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Preface

Since its beginnings back in the year 2000, the international workshop series on “Agents in Traffic and Transportation” (ATT)
provides a forum for discussion for researchers and practitioners from the fields of Artificial Intelligence – in particular from
the area of Autonomous Agents and Multiagent Systems – and Transportation Engineering. The series aims at promoting
cross-fertilization among these disciplines, focussing on how large-scale complex transportation systems can be modelled,
simulated, and managed – both at micro and at macro level – employing techniques of agent-based simulation, decentralised
coordination, and adaptive regulation.

This fifth edition of ATT was held together with the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), in Estoril (Portugal) on May 13, 2008. Previous editions were: Barcelona, together with Autonomous Agents in
2000; Sydney, together with ITS 2001; New York, together with AAMAS 2004; and Hakodate, together with AAMAS 2006.

This edition of the workshop was the most successful in the history of ATT. In response to the call for papers, it attracted the
submission of 26 high-quality papers from 16 different countries. All papers were thoroughly reviewed by renowned experts
in the field. Based on the reviewers’ reports, and the unavoidable space and time constraints associated with the workshop,
it was possible to select only 9 of these submissions as full papers, an acceptance ratio of 35%. In addition, 6 submissions
were accepted as short papers, leading to an overall acceptance rate of 58%. In the process, a number of good and interesting
papers had to be rejected.

The present workshop proceedings cover a broad range of topics related to Agents in Traffic and Transportation, tackling the
use of tools and techniques based on multiagent simulation, reinforcement learning, coalitions and collectives, to name just a
few. We hope you will enjoy it! Finally, we owe a big “Thank you” to all people who dedicated their time and energy to make
this edition of ATT a success: from authors and reviewers to hosts and chairs of the AAMAS conference.

Estoril, May 2008 Ana Bazzan, Franziska Klügl, Sascha Ossowski
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ABSTRACT 
Existing theories and models in economics and transportation 
treat households’ decisions regarding allocation of time and 
income to activities as a resource-allocation optimization 
problem. Arguably, this stands in contrast with the dynamic 
nature of day-by-day activity-travel choices. Therefore, in the 
present paper we propose a different approach to model activity 
generation and allocation decisions of individuals and households 
that acknowledges the dynamic nature of the behavior. We 
propose an agent-based model where agents, rather than acting on 
the basis of a resource allocation solution for a given time period, 
make resource allocation decisions on a day by day basis taking 
into account day-varying conditions and at the same time 
respecting available budgets over a longer time horizon. Agents 
that share a household interact and allocate household tasks and 
budgets among each other. We introduce the agent-based model 
and formally discuss the properties of the model. The approach is 
illustrated on the basis of simulation of behavior in time and 
space.   

General Terms 
Human Factors, Theory. 

Keywords 
Travel demand modeling, agent-based modeling, activity 
generation, time use, income constraints. 

 

1. INTRODUCTION 
 
The importance of financial constraints on individuals’ time-use 
and activity choice has long been recognized particularly in the 
context of households’ long-term mobility decisions (e.g., [1], [2], 
[3], [4], [5]). Long-term decisions such a residential location, job 
location, working hours, car possession and so on, may have 
significant implications for the amounts of time and money 
available for daily activities such as shopping, recreation and 
social activities. For example, a decrease of working hours 
increases available time but decreases income that can be spent in 
daily activities. As another example, a change of residential 
location to a place farther away from work increases commuting 
times and, hence, reduces available time budgets for activities. 
Because of such implications, long-term mobility decisions 

generally require trading-off utility derived from activities against 
utility of spending time and money in living, traveling or luxury 
goods. 

Since the seminal work of Becker [6], households’ 
decisions regarding the allocation of time and income to activities 
have been conceptualized and modeled as a resource-allocation 
optimization problem. In this approach, the allocation of time and 
income to activities of a household in a given time period is 
determined based on an objective to maximize a total household 
utility [8], [9]. Although later studies have accomplished 
important refinements and elaborations [7], the basic assumption 
of framing resource allocation behavior as a global optimization 
problem has not been questioned. Arguably, this stands in contrast 
with the dynamic nature of day-by-day activity choices. The 
physical and social environment in which activities are 
implemented, and the needs, desires and constraints for these 
activities are to an important extent stochastic and non-stationary. 
This dynamics imply that objectives and conditions are never 
exactly the same and decisions to implement and spend a certain 
amount of money and time in activities often need to be adapted 
to current circumstances. 
 Therefore, in the present paper we propose a different 
approach to model activity-resource allocation decisions of 
individuals and households that acknowledges the dynamics of 
the behavior. We propose an agent-based model where agents, 
rather than acting on the basis of a resource allocation solution for 
a certain time period, make resource allocation decisions on a day 
by day basis taking into account the specific conditions of the 
moment and at the same time respect available budgets over a 
longer time horizon. We show that by using a local decision rule 
the agents are able to act flexibly and at the same time maximize 
a utility they derive from activities over a longer term, given 
existing budget constraints. To accomplish this, the rule uses for 
each resource a threshold parameter representing the scarcity of 
the resource. The appropriate value of each threshold is not 
known a-priori. Through a process of learning based on 
experience, the agents gradually find the threshold values that 
optimize their behavior globally. 

The proposed model will be incorporated in an 
integrated land-use, transportation system called PUMA [5], [10]. 
The model fits in current activity-based approaches to travel 
demand modeling. In existing conceptual frameworks, the 
programming and scheduling of activities are considered 
different, successive phases in a decision process for generating 
an activity schedule for a given day [15]. Programming decisions 

1

mailto:t.a.arentze@bwk.tue.nl
mailto:d.ettema@geo.uu.nl
mailto:h.j.p.timmermans@bwk.tue.nl


determine which activities are conducted for how long and 
possibly also (tentatively) the locations where the activities are 
conducted. Activity scheduling decisions then determine the 
sequence of the activities, the exact timing of each activity, trip-
chaining characteristics (e.g., insert yes or no a return home trip 
between two consecutive out-of-home activities) and transport 
modes used for the resulting tours. In this same scheduling phase, 
location choices for activities may be reconsidered, for example, 
to utilize opportunities for saving travel time, given trip-chains. 
The model we propose in the present study deals with activity 
programming decisions. This means that it needs to be 
complemented with an activity scheduling model, before it can be 
used for predicting individuals’ activity-travel patterns. 
Furthermore, we note that, in contrast to existing approaches, our 
model is dynamic in the sense that the activity needs of an 
individual are considered to be dependent on the activity history 
of the individual. Rather than predicting an activity program for 
an average or typical day, the proposed model, as a consequence, 
generates activity programs that fit in a longitudinal activity 
pattern of an individual (of arbitrary length).   

 The paper is structured as follows. In Section 2, we first 
introduce the basic concepts of the approach. Then, in Section 3, 
we propose specifications of the components of the framework. 
Next, in Section 4, we describe results of simulations that we 
conducted to illustrate the system. Finally, we conclude the paper 
by discussing major conclusions and avenues for future research. 

 

2. THE AGENT-BASED APPROACH 
 
In this section, we describe the basic framework. We first 
consider the utility functions and a decision rule for a single agent 
and next discuss how this can be extended to take within 
household interactions into account. 
 

2.1 Utility functions 
Assume the activity repertoire of an agent is given by a list of 
activities A = {A1, A2, …, An}. On each day of a given time 
period, the agent decides which activities it will conduct for how 
long and how much money it will spent (possibly zero). 
Mandatory activities, such as, for example, a work or school 
activity, may be scheduled for the current day as well. These 
activities are considered as given and fixed and reduce the 
available time for other activities. When mandatory activities and 
activities selected from the list have been programmed there may 
be time left on the day. Our model assumes that, by definition, 
this time is used for leisure-at-home purpose and as such 
generates utility as well. To put this in another way, the model 
assumes that time allocated to leisure (at the end of the day at 
home) is not a separate decision, but a result of all other activity 
decisions. We use the term slack time and slack activity to refer to 
the remaining time and use of remaining time on a day. 
 An activity produces utility and requires time and 
possibly other resources as inputs. If time is a scarce resource, 
then utility of time, defined as utility per unit time spent (denoted 
as UoT), is a useful concept. If time is scarce, then an optimality 
condition for the allocation of time to activities is that UoT is as 

much as possible equal across activities conducted (including the 
slack activity). This is easy to see: if the condition does not hold 
then it is possible to increase the utility by transferring time from 
an activity where it is less productive (in terms of utility) to an 
activity where it is more productive (in terms of utility). Time is 
merely one resource that is constrained by a budget. In addition, 
at least some activities also require monetary expenses. In full 
analogy, if money is a scarce resource, then utility of money, 
defined as the utility per monetary unit spent (denoted as UoM) is 
a key issue. If money is scarce then, for the same reason, it should 
be allocated to activities such that the UoM is the same across 
implemented activities. 
 A core assumption of the framework that we propose is 
that the utility of an activity is dependent on the activity history of 
the agent. Generally, the longer ago the last time an activity Ai has 
been conducted, the larger its current utility will be. When 
(positive or negative) substitution relationships exist between 
activities, the history of other activities should be taken into 
account as well. Although such interactions can be readily 
incorporated in the present framework, for clarity of presentation 
we leave them out of consideration here. Utility is furthermore 
dependent on travel demands involved, if any, the location where 
the activity is conducted and possibly chosen levels of time 
efficiency and quality. The following utility function captures 
these notions:  

siididdi qbltVlmVqblmU ε++= ),,,(),(),,,( M     (1) 

where d is the current day, ti is elapsed time since the last time an 
activity Ai was conducted, s denotes the day this happened (s = d 
– ti), l is the chosen location for the activity, m is the chosen 
transport mode (m = 0 if no trip is involved), Vd

