
Cofactorisation strategies for the number
field sieve and an estimate for the sieving

step for factoring 1024-bit integers

Thorsten Kleinjung

University of Bonn, Department of Mathematics,

Beringstraße 1, D-53115 Bonn, Germany

thor@math.uni-bonn.de

Abstract
The relation collection step for the number field sieve (NFS) is usually done by
a combination of sieving techniques and methods for factoring the cofactors
(cofactorisation). In this article a simplified model for the cofactorisation step
is analysed and a method for finding good cofactorisation strategies is devel-
oped. This can be used to optimise hardware and software implementations.
As an application we give an upper bound for the cost of the sieving step for a
1024-bit integer; using 12 million standard PCs it can be done within a year.

1 Introduction

The number field sieve (see [LL], [Coh]; the latter also describes all other factoring
algorithms mentioned henceforth) is asymptotically the best known algorithm to
factor numbers with large factors. In particular, it seems to be the best algorithm
for factoring numbers which appear in RSA based cryptographic protocols. It has
two expensive parts: the relation collection part and the matrix step.

In the relation collection part one searches among a lot of integers for those which
completely split into small primes. Most hardware and software architectures do
this in two steps (e. g., see [S05]). In the first step the smallest primes are identified
and in the second step more sophisticated methods are used for the composites,
which are not too big, to check whether they split into small primes. We call
the first step sieving and the second step cofactorisation. This paper analyses the
cofactorisation step (for another analysis see [Pom]) and describes a procedure to
improve its efficiency. Usually this leads to a larger amount of relations such that
less sieving needs to be done. Therefore it also improves implementations where the
cofactorisation step is negligible.

This procedure has been used in the factorisation of RSA640 and in an earlier
form also for factoring RSA200 ([RSA]). In the last section we apply it to estimate
the cost of the sieving step for a 1024-bit integer and give details of the sieving
experiments.



2 The sieving step

In NFS we are given two homogeneous polynomials Fi ∈ Z[X, Y ], i = 1, 2, satisfying
certain conditions. The task of the sieving step is to collect sufficiently many coprime
pairs of integers (a, b), b > 0, such that both integers Fi(a, b) are Li-smooth for a
given bound Li, i. e., they decompose into prime factors ≤ Li. Such pairs (a, b)
are called relations. The number of relations needed depends on the bounds Li,
collecting π(L1) + π(L2) relations is usually more than necessary (π(x) being the
number of primes up to x).

The collection of relations is usually done by a combination of a sieving technique
and a method for factoring smaller numbers, e. g., ECM or MPQS (see [Coh]). For
this purpose we choose two factor bases Fi each consisting of pairs (p, r), where
p ≤ Bi is a prime and r an integer such that p divides Fi(a, b) whenever p | a− br.
We write Fi(a, b) = S

(a,b)
i R

(a,b)
i , where S

(a,b)
i is Bi-smooth and R

(a,b)
i has no prime

divisor ≤ Bi. For this paper we divide the relation collection phase into the following
steps:

Sieve Approximations of logR
(a,b)
i are calculated using a sieve.

Evaluation The pairs (a, b) for which both approximations of logR
(a,b)
i , i = 1, 2,

are below given bounds are identified. These are called candidates.

TD For each candidate (a, b) the prime divisors of S
(a,b)
i are identified, e. g., by

trial division, and the values R
(a,b)
i are calculated. Optionally, a candidate is

removed from the candidate list if the values R
(a,b)
i are too big.

PSP If R
(a,b)
i > Li a fast compositeness test is performed, removing the candidate

if R
(a,b)
i > Li is pseudo-prime.

Cofactorisation For each R
(a,b)
i > Li a factorisation attempt is done. If both

values R
(a,b)
i are known to be Li-smooth, respectively, (a, b) is output as a

relation.

Notice that in practice the steps are more complex, e. g., the first step is usually
broken into several steps. However, we will mainly be concerned with the last step
which is unaffected by this simplification.

