
ECRYPT


SPEED

Software Performance Enhancement
for Encryption and Decryption

11–12 June 2007

Amsterdam, the Netherlands

Organized by

within

ECRYPT European Network of Excellence in Cryptography

Program committee:

Daniel J. Bernstein, University of Illinois at Chicago, USA
Tanja Lange, Technische Universiteit Eindhoven, The Netherlands
Christof Paar, Horst Görtz Institute for IT Security, Ruhr-Universität

Bochum, Germany
Daniel Page, University of Bristol, UK
Nigel Smart, University of Bristol, UK
Andre Weimerskirch, escrypt, Germany

Local organization:

Daniel J. Bernstein
Peter Birkner
Ellen Jochemsz
Anita Klooster-Derks
Tanja Lange
José Antonio Villegas Bautista

Invited speakers:

Daniel J. Bernstein, University of Illinois at Chicago, USA
Torbjörn Granlund, Swox, Sweden
Dag Arne Osvik, Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Daniel Page, University of Bristol, UK
Matt Robshaw, France Telecom R&D, France

Contributors:

Ashraf Abusharekh, George Mason University, USA
Kazumaro Aoki, NTT Corporation, Japan
Neil Costigan, Dublin City University, Ireland
Thomas Eisenbarth, Horst Görtz Institute for IT Security,

Ruhr-Universität Bochum, Germany
Junfeng Fan, Katholieke Universiteit Leuven, Belgium
Krzysztof Gaj, George Mason University, USA
Pierrick Gaudry, Laboratoire Lorrain de Recherche en Informatique et

ses Applications, France
Satoshi Oda, NTT Corporation, Japan
Christof Paar, Horst Görtz Institute for IT Security, Ruhr-Universität

Bochum, Germany
Axel Poschmann, Horst Görtz Institute for IT Security,

Ruhr-Universität Bochum, Germany
Sören Rinne, Horst Görtz Institute for IT Security, Ruhr-Universität

Bochum, Germany
Kazuo Sakiyama, Katholieke Universiteit Leuven, Belgium
Michael Scott, Dublin City University, Ireland
Emmanuel Thomé, Laboratoire Lorrain de Recherche en Informatique

et ses Applications, France
Leif Uhsadel, Horst Görtz Institute for IT Security, Ruhr-Universität

Bochum, Germany
Ingrid Verbauwhede, Katholieke Universiteit Leuven, Belgium
Go Yamamoto, NTT Corporation, Japan

Program and table of contents:

Monday June 11

08:30–08:55 Registration

08:55–09:00 Opening

09:00–10:00 Granlund: GMP small operands optimization; or, Is arithmetic
assembler automatically optimal? . 1

10:00–10:25 Abusharekh, Gaj: Comparative Analysis of Software Libraries for
Public Key Cryptography . 3

10:25–10:55 Coffee

10:55–11:20 Yamamoto, Oda, Aoki: Fast Integrity for Large Data 21

11:20–11:45 Rinne, Eisenbarth, Paar: Performance Analysis of Contemporary
Light-Weight Block Ciphers on 8-bit Microcontrollers 33

11:45–12:45 Robshaw: The eSTREAM Project . 45

12:45–14:30 Lunch

14:30–15:30 Bernstein: How fast is cryptography? . 47

15:30–16:00 Coffee

16:00–16:25 Gaudry, Thomé: The mpFq library and implementing curve-based
key exchanges . 49

16:25–17:30 BAT presentations followed by announcements

Tuesday June 12

09:10–09:35 Costigan, Scott: Accelerating SSL using the Vector processors in
IBM’s Cell Broadband Engine for Sony’s Playstation 3 65

09:35–10:00 Fan, Sakiyama, Verbauwhede: Montgomery Modular
Multiplication Algorithm for Multi-Core Systems 77

10:00–10:30 Coffee

10:30–11:30 Osvik: Cell SPEED . 93

11:30–11:55 Uhsadel, Poschmann, Paar: An Efficient General Purpose Elliptic
Curve Cryptography Module for Ubiquitous Sensor Networks 95

11:55–12:20 Scott: Optimal Irreducible Polynomials for GF(2m) Arithmetic . . . 105

12:20–14:20 Lunch

14:20–15:20 Page: Computer Aided Cryptographic Engineering 117

15:20–16:00 Coffee break and informal discussions

1 SPEED Workshop Record

GMP small operands optimization
or

Is arithmetic assembler automatically optimal?

Torbjörn Granlund

Swox, Sweden

GMP as a general purpose low-level arithmetic library has not been specifically tailored for
cryptographic applications. Yet it performs well compared to special-purpose crypto libraries. The
techniques and algorithms used for crypto-relevant low-precision arithmetic will be explained, and
possible future improvments will be examined.

3 SPEED Workshop Record

Comparative Analysis of Software Libraries for
Public Key Cryptography

Ashraf Abusharekh1 and Krzysztof Gaj2

1 George Mason University, Fairfax VA 22030, USA,
aabushar@gmu.edu,

2 George Mason University, Fairfax VA 22030, USA,
kgaj@gmu.edu

Abstract. Software implementations of public key cryptosystems re-
quire efficient realization of operations on large integers and elements of
the Galois Field. Multiple libraries implementing such operations exist
both commercially and in the public domain, in this paper, we perform
comparison of eight libraries: CLN, CryptoPP, GNU MP, LiDIA, MIR-
ACL, NTL, OpenSSL and PIOLOGIE, using performance and support
of public key primitive operations. The performance of all libraries is
ranked based on the measurements performed according to a methodol-
ogy that takes into account the performance and relative use of primitive
cryptographic operations. The performance results shows that GNU MP
has the best performance for operations on large integers, OpenSSL has
the best performance for operations on elliptic curves over prime fields
and LiDIA and MIRACL have the best performance for operations on
elliptic curves over binary fields. CryptoPP leads in terms of support for
cryptographic primitives and schemes, but is the slowest of all investi-
gated libraries.

1 Introduction

In order to assure the required level of cryptographic strength, mathematical
functions used in public key schemes require operations on large integers of size
varying between 768 to 2048 bits, as well as elliptic curve operations over fields
with element size in the range of 140 to 240 bits. Software implementation of
such arithmetic operations is difficult since currently available processors have a
limited word-size of up to 64 bit.

Many algorithms have been developed to perform these multi-precision arith-
metic operations efficiently, and several libraries implementing such algorithms
exist both commercially and in public domain. Nevertheless to our best knowl-
edge, no systematic study has been done to compare and contrast these libraries
against each other.

In the study described in this paper, eight libraries have been chosen from the
public domain to perform the comparison: CLN[3], CryptoPP[5], GNU MP[6],
LiDIA[14], MIRACL[20], NTL[17], OpenSSL[18] and PIOLOGIE[7]. These li-
braries were chosen based on the authors personal experience and usage .The

Abusharekh, Gaj

SPEED Workshop Record 4

aim of this study is to evaluate the suitability of using the aforementioned soft-
ware libraries for implementation on a wide range of public key cryptosystems by
using the performance of primitive operations as the main evaluation criterion,
then further introducing other secondary criteria such as support for public key
primitives and schemes, documentation, ease of use and portability.

Evaluation of software performance is not only considered difficult but also
complex due to the increasing number of variables such as, operating system,
processor, available memory and the choice of compiler and its optimization op-
tions. In order to achieve the performance evaluation, a methodology for ranking
the entire libraries is developed based on the performance of their primitive cryp-
tography related operations.

This study is intended to provide the developers of public key software im-
plementations with knowledge needed to make better choices regarding the use
of available libraries in their products based on the analysis of existing trade
offs.

2 Libraries and Test Platforms

The libraries used in the comparison are listed in Table 1; the majority can
be described as multi-precision libraries or number theoretical libraries. The
only exceptions are CryptoPP, MIRACL and OpenSSL which specifically target
cryptographic schemes.

Table 1. Libraries

Library Category License Version
used

CLN Number theoretic GNU GPL 1.1.5

CryptoPP Cryptographic Copyrighted 5.1
as a compilation

GMP Multi-precision, Number theoretic GNU GPL 4.1.2

LiDIA Number theoretic LiDIA group 2.1pre7

MIRACL Cryptographic Shamus Software Ltd. 4.82

NTL Number theoretic GNU GPL 5.3.1

OpenSSL Cryptographic Apache-style license 0.9.7c

PIOLOGIE Multi-precision, Number theoretic www.hipilib.de 1.3.2

CLN, LiDIA and NTL were compiled using GMP as an underlying multi-
precision library as recommended by the library developers to achieve maximum

Comparative Analysis of Software Libraries for Public Key Cryptography

5 SPEED Workshop Record

speed. The structure of GMP has six function categories; two of them are used
by the aforementioned libraries. These two are: mpz, high-level functions for
signed/unsigned integer arithmetic, and mpn, low-level functions that operate
on natural numbers. Most mpn functions contain machine-dependent code and
are used by other function categories including mpz. CLN and NTL use GMP
mpn functions to build a different user interface, while LiDIA uses mpz functions.
There are two different types of editions of PIOLOGIE; the normal editions, de-
pendent on specific processors, compilers and operating systems; and the special
editions, independent of these factors. A special scientific edition v1.3.2 was used
in this paper. This edition is distributed under the terms and conditions of the
GNU General Public License.

Two machines were used for the performance analysis, 2.0GHz Pentium IV
with 512 MB RAM hosting two operating systems, Windows XP (Cygwin) and
RedHat Linux 9.0 and 2x 400MHz UltraSPARC-Solaris-II with 4-MB E-cache
and 2048 MB RAM hosting Solaris 5.8. The libraries were compiled using GNU
C/C++ compiler on all three operating systems using instructions provided by
the libraries writers. Measurements were analyzed to obtain a general overall
ranking of the libraries with respect to one another on each platform based on
the overall rank of each operation.

3 Cryptographic Operations

The primitive cryptographic operations and sizes of operands were chosen based
on their use in practical cryptographic algorithms whose security is based on
the three well-known mathematical problems, integer factorization, discrete log-
arithm and elliptic curve discrete logarithm, such as RSA, DSA and ECDSA.
The operations are divided into two main sets according to the operand sizes and
types. The first set contains operations on large integers: multiplication, modu-
lar exponentiation, greatest common divisor and multiplicative inverse (extended
greatest common divisor), with operands sizes 768, 1024 and 2048 bits.

The second set, contains operations on elliptic curve points; point addition
and scalar multiplication with base point order lengths 163, 233 and 409 bits
(equivalent to 1024, 2240 and 7680 bit RSA/DSA keys [21]) for elliptic curves
over binary fields (E(F2n)) and 162, 226 and 386 bits (equivalent to 1024, 2048
and 7680 bit RSA/DSA keys[21]) for randomly generated elliptic curves over
prime fields (E(Fp)).

3.1 Large Integer Operations

Multiplication: Multiplication Algorithms implemented in the libraries are
summarized in Table 2. The Karatsuba[1][11] algorithm has a running com-
plexity of O(nlog 3) which is an improvement over the classical multiplication
[11] algorithm at O(n2). Classical, Comba[4] and Karatsuba multiplication al-
gorithms are of practical importance for the operand sizes used in the perfor-
mance testing. The Toom-Cook (T-C) algorithm[11], with a running complexity

Abusharekh, Gaj

SPEED Workshop Record 6

Table 2. Multiplication Algorithm Ranges

GMP GMP
CLN CryptoPP LiDIA LiDIA OpenSSL PIOLOGIE

NTL/PIV NTL/SPARC

Classical [0,1120) - [0,576) [0,1280) [0,512) [0,256]

Comba - [0,256] - - - -

Karatsuba [1120,80000) > 256 [576,4448) [1280,7104) ≥ 512 (256,160000)

T-C - - [4448,188416) [7104,122800) - -

FFT ≥ 80000 - ≥ 188416 ≥ 122800 - ≥ 160000

of O(n 2
√

2 log n log n) and Fast Fourier Transform (FFT) algorithm[11], with
running complexity of O(n log n log log n) are asymptotically superior to Karat-
suba algorithm. However these algorithms do not offer any speed improvements
for the operand sizes currently used in public key cryptography. Table 3 shows the
different operand sizes in bits and the algorithms used for their multiplication.
All libraries were compiled using default ranges and thresholds, however these
thresholds can be changed to best fit the underlying platform/processor. GMP is
the only library that adjusts the threshold not only depending on operand sizes,
but also on the underlying processor architecture, a set of tune up programs are
supplied with GMP that can be invoked on the targeted machine to measure the
timing of GMP routines and propose thresholds that produce better results. The
library must be recompiled in order for the change to be effective. This directly
affects LiDIA and NTL which use GMP implementations of multiplication al-
gorithms. On the other hand CLN uses GMPs mpn functions to build its own
multiplication algorithms as a result is not directly affected.

CryptoPPs implementation of the Karatsuba algorithms requires the input
sizes to be powers of 2. In case they are not, they have to be extended to the
next power of 2 before applying the algorithm e.g. an input of size 768 bit is ex-
tended to 1024 bits. Although, OpenSSLs implementation of Karatsuba-Comba
algorithm also requires the input sizes to be powers of 2, classical multiplica-
tion is used when this condition does not hold. MIRACL implements classical
multiplication for all sizes.

Modular Exponentiation: Modular exponentiation algorithms implemented
in the libraries and their corresponding thresholds are summarized in Table
4. Left-to-right[15] (denoted as LR) and right-to-left[15] (denoted as RL) algo-
rithms require L(E) − 1 squarings, where L(E) is the bitlength of the expo-
nent, and W (E) − 1 multiplications, where W (E) is the Hamming weight of
the exponent. Both algorithms do not require precomputations. Left-to-right

Comparative Analysis of Software Libraries for Public Key Cryptography

7 SPEED Workshop Record

Table 3. Multiplication Algorithms for Different Key Sizes

Library Classical Karatsuba

Piologie - 768, 1024, 2048 bits

OpenSSL 768 bit 1024, 2048 bits

MIRACL 768, 1024, 2048 bits -

GMP/LiDIA/NTL{SPARC} 768, 1024 bits 2048 bits

GMP/LiDIA/NTL{PIV} - 768, 1024, 2048 bits

CryptoPP - 768, 1024, 2048 bits

CLN 768, 1024 bits 2048 bits

k-ary[15](denoted as LR k-ary), simultaneous multiple exponentiation[15] (de-
noted as SME) and sliding window[12][15] (denoted as k-ary SW) algorithms
need precomputations. Table 5 shows the algorithms used by the respective li-

Table 4. Modular Exponentiation Algorithm Ranges

Library CLN CryptoPP GMP LiDIA MIRACL NTL OpenSSL PIOLOGIE

LR [2,8] - [2,32] - - [2,512) - -

RL - - - ≥ 2 - - - ≥ 2

LR k-ary (8,) - - - - - - -

SME - ≥ 2 - - - - - -

k-ary SW - - > 32 - ≥ 2 ≥ 512 ≥ 2 -

braries for three different exponents, E = 3, E = 65537, and a random exponent
the same size as the size of the modulus N .

GCD and xGCD: Table 6 summarizes the libraries implementations for the
GCD and xGCD algorithms. Complete description and analysis of these algo-
rithms can be found in [11].

Abusharekh, Gaj

SPEED Workshop Record 8

Table 5. Modular Exponentiation Algorithms for Different Exponent Sizes

Library LR RL LR k-ary k-ary SW SME

Piologie - E=3, E=65537, E - - -

OpenSSL - - - E=3, E=65537, E -

NTL E=3 - - E=65537, E -

MIRACL - - - E=3, E=65537, E -

LiDIA - E=3, E=65537, E - - -

GMP E=3 - - E=65537, E -

CryptoPP - - - - E=3, E=65537, E

CLN E=3 - E=65537, E - -

Table 6. GCD and xGCD Algorithms

Library GCD xGCD

CLN Lehmer[13][11][15] Lehmer

CryptoPP Euclid[11][15] Binary[11][15]

GMP/LiDIA/NTL Generalized Binary[10][23] Lehmer

MIRACL Lehmer Lehmer

OpenSSL Binary Binary

PIOLOGIE Generalized binary Euclid

3.2 Elliptic Curve points

Operations on elliptic curves are limited to four libraries: CryptoPP, LiDIA,
MIRACL and OpenSSL. The version of OpenSSL used supports only E(Fp),
and does not support E(F2n).

Scalar Multiplication: Table 7 summarizes the libraries implementations of
EC point scalar multiplication.

4 Methodology

Measurements were conducted in two different ways depending on the platform.
The first method of testing referred to as RDTSC method was used on Pen-

Comparative Analysis of Software Libraries for Public Key Cryptography

9 SPEED Workshop Record

Table 7. Elliptic Curve Scalar Multiplication Algorithms

Library Scalar Multiplication

CryptoPP Simultaneous Sliding Window

LiDIA Left-to-Right

MIRACL wNAF-based interleaving [16]

OpenSSL wNAF-based interleaving

tium IV platforms. The RDTSC method uses the RDTSC[9][2] (read time-stamp
counter) instruction to access the time-stamp counter, a 64 bit model specific
register that is incremented every clock cycle, present on Intel processors begin-
ning with the Pentium processor. The CPUID instruction is used as a serializing
instruction to prevent out-of-order execution. The RDTSC method was used to
determine the number of clock cycles required to perform the given operation.
The overhead associated with the call of the instructions was calculated and sub-
tracted from the final result. Both instructions were called several times before
testing the given operation to flush the instruction cache.

The second method referred to as Timing method was used on the Ultra-
SPARC platform. The Timing method uses the function gettimeofday()[1] to
determine the amount of time in milliseconds consumed in the execution of the
given operation due to the lack of CPU cycle counter in the UltraSPARC plat-
form. The function gettimeofday() gives resolution in the range of microsec-
onds.

4.1 Operands

For large Integer Operations, two groups of operands were used: Group A, a
group of randomly generated integers containing three sets of numbers with
sizes 768, 1024 and 2048 bits respectively. Each set contains three large inte-
gers denoted as Ii, Ji and Ki, where i is the size of the integer in bits, e.g.
the first set contains I768, J768, K768 . The values of Ii, Ji and Ki are listed
in Appendix A to [24]. Group B, a group of randomly generated large prime
numbers contains three sets of numbers with sizes 768, 1024 and 2048 bits re-
spectively. Each set contains ten large prime integers denoted as P j

i , where i
is the size of an integer in bits and j is the index of a given prime in the set.
For example, the first set, contains P 0

768, P 1
768, ... P 9

768. Table 8 summarizes the
operations tested and the corresponding groups of operands. With respect to
a particular library under a particular operating system, each operation using
group A of operands is tested using either RDTSC or Timing method. All op-
erations are tested using three operand sizes. Thus, each experiment on a given
operation produces three sets of 100 execution times. Each value represents one

Abusharekh, Gaj

SPEED Workshop Record 10

Table 8. Large Integer Operations

Operation OP Group Comments

Multiplication MUL A Ii × Ji

MOD Exp E = 3 E3 A I3
i MOD Ki

MOD Exp E = 65537 E65537 A I65537
i MOD Ki

MOD Exp E, size of modulus E A IJi
i MOD Ki

Greatest Common Divisor GCD B, A GCD(P j
i , Ki)

Extended GCD xGCD B, A xGCD(P j
i , Ki)

iteration while each set represents one operand size. The three sets of 100 ex-
ecution times are sorted and the minimum value for each set is recorded and
denoted as LIBOP

AMIN768
, LIBOP

AMIN1024
, LIBOP

AMIN2048
. The final set of raw re-

sults for each operation tested on a particular library under a certain operating
system OS is denoted by LIBOP

OS = { LIBOP
AMIN768

, LIBOP
AMIN1024

, LIBOP
AMIN2048

}. The same approach was used with operations using group B, except that each
operation is tested using 10 different operands P j

i of the same size e.g. there are
10 different operands for 768 bits P j

768, 0 ≤ j ≤ 9 so for each j there will be
100 different values. For each P j

i the 100 values are sorted and the minimum
recorded and denoted as LIBOP

BMINj
i

. The 10 minimum values for each operand

size (LIBOP
BMINj

768
, LIBOP

BMINj
1024

, LIBOP
BMINj

2048
),0 ≤ j ≤ 9 are then averaged,

the result is denoted as LIBOP
BAV Gi

.

LIBOP
BAV Gi

=
1
10

9∑
j=0

LIBOP
BMINj

i

(1)

The final set of raw results for each operation in a particular library under a
certain operating system is denoted by LIBOP

OS = { LIBOP
BAV G768

, LIBOP
BAV G1024

,
LIBOP

BAV G2048
}.

Elliptic curve point operations tested are Point Addition and Scalar Multi-
plication with input sizes of 163, 233 and 409 bits for E(F2n) and 162, 226 and
386 bits for E(Fp). For each elliptic curve, two randomly generated points Ti

and Si (i = 163, 233, 409 for E(F2n), i = 162, 226, 386 for E(Fp)) were used
as operands. Addition: Ti + Si. Scalar Multiplication: (r - 2) Ti were r is the
order of the base point. The final raw results are collected as described for large
integer operations using group A of operands. The elliptic curves and points are
listed in Appendix A to [24].

Comparative Analysis of Software Libraries for Public Key Cryptography

11 SPEED Workshop Record

4.2 Operation Ranking

After obtaining all values of execution times for all operations of the eight li-
braries under the three operating systems, rankings of the operations were calcu-
lated as follows: With respect to an operation OP tested on eight libraries under
a particular operating system OS, execution times of OP are rearranged into
three sets of eight values such that each set contains the results for a particular
operand size under the eight libraries (one value for each execution time under a
particular library i.e. LIBOP

AMINi
or LIBOP

BAV Gi
according to the operand group).

The minimum value in each set, denoted by MINi, where i = 768, 1024, 2048,
is determined and all values in a given set are divided by that value. The result-
ing values, denoted by LIBir

OS
OP represent operation OP ranks with operands

of size i on library LIB. For an operation OP, LIBir
OS
OP = 1.00 corresponds to

the fastest library. A rank equal to r means that an operation under a given

Fig. 1. CLN Multiplication Rank

library is r times slower than the same operation under the fastest library for a
given operand size i. Operation OP overall rank under a library LIB denoted
by LIBROS

OP is the geometric mean of its ranks for the three operand sizes 768,
1024 and 2048. Figure 1 shows the raw results and ranks for multiplication under
Pentium IV-Windows XP for all libraries. The final rank of CLN multiplication
is calculated as follows:

CLN768r
WinXP
MUL =

CLNMUL
AMIN768

MIN768
=

8, 940
3, 381

= 2.64 (2)

CLN1024r
WinXP
MUL =

CLNMUL
AMIN1024

MIN1024
=

11, 763
5, 364

= 2.19 (3)

CLN2048r
WinXP
MUL =

CLNMUL
AMIN2048

MIN2048
=

29, 133
17, 605

= 1.65 (4)

Abusharekh, Gaj

SPEED Workshop Record 12

CLNRWinXP
MUL = 3

√∏
i

CLNirWinXP
MUL = 3

√
2.64× 2.19× 1.65 = 2.1208 (5)

4.3 Library Ranking

As a result we will have a set of operation rankings for each library on each
operating system; the overall rank of the library denoted by LIBROS on a
particular operating system OS is determined by calculating the geometric mean
of its individual operation ranks.

LIBROS = N

√∏
OP

LIBROS
OP (6)

N is the number of operations considered. N = 6 for large integer operations and
N=2 for EC point operations. The two sets of rankings are considered separately
because EC point operations are not supported by all libraries.

5 Performance Results

As discussed in the previous sections, the following tables show the individual
operations, their ranks and the overall rankings of the libraries on the three
platforms used for performance testing. Each table lists the individual operation
ranking of each library and the overall ranking of the library (Geometric Mean
of individual operation rankings).

5.1 Operations On Large Integers

The tables presented in this section show the overall ranking of the libraries
for operations on large integers. The operations rankings are, MUL: Multiplica-
tion ranking, E3: Modular Exponentiation Ranking with exponent = 3, E65537:
Modular Exponentiation Ranking with exponent = 65537, E: Modular Expo-
nentiation Ranking with exponent of the same size as the modulus, GCD: Great-
est Common Divisor ranking, and xGCD: Extended Greatest Common Divisor
ranking.

Table 9 lists the performance results under Pentium IV, Windows XP. In
terms of the overall rank LIBRWinXP , GMP has the best rank and PIOLOGIE
the worst. MIRACL and OpenSSL are very close. OpenSSL Multiplication and
Modular Exponentiation are higher in rank than MIRACL; while MIRACL GCD
and xGCD rank higher than OpenSSL. CryptoPP GCDs rank is higher than
xGCDs rank unlike all other libraries while it is completely the opposite for
PIOLOGIE; in both cases the reason behind that is the choice of algorithms (see
Table 6). Table 10 lists the performance results under Pentium IV, RedHat 9.0.
In terms of the overall rank LIBRRH , GMP has the best rank and CryptoPP the
worst. CryptoPP and PIOLOGIE are slower under RedHat than under Windows

Comparative Analysis of Software Libraries for Public Key Cryptography

13 SPEED Workshop Record

XP; the order of GMP, NTL, LiDIA and CLN is the same as for Pentium IV-
Windows XP. MIRACLs rank is now slightly better than OpenSSLs due to
rankings of GCD and xGCD. PIOLOGIE rank is slightly better than CryptoPP
due to Modular Exponentiations rank with E = 3 and GCDs rank. Table 11 lists
the performance results under Ultra-SPARC, Solaris. In terms of the overall rank
(LIB-R)SPARC, GMP has the best rank and CryptoPP the worst. GMP, NTL,
LiDIA and CLN have the same order. PIOLOGIE has a better ranking than
Pentium IV, while OpenSSLs rank remains the same.

Under all operating systems, LiDIA and NTL use GMP functions for Multi-
plication, GCD and xGCD. This makes their rankings according to these oper-
ations very much close to GMP. For Modular Exponentiation, NTL and LiDIA
have their own different implementations, with NTL choice of algorithms similar
to GMP. CLN has its own implementation for all operations. As an overall result
for large integer operations, GMP has the best ranking under all three platforms
followed by NTL, LiDIA and CLN.

5.2 Operations On E(F2n) and E(Fp) Points

Tables 12 and 13 show the performance results for operations on E(F2n) and
E(Fp) points respectively, on all platforms.

For E(F2n), LiDIA has the best rank under Pentium IV,RedHat 9.0 and
Ultra-SPARC,Solaris while CryptoPP has the worst rank under all platforms.
MIRACL has the best rank under Pentium IV, Windows XP.

For E(Fp), under all platforms, OpenSSL has the best rank and CryptoPP
has the worst rank.

Table 9. Large Integer Operation Rankings Pentium IV, Windows XP

Library MUL E3 E65537 E GCD xGCD LIBRWinXP

CLN 2.12 2.23 2.25 2.79 1.34 1.37 1.95

CryptoPP 7.11 15.17 4.71 4.04 464.90 9.99 14.56

GMP 1.00 1.00 1.00 1.00 1.01 1.08 1.01

LiDIA 1.08 1.45 1.08 1.65 1.03 1.10 1.21

MIRACL 3.58 22.40 4.56 2.62 5.15 3.15 5.00

NTL 1.01 1.42 1.17 1.18 1.00 1.00 1.12

OpenSSL 2.75 8.07 2.65 2.33 8.31 12.17 4.90

PIOLOGIE 7.60 7.40 6.63 10.65 16.41 213.30 15.51

Abusharekh, Gaj

SPEED Workshop Record 14

Table 10. Large Integer Operation Rankings Pentium IV, RedHat 9.0

Library MUL E3 E65537 E GCD xGCD LIBRRH

CLN 1.50 1.27 1.39 1.87 1.37 1.27 1.43

CryptoPP 4.49 9.19 3.79 5.04 65.96 16.82 9.78

GMP 1.00 1.00 1.01 1.00 1.00 1.08 1.01

LiDIA 1.00 1.10 1.06 1.84 1.00 1.09 1.15

MIRACL 3.60 21.06 4.30 2.77 3.99 2.36 4.52

NTL 1.01 1.20 1.10 1.29 1.01 1.00 1.10

OpenSSL 2.80 7.12 2.43 2.43 8.93 12.49 4.86

PIOLOGIE 5.35 5.01 5.07 8.79 21.95 24.22 9.27

Table 11. Large Integer Operations Rankings UltraSPARC, Solaris

Library MUL E3 E65537 E GCD xGCD LIBRSPARC

CLN 1.21 1.60 1.70 1.98 1.67 1.40 1.58

CryptoPP 16.43 38.52 18.10 17.68 184.68 49.08 34.99

GMP 1.00 1.00 1.00 1.00 1.00 1.12 1.02

LiDIA 1.00 1.20 1.10 1.55 1.02 1.14 1.16

MIRACL 9.08 23.85 2.98 7.41 8.77 3.71 7.33

NTL 1.00 1.25 1.15 1.13 1.05 1.00 1.09

OpenSSL 2.16 7.80 2.81 2.45 7.67 7.74 4.36

PIOLOGIE 3.51 4.13 4.06 5.95 9.13 37.22 7.01

6 Observations And Comments

6.1 Portability, Documentation and Ease of Use

The number of supported compilers was considered as a measure of portability of
a given library. For CLN, GMP and LiDIA the only supported compiler is GNU
C/C++. PIOLOGIE supports the largest set of compilers followed by CryptoPP,
OpenSSL, MIRACL and NTL.

In terms of documentation and ease of use, PIOLOGIE simple structure
makes it the easiest among all libraries, on the other hand CryptoPP com-
plex structure and insufficient documentation makes it the hardest among all

Comparative Analysis of Software Libraries for Public Key Cryptography

15 SPEED Workshop Record

Table 12. E(F2n) Operations Rankings

SPARC PIV, RH PIV, WinXP

Library Add Scalar LIBRSPARC Add Scalar LIBRRH Add Scalar LIBRWinXP

MUL MUL MUL

CryproPP 17.1 16.65 16.87 9.55 8.67 9.1 4.56 4.35 4.46

LiDIA 1 1 1 1 1 1 1.33 1.22 1.28

MIRACL 1.17 1.15 1.16 1.48 1.32 1.4 1 1 1

Table 13. E(Fp) Operations Rankings

SPARC PIV, RH PIV, WinXP

Library Add Scalar LIBRSPARC Add Scalar LIBRRH Add Scalar LIBRWinXP

MUL MUL MUL

CryproPP 9.46 7.15 8.23 5.4 2.38 3.58 6.02 3.72 4.73

LiDIA 1.05 1.73 1.35 1.06 1.44 1.24 1.97 3.45 2.61

MIRACL 1.49 2.6 1.97 1.61 2.02 1.8 1.05 2.24 1.53

OpenSSL 1 1 1 1.02 1 1.01 1.3 1 1.14

libraries. CLN, GMP, LiDIA, MIRACL and NTL have complex structure but
their documentation and documentation sample code and test suites decrease
their difficulty.