M is the travel-
related utility, Vdi is the activity-related utility, b is a chosen level 
of time efficiency, q is a chosen level of quality and εsi is an error 
term. The d subscript of the activity-related component indicates 
that utility may be dependent on the day when the activity is 
conducted. This is the case for example when an agent has a 
specific intrinsic preference for a day of the week to conduct a 
certain activity (e.g., going out on Saturday). Time efficiency b is 
a relevant parameter if the agent can choose between conducting 
the activity in a hurry or at one’s leisure or between a slow (and 
cheap) service and a fast (and expensive) service. This concept is 
comparable to the concept of activity intensity coined by Ashiru 
et al. [11]. In addition, quality q is a relevant parameter when the 
activity and location involve goods or services at different 
consumer price levels. An increase of time efficiency, when it 
implies an increase of effort rather than a faster service, reduces 
utility, whereas an increase of quality increases utility. 
 Besides generating utilities, activities and travel also 
use time. We model the time spent as follows: 

),,(),(),,( M bltTlmTblmT ididdi +=                  (2) 

where, as before, m and l represent transport mode and location 
choices, b represents choice of time efficiency for the activity, 
Td

M represents travel time as a function of mode and location and 
possibly dependent on day (e.g., day-varying congestion levels), 
and Tdi is time used for the activity as a function of elapsed time, 
location and chosen time efficiency. Since the need an activity 
intends to satisfy increases with elapsed time, the time needed (at 
the chosen efficiency level) is an increasing function of elapsed 
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time (e.g., a longer shopping list). Furthermore, given the time 
elapsed, T is a decreasing function of time efficiency b.  Finally, 
the function depends on the day when the activity is conducted 
(e.g., shorter queues on Monday).  
 Apart from time, activities and travel may also involve 
monetary expenses. We model the money spent as: 

           (3) ),,,(),(),,,( M qbltElmEbqlmE iiii +=

where Ei
M is costs of traveling to the chosen location with the 

chosen mode and Ei is the amount spent for the activity at the 
location. Expenditure for the activity, the latter component, is an 
increasing function of size of the need when the activity is 
conducted and, hence, of elapsed time. Furthermore, expenditure 
is an increasing function of quality level and it is an increasing 
function of time-efficiency in as far efficiency is a characteristic 
of a service that needs to be paid for. 
 Given the above definitions, the utility of time (UoT) 
and utility of money (UoM) can now be defined in a straight-
forward way as: 

),,(
),,,(T

blmT
qblmU

u
di

di
di = ,     

),,,(
),,,(E

qblmE
qblmU

u
i

di
di =         (4) 

where  and  are the UoT and UoM an activity i could 
generate when conducted on day d conditional upon the choices 
of mode, location, quality and efficiency. Note that by choosing 
an efficiency and quality level (and location and mode) an agent 
is able to adapt the time and money spent. Duration and 
expenditure are not fully symmetric in that respect. An increase of 
time efficiency may come at the cost of paying a higher price for 
a service and, then, increases expenditure (money can buy time). 
On the other hand, the model assumes that quality cannot be 
increased by spending more time. Furthermore, the concept of 
efficiency needs some clarification. In the model, efficiency is 
increased either by investing more effort (doing things in a hurry) 
or by paying more for a faster service. One could argue that 
service and effort refer to different dimensions. Although it is 
possible to treat the dimensions as separate variables in the model, 
we assume that within activities either one of the two dimensions 
is relevant, so that a single variable, with an activity-context 
dependent meaning, suffices. 

T
diu E

diu

 To elaborate and extend the latter issue, we distinguish 
the following three activity types, which we denote as Type I, II 
and III activities: 
  
1. Type I: Neither time-efficiency nor quality can be increased 

by spending more money.  
2. Type II: time-efficiency can be increased by spending more 

money.  
3. Type III: quality can be increased by spending more money. 
 
Obviously, these categories are not mutually exclusive: an 
activity can be of Type II and Type III at the same time. In case 
of a Type-I activity, no resource allocation choice is left when 
location and transport mode have been chosen: the amount of time 
and money spent are determined by elapsed time. In case of a 
Type-II activity, time and money are to some extent 

compensatory in the sense that a lack of time can be compensated 
by spending more money (e.g., choosing a more expensive 
service that is faster). In case of a Type-III activity, the individual 
can spend more money (e.g., pay a higher price for a higher-
quality service) and increase the utility derived from the activity 
without time consequences. 
 

2.2 A local decision rule 
 

The activity utility function given by Equation (1) describes the 
utility of a particular activity on the current day as a function of 
time efficiency, quality, location and mode decisions. The 
function is however dynamic as it takes into account current 
needs (elapsed time) and intrinsic preferences for a day. The 
agent-based model we propose assumes that agents use a local 
decision rule in the sense that they make the decisions on a day-
by-day basis. Although this is plausible in terms of what 
individuals do in reality, it seems to be in conflict with the fact 
that time and money budgets are defined for a longer time frame 
than a day. As we argued in previous work [12], however, time 
budget constraints can be adequately dealt with by a local 
decision rule of the following form: 
R1: Implement an activity on the earliest day when the UoT of 

the activity under optimal time efficiency, quality, mode and 
location choice exceeds a threshold value for that day of the 
week. 

A threshold value is included for each day of the week to account 
for possible day-by-day variation on time spent on mandatory 
activities (e.g., more time available in weekend). If the threshold 
value for each day of the week is appropriately chosen, this rule 
makes sure that 1) each implemented activity produces 
approximately an equal UoT and 2) available time is fully used in 
the sense that utility of slack time equals the utility of activity 
time. Note that the utility as well as the required duration of an 
activity increases over (elapsed) time. If utility increases with a 
faster rate than required duration, then UoT increases over time 
and a moment will come that it exceeds the threshold. The day-of-
the-week threshold values that produce this result are, however, 
not a-priori known. We also showed how the threshold values can 
be found through an iterative adjustment procedure based on trial 
and error. Starting with an arbitrary initial value (for each day of 
the week), an activity plan for a sufficiently long time period is 
generated using R1. Next, utility of slack time is compared to 
utility of activity time for each day of the week: 
R2: If the utility of slack time is higher than the utility of activity 

time, then adjust the threshold upwards. If the utility of slack 
time is lower than the utility of activity time, then adjust the 
threshold downwards. 

where, as before, slack time is time left on a day after having 
conducted mandatory and selected activities from list A. If the 
threshold for one or more days is adjusted, then an activity plan is 
re-generated for the same period and R2 is applied again. This 
cycle is repeated until convergence. In equilibrium, the utility of 
slack time is equal to the utility of activity time and the utility of 
time of each activity is at or just above the threshold and, hence, 
approximately the same. 
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The activity-day selection rule R1 and threshold adjustment 
rule R2 focus on the time-budget constraint and do not take 
expenditure into account. Generalization of the rules is straight-
forward. The extended activity-day selection rule can be written 
as follows:  
R1' Implement an activity on the earliest day when the UoT and 

UoM of the activity under optimal time efficiency, quality, 
mode and location choices both exceed their threshold value 
for that day of the week. 

Note that for UoM a single threshold value for each day of the 
week suffices, as financial budgets do not vary on a daily basis. 
The appropriate threshold value for UoM can be found by a 
similar threshold adjustment rule as in the case of time. In full 
analogy, the complementary rule comes down to: 

R3: If total expenditure exceeds the money budget, then adjust 
the threshold upwards. If not all available money is used, 
then adjust the threshold downwards. 