For the following it is not necessary that the relation collection phase works as
described above. We only need a black box which produces candidates, respectively
pairs (R

(a,b)
1 , R

(a,b)
2 ), and we assume that the bounds Bi are not too small.

3 Cofactorisation

In this section we discuss the cofactorisation step, i. e., we ask how much and which
effort one should put in the factorisation attempts of R

(a,b)
i for a candidate (a, b).

If we consider only one candidate we drop the superscript (a,b) and simply write
Ri.



Example
As before let Bi be the factor base bounds and Li the large prime bounds.

Suppose we have a candidate with non-prime cofactors satisfying Li < Ri, i = 1, 2.
Furthermore we restrict the set of factorisation methods to MPQS (or a similar
method like SQUFOF) which has the property that the time it takes depends roughly
on the size of the input number and which has a negligible probability of not finding
a factorisation. This restriction implies that we only have two strategies: first
applying MPQS to R1 and, if R1 is smooth, applying MPQS to R2 or vice versa.

As a special case let us consider the situation where R1 ≤ B1L1 and B2L2 < R2

holds. Then R1 is L1-smooth whereas R2 might not be L2-smooth. So the better
strategy is to begin with factoring R2 since we save the cost for factoring R1 if R2

is not L2-smooth.
In general let pi be the probability that a number of size Ri is Li-smooth and

ci the cost for factoring a number of size Ri. Of course, for both strategies the
probability that we get a relation is p1p2. If we first apply MPQS to R1 the cost is
on average c1 + p1c2 whereas first applying MPQS to R2 gives a cost of c2 + p2c1.
Using approximations for ci and pi we get a good guess on which strategy is more
efficient on average.

In the following we also consider factorisation methods like ECM for which the
probability of success depends on deeper information about the input number like
the probability that the input number has a prime divisor of a certain size. Moreover
these factorisation methods can change the deeper information, e. g., many unsuc-
cessful ECM attempts on a number decrease the probability that it has a small
prime divisor.

Our simplified model
Factoring a composite number n is a recursive process which splits it in n = n1n2,

ni > 1, and, if n1 or n2 is not prime, another factorisation attempt is made on the
smaller composite(s). In our model we assume that most of the work is spent in the
first splitting and that the time for primality tests and for subsequent splittings is
negligible. Notice that we only want to check for L-smoothness such that we do not
need to split numbers ni ≤ L nor test their primality. Moreover we can stop the
subsequent splittings if we encounter a prime divisor > L of n. Furthermore in our
situation n has no prime divisors ≤ B, the factor base bound, such that a splitting
considerably reduces the size of the number to be factored. However, there exist
situations in which the time spent for subsequent splittings is significant. For these
situations a more refined model has to be used.

We call an algorithm which has as only input a number n and outputs a divisor of
n, possibly trivial, a factorisation method. For example, ECM with given bounds B1

and B2 for its two stages is a factorisation method and ECM with different bounds
B′1 and B′2 is a different factorisation method.

A strategy is a finite sequence of pairs (FM, s) where FM is a factorisation
method and s ∈ {1, 2}. A strategy (FMj, sj) can be applied to (R1, R2). Applying
a strategy (FMj, sj) to (R1, R2) means that for j = 1, 2, . . . the factorisation method
FMj is applied to Rsj respecting the following rules:



• FMj is not applied to Rsj if Rsj has already been split.

• If a (pseudo-)prime factor > Li of Ri, i = 1 or i = 2, has been found the
process is aborted.

• If Ri, i = 1 or i = 2, has not been split yet and sk 6= i holds for all k ≥ j the
process is aborted.

In other words, we apply the factorisation methods successively to their targets
avoiding unnecessary work. We call the application of the strategy to (R1, R2)
successful, if Ri is Li-smooth, i = 1, 2, and this is detected by the strategy, i. e., Ri

is either ≤ Li or split by one factorisation method of the strategy, i = 1, 2.
We also allow a strategy of length 0 meaning that no factorisation attempt is

done. This strategy is by definition never successful, even ifR1 and R2 are L1-smooth
and L2-smooth, respectively.

