Y, Let Ij and Ij+1 be the j
th and j + 1th

entries of the index array. Then, the rows Ij  i < Ij+1 of X all have j as the value
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edges vertices

e.tail group-by index
(hidden)

Figure 6.2: When the (directed) edges of a triangle mesh are grouped by their tail
field, which contains vertex keys, the runtime (1) sorts the edges relation/table by
the tail field/column and (2) constructs a hidden index parallel to the vertices rela-
tion/table. This index allows us to e�ciently execute query-loops by simply looking
up the loop iteration bounds for each vertex.

of f. A query-loop simply looks up these two subsequent index values and loops over

the specified bounds.

This storage strategy coincides identically with the CSR (Compressed-Sparse-

Row) sparse matrix storage format when a table like Edges is grouped by one of its

endpoints.

6.2.2 Compilation & Code Generation

Code generation is implemented via Terra metaprogramming. For the most part this

is extremely straightforward. Where it isn’t, the issues have to do with complications

in orchestrating meta-programming or working with the underlying LLVM interfaces

correctly. To compile for GPU, I used the PTX backend of the LLVM compiler suite,

exposed by Terra. CPU code was compiled for x86. By default CUDA kernels are

launched with 64 threads per-block without tiling.

One interesting complication of Ebb is the ability to call a given function in

di↵erent contexts. For instance, a function may be launched on the CPU or the

GPU; it may be launched on the entire table or on a particular subset. These di↵erent

variations of the function often require it to be recompiled in di↵erent ways. In order

to manage this, code-generation was wrapped by a memoized function, keyed on each

of these compilation-sensitive parameters. Because Ebb lazily JIT compiles code, this
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approach concisely allowed for the potential compilation of a large number of variants

(without ever having to generate them all) without spurious recompilation.

Reductions Reads and writes can be trivially translated into load and store state-

ments, but special care is necessary to handle reduction statements in Ebb when code

is run in parallel on the GPU. Reductions fall into two categories: (1) reductions to

an element of a field, and (2) reduction to a single global value. In the case of field

reductions, relatively few threads will write to a memory location, so I compile these

to PTX atomic reduction intrinsics. If no special PTX instruction is available, I use

the compare-and-swap instruction in a loop to emulate the reduction.

In the second case of global reductions I used a variant of the two-pass reduction

described in [Wil13]. The algorithm was modified in two ways so that the first-pass

kernel can be fused into the original Ebb kernel code: (1) Rather than read the data to

be reduced from global memory, reduction operations inside the kernel body directly

reduce values into a per-block region of shared-memory. (2) Code is appended to

the end of the kernel to reduce this shared memory array and write the result to

global memory. The second kernel is then immediately launched to reduce the per-

block values into the global value using the reference algorithm identically. With

improvements in the CUDA atomics, this approach has become unnecessary.

6.3 Seam

Seam switched from Ebb’s runtime model to generating libraries from special com-

pilation calls. This switch simplified compiler implementation, since the compiler-

programmer is now allowed to assume they have all schema and code that will be

needed without possibility of extension.

For Seam, this switch was necessary. The nature of re-meshing (the problem Seam

was built to explore) is that adding additional data, views, or operations interacts

non-trivially with the existing code and schema. It is precisely how Seam checks

all of these interactions, and derives potentially quadratically many view-updates

and indices which makes the language valuable. It addresses the problem of safely



126 CHAPTER 6. PROTOTYPE IMPLEMENTATIONS

extending code that is in no way trivially extensible.

In the prototype Seam compiler, I did not attempt to provide a GPU back-end.

While such a back-end is possible (Seam would allow the compiler programmer to

derive locking code according to whatever discipline is chosen) the CPU-only imple-

mentation already poses many interesting challenges and choices.

Among these are: (1) data layout and representation, given the high degree of

mutability; (2) orchestration of log-playback, and (3) view-maintenance.

6.3.1 Data Layout & Management

In Seam the entire data storage is lowered into C-style data structures. The main

such data structure (the Store) functions as a meta-data container for managing all

the column arrays. While the column-storage strategy is preserved, the need to make

the row-set of each table dynamic, and the need to support multiple indices forces

any compiler-programmer to make di↵erent decisions than in Ebb.

Keys. In Seam all keys are stored as uint32 values. The maximum value (232 � 1;

all 1-bit) is used as a special NULL key value.

Sparse Tables. The implementation of Seam tables is designed (unlike Ebb) under

the assumption that elements of the table will be dynamically allocated and deleted.

To support this behavior a hidden _is_live field of booleans is created to track

whether a given key-value is mapped to an element or simply to free-space.

Another important di↵erence is that the Seam prototype exposes external handles

to individual rows of tables. Because operations may delete these rows, the host-

program must wrestle with the problem of invalidated references/keys. To support

host-program queries and prevent aliasing between deleted and new rows, I added a

second hidden field: the ref_count. This counter of type uint32 keeps track of the

number of extant references held by the host program. When a row is deleted with

a non-zero ref_count, the Seam implementation will wait until the last references is

released to release the key-position for re-allocation.
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Tables maintain a free-list of free, un-allocated rows by re-using the ref_count

space to thread the free-list in. When the end of the free-list is reached, all fields in

the table are re-allocated at double their current size. For the prototype I did not

implement any shrinking or de-fragmentation policies.

Indices. Unlike Ebb, Seam de-couples table ordering from indexing, and allows

multiple fields to reverse-index a table. Therefore the kind of compressed range

indexing from Ebb is no longer applicable. For the index associated to a field X.f : Y,

we must maintain a data structure representing the map y 7! f
�1(y). This map will

generally have support over most of Y. Therefore, we start with an array parallel to

table Y. At each (live) entry, we must store an arbitrary size set of keys from X. I used

a dynamically re-sizable vector (holding keys in unsorted order) similar to the C++

std::vector container. Insertion has amortized O(1) cost, and removal amortized

O(m) cost for a set of average size m. Better data structures would be desired in

practice. However, this was su�cient for the simple application I tested, where m

was of constant size on average.

edges vertices

e.tail index
(hidden)

Figure 6.3: When the contents of the indexed table (edges) may change, the previous
indexing data structure does not work. Crucially, there is no guarantee that the
indexed rows are kept sorted according to the indexed field (edges.tail). Therefore,
each row of the indexing table (vertices) must store a list of key representations,
using dynamically sized arrays or some other such data structure per-row.

Views. Materialized views are stored in a similar manner to indices on the base

tables. Let V be a view table with fields k1:X1, k2:X2, k3:X3. Based on analysis of
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code using query-loops over the view, a materialized copy is built for each field4 used

to loop over the view.

Consider a materialization of V built to support query looping over field k1. This

data structure is built as a map from X1 ! X2 ⇥ X3 ⇥ Z, which groups all of the

tuples and counts in V by their k1 value. Increments and decrements of full tuples are

performed by first indexing with k1 and then binary searching for the (k2, k3) entry in

the dynamic array stored at k1. While this is the same as the Index backing structure,

it is maintained in sorted order now. If a tuple can’t be found, the operation takes

O(m) amortized copies to shift the array. If the count reaches zero, the operation

takes O(m) operations to compact the array. Lookups happen in O(logm) reads,

and scans for query loops remain cheap. Increment and decrement operations are

repeated for each materialized view copy.

6.3.2 Code Generation & Log Playback

Any operation maintains a log of e↵ect operations during primary execution. This

log contains separate lists for new, update, write and remove operations to help aid

playback. When a new e↵ect is encountered, a key must be immediately allocated in

order to permit continuing with primary execution. This value is needed to assign

in other update e↵ects. Therefore news are split into two-phases. During primary

execution, a row is pre-allocated (using the ref_count rather than is_live field to

track this) without performing any dependent updates to indexing data structures.

These news are committed during secondary execution (log playback).

Log playback (secondary execution) occurs after successful completion of the op-

eration’s primary execution. First new e↵ects are committed (see preceding), followed

by updates and writes. Finally deletes are processed. All of these operations are

complicated by the need to carefully maintain the state of sparse table membership,

indices and materialized views. Because indices and views are designed to never di-

rectly reference each other, this can be accomplished straightforwardly, even if it is

4when multiple fields are jointly used by a query loop, the compiler picks the “first” field according
to a global ordering. This choice signficantly reduced the number of copies of a view that were
materialized.
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complicated to orchestrate the necessary code generation.

If an abort is encountered, then all logged news are rolled back, releasing the

associated memory and the log is discarded.

Finally, to maintain the views, the derived incremental view update code (Chapter

5) must be executed at the right time. After each new dx is committed, the associated

�+dx code is executed. Then, before each update dx.f = dy or delete dx e↵ect

is applied from the log, the corresponding �f or �-dx view maintenance code is

executed. Interleaving updates in this way is necessary to ensure correct behavior

because the derived code may invoke query-loops using the indices in the process of

being updated.

View Generation. View definition code (normalized as described in Chapter 5)

is code-generated wrapped in a for loop over the first argument, similar to Ebb

functions. After all initial data is loaded (in bulk) into a Seam store by the host-

program, this view generator is executed to populate the materialized views.

Invariant Checking. At the same time as view generation (after a complete initial

copy of the data structure has been committed by the host-program), the code for

each invariant is executed to check whether the invariant is satisfied for the loaded

data structure. This works just like view generation—wrapping the body in a loop

over the argument to the invariant.

Additionally, basic data consistency is checked on load. Every topological field

value must refer to an existing row in the specified table.

6.4 Gong

Gong uses an execution model more similar to Ebb than Seam, based on wrapping

code inside of looping constructs. However, the tables must also be designed to allow

for creating and destroying rows—leading to data structure choices more similar to

Seam. Wholly new (compared to Ebb or Seam), the Gong compiler must manage

acceleration structure data and loop generation. The compiler programmer must also
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manage some novel e↵ects, compiling them for both the CPU and GPU.

Like Seam, code is generated at a single compilation point, outputting a library

and interface (whether C, C++ or terra). While a dynamic and extensional approach

(similar to Ebb) ought to be possible in principle, (there are not the kinds of circular

dependencies as when extending Seam schemata) this choice is usually simpler for a

compiler-programmer to architect the code around.

6.4.1 Data Layout & Management

Gong tables come in essentially three varieties. First, there are base tables, for which

we expect no size changes except at load time. Second, there are derived tables (the

target of an emit) that do not have a primary_key pair declared. Finally, there are

derived tables with primary_key pairs, which may be the target of a merge. While

both of the latter table types change size, only the merge tables need to be indexable

by their primary keys5. As an additional simplification, I implemented the first class

of tables via the second class, since (as we will see) the implementation performance

should be identical to Ebb tables when no emits are performed.

Keys. As with Seam, all keys are stored as uint32 values. No special NULL value

is reserved.

Non-Indexed Tables. Base tables and tables without primary_keys resemble the

behavior of C++ vectors. They may be appended to in amortized constant time

(using a size-doubling re-allocation heuristic), may be cleared back to zero, and have

a dense allocation of their key space. On the CPU (using serial execution) keys may

be allocated in this way.

GPU-Resident Tables. Dynamic memory allocation and memory management

on GPUs and in CUDA is generally a hard problem. For the prototype, I avoided

5For the purposes of the prototype, I avoided writing examples where Gong would have to manage
indices for query-loops. As the merge tables suggest, this does not fundamentally exclude the
relevant questions, but helps simplify them enough to explore in a prototype.
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it altogether by requiring users to supply a maximum estimate of the size of any

generated table (in terms of a function of input). The Gong prototype just CUDA-

allocates this maximum space and crash-fails the entire library if the maximum is

exceeded. The CUDA-allocated space is managed by maintaining a table-size counter.