 We illustrate the behavior of the system based on three 
graphs shown in Figure 1. As an example, the graphs relate to a 
Type-III activity and depict three moments in the cycle of an 
activity, i.e. where the need is low (top graph), a later moment 
where the need is medium (middle graph) and a still later moment 
where the need is high (bottom graph). In each graph, the black 
curve represents the combinations of duration and expenditure 
where UoT equals its threshold value and the gray curve 
represents the resource allocations where the UoM equals its 
threshold value. Thus, above the black curve are resource 
allocations allowed by the time-budget constraint and below the 
gray curve are the resource allocations allowed by the money-
budget constraint. From early to the late stage, the UoT threshold 
curve (black line) shifts downwards indicating that, as the need 
increases, increasingly lower levels of expenditure suffice to meet 
the threshold. At the same time, the UoM threshold curve (gray 
line) moves upward indicating that, as the need increases, 
increasingly higher levels of expenditure are allowed given this 
threshold. In the second stage (the middle graph), the need has 
reached a level where the two threshold curves start to overlap. 
Hence, this is the first moment when implementing the activity is 
feasible. In the late stage, multiple resource allocations are 
feasible, namely all allocations falling in the area enclosed by the 
two graphs. 

Given the rule that an activity is conducted at the 
earliest moment when the thresholds conditions are met, the 
threshold condition leaves no choice as to how much time and 
money to spend for the activity when it is implemented. Thus, a 
ready conclusion that can be drawn from the illustration is that in 
a system where all or at least some activities are of Type III, 
individuals always use their time and money budgets completely. 
This conclusion holds if the money curve is convex and moves 
down and the time curve is concave and moves up, as the need for 
the activity increases. Then, the first moment when the activity is 
feasible is always the moment when the curves intersect in a 
single point. Because the activity will be selected at that moment, 
there is no time and expenditure choice left. In reality, of course, 
day is a discrete variable and, hence, time does not pass in a 
continuous fashion. In case of Type-III activities, however, even 
if a choice is left, money will be spent exactly up to the point 
where UoM meets its threshold value. For example, if more 
money were spent utility would rise but too little to prevent the 
UoM from dropping below its threshold.  

 

Figure 1. Utility of time (black line) and utility of money 
(gray line) Influence of elapsed time on for a Type-III in 
three stages of need development 

For Type-II activities the same mechanism applies. For 
these activities there is even another level of dynamics that makes 
sure that budgets are fully used. Assume for example that an 
agent would consistently choose to spend more money to save 
time. Then, not all time is used and by the working of the 
threshold adjustment procedure the UoT threshold would be 
adjusted downwards. This would continue till the moment when 
the UoT threshold line would intersect the UoM threshold line in 
a single point. At that moment the activity will be implemented 
without leaving a choice regarding the quantities of time and 
money. This self-organizing behavior makes sure that the system 
indeed exhausts its budgets. 

4



 For Type-I activities, however, the outcome may be 
different. For these activities there is a single point in time where 
the UoM-threshold line meets the line that represents the fixed 
quantity ratio between the resources. This point does not 
necessarily coincide with the point where the UoT equals its 
threshold. Thus, there are two possibilities with different 
outcomes. If time is the limiting factor, the UoT threshold 
determines when the activity is conducted and how much money 
is spent. On the other hand, if money is the limiting factor, the 
UoM threshold determines when the activity is conducted and 
how much time is spent. In the first case, money is left and in the 
second case time is left. Furthermore, we note that also under 
Type-II and Type-III conditions circumstances are conceivable 
where not all resources are used. The utility and resource 
functions impose limitations on the extent to which time can be 
exchanged by money (Type-II) or more money can be spent to 
increase utility (Type-III). If the money budget is large, this may 
mean that money is not a limiting factor for utility and may not be 
fully used. In such a case, the UoM threshold would drop to zero. 
  

2.3 Multi-person households 
 
The household context is relevant when at least some activity 
needs are shared by the individual agents sharing a household. If 
multiple agents are able to conduct such household activities, then 
time can be re-allocated between agents. Furthermore, an 
important implication is that agents may derive utility from an 
activity even if it is conducted by someone else. The proposed 
system assumes that agents have their own perception about needs 
and activities and interact pair-wise with each other to consider 
re-allocations of (household) activities using the following rule: 
R4: If dUdi

g(h, g) is the change in utility for agent g when g 
would take over a (household) activity i from agent h on 
day d and dUdi

h(h, g) is the change in utility for agent h of 
the same re-allocation, then implement the re-allocation 
only if dUdi

g(h, g) + dUdi
h(h, g) > 0. If g takes over an 

activity from h then g re-considers the duration of the 
activity based on his own perceptions.  

This rule is applied iteratively to all pairs of agents and all 
household activities. Since all agents in the household apply R1', 
this means that each household activity is always conducted on 
the earliest day when it meets the lowest threshold value across 
the agents that can conduct the activity. By using R4 an activity 
then possibly may be re-allocated among the individuals. 
 Finally, in cases where multiple individuals share a 
household, multiple money budgets are relevant. If there are n 
agents, then there are n + 1 sets of needs, namely n sets of 
personal needs and a set of shared needs. A money budget needs 
to be defined for each set of needs implying that n + 1 UoM 
threshold values are required to represent existing money-budget 
constraints. In everyday terms, this means that individuals sharing 
a household should decide on how much of the household income 
they wish to use for shared needs and how much they wish to use 
for the personal needs of each individual. Note that this is another 
asymmetry between the two resources: for the time resource there 
exists no rationale for adopting a shared budget. 
 

2.4 Concluding remark 
 
The dynamic-process approach makes it possible to account for 
many irregularities that exist in the real world. Specifically, the 
proposed system takes the following conditions into account: 
1. Mandatory activity time may vary from day to day. 
2. Intrinsic preferences for certain activities may vary by day of 

the week. 
3. Physical conditions (e.g. traffic) and, thus, time demands may 

vary from day to day 
4. Preferences and perceptions may differ between individuals 

sharing the same household. 
 
The activity-day selection rule R1

’, the threshold adjustment rules 
R2 and R3 and the allocation rule R4 are all sensitive to day-
varying and person-varying conditions and perceptions and at the 
same time consistent with an objective of maximizing utility 
within resource constraints. However, it should be noted that, 
because of the irregularities and discrete character of activity-day 
selection decisions, temporal patterns where all activities generate 
equal UoT and equal UoM may not emerge in the system (and 
neither in reality). For example, it may not be possible to (further) 
re-allocate time between individuals or between days of the week 
to (further) solve existing differences in UoT between days of the 
week. In that sense, adjusted UoT thresholds accurately represent 
day-varying time pressures on an individual’s agenda. 
 

3. POSSIBLE SPECIFICATIONS 
 
In this section, we propose further specifications of the functions 
involved in the above framework that suite the purposes of 
transportation modeling. First, regarding the costs of traveling we 
propose the following simple function: 

),(),( MMM lmDpPlmE mmi +=                           (5) 

where D(m, l) is traveled distance given mode choice m and 
location choice l, Pm

M is a constant costs for using mode m and 
pm

M is a costs per unit travel distance for mode m. Not all terms 
may be relevant. For private-vehicle modes the constant costs 
component normally is equal to zero or used to represent parking 
costs. For public transport tariff structures of transport modes may 
be more complex. Ticket prices may not be a linear function of 
distance, and so on. Even in those cases, however, the above 
linear function may suffice for a reasonable approximation of 
actual costs.  Furthermore, we note that in case of multi-activity 
tours it is not always straight-forward which part of traveling 
should be attributed to which activities. However, we leave this 
issue out-of-consideration here.  

We assume that activities that are relevant for 
transportation modeling may be of Type I or III, but are never of 
Type II. That is, we assume that for none of the activities time can 
be saved by spending more money. This means that the time 
efficiency parameter, b, refers exclusively to an effort of the agent 
and can be dropped as argument from the expenditure function 
(cf. Eq. 3). Furthermore, we operationally define quality 
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parameter q and efficiency parameter b on a zero-one scale, where 
zero means lowest level and one means highest level of quality 
and efficiency respectively.  

Given these assumptions, we propose the following 
simple linear function to define amount of expenditure for an 
activity of Type I or Type III in general, as follows: 

maxmin ),()1(),,( iiiii qEltEqqltE +−=            (6) 

ililiii tpPltE minminmin ),( +=                        (7) 

ililiii tpPltE maxmaxmax ),( +=                       (8) 

where, as before, ti is elapsed time, Pli
min is a constant price and 

pli
min a price per unit of the need for the activity (as measured by 

elapsed time) at a lowest quality level and Pli
max and pli

max are the 
constant and variable prices at a highest quality level. As implied 
by Equation (6), the choice of quality level determines the actual 
amount spent, given the size of the need on the day the activity is 
conducted and the location. Note that Type I is a special case of 
Equation (6) where Pli

min = Pli
max = Pli

  and pli
min = pli

max = pli and, 
where, as a consequence, parameter q is redundant.   