6.2 CryptoPP GNU C/C++ vs. MS VC++ 6.0

The CryptoPP’s performance was tested under MS VC++ 6.0 and the results
were compared to the results obtained under GNU C/C++. The execution time
ratios for GNU C/C++ vs MS VC++ 6.0 were computed for multiplication and
modular exponentiation for three input sizes under the Pentium IV, Windows
XP machine. It was found that CryptoPP compiled under MS VC++ 6.0 is
more than twice as fast as that compiled under GNU C/C++. This is due to the
library’s optimization for Pentium IV processors under MS VC++ 6.0 versus its
generic Pentium optimization under GNU C/C++. MIRACL and PIOLOGIE
were also compiled under MS VC++ 6.0 with no significant change in their
performance as compared to GNU C/C++.

Abusharekh, Gaj

SPEED Workshop Record 16

6.3 Support For Public Key Cryptosystems

Support for public key cryptosystems is based on the support of primitive arith-
metic and number theoretical operations needed by the three main categories of
public key cryptosystems, and also on complete implementations of public key
schemes present in the library.

Support for Primitive Operations Figure 2 summarizes the libraries support
for primitive operations on large integers, E(Fp) and E(F2n). Support for E(Fp)
operations is limited to CryptoPP, LiDIA, MIRACL and OpenSSL. Support for
E(F2n) is limited to CryptoPP, LiDIA and MIRACL. Elliptic curve generation
and point counting is supported by LiDIA and MIRACL only.

Support for Cryptographic Schemes Complete implementation of Crypto-
graphic schemes is limited to three libraries, CryptoPP, MIRACL and OpenSSL.
CryptoPP has the largest collection of public key cryptographic schemes followed
by MIRACL and OpenSSL. Moreover, CryptoPP contains a collection of secret
key ciphers, hash functions, and MAC functions and I/O support. Version 5.0.4
of the library has received FIPS 140-2 level 1 validation in 9/5/2003. MIRACL
implements cryptographic primitives in IEEE P1363[8]. It also has implemen-
tations for AES and SHA (1, 256, 384, and 512). OpenSSL implements DH,
DSA and RSA, and a collection of secret key ciphers, hash functions and MAC
functions.

Fig. 2. Support for Primitive Operations

Comparative Analysis of Software Libraries for Public Key Cryptography

17 SPEED Workshop Record

7 Conclusion

In terms of support for operations on large integers, GMP, NTL, LiDIA, and
CLN have the best performance under all platforms tested, with GMP being
the fastest and CLN the slowest among the group. LiDIA is the only library
in the group that needs a license for commercial use. For a developer targeting
operations on large integers, GMP would be the best choice in terms of per-
formance. The trade off however, is the amount of time and effort needed for
implementation, and portability.

OpenSSL and MIRACL trail libraries from the first group in terms of overall
performance. OpenSSL is faster than MIRACL for all operations except GCD
and xGCD. While having an acceptable performance as compared to other li-
braries and support implementations of cryptographic schemes, this group is a
good choice for fast development of public key cryptosystems based on opera-
tions on large integers.

CryptoPP is the best choice for the fast development based on the com-
plete implementations of a wide range of cryptographic schemes involving large
integers; the drawback is its performance as compared to other libraries.

Fig. 3. Support vs Performance, Pentium IV, RedHat 9.0

Abusharekh, Gaj

SPEED Workshop Record 18

For elliptic curves over binary fields, the competition is between LiDIA, MIR-
ACL and CryptoPP. LiDIA has the best performance under Pentium IV-RedHat
9.0 and UltraSPARC-Solaris. Under Pentium IV, Windows XP, MIRACL has
the best performance. CryptoPP is the slowest under all platforms.

For elliptic curves over prime fields, OpenSSL has the best performance un-
der all platforms, LiDIA performance is better than MIRACL on Pentium IV-
RedHat 9.0 and UltraSPARC-Solaris, while under Pentium IV-Windows XP,
MIRACL is better than LiDIA. Again CryptoPP has the lowest performance.
For a developer targeting E(Fp) cryptosystems, OpenSSL is a good choice since
it has the best performance, and is portable and free.

Although public key schemes implemented in CryptoPP, MIRACL and OpenSSL
were not compared for performance, one can estimate their performance based
on the performance of primitive operations. Accordingly, OpenSSL is expected
to have better performance followed by MIRACL and CryptoPP respectively,
with CryptoPP having the richest collection of cryptographic schemes.

Figure 3 summaries the libraries support of public key cryptosystems versus
their performance under Pentium IV, RedHat 9.0. The x-axis represents the
performance scale from low performance to high performance, y-axis represents
support starting from support for large integers (LINT) and ending with support
for public key schemes (PKS). GMP has the highest performance and lowest
support, while CryptoPP has the highest support and lowest performance.

This work has been done before the introduction of eBATS [24], and currently
we are trying to use it to test the various asymmetric operations implemented
in the eight libraries . We hope that this will give more insight on some of the
reasons why one library cryptographic operation might perform better than the
others under a specific platform.

Comparative Analysis of Software Libraries for Public Key Cryptography

19 SPEED Workshop Record

References

1. A. Karatsuba and Yu. Ofman, Multiplication of Multidigit Numbers on Automata.
Soviet Physics-Doklady, 7 (1963), 595-596.

2. R. E. Bryant and D. O’Hallaron. Computer Systems, A Programmer’s Perspective.
Prentice-Hall, 2003.

3. CLN: Class Library for Numbers http://www.ginac.de/CLN/
4. P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,

vol. 29, n. 4, pp. 526538, 1990.
5. Crypto++ Library 5.1: a Free C++ Class Library of Cryptographic schemes

http://www.eskimo.com/ weidai/cryptlib.html
6. The GNU MP Library http://www.swox.com/gmp/
7. HiPiLib Piologie http://www.hipilib.de/piologie.htm
8. IEEE P1363: Standard Specifications for Public-Key Cryptography.

http://grouper.ieee.org/groups/1363/
9. Intel Corporation. IA-32 Intel Architecture, Software De-

velopers Manual, vol 2B: Instruction Set Reference, N-Z
http://developer.intel.com/design/pentium4/manuals/25366713.pdf

10. Tudor Jebelean. A Generalization of the Binary GCD Algorithm. ISSAC 93, 111-
116.

11. D.E. Knuth.The Art in Computer Programming. Vol2 : Seminumerial Algorithms.
Addison-Wesley, 2nd.Ed. 1981.

12. C.K. Koc. Analysis of sliding window techniques for exponentiation. Computers
and Mathematics with Applications, vol.30, n.10, pp.1724,195.

13. D. H. Lehmer. Euclid’s Algorithm for Large Numbers. American Mathematical
Monthly. 45 (1938), 227-233.

14. LiDIA: A C++ Library For Computational Number Theory
http://www.informatik.tu-darmstadt.de/TI/LiDIA/

15. A. Menesez, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1997.

16. B. Möller. Algorithms for multi-exponentiation. Selected Areas in Cryptography
SAC 2001 (2001), S. Vaudenay and A.M. Youssef (Eds.), LNCS 2259, pp. 165180.

17. NTL: A Library for doing Number Theory http://www.shoup.net/ntl/
18. OpenSSL: The Open Source toolkit for SSL/TLS http://www.openssl.org/
19. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures

and Public Key Cryptosystems. Communications of the ACM, vol. 21, no.2, pp. 158-
164, 1978.

20. Shamus Software Ltd MIRACL http://indigo.ie/ mscott/
21. Standards for Efficient Cryptography Group. SEC 2: Recommended Elliptic Curve

Domain Parameters. Version 0.6, 1999.
22. S. Y. Yan. Number Theory for Computing. Springer-Verlag 2000
23. T. Jebelean. A Generalization of the Binary GCD Algorithm. ISSAC 93, pp. 111-

116.
24. eBATS: ECRYPT Benchmarking of Asymmetric Systems

http://www.ecrypt.eu.org/ebats/

21 SPEED Workshop Record

Fast Integrity for Large Data

Go Yamamoto, Satoshi Oda, Kazumaro Aoki

NTT Corporation

Abstract. We present a scheme that provides data integrity with ex-
treme speed. The proposed scheme bases on a different design than those
from hash functions. Like a hash function a deterministic algorithm out-
puts a small string called tag with a message on input, however, another
algorithm probabilistically verifies integrity of the message without re-
computing the tag. We implemented the integrity checking algorithm
to deliver speed over 12 Gbit/second for 80bit-security on Athlon X2
2GHz. The scheme is collision-resistant under the hardness of integer
factorization.

Keywords Data Integrity, Collision-Resistant, Integer Factoring, Fast
Implementation

1 Introduction

When we transfer data over open networks, data can be changed pos-
sibly by intentional attempts, as well as by unintentional accidents. In
this paper we mean data integrity in the sense against intentional change
attempts. A standard way to deliver data integrity is to compute a cryp-
tographic hash function.

Speed of integrity checking is important. One of the most important
application is in digital signatures. In principle a digital signature is usu-
ally issued over only short messages, so when we sign a large message M ,
we sign h(M) instead, where h is a hash function. In practice, it would
be convenient to attach a hash list H = (h(M1), h(M2), . . . , h(Md)) and
sign on h(H), where each Mi is a message block from M with appropri-
ate padding. Since integrity of M is verified by recomputing each h(Mi),
if integrity checking on some Mi fails, then we can correct only Mi. In
both uses, speed of hash function is important as well as that of digital
signature. The throughputs of SHA-1 and SHA-256 are 1.4 Gbit/second
and 0.56 Gbit/second respectively, where we measured the assembly im-
plementations from OpenSSL on a core of Athlon X2 2GHz.

In this paper we present an alternative way to provide integrity on
data and a hash list, desiring speed from 5 Gbit/second to over 10 Gbit/second.

Yamamoto, Oda, Aoki

SPEED Workshop Record 22

For example, if signature verification is faster than the speed of the net-
work, then we can design a cache server that stores only authorized files.
The performance of next generation Ethernet will be 10 Gbit/second [6].

The proposed scheme bases on a different design than those from
hash functions, consisting of 2 algorithms Tag Generation and Integrity
Checking. Tag Generation outputs a small string called tag with a mes-
sage on input, like a hash function. However, Integrity Checking verifies
integrity of the message without recomputing the tag. We call such a de-
sign asymmetric integrity checking. In the proposed scheme, the Integrity
Checking algorithm does not recompute tag and is probabilistic, while
the Tag Generation algorithm is deterministic.

The Integrity Checking algorithm is extremely efficient. We describe
an implementation for the Integrity Checking algorithm to obtain
3.13bit/cycle on a core of Athlon X2. Throughput is over 12Gbit/second
on a dual-core implementation running at 2GHz. The size of the tag is
about 6.4 times larger than the hash list from SHA-1. However, in digital
signatures it suffices to sign h(T), where T is the tag for the message M .

The point of the proposed algorithms is batch processing [5] for a
homomorphic hash function. That is, if h is a homomorphic function,
then to check that all of y1 = h(x1), y2 = h(x2), . . ., yd = h(xd) hold,
it suffices to check ȳ = h(x̄), where x̄ and ȳ are linear combinations of
xi and yi respectively with a weight randomly chosen by the verifier. In
particular when h(x) is set to gx (mod N), where N is a number whose
prime factors are unknown, then the integrity checking algorithm is close
to short exponent test [2], except for the amount of the required random
bits.

Because of the construction above, the scheme is collision-resistant in
the sense that it is hard to find a tag T and distinct messages M and M ′

such that (T,M ′) is accepted by the Integrity Checking algorithm with
non-negligible probability while T is the tag for M . Recent researches [16,
15], for example, reveal that MD4, MD5, and SHA-1 are not as secure as
considered before. It is nice that we have a scheme for data integrity with
extreme speed that is provably secure under well-known assumptions with
long history of analysis.

2 Proposed Algorithm

When we deal with large data, maintaining its integrity only by the hash
value of the entire data is not a nice idea. If the entire data is large, it
would be nice if one can check integrity of partially received data. For

Fast Integrity for Large Data

23 SPEED Workshop Record

that purpose, hash listing is a basic idea. Data x is split into segments
x1, x2, . . . , xd with appropriate padding, then they are summarized to
(h(x1), h(x2), . . . , h(xd)). Each hash value h(xi) provides integrity of the
segment. In this paper we call the list (h(x1), h(x2), . . . , h(xd)) tag for
x. Unfortunately, attaching a hash list on the segmented data makes no
advantage on efficiency of recomputing the tag.

To obtain fast integrity checking algorithm, we design a data integrity
checking algorithm without recomputing the tag. Our idea is to use a
homomorphic hash function to design a tag and to make batch verification
over the tag. A typical and possibly known only practical homomorphic
hash function is that is based on a group with hidden order such as in
[13] and in [7] as a commitment scheme.

Choose random prime numbers p, q such that (p− 1)/2 and (q− 1)/2
are both prime numbers. Set a system parameter N = pq and keep p and
q secret to everyone. Each segment xi is represented as integer by binary
notation.

Algorithm 1 described below generates tag.
¶ ³

Algorithm 1 (Tag Generation)
Input : List of bit-strings (x1, x2, . . . , xd),
Output : Tag (y1, y2, . . . , yd).

1. For all i = 1, 2, . . . , d compute yi = gxi (mod N).
2. Output (y1, y2, . . . , yd).

µ ´
We suppose the list of bit-strings are obtained with appropriate padding,
so the length of each bit-string xi is set to a given parameter L. dL is
supposed to be bounded by a polynomial of k, where k is the security
parameter.

Remark 1. Our Tag Generation algorithm is very slow. It is about 1
Mbit/second in our test environment, where we used GMP [9] with patch
[8] on Athlon X2 running at 2GHz. The proposed scheme is useful when
we repeat verification for many times on an existing tag.

Remark 2. Unlike UMAC [4] and Poly1305 [3], we do not need nonce to
generate a tag. Instead, we will need k random bits for Integrity Checking.

Integrity between the data and the tag is checked by the following
algorithm. s is a system parameter and is a prime number such that
|s| > k.

Yamamoto, Oda, Aoki

SPEED Workshop Record 24

¶ ³
Algorithm 2 (Integrity Checking)
Input : (y1, x1), (y2, x2), . . . , (yd, xd) ∈ Z/NZ× {0, 1}L,
Output : 1 or 0.

1. Choose e ∈ [0, s − 1] randomly. Set ei = ei−1 (mod s) for each
i = 1, 2, . . . , d.

2. Compute x̄ =
∑

i eixi in Z.
3. Compute ȳ =

∏
i y
ei
i in Z/NZ.

4. If gx̄ = ȳ (mod N) holds, output 1. Otherwise output 0.
µ ´
The random number e must be unpredictable. We claim that Algorithm 2
is collision-resistant in the sense that it is hard to find a tag T and distinct
messages M and M ′ such that (T,M ′) is accepted by Algorithm 2 with
non-negligible probability while T is the tag for M .

Let V be Algorithm 2. Consider relation R defined by

R = {(y, x) | y = gx (mod N)}.
Let FACTOR be the assumption stated in Appendix, the hardness of
integer factoring. Then we have,

Theorem 1. Suppose (y1, x1, x
∗
1), . . . , (yd, xd, x∗d) be triples of bitstrings

generated by a probabilistic polynomial time algorithm and suppose that
(y1, x1), . . . , (yd, xd) ∈ R. If there exists some i such that xi 6= x∗i , then

Prob[V ((y1, x
∗
1), . . . , (yd, x∗d)) = 1]

is negligible under FACTOR and Extended Riemann Hypothesis.

Proof is in Appendix.

Remark 3. In Step 2 x̄ is computed in Z, unlike in short exponent tests
[2] for groups with known order. We claim that Algorithm 2 is still fast
if implemented carefully.

Remark 4. It does not seem to be obvious that a short exponent test on
a group with known order remains sound if one generate random short
exponents ei by ei = ei−1 (mod s), where s is close to 2k and s is much
smaller than the order of the group that is approximately 22k.

3 Implementation Result

In this section we describe some benchmark result from our implementa-
tion of Algorithm 2 on a standard PC.

Fast Integrity for Large Data

25 SPEED Workshop Record

3.1 Test Environment

We implemented the proposed algorithm on AMD64 processor. Summary
of test environment is shown in Table 1. We purchased the system for
about 85,000 Yen (about 550 Euro) in 2006. The implementations of
SHA-1 and SHA-256 are from OpenSSL [14].

CPU Athlon64x2 3800+

Clock Frequency 2.0GHz

L1 Cache 16KB / core

L2 Cache 512KB / core

chipset NVIDIA nForce 410 MCP

main memory DDR SDRAM 400MHz 512 MB×2

OS SuSE Linux 10.1 for AMD64

compiler gcc 4.1.0 -O3

library gmp 4.2.1

Table 1. Test environment

3.2 How to Measure

We measured throughput of Algorithm 2 for large data on memory gen-
erated by Mersenne Twister [10]. The utmost size in our tests will be 400
Gbit, because we have industrial interest in how long it take to check in-
tegrity over data in next generation DVDs such as HD DVD and Blu-ray.

Since such large amount of memory is not common at this time we
used a 128 MB memory area repeatedly for many times. We suppose it
is unlikely that when applying the algorithm on the same memory area
there is any significant data remaining in L1 or L2 cache, since 128 MB
is large enough compared with the sizes of caches.

3.3 Choice of parameters

N is set to pq, where both p and q are prime number such that (p− 1)/2
and (q− 1)/2 are also prime. g is set to 2, since it is guaranteed that the
order of 2 in Z/NZ is (p − 1)(q − 1)/2. p and q are randomly chosen to
be 512-bit length. The security parameter k is set to 80.

Yamamoto, Oda, Aoki

SPEED Workshop Record 26

3.4 Optimizing Segmentsize

For each target data size, the performance of Algorithm 2 varies on choice
of L the size of the segments. Let us fix the size of the entire message
and estimate how the time depends on L for each steps in Algorithm 2.
Step 1 takes only negligible time. Step 2 takes time in proportion to the
target data size, so constant here. Step 3 is proportional to d, so inverse
proportional to L. Step 4 takes time in proportion to L. So the required
time for Algorithm 2 is estimated as

0 + a+
b

L
+ cL

for some constants a, b, c. It is likely that there exists an L that attains
the fastest.

We measured running time for different Ls, where the size of the target
is set to 8Gbit for convenience of the experiments, because the required
time is almost linear to the size for large messages. Results are shown
in Table 2. In the test environment, the optimal segmentsize is from 768
Kbit to 1024 Kbit. We fix L to 1024 Kbit hereafter.

L(Kbit) 512K 768K 1024K 1280K 1536K

Step 2(sec) 0.66 0.67 0.66 0.67 0.65

Step 3(sec) 1.26 0.83 0.62 0.50 0.42

Step 4(sec) 0.61 0.92 1.22 1.53 1.83

Total(sec) 2.53 2.42 2.50 2.70 2.90

Table 2. L in Kbits and time in seconds

3.5 How Implemented

We implemented Algorithm 2 with C and assembly language. Some ideas
for optimization in our implementation are described.

Step 1 We precompute ei and store on memory. Each ei is about 80-bit
length. It is split into two 40-bit strings, each is stored in its table of 64-bit
integers. Let E be a 64-bit register. Algorithm 3 describes the detail.

Fast Integrity for Large Data

27 SPEED Workshop Record

¶ ³
Algorithm 3
Input : 80-bit integer e,
Output : Tables of 64-bit integers EH [] and EL[]

1. Set E = 1.
2. For i = 1, 2, . . . , d,

(a) Set E = eE (mod s).
(b) Set EH [i] = EÀ40, EL[i] = E & (240 − 1).

µ ´

Step 2 Let l be the least positive integer such that L < 64l. A bitstring
x with size L is split into 64-bit unsigned integers so as to x = x[l −
1]||x[l]|| · · · ||x[1]||x[0]. Let A′L, AL, A

′
H , AH be 64-bit registers initialized

to be zero. The detailed algorithm for our implementation is shown in
Algorithm 4.¶ ³

Algorithm 4
Input : List of bitstrings (x1, x2, . . . , xd),
Output : Bitstring x̄

1. For i = 0, 1, . . . , l − 1,
(a) For all j = 1, 2, . . . , d,

i. Set (A′L||AL) = xj [i]×128EL[j]+128(A′L||AL).
ii. Set (A′H ||AH) = xj [i]×128EH [j]+128(A′H ||AH),

(b) Set (AH ||AL||x̄[i]) = (0||A′H ||AH)¿19240+192(0||A′L||AL).
(c) Set A′L = 0, A′H = 0.

2. Set x̄[l] = AL, x̄[l + 1] = AH .
µ ´
×128 is the multiplication of two 64-bit unsigned integers that outputs
128-bit unsigned integer. +128,+192 are 128-bit addition and 192-bit ad-
dition respectively.¿192 is the left shift over 192-bit integer. We supposed
d < 224 so that both Step 1-(a)-i and Step 1-(a)-ii have no overflow.

Remark 5. On computing x̄ =
∑

i eixi, a simple idea will be to compute
the entire sum from the least significant leaf. Suppose for each xi memory
is assigned in the way shown in the left of Figure 1. According to [1], this
data structure is not cache friendly. Assignment shown in the right of
Figure 1 improves performance.

Step 3 and Step 4 On computing ȳ =
∏
i y
ei
i , exponentiations are com-

puted once with Algorithm 14.88 in [11], for example. This algorithm is

Yamamoto, Oda, Aoki

SPEED Workshop Record 28

�������������

Fig. 1. Memory assignments

about 3 times faster than computing each yeii with binary method. We
used GMP [9] with patch [8] for the multiplications of multiple preci-
sion long integers in Step 3, for exponentiation gx̄ (mod N), and for the
comparison in Step 4.

3.6 Test Results

We tested the implementation both in single-thread and in multi-thread.
The purpose of single-thread test is to compare with hash functions.
Multi-thread test is to obtain figure how fast can we check integrity.

Single-Thread Implementation We measured the required time for
verifying integrity with the proposed algorithm. The result is shown in
Table 3.

data size(Gbit) 100 200 300 400

verify(sec) 16.86 32.36 48.42 63.94

Table 3. The required time on single-thread implementation

The throughput of the tested implementation is 6.26 Gbit/second,
that is 3.13 bit/cycle. This is 4.5 times faster than SHA-1, and is 11.3
times faster than SHA-256 in OpenSSL [14].

Multi-Thread Implementation In dual-core environment, ȳ and x̄ are
computed in parallel. We implemented Algorithm 2 with POSIX standard

Fast Integrity for Large Data

29 SPEED Workshop Record

threads. The results are shown in Figure 2, which indicates about 12.5
Gbit/second throughput.

�

�

���

���

���

���

���

���

�	����

��� ��������
���� ��������
���� ��������
���� �
� �������

���� "!$#

���� "!&%

���� "!&'

Fig. 2. The required time and data size on multi-thread implementation

3.7 Consideration on Tag Size

Since L is set to 1024 Kbit, the size of the tag is about 0.1% of the entire
data, which is about 6 times larger than the tag from hash list by SHA-1.
We must allow increase of size by about 0.086% to apply the proposed
scheme.

4 Concluding Remarks

We proposed a scheme that provides data integrity that bases on a new de-
sign, which we call asymmetric integrity checking. In the proposed scheme,
we have two algorithms Tag Generation and Integrity Checking for data
integrity.

The experimental results show the proposed Integrity Checking runs
at speed over 12 Gbit/second on a standard PC. Our test environment
uses DDR-400 memory, which delivers 3.2 Gbytes/second bandwidth per
channel, so our implementation result is about half speed of the mem-
ory bandwidth. To obtain more speed, it is likely that optimization for

Yamamoto, Oda, Aoki

SPEED Workshop Record 30

memory architecture will matter. We leave further optimization as future
work.

The sizes of the tags are proportional to the sizes of the messages, as
well as hash lists are. It is open question whether there is a fast algorithm
from asymmetric integrity checking with a constant size tag.

References

1. Advanced Micro Devices, Inc. Software optimization guide for the AMD64 pro-
cessors. http://www.amd.com/us-en/assets/content type/white papers and

tech docs/25112.PDF.
2. Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular

exponentiation and digital signatures. In EUROCRYPT, pages 236–250, 1998.
3. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri

Gilbert and Helena Handschuh, editors, Fast software encryption: 12th interna-
tional workshop, FSE 2005, Paris, France, February 21–23, 2005, revised selected
papers, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer,
2005. URL: http://cr.yp.to/papers.html#poly1305.

4. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
UMAC: Fast and secure message authentication. Lecture Notes in Computer Sci-
ence, 1666:216–233, 1999.

5. Koji Chida and Go Yamamoto. Batch processing of interactive proofs. In Masayuki
Abe, editor, CT-RSA, volume 4377 of Lecture Notes in Computer Science, pages
196–207. Springer, 2007.

6. IEEE Standard for Information technology. Telecommunications and information
exchange between systems- Local and metropolitan area networks- Specific require-
ments Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications Amendment: Media Access Con-
trol (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s
Operation. IEEE Std 802.3ae-2002.

7. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In Burton S. Kaliski Jr., editor, CRYPTO,
volume 1294 of Lecture Notes in Computer Science, pages 16–30. Springer, 1997.

8. Pierrick Gaudry. Assembly support for GMP on AMD64. http://www.loria.fr/
∼gaudry/mpn AMD64/.

9. The GNU MP Bignum Library. gmp 4.2.1. http://www.swox.com/gmp/.
10. Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8(1):3–30, 1998.

11. Alfred John Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
applied cryptography. CRC Press, 1997.

12. Gary L. Miller. Riemann’s hypothesis and tests for primality. In STOC ’75:
Proceedings of seventh annual ACM symposium on Theory of computing, pages
234–239, New York, NY, USA, 1975. ACM Press.

13. David Pointcheval. The Composite Discrete Logarithm and Secure Authentication.
In Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography, volume 1751
of Lecture Notes in Computer Science, pages 113–128. Springer, 2000.

14. OpenSSL Project. OpenSSL 0.9.8d.

Fast Integrity for Large Data

31 SPEED Workshop Record

15. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2005.

16. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer-Verlag, Berlin,
Heidelberg, New York, 2005.

Appendix: Security Proof

In this section collision resistance of Algorithm 2 is shown under the
hardness of integer factoring as stated below. Let relation R be defined
by R = {(y, x) | y = gx (mod N)}.

Assumption 1 (FACTOR) Let Ik = {n | n = pq, |p| = |q| = k}.
Let A be a probabilistic polynomial time algorithm that takes input N
and outputs (p, q). We define the advantage of A to be Adv(A)(k) =
Pr [N = pq : N ∈U Ik, (p, q)← A(N)]. Then we assume that for all A,
Adv(A)(k) is negligible in k.

Theorem 1. Suppose (y1, x1, x
∗
1), . . . , (yd, xd, x∗d) be triples of bitstrings

generated by a probabilistic polynomial time algorithm and suppose that
(y1, x1), . . . , (yd, xd) ∈ R. If there exists some i such that xi 6= x∗i , then

Prob[V ((y1, x
∗
1), . . . , (yd, x∗d)) = 1]

is negligible under FACTOR and Extended Riemann Hypothesis.

Remark 6. One might like to state the soundness of Algorithm 2 in such
a way as “if there exists some i such that (yi, x∗i) /∈ R, then
Prob[V ((y1, x

∗
1), . . . , (yd, xd)) = 1] is negligible.” We remark that Theo-

rem 1 does not claim soundness in that sense.
Theorem 1 claims soundness of the scheme only when (y, x) is gen-

erated by a polynomial time algorithm. If (y, x) is generated by some
super-polynomial-time algorithm, or using factors of N in an essential
way, soundness of Algorithm 2 may not guaranteed.

However, from the practical point of view, it seems reasonable to
assume that tagged strings are generated by some polynomial time al-
gorithms, as long as factors of N are secret to everyone. Therfore one
should be careful if one generates a tagged string using factors of N for
efficiency.

Yamamoto, Oda, Aoki

SPEED Workshop Record 32

Proof. Let η = Prob[V ((y1, x
∗
1), (y2, x

∗
2), . . . , (yd, x∗d)) = 1]. We show that

η is negligible under FACTOR and ERH.
Let Ṽ is the algorithm exactly same as V except that Ṽ outputs e in

addition if V returns 1. Consider the algorithm described below.¶ ³
Algorithm 5
Input : (y1, x1), (y2, x2), . . . , (yd, xd) ∈ Z/NZ× {0, 1}L,
Output : factors of N .

1. Set e the empty set.
2. Run Ṽ ((y1, x

∗
1), (y2, x

∗
2), . . . , (yd, x∗d)). If the output is 0 then go

back to Step 2. Otherwise set e = e ∪ {e}.
3. If]e < d then goto Step 2. Let e = {e1, e2, . . . , ed}.
4. Compute d×d matrix E ∈ Mat(Z) defined by Ei,j = ej−1

i (mod s).
5. For each i compute hi =

∑
j Ei,j(x

∗
j − xj) in Z. If hi such that

hi 6= 0 is found, then proceed to Step 6.
6. Run the algorithm described in [12] Lemma 4, where g(N) is set

to hi.
µ ´

First of all we show that Step 5 always finds some i such that hi 6=
0. Since detFs(E) =

∏
i>j (ei − ej), we have detFs(E) 6= 0 in Fs, so

detZ(E) 6= 0 holds because detZ(E) (mod s) = detFs(E). Suppose hi = 0
for all i. Then we have 0 = detZ(E)(x∗i −xi) for all i. Since we have some
i such that x∗i 6= xi, this is a contradiction. Thus Step 5 outputs hi such
that ghi = 1 (mod N), where hi 6= 0.

hi satisfies both λ′(N) | hi and |hi| = O(|n|c) for some constant
c, so the algorithm described in [12] Lemma 4 outputs factors of N in
polynomial time under ERH, where λ′(N) is as defined in [12].