In order to allocate a row, this counter is incremented using an atomic increment

instruction.

Indexed Tables. Derived tables with primary_keys must maintain a primary key

index, which is inherently more complicated than the indices considered in Ebb be-

cause it must model a map Y1 ⇥ Y2 ! X when the table X has a primary key on the

pair of fields X.f1 : Y1 and X.f2 : Y2. I use an array dimensioned over the first

domain Y1 with each entry storing a sorted dynamic-size array (C++ standard vector)

holding pairs from Y2 ⇥ X. As with other indexing structures used in this thesis,

this strategy is suceptible to skew (i.e. a non O(1) number of rows at one or more Y1

values). It was merely su�cient for the modest performance goals of the prototype

constructed.

merge allows rows of tables with primary_keys to be both created and destroyed.

Therefore, I maintain a free-list allocation policy (like Seam) threading the free-

list through the X.f1 values of unused rows. An _is_live field is used to track

which rows are used when scanning over the table. (Note that no ref_count field is

needed.) In order to support more consistent interaction with host code, I also provide

a sort routine that compacts and canonicalizes the order of the storage. This can

be accomplished in O(n) time by simply scanning through the index structure and

permuting rows.

Indexed Tables on GPU. GPU-resident tables with primary_keys use the same

allocation strategy as all other GPU-resident tables: the simulation-programmer is

expected to provide a sizing function. However, incrementally maintaining an index

like the CPU one is prohibitively complicated. Instead, joins using merge and emit

e↵ects are augmented to sort the table by the primary-key values. Having done this,

a compressed indexing array (similar to Ebb) is constructed to support fast lookups.
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More details follow in the discussion on code generation.

6.4.2 Code Generation and E↵ects

Most of code generation follows ideas from the Ebb compiler. The main notable

di↵erence was that I used atomic operations for both field and global reductions,

rather than use a two-stage global reduction tree.

Arg-Min Execution. I did not implement argmin reductions in the prototype

compiler. One subtle issue is whether and how to ensure a stable result when multiple

threads produce the same minimum result. Let X.f be the field being minimized on,

and a:A, b:B the thread-id being executed in. Let v be the value currently being

minimized into x.f. Then, construct a temporary hidden field parallel to X.f capable

of storing (a,b) values6. If the minimization is instead performed with respect to

the value (v, (a, b)), under a lexicographic ordering, then any ambiguity about which

thread gets to write is eliminated—the “least” thread writing the ultimately minimum

value wins. On the CPU, this encompases the extent of implementation complexities.

On the GPU, argmin is more complicated because the compiler-programmer is

obligated to simulate an atomic operation on a number of dis-continuous memory

locations. As a first note, observe that the contention can be significantly reduced by

perfoming the atomic-min reduction as if the conditional write part was absent. Using

the returned value from these calls, most threads can correctly identify that they do

not carry the true minimum value. Other threads, succeeding in the min-operation

would log their writes to a bu↵er (sized and managed similar to tables). This log

could then be replayed with the true-minimum value in hand to govern which write

actually succeeds. Note that more clever locking tricks are highly likely to violate a

GPU’s weak memory-model, which lacks global synchronization primitives.

On the other hand, it is worth noting that GPUs have long had at least one highly

performant implementation of an argmin e↵ect: the Z-bu↵er. The Z-bu↵er controls

conditional writes to the rest of the framebu↵ers. Not only that, but it functions as

6The reduction is often being performed into some A.f on a the join parameter itself. In this
case, the key could be reduced to b alone as an optimization.
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a means of governing speculative execution. We can see shades of these semantics in

the preceding early-exit trick. More significantly, the semantics for the argmin e↵ect

suggest a potentially novel concurrency abstraction for SIMD machines like GPUs;

one with precedent and compelling applications.

Merge Execution merge statements are compiled into lookups using the index

maintained on the destination table’s primary_keys. If the lookup fails, then a row

is allocated using the previously discussed data management policies: on cpu, an item

is allocated o↵ the free list. On the GPU, a row is allocated at the end of the active

block.

On the GPU, merge operations make use of extra bits in the _is_live field

in order to track whether a given row is unvisited (the default), visited, or newly-

allocated. All of the newly-allocated rows occur in a block after the pre-existing rows.

This distinction is then used to e�ciently post-process the results of the merge.

Post-processing for a merge on the GPU consists of five steps (each of which is

roughly a GPU kernel launch). In stage (1) a kernel maps over all live rows. If the

row was unvisited, then the remove code block is run on the row at this time. If keep

is executed, then the row is marked as visited. Regardless, a compressed primary

key id is generated for each row. Unvisited rows that did not have keep invoked are

assigned a maximum-value surrogate id. In stage (2), the compressed ids are sorted,

generating a by-product parallel permutation array; and compacting the live rows by

arranging all dead rows at the end. In stage (3), the compressed primary key ids are

uncompressed, and then in stage (4), the index array is recomputed (see below). In

stage (5) the rest of the data fields/columns are permuted into the new order using

the by-product permutation array.

The index array is recomputed using binary search. A GPU kernel is launched

with one thread mapped to each entry of the index (i.e. for each row of Y where the

first field of the primary key is X.f1 : Y). Then, the i
th thread binary searches on

the sorted X.f1 to locate the first occurrence of key i. The key for this row of X is

written to the index.
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Emit Execution By contrast to merge, emit execution is much simpler. The

semantics of emit have us first clear out the destination table of all contents. Then,

new rows are simply appended at the end of the table during the join. If the table

has a primary_key and is being computed on the CPU, then the index is built up by

inserting entries as rows are added to the table. If on the GPU, then rows are simply

added. A slightly simplified version of the above five-step post-process is carried out

to regenerate the index after the operation. In particular, there is no need to track

whether rows are visited or to run remove code.

Migration Experience While working on Gong, I changed the machine, CUDA,

LLVM, and Terra versions I was building on top of. However, due to changes to

CUDA[LG], I was no longer able to rely on the same PTX ISA instructions. Pre-

viously, I had implemented a warp-level contention reduction for atomic increments

using special warp-ballot instructions—this was used to implement row-allocation for

emit and merge e↵ects. It had since been discovered that these operations were not

safe. I switched to a naive per-thread increment operation instead. For whatever

reason this appeared to now have no discernable performance penalty.

It is worth pointing out here that the semantics of the Gong e↵ects remain un-

ambiguous despite the flux caused by CUDA’s weak memory model. One major

reason for using higher-level domain-specific abstractions is the ability to bu↵er the

simulation-programmer from these kinds of tricky details of parallel programming that

regularly surface in high-performance abstractions that remain close to hardware.

6.4.3 Looping and Acceleration Structures

Most systems for collision detection abstract acceleration structure choice in some

manner. However, this abstraction is often leaky. One important challenge for Gong

was to figure out how to make this abstraction less leaky, so that data-storage ab-

straction and e↵ect-checking remain valid. For this purpose, we adopt a template

strategy. This strategy is a design trade-o↵. The compiler-programmer has the free-

dom to write arbitrary code in the template, but must manually port each template

to each parallel target.
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From the point of view of data-storage and code-generation modules, acceleration

structure templates must implement the following stubs:

StructLayout(DataAPI) The template generates any private storage it

wants included in the data-store, representing

the acceleration structure.

PreLoop(DataAPI, ptr) The acceleration structure may do any main-

tenance needed to update itself whenever some

join is called. For instance, a BVH is re-built

or re-fit to the data.

Invalidate(DataAPI, ptr) The acceleration structure is informed if any

table or field data that it depends on has

changed.

LoopGen(DataAPI, ptr,

row0, row1, body)
Two acceleration structures are traversed, re-

sulting in calls to the code-generated join body

with appropriate row0, row1 values bound.

All of these routines rely on a DataAPI that abstracts the data-storage from

the perspective of the acceleration structure. This API has three main functions:

Size(tbl), Scan(tbl,row,body), and GetFunction(gong_fn). The last routine

allows the template to get a handle to compiled user-defined functions that it was

supplied with. (for instance, the abstract function supplied when creating a BVH

index)

Scan

The scan template is very simple. On the CPU it nests a loop over the two tables.

On the GPU it launches a kernel over every pair of keys. The CUDA blocks of 64

threads each are used to tile the product domain. That is, each block is assigned 8

keys from the first table and 8 keys from the second table. Tables not divisible by 8

simply mask o↵ threads at the end.
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Due to a choice of key-pair encoding in 32 bits, the scan strategy will cause the

library to crash if executed on tables A and B such that #A·#B � 232. For self-joins,

this means that GPU scans are limited to tables of size 216 = 64, 000.

BVH

The Bounding-Volume-Hierarchy template supports both CPU and GPU versions,

albeit with very di↵erent construction and traversal algorithms. The CPU uses a

joint-traversal of two trees, and a median-split top-down construction. The GPU

meanwhile uses a spatial coding construction algorithm and scans one side of the

join, inserting into the tree on the other side. Neither of these strategies are intended

to be optimal choices. However, there is also no clear consensus on what constitutes

optimal acceleration structure choices or algorithms in collision detection.

On both the CPU and GPU, the compiled abstract function is mapped over the

base table (using DataAPI.Scan) along with point to compute a bounding volume

and point representative for each row of the table.

On the CPU, the construction algorithm builds a binary BVH by the following

recursive algorithm. Choose an axis (cycle through the options as the recursion

descends). Find the median point/object along that axis using quick-select—this

partitions the array into the items before the median and after the median in the

process. Recursively partition these two sides until one arrives at 8 or fewer objects,

which are collected in a leaf node. The resulting tree is a balanced binary tree.

Volumes stored at internal nodes are computed in an upwards return pass using the

vol_union function. After the tree structure has been computed, it may be more

quickly updated by only performing the vol_union-based re-fitting. When a BVH

is repeatedly re-used in joins, I use a naive policy to amortize build costs. Every 8th

update to the acceleration structure triggers a re-build, with only re-fits in-between.

CPU traversal works (starting with the left and right root nodes) by alternately

expanding the left-hand or right-hand node until a pair of leaf-nodes are arrived

at. Then, their contents are scanned over. At each new pair of nodes, a vol_isct

test is performed, and the traversal branch is terminated if the two volumes are not

intersecting.
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On the GPU, the construction algorithm sorts the data according to a Morton

code (i.e. interleaving xyz coordinate bits as . . . x1y1z1x0y0z0). Then, splits are chosen

in a single kernel using Tero Karras’s trick[Kar12]. Finally, volumes are fit recursively.

This results in a tree built by splitting objects along the octree-like divisions in space.

Following Karras, I chose to handle traversal asymmetrically. A BVH is only

used for objects on one side of the join. The other table is mapped to GPU kernel

threads, one-to-one. Each of these threads then descends the BVH tree independently,

maintaining its own explicit stack as it goes. This choice may lead to a somewhat

dramatic load imbalance between threads, especially in the case of relatively large

geometric primitives such as ground planes.