The proposed function for time spent on an activity can 
be defined in a fully analogues way as: 

),()1(),(),,( maxmin ltTbltbTbltT idiidiidi −+=       (9) 

ililiidi tltT minminmin ),( δα +=                       (10) 

ililiidi tltT maxmaxmax ),( δα +=                     (11) 

where αli
min is a constant time investment and δli

min a time demand 
per unit of size of the need (as measured by elapsed time) at the 
highest level of  time efficiency and αli

max and δli
max are the 

corresponding figures at the lowest level of time efficiency. The 
travel-time component Td

M (Eq. 2) is a more complex function of 
the transportation system which can be modeled as usual and 
which we will leave out of consideration here. 
 A possible specification of the utility function which 
captures the notions discussed in the previous section is as 
follows: 

)()1()1(),,,( 0
iidiidi tfbqVqbltV ii χγ +++=     (12) 

where Vdi
0 represents a constant component, which may vary 

between days, fi is a need-related component that varies as a 
function of time elapsed and γI and χi are activity-dependent 
parameters. Parameter γI ≥ 0 defines a weight of quality and 
parameter χi ≤ 0 a weight of efficiency in utility. Note that the 
multiplicative form makes sure that quality and efficiency act so 
as to rescale the utility derived from need satisfaction. Several 
functional forms for the latter need-size function f could be 
considered. In earlier studies ([12], [13]), we proposed a logistic 
function. Arguably, an essential characteristic of this function is 
that a subjectively felt need grows with declining rate over time. 
A simpler function that also displays this property and has been 
proposed in several empirical studies on time-use modeling 
(Kitamura 1984) is the following logarithmic function:   

)1ln()( += iiii ttf β                               (13) 

where βi is a scaling factor representing the growth rate of the 
need for the activity. For example, high frequency activities are 
characterized by a large value for beta, and vice versa. Unity is 
added to elapsed time in the argument of the logarithm to make 
sure that the need is larger than zero after an elapsed time of one 
day. 
 In terms of UoM and UoT, the system has the following 
properties. Equation (6) implies that expenditure increases 
linearly with quality level (given the scale on which we measure 
quality). Equation (12) implies that utility increases with 
decreasing marginal utility if 0 < γI < 1. Under that setting, 
therefore, utility of money decreases with increasing expenditure. 
In the special case where γI = 1, utility increases linearly with 
expenditure and, hence, utility of money will be independent of 
the amount spent. We consider the decreasing UoM behavior to 
be more realistic meaning that generally a setting of 0 <γI < 1 is 
appropriate. As for the time resource, Equation (9) implies that 
time spent decreases linearly with efficiency level (again, given 
the scale we use to measure efficiency). Equation (12) implies 
that utility decreases with a decreasing rate when efficiency 
increases for all settings of χi < 0. As a consequence, UoT 
increases with increasing time efficiency, as we would expect. 

Cross-elasticities are also evident in the system. 
Keeping the time spent constant, spending more money for an 
activity means that the utility increases and, hence, also UoT 
increases. Vice versa, keeping expenditure constant, spending less 
time for an activity leads to an increase of utility and, with that, 
an increase of UoM. Combined with the threshold adjustment 
rule, these relationships give rise to the following self-organizing 
behavior. Spending more money for activities means that 
activities exceed UoT thresholds earlier in terms of elapsed time 
and, thus, lead to increase of time expenditure. To prevent time 
shortage, the UoT threshold is adjusted upward and the activity 
frequency will be restored. Through this mechanism, an increase 
of available money (for activities) drives the UoT threshold up if 
the change is not accompanied by an equivalent increase of time 
budget. Or to put it another way, the system predicts that income 
correlates positively with utility-of-time demands. On the other 
hand, spending more time on activities (doing things in a less 
efficient way) means that activities exceed the UoM threshold 
earlier and to prevent shortage of money the threshold for UoM of 
money is adjusted upward if the money budget does not increase. 
Thus, the model predicts that utility-of-money demands increase 
with increasing time budgets. 
  

4. ILLUSTRATION 
 
In this section, we describe some results of a simulation to 
illustrate the model system. The simulation focuses on day-to-day 
activity choices for a multi-week period of two hypothetic persons 
sharing a household. 
 

4.1 The simulation system 
The simulation was conducted using an existing agent-based 
system that we developed in earlier work [14]. The system is 
based on a needs-based model of activity generation, which 
assumes that activities are driven by a set of needs which grow 

6



over time. In this system, there is not necessarily a one-to-one 
relationship between needs and activities: a single activity may 
have a (positive or negative) influence on multiple need 
dimensions at the same time. The model proposed here is 
implemented as a special case where one activity acts on one 
need. The system assumes a logistic (S-shaped) function to 
describe need-growth.  

As for the resource functions, the system assumes that 
time spent on an activity is a function of the size of the need at 
time of implementation. However, time efficiency is not a 
parameter in this framework and, hence, this choice facet cannot 
be modeled. As for monetary expenditure, the system assumes as 
parameters of each activity and location combination a constant 
price (P), a price per unit duration (p) and a maximum amount of 
expenditure. The constant and price per unit define a minimum 
amount of expenditure given an activity duration. The minimum 
and maximum defines a range within which agents can choose the 
actual amount spent at the moment an activity is implemented. 
Utility is an increasing function of expenditure with decreasing 
marginal utilities in line with the specifications we proposed in 
this study. Furthermore, the agents use rules R1-R4 for their daily 
activity decisions. In sum, the system allows us to run the model 
proposed here and simulate the behavior under Type-III activities 
with fixed time efficiency. 

Table 1 represents the activity settings assumed in the 
case. Shopping (daily and non-daily), service-related activities, 
medical activities, fitness and going-out (eating/drinking and 
cultural) need particular facilities in the spatial environment. In 
addition, the activity list includes several in-home activities 
including, jobs in or around the house, housekeeping, leisure 
passive (e.g., reading, watching TV etc.) and sleeping. Daily 
shopping, service-related activities and housekeeping are 
considered household activities, i.e. activities that can be 
conducted by both agents and satisfy a shared need by both 
agents. Leisure passive is considered a slack activity, i.e. the 
activity an agent is engaged in during time on a day not occupied 
by the activities in the list. Finally, the list specifies a work 
activity for each person. 

The residence of the agents is explicitly situated in 
space somewhere in the Netherlands. For each facility-based 
activity, a location choice set for each transport mode is defined 
for each agent. Facilities for the activity are available at these 
locations. Travel distances by mode are calculated based on 
shortest paths across the Dutch road network. Fast and slow 
modes are distinguished as possible transport modes. Activities 
are consistently evaluated under best location and mode choices. 
For fast modes no direct implications for utility are assumed (only 
indirect namely through saving time). A slow mode on the other 
hand produces a (positive) utility depending on an existing need 
for physical exercise. The latter is also the need involved in the 
fitness activity meaning that fitness and slow mode are partly 
substitutable. 
 A beta parameter for each activity describes how fast 
the need for the activity grows over time (in the context of a 
logistic growth function). Leisure passive is considered the slack 
activity. Furthermore, it is a special activity in the sense that the 
need for the activity is supposed to grow within a day rather than 
across days, as the other activities do. As reflected by the scale of 
the beta parameter, the unit of time is a minute rather than a day. 

The asymptotic maximum, which is an additional parameter of a 
logistic function, was not differentiated and set to 100 units for 
each activity. As an exception, the maximum for the leisure 
activity is set to 300 units. Activity duration parameters (not 
shown) were set based on assessments of typical time 
requirements for activities. 
 
Table 1. Assumed activity settings 

Activity Need  Expenditure 
 (beta) (P, p, Emax) 
Daily goods (H)   0.700 (10, 0.333, 100) 
Non-daily good 0.350 (0, 0.667, 200) 
Services (H)       0.250 (10, 0.333, 100) 
Medical        0.080 (20, 0.5, 200) 
Go-out (drink-eat) 0.500 (0, 0.2, 100) 
Go-out (cultural) 0.080 (30, 0, 200) 
Fitness        0.250 (5, 0.667, 100) 
Social         0.600 (0, 0, 0) 
House keeping (H) 0.800 (0, 0, 0) 
House jobs     0.350 (0, 0, 0) 
Leisure passive 0.008 (0, 0, 0) 
Sleep  (0, 0, 0) 
Work            (0, 0, 0) 
Travel by fast mode  (0, 0.17, -) 
Travel by slow mode 0.250 (0, 0, 0) 

 
 

In-home activities (Jobs, Housekeeping, Leisure, 
Sleeping) do not involve expenditure and neither do social and 
work activities (except that traveling may incur costs). Activities 
that do involve expenditures were all considered Type-III 
activities, with a gamma value of 0.5. Work is considered a 
mandatory activity, with fixed times and durations. Since it is a 
fixed activity no utility function is specified for work. The weekly 
work schedule of each agent is predefined and determines the 
time budget for the flexible activities on each day for each agent. 
P1 and P2 differ regarding this schedule. Being a fulltime worker, 
P1 has a work activity of 8 hours on each weekday. P2 has a part-
time job which involves four workdays (Wednesday off) of 6 
hours a day. 
 We simulated the day-by-day activity choices of the 
agents arbitrarily for a period of 7 weeks; the initial sizes of 
activity needs (i.e., elapsed times) are randomly chosen (assuming 
that the agents have the same perceptions of household needs). On 
each day, each agent goes through its list of activities and 
determines for each activity the best choices for choice facets and 
travel time and evaluates the utility given the best choices and 
elapsed time for the activity. The choice facets include location, 
transport mode, duration and expenditure. Best choices are 
choices that meet the existing UoT and UoM threshold 
requirements and maximize utility within that constraint. 
Activities that meet the threshold constraints (under best choices) 
are put on the activity agenda for the day and person concerned. 