The expected running time for Algorithm 5 is bounded by kc
′

η for some
constant c′. If η is not a negligible function, then we obtain a probabilistic
polynomial time algorithm that output factors of N with probability that
is not negligible.

33 SPEED Workshop Record

Performance Analysis of Contemporary

Light-Weight Block Ciphers on 8-bit

Microcontrollers

Sören Rinne, Thomas Eisenbarth, and Christof Paar

Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany

soeren.rinne@rub.de,{eisenbarth,cpaar}@crypto.rub.de

Abstract. This work presents a performance analysis of software im-
plementations of ciphers that are specially designed for the domain of
ubiquitous computing. The analysis focuses on the special properties of
embedded devices that need to be taken into account like cost (given
by memory consumption) and energy requirements. The discussed ci-
phers include DESL, HIGHT, SEA, and TEA/XTEA. Assembler im-
plementations of the ciphers for an 8-bit AVR microcontroller platform
were analyzed and compared with a byte-oriented AES implementation.
While all ciphers fail to outperform AES on the discussed 8-bit platform,
TEA/XTEA and SEA at least consume significantly less memory than
the AES.

Keywords: microcontroller, software performance, embedded security, ubiqui-
tous computing, SEA, TEA, XTEA, DESL, AES.

1 Motivation

As ubiquitous computing evolves, we have recently seen new ciphers being pro-
posed specifically for the domain of ubiquitous computing. The target of these
newly proposed ciphers is not a higher levels of security, as many of these have
a shorter key length than the AES. These ciphers rather aim at providing suffi-
cient security in the environment of restricted resources as can be found in many
ubiquitous devices. Neither is their focus on a higher maximum performance, but
primarily on a smaller footprint, needing less resources such as energy and com-
puting power, and though giving ubiquitous devices a longer lifetime, smaller
outline etc. At the same time a security goal of medium to high security is still
achievable.

Two of these newly proposed ciphers, namely DESL [17] and HIGHT [11],
were designed for a small hardware footprint rather than outstanding software
performance. Yet many ubiquitous devices such as MICA Motes [3] and most
low cost embedded devices ship with a contemporary low-power 8-bit microcon-
troller. Hence a software implementation of the cipher might be cheaper after

Rinne, Eisenbarth, Paar

SPEED Workshop Record 34

all. Consequently we see a high necessity for a performance analysis of software
implementations of these newly proposed light-weight ciphers.

This work features a performance analysis of light-weight ciphers targeted
at highly constrained devices. The analysis focuses on the special properties of
embedded devices that need to be taken into account like cost (given by memory
consumption) and energy needs.

2 Overview of Ciphers

This Section provides a short description of each cipher. An overview of the
ciphers’ parameters is given in Table 1. Since the parameters of SEA can be
chosen, the values that fit our implementation are given in this Table.

Table 1. Characteristic sizes of the focused ciphers

Cipher AES DES DESL DESX HIGHT SEA TEA XTEA

Block length [bit] 128 64 64 64 64 96 64 64
Key length [bit] 128 56 56 56 128 96 128 128
Rounds 10 16 16 16 32 94 32 32

The range of the ciphers is quite huge, starting with DESL comprising a 56-
bit key providing only medium security. Other ciphers like HIGHT use a 128-bit
key to provide high security but use a smaller block size than AES [4] to meet
the needs of a restricted environment. Ciphers like SEA [19] are kept flexible
in key size so each user may configure it for the security goal and performance
needed.

2.1 AES

The Advanced Encryption Standard (AES) [4], also known as Rijndael, is the
successor of the Data Encryption Standard (DES). It was announced by Na-
tional Institute of Standards and Technology (NIST) as a U.S. FIPS in 2001.
The cipher developed by J. Daemen and V. Rijmen was the winner of a 5-year
standardization process. It has been deployed widely in many crypto applica-
tions, being the de-facto standard symmetric block cipher.

AES is a block cipher using an 128 bit block with an 128, 192 or 256 bit key
as input. It operates on a 4×4 array of bytes. Each round of AES consists of
four stages, namely AddRoundKey, SubBytes, ShiftRows, and MixColumns. The
AES is known to be quite efficient, especially on 8-bit architectures, owing to its
byte-oriented design. Our assembler implementation of the AES is inspired by
the AES implementation of B. Gladman [9].

Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers

35 SPEED Workshop Record

2.2 DES

The Data Encryption Standard (DES) [8] is a cipher selected as an official Federal
Information Processing Standard (FIPS) for the United States in 1976. As a
block cipher DES operates on blocks with a size of 64 bits. The key also consists
of 64 bits; only 56 of these are actually used by the algorithm, the other ones
are parity check bits.

The overall structure consists of a so-called Feistel network with 16 identical
base rounds with 8 substitution boxes (S-Boxes), an initial permutation, a final
permutation, and a separate key schedule. The whole cipher consists only of bit
operations, namely shifts, bit-permutations and exclusive-or operations.

DES is not considered as secure anymore. Thanks to Moore’s Law, DES
can be broken by exhaustive key search in reasonable time. There are sev-
eral confirmed DES crackers such as the EFF DES Cracker [7] or the COPA-
COBANA [14]. Furthermore attacks like differential cryptanalysis, linear crypt-
analysis, and Davies’ attack [2] have been published.

Yet for some applications where security is not as critical, DES and variants
of it are still in use.

DESX The block cipher DESX (or DES-X) [13] is an extension to DES to im-
prove some weaknesses of its predecessor. It is defined by DESXK,K1,K2

(M) =
K2 ⊕ DESK(M ⊕ K1). It was originally suggested by Ron Rivest in 1984 to
protect the cipher DES against exhaustive key-search attacks. DESX is said to
be substantially more resistant than DES.

DESL Like the above mentioned DESX DESL (DES Lightweight Extension) [17]
is an extension to DES to comply with the requirements of small computational
devices like RFID devices or Smart Cards. It was suggested by A. Poschmann
et al. in 2006 as a new alternative for ultra-low-cost encryption. To decrease
chip size requirements it uses only one S-Box repeated eight times. It therefore
requires 38% less transistors than the smallest DES implementation published.

2.3 HIGHT

HIGHT is another block cipher proposed by Deukjo Hong et al. [11] which is
working on a 64-bit block length and a 128-bit key length. It was proposed to be
used for ubiquitous computing devices such as a sensor in USN or a RFID tag
at CHES ’06 due to its low-resource hardware implementation. Like many of the
discussed ciphers, HIGHT makes use of simple operations such as exclusive-or,
addition mod 28, and bitwise rotation.

The cipher is a variant of generalized Feistel network. It consists of an initial
transformation, 32 rounds using 4 subkeys at a time, a final transformation and a
key schedule producing 128 subkeys. HIGHTs key schedule algorithm is designed
to keep the original value of the master key after generating all whitening keys
and all subkeys. Therefore the subkeys are generated on the fly in encryption
and decryption.

Rinne, Eisenbarth, Paar

SPEED Workshop Record 36

2.4 SEA

The Scalable Encryption Algorithm (SEAn,b) [19] is designed to be parametric
in plaintext/key and processor size. In dependence on given hardware param-
eters like processor word size, the SEA parameters will be chosen. The main
advantages of SEA are efficient combination of encryption/decryption and ”on-
the-fly” key derivation. It was designed to be an algorithm for small embedded
applications like RFID or Smart Cards.

SEAn,b parameters in our case are plaintext/key size n = 96, processor word
size b = 8, and number of words per Feistel branch nb = n

2b
= 6. Therefore we

have a suggested number of cipher rounds of nr = 3n
4

+ 2 · (nb + ⌊b/2⌋) = 92.
As we used the standard implementation provided by the author we have 94
rounds.

The cipher is targeted for processors with a limited instruction set and there-
fore uses only bit operations such as exclusive-or, word rotation, bit rotation,
addition mod 2b, and a substitution box.

2.5 TEA

The Tiny Encryption Algorithm (TEA) was first presented at the Fast Software
Encryption workshop in 1994 by David Wheeler and Roger Needham [21]. The
focus of the design was simplicity of description as well as implementation.

TEA is a block cipher operating on 64-bit blocks with a 128-bit key. The
Feistel structure is dominated by suggested 64 identical rounds consisting of bit-
operations like shifts, addition/substraction mod 28 and exclusice-or operations.

A number of revisions of TEA has been designed in order to obliterate some
weaknesses of the original version. The revisions of the cipher, Block TEA (often
referred to as XTEA) and XXTEA (published in 1998), were needed to secure
the cipher.

TEA suffers from equivalent keys - each key is equivalent to three others,
which means that the effective key size is only 126 bits. Due to this weakness
a method for hacking the Microsoft’s Xbox game console, where TEA was used
as a hash function, has been developed [18]. The cipher is also vulnerable to a
related-key attack which requires 223 chosen plaintexts under a related-key pair,
with 232 time complexity [12].

2.6 XTEA

As mentioned before the effective key length of TEA is 126 bits not 128. So in
1996 Needham and Wheeler made two adjustments [15]. The first was to adjust
the key schedule and the second was to introduce the key material more slowly.
With these adjustments the weaknesses should be repaired and the simplicity is
almost retained.

Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers

37 SPEED Workshop Record

3 Framework Set-Up and Tools

In this Section we will show how the ciphers were implemented for the 8-bit
AVR architecture. A short introduction to the software development tools and
how to measure clock cycles and throughput are given as well.

3.1 Platform Specification

AVR microprocessors are a family of 8-bit RISC microcontrollers. Their memory
is organized as a Harvard architecture with a 16-bit word program memory and
an 8-bit word data memory. Due to its easy usage, its low power consumption
and its comparatively low price, the AVR microcontrollers have reached a high
popularity in embedded system design. Most of the AVR instructions working on
the 32 registers are handled in one clock cycle. Reading from the program mem-
ory, where our look-up tables are stored, costs 3 clock cycles, whereas reading
an writing from an to the Flash memory can be performed in 2 cycles.

Since we aimed to implement the ciphers for ubiquitous devices, we took
MICA Motes as an adequate target platform. MICA motes (e.g. MICAz, MICA2,
MICA2DOT [3]) are designed for development of wireless sensor networks and
use an ATmega128 or ATmega128L microcontroller as CPU. The ATmega128(L)
is equipped with 128 kbyte of Flash memory and 4 kbytes of SRAM. Yet our
implementations of the ciphers, as presented in Section 4, are also executable on
smaller AVR devices comprising less SRAM and Flash memory.

3.2 Porting to the AVR Microcontroller

The authors of a cipher usually provide a reference implementation. We had
many different programming languages, e.g. C or Java. In order to reduce the
size of the code and to reach a maximum performance on our hardware, all of
the ciphers were reimplemented in AVR-Assembly language. We implemented
them ourselves except for the AES, which is an implementation of the Chair for
Communication Security at the Ruhr-University of Bochum, and SEA, which
is an existing implementation in assembly language available at [5]. Other im-
plementations of AES on an AVR platform can be found at [16][10]. For other
TEA and XTEA implementations on AVR see [6]. To ensure a fair benchmark-
ing process, we used these reference implementations as a starting point for the
assembly implementations. The implementations were neither solely optimized
for performance only nor for extremely small code size. Instead we tried to yield
a good trade-off between both. For the implementation of SEA we made use of
an existing version of the author available at [5]. We only made slight changes
with respect to our compiler.

In our performance analysis in Section 4 we will use the AES as a reference
implementation for the other ciphers.

Rinne, Eisenbarth, Paar

SPEED Workshop Record 38

3.3 Development Tools

For the software development we used the tool Programmer’s Notepad 2 [20].
This is a open source text editor with special features for coders hosted on the
Windows platform. Programmer’s Notepad 2 contains an automatic makefile ex-
ecution. It compiles the C program, assembles the assembly language program,
links it to an ELF file, and then converts it to a COF file. After this procedure
has run without errors we used the output file from Programmer’s Notepad 2
to execute and debug the code in AVR Studio 4 [1] and simulate it on an AT-
mega128 device. AVR Studio 4 is an Integrated Development Environment (IDE)
for writing and debugging AVR applications on the Windows platform. The tool
provides a full-scale debugger which was used to obtain cycle counts of the execu-
tion of the ciphers. Cycle counts were used to benchmark the throughput. Code
size was measured using the Programmer’s Notepad 2 and GCC compiler.

4 Results

In this Section we present the results of our implementations. The results are
compared to an implementation of the AES that was optimized for the 8-bit
AVR microcontroller environment as well. The comparison focuses on code size,
because memory is an important for size and price of an embedded or ubiquitous
device, and on execution time, i.e. throughput, as execution time corresponds to
the power consumption of a device.

4.1 Memory Usage

As embedded systems development is strongly price-driven, there are high re-
strictions in the size of available Flash memory and SRAM. This applies even
more to applications like ubiquitous computing or even RFIDs, where power
consumption is an important issue, too. The Flash (program) memory of the de-
vice is used to store program code and look-up tables, if applicable. The smaller
SRAM is used for dynamic access during program execution.

Table 2 shows the memory allocation in flash memory of every cipher. Fig-
ure 1 visualizes the results ordered by size.

Table 2. Memory allocation of program code in Flash in bytes

Cipher AES DES DESL DESX HIGHT SEA TEA XTEA

Code size 3410 4314 3098 4406 5672 2132 1140 1160

As shown in Figure 1, TEA is the smallest cipher followed by XTEA and SEA.
DESL is only slightly smaller than AES. The two implementations of HIGHT

Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers

39 SPEED Workshop Record

are using the highest amount of program memory. Yet all of the ciphers could
be run on smaller engines than the used ATmega128.

0

1000

2000

3000

4000

5000

6000

TEA XTEA SEA DESL AES DES DESX HIGHT

Fig. 1. Code size of ciphers in bytes

4.2 Performance

In the following performance benchmark input and output arrays are of the size
of the block size of each cipher. That is to say that we encrypt or decrypt one
block with each cipher.

Table 3 shows the number of cycles needed for encryption and decryption for
each cipher.

Table 3. Performance of encryption and decryption in measured CPU cycles

Cipher AES DES DESL DESX HIGHT SEA TEA XTEA

Encryption 3766 8633 8365 8699 2964 9654 6271 6718
Decryption 4558 8154 7885 8220 2964 9654 6299 6718

Recall that the implementation of HIGHT is the one with the highest use of
flash memory. Though in this benchmark it achieves the lowest number of cycles
for encryption and decryption of one block of data.

Table 4 and table 5 focus on the throughput of encryption and decryption
of each cipher. Column 2 in Table 4 and Table 5 shows the block size in bytes,
column 3 replicates the count of cycles from table 3. Column 4 is the quotient of
column 3 and 2 and column 5 shows the throughput of encryption/decryption
in cycles per byte. The throughput in column 5 is computed assuming the CPU
being clocked at 4 MHz.

Figures 2 and 3 reprints the values of Tables 3, 4 and 5 ordered by cycles
and respectively by throughput.

Rinne, Eisenbarth, Paar

SPEED Workshop Record 40

Table 4. Throughput of encryption

Cipher Block Size Encryption Encryption Throughput
[bit] [cycles] [cycles/bit] [bit/sec]

AES 128 3766 29.42 135953
DES 64 8633 134.89 29654
DESL 64 8365 130.70 30604
DESX 64 8699 135.92 29429
HIGHT 64 3188 49.81 80301
IDEA 64 2700 42.19 94815
SEA96,8 96 9654 100.56 39776
TEA 64 6271 97.98 40823
XTEA 64 6718 104.97 38107

Table 5. Throughput of decryption

Cipher Block Size Decryption Decryption Throughput
[bit] [cycles] [cycles/bit] [bit/sec]

AES 128 4558 35.61 112330
DES 64 8154 127.41 31396
DESL 64 7886 123.22 32463
DESX 64 8220 128.44 31144
HIGHT 64 3188 49.81 80301
IDEA 64 15393 240.52 16631
SEA96,8 96 9654 100.56 39776
TEA 64 6299 98.42 40641
XTEA 64 6718 104.97 38107

0

2000

4000

6000

8000

10000

12000

HIGHT HIGHT-2 AES TEA XTEA DESL DES DESX SEA

Fig. 2. Cycle count of ciphers

Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers

41 SPEED Workshop Record

0

20000

40000

60000

80000

100000

120000

140000

160000

AES HIGHT TEA SEA XTEA DESL DES DESX

Fig. 3. Throughput of encryption and decryption

Figure 3 shows that the reference AES implementation has a higher through-
put than all of the newly proposed ciphers. This is in some cases due to the design
objectives of the ciphers. The DES family for example, including DESL, relies
on bit permutations which are almost for free in hardware but very expensive in
software. This is even true on an 8-bit microcontroller.

4.3 Discussion

Since we did not want to focus solely on code size or on performance, we intro-
duced an additional metric. The ratio of throughput and code size was computed
to visualize the combined metric. This metric is given in Figure 4.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

AES TEA XTEA SEA HIGHT DESL DES DESX

Fig. 4. Throughput-code size ratio of encryption and decryption

Still AES is doing quite well compared to the other ciphers. In this metric
the TEA family is at least able to outperform AES in decryption. It can be seen
that the ciphers designed for 8-bit software platforms, namely TEA/XTEA and
SEA (and AES, of course) outperform the hardware-oriented ciphers HIGHT
and the DES family, as expected.

Rinne, Eisenbarth, Paar

SPEED Workshop Record 42

5 Conclusion

We have presented a performance analysis of newly proposed light-weight block
ciphers. Target architecture was the 8-bit AVR microcontroller family that can be
found in many embedded devices and many applications of ubiquitous computing
like wireless sensor networks.

We have shown that many (but not all) of the newly proposed ciphers out-
perform AES in code size. Especially TEA and XTEA have an extremely small
footprint in memory consumption. Yet all of the implemented ciphers were out-
performed by the AES in terms of throughput. This might be a disadvantage in
wireless devices where computation time means power consumption. The HIGHT
was even outperformed by the AES in both, code size and throughput. Though
DESL is slightly smaller than AES in code size, it has a worse performance and
does not provide comparable security.

As an overall summary one should consider well before using one of these
light-weight block ciphers on an 8-bit microcontroller. Only if memory is highly
critical, some of the Ciphers might be an alternative to be considered. Usually
they just provide a worse performance at comparable or worse security target.

References

[1] Atmel Corporation. Avr studio 4.12, build 498. Available from:
http://www.atmel.com/dyn/products/tools card.asp?tool id=2725.

[2] E. Biham and A. Biryukov. An Improvement of Davies’ Attack on DES. In
Proceedings of EUROCRYPT ’94, pages 461–467. EUROCRYPT ’94, 1994.

[3] Crossbow Technology Incl. MPR-MIB User Manual. Revision B, June
2006. Available from: http://www.xbow.com/Support/Support pdf files/MPR-
MIB Series Users Manual.pdf.

[4] J. Daemen and V. Rijmen. The design of Rijndael, the Advanced Encryption

Standard. Springer-Verlag, 2003.
[5] Efton s.r.o. Implementing SEA on x51 and AVR. Available from:

http://www.efton.sk/crypt/sea.htm.
[6] Efton s.r.o. TEA (Tiny Encryption Algoritm) a jeho implementacia v 8051 a

AVR[, year = 2007, keywords = TEA, owner = Sren, timestamp = 2007.05.15,
url = http://www.efton.sk/crypt/tea s.htm.

[7] Electronic Frontier Foundation. Cracking DES. O’Reilly & Associates, 1998.
[8] Federal Information Processing Standards Publication 46-3. Data encryption stan-

dard (des). Technical report, FIPS, 1999.
[9] Brian Gladman. Byte Oriented AES Implementation. Available from:

http://fp.gladman.plus.com/AES/.
[10] H.C. Roepke. AVR Implementation of AES. on website. Available from:

http://www.christianroepke.de/studium praktikumB.html.
[11] D. Hong et al. HIGHT: A New Block Cipher Suitable for Low-Resource Device.

In Proceedings of CHES 2006, 2006.
[12] J. Kelsey et al. Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X

New DES, RC2, and TEA. In First International Conference on Information and

Communication Security, pages 233–246, 1997.

Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers

43 SPEED Workshop Record

[13] J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search
(an Analysis of DESX). Journal of Cryptology, Volume 14:17–35, 2001.

[14] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers
with COPACOBANA - A Cost-Optimized Parallel Code Breaker. In Conference

on Special-purpose Hardware for Attacking Cryptographic Systems, 2006.
[15] R.M. Needham and D.J. Wheeler. Tea extensions. Computer Laboratory, Cam-

bridge, 1997.
[16] B. Poettering. AVRAES: The AES block cipher on AVR controllers. published

on website, 2003,2006. Available from: http://point-at-infinity.org/avraes/.
[17] A. Poschmann, G. Leander, K. Schramm, and C. Paar. New Light-Weight DES

Variants Suited for RFID Applications. In Proceedings of FSE 2007. FSE 2007,
2007.

[18] Matthew D. Russell. Tinyness: An Overview of TEA and Related Ciphers. Draft
v0.3, February 2004.

[19] F.X. Standaert, G. Piret, N. Gershenfeld, and J.J. Quisquater. SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. Workshop on RFIP and
Lightweight Crypto, Graz, Austria, 2005.

[20] Simon Steele. Programmer’s Notepad 2, Version v2.0.6.1-ella. Available from:
http://www.pnotepad.org/.

[21] D. Wheeler and R. Needham. TEA, a Tiny Encryption Algorithm. In Lecture

Notes in Computer Science, 1994.

45 SPEED Workshop Record

The eSTREAM Project

Matt Robshaw

France Telecom R&D, France

In this presentation we survey the origins, ongoing results, and the goals of the ECRYPT
eSTREAM project.

47 SPEED Workshop Record

How fast is cryptography?

Daniel J. Bernstein

University of Illinois at Chicago, USA

Users of public-key cryptography have a choice of public-key cryptosystems, including RSA,
DSA, ECDSA, and many more. Exactly how fast are these systems? How do the speeds vary among
Pentium, PowerPC, etc.? How much network bandwidth do the systems consume?

The eBATS (ECRYPT Benchmarking of Asymmetric Systems) project, joint work with Tanja
Lange, aims to answer these questions. I’ll present the answers obtained so far, describe the eBATS
benchmarking toolkit, and point out future directions in public-key benchmarking. I’ll also discuss
extensions of the toolkit beyond public-key cryptography, for example measuring the speed of
secret-key authenticated encryption and measuring the speed of new hash functions.

49 SPEED Workshop Record

The mpFq library and implementing curve-based key

exchanges

P. Gaudry and E. Thomé

Abstract

We present a library for finite field arithmetic. The originality of this library

lies in the fact that specialized code is automatically produced for the selected finite

fields. The opportunity of compile-time optimizations yields substantial performance

improvements compared to libraries which initialize the finite field at runtime. This

library is used to present benchmarks on some curve-based public key cryptosystems.

1 Introduction

Cryptosystems based on the discrete logarithm problem in (Jacobians of) curves are com-
petitive in many contexts. The main advantage compared to systems based on the fac-
torization problem or on the discrete logarithm problem in finite fields is that the best
known algorithm for attacking has exponential time instead of subexponential. In practice
it means that for obtaining a given security, the sizes of the parameters are smaller.

The speed of an implementation of a curve-based cryptosystem is mostly given by the
speed of the underlying finite field arithmetic. Once the particularities of the finite field
implementation are known, one can search in the literature the most suitable choice for
the coordinate systems and for the addition chain. This also depends on the amount of
memory available, and if resistance to side-channel attacks is required.

In this paper we describe a new (still in development) finite field library called mpFq

that we have used to write curve-based cryptosystems. The main objective of this library
is speed. Portability, readability, ease of maintenance, ease of use are also wanted, but
we accept no feature in the design of the library that would prevent us to apply certain
optimizations.

Setting as a goal the implementation of fast curve-based cryptosystems forces a partic-
ularity of the underlying finite field operations: The finite field is known at compile-time.
This enables a considerable amount of optimizations. The design of the mpFq library is
suited to this problem: provide optimized code that takes advantage of all the information
that is known at compile-time.

In Section 2 we give an overview of the existing software, and list the requirements for
the mpFq library. In Section 3 we explain with more detail the design of mpFq and why
certain choices were made. In Section 4 we give some timings. Finally in Section 5 we

Gaudry, Thomé

SPEED Workshop Record 50

describe a few BATs that have been implemented with the help of mpFq. We conclude with
some plans for the future.

2 Why yet another finite field library?

2.1 Existing finite field libraries

Obviously, there are several already existing software libraries that can be used to perform
computations in finite fields. We briefly review here some of them.

The NTL library [17] by V. Shoup provides arithmetic modulo finite fields, and also
goes well beyond that. NTL is written in a small subset of C++, and based on selectable
multiprecision arithmetic packages (including the Gnu MP library [12]). NTL has good
performance in general and very good performance for small prime fields, using IEEE
floating point arithmetic for the reduction step.

The ZEN library [7] by F. Chabaud and R. Lercier is a C library for finite field arith-
metic. ZEN handles arbitrary finite field (extension of extensions for instance). Although
ZEN is written in ANSI C, it should really be regarded as an object-oriented implemen-
tation in the same spirit as X11: Almost every user-land identifier from the high-level
interface is a macro that calls a function obtained by dereferencing a pointer in the last
passed argument (the field). The high-level interface is well-documented. However, for best
performance, if the finite field one is working in is known in advance when writing the code,
it is possible to call directly the lower-level functions, thereby saving an indirect function
call. ZEN has several lower-level layers, including specialized arithmetic for one-word-long
modulus. This only goes to a limited extent, however, since the lower-level interface of
ZEN is not documented.

The Miracl library by M. Scott [16] provides an optimized feature set for cryptograph-
ical operations. It relies on a finite field layer whose performance appears to be good.
Miracl goes well beyond finite field operations, since algorithms such as elliptic curve point
counting or algorithms for computing pairings are included.

We also mention the Givaro library by J.-G. Dumas et al. [9]. It is written in C++
templates, and claims to perform well for one-word-long modulus.

Besides the libraries cited above, which strive for providing arithmetic for all finite fields,
there are also software libraries which focus on particular finite fields. The NuMongo library
by R. Avanzi [3] handles specially selected prime fields, with the modulus having a special
form. As far as we know, it contains only 32-bit code and is not publicly available.

2.2 The opportunity of compile-time optimizations

As mentioned in the introduction, the primary goal that started the development of mpFq

was the implementation of fast curve-based cryptosystems. For such an application, the
finite field is known in advance. Since speed is desired, one wants to take advantage of
this knowledge when building the library. While the performance improvement might seem

The mpFq library and implementing curve-based key exchanges

51 SPEED Workshop Record

limited if one has in mind fields modulo 1024-bit primes, this kind of optimization makes
a vast difference for small fields.

The contexts with an opportunity for compile-time optimization also includes long-
running computations on one or several selected finite fields. In particular, cryptanalysis
attempts such as the breaking of the Certicom ECC Challenges [6, 13] fall in this category.
In the precise example of [13], specially crafted code was written in order to have fast finite
field operations. Other settings in which specific code was written include [10, 4].

Several kinds of optimizations are made possible by the knowledge of the finite field
at compile time. These include the following list of methods. All these optimizations can
easily be performed at compile time, but it is not so easy to do the same at runtime, and
in many cases it is impossible.

• Code inlining. At runtime, this is not clear which code to inline, because it might
depend on the field.

• Branch elimination. If the values determining the control flow are constant at com-
pile time, then the branches can be avoided. This reduces the cost of loops and
conditionals.

• Loop unrolling. Nowadays compilers do it automatically, but the unrolling is more
efficient if the length of the loop is a constant.

• Choice of the best algorithm for a given task. This can be done also at runtime (ZEN
does so), but is more comfortable at compile time (and comes with zero runtime
overhead).

Of the finite field libraries mentioned above, only those focusing on a handful of spe-
cialized finite fields (like NuMongo) have the opportunity to take full advantage of the
optimizations above. By design, none of the other libraries which provide arithmetic for
general finite fields are in position to exploit these optimizations.

It is always conceivable to overload some particular library with a new class for the
particular field we are interested in, but no simple mechanism is provided to help the
developer in this task.

2.3 Wanted features of mpFq

From our experience emerges a need for a software library for finite fields which differs
from the existing material. Briefly put, the two main differences are:

• mpFq has to handle very efficiently finite fields that are known at compile time.

• mpFq’s specialized code for the selected finite fields should be written automatically,
rather than crafted by hand.

Gaudry, Thomé

SPEED Workshop Record 52

mpFq sets some goals. The utmost concern is speed, obviously. mpFq is not contented
with merely working code, since this is not good enough for our claimed purposes. While the
automatic process of generating specialized code should take sensible choices, we require
that these choices may be overridden easily, or that radically different implementation
choices may be taken by the user in a way that is reasonably compatible with the rest
of the library. Indeed, there is quite often no single answer to the question “which is
the fastest implementation of Fq ?” for a given value of q. Depending on the intended
application, the different finite field operations are not necessarily used equally frequently;
in situations where optimizing an operation penalizes another one at the same time, the
relevant optimization choices therefore depend on the application.

Since the underlying finite field might be in several cases a parameter of an algorithm,
mpFq has to provide a consistent application programming interface (API) in order to allow
code reuse.

In the last few years, the processors that are available in average workstations have
become multi-core. This means that for most applications, having a multi-threaded imple-
mentation is a good way to gain efficiency. For this reason, we require that the mpFq code
be reentrant, so that they are usable within a multi-threaded application.

The dependencies of mpFq are free software, mpFq itself being free software licensed
under the terms of the Gnu Lesser General Public License (LGPL)1.

3 The design of mpFq

3.1 Choice of the programming languages

The programming languages used by mpFq are perl, C, and assembly. The automatic
generation of specialized code for a selectable finite field is done by perl. From the de-
scription of the finite field, the perl code creates a C source file and header, which provides
the required set of functionalities.

The choice of perl calls for some comments. The C++ language offers several methods
which could provide the needed genericity. An object-oriented approach with a virtual
base class would fail on the speed requirement. The unavoidable indirect function call
for virtual methods would be a major performance hit, in particular for the sizes we are
focusing on (for small sizes, an inlined implementation of the operation would be most
suitable). Furthermore, the variety of fields on which different specialized code is needed
would require different classes to be generated by other means anyway.