Spatial Hash

I implemented the Hash template only on the CPU. It uses a relatively naive hash-

table implementation, storing collisions using grouped-linked-lists of items. Let bin

refer to a hashed-location and slot to a group of entries stored at a bin. Slots are

sized to hold a key, a pointer to the next slot in the linked list, and as many row-

ids7 as will fit (along with the first two values) in 64 bytes. NULL values (where

needed) are encoded as all 1 bit-patterns. A fixed-size array of bins (each holding a

uint32 reference to a slot) is allocated, sized according to BIN_TO_ROW. The slots are

allocated and managed dynamically using a backing dynamic vector for storage.

For simplicitly, initially consider the case of a Hash structure supplied with an

abs_point function and no brute_force function. To construct the table, the base

table is Scanned over, with abs_point evaluated on each row r producing a value k.

Then, this value is converted to a bin location b by feeding it to hash. If the value

at b is NULL, then a new slot is allocated with key k and next-pointer NULL. Its first

row-id is set to r and the rest of the row-ids to NULL. If a slot is already allocated

at b, then the linked list is followed until either a slot with matching key k is found

with empty row-id space, or the end of the list is reached, triggering another slot

allocation.

The above procedure is extended trivially to the case of abs_range by iterating

7I will refer to table keys as row-ids here to avoid the overloaded terminology.
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over a set of key values for each row rather than just handling a single insertion. When

a brute_force function is supplied, any row r where brute_force returns true is

inserted into a supplementary brute_force list instead of the hash table itself.

Traversing a spatial hash consists of simply looking up values in the table with-

out inserting values. At this point, every matching row must be found by scanning

through the entire linked list at a bin. In the special case of a self-join, this can be

accelerated by simply scanning over the slots themselves and following the linked list

at each slot we scan. Since the allocation policy ensures that linked lists will only be

threaded monotonically through the array of slots, we can safely assume that each

pair of slots in the same list is visited exactly once using this strategy.

If both sides of the join use hashes with abs_range, then an additional de-

duplication control is necessary. This can be accomplished by (for each pair of objects

encountered) running abs_range to find the minimum key values (potentially multi-

dimensional) for those objects. By taking the component-wise maximum of those

minimum keys, we arrive at a unique key position for which to test the intersection

of the objects.

Figure 6.4: Hash Deduplication. Two boxes (dashed-lines in blue and magenta) are
converted into key-ranges in the grid of keys (diagonally shaded cells). A test for
intersection is only performed at the least cell of overlap (thick yellow border in the
center).
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6.5 Discussion of Compiler Organization

Over the course of constructing the three prototype compilers, I realized that the

data-storage module was the most unwieldy and ill-defined component of these kinds

of compilers. By comparison, consider the front-end of a compiler and how it progres-

sively transforms text into a well-typed AST. Not only is this process well explained

in introductory texts—to the point of being standard—we possess a great deal of

wisdom about specifically how to structure this code. For instance, lexers are cus-

tomarily written as stream-processing functions, and parsers are organized around

the specificity of a BNF-grammar. The type-checking and other front-end passes are

implemented as structurally recursive functions on trees in a purely functional way.

This last point allows us to isolate our reasoning about compiler bugs/correctness,

and check data for correctness in-between each pass.

How then, should we think about writing a data-storage module? What are the

crucial programming disciplines to leverage?

My experience suggests that data-storage generation should be thought of in the

following ways

1. A complete description of the data structure should be assembled in the most ab-

stract possible way before beginning. This constitutes not only the schema, but

also any directives about how that data should be stored (e.g. grid, primary_key,

&c.)

2. If schemas are maintained as user-visible objects, this complete description

should be generated as a copy of the schema, maintaining the immutability

of the user-schema by the compiler code.

3. While fields can be organized as children of tables, indices cannot be. In-

dices should always be created as a set of secondary objects referring to the

primary objects in a graph-like data structure. This data-structure can then

be augmented in standard ways to allow other code to quickly locate all indices

connected to a table or field in particular ways.



140 CHAPTER 6. PROTOTYPE IMPLEMENTATIONS

4. A data-store should be generated from this description in two passes. In the first

pass, the description is used to establish the specific layouts for each component

of the data-store. Then in the second pass, functions for looking up data and

modifying it are generated. Without this distinction, one ends up in circularity

problems trying to refer to layouts that haven’t yet been created. This becomes

especially evident when inserting a row in a given table triggers dependent

operations on various indices.

5. The data-store’s layout decisions should be abstracted from the rest of code-

generation to the greatest possible extent. For instance, decisions about index-

arithmetic and key-representations should not leak out into the entire back-end

of the compiler.

In general, this level of modularity requires passing chunks of code between code

generation and the data storage modules. Rather than try to dogmatically keep

all code generation out of the data-storage, it is impotant to selectively place code-

generation that is tightly coupled to data layout (e.g. table scanning) into the data-

storage module.

This resulted in the idea that the interface between these two modules might be

best described by an expansion of the set of e↵ects. Under this discipline, the code to

implement a given e↵ect should be placed into the data-storage module by default.

By the time I got to implementing the Gong prototype, this approach was yielding a

much cleaner separation of code. Ultimately, these ideas made the DataAPI interface

to the acceleration structure templates possible.



Chapter 7

Experimental Evaluation

7.1 Ebb

Ebb aims to capture a wide range of simulation domains, produce high performance

code, and support interoperation with existing libraries. To evaluate whether we1

achieved these goals, we selected four di↵erent problems that use di↵erent simulation

domains — a fluid simulation, two finite element problems, and a hydrodynamics

simulation.

FluidsGL [Goo07] is a semi-Lagrangian Stable Fluids simulation on a 2D grid, us-

ing a fast Fourier transform (FFT) at each step to solve the di↵usion and projection

system solves. Implementing FluidsGL in Ebb tests support for grids and ability to

interoperate with external (FFT) code. Vega [SSB13] is a general purpose deformable

soft-body simulation library using finite element method; our evaluation focuses on

the code paths responsible for supporting the St. Venant-Kircho↵ elasticity model

on tetrahedral meshes. We use Vega to demonstrate support for ad-hoc data model

specialization (§2.2), and the benefits of refactoring responsibility for parallelization

into the compiler; Ebb runs considerably faster than Vega despite the sunk cost of

the Vega team in rewriting and maintaining redundant multi-threaded code in their

system. FreeFem++ is a high level language designed to solve partial di↵erential

equations using finite element methods [Hec12]. Instead of numerical algorithms, the

1Moreso than for the other prototypes, Ebb was a group e↵ort.

141



142 CHAPTER 7. EXPERIMENTAL EVALUATION

programmer supplies a variational formulation of their simulation. In our compari-

son, we execute a deformable Neo-Hookean elasticity model in both FreeFem++ and

Ebb, demonstrating that Ebb outperforms an equivalent FreeFem++ implementation

by a huge margin and with modest code size. Lulesh [LUL12] is a hydrodynamics

simulation on a hexahedral mesh used for evaluating di↵erent programming models

for writing high performance scientific computing simulations. It has highly-tuned

implementations for di↵erent architectures, providing the most rigorous stress test of

performance out of the simulations we consider.

All code was compiled for and executed on a machine with an Intel i7-4790 CPU

and an Nvidia Titan Black, GK110 Kepler architecture GPU. Reference code was

compiled with gcc 4.9 with optimizations (-O3) enabled; reference CUDA code was

compiled with nvcc 6.5. Along with total run times and code sizes, we also provide

overhead of JIT compilation, which occurs once when the code executes for the first

time, and the total memory used for storing data including constants, key fields,

and hidden fields over relations. To measure memory allocation, we instrument Ebb

directly, use a CUDA profiler for reference GPU code, and a malloc counting tool for

reference CPU code.

7.1.1 FluidsGL

FluidsGL [Goo07] is a simulation of the Navier-Stokes equations for incompressible

fluid flow written in CUDA, that ships with the NVIDIA CUDA 6.5 SDK. We chose

it as an example because it is simple, short and uses a regular grid, allowing easy

hand-tuning on the GPU. For these reasons, it serves as a good test for the quality of

code Ebb produces. Furthermore, the simulation is based on an approach to Stable

Fluids which requires a fast Fourier transform [Sta99]. FFTs are commonly used,

heavily optimized, and exhibit communication patterns not well expressed as data

parallel Ebb kernels. To get good performance, Ebb code needs to interoperate with

an external library for calculating them.

The code calculates the velocity of a fluid as values on a uniform grid. Each

iteration, the fluid is transformed from the spatial domain to the frequency domain
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where the di↵usion and projection steps are computed, and then transformed back

into the spatial domain. Point location is used to perform a cell-to-cell lookup when

advecting velocity, and again for advecting a set of particles used to visualize the

flow. In the reference implementation, the CUFFT library is used for the Fourier

transforms.

Ebb also uses the CUFFT library to transform data into and out of the frequency

domain—which is modeled by a second grid relation. Using the Ebb API, we re-

quest a direct view of the GPU resident field data managed by the runtime. In this

way, CUFFT can operate directly on the memory, avoiding any additional cost of

marshaling the velocity field data.

We compare the performance of our implementation to the original code (Fig-

ure 7.1) across a range of grid sizes. Despite using a relational abstraction for man-

aging the data, Ebb is able to produce code that runs no more than 19% slower than

the hand-optimized CUDA implementation. The total overhead for JIT compiling

code is a constant 0.25 seconds, regardless of problem size.

Ebb’s ability to interoperate with external libraries is important in this example.

In both implementations, CUFFT accounts for around 30% of the total compute

time of each simulation iteration, a sizable but not dominant part of the runtime.

Overall performance is a combination of both fast simulation code and fast FFT

code. Providing interoperability allowed us to use the best implementations for each

part of the application.

For problems sizes of 5122, 10242, 20482, and 40962 cells, Ebb uses 30MB, 100MB,

370MB and 1300MB respectively, while the reference uses 30MB, 70MB, 250MB and

900MB. Breaking this down into memory usage per-cell, Ebb uses approximately

80B-per-cell, while the reference uses approximately 53B-per-cell. Taking a careful

tally of the underlying problem, an optimal implementation can get away with a

32B-per-cell overhead. (16B for a double-bu↵ered velocity field, 8B for frequency-

domain storage and 8B for particle position—there is one particle for each cell) Of

the 48B of Ebb overhead, 16B is due to since-removed system ine�ciencies, 24B

is due to redundant representation of data within the user code, and a final 8B

is unavoidable due to the programming model—specifically the need to maintain
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Figure 7.1: Our Ebb implementation of FluidsGL, an incompressible fluid flow simu-
lation, compared against the performance of the implementation in the CUDA SDK.

explicit key-fields from the cells to themselves (semi-Lagrangian lookup) and from

the particles to the cells. The reference code uses an excess ⇠21B, at least 8B of

which is attributable to superfluously storing particle velocity. As evidenced by this

breakdown, neither FluidsGL, nor the Ebb version were written with much attention

to optimizing memory footprint. While no greater degree of attention was paid to

memory usage in the remaining comparisons, Ebb nonetheless consistently used half

or less memory than the reference code.

7.1.2 Vega

Vega [SSB13] is a popular C/C++ physics library for simulating 3D elastically de-

formable solids. It supports a variety of integrators, elasticity models, as well as both

tetrahedral and hexahedral domains. To make a comparison, we configured our Vega

simulations to use implicit backward-Euler integration and the Saint Venant-Kircho↵

elasticity model on a tetrahedral domain. After slicing out the relevant code paths,

we found that Vega used 2500 lines of code for its single-core implementation. As

such, we chose it as a demonstration of the performance Ebb can achieve on a larger
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program. Unlike the simpler FluidsGL, Vega’s size makes it inherently more di�cult

and costly to optimize. While the library authors care enough about performance to

have added a multi-core CPU implementation, no GPU implementation of it currently

exists (to the best of our knowledge).