 Household activities are also included in the activity 
list of each person. Which person, P1 or P2, conducts the activity 
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is considered an additional choice facet of household activities. 
Each person puts household activities on an own agenda making a 
best person choice considering the appropriate thresholds, but 
without consulting the other person. This means, for example, that 
P1 may put a housekeeping activity to be performed by P2 on its 
agenda when P1 considers this feasible given (its knowledge of) 
P2’s threshold constraints and based on its own perception of the 
need for the activity. Having determined their activity agendas 
independently of each other, the two agents start a negotiation 
process. In this process they apply rule R4 to each household 
activity, to see if a re-allocation is desired. A change of an initial 
allocation may occur if opportunity costs or perceptions differ. 
Opportunity costs are defined as the utility loss associated with 
sacrificing leisure time. After completing the negotiations the 
agents agree with each other on who does which activity. Finally, 
they implement their activity agendas and update their needs 
depending on the activities implemented. They repeat the same 
process for the next day, and so on. 
 Available time on a day is the time not occupied by the 
mandatory activities working and sleeping. Expenditures are 
charged at a personal money budget if they serve personal needs 
and at a shared household budget if they serve a household need 
(irrespective who conducts the activity). The threshold adjustment 
procedure uses rules R2 and R3. This involves recursively 
generating activity agenda’s for a full 7-week period under 
currently assumed threshold values and evaluating the budget 
constraint. Since available time may vary by day of the week, 
each agent uses a threshold value by day of the week for time use. 
Since threshold adjustments of one person may affect utility of 
time of the other person, the two agents perform the adjustment 
procedure simultaneously. As for expenditure, a threshold value is 
related to each of the three budgets. A threshold is decreased if 
not all money is used and increased if too much money has been 
spent.  
 Because adjustment of a money threshold may have an 
influence on the UoT and, vice versa, an adjustment of a time 
threshold may have an influence on UoM, the adjustment 
procedure is run for one resource nested within the adjustment for 
the other resource. Arbitrarily, we chose to run time-threshold 
adjustment within money-threshold adjustment. This means that 
for each implemented adjustment of a money threshold the time 
thresholds are re-adjusted. A linear approximation method is used 
to determine best guess threshold adjustments in each step of the 
procedure. Considering the fact that (a multi-week) activity 
generation is an embedded processes, the routine is very efficient 
and takes only several seconds to complete on a standard PC.  
 

4.2 Some results 
 
As an example, we consider the results of a simulation where the 
total household budget was (arbitrarily) set to 1800 Euros per 
month. As it appears, allocating this budget as 658 Euro, 702 
Euro and 433 Euro to the personal budget of P1, the personal 
budget of P2 and the shared budget, respectively, yields an 
approximately equal utility of money of 1.92 (P1), 1.83 (P2) and 
1.81 (shared) across budgets. This means that, if the interests of 
P1, P2 and Shared have equal weight, this allocation maximizes 
the overall household utility (given the activity settings). The UoT 
of each person differs between days of the week. On average, 

they are 0.38 (P1) and 0.31 (P2). Tables 2-4 portray results per 
activity based on activity patterns for a 7 week period after 
adjustment of thresholds.  

Table 2 represents activity frequencies (working and 
sleeping not included). On average, P1 and P2 perform 3.8 and 
5.2 activities per day, respectively. The larger activity frequency 
for P2 eventually is due to the fact that P2 works less hours a 
week and, therefore, has a larger time budget resulting in a lower 
time threshold for activities. Also note that P2 conducts 
considerably more household activities (daily goods and 
housekeeping). This reflects a task allocation effect. Fitness is 
conducted by none of the two persons. As it appears, both persons 
prefer to use the slow mode every now and then to satisfy a need 
for physical exercise. 

 
Table 2. Activity frequency by activity and agent (average 
number per day)  

 P1 P2 
Daily goods    0.07 0.21 
Non-daily good 0.14 0.21 
Services       0.04 0.04 
Medical        0.04 0.04 
Go-out (drink-eat) 0.25 0.36 
Go-out (cultural) 0.04 0.04 
Fitness        0 0 
Social         0.36 0.57 
House keeping  0.04 0.68 
House jobs     0.14 0.43 
Total 3.83 5.15 

 
Table 3 shows the monthly expenditure per activity 

related to each budget (P1, P2 and Shared). Expenditures for 
social and work activities relate only to travel costs (by fast 
mode). In sum, P2 gets a larger budget for its (personal) activities 
since the shorter work hours for this person means that more time 
can be spent and, thus, more value can be generated per unit 
expenditure on activities. 

 
Table 3. Expenditures by activity and budget (Euro / month)  

Activity P1 P2 Shared 
Daily goods    0 0 350 
Non-daily good 165 209 0 
Services       0 0 83 
Medical        41 40 0 
Go-out (drink-eat) 277 294 0 
Go-out (cultural) 31 31 0 
Fitness        0 0 0 
Social         48 51 0 
Work           95 76 0 
Total 658 702 433 
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Table 4. Utility of money by activity and budget  

Activity P1 P2 Shared 
Daily goods    0 0 1.81 
Non-daily good 1.67 1.52 0 
Services       0 0 1.81 
Medical        1.69 1.54 0 
Go-out (drink-eat) 1.68 1.52 0 
Go-out (cultural) 1.86 1.54 0 
Fitness        0 0 0 
Social         8.29 7.97 0 
Total 1.92 1.83 1.81 

 
 
Finally, Table 4 shows the UoM per activity and budget 

(P1, P2 and shared). Expenditures for social and work activities 
relate only to travel costs (by fast mode). The high UoM for 
social activities follows from the fact that these activities generate 
utility against only travel costs. In sum, P2 gets a larger budget 
for its (personal) activities since the shorter work hours for this 
person means that more time can be spent and, thus, more value 
can be generated per unit expenditure on (non-work) activities. 
 
 

5. CONCLUSION AND DISCUSSION 
 
In this paper, we showed how time and money constraints can be 
incorporated in a dynamic agent-based model of activity-travel 
choice. The standard economic approach assumes that activity 
generation and time use behavior is based on global solutions for 
an entire time period. In contrast, the model we proposed shows 
that by using a local decision rule an equivalent result can be 
obtained provided that agents are given time to learn based on 
experience. The dynamic agent-based approach makes it possible 
to describe behavior under day by day variation in budgets, 
physical conditions and preferences for activity choices. 
Furthermore, the model accounts for interactions between agents 
within households in terms of task allocation. In stark contrast to 
existing approaches, the model imposes virtually no restrictions 
on the level of detail of the used activity classification. For 
example, individuals’ activity repertoires may include a large set 
of mandatory, discretionary in-home and out-of-home activities. 
The model simultaneously deals with choice facets of activities 
such as location and transport mode. Finally, we mention, that 
unlike global optimization approaches, the agent-based system is 
computationally very efficient. Agents have only limited memory 
requirements. All they need to remember is their current needs 
and dynamic utility thresholds regarding the use of time and 
money. The activity generation and negotiation process only 
requires linear list processing, which requires only a minimum of 
computation. Given good initial threshold settings, the threshold 
adjustment process is very efficient as well. This means that the 