The template mechanism from C++ provides essentially what is needed. Indeed, this
allows a static overriding of functions, leaving the possibility of inlining. We believe however
that the kind of syntactic manipulation that is offered by C++ templates can also be
obtained by other means. At the expense of losing the type checking of code specializations,
we have opted for doing the code generation using perl, which is best suited for text
manipulation.

1By the time of the Speed conference, we plan to distribute a first beta release of mpFq.

The mpFq library and implementing curve-based key exchanges

53 SPEED Workshop Record

3.1.1 The dilemma of assembly

In many cases, writing critical routines in assembly is required for gaining speed. This
is due to strict limitations of the C language concerning arithmetic. For instance, after
adding two machine-words, if there is an overflow (a carry), the C language ignores it,
whereas on many platforms this information is still available at the assembly level. Also
the popular x86 architecture gives access to the full double-word result of a multiplication,
whereas only the low significant word is reachable from C. A third example is assembly
instructions specific to some platform, like for instance the SSE-2 instructions set [1]. Such
instructions and the corresponding data types are not accessible with standard C.

There are several approaches to writing assembly. It is possible to write a standalone
function, that respects the application binary interface (ABI) of the C compiler/system
we use. This is very convenient but it means that a possibly costly function call has to
be payed each and every time one needs it. The other approach is not standard, but
available in many compilers, including the Gnu C compiler (GCC). It consists in inline
assembly language insertion using the asm() keyword. The programmer must tell the
compiler which registers are used for input, ouput and temporary usage during the assembly
stage. This has the advantage of avoiding the function call. Another option is language
extensions which are specific to some compilers. Several compilers (including GCC as well
as compilers from Intel, Microsoft) provide the emmintrin.h include file, with for instance
the _mm_slli_epi64 macro which corresponds to the psrlq assembly instruction (which
right-shifts a 128-bit SSE-2 register).

Deciding between standalone functions and inline assembly language is a matter of
length of the assembly code, but not only. One could think that writing a C function as
a list of small blocks of asm() interleaved with pure C code is a good idea, but sometimes
it appears that it is better to write the whole function in assembly to help the compiler
in register allocation and handling the data flow. Unfortunately, right now, we have not
yet been able to find a strict rule for when an approach should be chosen or another, and
trying several implementations is the only resort.

3.2 The API and function naming

The API of mpFq is as follows: Let TAG be a mnemonic that corresponds to a finite field or
a family of finite fields. In fact, TAG will also be different if the internal representation of
elements of the same finite field are different. For instance, 2_27 can be the mnemonic for
the finite field with 227 elements in classical (polynomial basis) representation; or p_mgy_3
can be the mnemonic for the family of prime finite fields where the modulus fits in 3
machine-words and the elements are in Montgomery representation. Then the C types and
the C functions corresponding to this mnemonic start with mpfq_TAG. For instance, an
element of F227 will have a type mpfq_2_27_elt, and the multiplication function between
two such elements will be called mpfq_2_27_mul.

Gaudry, Thomé

SPEED Workshop Record 54

3.3 Macros and inline functions

All these types and functions are stored in two files: mpfq_TAG.c and mpfq_TAG.h. The
speed requirement means that all the functions that take less than (say) a few hundred
cycles must be inlined. Instead of using the C preprocessor for defining macros, mpFq is
developed using static inline C functions that are included in the .h file. The inlining
effect is the same, but compared to a macro, this has the advantage to allow the compiler
to perform a type checking and to facilitate the debugging (when switching off the inlining
optimisation options of the compiler). For instance, in F289 the add function will be as
follows:

static inline mpfq_2_89_add(mpfq_2_89_field_ptr K,

mpfq_2_89_dst_elt r, mpfq_2_89_src_elt s1, mpfq_2_89_src_elt s2)

{

r[0] = s1[0]^s2[0];

r[1] = s1[1]^s2[1];

}

This example calls for additional remarks:

• The first argument of most mpFq functions is a pointer to the finite field in which the
operation takes place. For most implementations, it is not used, but in some case
it is convenient. For instance if the implementation of the multiplication covers all
prime fields of a given size, then the modulus should be accessible to the function,
and is then obtained from the first argument.

• The type for an element is split into two subtypes marked src and dst. This fol-
lows GMP practice to distinguish between const and variable arguments. Adding
the keyword const to a variable sometimes helps the compiler to choose the right
optimization.

3.4 Code generation

It should be now evident that there will be a lot of redundancy between different .c and .h

files of mpFq. To avoid the problems with maintaining a code with a lot of code duplication,
we have chosen to have most of the C and assembly sources of mpFq generated automatically
by perl scripts. The power of perl with manipulating files, strings, regular expressions
makes it a very nice alternative to any macro-based preprocessing (like CPP or M4) or to
a template-based C++ approach.

We give an example of the power of this approach: when writing the code for the trace
of an element in a specific finite field of characteristic 2 in polynomial basis representation,
one wants to precompute the powers of the defining element x that have trace 1, in order
to create the mask. If you do not allow a powerful enough language for the preprocessing,
this precomputation will have to be stored and shipped with the library sources, whereas
a perl script has no problem to do this precomputation on the fly, just before creating

The mpFq library and implementing curve-based key exchanges

55 SPEED Workshop Record

the appropriate C function. It is even possible, if some precomputations would be tedious
in perl, to hand off some of the work to an external program in C (mpFq uses such a
convenience).

We have implemented a main perl module that helps in the organization of the code
generation. Several perl scripts in mpFq generate code, but they are not handling the
global organization themselves. Instead, the API for mpFq for all finite fields is concen-
trated in a single file api.pl that lists the functions that should be present, together
with their prototypes. The generation of the .c and .h files for a given mnemonic TAG is
done by the main module, which iterates over the functions in the API. It delegates the
generation of these functions to the specialized scripts, fetching perl subroutines named
code_for_<function_to_generate>. At the end the main module reconstructs both files
from all the codes, and creates the appropriate prototypes. This approach allows to enforce
conformance to the API.

4 Benchmarks

4.1 Development status of mpFq

The API and the main perl module of mpFq are more or less fixed. mpFq will probably
gain more functionalities gradually, and most importantly we need to improve speed at
every possible level. Until now we have focused on 64-bit architectures based on the
AMD64 instruction set. This covers essentially all the processors currently sold for personal
computers and workstations (Athlon64, Opteron, Core2, recent Xeon). We believe that
in a near future, 32-bit architectures will be found only in embedded systems. Our code
works on 32-bit architectures but the assembly support is inexistent or very poorly written.
Furthermore, on many 32-bit architectures, the floating-point unit is more powerful than
the integer unit, so that this would probably give the best performance, and we didn’t
implement this.

Apart from the target architecture, we have been concentrating in optimizing the finite
fields that are needed for our BATs. In particular, for a prime field modulus which is
not sparse, the Montgomery representation should probably be used, but this is not yet
properly set in mpFq, so that the benchmarks are somewhat deceiving2.

While mpFq has good performance for some operations, some other are in dire need for
improvement (finite field inversion notably).

4.2 Benchmarking methodology

We start with a word of warning: measuring the cost of a small operation is essentially
impossible on modern computers. Assume that an operation takes 20 cycles; assume also
that this operation is implemented in an inlined function (in C or assembly, this does
not really matter for this discussion). The cost of setting up the data and preparing the

2Montgomery representation arithmetic will probably be in place by the time of the Speed conference.

Gaudry, Thomé

SPEED Workshop Record 56

registers at the beginning might take a few cycles (say 4 cycles), and this task is done by
the compiler. However, those 4 cycles might become much less if the context of the function
call is favorable (that’s one of the advantages of inlining). Therefore, some discrepancy is
inherently attached to the measurement.

There are basically two ways of timing an operation: either ask the operating system
(with the getrusage() function) or use the tick counter of the processor (the rdtsc as-
sembly instruction on x86). The first approach is fine only for very long tasks, since the
precision is of the order of the millisecond. The second approach is suitable only for rather
short tasks, since any interruption or context switch of the system will perturbate the
measure. Also, there is some kind of “Observer effect” for very small operations: a call to
rdtsc is not serializing, which means that there is no guarantee that the instructions are
executed in the order they are written. This is of course not good for our purpose. There is
a variant of rdtsc that is serializing (or one can add some serializing operation before and
calibrate it), but then we really perturbate the operation we are measuring, since there is
a high risk of flushing the pipeline.

In our context, we have mostly used the getrusage approach for our measures. Since
the operations we want to measure are small, we repeat them a large number of times and
divide the running time accordingly. On a few tests we have made, the results are not
too far from the other approach based on rdtsc, and consistent with the running times of
the BATs we have built upon the measured operations. But an operation like an addition
in F2113 can definitely not be measured in an optimized implementation, since its cost is
essentially just the cost of fetching the appropriate data: if it is already in registers, then
the operation will be less than 2 cycles or even zero (if the xor’s can be inserted between
higher latency instructions), but if this operation must be done at a time where all the
registers are already occupied, moving data between the stack and the registers can cost a
non-negligible time.

4.3 Cost of basic operations for prime fields

For prime fields, we have written mpFq implementations for each machine word size of the
modulus (up to nine words) and for the two finite fields that we use in our cryptographic
applications. The algorithms we have implemented are by no means original (classical
representation and we have used a basic binary extended GCD for the inversion). The costs
of basic operations for these fields are given in Table 1 and Table 2. We also give similar
benchmarks in NTL and ZEN for comparison. NTL and ZEN do not take advantage of the
pseudo-Mersenne form of the modulus. However, in ZEN one can activate a Montgomery
representation that speeds-up computations, so we give both timings.

We can see that mpFq is faster than NTL for all sizes. ZEN with Montgomery represen-
tation is comparable or slower than NTL except for 1 word primes, where it is sometimes
faster than mpFq. As one can expect, the difference is more visible for small sizes, and on
Opteron, since our assembly code is best suited to this processor. The gain obtained by
writing a reduction procedure that is specific to a pseudo-Mersenne modulus is visible on
the last two columns.

The mpFq library and implementing curve-based key exchanges

57 SPEED Workshop Record

We conclude with a comment on the usual practice in curve-based cryptography: quite
often, to compare the costs of different coordinate systems or addition chains, only the
multiplications and squarings are counted, and the additions are said to be negligible.
This is clearly not the case, for instance for the field F2255

−19 on the Opteron where the
mul/add ratio is less than 6. The same kind of ratio is observed with the ZEN and NTL
libraries, and is even amplified by the fact that an addition or subtraction is much slower
than with mpFq.

Table 1: Time (in nanoseconds, with 2 significant digits) for basic operations in Fp on an
AMD Opteron 250 processor at 2.40 GHz.

mpFq:

1 word 2 words 3 words 4 words 2127 − 735 2255 − 19

add 2 4 5 7 4 8
sub 2 3 5 5 4 9
sqr 67 108 170 230 14 30
mul 66 109 180 240 16 45
inv 420 2600 4600 7500 2600 7400

NTL:

1 word 2 words 3 words 4 words

add 40 42 36 47
sub 38 40 28 44
sqr 120 150 230 290
mul 120 150 230 290
inv 1600 4400 6600 9200

ZEN/ZENmgy:

1 word 2 words 3 words 4 words

add 8/11 44/44 44/44 48/49
sub 7/8 64/71 66/70 73/75
sqr 62/90 270/170 420/270 520/320
mul 68/95 300/180 450/270 600/340
inv 1700/2100 3300/4300 4800/5900 6500/7500

4.4 Cost of basic operations for binary fields

The binary fields up to F2255 are implemented in mpFq, using a polynomial basis representa-
tion. We have chosen defining polynomials with lowest possible Hamming weight. Figure 1
shows the performance of the multiplication, squaring and inversion using mpFq compared
to the NTL and ZEN libraries for these fields. The figure also indicates the timings for
the “unreduced” multiplication and squaring operations. The graphs on the left side cor-
respond to timings on an AMD Opteron CPU at 2.40 GHz, while the graphs on the right

Gaudry, Thomé

SPEED Workshop Record 58

Table 2: Time (in nanoseconds, with 2 significant digits) for basic operations in Fp on an
Intel Core2 6700 processor at 2.66 GHz.

mpFq:

1 word 2 words 3 words 4 words 2127 − 735 2255 − 19

add 1 2 4 8 3 8
sub 1 4 5 7 3 9
sqr 73 110 180 240 17 40
mul 74 120 190 260 19 53
inv 300 2000 3600 5800 2000 5800

NTL:

1 word 2 words 3 words 4 words

add 38 45 53 67
sub 38 45 52 64
sqr 110 130 210 270
mul 110 140 210 270
inv 1200 3400 5800 8000

ZEN/ZENmgy:

1 word 2 words 3 words 4 words

add 6/6 41/41 46/46 57/57
sub 4/4 54/60 60/62 73/78
sqr 52/52 280/120 400/170 550/250
mul 52/60 280/120 400/180 590/260
inv 1000/1000 2500/3000 3800/4300 5000/5900

side correspond to timings on an Intel Core2 CPU at 2.66 GHz.
The algorithms implemented for the different operations are the classical ones described

for instance in [8, chap. 11]. So far, the multiplication is done using the schoolbook
algorithm, but Karatsuba and Toom-Cook variants have to be measured in comparison.
It appears that for all sizes, the best performance for the multiplication is attained by
using the SSE-2 instruction set [1]. Using these instructions, it is effectively possible to
work in parallel with two 64-bit machine words at a time. The performance gain is most
remarkable on the Intel Core2 CPU.

The comparison with the NTL library shows that mpFq is faster than NTL except in
a few situations. The ZEN library is somewhat slower than NTL in particular for the
inversion (we did not investigate where this problem could come from). In our ZEN test
program, we have activated the precomputations that could yield speedups, but we have
not tried to split the extension in a double extension; in the documentation of ZENfact (a
submodule of ZEN), there are examples of such constructions that provide a speedup, but
this is not really automatic. We have also skipped the optimization that builds a logarithm
table, since this is valid only for tiny fields.

The mpFq library and implementing curve-based key exchanges

59 SPEED Workshop Record

The inversion in mpFq has not been looked at seriously, it merely has the merit of giving
correct results. Concerning the multiplication, the relative under-performance of the SSE-2
implementation on the AMD Opteron CPU is probably explained by the different imple-
mentation of the SSE-2 pipeline on this particular CPU compared to the Intel Core2. On
both CPUs, the large steps around 2250 call for further optimization, and will be investi-
gated. For this purpose, an automatic tuning program is being prepared. We mention that
NTL has a conspicuous problem for finite fields smaller than F264 . This should probably
not be worried about and should be considered as an easy tuning issue.

5 Writing BATs with mpFq

We have used mpFq to write efficient software implementation of the Diffie-Hellman key
exchange protocol based on curves. We started with the curve25519 parameters given by
Bernstein [4]: this is an elliptic curve in Montgomery form defined over F2255

−19, such that
both the curve and the twist are secure. We obtain the following timings on our two test
machines.

curve25519
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 128 145
Time for one scalar mult. in cycles 307,000 386,000
Number of scalar mul. per second 7800 6900

We have designed a cryptosystem of genus 2 of the same level of security that we
called surf127eps. It is based on a genus 2 curve defined over F2127

−735 that has complex

multiplication by K = Q

(

i
√

5 +
√

53
)

. The Jacobian of this curve has an order which

is 16 times a prime and is suitable for using the Kummer surface formulae of [11] that we
have implemented. We obtain the following timings on our two test machines.

surf127eps
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 116 154
Time for one scalar mult. in cycles 279,000 410,000
Number of scalar mul. per second 8600 6500

We can see that for prime fields, the Opteron behaves better than the Core2. This
might be surprising since this Opteron is a 3-year old computer, whereas the Core2 is
a brand new architecture; however our skills to optimize assembly code for the Core2 is
clearly not the same as for Opteron.

The other observation is that a genus 2 cryptosystem can beat an elliptic one with our
implementation, depending on the processor. However, if a general, efficient genus 2 point
counting implementation were available, one could construct a Kummer surface with small
coefficients, thus saving a lot of operations (as shown by Bernstein [5]). We expect that
the situation would be constantly in favour of genus 2.

Gaudry, Thomé

SPEED Workshop Record 60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

zen
ntl

mpfq/mul
mpfq/mul_ur

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250

zen
ntl

mpfq/mul
mpfq/mul_ur

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250

zen
ntl

mpfq/sqr
mpfq/sqr_ur

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250

zen
ntl

mpfq/sqr
mpfq/sqr_ur

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

zen
ntl

mpfq/inv

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250

zen
ntl

mpfq/inv

Figure 1: Time (in microseconds) for Multiplication, Squaring, Inversion in F2n

(Left column is on AMD Opteron 2.40 GHz, right column is on Intel Core 2 2.66 GHz)

The mpFq library and implementing curve-based key exchanges

61 SPEED Workshop Record

In order to test our library and to measure the difference between prime fields and
characteristic 2 curve based cryptosystems, we have also implemented the scalar multipli-
cation on elliptic curves in characteristic 2, based on the formulae by Stam [18], over the
finite field F2251 and a genus 2 scalar multiplication based on the Kummer surface, over the
finite field F2113 . This time there is no problem for the point counting in genus 2, thanks
to p-adic methods (we have used Magma for these point counting computations).

The results are the following. It should be noted that the performance suffers from the
lack of fine-tuning of the multiplication algorithm (in particular, we acknowledge that the
multiplication in F2251 is still sub-optimal).

curve2_251
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 863 506
Time for one scalar mult. in cycles 2,070,000 1,350,000
Number of scalar mul. per second 1100 2000

surf2_113
Opteron 2.40 GHz Core2 2.66 GHz

Time for one scalar mult. in µsecs 441 268
Time for one scalar mult. in cycles 1,060,000 713,000
Number of scalar mul. per second 2200 3700

Comparison with other scalar multiplication implementations

The usual problem when comparing timings is that the computers are quickly evolving,
so that comparison is difficult. This is particularly true in the present case, where we are
concentrating only on 64-bit architectures, whereas almost all implementations reported in
the literature rely on 32-bit architecture. This is strange, since the Opteron has been sold
for 4 years, now, and the gain of using 64-bit is clear.

Additionally, usually the reported implementations are there to illustrate some im-
provement in the group law formulae, so that no two papers are really comparable if one is
mostly interested in the underlying finite field implementation. Therefore we give the raw
data, without trying to scale it to our experiment platform or to the coordinate system we
choose.

For each reference, we mention the result that corresponds more or less to the security
level we have chosen.

In [2], an implementation of curve arithmetic in characteristic 2 has been written, based
on a carefully written set of finite field routines. There timings are given on a 32-bit Power
G4 at 1.5 GHz. In genus 1 over F2251 , a scalar multiplication takes 3758 microseconds. In
genus 2 over F2109 , a scalar multiplication takes 1673 microseconds.

In [4] where curve25519 is described, Bernstein reports an implementation between
620000 and 950000 cycles depending on the processor. All the processors that are con-
sidered are 32-bit, and therefore floating point arithmetic used. In [5], he gives a genus 2
implementation (very similar to surf127eps) that takes 580000 cycles on a Pentium M.

Gaudry, Thomé

SPEED Workshop Record 62

In [19], an implementation in characteristic 2 gives the following timings on a Pentium
4 at 1.8 GHz: in genus 1 over F2191 , a scalar multiplication takes 2780 microseconds and in
genus 2 over F295 , it takes 3410 microseconds.

In [3], Avanzi has used his NuMongo library to implement scalar multiplication for
curves over prime fields. The timings are for an Athlon 1 GHz: in genus 1 over a 256-bit
prime field, it takes 3048 microseconds and in genus 2 over a 128-bit prime field, it takes
3575 microseconds.

6 Future plans

The future directions of mpFq are numerous, given the amount of algorithms that would be
worth giving a try. For prime fields, we need to adapt our implementation of Montgomery’s
REDC algorithm [15] to the mpFq library. We also plan to improve the inversion both on
prime and binary fields.

Given the growing interest in pairing-based cryptography, we will probably provide
implementations of extension field arithmetic (with specialized code for the most frequently
used extension degrees).

It is planned to extend mpFq to handle polynomials and matrices over finite fields and
generate optimized source code files for this purpose. This might lead us to consider the
case of large polynomials, and include FFT algorithms which are suited to the base fields
used.

As for the BATs, we still have room for improvements in the choice of the addition
chain. Right now, we have used the most basic binary ladder. We plan to try some of
the heuristic algorithms available in the literature for finding better addition chains, for
instance the so-called PRAC algorithm by Montgomery [14].

Acknowledgments

Although we are only two authors, we rely heavily on GMP, not only as a dependency
library, but also as a source of inspiration for the design of mpFq. We have also taken ideas
from ZEN, NTL and from software written by R. Harley for the ECDL challenges. We
wish to thank Paul Zimmermann and Richard Brent who shared several ideas with us on
the topic of muliplication in binary fields.

The genus 2 curve that we use for the BAT called Surf127-735 has been generated by
the CM method using tools written by T. Houtmann.

References

[1] Advances Micro Devices. AMD64 Architecture Programmer’s Manual, Volume 4: 128-

Bit Media Instructions, 2005.

The mpFq library and implementing curve-based key exchanges

63 SPEED Workshop Record

[2] R. Avanzi, N. Thériault, and Z. Wang. Rethinking low genus hyperelliptic jaco-
bian arithmetic over binary fields: interplay of field arithmetic and explicit formulae,
2006. Preprint available at http://www.cacr.math.uwaterloo.ca/techreports/

2006/cacr2006-07.pdf.

[3] R. M. Avanzi. Aspects of hyperelliptic curves over large prime fields in software im-
plementations. In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of
Lecture Notes in Comput. Sci., pages 148–162. Springer–Verlag, 2004. Proc. 6th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, Cambridge,
MA, USA, August 11-13, 2004.

[4] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958
of Lecture Notes in Comput. Sci., pages 207–228. Springer–Verlag, 2006. Proc. 9th
International Conference on Theory and Practice of Public-Key Cryptography, New
York, NY, USA, April 24-26, 2006.

[5] D. J. Bernstein. Elliptic vs. hyperelliptic, part 1, 2006. Talk given at ECC 2006. Slides
available at http://cr.yp.to/talks.html#2006.09.20.

[6] Certicom corp. The Certicom ECC challenges, 1997. Description at http://www.

certicom.com/index.php?action=ecc,ecc_challenge.

[7] F. Chabaud and R. Lercier. ZEN, user manual, 1996–2007. Homepage at http:

//zenfact.sourceforge.net/.

[8] H. Cohen and G. Frey, editors. Handbook of elliptic and hyperelliptic curve cryptogra-

phy. Chapman & Hall / CRC, 2005.

[9] J.-G. Dumas, T. Gautier, P. Giorgi, J.-L. Roch, and G. Villard. Givaro, une biblio-
thèque C++ pour le calcul formel, 1987–2007. Homepage at http://ljk.imag.fr/

CASYS/LOGICIELS/givaro/.

[10] M. Fouquet, P. Gaudry, and R. Harley. Finding secure curves with the Satoh-FGH
algorithm and an early-abort strategy. In B. Pfitzmann, editor, Advances in Cryptology

– EUROCRYPT 2001, volume 2045 of Lecture Notes in Comput. Sci., pages 14–29.
Springer-Verlag, 2001.

[11] P. Gaudry. Fast genus 2 arithmetic based on Theta functions. J. of Mathematical

Cryptology, 2007. To appear. Preprint available at http://eprint.iacr.org/2005/
314.

[12] T. Granlund. GMP, the GNU multiple precision arithmetic library, 1993–2007. Home-
page at http://gmplib.org/.

[13] R. Harley. The ECDL project. http://cristal.inria.fr/~harley/ecdl/, 2000.

Gaudry, Thomé

SPEED Workshop Record 64

[14] P. L. Montgomery. Evaluating recurrences of form xm+n = f(xm, xn, xm− n) via
Lucas chains, 1983. Preprint available at ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz.

[15] P. L. Montgomery. Modular multiplication without trial division. Math. Comp.,
44(170):519–521, Apr. 1985.

[16] M. Scott. MIRACL: Multiprecision integer and rational arithmetic c/c++ library,
1988–2007. Homepage at http://www.shamus.ie/.

[17] V. Shoup. NTL: A library for doing number theory, 1990–2007. Homepage at http:
//www.shoup.net/ntl/.

[18] M. Stam. On Montgomery-like representations for elliptic curves over GF (2k). In
Y. G. Desmedt, editor, Public Key Cryptography – PKC 2003, volume 2567 of Lecture

Notes in Comput. Sci., pages 240–254. Springer–Verlag, 2003.

[19] T. Wollinger, J. Pelzl, and C. Paar. Cantor versus Harley: Optimization and analysis
of explicit formulae for hyperelliptic curve cryptosystems. IEEE Trans. Comput.,
54:861–872, 2005.

65 SPEED Workshop Record

AcceleratingSSL using theVector processors in
IBM’sCell BroadbandEngine

for Sony’sPlaystation 3TM

Neil Costigan∗, Michael Scott
School of Computing,
Dublin City University,

Dublin 9, Ireland.
{neil.costigan,mike}@computing.dcu.ie

Abstract

Recently themajor performance chip manufacturershave turned to multi -coretechnologyasa more
cost effective alternative to ever increasing clock speeds. Well known examples of multi -core architec-
tures include the Intel Core Duoand AMD Athlon 64X2 rangeof chips. IBM have introduced the Cell
BroadbandEngine(Cell) as their next generationCPU to feed theinsatiable appetitemodernmultimedia
and number crunchingapplicationshave for processing power.

TheCell i s the “Wicked Smart”1 technologyat theheart of Sony’sPlaystation 3TM. TheCell contains
anumber of specialist synergistic processor units (SPUs) optimised for multimediaprocessingand offer
a rich programming interfaceto applications that can make use of the vector processing capabiliti es.
The specialised hardwaredesign for gamingwill always deliver performancegainscompared to a more
generic processor for its specific domain. Multi -precision number manipulation for use in cryptography
is a considerable distance away from this domain. This paper explores the implementation and perfor-
mancegainswhen usingthevector processingcapabiliti esfor SSL andshowsthat big improvementsare
still possiblewith thehardwaredesigned primarily for other purposes.

1 Why SSL?

Despitehugegainsin computing performance and bandwidth, thewidespread useof secure communications
on the Internet is still essentially limited to SSL connections for password logins or with credit card pay-
ments. Despite this SSL implementations are widely distributed and well analysed for security weaknesses
making it the de-facto standard for secure communications. The main reason for such limited usage is the
perception that encrypted communication protocols such as SSL placetoo high demands on bandwidth and
processing power at the server side of the communication and can interrupt the browsing experienceof the
client. This paper sets out to show that with the performance of modern multi -core hardware devices it is
now possible to enable secure channels for awider range of network communications.

2 The Cell Broadband Engine

When Sonyexamined theoptions for the Playstation 2’s successor they realised that traditional clock speed
improvements werenot going to deliver to next generation demands. They wanted something more than the

∗Research supported by the Irish Research Council for Science, Engineering andTechnology, (IRCSET).
1“Wicked Smart” is an advertising slogan used bySony

Costigan, Scott

SPEED Workshop Record 66

traditional CPU if the Playstation brand wasgoing to maintain its lead over its chief competitor Microsoft’s
XBoxTMbrand of gaming consoles. In early 2001they turned to IBM and Toshiba. Together they formed a
partnership to deliver a chip that would both provide thepower for thenext generation of media rich gaming
consoles, while also being ascalable, adaptable design that would meet the most demanding computational
tasks. The result is a unique architecture combining a traditional central processor and specialised high
performance processors similar to those foundin graphics cards (GPUs). These processing units are com-
bined acrossa circular high bandwidth bus to offer a multi -core environment with multiple-instruction sets
and enormous processing power. Sony use asubset of the chip inside its Playstation 3 gaming and media
console. IBM offer a range of configurations inside aBlade series suitable for server and super-computing
use. Central to theCell Broadband Engine(more commonly referred to as ‘Cell ’) isa3.2 GHz 64-bit Power
Processing Unit (PPU). The PPU is a variant (970) of the G5/PowerPC product line, a RISC driven proces-
sor foundin IBM’s servers and Apple’s PowerMacrange. This PPU works as the primary processor and as
supervisor for the other cores.

I/O
 controller

High Speed Bus

SPU SPU SPU SPU

SPU SPU SPU SPU

PPU

T
est &

 D
ebug Log

ic

L2
(512K)

M
em

ory C
ontroller

R
am

B
us

X
D

R
A

M
 interface

Figure 1: Cell BE DieLayout

The Cell’s SPU The real power of the Cell i s in the abilit y to harnessthe additional Synergistic Pro-
cessing Units (SPUs). The SPU is a specialist processor with a RISC-like SIMD instruction set and a large
(128) array of 128-bit registers. Each SPU has its own local memory store (LS). Currently, and on the
Playstation 3, this LS is limited to just 256K. The SPU can access the LS in the same clock cycle as its
register operations. The latest SDK (2.0) has a beta software cache implementation. While the SPU does
not directly accessmain memory the central PPU can accesseach SPU’s local memory store. The SPU has
no hardware cache so each software application directly manages data transfer to and from each SPU. This
leads to anumber of interesting programming models.

Whilethe architecture allowsfor any number of SPUs, astandard Cell , andthose currently in production,
has 8 SPUs. Interestingly Sony have chosen to utili se just 7 as they can gain much higher production yields
if they can discard an SPU that shows a failure during sili con testing. Furthermore Sony restrict accessto
one SPU for DRM purposes on aPlaystation running in Linux mode.

A processor with just 256K, no hardware cache andwith noaccessto I/O doesn’t appear to be anything
exciting when compared to the PPU or other modern CPUs. The fact that the Cell offers 8 SPUson one die
all designed to operate in parallel makes this design so interesting. Combine this with the abilit y to work
with up to 4 32-bit integer operations in just one clock cycle (referred to as SIMD) that make the SPU so
interesting. The SPU also contains 2 instruction pipelines and while the pipelines are not equal, careful
management of the order of instructions can lead to huge amounts of data being processed with very few
clock cycles and avery low clock cycles per instruction (CPI) ratio.