We wrote an implementation of the described Vega code path in Ebb. In doing

so, we took care not to exploit the opportunity to refactor code across VEGA’s

abstraction boundaries. Details of the domain model topology are described in §2.2.
Position, velocity, force and displacement fields are stored on the vertices and material

properties on the tetrahedra. We store the sti↵ness matrix as a 3⇥ 3-double-matrix-

valued field on the edges, e↵ectively recreating the custom sparse block matrix data

structure coded in Vega out of relational primitives.

At each time step, Vega computes internal elastic forces, sti↵ness, and damping,

constructing a linear system that is solved to compute vertex velocities and dis-

placements, subject to external forces. In Ebb, we solve this system using a Jacobi-

preconditioned conjugate gradient solver (PCG) written entirely in Ebb kernels; as

such, we can run this same PCG solver on the GPU. When run on a single core, Vega

uses a similar PCG solver; on multi-core we have Vega use the multi-threaded Pardiso

solver from Intel MKL [KLS13] as well as the separate multi-threaded force model

and integrator implementations. Solvers often have di↵erent performance character-

istics than other simulation code. To ensure they run well in Ebb, we allow writers to

optionally annotate kernels with underlying characteristics such as block size, which

can increase performance by up to 2x for some solver kernels.

Figure 7.2 compares the performance of Vega in Ebb to the original Vega code for

a few di↵erent meshes. The simulations in Ebb take 1.75 seconds to JIT compile once

at the beginning, which is excluded from the figure. Note that our single core imple-

mentation of Vega matches the performance of the original code. We are also able

to use Ebb’s CUDA backend to generate a GPU implementation of Vega. Previously

Vega could not run on GPUs. Our automatically-generated implementation runs 9

times faster than the serial implementation, and from 4 to 9 times faster compared to

the best multi-threaded implementation on our CPU. For simulation library develop-

ers, this approach is much simpler and easier to maintain than translating reference
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Figure 7.2: Ebb and reference average times per iteration, for 3 di↵erent meshes. Ebb
GPU performs 9 times faster than reference serial, and 4 to 9 times faster than the
best of serial and multi-threaded reference implementation over 8 cores.

code to GPU code by hand, which would require rebuilding data structures for GPU,

rewriting the solver, and carefully considering the implementation of reductions to

avoid race conditions.

Abstracting the domain via relations also simplified our implementation of Vega.

The original C/C++ code slice consists of over 2.5K lines of code for single-core com-

putation, over 400 lines for loading tetrahedral meshes, and an additional 800 lines of

code to implement multi-threading, not including the external solver. In total VEGA

takes over 3.7K codes to implement the exercised code paths. Our Ebb application is

under 1K lines of simulation code, plus a 400 line tetrahedral mesh domain library,

resulting in less than 1.4K lines total. Ebb code is more concise due to automated

memory management, and the abstraction a↵orded by relational primitives (encap-

sulated in macros). The reference code, on the other hand, explicitly encodes the

mesh as arrays augmented with specialized indexing structures for adjacencies. Fur-

thermore, it requires the implementation of a separate sparse matrix class with fast

indexing structures. In our Ebb implementation, we were able to embed this sparse
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matrix structure as a matrix-valued field over edges, resulting in fewer lines of code.

By avoiding redundant representations of the data, Ebb ends up using only 1.09GB,

1.06GB and 0.36GB for the dragon, hose and turtle meshes, compared to 2.35GB,

2.26GB and 1.46GB respectively for the reference code.

7.1.3 FreeFem++

FreeFem++ is a high level language designed for solving partial di↵erential equations

over meshes [Hec12]. Problems in FreeFem++ are modeled using a variational formu-

lation, which is closer to how physicists model partial di↵erential equation problems.

By comparing a FEM simulation in Ebb with one in FreeFem++, we evaluate the

productivity vs performance tradeo↵s of using a higher-level abstraction than the one

Ebb o↵ers.

We obtained a deformable simulation using a Neo-Hookean elasticity model, that

was written in FreeFem++, with input from the FreeFem++ developers on the cor-

rect way to use their system. The simulation uses a conjugate gradient solver to

perform implicit integration. We implemented the same elasticity model, with the

same external conditions, numerically in Ebb. Similarly to the Vega comparison, we

store position, velocity, force and displacement on vertices, material properties on the

tetrahedra, and sti↵ness matrix on the mesh edges. We reused our implicit integra-

tor and conjugate gradient solver from the Saint Venant-Kircho↵ example. Counting

both this integrator/solver and new code, our Neo-Hookean simulation written in Ebb

requires about 800 lines of code. We also reused the tetrahedral mesh domain library

from the Saint Venant-Kircho↵ comparison, which was 450 lines of code. While typ-

ical FreeFem++ problems take tens of lines of code, the various tensor components

introduced by the Neo-Hookean model made the FreeFem++ code about 700 lines

long.

We use FreeFem++ version 3.36 for evaluation. FreeFem++ takes about 41.3

seconds to run one time step on a tetrahedral mesh representing a sphere, with

2.4K tetrahedral elements. On a large bunny mesh with 78.7K tetrahedral elements,

FreeFem++ takes about 28.3 minutes to run one time step. Ebb completes each time
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step on the sphere mesh in 0.006 seconds (6800 times faster) and on the bunny mesh

in 0.26 seconds (6500 times faster), on a CPU. These meshes are too small to give

any significant speedups on GPU—we get an additional speedup of 2 for the bunny

mesh on GPU. The one-time overhead to JIT compile kernels is about 0.22 seconds

when running on GPU and 0.4 to 0.6 seconds when running on CPU. Though Ebb

can run this simulation on larger meshes, with an even larger speedup on GPU, we

did not evaluate FreeFem++ with larger meshes due to the large running time.

Ebb performs better than FreeFem++ because the Ebb simulation computes elas-

tic forces and stress using an algorithm that is specialized for the Neo-Hookean model.

This is possible in Ebb, even with relatively concise code, because of the su�ciently

low abstraction level that Ebb o↵ers, while nonetheless relieving the user from the

burden of memory management, low-level data structure construction, and paral-

lelization.

7.1.4 Lulesh

We also implemented a version of Lulesh (Livermore Unstructured Lagrangian Ex-

plicit Shock Hydrodynamics) [LUL12], which is a standard benchmark for evaluating

the performance of simulation code across a variety of programming models. It has

highly optimized implementations for a variety of languages and platforms [KBC+12],

allowing us to evaluate the quality of the code Ebb produces relative to highly-tuned

implementations. Lulesh also uses a semi-structured hexahedral mesh, exercising

another domain model.

Lulesh models the propagation of a Sedov blast wave, using explicit integration. It

stores thermodynamic variables, such as energy and pressure, mapped over hexahedral

elements, and kinematic values, such as position and velocity, mapped over nodes.

The iterative algorithm consists of a phase that advances node quantities, a phase

that advances element quantities, and a phase that computes all values at the next

time step.

Figure 7.3 summarizes the results for Ebb compared with implementations of

Lulesh that were hand-optimized for serial and GPU execution. The serial version
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Figure 7.3: Ebb and reference GPU implementations of Lulesh, compared against
the reference serial implementation. The simulation was run over a 150x150x150
hexahedral mesh for 2,527 iterations.

of Ebb performs at the same speed as the hand-written reference. Our GPU imple-

mentation runs about 24 times faster than the serial code, and within 27% of the

performance of GPU code hand-tuned specifically for the Kepler architecture. Per-

formance characteristics of GPUs can change over generations. The original CUDA

version of Lulesh code was written for the previous Fermi GPU architecture and per-

forms worse than the Ebb implementation. One advantage of writing simulations at

a higher level is that changes in architecture can be handled by the compiler rather

than by hand. For instance, the addition of new atomics or changing best practices

for reductions can be addressed within the Ebb compiler.

The time to JIT compile Lulesh code in Ebb is about 1.5 seconds. Ebb uses 1GB

memory, compared to 2GB memory by reference code, for the 1503 hexahedral mesh.

We perform well compared to other domain-specific language implementations.

On a 453 sized mesh, the Liszt[DJP+11] language can run Lulesh at 176 iterations

per second, while Ebb can run the same simulation at 340 iterations per second. Liszt

struggles with the Lulesh benchmark since its coloring-based approach to reductions
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does not work well for compute-heavy kernels [KBK+13]. Furthermore, Liszt uses an

unstructured mesh as its only built-in domain, making it di�cult to express code that

assumes each element is a hexahedron. The unstructured mesh model also requires

more memory to represent (Liszt could not fit a 1503 mesh into memory on our GPU).

Ebb makes implementing Lulesh easier compared to hand-written GPU models.

Ebb code (1.3K lines) is less than half the size of the GPU implementations (around

3.5K lines), and about the same size as a serial implementation (2K lines). This

di↵erence is largely because Ebb automatically handles synchronization, parallel re-

ductions, data movement, and selection of block sizes for CUDA kernels. While the

reference CUDA implementations explicitly include block reduction code needed to

compute a minimum time step, Ebb generates that code automatically. Additionally,

Ebb’s built-in library for modeling hexahedral grids simplifies mesh construction,

while automatic memory management simplifies the application code, resulting in a

further reduction of lines of code, compared to the reference serial code.

7.2 Seam

Evaluation of the correctness checking aspects of Seam are outside of the scope of

this thesis. Please see the original paper[PBS+17] for those experiments and details

if you are interested.

7.2.1 End-to-End Application Execution Measurements

I implemented a version of the Enright Test [BB09] using a combination of Seam and

Terra code. This test uses a geometric flow to severely distort and then un-distort

a sphere over the course of 300 computed timesteps of simulation. Remeshing is

performed after every timestep. Additionally, I modified the Enright Test implemen-

tation in Brochu’s ElTopo codebase [BB09], and implemented a version of the test

using the remeshing code from my old TopTop codebase [BW13]. Both ElTopo and

TopTop are written in C++. All three versions were written or modified to remove

all remeshing/improvement operations outside of edge-split and edge-collapse, which
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was the common denominator supported by all three. The scheduling of these oper-

ations di↵ers between the three systems: ElTopo priority sorts an array and makes

multiple passes until no more operations need to be applied; TopTop uses a priority

queue; thes Seam code simply makes a single pass over the edges that exists at the

outset of a remeshing pass. To reduce the e↵ect of this variance, I restricted all 3

systems to make only one pass over the edges (per timestep), in arbitrary order.

All code was run on a 2015 Macbook with an Intel Core M-5Y71 processor clocked

up to 1.3 GHz and more than enough RAM. Total wall-clock times for the three

variations were: 4.5 sec (Seam), 10.8 sec (TopTop), 1145 sec (ElTopo). Peak memory

usage for the three variations was: 4.9 MB (Seam), 3.7 MB (TopTop), and 6.8 MB

(ElTopo). Profiling revealed that TopTop spent around 45% of its time generating

a TopoCache data structure at the start of every remeshing pass. In terms of Seam,

this is analogous to regenerating the views and indices. This data structure is then

“committed” and discarded at the end of a remeshing pass. Profiling ElTopo reveals

that it spends around 90% of its time in a defrag pass over the data at the end of every

remeshing pass. Because all references to an element must be updated whenever an

element is moved, this re-arrangement pass can become quite expensive. By contrast,

Seam uses free-lists and strictly incremental maintenance of data structures—the data

structure is fully valid after the completion of any individual remeshing operation.