model can be used in large-scale micro-simulation systems 
without causing excessive computation times. 
 Several problems and ways to extend the model could 
be considered in future research. A first issue relates to the 
estimation of parameters of activity utility functions. As the 
model is dynamic, existing one-day or two-day activity-travel 
diary data, which are collected in standard surveys in many 
countries, may not suffice. At least the surveys should be 
extended to reveal for the day observed the activity-history in 
terms of elapsed time for each activity that can be conducted (not 
just the activities that are conducted) on the observed day. 
Longitudinal activity diary data would offer more information but 
clearly also incur higher costs of data collection. Furthermore, 
data on the amount of money spent in the context of activities is 
needed to estimate quality choice parameters in the present 
framework. This would require an extension of existing survey 
instruments too, as this data is generally not covered in existing 
activity diary data collections in transportation research. 
 Second, our model focuses on the activity programming 
process and does not consider scheduling behavior. In a 
scheduling phase agents may be able to economize traveling by 
using opportunities for trip-chaining and adapt location, mode and 
possibly activity choices to utilize such opportunities. 
Furthermore, the timing of activities within a day is not 
considered in the present model. Opening hours (e.g., of stores) or 
commitments (e.g., joint activity participation) generally restrict 
choice opportunities for the timing of activities. Consequences of 
such restrictions are not limited to the activities for which they 
hold but also impact the time windows for preceding and 
succeeding activities and so on. In exceptional cases, timing 
conflicts may render an activity program infeasible and 
necessitate a subject to cancel an activity (e.g., postpone it to the 
next day). A complementary scheduling model is needed to cover 
these aspects.  
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ABSTRACT
This paper presents an agent-based approach to design a
Transportation Regulation Support System (TRSS). Based
on a multi-agent modeling of a urban transportation net-
work, the objective of our approach is to integrate the func-
tionalities of the existing information system with the func-
tionalities of a decision support system. The TRSS monitors
the network activity and adjusts itself to the environment
changes, that is to say it automatically detects incoherent
data (regulation under normal conditions) and tra�c dis-
turbances and then it automatically proposes solutions to
optimize the tra�c �ow (regulation under disturbed condi-
tions). To demonstrate our approach, a transportation regu-
lation support system called SATIR (Système Automatique
de Traitement des Incidents en Réseau - Automatic System
for Network Incident Processing) is presented. SATIR has
been tested on the Brussel transportation network (STIB).
Lastly, we show how using the multi-agent paradigm opens
perspectives regarding the development of new functionali-
ties to improve the management of a bus network.

General Terms
public transportation network management

Keywords
agent-based applications, environment, Decision Support Sys-
tem

1. INTRODUCTION
The development of the surface public transportation net-

works (SPTN) is a main issue from the ecologic, economic
and societal viewpoints. But, this means of transportation
competes against the comfort of the personal vehicles and
contrary to the guided transportation (train and subway) it
has to support the tra�c disturbances. The result is that
SPTN are often considered as not reliable. If the projects

∗(Produces the copyright information for AAMAS 2008).
For use with aamas2008.CLS and aamas2008-short.cls

like the Bus Rapid Transit highlight the bene�ts of an im-
provement of the quality of the infrastructures, a better
management of the available resources is less costly. For
Intelligent Transportation System, the objective of the net-
work management is to improve the attraction for public
transportation with a decrease of the waiting time and an
increase of the commercial speed. This improvement has to
be done without an increase of the management costs. E�-
cient planning algorithms and a more precise knowledge of
the network state improve the management of the resources.
Nevertheless this improvement of the theoretical supply has
to go with an improvement of the management of the net-
work in real time. Indeed, the optimum that is the theoret-
ical supply may become obsolete according to the evolution
of the urban tra�c. Regulators (the sta� in charge of mon-
itoring the bus networks) have to ensure the success of the
transportation plan, in the sense of adapting the theoreti-
cal supply to the real evolution of the demand. In order to
achieve their complex task, regulators use systems known
as Automatic Vehicle Monitoring systems (AVM). In this
paper, we show that if the use of an AVM is the �rst step
to the computerization of the transportation network ac-
tivity, this system is limited to coping with disturbances
linked to unanticipated demands and to tra�c conditions.
The collecting and shaping of data are insu�cient to help
regulators and this system has to be completed with a Deci-
sion Support System (DSS) able to analyze this information
and to give in real time a dynamic and contextual assess-
ment of the problems. Our proposition takes place in the
Multi-Agent Decision Support System (MADSS) domain.
The DSS should not be based on black boxes ([13]) but on
paradigms that are more collaborative and active. By rei�-
cation of actors and of their use of the information and by
distribution of control, a Multi-Agent System (MAS) makes
explicit the process it has to manage.
Section 2 describes the real time management of an ur-

ban transportation network, the advantages and di�culties
of the use of the current information system are underlined.
Section 3 presents the alternatives for the integration of a
DSS to the current information system. Section 4 describes
the SATIR (Système Automatique de Traitement des Inci-
dents en Réseau) project that is our proposition to integrate
a DSS to an AVM. Section 5 details our experimentation.
Section 6 proposes a conclusion.
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2. URBAN TRANSPORTATION SYSTEMS:
STATE OF THE ART

In this section, the processing of information for the man-
agement of an urban bus network in real time is presented.
The �rst part presents the model of data for the urban trans-
portation domain and the information system (AVM) based
on it. The second part is related to the regulation task.

2.1 An Automatic Vehicle Monitoring (AVM)
System

2.1.1 Data Model
In Europe, the �rst project for a data model has been

CASSIOPE (1989-1992) the result being the Transmodel1.
This model is the European reference of the conceptual data
modeling for public transportation domain. Transmodel has
been improved with the European projects Eurobus (1992-
94) and Harpist (1995). Finally, the Titan project (1996-
98) (Transmodel based Integration of Transport Application
and Normalisation) has completed and validated this work.
The result is a modeling based on the Entity/Association
formalism. The objective is to represent in the same mod-
eling the physical and timetable con�guration of a network.
A hierarchical decomposition of the information has been
adopted. The physical con�guration is based on the de-
composition of the network in lines and for each of them
in routes. A route is decomposed in sections and for each
of them there are a stop and an inter-stop distance. The
timetable con�guration is based on the decomposition of
the timetable in missions and for each of them in runs.
This modeling has been done to answer to a speci�c need:
to access in the easier way to a speci�c component of the
timetable, like the description of the route of a run or for a
section the list of the schedules for a period of time.

2.1.2 Functionalities
In order to use this information modeling, the transporta-

tion networks use a specialized information system called
Automatic Vehicle Monitoring (AVM). With the theoretical
information (network description and timetable), the AVM
computes in real time the theoretical state of the network.
In order to compute the real state of the network, an AVM
uses the data coming from vehicles located by sensors. AVM
compares the actual positions of vehicles (captured by the
sensors) with their theoretical positions in order to provide
the regulator with an overview of the routes. In this way,
the regulator can see whether vehicles are running ahead
of timetables or are running late. By comparing theoreti-
cal information with real one, the AVM system tries to de-
tect delays and advances of buses on the network. Some
AVM systems propose detections depending on a geograph-
ical condition like delay/advance alarm in a town-centre or
depending on a timetable condition like the detection of the
delay on the next departure. In real time, an AVM organizes
the collecting and shaping of data; it facilitates the access
to this data and computes some alarms. The main objective
of the AVM is to give a basic information computation. An
AVM works according to a classical way for the diagnostic
domain: model-based approach relying on normal and faulty
behavioral models. This approach is based on the compari-
son between a theoretical modeling of the diagnosed system

1http://www.transmodel.org

and an artefact of the real system. Since the theory of the
regulation domain is not complete, the AVM is only able to
support this approach and the result is mainly dependant of
the experience of the regulators.

2.2 The regulation task
This section presents the new functionalities of the AVM

to support the work of regulators. We �rst describe the reg-
ulation process and highlights the limits of the AVM system
in real-time management of bus network.

2.2.1 The regulation process
Analysis of the work station of network regulators from

the Brussels Intercity Transport Company (Société de Trans-
port Intercommunale de Bruxelles - STIB) enabled us to
identify four phases required in the regulation process. First
the regulator begins by monitoring the network.
The diagnostic phase begins with the detection of a prob-

lem and ends with the assessment of its consequences on the
network activity. The interface of the AVM facilitates this
phase. The current alarms are visually accessible and re-
lieve regulators of computation. As soon as a disturbance is
chosen by the regulator, he has to complete his knowledge
of the problem. This process is complex because distur-
bances evolve independently along three axes. The Time
axis measures the seriousness of a disturbance according to
the timetable. The Space axis measures the seriousness of a
disturbance according to its position on the network. The
Shape axis measures the consequences a disturbance may
have on the network activity. To determine its importance,
a disturbance must be evaluated according to these three
axes. For example, a vehicle having o�-peak hour di�cul-
ties in a suburb (a disturbance that is not critical a priori)
may cause a real problem if bus frequency is low.
When a disturbance has been detected and assessed, the

planning phase begins. The type of the risk gives the pri-
mary objective to the regulator: to increase/decrease the
supply at one part of the network. He computes the feasible
procedures according to the current state of the network.
This complex process involves various information sources
like the real-time information, the theoretical timetables or
the information coming from drivers and from other regula-
tors, etc.
The decision phase is the last phase of the regulation pro-

cess. There are two parts, �rstly the regulator chooses the
regulation procedure and secondly he monitors its execu-
tion. If the result of the planning phase is a set of feasible
procedures, the regulator has to �nd a compromise between
contradictory constraints. For example, the empty runs or
the failures of the regulation's procedures have to be lim-
ited. After this choice, the regulator has to monitor that
the resources related to the procedure and the state of the
network evolve according to the forecasting of the regulator,
otherwise, he may have to change his choice.
Figure 1 sums up the tasks of the regulator and the links

between them. The regulator is involved in all of them. This
multiplicity of tasks makes his work very complex. Note that
the decision task that is based on the result of the diagnosis
and planning tasks should be his main activity.