Finding good strategies
In the cofactorisation step we want to quickly find a good factorisation strategy

for a pair (R1, R2), as before Ri has no prime divisor ≤ Bi. Denoting by ri the bit
length of Ri we will select a strategy depending on (r1, r2). It is possible to choose
a finer or coarser graining leading to a larger or smaller effort for precomputations.

Let FM be a set of factorisation methods and S a finite set of strategies built
from elements of FM and containing the strategy of length 0. For a strategy S ∈ S
and a pair of bit lengths (r1, r2) we denote by p(S; r1, r2) the probability that S
is applied successfully to a pair (R1, R2) of bit lengths (r1, r2) and by c(S; r1, r2)
the average cost of such an application of S (see below for the calculation of these
quantities).

Let C0 be the cost for sieving, evaluation, trial division and compositeness tests,
producing a set C of candidates. We assume that C is representative with respect
to the distribution of the sizes of (r

(a,b)
1 , r

(a,b)
2 ), the bit lengths of (R

(a,b)
1 , R

(a,b)
2 ),

for (a, b) ∈ C. I. e., we assume that sufficiently many candidates with the same
distribution can be produced at the same rate. In practice, if we use lattice sieving
([LL]), we generate C by sieving over some special q, uniformly distributed in the
anticipated range of special q.

If we choose strategy Sr1,r2 for cofactors of bit length (r1, r2) the average number
of relations will be

Y =
∑

(a,b)∈C
p(S

r
(a,b)
1 ,r

(a,b)
2

; r
(a,b)
1 , r

(a,b)
2 )

generated in average time

T = C0 +
∑

(a,b)∈C
c(S

r
(a,b)
1 ,r

(a,b)
2

; r
(a,b)
1 , r

(a,b)
2 ).

Y and T depend on the set of candidates C and on the collection {Sr1,r2} of strategies
which we suppressed in the notation.

Our goal is to choose a collection {Sr1,r2} such that Y
T

is maximised for a given
set of candidates C. Since r1 and r2 are bounded and S is finite this is a finite
calculation which can be considerably simplified by the following observations.



Observation 1 Let the notations be as above. There exists a maximum s of Y
T

which is obtained by choosing for each (r1, r2) a strategy Soptr1,r2 such that the value
p(S; r1, r2)− s · c(S; r1, r2) attains a maximum for S = Soptr1,r2

.

Because of the finiteness of S and the boundedness of r1 and r2 there exists a
maximum s for Y

T
. For a collection {Sr1,r2} we have s ≥ Y

T
or

sC0 ≥
∑

(a,b)∈C

(
p(S

r
(a,b)
1 ,r

(a,b)
2

; r
(a,b)
1 , r

(a,b)
2 )− s · c(S

r
(a,b)
1 ,r

(a,b)
2

; r
(a,b)
1 , r

(a,b)
2 )

)
.

Equality holds if each summand on the right hand side is maximal, resulting in the
condition of the observation.

Consider the following set

Pr1,r2 =

{(
c(S; r1, r2)

p(S; r1, r2)

)
| S ∈ S

}

of points in the plane. For finding the maximum of p(S; r1, r2) − s · c(S; r1, r2) we
have the following obvious observation:

Observation 2 Denote the vertices of the ascending part of the boundary of the
convex hull of Pr1,r2 by h

(0)
r1,r2 =

(
0
0

)
, h

(1)
r1,r2, . . . , h

(h)
r1,r2 (in clockwise order) and let s

(i)
r1,r2

be the slope of the edge connecting h
(i−1)
r1,r2 and h

(i)
r1,r2. Set s

(0)
r1,r2 =∞ and s

(h+1)
r1,r2 = 0.

The maximum of y− sx,
(
x
y

)
∈ Pr1,r2 is always attained at a point of the convex

hull of Pr1,r2. If no slope equals s the maximum is attained at vertex h
(i)
r1,r2 such that

s
(i)
r1,r2 > s > s

(i+1)
r1,r2 , otherwise it is attained at every point of Pr1,r2 lying on the edge

with slope s.