The entire Seam application, including the test harness, is about 800 lines of

code, 135 of which are Seam code. TopTop’s data structures and application code

take about 3000 lines, after slicing out unused code and support libraries. ElTopo—

which is less obvious how to slice—is a library of 25,000 lines of code. We can

also look specifically at the code required to write edge split and collapse in the

various systems. Seam takes 22 and 33 lines respectively. TopTop takes 212 and

300 respectively. ElTopo takes 225 and 344 respectively. This comparison suggests

that using Seam results in an approximately 10 times reduction in the amount of

code required to write local edit operations, even if we ignore other necessary support

code.

What should we deduce from these comparisons? First, and most importantly,

existing code for dealing with complex pointer data structures tends to not be heavily
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performance tuned. A Seam back-end that I know contains significant performance

flaws can achieve better performance than hand-written C++ code. Second, in the

absence of more automated memory and indexing management, programmers are

forced to make trade-o↵s between performance and comprehensibility in this kind

of complex remeshing code. Third, this memory management and index mainte-

nance code leaks into higher-level algorithms rather than remaining encapsulated; as

a result, it becomes disproportionately di�cult to change memory management or

indexing strategies in pre-existing code. Fourth, and finally, handwritten code is an

order of magnitude more verbose than equivalent code written in Seam.

7.3 Gong

The primary goal of Gong was to demonstrate that the relational model of Ebb could

be extended to handle collision detection problems. More specifically, I wanted to

show that Gong could retain high-performance across CPU and GPU, and allow for

exploitation of problem-specific characteristics, all while modeling a range of di↵erent

collision detection problems. To demonstrate as much, I selected three problems:

oriented-box collision, sphere-sphere collision, and arithmetically exact edge-triangle

intersection.

To provide a challenging test of performance, I ran a set of stacked-box rigid body

simulations using Bullet[Cou15] and Gong. As an open-source rigid body simulator

used in dozens of films and games, Bullet represents state-of-the-art collision detection

software. However, in practice many researchers and developers simply implement

their own acceleration structures, as Jonathan Leaf did in his yarn-level GPU simu-

lation work. Arguably doing so allows for exploiting problem-specific details in ways

that libraries like Bullet cannot. I compared his sphere-sphere collision detection on

the GPU to a Gong re-implementation, showing both that Gong allows for exploit-

ing problem specific details and is able to achieve higher performance—in part by

switching techniques depending on the problem size. Lastly, I show that exact edge-

triangle collision detection can be implemented in Gong by re-implementing that part

of my CSG library Cork. This last comparison shows that Gong can express a wide
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range of collision problems, by providing (to my knowledge) the first-ever port of

extended-precision arithmetic predicates for intersection onto the GPU. Making code

that requires specialized expertise more portable underscores my basic thesis: that

separation of concerns enables more progress on specialized techniques.

All code was compiled for and executed on a machine with an Intel i7-i7-6700K

CPU running at 4GHz and an Nvidia Titan X, Pascal architecture GPU. Terra was

compiled against LLVM version 3.8.1, and CUDA 6.1. CUB-1.8.0 was used for sorting

routines.

7.3.1 Bullet Boxes

Bullet is a rigid-body dynamics library that handles collision detection as one impor-

tant sub-computation. I reimplemented Bullet’s oriented-box collision sub-routine in

Gong, and re-implemented its Sequential Impulse (projected Gauss-Seidel) solver in

accompanying Terra code, replicating behavior as closely as possible. (Because the

solver is order-sensitive, this was not perfectly possible) I used the Gong primary_key

sorting functionality to ensure exactly-consistent behavior2 of the Gong code with dif-

ferent acceleration structures and target platforms.

This comparison to Bullet is important because Bullet has been signficantly more

heavily optimized than most research code. Reproducing close to its performance

supports the claim that the abstractions introduced by Gong have no intrinsic reason

to be slower than highly tuned general purpose collision detection systems.

Secondarily, Bullet provides us with an opportunity to look at the complications

that arose with a real port of existing industrial code: Erwin Coumans previously

ported Bullet onto OpenCL[Cou13]. However, in doing this, all of the acceleration

structures, and algorithms were rewritten. Both for this reason, and because of the

GPU memory model, the entire library API had to change, resulting in the version

3 revision of Bullet. Principal among these API changes was internalizing memory

management of Bullet objects, rather than letting the library-user allocate the objects

themselves. In the process, any hope of reproducing (on the GPU) the exact contact

2because of fused-multiply-add operations when compiling to GPUs this was still not strictly the
case.
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600 boxes 1200 boxes 2400 boxes

Bullet Physics 1.115 2.135 4.673

Gong
CPU Scan 2.266 7.030 23.567
CPU BVH 1.198 2.443 4.888
CPU Hash 2.626 5.184 11.665
GPU Scan 0.638 1.094 2.516
GPU BVH 4.752 5.101 6.789

Figure 7.4: Round Box Tower Timings. average collision time in ms.

point sampling algorithm from Bullet 2’s CPU collision algorithm appears to have

been abandoned. By contrast, the Gong implementation ports the exact method

from Bullet 2 onto the GPU. By ensuring that code can be ported without changes

to behavior or interface, algorithmic changes can be more cleanly separated from

hardware ports.

The full Gong implementation of the join was around 1000 lines of code. It is

di�cult to isolate and count the collision code in Bullet, but the box-box collision

function alone takes 750 lines of code, which is about the same as in Gong. This is

unsurprising since I attempted to replicate the idiosyncracies of the dBoxBox2 collision

algorithm exactly.

I ran Gong on a series of tower-collapse simulations using 600, 1200, and 2400

boxes, each one initiated by tossing a block into the stacked boxes. The initial

conditions were replicated in Bullet exactly. I verified general consistency of behavior

visually, and additionally verified that the number of collisions per frame stayed within

5%. Measurements are presented in Figure 7.4.

I measured every possible variation of CPU/GPU and acceleration structure choice

for the Gong version of the experiment. Given the relatively small number of objects, I

found that a brute-force scan on the GPU could still run approxiamately twice as fast

as the best CPU alternatives. Applying the GPU BVH to this small problem had at

least three short-comings: (a) there is not enough work to saturate the machine with

only 600�2400 threads; (b) the computation is highly load-imbalanced, especially the
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large box representing the ground-plane, for which all tests are serialized in a single

GPU thread; (c) the BVH build overhead is more significant on a small problem like

this one.

On the CPU, the Hashing strategy did not work well for this problem. The

oriented bounding box intersection test is a very compute and data-heavy operation.

As a result, acceleration structures that are more precise (i.e. culling more potential

tests earlier) are more advantageous.

The CPU BVH, despite being a less carefully tuned implementation than the

Bullet acceleration structure ran no slower than 1.15⇥ Bullet at the worst. I did not

do anything clever to try to get better performance, so this is predictable.

More importantly than small di↵erences in performance cost was the ability to

reproduce the behavior of Bullet exactly. The collision detection behavior for Bullet

is extremely idiosyncratic. So this serves as strong confirmation of the practical

expressivity of Gong. In this vein, the merge feature was especially important to

implement this example. Without it, this close correspondence of behavior would not

have been possible to reproduce.

7.3.2 Cloth-Yarn Simulation

The cloth-yarn simulation I studied[LWS+18] was based on a code-base originally

in Java[KJM08] using BVHs for collision detection acceleration. The specific colli-

sion problem being modeled involved a large set of spheres sampled from the yarns,

each of identical radius. This problem is amenable to spatial hashing, which Jonathan

Leaf[LWS+18] implemented on the GPU. In the original work, Jonathan Kaldor[KJM08]

used a CPU BVH. While alternative approaches (spatial hash on CPU, or BVH on

GPU) could have been tried, each additional approach would have required a substan-

tial investment of time to implement and optimize. Alternatively, a standard library

could have been used (such as Bullet[Cou15] or FCL[PCM12]). However, neither of

these libraries implement spatial hashing, because it doesn’t work well in the gen-

eral case. Spatial Hashing requires the simulation-programmer to choose appropriate

grid-size parameters based on query/problem-specific knowledge.
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The Yarn simulation problem was interesting from a number of perspectives. First,

it was research code with a GPU implementation. I had talked with the author

about ways to further accelerate their specific problem, so I am sure that non-trivial

attention was paid to performance. This can be interpreted as an optimistic view of

the performance many researchers are likely to get by implementing their own custom

collision detection.

Second, the yarn collision problem is very arithmetically simple compared to the

other two queries (Oriented Bounding Boxes and Exact edge-triangle Intersection

predicates) that I looked at. As such, this query stresses the e�ciency of acceleration

structures more severely.

Third, as mentioned prior, this query is a near-optimal situation for spatial hash-

ing techniques. Therefore, this test can justify the benefit of supporting multiple

acceleration structure choices in Gong, and the benefit of specialization to the spe-

cific query. I used a specific dilation strategy to compute this join asymmetrically.

One copy of the spheres was hashed using abs_point on the sphere centers, and then

the other copy probed the table using double radii spheres via abs_range.

I relaxed three knit-patterns of varying size using Jonathan Leaf’s ‘Yarnsim’ (Fig-

ure 7.5). Timings were taken in situ for Yarnsim. Lists of sphere positions were

also dumped to file and loaded into a Gong test harness (for expediency). This test

harness was used to execute four variations. Since CPU Scans were embarassingly

slow, their measurements were omitted.

Observe three essential phenomena in these timings. First, when looking at the

Gong CPU times alone, we see that spatial hashing enjoys a consistent advantage.

This tenatively supports the value in supplying special purpose acceleration struc-

tures. Second, note that Gong’s GPU implementation outperforms Yarnsim. This

supports the overall thesis in this dissertation that separation of concerns ought to

allow performance improvements. Lastly, observe that at small enough sizes the GPU

occupancy of the BVH becomes so poor that a brute-force scan is able to better utilize

the GPU.

The Gong implementation uses very little memory and hardly any code. This is

largely an artifact of it being divorced from the full simulation. Rather than try to
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Yarn Patterns
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# spheres 3, 420 10, 932 31, 860

Yarnsim (ms) 1.95 2.73 4.67

Gong (ms)
CPU BVH 2.44 7.96 30.53
CPU Hash 1.20 3.82 11.05
GPU Scan 0.73 7.82 61.58
GPU BVH 1.12 1.57 3.00

Figure 7.5: Yarn Spheres. average collision time in ms.
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provide a meaningless comparison of memory usage or code size, I omit those here.

7.3.3 CSG: Cork

The most expensive part of computing polyhedral Booleans (aka Constructive Solid

Geometry) is determining the intersections between the two (or more) surfaces. Specif-

ically, one must find all of the edge-triangle intersections. In the Cork library[Ber14],

the two surfaces are aggregated into a single triangle-mesh, on which edge-triangle

self-intersections are computed. Doing this robustly is a historically di�cult prob-

lem, requiring exact, often filtered predicates[She96]. My library Cork implements

the exact-fallback for these predicates in big-integer arithmetic, specialized to custom

bit-bounds, using some underlying routines from GMP[GT15]. These bit-bounds are

computed using C++ template-metaprogramming parameters. Therefore, in order to

port this computation to Gong, I had to re-implement this metaprogramming using

Lua; and provide a new implementation of the low-level limb addition/multiplication

routines from GMP. While my generic (non-processor specialized) versions of the

GMP routines are likely slower, they are also size-specialized in ways that the GMP

library could not be. The result appears to have been largely a wash—though I did

not attempt to precisely quantify the e↵ect.