2.2.2 Regulation process issues
The main advantage of the AVM is to facilitate the access

to numerous and heterogeneous information sources, but the
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Figure 1: The regulation process in a urban trans-

portation system

regulator has to use his experience to extract the right in-
formation at the right time. This information organization
implies that the regulation process is strongly dependent on
regulator experience.
The �rst issue is related to the information incomplete-

ness. An AVM gathers information but part of them may
be missing according to the success of the collecting pro-
cess. Moreover, the regulator work is based on complet-
ing information as timetables miss the necessary knowledge
to compute them. This knowledge is essential for a better
management of the transportation plan. The theory of the
domain proposes di�erent rules (called logics) for the reg-
ulation of a network and they underlie the computation of
the timetable. If the description of these logics is not in the
scope of this paper, remember that each of them is related
to a speci�c objective. For instance, the logic of regularity
aims at minimizing the average waiting time of the travelers
and to divide the supply on all the buses in the line. On the
contrary, the logic of taking away aims at respond to a local
important demand. In this case, the timetable is computed
in order to concentrate the resources on the most critical
points in the line in order to keep all the passengers. Con-
sequently, in case of a disturbance, the regulation process
should not be based on the theoretical state of timetable
but on its objectives. This change in the regulation process
is only possible for experimented regulators, who �nd the
missing information with their knowledge of the network.
The second issue is related to the distribution of the reg-

ulator's attention. Because of the urban tra�c, numerous
vehicles in the transportation network are late especially at
the peak hours. A regulator can not take into account all
these delays. An experimented regulator uses his knowledge
of the line structure (the position in the city, the presence
of di�cult areas) and of the demand structure to determine
the most critical lines according to the schedule. For in-
stance, information indicating that a vehicle is too late to
do its next departure may be useless if this vehicle can make
up for the lost time on the last part of the run. The reg-
ulator uses the computed alarms as primary indicators and
analyzes its real importance according to its context.
The third issue is related to the assessment of a distur-

bance by the regulator. This task implies that the problem

evolution on the network is taken into account. Primary
alarms on the advance/delay of each bus provide instanta-
neous picture of line conditions. Monitoring all these alarms
in their space-time development is almost impossible and
leads to extra work for regulators. The regulator has to fore-
cast in a time-window the evolution of the situation. This
forecasting takes into account the future buses positions in
order to estimate the real importance of the problem. The
regulator has to choose the information according to its own
expertise and the estimate state of the network.
The fourth and last issue is related to the lack of a global

vision. The splitting up of monitoring by line and the high
number of the lines to be monitored (each regulator tracks
13 lines with 5-20 buses running during the day in the STIB
network) prevent global management of the network. Reg-
ulators use their expertise to relate disturbances without
visible links, in order to propose global solutions.
These issues are based on the lack of information modeling

to help a novice regulator. Our proposition is to integrate
a Decision Support System into the information processing
in order to support regulators task. This evolution from an
information system to a DSS corresponds to the evolution
of applying computer science in the transportation domain.
The �rst step has been to formalize the domain knowledge
in order to create an information system for an e�cient data
management. The objective of the next step is to automate
the use of this data through the design of a DSS.

3. INTEGRATING A DSS AND AN AVM SYS-
TEMS

The cooperation between a man and a system during a
decisional process can be done in two di�erent ways: 1) ver-
tical cooperation; 2) horizontal cooperation. The di�erence
between them depends of the distribution of the control.
The �rst choice is to use the DSS as an information source
and the operator is responsible of the decision. The second
choice is to have a DSS that computes in parallel to the op-
erator in order to reduce its work. This part discusses the
choice of the cooperation type that is the best suitable for
the urban transportation regulation domain.

3.1 Choice of the system architecture
The issue is to �nd the right place of the DSS during the

current information process. In a horizontal architecture,
the DSS and the AVM compute in loop and the operator
is the censor of this information process. From our point
of view, the choice of an "autonomous" architecture is pre-
mature in the urban network management domain. The in-
formation quality and the low formalization of the domain's
knowledge are di�culties that are hard to solve. Indeed, in
urban environment the information is not sure because their
collect is not an easy process. That is the reason why, a reg-
ulator spends an important part of his time-work in order to
con�rm the information coming from the AVM as soon as he
has doubts on the correctness of the data. The generaliza-
tion of the localization technologies like Global Positioning
System (GPS) will solve this issue. Nevertheless this tech-
nical improvement can not easily replace qualitative infor-
mation coming from drivers. For example, the management
of a disturbance related to a misplaced car is not the same
that if the reason of the disturbance is a person accident.
An automatic system will detect that the vehicle is late but
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it will not be easy to know the reason of this delay.
In a vertical architecture, the DSS is a guide or a server

of solutions. The AVM that has been created to facilitate
the access to theoretical and real data is a basic guide but
it has been shown that this role is not enough to help the
regulator. A DSS as a solution server may be based on a sim-
ulation tool or it may have access to the information in the
AVM. The regulator uses it as a simulation tool according
to the what-if model. For example, Brezillon ([3]) proposes
a DSS to the management of the parisian subway which is
activated by the regulator in the case of a disturbance. This
DSS proposes solutions according to information provided
by the regulator. That means that the regulator �lters the
data and solves the quality data problem. With this organi-
zation of information processing the problem is the di�culty
of managing disturbances in real time in a dynamic environ-
ment because the regulator has a new task, the information
�ltering.
In order to solve the problems related to the information

management, a solution would be to link the DSS with the
data.
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Figure 2: Integration of a DSS and AVM systems

Figure 2 shows an architecture that is a response to the
data management problem. The AVM preserves its initial
function: the collecting and shaping of data and the DSS
access to useful data for its reasoning. The DSS proposes
solutions to regulators which evaluate their validity because
they access to the two systems. This architecture is based
on a vertical organization of the cooperation between op-
erators and systems. The main advantage is to reuse the
existing system but it implies implicit information duplica-
tion. For example the position of the buses is used by the
AVM for the interface and the alarm computation but it is
also used by the DSS in order to compute a solution. It will
be di�cult to propose a modeling of the data quali�cation.
For example, how could the DSS detect that the delay of a
bus is due to a problem or to an error in the position col-
lect (a captor is breakdown) without a comparison with the
precedent position of the bus or the precedent records of the
captor. The last issue is organizational, some AVM already
have some of the functionalities that are related to the DSS
like the computation of alarms.
The criticism on the positioning of the DSS, AVM and

regulator leads to the proposition of a new generation of in-
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Figure 3: A Transportation Regulation Support Sys-

tem Architecture

formation system that we call: Transportation Regulation
Support System (TRSS). Our proposition includes the func-
tionalities of the AVM system and is based on the multi-
agent approach in order to organize data and processing
(Figure 3).
The gathering of a DSS and an AVM system solves the

problem of the duplication of the data. The same data are
used to manage the transportation network under normal
operating conditions (monitoring function) and also under
disturbed conditions (diagnostic and planning functions). In
order to avoid a superposition of complex functions, our
proposition is based on the modeling of the dynamic of the
data processing by a multi-agent rei�cation of the static hi-
erarchical data model. A multi-agent system has been de-
�ned to manage the transportation network under normal
conditions (network monitoring, dynamic schedule manage-
ment, data inconsistencies management) as well as under
disturbed conditions ([1]). Next section justi�es our choice
of the multi-agent paradigm.

3.2 Choice of a multi-agent modeling approach
Several researches in the multi-agent community ([12, 5])

have been done in the transportation domain. In ([5]), the
authors underline that 63% of the research are related to
the conception of DSS. Mathematical system and Interac-
tive Decision Support System have been important in the
modeling of the decision process in the transportation do-
main but they are often black boxes that hide the decision
process. Moreover these systems give synthetic results that
have to be analyzed by the regulator in order to become
a �nal diagnostic. These models compute with numerical
data and it is not easy for them to take into account quali-
tative data, like the relative importance of a delay according
to the position of the bus in the network. Moreover these
models are not suitable to compute with uncertain and in-
complete data. Most of all, these models presume that the
data is available and reliable but as written before this is a
strong hypothesis in the urban transportation network man-
agement.
A MAS has a di�erent approach for the conception of a

DSS. The �rst di�erence is related to the objective of these
systems that is the comprehension of the process that they
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manage. A Multi-agent system makes easier the comprehen-
sion of a complex reality, by the rei�cation of the compo-
nents of the system to manage. This underlining of the com-
ponents and of their links facilitates the comprehension of
the regulation process that is at the beginning of its formal-
ization. The multi-agent approach paradigm is well adapted
to the transportation domain since it facilitates an approach
by analogy in a domain where the objective is the manage-
ment of distributed entities. The second di�erence is related
to the management of quantitative, qualitative and symbolic
description that the multi-agent paradigm facilitates. This
point is useful to put into perspective the importance of the
alarms.
In the domain of public transportation management, the

works of ([10, 4]) are based on the use of a simulator. Os-
sowski et al. introduce an organizational and communicative
model of decision support environments applied to trans-
portation management. These systems are not integrated
and are not directly fed with real-time data coming from
vehicle sensors and in that sense are closer to the architec-
ture shown in Figure 2. At last [14] proposes a multi-agent
architecture for system related to the management of tra�c.
This work is mainly related to the issue of the management
of entities that are physically distributed rather than to the
transportation problem.