After having calculated all values c(S; r1, r2) and p(S; r1, r2) (see below) we com-
pute for each (r1, r2) the convex hull and sort all slopes. This is independent of
the set of candidates C. Having generated a representative set C we can find
the optimal s by a binary search. Indeed, given an s we find S(r1,r2) maximising
p(S; r1, r2)− s · c(S; r1, r2) by observation 2. Then we can calculate Y and T , and
compare Y

T
with s. Since a lot of simplifications have been made, the optimal s in

practice will usually differ from the theoretically optimal s. So it is better to choose
a few reasonable values for s and measure Y

T
directly.

We now show how to compute c(S; r1, r2) and p(S; r1, r2).

Local calculations
We restrict ourselves to the discussion of three factorisation methods, namely the

p − 1-method, ECM and MPQS. Here MPQS stands synonymously for SQUFOF,
the continued fractions method or GNFS whose run time also only depends on the
size of the input number. These methods heuristically always yield a splitting of
the input number. In contrast, the p − 1-method and ECM with fixed parameters
B1 and B2 find a prime divisor p of the input number with a certain probability
depending on the size of p. The time these methods need depends on the size of the



input number. A difference between the p − 1-method and ECM is that applying
the p − 1-method with the same parameters to the same number always gives the
same result, whereas several ECM runs have a higher probability of finding a factor
than one ECM run. For this reason we only consider strategies in which the p− 1-
method occurs at most once per side. This is a bit more restrictive than necessary.
We could also allow several applications of the p− 1-method per side which would
slightly increase the complexity of the analysis below.

In the following we will consider the probability that a number has prime divisors
of certain bit lengths. For this we will count numbers of a certain size having a
certain decomposition type. For m,n, ni ∈ Z≥0 let

Ψ(n;n1,...,nm) ={
x = q1 · . . . · qm ∈ Z>0 | q1 ≤ . . . ≤ qm, prime, qi ∈ [2ni−1, 2ni[, x ∈ [2n−1, 2n[

}

be the set of n-bit numbers which are products of m prime numbers such that the
i-th smallest prime divisor has exactly ni bit. For an arbitrary set X ⊂ Z≥0 we
write X (n;n1,...,nm) = X ∩ Ψ(n;n1,...,nm) such that we get a disjoint decomposition

X =

•⋃

m,n,ni

X(n;n1,...,nm).

Let M be the set of composite natural numbers having no prime divisor ≤ B. The
cardinality of M (n;n1,...,nm) can be approximated using the prime number theorem
and some integration. Since the bound B usually is big enough, the approximation
is quite good.

As a next step we gather data about the factorisation methods. For MPQS we
measure the average run time for factoring n-bit integers, n ranging over the possible
bit lengths of the Ri. For the p − 1-method and ECM with fixed parameters we
do the same and additionally we compute the probability that a k-bit prime divisor
will be discovered. It is sufficient to do this for all k up to the bit length of the
largest Ri, but it is also possible to stop if the probability is very near to 0 and set
the probability for larger k to 0.

We now turn to the computation of c(S; r1, r2) and p(S; r1, r2). Let Mi initially
be the set of composite natural numbers having no prime divisor ≤ Bi. We denote
the cardinality of M

(n;n1,...,nm)
i by m

(n;n1,...,nm)
i and compute it for n up to the maximal

bit lengths of the Ri. Notice that this is a finite computation since for each n there
are only finitely many m-tuples (n1, . . . , nm) such that Ψ(n;n1,...,nm) is non empty.

Then we successively consider the factorisation methods of S = (FMj, sj),
virtually applying them to (M1,M2) but only keeping track of the cardinalities

m
(n;n1,...,nm)
i . If FMj is the p − 1-method or ECM it will change Msj by removing

those x ∈ Msj such that FMj splits x. Denoting by prob(FMj, nk) the probability

that FMj discovers a prime divisor of nk-bit, the cardinality m
(n;n1,...,nm)
i will change

to
m

(n;n1,...,nm)
i ·

∏

k

(1− prob(FMj, nk)).