Accelerating SSL using the Vector processors in IBM’s Cell Broadband Engine for Sony’s Playstation 3

67 SPEED Workshop Record

Thelarge register sizeis ideal for thenumber crunching operations required for cryptography. However,
the fact that the size of the register is too large for most high level language’s basic types, and that most
operations work with, at most, 32-bit sub-sections of the quadword register, makes development a littl e
tricky. The programmer accesses the registers througha set of C extensions which operate exclusively on
vectors rather than traditional direct memory access. The C extensions (or intrinsics) also offer a degree
of code portabilit y with similar CPUs such as the Altivec [10]. It is possible to develop small , dedicated,
standalone, SPU applications (spulets). A more interesting, but more complex model, is the capabilit y of
the PPU to call SPU applications througha POSIX threads-like library passing data througha rich direct
memory access(DMA) library.

To stimulate interest within the development community IBM offer a software development kit and
ampledocumentation [1]. ThisSDK contains a full range of development tools andcode samples including
a powerful cycle accurate simulator for the SPU and a vector optimised multi -precision Math library (IBM
MPM) [6].

Multi-instruction sets Oneinteresting issuewith thedifferent architecturesof thePPU andSPU isthe
need for multi -instruction set binaries. Traditional applications compile individual sourcemodulesand then
link theresults to bindall program datasymbols (variable, types functionsetc.), but as theSPUsLSmemory
is physically separate and makes use of wide 128-bit registers, its program code needs to be compiled and
linked separately. Both theSPU andPPU usestandard ELFbinary formats. An application’s binary contains
64-bit code for the main PPU but embedded inside this is an object file with the SPU instructions and data
ready to bepushed to the SPU onacreatethread() call from thePPC. Thebuild processinvolves two
separate compilers and two linkers. TheSPU ELF binary ispassed throughan embedspu commandwhich
builds a wrapper (a CESOF linkable) to the SPU binary marking it with PPU compatible symbols. Finally
there is one more link stage which binds all executables together. Figure 2 [3] outlines the build process.

Figure 2: Cell BE build process[3]

For further information onthe Cell seeIBM’sexcellent Cell resource centre [5]

Costigan, Scott

SPEED Workshop Record 68

Direct Memory Access As mentioned above the PPU can accessmain memory and has instructions
to transfer data between the main memory and its registers. The SPU, on the other hand, works with its
own smaller local store and so to accessdata from themain memory the SPU goes througha Memory Flow
Controller (MFC) which translates SPU main memory requests over the high speed bus via aset of DMA
channel calls. These DMA calls are directional (read or write), blocking or non-blocking, can be issued in
parallel, and can be tagged by the programmer to allow for identification management of data.

When communicating either thePPU or an SPU can initiate and manage aDMA transfer. However it is
optimal for the SPU to dothe ‘protocol’ management as it can freePPU clock cycles that can occur if, for
example, a number of SPUshave blocking calls. When the PPU needs to initiate the transfer the procedure
is for the PPU to push a pointer to the SPU with a tag and then let the SPU pull the data from the pointed
reference and informing the PPU, via the tag, that it has done so.

Vector Programming To utili se the full performance of SPU SIMD instructions a developer works
with a combination of Vector C extensions with assembly like code. Spaceis limited so wewill l ook at the
following extracts to highlight typical techniques used. We implemented a primitive MADD() commonly
used in cryptographic librarieswhich fully utili ses the128-bit register by implementinga64x64-bit multiply
function.

For examplethefollowingcodefragment isused to fill aquadword with twoscalars(in thiscasestandard
C 64-bit unsigned long long) and to ‘splat’ acrossavector. Splat isa term used when filli ngavector
with a mask. In a big number context we utili se splats to allow us operate on different elements of a
quadword when filli ng partial products.

unsi gned l ong l ong a , b
v e ct or unsi gned sh or t AB;
AB=(v e ct or unsi gned sh or t) \

sp u i nser t (a , (v e ct or unsi gned l ong l ong)AB,0 x1) ;
AB=(v e ct or unsi gned sh or t) \

sp u i nser t (b , (v e ct or unsi gned l ong l ong)AB,0 x0) ;
/∗ s e l e c t two b y t e s ∗ /
co nst v e ct or unsi gned char sp l at sh or t 1 = \

(v e ct or unsi gned char) (VEC SPLAT U32(0 x80800405)) ;

Here we utili se aC macro to guarantee all vector multiplies (spu mulo()) are at a 16-bit level to
efficiently use the 16x16-bit multiplier in the SPU.

def i ne MULTIPLY(a , b)\
(sp u ex t r a ct (spu mul o ((v e ct or unsi gned sh or t) spu promote(a ,0) ,\

(v e ct or unsi gned sh or t) spu promote(b , 0)) , 0))

Finally an assembly-like example of aspeed uptechnique when adding a128-bit value to a64-bit value
whereweknow there isno need to manage an overflow. This technique isused in summing partial products
inside the big number multiply.

v e ct or unsi gned i n t o ut s , i n a128 , i n a6 4 ;
v e ct or unsi gned i n t sum , c0 , t 0 ;

c0 = spu genc (i n a128 , i n a6 4) ; / / g e n e r a t e c a r r y b i t s
sum = spu add (i n a128 , i n a6 4) ; / / add
t 0 = sp u sl qw b yt e (c0 , 4) ; / / s h i f t quadword l e f t 4 b y t e s
o ut s = spu add (sum , t 0) ; / / add i n t h e c a r r y

Accelerating SSL using the Vector processors in IBM’s Cell Broadband Engine for Sony’s Playstation 3

69 SPEED Workshop Record

3 OpenSSL

OpenSSL [7] is an open source toolkit released under under a BSD style license. It evolved out of Eric
Young’s popular SSLeay and in 1998 passed to a dedicated team of developers. It has sincebecome the de
facto open sourceSSL toolkit. It is the security sub-system of choicefor large open sourceprojects such as
Apache [8] andMySQL [12] and included in virtually all UNIX distributions including Linux, MacOSXTM,
and SolarisTM .

Thename ‘OpenSSL’ ismisleading as the toolkit provides avast array of building blocks and interfaces
from cryptographic primitives through big number routines to PKI components such ascertificate authorities
and OCSP responders. One of the most useful features is the abilit y to factor out processing intensive
operations to specialist hardware throughan ‘engine’ interface. It is throughthis engine subsystem that we
accelerate SSL by using the Cell SPU’svector processing capabiliti es.

SSL operates in two phases: an initial handshake and a bulk encryption phase. The purpose of the
handshake is to swap identification credentials, algorithm capabiliti es, and negotiate abulk encryption key.
The reason for the key negotiation is that asymmetric cryptography, whilst needed to establish a shared
secret, incurs a large computational overhead compared to asymmetric encryption algorithm. By analysing
clock cycles, Zhao et al. [2] found that 90.4% of the SSL handshake comprises public key operations.
Cryptographic operations take, in total, about 95% of the total CPU load.

SincetheCPU load will beheaviest at theserver side, andsincethemain computationally load incurred
by the server for its part in the handshake is asymmetric decryption, we focus our attempts on speeding up
asymmetric decryption.

Isolating the SSL handshake to measure our improvements is a challenging task as there are can be
many dependencies (network traffic, HTTP server etc.) on a running machine which make accurate sam-
pling difficult. Fortunately OpenSSL provides the utilit y openssl speed which can measure individual
algorithms. Using thisutilit y we can demonstrate improvements to the throughput of the critical algorithms.
The SSL protocol supports a range of asymmetric algorithms, (RSA, DSA, ECC etc.). In this paper we
focus onRSA but the technique is relevant to all .

OpenSSL engine When taking over computational tasks from OpenSSL two issues which must be
considered are

1. How the engine informs the library of the scope of its responsibiliti es.

2. Marshalli ng the big number format to and from OpenSSL’s internal representation.

To tell OpenSSL exactly what the engine will do the developer provides a static library with a set of
defined interfaces with descriptive text to describe the engine. Then, throughfunction pointer replacement,
adefining aset of functions which implement the algorithms that the engine intends to provide.

While there aredynamic loading techniques for closed sourcelibraries, at the current OpenSSL version
(0.9.8d) thesimplest methodto integrate the engine is to statically link the engine code andadda call i nside
ENGINE load built in engines(). This will add the engine as an option to any application using
the OpenSSL default engine.

Through this call OpenSSL then loads any engine that conforms to the correct interface at start-up,
and subsequently any OpenSSL command that uses the-engine <id> option will redirect to the named
engine. At the Engine init() stage the calli ng library passes an OpenSSL data structure containing a
set of initialisation variables and an opening via afree additional pointer for the engine to append its own
data structure which can be accessed later by subsequent engine functions. The engine is responsible for its
own memory management. It is throughthis Engine init() call that we gather OpenSSL parameters

Costigan, Scott

SPEED Workshop Record 70

and convert the OpenSSL big number representation to the native Cell IBM Multi -precision Big number
format.

4 Development

To recap: we need to build a PPU library (32 or 64-bit) that plugs into a PPU build of OpenSSL. Inside
this library we embed an SPU ELF executable which can act uponthe 128-bit registers and utili ses IBM’s
MPM li brary. This SPU ELF executable needs to be under 256K including all code and data. The multi -
core environment with the limitations on code and data size requires some unconventional, data centric,
programming models which the engineering community are still evolving. The cardinal rule appears to be
‘offload as much as one can to the SPUs’ . Many data intensive multimedia applications employ a model
where data is streamed through a chain of SPUs with each SPU carrying out a specific operation onthe
data, then calli ng another SPU with the processed data. Yet another model makes the PPU act as a sched-
uler pushing data segments and code ‘blobs’ to any SPU with the PPU managing the operations and data
ordering through double buffering. To fit the OpenSSL engine model, we mirror the operation of a similar
engine developed by Geoff Thorpe of the OpenSSL core team for the GNU Multi -Precision library (GMP)
[9]. To have the SPUs do as much work as possible we chose to overload the RSA mod exp() function
and indicate through control flags that the engine would perform full RSA decryption using the Chinese
Remainder Theorem. Figure 3 describes the interaction between the various components. This allows us to
potentially parallelise the modular exponentiation calls. We could approach this anumber of ways:

OpenSSL

SPU

PPU Engine

SPU

SPU

Figure 3: OpenSSL with Engine and SPUs

1. Have the PPU do the RSA/CRT but invoke SPUs to manage the expensive modular exponential
(mod exp()). Different SPUswould handle thep and q mod exp().

2. Have thePPU passthe whole RSA/CRT to an SPU.

3. Have thePPU passthewholeRSA/CRT to an SPU with thisSPU passing the the two mod exp() to
two other SPUs.

4. HavethePPU passthewholeRSA/CRT to an SPU with thisSPU passing oneof thetwomod exp()
to another SPU and, in parallel, handle the other.

There are anumber of advantages to each. With (1) the amount of data in the DMA bus is reduced but
breaks the guideline of offloading as much computation as possible to an SPU. With (3&4) the latency per
SSL connection will bereduced but, as it addsextraDMA data to thebus, theover all maximum throughput
will be affected. With (2, 3 & 4) we can doublebuffer thedata transfer, for examplepassing thep parameter

Accelerating SSL using the Vector processors in IBM’s Cell Broadband Engine for Sony’s Playstation 3

71 SPEED Workshop Record

to the bus while the SPU is processing the q mod exp(). The double buffering technique would offer
relatively small speed gains. In an attempt to measure the maximum throughput we chose to focus on (2).

To maintain compatibilit y with OpenSSL and other engine implementations we use notation matching
OpenSSL code: dmp1, the decryption exponent mod p − 1, dmq1, the decryption exponent mod q − 1.
iqmp is the inverseof q mod p. I0 is the cyphertext. A decryption exponent d, for aprimep, isanumber d,
such that med mod p = m or ed = 1 mod (p− 1), wheree is the encryption exponent, commonly chosen
to be 3 or 65537.

At theRSA initialisation stageOpenSSL passes theparameters (p, q, dmp1, dmq1, iqmp) to the engine.
At this stage we check the parameters, allocate amemory store, fill the store with local copies of the big
numbers ready to passto an SPU, and then passthememory store pointer back througha thread safe thread
local memory store. OpenSSL later makesa call to themain overloaded RSA mod exp() function with I0

and the same thread memory store parameter. The overloaded mod exp() extracts the thread local data,
calls an SPU thread, DMA transfers the location and sizeof the memory store to the SPU. It then allocates
spacefor the return data from theSPU.

As mentioned above, the SPU thread when activated could either receive all parameters in a full DMA
transfer or, more efficiently, a pointer to the block of big numbers in memory on the Cell ’s main store. By
passing the pointer, the SPU’s memory flow controller effectively takes the memory processing away from
the main PPU, further improving the performance.

At this stage the SPU thread converts the big number set to the IBM MPM format and carries out the
CRT logic. On successit takestheresult, pushes it back to thePPU using theDMA tag that theI0 parameter
was sent with, finally cleaning upany memory used by the engine and exiting.

RSA/CRT We implement traditional RSA Decryption using Chinese Remainder Theorem but with
a small modification. Because the SPU is restrictive in some respects and as we can’t be certain that the
parameter p is always greater than q we need to maintain a sequence of calls that ensure the results of any
modular exponentiation stay positive.

1. TheSPU compiler optimiser ismost efficient when there is no branching.

2. The current version (SDK 2.0) of the IBM MPM is intended to work with unsigned numbers.

3. Integer comparison operations (lessthan, greater than) on negative numbers are undefined.

To overcome these restrictions we assume p is always lessthan q. A condition OpenSSL guarantees.
Themodified algorithm is outlined in Algorithm 1.

5 Results

Table 1 lists timings in cycles counts and milli seconds for the time consuming functions of the RSA/CRT
implementation. Two totals are presented: sum of these calls and an observed timing for all calls including
some initialisation and the DMA receive calls. These timings are made using an engine with just one SPU
configured.

We can seethat, as expected, the mpm mont mod exp()2 calls represent the bulk of the time con-
suming operations. A case could be made for a design that offloaded just this call to an SPU. Theoretically
(from the results of Table 1) we can expect the SPU to be able to process14.8 4096-bit decryptions in a
second. Interesting (from Table 2) we achieve close to this at 14.1. Obviously there is additional overhead

2The generic mpm mod exp() clocks at 136914856cycles for a 4096-bit modulus

Costigan, Scott

SPEED Workshop Record 72

Algorithm 1 RSA Decryption using Chinese Remainder Theorem modified for the IBM MPM unsigned
restrictions. Note: We follow OpenSSL notation found in all engine implementations
INPUT: p, q, I0, dmq1, dmp1, iqmp

OUTPUT: r0

r1 ← I0 mod q

m1 ← r1
dmq1 mod q

r1 ← I0 mod p

r0 ← r
dmp1

1
mod p

r0 ← r0 −m1

if r0 < 0 then
r0 ← r0 + p

end if
r1 ← r0 · iqmp

r0 ← r1 mod p

r1 ← r0 · q
r0 ← r1 + m1

function calls cycle count total cycles total milli secs secs #/sec

big number convert() 7 877 6139 0.00192
mpm mod() 4 77731 310924 0.09716
mpm mont mod exp() 2 93328909 186657818 58.33057
mpm mul() 1 22733 22733 0.00710
mpm sub() 1 704 704 0.00022
mpm add() 1 1116 1116 0.00035
mpm madd() 1 39648 39648 0.01239

total function calls 187039082 0.05845

Total includes other calls 215159632 0.06724 14.87

Table 1: RSA/CRT decryption implemented in IBM MPM function calls with cycle count and time in
milli seconds for a4096-bit key

from DMA and the processqueue on the main PPU. Cycle counts are from the latest (2.0) version of the
SDK’s simulator. Unfortunately the simulator (at this time) cannot measure DMA or PPU latency.

As mentioned previously, to get some sense of the improvements our optimisations have made we use
the openssl speed command onRSA with the engine off (native OpenSSL on the PPU) and with our
engine on utili sing theSPU.

Tests are run ona 3.2 GHz Playstation 3 with just 6 SPUs running Yellow Dog Linux 5.0 [14] with
kernel version 2.6.16-20061110.ydl.1ps3. A server/blade Cell system would have up to 16SPUs. We could
expect the Playstation Cell to deliver a throughput of up to 89sign/sec and a blade server to goas high as
237 sign/sec. Our observations (Table 3) seeslightly smaller results. As mentioned there are number of
factors that could skew our observed numbers, mainly the design of the OpenSSL speed post-processing,
DMA overhead and the fact that the PPU is busy managing themultiprocessqueue.

We are using the openssl speed -elapsed time option instead of the more often quoted CPU
user time as on the multi -core processor the CPU timer will j ust count the CPU time of the driving PPU
thread whereas the multi -threaded nature of the SPU based system is better represented by elapsed time.

Accelerating SSL using the Vector processors in IBM’s Cell Broadband Engine for Sony’s Playstation 3

73 SPEED Workshop Record

OpenSSL is configured for 64-bit PPC/G5 ASM 3.

o pens sl speed r sa −el apsed
o pens sl speed r sa −engi ne cel l spumpm −el apsed

RSA PPU 1 SPU
key length sign sign/sec sign sign/sec

1024-bits 0.003435s 291.2 0.005655s 176.8
2048-bits 0.017541s 57.0 0.015636s 64.0
4096-bits 0.109793s 9.1 0.070915s 14.1

Table2: OpenSSL speed onPPU vs. 1 SPU using IBM-MPM on 3.2GHz Cell/PS3.

From Table 3 we can seethat the overhead of the DMA transfer and the big number conversion impact
theperformanceimprovements just below the2048-bit key. Thebenefitsof the128-bit registersare apparent
at 4096-bit level with improvements in the order of 150% (14.1 vs. 9.1).

To see the full i mpact of the multi -core we need to use the -multi [n] option to the speed command
which can (throughfork()) generate multiple simultaneous RSA operations. We have picked a number
(6) of parallel processes to run matching the number of SPUs on the Playstation 3. It is important to note
that the -multi option introduces some small processing overhead to the speed command as it uses a fork()
invocation whereas the standard calls in single threaded. Again we compare the PPU with an SPU enabled
engine.

o pens sl speed r sa −el apsed −mul t i 6
o pens sl speed r sa −engi ne cel l spumpm −el apsed −mul t i 6

We seefrom Table 3 similar overheads impacting the 1024-bit keys. However there is huge improve-
ments in 2048-bit (329.7 vs.71.7) and 4096-bit (83.6 vs 11.2). A 749% increase.

RSA PPU 6 SPUs
key length sign sign/sec sign sign/sec

1024-bits 0.000724s 384.5 0.001906s 524.7
2048-bits 0.002600s 71.7 0.003033s 329.7
4096-bits 0.089455s 11.2 0.011925s 83.9

Table3: OpenSSL speed onPPU vs. 6 SPUsusing IBM-MPM on 3.2GHz Cell / PS3, 6 parallel processes.

While the openssl speed utilit y running onthe 6 SPU Cell i nside aPlaystation 3 gives us a solid
basis to develop and measure our improvements, Séan Starke at IBM was kind enoughto try our tests in a
full 16 SPU dual Cell blade. These results (Table 4) are preliminary but are consistent with the trend from
the Playstation 3results.

3Options: bn(64,64) md2(int) rc4(ptr,char) des(idx,risc1,16,long) aes(partial) idea(int) blowfish(idx) compiler: ppu-
gcc -DOPENSSL USE MPM SPU -DOPENSSL THREADS -D REENTRANT -DDSO DLFCN -DHAVE DLFCN H -m64 -
DB ENDIAN -DTERMIO -O3 -Wall

Costigan, Scott

SPEED Workshop Record 74

RSA 2 PPUs 16 SPUs
key length sign sign/sec sign sign/sec

1024-bits 0.001270s 787.5 0.001509s 662.7
2048-bits 0.006805s 146.9 0.001664s 601.0
4096-bits 0.043944s 22.8 0.005762s 173.6

Table 4: OpenSSL speed on 2PPUsvs. 16 SPUsusing IBM-MPM on 3.2GHz Cell , 16 parallel processes.

6 Conclusions and Future Work

The numbers speak for themselves: over 700% improvement in performance. With the widespread use of
specialised multi -core processors there is no reason to prevent the roll out of always on encryption leading
the improvements in privacy for thegeneral user.

We believe that wehave pushed the Cell SDK’s IBM-MPM li brary to its limits. The library is intended
for general purpose use for diverse applications such as FFTs and scientific computing. It is a excelent
demonstration of the power of SPU instrincs ‘vector’ programming. However, we believe the introduction
of an optimised number library more suited to crypto can substantially improve the performance, possibly
doubling the figures presented above.

As mentioned the results are based on using generic Montgomery mpm mont mod exp() function.
This function allows for any sizeof parameter whereas we know the sizeof parameters are based onfixed
key lengths (1024, 2048etc.) Thesefixed lengths can offer further optimisations as they alwaysalign onthe
128-bit boundaries of thevectorsandthat thenumber of partial products to besummed inside any multiplies
can bedetermined allowing for very efficient carry management.

Themultiplication inside thempm mont mod exp() needs to be examined in moredetail . MPM uses
‘row by row’ operandscanning to do big number multiplieswhereasa‘column bycolumn’ product scanning
technique used by the Comba [4] method would be more suitable for the large, fixed sized numbers used
by crypto. Furthermore, as the number length moves beyond 1024-bit the Comba methodcan be combined
with the Karatsuba technique [11] for further improvement.

OpenSSL uses this Comba/Karatsuba combination at key lengths above 1024-bit i rrespective of the
architecture. We hope to swap out the IBM MPM li brary and use afine tuned version of MIRACL [13]
with fixed key sizesonfixed 128-bit alignment, and utili sing theComba/Karatsuba speed upson longer key
lengths.

Thethreshold key length to optimally usetheKaratsubamethod dependsheavily ontheunderlyingword
size and the architecture’s instruction set, specifically how fast the multiplier is compared to the addition.
Wehope to examine this threshold in moredetail with the more flexible, fit for purpose, MIRACL library.

The performance figures focus on raw crypto performance. We would like to examine the SSL perfor-
mance of real word data using a commercial grade SSL/HTTP load testing suite. We also intend to offer
support for DSA and ECCalgorithms.

7 Acknowledgements

For development tools and background information we turned again and again to the IBM’s ‘Developer-
Works’ resource centre and the Cell SDK. We would like to thank the Cell development community par-
ticularly Séan Starke and the IBM team. We would also like to thank Augusto Jun Devegili (Unicamp,
Brazil), Peter Kehoe(DCU), Noel McCullagh, andStephen Henson(OpenSSL)[7] for their encouragement,
assistance& patience.

Accelerating SSL using the Vector processors in IBM’s Cell Broadband Engine for Sony’s Playstation 3

75 SPEED Workshop Record

References

[1] IBM alphaWorks. Cell Broadband Engine SDK. http://www.alphaworks.ibm.com/
topics/cell.

[2] Zhao Iyer Srihari Makineni Laxmi Bhuyan. Anatomy and performance of SSL processing. In Proc.
IEEE Int. Symp. Performance Analysis of Systems and Software, pages 197–206, 2005.

[3] Alex Chunghen Chow. Programming the Cell Broadband Engine. Embedded Systems De-
sign, 2006. http://www.embedded.com/columns/showArticle.jhtml?articleID=
188101999.

[4] P. G. Comba. Exponentiation cryptosystems on the ibm pc. IBM Syst. J., 29(4):526–538, 1990.

[5] IBM DeveloperWorks. Cell Broadband Engine resource center. http://www-128.ibm.com/
developerworks/power/cell/.

[6] IBM DeveloperWorks. Cell Broadband Engine SDK Libaries Multi -Precision Math Library, 2006.
http://www-128.ibm.com/developerworks/power/cell/.

[7] S. Henson et al. OpenSSL library. Open sourcelibrary, 1988. http://www.openssl.org.

[8] Apache Foundation. Apache HTTPserver project. http://www.apache.org.

[9] SWOX / FreeSoftware Foundation. GNU Multiple Precision Arithmetic Library. http://www.
swox.com/gmp/.

[10] Freescale. Altivecvelocity engine. http://www.freescale.com/altivec.

[11] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminumerical algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[12] MySQL. MySQL open soucedatabase. http://www.mysql.com.

[13] M. Scott. MIRACL. http://www.shamus.ie.

[14] Terrasoft. Yellow DogLinux. http://www.terrasoftsolutions.com/products/ydl/.

77 SPEED Workshop Record

Montgomery Modular Multiplication Algorithm

for Multi-Core Systems

Junfeng Fan, Kazuo Sakiyama, and Ingrid Verbauwhede

Katholieke Universiteit Leuven,ESAT/SCD-COSIC,
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
{Junfeng.Fan,Kazuo.Sakiyama,Ingrid.Verbauwhede}@esat.kuleuven.be

Abstract. This paper presents an efficient software implementation of
the Montgomery modular multiplication algorithm on a multi-core sys-
tem. A prototype of general multi-core systems is designed with GEZEL.
We propose a new instruction scheduling method for multi-core systems
that can reduce the number of data transfers between different cores.
Compared to the implementations on a single-core system, the perfor-
mance can be improved by a factor of 1.87 and 3.68 when 256-bit modular
multiplication being performed on a 2-core and 4-core system, respec-
tively.

Key words: Montgomery Modular Multiplication, Multi-core, Parallel
Computation

1 Introduction

Modular multiplication is a fundamental operation in many popular Public Key
Cryptography (PKC) algorithms such as RSA [1] and ECC [2, 3]. As the division
operation in modular reduction is time-consuming, Montgomery [4] proposed a
new algorithm where division is avoided. An integer Z is represented as Z · R
mod M , where M is the modulo and R = 2r is a radix that is coprime to M . This
representation is called Montgomery residue. Multiplication is performed in this
residue, and division by M is replaced with division by R. This algorithm can be
easily implemented on general purpose processors. However, due to the highly
intensive computation, software implementations are offen not fast enough. Many
hardware implementations [5–7] were proposed to improve the performance.

The increasing use of multi-core systems have opened another window for im-
proving the performance of software implementations. Processor vendors have
published various dual-core [8] and quad-core [9] processors for personal com-
puters. Even for embedded systems several multi-core processors [10, 11] are now
available. Therefore, multiple cores in the system can be utilized to perform the
intensive computation and the software implementations of the Montgomery
algorithm can then be accelerated by parallel computation.

When performing parallel computation, task scheduling is highly dependent
on the hardware architecture. If the architecture is based on a super-scalar pro-
cessor, the task will be automatically partitioned. In this paper, we consider

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 78

general multi-core systems that do not have this feature. We use a Very Long
Instruction Word (VLIW) processor as a prototype. This processor can be con-
figured to have 1, 2, 4, 8 or even more cores. Each core can work separately.
To be general, only the very basic instructions are supported. The Montgomery
algorithm is partitioned in algorithm level and tasks are mapped to each core.
We explore two different scheduling methods to find bottlenecks.

The rest of the paper is organized as follow. Section 2 briefly reviews pre-
vious work on the Montgomery algorithm and its parallel implementations. In
section 3, we describe the multi-core architecture of our platform. Two instruc-
tion scheduling methods are proposed in section 4 and comparison between them
is given in section 5. Finally, we show implementation results in section 6 and
conclude the paper including future work in section 7.

2 Previous Work

The Montgomery modular multiplication algorithm was designed to avoid divi-
sion in modular multiplications. Given two n-bit inputs, X and Y , this algorithm
gives Z = X · Y · R−1 mod M , where R equals to 2n and M is the n-bit mod-
ulo. A modified Montgomery multiplication algorithm was proposed to avoid the
conditional final substraction by choosing a suitable R [12]. Algorithm 1 shows
the Montgomery algorithm with the conditional substraction.

Algorithm 1 Radix-2w Montgomery modular multiplication (FIOS) [13]

Input: integers M = (Ms−1, ..., M0)r, X = (Xs−1, ..., X0)r, Y = (Ys−1, ..., Y0)r, where

0 ≤ X, Y < M , r = 2w, s = ⌈ n
w
⌉, R = rs with gcd(M, r) = 1 and M

′

= −M−1mod r.
Output: X · Y ·R−1 modM

1: Z = (Zs−1, ..., Z0)r ← 0
2: for i = 0 to s− 1 do

3: T ← (Z0 + X0 · Yi) ·M
′

mod r
4: Z ← (Z + X · Yi + M · T)/r
5: end for

6: if Z > M then

7: Z ← Z −M
8: end if

9: return Z

As shown in Algorithm 1, the operands X, Y and M are divided into w-bit
words. In the beginning of each iteration, X0 ·Yi is calculated to generate T . After
the generation of T , the multiplication of X ·Yi and reduction of C are performed
together by computing Z = Z +X ·Yi +M ·T . After that, Z0 always becomes 0.
The division of Z by r is performed by shifting Z one word to the right. After s

iterations and one conditional substraction, Z = X ·Y ·R−1 mod M is obtained.
As Algorithm 1 scans the operands X and M from Least Significant Bit (LSB)
to Most Significant Bit (MSB) simultaneously, it is also called Finely Integrated

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

79 SPEED Workshop Record

Operand Scanning (FIOS). It is possible to perform Z = Z+X ·Yi first, and then
Z = Z + M · T . This modified algorithm is called Coarsely Integrated Operand
Scanning (CIOS) [13] and is presented in Algorithm 2.

Algorithm 2 Radix-2w Montgomery modular multiplication (CIOS) [13]

Input: integers M = (Ms−1, ..., M0)r , X = (Xs−1, ..., X0)r, Y = (Ys−1, ..., Y0)r, where

0 ≤ X, Y < M , r = 2w,s = ⌈ n
w
⌉,R = rs with gcd(M, r) = 1 and M

′

= −M−1 mod r.
Output: X · Y ·R−1 modM

1: Z = (Zs−1, ..., Z0)r ← 0
2: for i = 0 to s− 1 do

3: T ← (Z0 + X0 · Yi) ·M
′

mod r
4: Z ← (Z + X · Yi)
5: Z ← (Z + M · T)/r
6: end for

7: if Z > M then

8: Z ← Z −M
9: end if

10: return Z

So far, many task scheduling methods have been proposed. Kaihara et al.