While CSG is not strictly a collision detection problem, similar exact-predicate

methods have been used by Brochu et al.[BEB12] for continuous self-collision detec-

tion in cloth simulation.

A collection of 13 models were sampled from the Thingi10k[ZJ16] dataset. Each

model was rotated a small amount around a random axis and unioned with itself. The

resulting number of edges and triangles fed to intersection, as well as the timings to

compute are shown in Figure 7.7. Because of the size of the problems and non-general

applicability of hashing, only BVH variations were tested. The baseline is my old C++

implementation of the intersection test inside of Cork, which the Gong library was

compiled into for variation timings. (demonstrating interoperability with existing

software) Timings are only of the intersection sub-computation, which dominates the

runtime of CSG operations.
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#edges #triangles

HexPentaPot 11532 7688
FourInARowV2 35292 23528

pcb vise v2-Swivel 36468 24312
Wizard Hat 44502 29668

Shamrock Shot 57870 38580
octopus 61026 40684

stylo2TOM 77370 51580
soapPumpRotor 78108 52072

dual-dodec 104400 69600
inverted-bracelet 179520 119680

metatron 415140 276760
GOYLE LOW 589824 393216

TestForms01a-Final01b 2264064 1509376

Figure 7.6: union with self rotated; problem sizes.

In every case except for the pcb vise v2-Swivel object, GPU execution sped up

intersection time by at least a factor of 2. Examining the exceptional case revealed

that the model contains large, long and skinny triangles tesselating large flat planes

in the object being modeled. These triangles and edges almost certainly caused bad

load balancing for the naive BVH traversal algorithm I relied on.

This routine is a fairly large collision program. The Gong implementation took

around 1725 lines of code, of which 825 were the metaprogrammed exact-arithmetic

library. The original Cork implementation took around 1375 lines of code.

This is (to the best of my knowledge) the first implementation of exact predicates

for polyhedral Booleans running on a GPU. While this is notable, of particular interest

is the way that di↵erent specializations are de-coupled by Gong’s design. Developing

exact predicates and exact arithmetic is a highly-specialized skill, as is GPU pro-

gramming and high-quality acceleration structure design. While I can hardly claim

to have done any one of these tasks optimally, the decomposition proposed by Gong

allows for di↵erent specialists to separately do their part of this work. Looking at a

large scale evaluation done by Zhou et al.[ZGZJ16], we can see that Cork is already

one of the fastest available libraries for this computation. As a result, this new GPU
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Cork
Gong
CPU
BVH

� Gong
GPU
BVH

�
Speedup

HexPentaPot 117 118 65 1.8⇥
FourInARowV2 142 146 54 2.63⇥

pcb vise v2-Swivel 109 106 184 0.59⇥
Wizard Hat 144 152 88 1.64⇥

Shamrock Shot 181 180 56 3.23⇥
octopus 115 118 33 3.48⇥

stylo2TOM 261 227 49 5.33⇥
soapPumpRotor 153 143 48 3.19⇥

dual-dodec 222 190 23 9.65⇥
inverted-bracelet 457 436 159 2.87⇥

metatron 878 783 198 4.43⇥
GOYLE LOW 961 917 172 5.59⇥

TestForms01a-Final01b 4021 3914 675 5.96⇥

Figure 7.7: union with self rotated; timings in ms.

implementation is probably the fastest robust boolean implementation yet developed.

7.4 Summary

With the experimental evaluation of Ebb, I showed four comparisons, illustrating how

Ebb was able to interoperate with existing code, model a range of di↵erent geometric

data structures, and achieve performance competitive with hand-tuned GPU code.

With the experimental evaluation of Seam, I showed more modestly that order

of magnitude reductions in the amount of code required to write edge-based triangle

remeshing operations was possible—while simultaneously improving performance.

With the experimental evaluation of Gong, I showed that a range of di↵erent

collision detection problems can be expressed as spatial joins, enabling de-coupled

exploration of both hardware target and acceleration structure strategies.

Because all three of these prototype compilers were designed with interoperable
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data models, these results together show the viability of relational data modeling to

address the problem of performance portability for physical simulators.
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Chapter 8

Related Work

8.1 Parallelism Mechanisms

The entire scope of parallel computing cannot be adequately represented by a brief

discussion. However, a number of basic mechanisms deserve discussion. One of

the earlier forms is symmetric-multi-processors (SMP) that place multiple CPUs on

a single shared memory. Multi-core processors (where the multiple CPUs share a

single package/die of silicon) use the same model, programmable via libraries such as

pthreads. Processors were also developed for finer-grain parallelism via SIMD (Single-

Instruction, Multiple-Data) or vector processors. Such processors have a fixed width

(such as 4 on many Intel CPUs, or 32 on GPUs) so that every instruction executes

on that many consecutive data registers at once. This model tends to rely on special

machine instructions, and has not really been standardized in the way that thread

libraries have.

In the 90s, Guy Blelloch developed NESL[Ble90] (NESted parallel Language) to

map tree-structured computations down to vector machines. Some of the key in-

ventions of this line of work were segmented-vector operations as a target for flat-

tening, and the importance of parallel-prefix-sum primitives for data-parallel algo-

rithms. Around the same time, Cilk[FLR98] approached similar kinds of irregular

tree-structured parallel programs (fork-join parallelism) with the goal of mapping

down to thread models. Its main invention lay in the use of work-stealing queues to

163
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e�ciently manage load-balancing. This approach found its way into an Intel imple-

mentation, and Apple’s Grand Central Dispatch[Nah11] among other parallel run-

times.

Some of the ideas of NESL were repurposed by Ian Buck et al. in Brook[BFH+04]

to make GPUs programmable. This model was developed into CUDA which combines

vector programming ideas with a hierarchy of shared memories in an idiosyncratic

way. OpenCL[MGM+11] was proposed as a cross-manufacturer standard for GPU

programming, but recently collapsed with the withdrawl of Apple in favor of their

own Metal GPU programming language.

At the level of multiple machines connected over a network, MPI[For94] (Message-

Passing-Interface) has remained the dominant API for accessing network capabilities

to move data around. There is some interest in global addressing as an alternate view,

as in UPC[EGCSY03]. However, this model is proposed largely as a programmer

simplification and not as a reflection of actual distributed machine architectures—

which all have node/processor-local memories.

In this thesis, I focused on GPU implementations because they require attention

to fine-grained parallelism and are often overlooked by supposedly general parallel

programming models. The most significant shortcoming of such a research approach

is a lack of attention to data partitioning complications that arise at the scale of

distributed machines, such as for supercomputers.

One important theme to take away from this discussion is the relative lack of

standardization and stability for many basic lower-level parallelism APIs. While

some of this might be attributable to market competition between various hardware

manufacturers—i.e. the desire to produce platform lock-in among developers—there

are equally good technical reasons for API instability. Successive generations of hard-

ware frequently add new valuable parallelism features which require breaks with ex-

isting APIs.

The large degree of disagreement in shared memory consistency models for SMPs

and GPUs is an excellent example of such pressures. Weaker memory models often

allow for more e�cient parallel architectures/programs. However, these models are

often widely misunderstood. NVidia’s CUDA model was shown to have several such
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shortcomings[ABD+15], which along with future hardware changes helped prompt

revisions to the CUDA standard. I was caught by some of these changes while devel-

oping Gong and had to change the implementation to become compliant. (§6.4.2)
Regardless of the source, this turbulence in programming model causes software

maintenance problems, such as the recent deprecation of OpenCL support by Apple.

Client code must therefore maintain some degree of indirection in order to bu↵er

code-bases and teams from these changes. This motivates the thesis that abstractions

closer to the application domain are necessary. The fact that these changes occur to

instruction sets and other detailed aspects of code generation serve as motivation for

the thesis that this abstraction must necessarily be a language.

8.2 Safe Parallelism and E↵ects

One basic idea for analyzing the safety of parallel operations is data-race freedom, via

safe commutation of memory-e↵ecting operations[Ber66]. That is, the equivalence of

sequentially executing two operations A and B in either order AB or BA constitutes

a kind of formal proxy for the claim that A and B may be executed concurrently/in-

parallel. Depending on the particular formalism, this “commutative” concept may

surface as other properties like associativity of binary operators to much the same

purpose.

In and of itself, the commutativity of operations (in the sense above) does not

trivially guarantee safe parallel execution. Safe atomicity or interaction must be

provided for. For instance, di↵erent sum-reductions into a particular memory ad-

dress commute, but are only implemented safely if performed using a special atomic

reduction instruction. In this thesis, e↵ects bind together the abstract-formal and

practical-implementation perspectives.

By contrast, many other approaches rely on locks, which can produce signficant

overheads. (Software) Transactional Memory[CBM+08] attempts to mediate paral-

lelism safely by ensuring atomicity of code blocks in a composable fashion. Targeting

the GPU immediately ruled out this approach for me. For the sake of e�ciency, any

parallel conflicts on the GPU must be mediated by low-overhead atomic operations
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(e.g. increment) or amortizing bulk operations, as in the use of sorting to maintain

indices after a join. Locks (outside of perhaps small-scale compare-and-swap spin-

waiting) are not an option for GPU programs.

As Rinard notes[RD97], most approaches to parallelism in compilers rely on de-

pendence analysis, which imposes stricter notions of causation than commutativity

allows for. The approach here is closer in spirit to Kawaguchi et al.’s type-and-e↵ect

system[KRBJ12], which is built on refinement types. My e↵ect-checking analyses in

Ebb and Gong are much simpler and naive by comparison.

Work on the Galois programming system[PNK+11] previously argued that parallel

programming languages should more explicitly treat higher level data structures in

order to make compiler analyses tractable. My work holds to the same philosophy

with a more specific proposal about the nature of those data structures. Namely, I

explore the benefit of leveraging relational data models from databases.

8.3 Database Concepts

Many authors from Codd[Cod70], to Stonebraker[HS05], to Helland[Hel16] have ar-

gued for the merits of relational algebra models (eventually in the form of SQL) for

databases.

One of the essential properties argued by Codd is the separation of physical and

logical data models. This meant specifically moving away from the CODASYL model

that required database client-code to specify the path to access data in a hierarchy,

similar to a filesystem. The languages proposed here occupy a range of intermediate

positions on this hierarchical vs. relational access distinction. On the one hand, all

of the languages require the programmer to chase references around and express a

specific loop-nesting order. That is, Ebb/Seam/Gong code has a particular join-plan

hardcoded into it. On the other hand, the specific representation of data indexing is

not hard-coded in, and in some cases (§5) the code can be e↵ectively re-written as if

it were simply a relational query.

I chose this position on the issue largely out of a need to be familiar to programmers

used to imperative programming languages. However, the particular space explored
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suggests an alternate philosophy to the traditional one for relational databases. A

simulation-programmer might be required to both (a) write code in such a way that

the compiler is able to fully abstract it to the relational level and (b) write code in

such a way that the compiler can rely on a default query-plan. In particular, the

locality constraints enforced through query-loops function in this way to demystify

expected performance for simulation-programmers. Such performance concerns are

too often abstracted away from programmers writing database queries.