Analogously we compute how many smooth numbers are detected by FMj. For
MPQS we compute the number of smooth numbers and set Msj to ∅. Putting to-
gether all these information we obtain approximations for c(S; r1, r2) and p(S; r1, r2).

Note that we made several assumptions which heuristically seem to be true,
for example the assumption that the probabilities of several ECM attempts are
independent. We also neglected some strange cases like ECM finding all factors
simultaneously.

4 Practical considerations

Here we discuss implementation details and problems of the methods in the previous
section.

Reducing TD work
Usually for a lot of bit lengths (r1, r2) no factorisation attempt is done. For

example, we often have L2
1 < B3

1 and a number between L2
1 and B3

1 not divisible by
primes ≤ B1 is not L1-smooth. To avoid a lot of useless trial divisions we would like
to discard such candidates as soon as possible.

If the sieving is very exact we can approximate r
(a,b)
1 and r

(a,b)
2 from the sieve

approximations at (a, b). We then discard the candidate (a, b) if in a small neigh-

bourhood of (r
(a,b)
1 , r

(a,b)
2 ) no factorisation attempt is done. In this way we might

loose a few relations but the gain in reducing the trial division work seems to out-
weigh the loss. Notice also that bit lengths (r1, r2) for which no factorisation attempt
is done seem to be clustered such that the procedure above discards a good part of
unwanted candidates.

Reducing precomputations
If we consider n factorisation methods and all strategies of length ≤ l built out

of these, we have to evaluate (2n)l+1−1
2n−1

strategies for each pair (r1, r2). Even for small
n and l this might be too big.

We can reduce this by discarding nonsense strategies, for example strategies
where MPQS is applied to one side and afterwards another factorisation method to
the same side. But the number of strategies to be checked will still be huge.

Since we only want to compute the convex hull of Pr1,r2 we only need to consider
the (unknown) strategies corresponding to the edges in the convex hull. Therefore
we will make a guess which strategies are likely to contribute to the convex hull and
only evaluate these strategies. By doing this we might miss some good strategies
but we can consider much longer strategies built from a larger set of factorisation
methods.

There are several ways for guessing which strategies are good. We have imple-
mented the following procedure. First consider all strategies of small length, ≤ 4
say, built from the n chosen factorisation methods. For those strategies which con-
tribute to the convex hull consider also mutations of these strategies which arise by
inserting a factorisation method (always discarding nonsense strategies) and iterate
this several times.



Auxiliary factorisations
In the case Ri ≤ B3

i the first splitting always gives a complete factorisation. For
B3
i < Ri ≤ B4

i the first splitting may give one prime factor and a composite which
is ≤ Ri

Bi
. Usually factoring this composite is much cheaper than the first splitting of

Ri. For larger Ri the situation is more difficult.
The number Ri might be a product of a small prime and two larger primes of

almost the same size which are bigger than Li. If the small prime factor is discovered
by the p−1-method or ECM we have to factor the product of the two larger primes.
In this case it is best to use MPQS which will use a lot of time, only to discover
that Ri is not Li-smooth. On the other hand Ri might be a product of several (≥ 4)
small primes ≤ Li. If the first splitting discovers one of these we might use ECM
on the cofactor which will find the other small prime factors faster than MPQS.

Therefore we have implemented the following procedure for the auxiliary factori-
sation. A composite smaller than 296 is factored by MPQS. For a larger composite
a few ECM attempts are done, stopping, if its size falls below 296. If the size of
the remaining composite is smaller than 2128 MPQS is applied, otherwise we dis-
card the composite. Since smooth composites contain many small prime factors the
probability that ECM finds a factor and reduces the size of the composite is much
higher than for general composites. So we expect that smooth composites are very
rarely discarded by this procedure. Nevertheless, if very large Ri occur frequently
the handling of auxiliary factorisations should be investigated further.