[14] designed a bipartite multiplier, where the modular multiplication was di-
vided into two separated tasks. Besides, systolic array [15] is deployed in hard-
ware implementations. Various implementations [16–18] of systolic array were
proposed to improve the performance. However, most of the scheduling meth-
ods are targeting a fast hardware implementation, data transfers between PEs
are almost free since they can be performed with a hardwired communication.
In general purpose multi-core systems, different cores exchange data via shared
memory. Thus, frequent data transfers can make a heavy overhead. Therefore,
those scheduling methods need to be modified to fit software implementations.

In this paper we propose a new scheduling method, which can efficiently
reduce the data transfers between different cores. This method is highly scalable
and can achieve high performance.

3 Our Design Platform

It doesn’t make sense to fix the hardware architecture (i.e. the number of cores)
and explore the best software algorithm for the fixed hardware configuration.
The hardware/software co-design with a multi-core system, the main focus of
this paper, needs an environment to get a quick and correct evaluation of cost
and performance for various hardware configurations and software programs.
Thus, we use a simulation environment, called GEZEL [19], which allows us
to estimate immediate system performance in a cycle-accurate manner before
synthesizing the entire design.

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 80

Main Controller
Data

Memory
Instruction
Memory

core-1 core-2 core-3 core-m

×××× +

A B

WB

Rin

Decoder

16-bit
Register

File
0000

RoutIns
16 16 16

16 16

Data Bus

Instruction Bus

Main Controller
Data

Memory
Instruction
Memory

core-1 core-2 core-3 core-m

×××× +

A B

WB

Rin

Decoder

16-bit
Register

File
0000

RoutIns
16 16 16

16 16

×××× +

A B

WB

Rin

Decoder

16-bit
Register

File
0000

RoutIns
1616 1616 1616

1616 1616

Data Bus

Instruction Bus

Fig. 1. Platform architecture. (w = 16).

General multi-core systems can have various architectures and corresponding
memory organizations. For instance, they may contain symmetrical cores with a
shared memory, or a master CPU with several slave CPUs/DSPs connected to
the system bus. To be as general as possible, we use a VLIW architecture pro-
cessor. The purpose of this prototype processor is to explore different algorithms
on multi-core systems.

As shown in Figure 1, this platform consists of a main controller, a data
memory, an instruction memory and several cores. Only the main controller can
access the instruction memory and the data memory. The main controller fetches
instructions from the instruction memory and dispatches them to all cores in
parallel via the instruction bus. Each core executes arithmetic instructions in
parallel, and stores the results in its register file. The data memory has only one
read/write port, therefore, a single data memory access is allowed in each cycle.

We denote w as the operation size of w-bit core. A 16-bit (w = 16) core is also
shown in Figure 1. It is a highly simplified Load/Store CPU. It has a instruction
decoder, a register file with 16 general 16-bit registers and one status register.
The Arithmetic Logic Unit(ALU) includes one 16-bit multiplier and one 16-bit
adder. It also has an output register to store the data that will be written to the
data memory, and an input register to buffer the data from the data memory.

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

81 SPEED Workshop Record

Table 1. Instruction sets for one core.

Opcode

4-bit
Operand 1

4-bit
Operand 2

4-bit
Operand 3

4-bit
Description

Nop No operation

Load Ri #Addr Load the data from location
Addr of the data memory into
register Ri

Store Ri #Addr Store the data of register Ri

to location Addr or the data
memory

Mul Ri Rj Rk {R(i+1),Ri} = Rj· Rk

Add Ri Rj Rk {Ca,Ri} = Rj + Rk, Ca is the
carry out and is stored in the
status register

Adc Ri Rj Rk {Ca,Ri} = Rj + Rk + Ca

Sub Ri Rj Rk Ri = Rj - Rk

Both of them are 16-bit. One 32-bit Write Back (WB) register is also used to
store data from the ALU. The bit-length of both data-path and registers are
doubled if it is configured as a 32-bit (w = 32) core.

The cores here support a simple Load/Store Instruction Set Architecture
(ISA). As shown in Table 1, this simplified ISA has only 7 general instructions.
Here #Addr denotes memory address. Instructions for each core are of 16-bit
long. All the arithmetic operations are performed among data stored in the
local register file. When data needs to be moved from one core to another, it is
first stored to the data memory, then it is loaded by the destination core. Cores
in this platform support a 4-stage instruction pipelining.

4 Instruction Scheduling

Before we schedule the instructions, the data dependency is analyzed. The main
dependency in the Montgomery algorithm is due to the carries of additions. Tak-
ing FIOS shown in Algorithm 1 as an example, in each iteration, Zj is replaced
by (Zj +(X ·Yi)j +(M ·T)j +Ca), where Ca is the carry. The data dependency
in one iteration is shown in Figure 2. Obviously, Xj ·Yi, for any 0 ≤ i, j ≤ s− 1,

is only dependent on the operands X and Y . We can also calculate Mj · T im-
mediately after the generation of T . The products with the same weight of Zj

and the carry from Zj−1 are accumulated to Zj , generating a new Zj and 2-bit
carries. As a result, Zj can only be generated after carry from Zj−1 is ready.

As shown in Figure 2, we need to add Zj with four w-bit data and 2-bit
carries. In hardware implementations, cascaded Carry Save Adders (CSAs) can
be used to construct a 6-to-2 CSA. The carry can also be saved in a 2-bit
register or transferred to another PE. However, in general purpose processors
these special features are not available. Normally only general adders with a

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 82

Xs Yi

××××

Ms T

××××

X1 Yi

××××

M1 T

××××

X0 Yi

××××

M0 T

××××

MSB LSB

Z0+

+ 0Z1

Z0

+ Zs

Zs-1

+

Zs

Carry

2

· · ·

· · ·Xs Yi

××××

Ms T

××××

Xs Yi

××××

Xs Yi

××××

Ms T

××××

Ms T

××××

X1 Yi

××××

M1 T

××××

X1 Yi

××××

X1 Yi

××××

M1 T

××××

M1 T

××××

X0 Yi

××××

X0 Yi

××××

M0 T

××××

MSB LSB

Z0+

+ 0Z1

Z0

+ Zs

Zs-1

+

Zs

Carry

2

· · ·

· · ·

Fig. 2. Data dependency of FIOS Montgomery algorithm.

fixed length are used. The carry is saved in the status register after an Add

instruction. In order to keep the 1-bit carry for future use, one instruction is
needed to copy it from the status register to a general register. It will be very
inefficient to use carries generated by another core, since it needs to be stored
to register file first, and then transferred via the data memory.

Therefore, it will be desirable to partition the algorithm so that carry is
only used in the core where it was generated. In [6], Tenca and Koç proposed
an iteration-based scheduling method. In this method each Processing Element
(PE) performs one iteration of the loop in Algorithm 1. This method is attrac-
tive because carries are only used in the local PE. Note that this method was
originally designed for a hardware implementation. Here we map this algorithm
to general purpose multi-core systems. Figure 3 shows the scheduling method,
denoted as method-I, for 256-bit Montgomery multiplication for a 4-core system.
As n = 256 and w = 16, sixteen iterations are needed. Core-1 performs the first
iteration and generates Z0 to Z15 one bye one. Each word is transferred to core-2
as soon as it is generated. Core-2 then performs the second iteration and then
transfers Z0 to Z15 to core-3. After 4 iterations Z = (Z15, ..., Z0) is transferred
back to core-1 from core-4 and the 5th iteration begins. As in total 16 itera-
tions are required, each core needs to perform 4 iterations. After a conditional
substraction, the result is obtained.

Though the method-I can avoid carry transfers between cores, transferring
(Zs−1...Z0) causes a heavy overhead. In Figure 3 the transfers of (Zs−1...Z0) are
denoted as arrows. For each iteration s = ⌈ n

w
⌉ arrows are required to transfer

Z. Since one modular multiplication contains s iterations, s(s − 1) arrows are
needed during the whole loop. Let Narrow be the number of arrows, then Narrow

is s(s − 1). In Figure 3 we have s = 16, therefore Narrow = 240.
Note that in order to generate T , only Z0 must be ready at the end of each

iteration, while (Zs−1...Z1) can be generated later. Based on this observation, a
new scheduling method is proposed and is shown in Figure 4. In this method,

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

83 SPEED Workshop Record

T

X0·Y0 + M0·T+Z0

X1·Y0 + M1·T+Z1

X2·Y0 + M2·T+Z2

···

X15·Y0 + M15·T+Z15

Z16

T

X0·Y1 + M0·T+Z0

X1·Y1 + M1·T+Z1

X2·Y1 + M2·T+Z2

···

X15·Y1+ M15·T+Z15

Z16

T

X0·Y2 + M0·T+Z0

X1·Y2 + M1·T+Z1

X2·Y2 + M2·T+Z2

···

X15·Y2+ M15·T+Z15

Z16

T

X0·Y3 + M0·T+Z0

X1·Y3 + M1·T+Z1

X2·Y3+ M2·T+Z2

···

X15·Y3 + M15·T+Z15

Z16

T

X0·Y4 + M0·T+Z0

X1·Y4 + M1·T+Z1

X2·Y4 + M2·T+Z2

···

T

X0·Y5+ M0·T+Z0

X1·Y5 + M1·T+Z1

X2·Y5 + M2·T+Z2

···

T

X0·Y6 + M0·T+Z0

X1·Y6 + M1·T+Z1

X2·Y6 + M2·T+Z2

···

T

X0·Y7 + M0·T+Z0

···

Z0

Z1

core-4core-3core-2core-1

Z14

Z15

O
ne

 It
er

at
io

n
*

4

Time

Z0

Z1

Z0

Z1

Z0

Z1

Z14

Z15

Z14

Z15

Z0

Z1

Z0

Z1

Z0

Z1

X14·Y0 + M14·T+Z14

X14·Y1 + M14·T+Z14

X14·Y2 + M14·T+Z14

X14·Y3 + M14·T+Z14

T

X0·Y0 + M0·T+Z0

X1·Y0 + M1·T+Z1

X2·Y0 + M2·T+Z2

···

X15·Y0 + M15·T+Z15

Z16

T

X0·Y1 + M0·T+Z0

X1·Y1 + M1·T+Z1

X2·Y1 + M2·T+Z2

···

X15·Y1+ M15·T+Z15

Z16

T

X0·Y2 + M0·T+Z0

X1·Y2 + M1·T+Z1

X2·Y2 + M2·T+Z2

···

X15·Y2+ M15·T+Z15

Z16

T

X0·Y3 + M0·T+Z0

X1·Y3 + M1·T+Z1

X2·Y3+ M2·T+Z2

···

X15·Y3 + M15·T+Z15

Z16

T

X0·Y4 + M0·T+Z0

X1·Y4 + M1·T+Z1

X2·Y4 + M2·T+Z2

···

T

X0·Y5+ M0·T+Z0

X1·Y5 + M1·T+Z1

X2·Y5 + M2·T+Z2

···

T

X0·Y6 + M0·T+Z0

X1·Y6 + M1·T+Z1

X2·Y6 + M2·T+Z2

···

T

X0·Y7 + M0·T+Z0

···

Z0

Z1

Z0

Z1

core-4core-3core-2core-1

Z14

Z15

Z14

Z15

O
ne

 It
er

at
io

n
*

4

TimeTime

Z0

Z1

Z0

Z1

Z0

Z1

Z0

Z1

Z0

Z1

Z0

Z1

Z14

Z15

Z14

Z15

Z14

Z15

Z14

Z15

Z0

Z1

Z0

Z1

Z0

Z1

Z0

Z1

Z0

Z1

Z0

Z1

X14·Y0 + M14·T+Z14

X14·Y1 + M14·T+Z14

X14·Y2 + M14·T+Z14

X14·Y3 + M14·T+Z14

Fig. 3. Instruction scheduling method-I: One iteration is performed with one core.
(n = 256, w = 16, s = 16, Narrow = 240).

each iteration in Algorithm 1 is performed by multiple cores. Figure 4 shows this
scheduling method for a 4-core system. Here we still choose n = 256, w = 16
and s = ⌈ n

w
⌉ = 16. During the whole loop (Z3, .., Z0) is generated and stored

in core-1, (Z7, .., Z4) in core-2, (Z11, .., Z8) in core-3 and (Z15, .., Z12) in core-4.
Carry is only used in the local core. At the end of each iteration, Z4 is sent to
core-1, Z8 is sent to core-2 and Z12 is sent to core-3. After sixteen iterations
and a conditional substraction, Z = X ·Y ·R−1 mod M is generated and stored
separately in four cores. Z can be written to the data memory or can be used
by another modular multiplication.

The method-II needs significantly less data transfers between cores than the
method-I. T is always generated in core-1, and then distributed to other cores.
On a p-core system, p − 1 arrows are needed to transfer T in each iteration.
To shift Z to the right, p − 1 word is transferred, making p − 1 arrows in each
iteration. As a result, the number of arrows for one modular multiplication is
2(p − 1)s. When s = 16 and p = 4, the number of arrows, Narrow = 96.

Each arrow in Figure 3 and Figure 4 causes one store and one load operation.
The comparison of memory accesses caused by data transfers is presented in
Table 2. Here Nload−tr and Nstore−tr are the number of load and store operations
caused by data transfers, respectively. Ntotal−tr is the sum of them. Note that in
Figure 4 the multiple arrows starting from T cause only one store operation. For
the method-II Ntotal−tr is 3ps−2s, while 2s2−s in the method-I. As p is always

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 84

core-4core-3core-2core-1

T

X0·Y0 + M0·T+Z0

X1·Y0 + M1·T+Z1

X2·Y0 + M2·T+Z2

X3·Y0 + M3·T+Z3

X4·Y0 + M4·T+Z4

X5·Y0 + M5·T+Z5

X6·Y0 + M6·T+Z6

X7·Y0 + M7·T+Z7

X8·Y0 + M8·T+Z8

X9·Y0 + M9·T+Z9

X10·Y0 + M10·T+Z10

X11·Y0 + M11·T+Z11

X12·Y0 + M12·T+Z12

X13·Y0 + M13·T+Z13

X14·Y0 + M14·T+Z14

X15·Y0 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

O
ne

Ite
ra

tio
n

Time

T

X0·Y1 + M0·T+Z0

X1·Y1 + M1·T+Z1

X2·Y1 + M2·T+Z2

X3·Y1 + M3·T+Z3

X4·Y1 + M4·T+Z4

X5·Y1 + M5·T+Z5

X6·Y1 + M6·T+Z6

X7·Y1 + M7·T+Z7

X8·Y1 + M8·T+Z8

X9·Y1 + M9·T+Z9

X10·Y1 + M10·T+Z10

X11·Y1 + M11·T+Z11

X12·Y1 + M12·T+Z12

X13·Y1 + M13·T+Z13

X14·Y1 + M14·T+Z14

X15·Y1 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

T

X0·Y15 + M0·T+Z0

X1·Y15 + M1·T+Z1

X2·Y15 + M2·T+Z2

X3·Y15 + M3·T+Z3

X4·Y15 + M4·T+Z4

X5·Y15 + M5·T+Z5

X6·Y15+ M6·T+Z6

X7·Y15+ M7·T+Z7

X8·Y15 + M8·T+Z8

X9·Y15 + M9·T+Z9

X10·Y15 + M10·T+Z10

X11·Y15 + M11·T+Z11

X12·Y15 + M12·T+Z12

X13·Y15 + M13·T+Z13

X14·Y15 + M14·T+Z14

X15·Y15 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

… … … …

core-4core-3core-2core-1

T

X0·Y0 + M0·T+Z0

X1·Y0 + M1·T+Z1

X2·Y0 + M2·T+Z2

X3·Y0 + M3·T+Z3

X0·Y0 + M0·T+Z0

X1·Y0 + M1·T+Z1

X2·Y0 + M2·T+Z2

X3·Y0 + M3·T+Z3

X4·Y0 + M4·T+Z4

X5·Y0 + M5·T+Z5

X6·Y0 + M6·T+Z6

X7·Y0 + M7·T+Z7

X4·Y0 + M4·T+Z4

X5·Y0 + M5·T+Z5

X6·Y0 + M6·T+Z6

X7·Y0 + M7·T+Z7

X8·Y0 + M8·T+Z8

X9·Y0 + M9·T+Z9

X10·Y0 + M10·T+Z10

X11·Y0 + M11·T+Z11

X12·Y0 + M12·T+Z12

X13·Y0 + M13·T+Z13

X14·Y0 + M14·T+Z14

X15·Y0 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

O
ne

Ite
ra

tio
n

TimeTime

T

X0·Y1 + M0·T+Z0

X1·Y1 + M1·T+Z1

X2·Y1 + M2·T+Z2

X3·Y1 + M3·T+Z3

X4·Y1 + M4·T+Z4

X5·Y1 + M5·T+Z5

X6·Y1 + M6·T+Z6

X7·Y1 + M7·T+Z7

X8·Y1 + M8·T+Z8

X9·Y1 + M9·T+Z9

X10·Y1 + M10·T+Z10

X11·Y1 + M11·T+Z11

X12·Y1 + M12·T+Z12

X13·Y1 + M13·T+Z13

X14·Y1 + M14·T+Z14

X15·Y1 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

T

X0·Y15 + M0·T+Z0

X1·Y15 + M1·T+Z1

X2·Y15 + M2·T+Z2

X3·Y15 + M3·T+Z3

X4·Y15 + M4·T+Z4

X5·Y15 + M5·T+Z5

X6·Y15+ M6·T+Z6

X7·Y15+ M7·T+Z7

X8·Y15 + M8·T+Z8

X9·Y15 + M9·T+Z9

X10·Y15 + M10·T+Z10

X11·Y15 + M11·T+Z11

X12·Y15 + M12·T+Z12

X13·Y15 + M13·T+Z13

X14·Y15 + M14·T+Z14

X15·Y15 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

… … … …
T

X0·Y1 + M0·T+Z0

X1·Y1 + M1·T+Z1

X2·Y1 + M2·T+Z2

X3·Y1 + M3·T+Z3

X0·Y1 + M0·T+Z0

X1·Y1 + M1·T+Z1

X2·Y1 + M2·T+Z2

X3·Y1 + M3·T+Z3

X4·Y1 + M4·T+Z4

X5·Y1 + M5·T+Z5

X6·Y1 + M6·T+Z6

X7·Y1 + M7·T+Z7

X4·Y1 + M4·T+Z4

X5·Y1 + M5·T+Z5

X6·Y1 + M6·T+Z6

X7·Y1 + M7·T+Z7

X8·Y1 + M8·T+Z8

X9·Y1 + M9·T+Z9

X10·Y1 + M10·T+Z10

X11·Y1 + M11·T+Z11

X12·Y1 + M12·T+Z12

X13·Y1 + M13·T+Z13

X14·Y1 + M14·T+Z14

X15·Y1 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

T

X0·Y15 + M0·T+Z0

X1·Y15 + M1·T+Z1

X2·Y15 + M2·T+Z2

X3·Y15 + M3·T+Z3

X0·Y15 + M0·T+Z0

X1·Y15 + M1·T+Z1

X2·Y15 + M2·T+Z2

X3·Y15 + M3·T+Z3

X4·Y15 + M4·T+Z4

X5·Y15 + M5·T+Z5

X6·Y15+ M6·T+Z6

X7·Y15+ M7·T+Z7

X4·Y15 + M4·T+Z4

X5·Y15 + M5·T+Z5

X6·Y15+ M6·T+Z6

X7·Y15+ M7·T+Z7

X8·Y15 + M8·T+Z8

X9·Y15 + M9·T+Z9

X10·Y15 + M10·T+Z10

X11·Y15 + M11·T+Z11

X12·Y15 + M12·T+Z12

X13·Y15 + M13·T+Z13

X14·Y15 + M14·T+Z14

X15·Y15 + M15·T+Z15Z11+Z11
Z7+Z7Z3+Z3

… … … …

Fig. 4. Instruction scheduling method-II: One iteration can be performed with several
cores. (n = 256, w = 16, s = 16, Narrow = 96).

much smaller than s, the number of memory accesses caused by data transfers
in the method-II is much smaller than that of the method-I.

5 Performance Comparison

Compared to the method-I, the method-II has two major advantages. First,
operands and intermediate data are distributed in the register file of each core,
thus less registers are required in each core. Second, less data transfers reduce
memory accesses, as a result, a single-port data memory can support more cores
before becoming the bottleneck. Detailed performance comparison between the
method-I and the method-II is given below.

Let Nmul be the number of multiplications, Nadd the number of additions and
Nload−opr the number of operand load operations. As shown in Table 2, we use
Nload−tr and Nstore−tr to denote the number of load and store operations caused
by transferring intermediate data, respectively. The total number of memory
accesses is denoted as Ntotal. Suppose that Algorithm 1 is implemented, Nadd is
always 4s2 + s, and Nmul is 2s2 + s regardless the value of p.

Table 2. Number of data memory accesses caused by data transfers.

Scheduling

Methods

Narrow Nload−tr Nstore−tr Ntotal−tr

Method-I s(s− 1) s2 − s s2 2s2 − s

Method-II 2(p− 1)s 2(p− 1)s ps 3ps− 2s

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

85 SPEED Workshop Record

Although Nmul and Nadd are constant, Nload and Nstore vary from different
scheduling methods or different number of cores. Since the size of register files
has a great influence on the number of memory accesses, it must be taken into
account. If the register file is large enough, the operands, X, Y and M can stay
in the registers during the whole loop. If not, they may need to be reloaded in
each iteration, thus Ntotal becomes larger. Let Srf be the number of entries of
w-bit registers in each core’s register file. Table 3 shows how the number of load
and store operations changes for different size of register files.

Suppose Algorithm 1 is implemented on a w-bit processor. First, if Srf is
larger than 3s, then X, M and Y only need to be loaded to the registers in the
beginning of the loop, making Nload−opr = 3s. Since Z is generated and always
stay in the registers in the whole loop, both Nload−tr and Nstore−tr are 0. For
2s < Srf ≤ 3s, only Z and X can be stored in the registers. The Nload−opr

increases to s2 +2s. For s < Srf ≤ 2s, only Z can be stored in the registers, thus
Nload−opr becomes 2s2 + s. For Srf ≤ s, X,M , Yi and Z will be loaded from the
data memory in each iteration, making Nload−opr = 2s2+s. Z also has to be sent
to the data memory in each iteration, which leads Nload−tr = Nstore−tr = s2.

Now suppose that this processor has p general purpose cores. If the method-I
is used, each core needs to use X, M and Yi in each iteration. For Srf > 2s, X

and M can stay in the registers during the whole loop. In order to load X, M

and Yi it takes 2ps + s cycles. In order to transfer Z from one core to another
s load operations and s store operations are required. Thus, for s iterations we
need Nload−tr = s(s − 1) and Nstore−tr = s2 in total. For s < Srf ≤ 2s, only X

can stay in registers during the whole loop, while M and Yi are reloaded in each
iteration. As a result, Nload−opr increases to s2 + ps + s. For Srf ≤ s, X, Y , M

and Z need to be reloaded in each iteration, making Nload−opr = 2s2 + s.

Table 3. The number of cycles required for one Montgomery multiplication for various
Register File size (Srf).

Processor
type

Srf Nload−opr Nload−tr Nstore−tr Ntotal

Srf > 3s 3s 0 0 3s
2s < Srf ≤ 3s s2 + 2s 0 0 s2 + 2s

Single-core s < Srf ≤ 2s 2s2 + s 0 0 2s2 + s
Srf ≤ s 2s2 + s s(s− 1) ∗ s2 ∗ 4s2

Multi-core Srf > 2s 2ps + s s(s− 1) s2 2s2 + 2ps
Method-I s < Srf ≤ 2s s2 + ps + s s(s− 1) s2 3s2 + ps

Srf ≤ s 2s2 + s s(s− 1) s2 4s2

Srf > 3s
p

2s + ps 2(p− 1)s ps 5ps

Multi-core 2s
p

< Srf ≤
3s
p

s2 + ps + s 2(p− 1)s ps s2 + 4ps− s

Method-II s
p

< Srf ≤
2s
p

2s2 + ps 2(p− 1)s ps 2s2 + 4ps− 2s

Srf ≤
s
p

2s2 + s s2 + (2p− 3)s ∗ s2 + s ∗ 4s2 + 2ps− s

*Including store and load operations caused by calculating intermediate data.

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 86

For the method-II, the memory accesses are less. Since each core keeps a part
of X, M and Z, the required register size of each core is less than that of the
method-I. To keep X, M and Z in the registers during the whole loop, Srf needs
to be larger than 3s

p
. In order to load X,Y and M into registers it takes 2s + ps

cycles, namely Nload−opr = 2s+ps. In order to distribute T , one store and (p−1)
load operations are needed in each iteration. In order to shift Z one word to the
right, (p− 1) words of Z must be stored to the data memory and loaded in each
iteration. As a result, we need Nload−tr = 2(p − 1)s and Nstore−tr = ps. For
2s
p

< Srf ≤ 3s
p

, we only keep X and Z in the registers, while load M in each

iteration. The Nload−opr increases to s2 + ps + s. For s
p

< Srf ≤ 2s
p

, only Z is

stored in registers, thus Nload−opr = 2s2 + ps. For the case of Srf ≤ s
p
, all the

operands and intermediate data have to be reloaded in each iteration, Nload−opr

becomes 2s2 + s. Nload−tr and Nstore−tr are also increased rapidly. The number
of memory accesses in each case is shown in Table 3.

As shown in Table 3, in the case that s and p are fixed, Ntotal changes as
various size of register files are used. Note that for the method-II Srf decreases as
p increases. To reduce Ntotal for a large s, one can increase Srf and p. However,
increasing p doesn’t help in the method-I. For example, when Srf = 16, p = 4 and
s = 64, Ntotal is 16384 and 16832 for the method-I and method-II, respectively.
When p = 8, Ntotal is reduced to 10112 for the method-II, while is still 16384
for the method-I. Figure 5 illustrates the comparison.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

128 256 512 768 1024

Operational size of Montgomery modular multiplication (n)

N
u

m
b

er
 o

f
m

em
o

ry
 a

cc
es

se
s

in
 o

n
e

M
o

n
tg

o
m

er
y

m
o

d
u

la
r

m
u

lti
pl

ic
at

io
n

Single core
Method-I: p=4
Method-I: p=8
Method-II: p=4
Method-II: p=8

Fig. 5. Number of data memory accesses for various operand bit-length. (w = 16,
Srf = 16).

When the number of cores reaches a specific value, the memory access be-
comes the bottleneck. Because our proposed architecture uses a single-ported

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

87 SPEED Workshop Record

shared memory, load and store can not be operated in parallel. As a result, the cy-
cles needed by one modular multiplication are no smaller than Nload+Nstore. Let
N(s, p) be the number of cycles that needed by one n-bit multiplication on a p-
core system. Then as p increases, there is a point where N(s, p) = Nload+Nstore.
After reaching this point, increasing p doesn’t improve the performance any
more. Because the method-I needs more load and store instructions than the
method-II, it reaches this point before the method-II as p increases.

6 Results

The multi-core platform proposed in section 3 is implemented with GEZEL. The
GEZEL code is automatically converted to synthesizable VHDL codes. The soft-
ware program of Montgomery modular multiplication is stored in the instruction
memory. The operands, X, Y and M , are stored in the data memory.

1342

682
485

643

906860852

1664

2512

0

500

1000

1500

2000

2500

3000

1 2 4 6 8

Number of cores (p)

C
yc

le
s

re
q

u
ire

d
 b

y
o

n
e

2
5

6
-b

it
M

o
n

tg
o

m
er

y
m

o
d

u
la

r
m

u
lti

p
lic

at
io

n

Method-I
Method-II

Fig. 6. Performance of 256-bit Montgomery modular multiplication on a multi-core
system. (n = 256, w = 16, Srf = 16).

We implemented both method-I and method-II on the platform with various
hardware configurations. The results are presented in Figure 6. The results of
the method-II show a better performance and a higher scalability in the num-
ber of cores compared to that of the method-I. If a single core is used, 2512
cycles are needed to finish one 256-bit Montgomery multiplication. When using
2 cores, 1664 and 1342 cycles are required for the method-I and the method-II,
respectively. If 4 cores are used, only 852 cycles are required for the method-I,
while 682 cycles are required for the method-II.

On the other hand, when employing more than 4 cores, the performance of the
method-I is deteriorated because the number of the memory accesses becomes
the bottleneck. For the method-II, the best performance is obtained when p = 6
as shown in Figure 6.

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 88

Table 4. Performance comparison of modular multiplication.

Reference Description Platform Area

(Slices)
Freq.

(MHz)
256-bit

time(µs)
1024-bit

time(µs)

2-cores Xilinx 1102 125 13.3 213.0
2 16x16 mults XC2VP30
4-cores Xilinx 2029 125 6.8 131.0

This work 4 16x16 mults XC2VP30
(method-I) 2-cores Xilinx 1822 93 4.5 71.6

2 32x32 mults XC2VP30
4-cores Xilinx 3173 93 2.6 44.0
4 32x32 mults XC2VP30

2-cores Xilinx 1102 125 10.7 189
2 16x16 mults XC2VP30
4-cores Xilinx 2029 125 5.5 134.7

This work 4 16x16 mults XC2VP30
(method-II) 2-cores Xilinx 1822 93 3.7 64.0

2 32x32 mults XC2VP30
4-cores Xilinx 3173 93 2.2 33.0
4 32x32 mults XC2VP30

Tenca & Koç [6] Software ARM - 80 43 570
implementation processor

Cohen et al. [20] Software UltraSPARC - 143 14.6† −
implementation GMP library

Itoh et al. [21] Software DSP - 200 2.68‡ −
implementation TMS320C6201

Brown et al. [22] Software Pentium II - 400 1.57§ −
implementation

Sakiyama
et al. [23]

CSAs based Xilinx 4836 110.4 0.80 −

Dual-Field XC2VP30

Kelley et al. [24] 4-PEs Xilinx 360∗ 135 0.68 8.3
8 16x16 mults XC2V2000-6

Mentens [7] 34 16x16 mults Xilinx 1927 73 0.27 −
XC2VP30

Mentens [7] 130 16x16 mults Xilinx 7244 64 0.31 1.07
XC2VP30

* Author’s estimation from the original paper.
† 224-bit normal modular multiplication.
‡ 239-bit Montgomery modular multiplication.
§ Using fixed modulo for fast reduction.