Pat Helland makes the crucial point that because SQL/relational-algebra is built

around sets, operations on those sets will tend to be parallelizable. Connecting to

the prior discussion, this is because operations on sets tend to instrinsically com-

mute with respect to the order of the data. Sets have no order on the data. In

terms from the introduction to this thesis, this is a kind of negative expressiveness

of the set abstraction from the client perspective. It reserves the flexibility for the

implementation.

A number of specific ideas from databases were also used in this thesis.

Christoph Koch’s work[Koc10] on treating incremental view maintenance via al-

gebraic derivatives of relational multi-set algebra (ring of databases) was the basis for

my view maintenance approach (§5).

Joe Hellerstein’s work on GIST (Generalized Index Search Trees)[HNP95] served

as a key source of inspiration for the BVH abstraction in Gong (§3.4.1).

Peter Hawkins’ work on relational models for data-structure synthesis[HAF+11]

served as a general inspiration for applying relational ideas to more traditional pro-

grams.

Finally, conversations with Chris Aberger and insights from his Emptyheaded

and Levelheaded systems[ATOR16, ALOR17] helped refine the specific properties of

the query-loop. Dylan Hutchison[HHS17] and Fredrik Kjolstad[KKC+17] have also

explored the idea of convergences between databases and linear algebra, concurrent

to this work.
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8.4 Supercomputing Abstractions

One important popular alternative to creating new languages in supercomputing (and

elsewhere) is to extend existing popular, low-level langauges (C, C++, Fortran) via

pre-processor directives and other kinds of annotations. OpenMP[DM98] is a good

representative of this approach. On the positive side, this strategy allows incremental

acceleration of existing code. On the negative side, these directives have no particular

safety guarantees, making it easy for a simulation-programmer to introduce subtle

race conditions.

Automatic parallelization can be seen as an attempt for compilers to automatically

perform transformations based on analyses of the code. This approach is inhibited

by even moderately complicated data structure indirections in accessing memory.

The philosophy of Galois[PNK+11] can be understood in part as a response to these

shortcomings.

However, the main focus of most parallel languages (and language extensions) for

supercomputing has been distributed (multi-machine, no shared memory) execution

since at least the 90s if not earlier. High-Performance-Fortran[KKZ07] attempted to

standardize a variety of data-parallel Fortran extensions. Notable directives include

the FORALL-loop and INDEPENDENT annotation, which function similarly to OpenMP

parallel loop directives. The DISTRIBUTE and ALIGN directives allowed for expressing

data partitioning across nodes of a machine. Further work on a similar approach was

done in UPC[EGCSY03], focusing on a single global address space across the entire

machine.

Later work under the heading of DARPA’s High Productivity Computing Sys-

tems (HPCS) project attempted to merge some of these distributed and data parallel

ideas with software engineering advances in object oriented languages: these include

IBM’s X10, Cray’s Chapel, and Sun’s Fortress. Of particular interest, many of these

languages leaned on variations of regions, a kind of memory-management discipline

integrated into typed low-level programming languages like Cyclone[JMG+02].

Regions in this sense can be related to e↵ect-analyses, which must say “where”

something is happening.
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The Legion Programming System[BTSA12] (whose name is an ammalgram of

“Logical rEGION”) expanded on the region idea for partitioning data. Notably it was

one of a set of task-parallel models which attempt to introduce more flexibility into

the mapping between compute/memory resources and tasks/data. This is understood

as a physical/logical distinction borrowing from the tradition of terminology derived

from Codd’s arguments about database models. However, it is important to note

that the meaning of the distinction in Legion is considerably more low-level. Ebb

was developed with the intention of targetting Legion as a parallel runtime. For this

reason, a number of ideas from this line of thought were influential if not determinative

of the abstractions I describe in this thesis.

While the ZPL[Cha01] programming language is usually understood as being a

“super-computing language,” (e.g. it was influential on Cray’s Chapel) I will discuss

it alongside other simulation-specific programming languages instead.

8.5 Graph and Tensor Languages

While only tangentially related, it’s worth mentioning a few machine learning and

graph-processing frameworks/languages that have likewise attempted to provide some

degree of parallel portability via more structured data models.

Graphlab[LGK+14] and Ligra[SB13] provide models where data is stored on a

graph and local stencil computations can be written on it. Naiad[MMI+13] (techni-

cally a dataflow processing language) showed significant performance improvements

over Graphlab and other popular systems for scaling to large datasets simply by pay-

ing more attention to lower level performance issues[MIM15]. In the context of this

thesis, note that the simulations I compare against are usually more highly tuned;

this is a distinct property of simulations remaining the representative application of

high-performance-computing.

Graph languages are also notable for supporting interesting models of sparse com-

putation that I do not explore in this thesis. In particular, breadth-first traversals,

and other kinds of computations on dynamic subsets of the data have been a sub-

ject of particular interest, as has computing on graphs with vertex-degrees that are
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power-law distributed. A number of practical implementation choices that I made in

this thesis will produce unacceptable performance if used to compute on such data.

The recent wave of interest in Deep Learning has largely been enabled by frame-

works like Theano[The16], Tensorflow[ABC+16], and PyTorch[PGC+17]. All of these

frameworks enable portability of code to execute on GPUs, which has made training

on large datasets possible. These systems also benefit programmers by automating

the work of computing derivatives. While this is necessary for back-propagation in

neural network training algorithms, it also represents an instance of my general ar-

gument about the trend of specialization via domain-specific-langauges to enable use

of parallel hardware.

In the context of this thesis, these deep learning languages are notable for how

they enforce a separation of concerns not just of specialists in parallel hardware and

software, but also between specialists who develop training algorithms and users who

develop new models.

8.6 Languages in Graphics

According to Alan Kay, we should look at the first computer graphics system (Iver-

son’s Sketchpad) as also the first object-oriented programming language. From this

point of view, programming languages have always been a part of graphics systems.

However, one of the most important earlier systems to be explicitly acknowledged

as a special purpose programming language was Cook’s Shade Trees[Coo84]. It was

the first shading language, leading to the influential Renderman[HL90] and later on

modern shading languages for GPUs. These languages are notable for always being

integrated with a larger system or engine for rendering, rather than being intended

as a stand-alone language. This architecture was necessary to both ensure high-

performance and flexibility to di↵erent applications.

Recently graphics languages (most notably Halide [RKAP+12, RKBA+13]) were

developed to accelerate image processing. Darkroom [HBD+14] and Rigel [HDD+16]

explore languages for image processing hardware specifically. Unlike shading lan-

guages, these are not tied to specific host-systems. Instead, they allow for the creation
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of hardware chips or libraries usable in larger applications. These languages are also

notable relative to Ebb as exemplars of grid stencil languages.

This brief sketch leaves out many important graphics languages designed for GUIs,

printing, 3d printing, diagram description and numerous other tasks. However, the

preceding languages are representative of graphics languages that are targeted at

accelerating high performance application domains.

From the perspective of this thesis, it is important to note that all of these lan-

guages leverage highly domain-specific data models (images, pixels, textures, rays,

&c.). Ebb was largely an attempt to generalize beyond these narrower data models

while retaining the benefits of abstracting away from low-level random-access-memory

models.

8.7 Simulation Libraries and Frameworks

The most common kind of simulation program attempts to simulate a specific phe-

nomenon, potentially with variations on a basic model and on how it is executed. For

instance, the VEGA[SSB13] library supports a variety of finite-element discretizations

and elasticity models. It does not support plasticity or fluid material behaviors, nor

any form of topology change. However, it still supports at least 6 di↵erent elasticity

models, 2 di↵erent kinds of mesh elements, and partial multi-threaded support.

Another approach to reusable simulation code is to try to aggregate simulators for

disparate phenomena, and using disparate techniques into a single code-base where

some degree of code-sharing can be achieved. Physbam[DHF+11] is exemplary of

this model. Multiple PhD theses have been accrued into the codebase, which is used

at multiple special-e↵ects houses. However, interoperability between these di↵erent

library components is not guaranteed, and support for distributed execution, GPU

execution, or multi-threading is inconsistent/non-uniform. Code-reuse and interoper-

ability only happens when and where the opportunity to do so is relatively obvious.

Other approaches to simulation engines attempt to reduce all physical phenomena

to a single data structure and physics modeling technique. Quite often this is some

form of particle-simulation. Nucleus[Sta09] and the work of Macklin et al.[MMCK14]
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are examples of this approach. Particles in particular su↵er from bad geometry for

the reconstruction of fluid surfaces. (compared to level-set methods for Eulerian

grids) The uniform use of implicit integrators for all phenomena (regardless of the

underlying sti↵ness) is often computationally sub-optimal.

For instance, contact solvers in rigid-body libraries such as Bullet[Cou15] that are

used for games tend to specifically rely on projected-Gauss-Seidel solvers because of

their qualitative tendency to avoid jitter. These solves must be integrated into posi-

tional Verlet-integration schemes in specific ways. Yet if collisions are made elastic,

this highly specific choice of techniques becomes less justifiable.

The tension between the need to specialize techniques while achieving code re-use

is a principal motivation for the research constituting this thesis.

Lastly, the OpenVDB[MLJ+13] system is of particular interest for two reasons.

First, it conforms to the basic assertion that simulation code should be abstracted

away from lower level system details by the use of higher-level data abstractions.

Specifically, OpenVDB abstracts the management of data fields over sparse-occupancy

volumes. Second, this specific kind of geometric domain (hierchical, adaptive grids)

lies outside of the data models considered in this thesis. A more complete simula-

tion language would ideally render this kind of data abstraction into interoperable

relational terms.

8.8 Languages for Simulation

While many researchers remember Spacetime Constraints[WK88] as an algorithms

paper, we can also read it (with a LISP-based system for managing constraints) as

one of the earliest simulation programming languages in Computer Graphics. Of

particular note is the use of automatic di↵erentiation.

Another odd candidate might be ZPL[Cha01], which is more often discussed as a

“parallel programming language.” It is perhaps one of the more important attempts to

create a language for stencil-computations on grids. From a data-model perspective,

it is related to Halide and other image-processing languages that work on grids.

OP2[MGT+13] and Loci[Luk99, LG05] were idiosyncratic languages built around
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datalog. They are the earliest instance to my knowledge of recognizing that relational

database models could be applied to describing simulations on unstructured meshes.

They restricted themselves to static topologies on these meshes. Ebb expands on

them by providing more explicit performance guarantees, a more familiar imperative-

ish syntax and by bridging the interaction with grid-structured data.

Liszt[DJP+11] was the immediate predecessor to Ebb, which began development

as Liszt 2.0. The original Liszt forced all programs to describe data via a single

unstrucutred mesh data structure. Ebb’s relational model was primarily motivated

by the desire to loosen this restriction. The constraints of the PSAAP2 center at

Stanford further required support for computing on grids interacting with particles,

strongly influencing thinking about data-structure heterogeneity.

Concurrently to Ebb, Fredrik Kjolstad and others developed Simit[KKRK+16].

We published a joint position paper[BK16] outlining some of the di↵erences and

common perspectives. Compared to Ebb, Simit focuses only on un-structured data

domains via a hyper-graph data model. However, it also includes a linear-algebra

sub-language which makes much of the numeric code written in Simit much shorter

than the equivalent Ebb code.