5 An estimate for the cost of the sieving step for

RSA1024 using PCs

In this section we will describe an experiment to estimate the cost for the sieving
step for the 1024-bit number RSA1024 using standard PCs. We have chosen the
following polynomial pair (f1, f2):

f1=1000000001002023904806000x6 +269697895236768163056606416340x5−6212838818608524196100227896844747498x4

−8471052513942755376507570481852462668136x3 +73860891685131025550440825288937867970123111795x2

+103239504258459269088961583772414261637624065053206x−113943198561639198776937620503643872967091171901277555912

and
f2=514662055961724717752552412597334861x−226511983014638262784476372319943180970205534545.

Only a few hours have been spent for the polynomial selection and one should expect
to find much better polynomial pairs.

We use the lattice siever of Jens Franke, which was also used for factoring RSA200
and RSA640 ([RSA]), with a sieving area of size 216× 215. The factor bases contain
all prime ideals below 1.1 · 109 and 3 · 108 for polynomial f1 and f2, respectively.
On both sides the large prime bounds are set to 242. Cofactorisation strategies were
calculated for r1 ≤ 192 and r2 ≤ 160. As special q we choose most numbers between



8 · 1012 and 56 · 1012 consisting of prime factors between 28 and 232. Approximately
18% of the special q have a highly skewed lattice and were discarded.

We did lattice sieving for special q in the intervals [i · 1012, i · 1012 + 200] for
i = 8, 9, . . . , 56. There are 580 special q of which 105 were discarded. The remaining
475 special q produced 295 relations, so on average 0.62 relations per special q leading
to at least 0.168 unique relations per special q. Using 1.876 ·1012 special q we expect
to get 3.16 · 1011 > 2π(242) ≈ 3.14 · 1011 unique relations.

In the following table details about the timing and number of candidates for
an average special q are given. Since the siever does not consider the part of the
sieving area where both coordinates are even, we begin with 3 · 229 = 1 610 612 736
(a, b)-pairs. In the first step, sieving and a very crude evaluation are done. This
reduces the number of (a, b)-pairs by a factor of about 500. The next step removes
non-coprime (a, b)-pairs and does more accurate size checks as described in the first
part of the previous section, reducing the number of candidates by more than 90%.
In the third step (R

(a,b)
1 , R

(a,b)
2 ) are calculated and size checks and compositeness

tests are done. About 70% of the candidates are discarded. The last step is the
cofactorisation step.

Step # input #output time per input time per
original input

Sieve and evaluation 1 610 612 736 3 515 840 120 cycles 120 cycles
gcd and size checks 3 515 840 315 592 630 cycles 1.4 cycles
TD and PSP 315 592 88 840 179 180 cycles 35 cycles
Cofactorisation 88 840 0.62 1 912 032 cycles 105 cycles

Timing and number of candidates for an average special q

On a 2.2 GHz Athlon 64 with 2 GB main memory one special q needs on average
194 seconds such that 12 million of these PCs need less than a year for the total
sieving step. The sieving program needed about 1.9 GB of main memory.

The upper bound above may be improved in several ways. One might try dif-
ferent parameters for the special q and the sieving area to reduce the number of
duplicates. About half of the time is spent for compositeness tests and in the cofac-
torisation step. Since the memory used in these steps is of the size of the L1-cache,
a dualcore processor might give a speedup close to 2. Furthermore the size of the
main memory might be changed to 1 or 3 GB.



References

[Coh] H. Cohen, A Course in Computational Algebraic Number Theory, GTM
138, Springer, 1993.

[LL] A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of
the Number Field Sieve, Lecture Notes in Math. 1554, Springer, 1993.

[Pom] C. Pomerance, Analysis and comparison of some integer factoring al-
gorithms, in: Computational Methods in Number Theory, Part I (ed. by
H. W. Lenstra, Jr. and R. Tijdeman), Math. Centre Tract 154, Amsterdam,
1982, 89 – 139.

[RSA] J. Franke et al., E-mail announcements, 2005.
http://www.crypto-world.com/announcements/rsa200.txt

http://www.crypto-world.com/announcements/rsa640.txt

[S05] SHARCS 2005, Workshop on Special Purpose Hardware for Attacking Cryp-
tographic Systems, Paris, 2005.