For the purpose of checking the maximum frequency, the platform is imple-
mented on Xilinx Virtex-II PRO (XC2VP30) FPGA. A maximum frequency of
125 MHz could be achieved if 16-bit cores (w = 16) are used. For 32-bit cores
(w = 32), a maximum frequency of 93 MHz can be obtained. The instruction

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

89 SPEED Workshop Record

memory and the data memory are implemented in the block RAM on the FPGA
board. The number of slices here only includes main controller and cores. The
performance comparison between our software implementations and the state-
of-the-art implementations is summarized in Table 4.

As shown in Table 4, our software implementation can achieve high speed
and good scalability. Taking the method-II as an example, when using two 32-
bit cores, the 256-bit modular multiplication is almost 10 times faster than the
implementation on the ARM processor [6] and almost 4 times faster than the im-
plementation on the UltraSPARC processor [20]. When using four 32-bit cores,
the implementation of 256-bit modular multiplication is as fast as the implemen-
tation on TI’s DSP (TMS320C6201) [21], which can issue eight 32-bit instruc-
tions in parallel. The implementation in [22] is fast, however it only supports
fixed modulus. Compared to the state-of-the-art hardware implementations [23,
24, 7], software implementations are still much slower. However, hardware im-
plementations add area and complexity to the whole system, and have far less
flexibility than software implementations.

7 Conclusions

In this paper, we introduced an efficient software implementation of the Mont-
gomery multiplication algorithm on a multi-core system. A prototype of general
multi-core systems is implemented. Our newly proposed scheduling method could
reduce the number of data transfers between different cores. As a result, the per-
formance of 256-bit Montgomery multiplication was improved by a factor of 1.87
and 3.68 when using 2-core and 4-core systems, respectively.

Our future work includes a hardware implementation based on our proposed
parallel-processing algorithm with a special data-path that can perform multi-
ple arithmetic operations. A software implementation of this algorithm on com-
mercial multi-core processors is also in progress. We believe that the scheduling
method proposed in this paper can achieve high flexibility and high-performance
in both software and hardware implementations.

Acknowledgments

Junfeng Fan and Kazuo Sakiyama are funded by a research grant of the Katholieke
Universiteit Leuven and FWO projects (G.0450.04, G.0475.05). This work was
supported in part by the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy), by the EU IST FP6 projects (SESOC and ECRYPT),
by the K. U. Leuven, and by the IBBT-QoE project of the IBBT.

References

1. R. L. Rivest, A. Shamir and L. M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120-126,
1978.

Fan, Sakiyama, Verbauwhede

SPEED Workshop Record 90

2. N. Koblitz. Elliptic curve cryptosystem. Math. Comp., 48:203-209, 1987.
3. V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Ad-

vances in Cryptology: Proceedings of CRYPTO’85, number 218 in LNCS, pages
417-426. Springer-Verlag, 1985.

4. P. Montgomery. Modular multiplication without trial division. Mathematics of
Computation,44:519-521,1985.

5. S. E. Eldridge and C. D. Walter. Hardware implementation of Montgomery’s modu-
lar multiplication algorithm. IEEE Transactions on Computers,42(6):693-699,June
1993.

6. A. Tenca and Ç. K. Koç. A scalable architecture for modular multiplication based
on Montgomery’s algorithm. IEEE Transactions on Computers, 52(9):1215-1221,
September 2003.

7. N. Mentens, Secure and efficient coprocessor design for cryptographic applications
on FPGAs. PhD Thesis, June, 2007.

8. http://download.intel.com/products/processor/xeon/dcprodbrief.pdf
9. http://download.intel.com/products/processor/xeon/dc53kprodbrief.pdf

10. Y. Kanno, H. Mizuno, Y. Yasu, K. Hirose, Y. Shimazaki, T. Hoshi, Y. Miyairi,
T. Ishii, T. Yamada, T. Irita, T. Hattori, K. Yanagisawa, and N. Irie. Hierarchi-
cal Power Distribution with 20 Power Domains in 90-nm Low-Power Multi-CPU
Processor. ISSCC Dig. Tech. Papers, pages 540-541, Feburary 2006.

11. http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html
12. C. D. Walter. Montgomery’s exponentiation needs no final subtraction. Electronic

letters, 35(21):1831-1832, October 1999.
13. Ç. K. Koç, T. Acar and B. S. Kaliski. Analyzing and comparing Montgomery

multiplication algorithms. IEEE Micro,16:26-33,1996.
14. M. E. Kaihara and N. Takagi. Bipartite modular multiplication. Proceedings of

Cryptographic Hardware and Embedded Systems - CHES 2005, number 3659 in Lec-
ture notes in Computer Science, pages 201-210, September 2005. Springer-Verlag.

15. K. Iwamura, T. Matsumoto, and H. Imai. High-speed implementation methods
for RSA scheme. In R. A. Rueppel, editor, Advances in Cryptology: Proceedings
of EUROCRYPT 92, number 658 in Lecture Notes in Computer Science, pages
221-238. Springer-Verlag, 1992.

16. T. Blum and C. Paar. Montgomery modular exponentiation on reconfigurable hard-
ware. In Proceedings of 14th IEEE Symposium on Computer Arithmetic, pages
70C77, Adelaide, Australia, April 14-16 1999.

17. L. Batina and G. Muurling. Montgomery in practice: How to do it more efficiently
in hardware. In B. Preneel, editor, Proceedings of RSA 2002 Cryptographers Track,
number 2271 in Lecture Notes in Computer Science, pages 40-52, San Jose, USA,
February 18-22 2002. Springer-Verlag.

18. S. H. Tang, K. S. Tsui and P. H. W. Leong. Modular exponentiation using par-
allel multipliers. Proceedings of the 2003 IEEE International Conference on Field
Programmable Technology (FPT), Tokyo, 52-59. 2003

19. P. Schaumont and I. Verbauwhede, Interactive cosimulation with partial evalu-
ation. Proceedings of Design Automation and Test in Europe (DATE 2004) pp.
642-647, 2004.

20. H. Cohen, A. Miyaji and T. Ono. Efficient elliptic curve exponentiation using mixed
coordinates. Asiacrypt’98, LNCS 1514, pp. 51-65, Springer-Verlag, 1998.

21. K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara: Fast implementation
of public-key cryptography on a DSP TMS320C6201. Proceedings of Cryptographic
Hardware and Embedded Systems - CHES’99, LNCS 1717, pp. 61-72, Springer-
Verlag, 1999.

Montgomery Modular Multiplication Algorithm for Multi-Core Systems

91 SPEED Workshop Record

22. M. Brown, D. Hankerson, J. López and A. Menezes. Software implementation of
the NIST elliptic curves over prime fields. Topics in Cryptology, CT-RSA 2001,
LNCS 2020, pp. 250-265, Springer-Verlag, 2001.

23. K. Sakiyama, B. Preneel and I. Verbauwhede. A fast dual-field modular arithmetic
logic unit and its hardware implementation. Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS 2006), pages 787-790, 2006.

24. K. Kelley and D. Harris. Parallelized very high radix scalable Montgomery multi-
pliers. Conference on Signals, Systems and Computers, pages 1196-1200, 2005.

93 SPEED Workshop Record

Cell SPEED

Dag Arne Osvik

Ecole Polytechnique Fédérale de Lausanne, Switzerland

The Cell processor used in the PlayStation3 provides the potential for computations at high
speed and low cost. In this talk I will discuss how to design your programs to benefit from this
new architecture.

95 SPEED Workshop Record

An Efficient General Purpose Elliptic Curve Cryptography

Module for Ubiquitous Sensor Networks

Leif Uhsadel, Axel Poschmann, and Christof Paar

Horst Görtz Institute for IT Security
Communication Security Group (COSY)

Ruhr-Universität Bochum, Germany
Universitätsstrasse 150

44780 Bochum, Germany
{uhsadel, poschmann, cpaar}@crypto.rub.de

www.crypto.rub.de

Abstract. In this article we present the fastest known implementation of a modular multi-
plication for a 160-bit standard compliant elliptic curve (secp160r1) for 8-bit micro-controller
which are typically used in ubiquitous sensor networks (USN). The major part (77%) of the
processing time for an elliptic curve operation such as ECDSA or EC Diffie-Hellman is spent
on modular multiplication. We present an optimized arithmetic algorithm which significantly
speeds up ECC schemes. The reduced processing time also yields a significantly lower energy
consumption of ECC schemes. We show that a 160-bit modular multiplication can be per-
formed in 0.37 ms on an 8-bit AVR processor clocked at 8 MHz. This brings the vision of
asymmetric cryptography in the field of USNs with all its benefits for key-distribution and
authentication a step closer to reality.

Keywords: ubiquitous sensor network, elliptic curve cryptography, secp160r1, 8-bit micro-
controller, Micaz

1 Introduction

The terms ubiquitous and pervasive computing designate the penetration of our everyday life with
intelligent devices. Ubiquitous sensor networks (USN) will play a fundamental role to enable this
vision. USNs consist of many tiny and smart devices, referred to as nodes, which typically combine
an 8-bit processor with memory, sensors, radio unit and power supply. The foreseen applications
for USNs range from medical scenarios to agricultural, military and environmental monitoring.
Since much data may be very critical (e.g., for the health of human beings in medical scenarios or
safety critical monitoring) security mechanisms are required to ensure integrity, confidentiality and
authenticity of the data.

USNs face major security problems because the communication is wirelessly and the devices
are often easy to access. Therefore, an adversary can easily eavesdrop on communication or simply
steal a node. Since sensor nodes are usually not tamper-resistant, an adversary can often read out
any content that is stored on the node. Furthermore, the devices are very constrained in terms of
memory, computing power, and energy supply. Since battery powered devices have a limited amount
of energy, the major metric in the area of USNs is energy consumption. The lifetime of a USN is

Uhsadel, Poschmann, Paar

SPEED Workshop Record 96

directly proportional to its energy efficiency, i.e., the less energy is consumed by applications the
longer the batteries will last.

Symmetric algorithms are generally preferable to asymmetric algorithms in the field of USNs
because they are more efficient in terms of energy consumption and memory requirements. However,
when symmetric algorithms are used, two problems arise: (1) key distribution and (2) number of
stored keys. When individual keys are used in a USN with n nodes, each node has to store (n− 1)
keys. This has good resiliency properties but obviously scales badly and is especially unsuitable for
large USNs. Moreover, perfect forward secrecy is not given after a node’s key have been compro-
mised. When one single symmetric key is used, memory requirement is greatly reduced, but at the
same time this is not resilient anymore. To cope with this problem many probabilistic key distri-
bution schemes for symmetric algorithms have been proposed [EG02, CPS03, DDHV]. In general
these approaches either need pre-distributed keys, which means a higher configuration effort before
deployment, or they produce much traffic, which results in higher energy consumption. Therefore,
asymmetric algorithms are very valuable for key establishment and authentication in USN.

Asymmetric cryptography is often considered as being too demanding for constrained devices
such as sensor nodes with an 8-bit micro-controller. However, there exist several protocols for
asymmetric cryptographic algorithms for USNs. In [WKC+04] Watro et al. describe public-key based
protocols for USNs. In particular, they present authentication and key-agreement protocols based
on RSA. The so-called TinyPK was implemented in NesC for MicaZ 8-bit micro-pocessors. However,
one RSA exponentiation with a 1024-bit key needs 14.5 seconds, which is arguably not acceptable
in many applications. RSA needs much longer key lengths compared to elliptic curve cryptography
to achieve the same security level (1024 bit vs. 160-bit) [Res00]. Considering the limited amount of
memory, computing power and energy of a typical 8-bit sensor node, it seems that ECC is a much
better choice for public-key cryptography for USN than RSA. Since TinyPK is based on the more
demanding RSA algorithm and was implemented in NesC, it is not surprising that this is more than
one order of magnitude slower than the fastest known implementation of a point multiplication for
ECC in assembly. In [GPW+04] Gura et al. describe a point multiplication on a 160-bit standard
curve within 0.81 seconds. The majority (77%) of the clock cycles was required by the modular
multiplication. However, the source code of this implementation is not publicly available, it is
rather intellectual property of Sun Microsystems. Therefore, these impressive results are not usable
for the scientific community. Alternatively there is the TinyECC implementation [LN06], which
may be used free of charge. TinyECC is a free software package for TinyOS that supports all SECG
recommended 128-bit, 160-bit and 192-bit elliptic curve domain parameters. However, it is slower
and needs more memory than the equivalent of SUN Microsystems. Therefore, our goal was to
implement a prime field arithmetic for an ECC scheme for 8-bit micro-processors, which is free for
use and at the same time faster than the aforementioned implementation of SUN. The source code
is available on request.

The remainder of this work is organized as follows: In Section 2 we give an introduction to
elliptic curve cryptography and constraints of the target devices. Subsequently, in Section 3 our
implementation of the modular multiplication for a 160-bit standard elliptic curve is described.
The results of our implementation are presented in Section 4. Finally, this paper is concluded in
Section 5.

An Efficient General Purpose Elliptic Curve Cryptography Module for Ubiquitous Sensor Networks

97 SPEED Workshop Record

2 Preliminary Assumptions and Introduction to Elliptic Curve

Cryptography

In this section, we first state the constraints of the target micro-processor. Subsequently we introduce
the mathematical background of ECC. Finally, we state the implementation issues that arise when
trying to implement ECC for constrained devices.

2.1 Constrained Devices

For the envisioned applications of USNs, up to tens of thousands of smart, but battery powered
devices are required, which communicate wirelessly. In order to lower costs, these devices will be very
constrained in terms of memory capacity, computing power and energy supply. Nowadays, the de-
facto standard sensor nodes for researchers are the so-called Mica motes [xbo,HC02]. They comprise
an 8-bit RISC ATMEL AVR ATmega128L [Atm] micro-processor, 4 KB configuration EEPROM
memory, 512 KB data Flash memory, 128 KB program Flash memory, various sensors, ZigBee radio
interface, and two standard AA batteries. Ideally these batteries should last for several months up
to years. Therefore, a small power consumption is a crucial requirement for any application running
on these nodes. Sending and receiving of messages is by far the most energy consuming task on
the nodes [HSW+00], therefore the traffic should be minimized wherever possible. Furthermore,
the energy consumption of an application is mainly determined by its execution time. Therefore, a
rule-of-thumb is: the shorter the processing time of an algorithm, the lower its energy consumption.

2.2 Introduction to Elliptic Curve Cryptography

Compared with symmetric algorithms the asymmetric algorithms work very slow. In particular
on low-power processors they are felt as not practical and are used only rarely or not at all. For
this purpose special algorithms were developed, but more research is needed to investigate their
security before they can be used to protect sensitive data. Elliptic curves represent a special case.
The advantage of the Elliptic Curve Cryptography (ECC) is that on one hand it is meanwhile quite
well investigated and thus considered secure while on the other hand just a very short bit length
is needed as compared to other asymmetric systems. In order to reach a security level, which is
equivalent to an RSA key with a length of 1024-Bit, already 160 bits are sufficient with elliptic
curves [Res00]. This is a ratio of 6.4 and will significantly reduce the consumed energy for key
establishment.

Let E be an elliptic curve defined over a field K as shown in figure 1, then a set of points can
be created by a chord-and-tangent rule (extended addition). If P and Q are two different points,
which are part of the set, that intersect the elliptic curve in a straight line, there will be a third
intersection on the straight line with the curve. The reflection on the x axis of the latter is called
R and represents the sum of P and Q. Doubling works the same, but the straight line is given by
the tangent of the curve in the according point. This set of points defined by the extended addition
extended by the point ∞ forms an Abelian group.

P +P is referred to as 2P . Accordingly is P + ..+P = kP . For every point P there exists a point
Q with P = kQ, if P is not the identity and the order of the elliptic curve is prime. Finding the
appropriate k for a given set (Q,P) is considered to be hard and called the elliptic curve discrete
logarithm problem (ECDLP). Most ECC protocols rely on the ECDLP.

Uhsadel, Poschmann, Paar

SPEED Workshop Record 98

P

Q

R’

R

Fig. 1. Elliptic Curve, Parameters: a=-7 and b=11

There are various algorithms for the extended addition on an elliptic curve for different coor-
dinates and different underlying fields. They can be optimized according to the used protocol and
hardware. A good overview is given by [HMV04] and [Mic01]. Regardless which algorithm is used,
they are all based on the arithmetic of the underlying field. Especially the multiplication in the
field comes at great cost in time and energy. An efficient field arithmetic is therefore the base for
an efficient implementation of an elliptic curve cryptographic system.

As prime fields are promising candidates for software implementations, we rely in the following
on elliptic curves of the form

E/K : y2 = x3 + ax + b, char(K) 6= 2, 3 (1)

2.3 Elliptic Curve Cryptography Implementation Issues

The basis for an efficient cryptographic system based on elliptic curves is a very efficient prime
field arithmetic. As shown in Figure 2, a cryptographic system based on elliptic curves can be
divided into three layers. The highest level actually represents the application layer. Protocols
implemented here are for example ECDSA [HMV04] or EC ElGamal [HMV04]. Optimizations in
this layer vary strongly, depending on the application (signature, coding etc.) and have to be partly
or completely redone for each application. The underlying layer is the arithmetic of the elliptic
curve. Most protocols are based on the multiplication of a point on the elliptic curve with an integer
(k ∗ P). However, optimizations at this level usually also strongly depend on the protocol layer.
Optimizations in the underlying prime field arithmetics layer will always improve the performance
of the whole ECC-System, because they are layer independent. More than 77% of the computing
time can be applied here. Therefore, a very efficient prime field arithmetic is crucial for ECC based
systems on constrained devices and time critical systems.

An Efficient General Purpose Elliptic Curve Cryptography Module for Ubiquitous Sensor Networks

99 SPEED Workshop Record

Protocol

Prime field arithmetic

Curve arithmetic

Fig. 2. Three Layers of an ECC-system

3 Implementation of Modular Multiplication

In this section, we first state criterias for an efficient implementation of an ECC system. Subse-
quently we will present details of our implementation of the modular multiplication, on which ECC
system are based.

3.1 Criteria for an Efficient ECC Implementation

Since optimizations in the prime fields arithmetic, contrary to other optimizations, will always
improve the performance of the ECC system, the main attention goes here. Further optimization
should be done depending on the application and the selected EC domain parameters. Prime field
arithmetic should provide the operations multiply, add, subtract, halve and reduction. Operations
with the most potential for optimization are the multiplication and the reduction. Starting point for
the implementation is to choose a curve. For compatibility reasons it should be a standardized curve
and for security reasons it should have at least 160-bit in length. To keep computations fast the bit
length should be as short as possible. The curve ”secp160r1” standardized by Standards for Efficient
Cryptography (SEC2) [Cer00] was chosen for our implementation. It has two advantages that can
be used to speed up prime field arithmetic reduction and to speed up curve arithmetic double and
add. Because its underlying prime field is based on a pseudo Mersenne prime the reduction in the
prime field can be done by several shifts and adds [Sol99] which is much faster than any other
known algorithm on constrained devices. The curve parameter a = −3 can be used to reduce the
effort of point doubling and point addition when using Jacobian projective coordinates [HMV04].

To adapt the algorithms in the best possible way to the hardware the prime field arithmetic
is completely implemented in assembly. As mentioned before the reduction can be implemented
very efficiently if pseudo Mersenne primes are used. Addition and subtraction can be done without
special optimization. The highest cost of computation lies in the 160-bit multiplication of the
prime field. When choosing an algorithm for this multiplication it is important to consider the
hardwares characteristic, such as processor word-size and number of general purpose registers. The
ATmega128L is able to perform an 8 bit multiplication in two cycles. Loading one 8-bit word from
SRAM to registers also requires two cycles. Basically two different approaches are possible: reduce
the number of multiplication or reduce SRAM usage. The first attempt would be to implement

Uhsadel, Poschmann, Paar

SPEED Workshop Record 100

Karatsuba [MVPV96] and the second some kind of improved schoolbook algorithm. The hybrid
multiplication [GPW+04] is a memory optimized variant of the schoolbook algorithm. A special
characteristic of the algorithm is that the computational cost rises linearly with smaller numbers
of registers and processor word size. It also is much easier to implement than Karatsuba and hence
much easier to port to different platforms. For these reasons the hybrid multiplication was chosen.

When doing a multiplication using the schoolbook algorithm the multiplication is divided in
several parts that are accumulated to get the final result. The summands can be sorted in two
ways before the addition. Adding them from left-to-right or right-to-left1 it is called row wise
multiplication, see Figure 3(a). Sorting them by bit length is called column wise multiplication, see

(a) Row Wise Multiplication (b) Column Wise Multiplication

Fig. 3. Row Wise and Column Wise Multiplication

Figure 3(b). The hybrid multiplication algorithm [GPW+04] combines both methods: the summands
that are used in the column wise way are calculated by using the row wise method, see Figure 4.
The number of partial products per row is called column width (d). According to [GPW+04] the
optimal column width is:

d = max{i | 1 ≤ i ≥ n, r ≥ 3i + ⌈log2 (n/i)/k⌉}, (2)

where n is the operand size, r are the available registers and k is the bitlength.

3.2 Implementation of the Modular Multiplication

According to Formula 2 the optimal d is 10 using all registers of the micro controller. In the first
approach this parameter was used. The implementation benchmark showed that the implementation
was about 50% slower than the benchmarks of SUN Microsystems in [GPW+04]. This overhead
was mainly caused by handling carry bits. Let’s have a look at the theoretic minimum effort of the
algorithm. The core of the row wise part is the elemental 8-bit multiplication of the CPU followed

1 This is what is taught in school when learning the multiplication the first time - probably giving the
algorithm its name

An Efficient General Purpose Elliptic Curve Cryptography Module for Ubiquitous Sensor Networks

101 SPEED Workshop Record

Fig. 4. 160-bit Hybrid Multiplication on ATMega128L with 5 multiplications per row

by two additions to add the product to an intermediate result. These three operations are performed
in the inner loop and will be referenced as the elementary instruction block in the remainder as
illustrated in Figure 5(a). When using 160-bit operands this is done exact 400 times regardless of
d. One multiplication and two additions equal 4 cycles. This means 1600 cycles in total plus the
effort to get the operands from SRAM and write them back. This effort depends on the parameter
d which depends on the machine’s hardware. For the theoretically best d (d = 10) on our target
device the memory load and store effort would be 80 data loads and 40 stores consuming 240 cycles
in total. For d = 5 the data load effort would double to 160 cycles while data store effort remains
at 440 consuming 400 cycles in total. In summary, the theoretic optimum is 1840 cycles for d equal
to 10 or 2000 cycles for d equal to 5. However, our first implementation needed about 4500 cycles,
even though we used the – theoretically – optimal column width d of size 10.

We found that surprisingly, the major part of the overhead was caused by carry handling rather
than handling pointers or other arbitrary effort. The elementary instruction block is one 8-bit
multiplication followed by two additions as mentioned before. Since the additions are targeted to
an intermediate result which is in general not zero the addition produces a carry bit in the general
case. When the next iteration starts the elementary 8-bit multiplication will overwrite the carry
flag in the CPU. Hence the carry has to be stored and restored in each elementary instruction
block, which would result, in at least two additional cycles per elementary instruction block (=
3 cycles) or an overhead of at least 66.66% only for carry handling! Even if an efficient carry
store and restore would be available, the operation ”add with carry” would add the carry to the
wrong register, as can be seen in Figure 5(b). The best solution found to solve both problems takes
three cycles per iteration of each elementary instruction block, which is an overhead of 75% in the
elementary instrucion block. Any other possible solution found needed more spare registers. In our
second implementation the column width was chosen equal to 5 (d = 5), therefore doubling the
number of memory loads. In other words, we trade at least 80 additional cycles for the sake of more

Uhsadel, Poschmann, Paar

SPEED Workshop Record 102

Elementary Instruction Block:
1 x 8-bit multiplication
2 x 8-bit additions

ai * bi

(a) Elementary Instruction
Block

ai+1 * bi+1

ai * bi

ad
d1

ad
d2

ad
d3

ad
d4

ca
rr

y1

ca
rr

y2

ca
rr

y3

The carrys from
two consecutive
elemental-
operationsblocks
overleap here.
Carry2 goes to
wrong register.

Performing single elementary
operation blocks

(b) Column Wise

ai+1 * bi+1

5 911 8 2 7 1

ai * bi

310 4

ca
rr

ya
dd

10 spare registers
to buffer the results
of the five 8-bit
multiplications.

Additions are done
in an order that “add
with carry“ can be
used.

Performing a full row at once

(c) Row Wise at Once

Fig. 5. Core Operations in Detail

spare registers. Storing and restoring the carry bit after each 8-bit multiplication is not efficient.
A solution in which the carry can be handled by the ”add with carry” command is required. The
number of consecutive elementary instruction blocks performed in the row wise part is set by the
parameter d. In this case five iterations are done in a row. The spare registers can be used as buffer
to safe the five 16-bit products of the five 8-bit multiplications. After five multiplications eleven
additions are performed in the order shown in Figure 5(c)2. In this way the overhead for handling
the carry bits is six cycles for five elementary instruction blocks. That means for one elementary
instruction block the carry handling overhead is reduced to 1.2 cycles. This reduces the overhead of
the elementary instruction block’s effort from 75% in the first implementation to 30%. Taking one
cyle as the theoretical minimum overhead this is close to the optimum. The advantage in saving
both time and energy is enormous since the elementary instruction block is repeated 400 times.

4 Results

The basic requirement for a fast and thus energy efficient implementation of ECC is a very fast
multiplication in the prime field. The fastest known implementation was implemented by SUN Mi-
crosystems. In [GPW+04] they provide a benchmark for the same micro-controler that we used,
hence a direct comparison is possible. A 160-bit multiplication from SUN Microsystems’ implemen-
tation requires 3106 cycles, which is at a clock rate of 8 MHz equivalent to 0.39 ms.

The implementation presented in this work needs 2913 cycles for a 160-bit multiplication, which
is equivalent to 0.36 ms. In fact, this represents a time saving of 7.2%. To the best of our knowledge
this is the fastest implementation world wide of a modular multiplication of a 160-bit standardized
elliptic curve for an 8-bit micro-controller.

In Table 1 we present a detailed list of instructions used by our and SUN Microsystems’ imple-
mentation as published in [GPW+04]. A third column contains the theoretical minimum amount

2 In Figure 5(c) addition number six is represented by the – carryadd – . We call this carry add ”secure”
since it cannot produce another carry. This is due to the fact that 0xFF * 0xFF = 0xFE01. Hence, adding
a carry to the first byte of 0xFE01 results in 0xFF01 and does not produce another carry.

An Efficient General Purpose Elliptic Curve Cryptography Module for Ubiquitous Sensor Networks

103 SPEED Workshop Record

of the appropriate instruction, as required by the hybrid multiplication with a column width of five
on the ATMega128L micro-controller. However, this number cannot be achieved, but is mentioned
to show the limit and the overhead. Each row represents an instruction or a set of instructions,
which are very similar. The first row represents the 8-bit addition with and without carry. In the
next row the number of 8-bit multiplications can be seen. In the following row all used data loads
are combined. Thereafter the used commands to write back to SRAM are listed. The underlying
row shows all 8-bit and 16-bit register moves. Finally all other instructions are combined. In this
row only the number of used cycles is given while the number of instructions is missing, because
different instructions may consume different number of cycles to be executed.

As one can see, the main differences between our implementation and SUN Microsystems’ lie in
the number of used additions and data loads. Note that data loads require two cycles contrary to
the addition, which only requires one cycle. In SUN Microsystems’ implementation the number of
data loads is close to the minimum number of 160 data loads for a column width of 5. The additional
data loads in our implementation result from pointer handling. Pointers have to be restored from
SRAM very often, because the carry handling needs all spare registers. The time saving results
from the improved carry handling reducing the number of needed additions close to the minimum.
The overall improvement is 7.2%.

This work SUN Microsystems Theoretical Minimum
Instruction #C/I Instructions Cycles Instructions Cycles Instructions Cycles

add/adc 1 986 986 1360 1360 800 800

mul 2 400 800 400 800 400 800

ld/lds 2 238 476 167 334 160 320

st/sts 2 40 80 40 80 40 80

mov/movw 1 355 355 335 335

other 184 197

Sum 2913 3106 2000
Table 1. Overview of instructions used

5 Conclusion and Future Work

We presented the fastest implementation of a modular multiplication for a 160-bit standardized
elliptic curve for 8-bit micro-processors in Section 3 and compared the results in Section 4. We also
highlighted the criteria for efficient implementations of ECC schemes for 8-bit micro-controllers and
pointed out the problems that arise when implementing

Since modular multiplications take up the major part of the computing time of point multipli-
cations over an elliptic curve, our results can be used to significantly increase the efficiency of point
multiplications over an elliptic curve. Many ECC schemes such as EC ElGamal or ECDSA are based
on modular multiplication and will therefore directly benefit from our results. Our results bring the
vision of asymmetric cryptography in the field of USNs with all its benefits for key-distribution and
authentication a step closer to reality.

Uhsadel, Poschmann, Paar

SPEED Workshop Record 104

Next steps are the efficient implementation of point multiplication over the elliptic curve and
some ECC schemes such as EC ElGamal and ECDSA. Furthermore an integration into existing
ECC modules for TinyOS is thinkable.

References

[Atm] Atmel. 8-bit Microcontroller with 128K Bytes In-System Programmable Flash.
http://www.atmel.com/.

[Cer00] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. Standards for
Efficient Cryptography Version 1.0, September 2000.

[CPS03] H. Chan, A. Perrig, and D. Song. Random Key Predistribution Schemes for Sensor Networks.
In Proceedings of the IEEE Security and Privacy Symposium 2003, 2003.

[DDHV] W. Du, J. Deng, Y. Han, and P. Varshney. A Pairwise Key Pre-distribution Scheme for Wireless
Sensor Networks. In CCS ’03: Proceedings of the 10th ACM Conference on Computer and
Communications Security.

[EG02] L. Eschenauer and V. Gligor. A Key Management Scheme for Distributed Sensor Networks. In
CCS ’02: Proceedings of the 9th ACM Conference on Computer and Communications Security,
New York, NY, USA, 2002. ACM Press.