8.9 Collision Detection as a Join

The idea that collision detection (and rendering visibility computations) are spatial

joins is well-known folk wisdom. Evidence for this claim is the regular reference to

“collision queries,” “shadow queries,” and the like, as well as the sharing of termi-

nology (e.g. kd-tree) between acceleration structures and database indices. Equally

sound is the claim that the connection is not obvious, as evidenced by divergent ter-

minology (BVH vs. the variations of R-trees) and the lack of a strong distinction

between queries and traversal algorithms. Regardless, I am not aware of any systems

prior to Gong which make the connection formally explicit in the system design.

The Flexibile-Collision-Library [PCM12] was developed out of the UNC GAMMA

group’s research for application in conjunction with Willow Garage’s robotics re-

search. It occupies this in-between position of partially recognizing the spatial join
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perspective. The library provides a fixed set of queries, including continuous-time

collision detection, penetration-depth estimation and distance computation. These

queries are presented for a fixed set of “collision shapes” (Sphere, Box, Plane, Triangle

Mesh, Ray, &c.) similar to Bullet[Cou15] and ODE[Smi06]. As a narrow articulation

of these limits, consider that this fixed vocabulary of shapes and queries does not ac-

count for Kenny Erleben’s taxonomy of 7 distinct ways to compute contact points and

normals between di↵erent shapes[Erl18]. As a more expansive articulation, arithmeti-

cally robust methods[BEB12] for continuous collision detection are excluded, which

includes my demonstrated application of Gong to CSG problems.

Besides generalizing the class of queries, Gong provides an important articula-

tion of what e↵ects can be performed in response to collisions—which lie outside of

the strict relational-algebraic concept of a query. For instance, while SQL database

systems agree on how a query-set is defined, there remain points of divergence over

what kinds of “verbs” are allowed to be applied to the sets described by queries. Ter-

minological divergence over the “update-or-insert” kind of operations serves as some

evidence of this point.

Gong was especially influenced by ideas from Warren Hunt’s thesis[Hun08], which

argued for a spectrum of di↵erent rendering queries between the traditional Z-bu↵er

and raytracing. By treating the Z-bu↵er as a special case (eye-rays, single-point-of-

projection, uniform distribution) of raytracing, the specific computational implica-

tions of each assumption could be teased apart. The observation in Gong’s design

that argmin reductions are equivalent to specific speculative execution properties of

Z-bu↵ers follows this mode of thought.

I also drew inspiration from Ivan Sutherland’s “A Characterization of Ten Hidden-

Surface Algorithms”[SSS74]. In this work, Sutherland, Sproull, and Schumacker

claimed that di↵erent primary visibility algorithms can be taxonomized by (and hence

reduced to) the way they sort the inputs. Notoriously, Ivan Sutherland described this

paper as the reason he lost interest in the rendering problem. From the point of view

of Gong, I contend that rendering is a spatial-join problem—not a sorting problem.

Sorting is just one possible way to compute non-spatial equi-joins, and there is no

obvious complexity-theoretic reduction between the two, much less an equivalence.
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Once non-worst-case methods of complexity analysis are introduced, the claim be-

comes even murkier. The further expansion out of the realm of equi-joins and back

into a range of di↵erent spatial intersection predicates only exacerbates the problem

of making the claim more precise. I would suggest we keep the spirit of trying to

chart the space of every way to compute these joins, but drop the formally dubious

claim that they are “just sorting.”

At SIGGRAPH 2018, NVidia unveiled their Turing-architecture GPUs[nvi18],

which included a special ray-tracing unit. This unit streams through frustum-bounded

packets of rays, which are tested against a triangle-mesh stored in an axis-aligned

bounding-box. In the context of Gong, this raises interesting questions about whether

collision detection can simply be o✏oaded to this new piece of hardware. I hope that

by charting out the space of collision queries, Gong can help inform further hardware

support. For instance rendering queries tend to be characterized by exclusive use of

reduction-e↵ects (to use the Gong terminology). Limited “depth complexity” (i.e. the

number of intersections along any given ray) also allows for architecting to special

assumptions about potential load imbalances that may not be true for more general

queries. If some “rays” (or whichever table is streamed) exhibit skew by hitting an

outsized number of items on the other side of the join, then a streaming architectures

could easily stall and exhibit pathological performance.
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Chapter 9

Conclusion

As we run into more limitations in hardware technology scaling, we will necessarily

rely on specialization (of algorithms, hardware, programs, &c.) to increase perfor-

mance of simulation programs. However this same trend towards specialization im-

mediately imposes its own limits by making unreasonable demands on programmers

to become super-experts. As I have argued, further progress will depend on the abil-

ity to find new ways of organizing simulation code that achieves better separation of

concerns between distinct disciplinary specialties.

In this thesis, I have argued that relational data models (which have been pri-

marily of interest in resilient data storage systems) can be fruitfully applied to re-

structure simulation programs. With Ebb, I showed that structured and unstructured

stencil computations can be integrated together via a single uniform and extensi-

ble data model. Then, with Seam and Gong I showed that this data model and

related database concepts need not be confined to settings with fixed, static topol-

ogy. Remeshing and Collision Detection computations that change the topology and

“structure” of simulation programs also benefit from sharing a common higher-level

data abstraction.

As we saw with the di↵erent indexing data structures backing query-loops, incor-

porating topology-changing computations forces compiler-programmers to reconsider

how data-structures are managed. Di↵erent parts of a simulation program may ben-

efit from di↵erent trade-o↵s in how data is stored.

177
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This situation is analogous to the situation relational database administrators face

when choosing how data in a database should be indexed so as to best account for a

set of di↵erent applications/queries all accessing the same database. Di↵erent ratios,

patterns, and predictability of reads and writes make di↵erent storage strategies more

or less attractive. For instance, analytic queries are often run on a snapshot copy of

data kept in a transaction-optimized database. Should we expect similar relationships

between operations like re-meshing and force-computation/integration in simulation?

9.1 Limitations and Open Problems

One serious shortcoming of Ebb was the rudimentary support for subset representa-

tion and management. This was possible because the feature was narrowly needed for

managing boundary conditions. However, graph languages[SB13] designed to com-

pute breadth-first search, shortest paths, and/or connected components use more

sophisticated encodings of active sets to implement algorithms that are otherwise not

possible to express in Ebb. Sub-computations like connected-components are used

inside systems like Bullet[Cou15] to partition contact solves and more quickly solve

close-to-static sub-problems. What implications (if any) does this class of problems

have for shared data representations?

The Ebb data model is far from e↵ectively universal. For instance, hierchical grids

(adaptive or not) such as those from OpenVDB[MLJ+13] are not supported. On

the other hand, I heard concerns from other researchers that Ebb does not support

tree-data, like BVHs. While both data-structures are spatial trees, their purposes

(discretizing fields on space vs. accelerating joins) are widely divergent. Incorporating

other data structures into simulation languages using relational data models requires

us to make important distinctions between what kinds of data-structuring decisions

are modeling choices, vs. purely algorithmic/computational decisions.

From a very di↵erent perspective, symmetric matrices (or anti-symmetric matri-

ces) have no obvious encoding in Ebb. In graph terms, these would correspond to

undirected edges. I ran into more elaborate versions of these issues in Seam, when

one wants to define triangles or tetrahedra independently of their vertex orderings.
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Unless the “orientation” of the triangle or tetrahedron is important, in which case

only even permutations of the vertices should be allowed. This kind of distinction

(which is related to anti-symmetric functions) is rarely treated in a systematically

satsifactory way. However, some form of these constructs (at least symmetry) ap-

pear to be important for any language focusing on linear-algebraic abstractions, as

Simit[KKRK+16] does.

My initial analysis of the need for separation of concerns refers to a potential range

of disciplines, including physicists, numerical analysts, and geometers. However, the

specific abstractions explored in the thesis have far more to do with the specific sep-

aration of parallel systems/computing specialists from these other disciplines in an

undi↵erentiated way. A di↵erent set of interesting questions arises from trying to

get separation between these disciplines. For instance, how can numerical analysts

develop re-usable (non-)linear system solvers and integration algorithms that are not

tied to a specific physical or geometric model? The Opt[DMZ+17] language o↵ers

some ideas on separating modeling from solving, including use of auto-di↵. In the

simulation setting, this might allow easier application of variational physics formula-

tions. Another division might be explored by abstracting geometric domains using

standard operators such as the Laplacian.

Seam has some specific interesting shortcomings. Removing them could make

the language far more applicable to tricky data-structure problems—even outside

of simulation problems like remeshing. First, some way to safely represent nullable

references in Seam is important for encoding lists, trees, and other traditional data

structures. Second, the syntactic constraints of new statements prevent certain basic

kinds of operations. While working on the Seam paper, I spoke with lab-mates

managing circuit IRs (which use graph-like data structures). A simple local operation

is to “inline” a module definition by making a copy of some graph and wiring it in,

in place of a box. However, it soon became clear that there was no way in Seam as it

exists to copy a set of nodes, a set of edges, and correctly wire all the new nodes to

the new edges. Each new node must be defined inside of a loop body in a scope where

no other new node is defined. As such there is no way to pull together two new nodes

in a scope where a new edge can be defined. Perhaps a more careful investigation of
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how to encode the full range of query-execution strategies would help.

The loose interpretation of e↵ect-checking is also a significant shortcoming of

this thesis. On the one hand, it appears that a formalism would be almost trivial.

However, that may not be true when the full range of desired e↵ects are taken into

account.

Compared to Halide[RKBA+13] and TACO[KKC+17], the languages I describe in

this thesis lack sophisticated compilation techniques for generating optimized code.

Those projects point the way towards techniques applicable to languages like Ebb.

However, important questions remain around the re-use and representation of data

which neither project has fully explored.

Lastly, an investigation of how to port these languages to distributed (i.e. multi-

process/thread executions without shared memory) settings would go a long way

towards reinforcing the performance portability claims in a broader setting.

Much work remains to be done.
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object sizmulator. Computer Graphics Forum, 32(1):36–48, 2013.

[SSS74] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A

characterization of ten hidden-surface algorithms. ACM Comput. Surv.,

6(1):1–55, March 1974.

[Sta99] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, pages 121–128. ACM

Press/Addison-Wesley Publishing Co., 1999.

[Sta09] Jos Stam. Nucleus: Towards a unified dynamics solver for computer

graphics. In Computer-Aided Design and Computer Graphics, 2009.

CAD/Graphics’ 09. 11th IEEE International Conference on, pages 1–

11. IEEE, 2009.

[TBS+16] Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and

Alex Aiken. Dependent partitioning. In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2016, pages 344–358,

New York, NY, USA, 2016. ACM.

http://ode.org/ode-latest-userguide.html
http://ode.org/ode-latest-userguide.html


BIBLIOGRAPHY 193

[The16] Theano Development Team. Theano: A Python framework for fast com-

putation of mathematical expressions. arXiv e-prints, abs/1605.02688,

May 2016.

[UGMW02] Je↵rey D. Ullman, Hector Garcia-Molina, and Jennifer D. Widom.

Database Systems: The Complete Book, chapter 7. Prentice Hall, 2002.

[Wad98] Philip Wadler. The expression problem. http://homepages.inf.ed.

ac.uk/wadler/papers/expression/expression.txt, November 1998.

[Wil13] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu pro-

gramming. Pearson Education, 2013.

[WK88] AndrewWitkin and Michael Kass. Spacetime constraints. In Proceedings

of the 15th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’88, pages 159–168, New York, NY, USA, 1988.

ACM.
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