[GPW+04] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz. Comparing Elliptic Curve Cryp-
tography and RSA on 8-bit CPUs. Proceedings of Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2004), 6th International Workshop, pages 119–132, 2004.

[HC02] JL Hill and DE Culler. Mica: a Wireless Platform for Deeply Embedded Networks. Micro,
IEEE, 22(6):12–24, 2002.

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography.
Springer, New York [u.a.], 2004.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. System
Architecture Directions for Networked Sensors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000.

[LN06] An Liu and Peng Ning. TinyECC: Elliptic Curve Cryptography for Sensor Networks. available
for download at http://discovery.csc.ncsu.edu/software/TinyECC, September 2006.

[Mic01] Michael Brown and Darrel Hankerson and Julio López and Alfred Menezes. Software Imple-
mentation of the NIST Elliptic Curves Over Prime Fields. Lecture Notes in Computer Science,
2020:250ff, 2001.

[MVPV96] A.J. Menezes, O. Van, C. Paul, and S.A. Vanstone. Handbook of Applied Cryptography. CRC
Pr I Llc, 1996.

[Res00] Certicom Research. SEC 1: Elliptic Curve Cryptography, Version 1.0, September 2000.
[Sol99] J. Solinas. Generalized Mersenne Numbers. Technical report CORR-39, Dept. of C&O, Univer-

sity of Waterloo, 1999. Available from http://www.cacr.math.uwaterloo.ca, 1999.
[WKC+04] Ronald Watro, Derrick Kong, Sue Fen Cuti, Charles Gardiner, Charles Lynn, and Peter Kruus.

TinyPK: Securing Sensor Networks with Public Key Technology. In SASN ’04: Proceedings of
the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, pages 59–64, New York,
NY, USA, 2004. ACM Press.

[xbo] Crossbow Technology, Inc. http://www.xbow.com.

105 SPEED Workshop Record

Optimal Irreducible Polynomials for GF(2m)
Arithmetic

Michael Scott

Dublin City University
Ballymun
Dublin
Ireland.

mike@computing.dcu.ie

Abstract. The irreducible polynomials recommended for use by multi-
ple standards documents are in fact far from optimal on many platforms.
Specifically they are suboptimal in terms of performance, for the compu-
tation of field square roots and in the application of the “almost inverse”
field inversion algorithm. In this paper we question the need for the stan-
dardisation of irreducible polynomials in the first place, and derive the
“best” polynomials to use depending on the underlying processor archi-
tecture. Surprisingly it turns out that a trinomial polynomial is in many
cases not necessarily the best choice. Finally we make some specific rec-
ommendations for some particular types of architecture.
Keywords: Irreducible polynomials. Arithmetic in F2m .

1 Introduction

The main application of F2m arithmetic (where m is an odd prime) is in el-
liptic curve cryptography [11], although recently it has also found constructive
application in pairing-based cryptography, specifically in the implementation of
the ηT pairing, which is one of the fastest known [5]. Clearly we would like the
underlying F2m arithmetic to be implemented as efficiently as possible.

Elements in F2m can be represented as a multi-precision string of bits, each bit
representing a coefficient in a polynomial of degree at most (m− 1), a so-called
polynomial basis representation. The field is specified in conjunction with an
irreducible polynomial, and multiplication of field elements is performed modulo
this irreducible polynomial.

Addition of field polynomials is a simple coefficient-by-coefficient XOR oper-
ation. By grouping coefficients into blocks, each block the size of one computer
word of w bits, the addition can be carried out using dm/we word XOR opera-
tions, an operation supported by all computer architectures. This can be thought
of as the same as multiprecision integer addition, without the carries.

Multiplication can be performed using the standard school-boy long multi-
plication algorithm, where in the calculation of each partial product carries are
simply ignored. The carry-free nature of this type of arithmetic can be an advan-
tage (implementing multiplication using Karatsuba’s algorithm for example is

Scott

SPEED Workshop Record 106

much simpler and faster), and a disadvantage (most architectures do not support
carry-free word multiplications).

Squaring is much faster than multiplication – it can be achieved by simply
inserting a zero between each coefficient. Multiplication or squaring both result
in a polynomial of degree at most 2m− 2, and it is this polynomial which must
be reduced modulo the irreducible polynomial. And it is this reduction process
which is the focus of this paper.

For security reasons the parameter m is chosen as a prime num-
ber. Certain fields are recommended for use in elliptic curve cryptogra-
phy in popular standards. For example Certicom in their “Standards for
Efficient Cryptography” (available from www.secg.org) recommend m ∈
{113, 131, 163, 193, 233, 239, 283, 409, 571}, and it is these fields that we will fo-
cus on here. They also insist on specific irreducible polynomials for each case
(“... must use [these] reduction polynomials ... to encourage interoperability”),
although interestingly they offer a choice of two polynomials for the case of
m = 239, on the grounds that both have been commonly used in practise.

Unfortunately the recommended irreducible polynomials have several disad-
vantages

– Few of them are optimal in terms of the actual implementation of the reduc-
tion algorithm on popular architectures.

– Few are suitable for the calculation of field square roots, which is required
for elliptic curve point halving operations [4], and for the ηT pairing [5].

– Many are unsuitable for use with the almost inverse algorithm for field in-
version [11].

The reason for the standardisation of irreducible polynomials is that the rep-
resention of field elements depends upon it. Therefore it is important for example
in a communications protocol in which field elements are transmitted from one
party to another, that all participants are aware of the irreducible polynomial
in use by the others. However it is a simple matter to include the parameters
that define the irreducible polynomial as part of the domain information which
each participant needs to aware of anyway. In this case the irreducible polyno-
mial might be chosen to facilitate the participant with the lowest computational
power, and hence in most need of an optimal choice of polynomial. Alternatively,
one can change from one polynomial representation to another should that be
necessary as described in [13], section A.7. The change of basis algorithm is a
little awkward, and requires a precomputed m × m bit conversion matrix. It
could represent a significant overhead for a poorly-resourced processor, and so
should only be expected of the more powerful protocol participants.

The fact that standard elliptic curve domain parameters are described in
terms of the standard polynomials presents a barrier to converting them to a
more suitable polynomial, and most implementors just stick with the standard
polynomials for implementation as well as for representation.

Optimal Irreducible Polynomials for GF(2m) Arithmetic

107 SPEED Workshop Record

2 Irreducible polynomials

For the field F2m it is in practise always possible to chooose as an irreducible
polynomial either a trinomial

xm + xa + 1

or a pentanomial

xm + xa + xb + xc + 1

In both cases the optimal reduction algorithm is linear and fast compared
to the worse-than-linear multiplication algorithm. For efficiency the reduction
algorithm of choice [11] requires that m− a ≥ w.

In [8] it is stated that “performance reasons impose that irreducible poly-
nomials have the shortest number of non-zero terms”, and it appears to be a
commonly held view that trinomials are better than pentanomials. As we shall
see this is not necessarily the case.

The standard polynomials are selected according to the following criteria
(with the exception of one of the m = 239 polynomials). If a trinomial exists,
the trinomial with the smallest value for a is chosen. Otherwise the pentanomial
is chosen with the smallest a, then the smallest b given a, and then the smallest
c given a and b. Given these rules it is relatively easy to find the standard
polynomial for any value of m. They are also most likely to fulfil the condition
that m−a ≥ w. There is also a widespread belief that such polynomials are also in
some sense optimal. For example Ahmadi and Menezes [3] suggest a construction
where the middle terms are “all of relatively low degree and are close to each
other, which in turn facilitates efficient multiplication of polynomials modulo
f(x)”.

However there does not seem to be any basis for this suggestion for software
implementations, although it may have merit in hardware. For example, as we
shall see, the standard polynomial for F2283 is far from being optimal, despite
adhering to these recommendations.

Recently there have emerged applications in which it is important that square
rooting should be fast, specifially point halving algorithms for fast elliptic curve
point multiplication [4], [11], and the ηT pairing [5]. Fast square rooting requires
that a (and b and c for a pentanomial) must all be odd [10]. Such polynomials
are easy to find, but unfortunately most of the standard polynomials are not of
this form [4].

It has been known for some time that the Schroeppel et al. “almost inverse”
algorithm for field inversions is more efficient if a ≥ w for a trinomial, and
c ≥ w for a pentanomial [14] (although in [10] a couple of strategies due to
Knudsen and Schroeppel are described which can to an extent circumvent this
restriction). Many of the standard irreducible polynomials do not satisfy this
condition, although in practise it may be that this algorithm is not the algorithm
of choice [11]. Nonetheless the authors of [14] complain that “Unfortunately, most
of the field polynomials specified in ANSI X9.62 do have terms of low degree. This

Scott

SPEED Workshop Record 108

increases the timings of the almost inverse algorithm by up to 30%. Therefore,
we conclude that the choice of polynomials in ANSI X9.62 is rather unfortunate,
and may be revised if that is practically feasible.”.

A third, and hitherto largely neglected, issue is that of performance. Although
the reduction algorithm is always fast compared with multiplication, it applies
also to squarings. One of the advantages of using methods based on F2m fields
is that squarings are potentially so fast. But if the reduction algorithm is slow
this advantage will be offset.

3 An Example

For the field F2163 the standard irreducible polynomial is x163 +x7 +x6 +x3 +1.
The reduction algorithm as described by Hankerson et al. in section 2.3.5 of [11]
for a 32-bit processor is illustrated in Algorithm 1.

Algorithm 1 Fast reduction modulo f(x) = x163 + x7 + x6 + x3 + 1
Input: A binary polynomial represented as 10 32-bit words g[.]
Output: g[.] reduced modulo f(x), represented as 6 32-bit words
1: for i ← 10 downto 6 do
2: t ← g[i]
3: g[i] ← 0
4: g[i− 6] ← g[i− 6]⊕ (t ¿ 29)
5: g[i− 5] ← g[i− 5]⊕ (t ¿ 4)⊕ (t ¿ 3)⊕ t⊕ (t À 3)
6: g[i− 4] ← g[i− 4]⊕ (t À 28)⊕ (t À 29)
7: end for
8: t ← g[5] À 3
9: g[0] ← g[0]⊕ t

10: t ← (t ¿ 3)
11: g[1] ← g[1]⊕ (t À 28)⊕ (t À 29)
12: g[0] ← g[0]⊕ t⊕ (t ¿ 4)⊕ (t ¿ 3)
13: g[5] ← g[5]⊕ t

After the loop there is some tidying-up to be done to deal with the most
significant word of the result. Concentrating on the time-critical loop, unrolling
it (and omitting for clarity the rest of the algorithm) we get Algorithm 2.

Note that this requires 30 word shift operations 35 word XORs, which can
be considered as 5 times the 6 shifts and 7 XORs required by each iteration of
the loop.

Now consider a different irreducible polynomial, f(x) = x163 + x99 + x97 +
x3 + 1. The equivalent algorithm is shown in Algorithm 3.

In both cases the number of memory reads and writes are the same. However
it is clear from inspection alone that this last algorithm will be faster. In fact
it requires only 20 word shifts and 30 XORs, or 5 times the 4 shifts and 6
XORs required by each iteration of the loop. To understand the reasons for

Optimal Irreducible Polynomials for GF(2m) Arithmetic

109 SPEED Workshop Record

Algorithm 2 Loop-unrolled reduction modulo f(x) = x163 + x7 + x6 + x3 + 1
Input: A binary polynomial represented as 10 32-bit words g[.]
Output: g[.] partially reduced modulo f(x), represented as 6 32-bit words
1: g10 ← g[10], g9 ← g[9], g8 ← g[8], g7 ← g[7], g6 ← g[6]
2: g[10] ← g[9] ← g[8] ← g[7] ← g[6] ← 0
3: g6 ← g6 ⊕ (g10 À 28)⊕ (g10 À 29)
4: g[5] ← g[5]⊕ (g10 À 3)⊕ (g10 ¿ 4)⊕ (g10 ¿ 3)⊕ g10 ⊕ (g9 À 28)⊕ (g9 À 29)
5: g[4] ← g[4]⊕(g10 ¿ 29)⊕(g9 À 3)⊕(g9 ¿ 4)⊕(g9 ¿ 3)⊕g9⊕(g8 À 28)⊕(g8 À 29)
6: g[3] ← g[3]⊕(g9 ¿ 29)⊕(g8 À 3)⊕(g8 ¿ 4)⊕(g8 ¿ 3)⊕g8⊕(g7 À 28)⊕(g7 À 29)
7: g[2] ← g[2]⊕(g8 ¿ 29)⊕(g7 À 3)⊕(g7 ¿ 4)⊕(g7 ¿ 3)⊕g7⊕(g6 À 28)⊕(g6 À 29)
8: g[1] ← g[1]⊕ (g7 ¿ 29)⊕ (g6 À 3)⊕ (g6 ¿ 4)⊕ (g6 ¿ 3)⊕ g6

9: g[0] ← g[0]⊕ (g6 ¿ 29)

Algorithm 3 Loop-unrolled reduction modulo f(x) = x163 + x99 + x97 + x3 + 1
Input: A binary polynomial represented as 10 32-bit words g[.]
Output: g[.] partially reduced modulo f(x), represented as 6 32-bit words
1: g10 ← g[10], g9 ← g[9], g8 ← g[8], g7 ← g[7], g6 ← g[6]
2: g[10] ← g[9] ← g[8] ← g[7] ← g[6] ← 0
3: g8 ← g8 ⊕ g10 ⊕ (g10 À 2)
4: g7 ← g7 ⊕ (g10 ¿ 30)⊕ g9 ⊕ (g9 À 2)
5: g6 ← g6 ⊕ (g9 ¿ 30)⊕ g8 ⊕ (g8 À 2)
6: g[5] ← g[5]⊕ (g10 À 3)⊕ g10 ⊕ (g8 ¿ 30)⊕ g7 ⊕ (g7 À 2)
7: g[4] ← g[4]⊕ (g10 ¿ 29)⊕ (g9 À 3)⊕ g9 ⊕ (g7 ¿ 30)⊕ g6 ⊕ (g6 À 2)
8: g[3] ← g[3]⊕ (g9 ¿ 29)⊕ (g8 À 3)⊕ g8 ⊕ (g6 ¿ 30)
9: g[2] ← g[2]⊕ (g8 ¿ 29)⊕ (g7 À 3)⊕ g7

10: g[1] ← g[1]⊕ (g7 ¿ 29)⊕ (g6 À 3)⊕ g6

11: g[0] ← g[0]⊕ (g6 ¿ 29)

Scott

SPEED Workshop Record 110

the speed up, consider the constants that arise in the shift operations. These
are the numbers m mod w, w− (m mod w), m− a mod w, w− (m− a mod w),
m− b mod w, w− (m− b mod w), m− c mod w and w− (m− c mod w). So for
the standard polynomial these values in pairs are (3, 29), (28, 4), (29, 3), and
(0, 32) respectively. For the fortuitous values of 0 and 32 that arise in this case,
the former implies no shifting, and the latter, a shift by the word length, results
in a zero. This piece of luck results in a saving of 1 XOR and 2 shifts per loop
iteration.

Our selection of irreducible polynomial is based on the idea of “making our
own luck” in the choice of irreducible polynomial. In our case the shift values
are (3, 29), (0, 32), (30, 2), and (0, 32) and this explains the savings achieved.
Given that m is odd our chances of being lucky like this can only improve if we
insist that a, b and c are also all chosen to be odd.

We note that this same idea is also alluded to in recent papers by Ahmadi
et al [1], section 4.2, and by Hankerson and Rodŕıguez-Henŕıquez [12], who also
independently suggested the use of the polynomial x163 + x99 + x97 + x3 + 1.

4 Further analysis

We define a trinomial where m− a ≡ 0 mod w as a lucky trinomial (LT), and a
trinomial for which this condition does not hold as an ordinary trinomial (OT).
We define a pentanomial where m − a ≡ m − b ≡ m − c ≡ 0 mod w as a lucky
pentanomial (LP). A pentanomial for which two out of three of these values is
congruent to zero is called a fortunate pentanomial (FP), the rest are ordinary
pentanomials (OP). In general, as we will see, a lucky trinomial beats a lucky
pentanomial, which beats an ordinary trinomial, which in turn beats a fortunate
pentanomial. Whereas a lucky trinomial is relatively rare, a lucky pentanomial
can often be found, and hence in many cases the pentanomial is superior to a
trinomial.

Is an irreducible lucky pentanomial always possible? The answer is no – an
irreducible lucky pentanomial is not possible for any wordlength w which is a
multiple of 4 if m ≡ ±3 mod 8, as a direct consequence of a theorem of Buhler
[6], [2]. However under the same circumstances useful irreducible trinomials do
not exist either [7], and so we must be satisfied with a fortunate pentanomial (if
we can find one).

When lucky pentanomials do exist for m ≡ ±1 mod 8, we get the added bonus
on a small eight bit processor that the shifts by m mod w and w−m mod w, are
in fact shifts by 1-bit and 7-bits (or visa versa), which are likely to be efficient.

Note that these definitions are word-length dependant. So whereas a lucky
trinomial might exist for one wordlength, it may not be so lucky for a larger
wordlength.

Finally we should point out that there is another way to be lucky. It is
possible that for example m − a ≡ m − b mod w. These means that the same
shifted values can be re-used, with some savings.

Optimal Irreducible Polynomials for GF(2m) Arithmetic

111 SPEED Workshop Record

5 Some real-world architectures

Of course the significance of all these potential savings depends on the particular
computer architecture. In this paper we consider four representative real-world
examples.

– A 32-bit Pentium or MIPS type of processor, which has fast 1-cycle XOR and
shift instructions. We ignore the fact that these architectures often support
multiple pipelines – we will assume that execution time is simply preportional
to the total number of such instructions (but given the complexity of this
architecture and its many variations, we recognise that this may be a rather
reckless assumption).

– A 32-bit ARM processor. This architecture supports a “barrel shifter”, and
an XOR instruction for example can at no extra cost shift one of its operands
by any number of bits. Therefore shifts are effectively free on this architec-
ture.

– A Texas Instruments ultra-low power msp430 16-bit processor, as used in
wireless sensor networks. This architecture supports a 1 cycle XOR instruc-
tion, but has only a 1-bit shift instruction. Therefore shifts by multiple bits
require multiple instructions. Fortunately the instruction set does allow a
1-cycle byte swap within a register, and simple masking instructions, which
means that for example an 8-bit left shift of a 16-bit register can be accom-
plished in 2 instructions.

– An Atmel Atmega128 low power 8-bit processor, another favourite for ap-
plications in wireless sensor networks. Again a 1-cycle 1-bit shift operation
is supported, along with a 1-cycle nibble swap within a register, as well as
register masking.

To find the optimal irreducible polynomial in any particular circumstance,
we cost each XOR and shift operation appropriately. An XOR always has a cost
of 1. A shift may have a cost of zero (for the ARM), or a larger cost. In the case
of the msp430 processor the costs are given in Table 1.

On this architecture right shifts can be slightly more expensive than left
shifts, as all rotates and right shifts are through the carry flag, and this must
be cleared to obtain a logical right shift as required here. However this only
applies to the first of a sequence of right shifts. Note that if the algorithm needs
a left-shift by 3, and also a left shift of the same value by 4 within a single
iteration, then we assume a compiler will be smart enough to shift once by 3
and follow that by a further shift by 1 bit. A shift left by 15 bits is best achieved
by a rotate right followed by a masking. Similar methods can be deployed for
the Atmel 8-bit processor, and the costs of shifts for this processor are given in
Table 2.

6 Results

For each candidate irreducible trinomial and pentanomial we calculate the as-
sociated costs and we select the cheapest, depending on the cost function that

Scott

SPEED Workshop Record 112

Table 1. Shift cost in clock cycles for msp430 16-bit processor

Shift size Left shift Right shift

1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 7
7 5 5
8 2 2
9 3 3
10 4 4
11 5 5
12 6 6
13 5 5
14 4 4
15 3 3

Table 2. Shift cost in clock cycles for Atmega128 8-bit processor

Shift size Left shift Right shift

1 1 1
2 2 2
3 3 3
4 2 2
5 3 3
6 4 4
7 3 3

Optimal Irreducible Polynomials for GF(2m) Arithmetic

113 SPEED Workshop Record

applies for that architecture. Recall that an irreducible polynomial which is good
for a 16-bit processor may not be so good for a 32-bit processor, for example
(m − a) may be a multiple of 16, but not of 32. In some cases the outcome is
not clear-cut, as it would depend for example on whether or not there would
be an intention to use the “almost inverse” algorithm. In the case of more than
one solution with the same cost, we favour the solution that is friendly for the
“almost inverse” algorithm. We do however insist that all exponents in the ir-
reducible polynomial are odd, given the recently realised significance of field
square roots. In any case, in no instances were optimal polynomials found with
any even exponents.

Some notable outcomes

– In some cases a pentanomial may be cheaper than a trinomial. In fact for
the msp430 arhitecture a trinomial is never optimal for the fields considered
here. However some algorithms (other than the reduction algorithm) may be
more efficient with a trinomial, so there may still be reasons for preferring a
trinomial if one should exist. For the Atmel 8-bit processor, trinomials make
something of a come-back, as for the first time we find some lucky trinomials.

– The “folklore” requirement that for a pentanomial irreducible polynomial
the middle terms (a, b and c) being close to one another and small leads to
a more efficient algorithm, does not appear to have any validity.

Consider for example the field F2233 . This supports the trinomial x233+x159+
1. However for the Pentium cost model the pentanomial x233+x201+x105+x9+1
is superior. Note that (233-201), (233-105) and (233-9) are all multiples of 32.
Whereas the trinomial requires 4 XORS and 4 shifts per loop iteration, the
pentanomial costs 5 XORS and only 2 shifts. However for the ARM model the
trinomial is still superior as shifts are free. For the msp430 an optimal polynomial
is x233 + x185 + x121 + x105 + 1. In this case we do find a solution which also
accomodates the “almost inverse” algorithm. Note that in no cases are the middle
terms particularly close to one another.

Avanzi [4] suggests choosing the square-root friendly irreducible polynomials
with odd exponents and the least degree sediment, that is with the smallest
size of a. However there seems to be no compelling reason for doing so. For the
m = 163 case the cost as we calculate it is even greater with this choice than
that for the standard polynomial.

7 Redundant Trinomials

In a recent paper Doche [9], building on earlier work by Brent and Zimmerman
[7], has suggested the use of redundant trinomials in place of pentanomials. How-
ever our surprising observation that pentanomials can actually be faster than
trinomials rather undermines the basis of their results. Certainly for applica-
tions in cryptography the premise [7] that pentanomials are “considerably more
expensive in applications” is not supported. Nevertheless there may be cases

Scott

SPEED Workshop Record 114

Table 3. Optimal irreducible polynomials for Pentium-type 32-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x15 + 1 8 8 OT
131 x131 + x97 + x65 + x3 + 1 11 13 OP
163 x163 + x99 + x97 + x3 + 1 10 13 FP
193 x193 + x73 + 1 8 8 OT
233 x233 + x201 + x105 + x9 + 1 7 8 LP
239 x239 + x207 + x111 + x47 + 1 7 8 LP
283 x283 + x249 + x219 + x27 + 1 10 16 FP
409 x409 + x377 + x185 + x57 + 1 7 8 LP
571 x571 + x507 + x475 + x417 + 1 10 16 FP

Table 4. Optimal irreducible polynomials for ARM-type 32-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x15 + 1 4 4 OT
131 x131 + x99 + x97 + x95 + 1 7 7 OP
163 x163 + x99 + x97 + x3 + 1 6 7 FP
193 x193 + x73 + 1 4 4 OT
233 x233 + x159 + 1 4 4 OT
239 x239 + x203 + 1 4 4 OT
283 x283 + x249 + x219 + x27 + 1 6 8 FP
409 x409 + x87 + 1 4 4 OT
571 x571 + x507 + x475 + x417 + 1 6 8 FP

Table 5. Optimal irreducible polynomials for msp430 16-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x97 + x65 + x33 + 1 10 13 LP
131 x131 + x115 + x81 + x67 + 1 16 22 FP
163 x163 + x131 + x129 + x115 + 1 16 22 FP
193 x193 + x145 + x129 + x113 + 1 10 12 LP
233 x233 + x185 + x121 + x105 + 1 13 16 LP
239 x239 + x207 + x111 + x47 + 1 9 13 LP
283 x283 + x225 + x203 + x107 + 1 17 33 FP
409 x409 + x377 + x185 + x57 + 1 13 19 LP
571 x571 + x507 + x475 + x417 + 1 17 31 FP

Optimal Irreducible Polynomials for GF(2m) Arithmetic

115 SPEED Workshop Record

Table 6. Optimal irreducible polynomials for Atmega128 8-bit processor

m Optimal polynomial Cost of this polynomial standard polynomial Type

113 x113 + x9 + 1 7 7 LT
131 x131 + x115 + x81 + x67 + 1 13 15 FP
163 x163 + x131 + x129 + x115 + 1 13 17 FP
193 x193 + x73 + 1 7 11 LT
233 x233 + x185 + x121 + x105 + 1 9 12 LP
239 x239 + x207 + x111 + x47 + 1 9 12 LP
283 x283 + x249 + x219 + x27 + 1 13 20 FP
409 x409 + x377 + x185 + x57 + 1 9 11 LP
571 x571 + x507 + x475 + x417 + 1 13 21 FP

where a redundant trinomial (or indeed pentanomial) may be superior to the ir-
reducible polynomials suggested here. For example, for the trickly m = 163 case
the redundant trinomial x171 + x101 + 1 is superior in most cases (not however
for the 8-bit processor, where the length of the representation of field elements
would increase by one byte, probably cancelling any potential gains).

In practice any small improvement possible with redundant trinomials may
be more than offset by the extra complications involved in field element compar-
isons, inversions and by the requirement for possibly one or more extra computer
words to be added to the field representation [9]. Note our extra condition that
m and a be odd further constrains the choice of redundant trinomials, so many
of the solutions presented in [9] are unsuitable.

8 Conclusions

In the light of recent developments the irreducible polynomials as recommended
in some standards are in urgent need of an overhaul. In fact we would argue
that the choice of irreducible polynomial should be left to the implementor, and
that issues that arise from the use of different irreducible polynomials by com-
municating parties should be dealt with in some other way other than through
standardisation.

We have derived polynomials that, when used for modular reduction, are in
all cases at least as fast (and often much faster) than those suggested in the
standards. We have also described a simple methodology for determining the
best polynomial to use in any given circumstance, using a simple and easy to
develop costing model. All of our suggested polynomials support a very fast
field square root operation, and there seems to be no good reason not to use a
square-root friendly polynomial in all cases.

Alternatively, based on the method described here, it might be possible to
come up with good compromise irreducible polynomials, which while not neces-
sarily being optimal in all cases, would nevertheless be an improvement on the
current standards. As can be seen from the tables above, all agree on the optimal

Scott

SPEED Workshop Record 116

irreducible polynomial for the case m = 571, and there are other examples of
majority agreement for other values of m.

9 Acknowledgments

Thanks are due to Darrel Hankerson and an anonymous referee of an early draft
who pointed out to me the work of Brent and Zimmerman [7] and Doche [9].

References

1. O. Ahmadi, D. Hankerson, and A. Menezes. Software implementation of arithmetic
in f3m . CACR Technical Reports, 2007. http://www.cacr.math.uwaterloo.ca/

techreports/2005/cacr2007-15.pdf.
2. O. Ahmadi and A. Menezes. Irreducible polynomials of maximum weight. CACR

Technical Reports, 2005. http://www.cacr.math.uwaterloo.ca/techreports/

2005/cacr2005-01.pdf.
3. O. Ahmadi and A. Menezes. On the number of trace-one elements in polynomial

bases for GF(2m). Designs, Codes and Cryptography, 37:493–507, 2005.
4. R. Avanzi. A note on square roots in binary fields. Cryptology ePrint Archive,

Report 2007/103, 2007. http://eprint.iacr.org/2007/103.
5. P.S.L.M. Barreto, S. Galbraith, C. OhEigeartaigh, and M. Scott. Efficient pairing

computation on supersingular abelian varieties. Designs, Codes and Cryptography,
42:239–271, 2007. http://eprint.iacr.org/2004/375.

6. A. W. Bluher. A Swan-like theorem. Finite Fields Appl., 12:128–138, 2006.
7. R. Brent and P. Zimmerman. Algorithms for finding almost irreducible and al-

most primitive trinomials. Proceedings of a conference in honour of Professor
H.C. Williams, 2003. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/

pd/rpb212.pdf.
8. M. Ciet, J. J. Quisquater, and F. Sica. A short note on irreducible trinomials in

binary fields. Proceedings of the 23rd Symposium on Information Theory in the
Benelux, 2002. citeseer.ist.psu.edu/559928.html.

9. C. Doche. Redundant trinomials for finite fields of characteristic 2. In ACISP
2005, volume 3574 of Lecture Notes in Computer Science, pages 122–133. Springer-
Verlag, 2005.

10. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point
halving revisited. Technical report CORR 2003-18, University of Waterloo, 2002.

11. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curves Cryptogra-
phy. Springer, 2004.

12. D. Hankerson and F. Rodŕıguez-Henŕıquez. Parallel formulation of scalar multi-
plication on koblitz curves. CACR Technical Reports, 2007. http://www.cacr.

math.uwaterloo.ca/techreports/2005/cacr2007-18.pdf.
13. IEEE Computer Society, New York, USA. IEEE Standard Specifications for

Public-Key Cryptography – IEEE Std 1363:2000, 2000. http://grouper.ieee.

org/groups/1363.
14. P. De Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature

schemes based on elliptic curves. In ANTS, 3rd International Symposium, volume
1423 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, 1998.

117 SPEED Workshop Record

Computer Aided Cryptographic Engineering

Daniel Page

University of Bristol, UK

In developing cryptographic software, most of us are implicitly dependent on tools that translate
our programs into an executable form; experience shows that the translation process can heavily
influence features such as efficiency and security. Maximising these features while simultaneously
minimising programmer effort is clearly desirable. As a result, an interesting research question is
how best to design domain-specific languages and development tools that support the description
and implementation of cryptographic software. The aim of this talk will be to highlight existing
development tools (which are perhaps unknown but useful) and to overview new research at the
University of Bristol into a cryptographic-aware language and compiler.