3.3 Choice of the environment modeling ap-
proach

Recently, the Environment for Multi Agent Systems tech-
nical forum group (E4MAS) has produced valuable outputs
concerning the poorly exploited concept of the environment,
notably in terms of roles, responsibilities, architecture, as
well as practical applications, thus opening many challenges
in terms of modeling, methodology and engineering [16]. In
[16], the authors enumerate the responsibilities of the envi-
ronment and some of them have already be applied in the
transportation domain.
Because the environment is a shared space for the agents,

resources and services, its �rst responsibility is the struc-
turing of the MAS. The environment modeling is a solution
to give a space-time referential to a transportation applica-
tion. Moreover, its privileged intermediary role makes the
environment a good candidate to support spatially and tem-
porally decoupled coordination models and thus it simpli�es
the design of solutions taking into account dynamic real en-
vironment. In [15], the environment contains �elds that are
propagated in the environment in a certain range and used
by the agents to organize the task assignment for Automatic
Guided Vehicles. The MAS environment becomes the com-
mon referential that enables agents to adapt their behavior
according to the dynamic of the real environment.
Because the environment has its own process, its second

responsibility is to maintain its own dynamic. According
to its structuring responsibility, the environment can also
manage the dynamic of the transportation environment, en-
suring the coherence of the MAS. In [15], the environment
ensures the propagation of the �elds. Moreover, the envi-
ronment can ensure services that are not at the agent level
or in order to simplify the agent design. In a tra�c light
control system [2] based on evolutionary game theory, the
environment, that has a global point of view, gives rewards
or penalties to self-interested agents according to their local
decision.

Because the environment with its own dynamic can con-
trol the shared space, its third responsibility is to de�ne
rules for the multi-agent system. The environment can con-
trols the execution of the MAS ensuring for example that
the coordination rules will be respected. In a bus network
simulation [9], the main role of environment is to constraint
perceptions and interactions of agents. Indeed, a Bus agent
and a Traveler agent can interact only when they are lo-
cated at the same bus stop. For transportation applications
that have an incomplete knowledge, it simpli�es the design
of the MAS by a clear separation between the roles of the
agents and their organization. In the coordinated moni-
toring of tra�c jams application [7], the environment pro-
vides organizations, which it dynamically evolves according
to the current context. Organizational evolution uses a set
of laws, which de�ne the way organizations and role (played
by agents) should evolve given the current context.
Because the agents are "users" of the services of the envi-

ronment and to really create a common knowledge, the last
responsibility of the environment is to let observable and
accessible its own structure. From our point of view, this
last responsibility simpli�es the rei�cation of the MAS com-
ponents in the environment and their manipulation by the
agents.

4. A TRSS APPLICATION: THE SATIR SYS-
TEM

4.1 Multi-agent modeling of a transportation
network

The agent modeling takes into account our initial propo-
sition that is to gather in the same unit the data and the
knowledge useful to its process. For instance the agents not
only use the position of the buses but they also detect the in-
consistencies. That is the reason why cognitive agents have
been chosen. The static modeling of the data is based on a
hierarchical organization. The stop is the elementary com-
ponent of the physical and timetable information; the vehi-
cle is the access point to the real-time information. We also
de�ne two types of agents: 1) The STOP agents that rep-
resent the theoretical structure of the network and compute
the theoretical timetable; 2) The BUS agents that represent
the dynamic part of the network. Every BUS agent is the
abstract model of an actual vehicle running on the trans-
portation network and reports its movements to the STOP
agents.
The interaction between agents in the coordination pro-

tocols is based on the exchange of messages. In the domain
of urban tra�c control, the sender does not always know
the name of its receivers because the receiver of the message
is often identi�ed according to its position. For example,
when a bus has to contact its nearest bus, it does not know
its identi�cation. Usually, the simplest protocol is a broad-
cast protocol (more or less limited). The drawback of this
solution is the high communication cost, mainly in real-time
systems like urban transportation systems since the location
of buses is updated very frequently (every 40 seconds in our
application). Another simple solution is the use of acquain-
tances; the interaction problem is solved by an increase in
the interaction knowledge of agents. In a TRSS, this solution
is inadequate because the problem remains when an agent
is not able to link its needs to an agent identi�er. A third
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solution is the use of a middle-agent. This approach called,
"capability-based coordination", is a preference/capability
matching, used to identify the best provider for a given ca-
pability search. In our transportation problem this solu-
tion has no sense because all STOP agents have the same
capability (idem for BUS agents). Because the dyadic in-
teraction solutions are not adapted to the transportation
domain, we propose to base our interaction model on the
mutual awareness principle. An important part of the inter-
action in real-life situations comes from other means than
direct transmissions [6], and is related to a particular state of
the participants: awareness. Although it has long been con-
sidered as a passive state, we consider that awareness is an
active state and not only the result of stimuli. Work in the
�elds of psychology and sociology have discussed whether
or not there also has to be an active participation of the
"perceiver". For example, Heath [8] says that awareness is
not only the perceiver's availability to be aware of the envi-
ronment, but also his ability to "�lter relevant information
which is of particular signi�cance". Mutual awareness is
based on the sharing of interactions. To be e�cient, this
principle implies that agents share a common communica-
tion media. As a consequence, an agent has to �nd only
messages that it is interested in. In the reactive agent com-
munity, the environment is already used as a common inter-
action medium. In the cognitive agent community, we have
proposed the EASI model (Environment as Active Support
of Interaction) [11], which enables cognitive agents to use
the environment to exchange messages. More precisely, it
enables an agent to send messages to another agent that
is located by the environment, and also enables agents to
perceive every message exchanged.
For this purpose, we consider that the environment con-

tains descriptions of messages and agents. The problem is
how the agents use these descriptions to locate messages
according to the environment state. This implies matching
those descriptions and the needs of the agents. We therefore
propose to represent all the components of the environment
(agents and messages) as entities. Each entity has a Pub-
lic Layer containing the properties, accessible through the
environment. Agents have the ability to put �lters in the en-
vironment and these �lters are logical expressions on prop-
erties. When a message is added to the environment, these
�lters determine by pattern matching whether the agent is
interested in it, in which case it will receive it. In this way,
the �lters enable agents to create their communication space
where each �lter corresponds to a precise communication
need:

• Reception �lters: communication is based on a need
that is common to two agents. The sender speci�es
the values of the characteristics searched for in the re-
ceiver. This description is matched against a commu-
nication �lter of the category of the agents contacted.

• Emission �lters: communication is based on a need of
the sender which doesn't match any expectation of the
category of contacted agents. The consequence of this
lack of interest among the receivers is the absence of
suitable �lters which would make it possible for the en-
vironment to �nd the agents concerned. Consequently,
the sender must put the appropriate �lter in the en-
vironment at the same time as it sends its message.
An emission �lter may require the comparison of the

potential receivers and therefore requires the use of
predicates. This implies that the �lter matches all the
potential receivers of a message and then searches for
the exact receiver of that message.

• Interception �lters: the interception �lters are the sen-
sors which allow the agents to receive the messages
which are not sent to them but the content of which
may be of interest for them. The goal of these �l-
ters is to make full use of the environment as a shared
work context where every communication is poten-
tially available for all of the participants.

The organization modeling has to take into account the
hierarchical organization of the information and the treat-
ment of this information. The hierarchical organization cor-
responds to the view of the agents according to di�erent
abstraction levels. A STOP agent is located on a line and a
route. The gathering of the agents according to a line or a
route gives the needed hierarchical level. The monitoring of
the network under normal condition is based on this orga-
nization. In order to isolate in this data set the information
related to a disturbance, another organization will gather
the agents involved.
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Figure 4: A Transportation Regulation Support Sys-

tem application: the SATIR system

Figure 4 shows the proposed multi-agent model. The
agents are gathered in separate environment according to
their functionalities. In each of these environment, the com-
munication needs are not the same and the set of commu-
nication �lters is therefore adapted. The communication is
allowed inside and between environments.
At the beginning of the process, the theoretical data are

distributed between the STOP agents. The STOP agents
have the topological information on their network position:
the line, the route, the distance to the next STOP agent
(with the identi�cation of this agent) and more particular
information like the physical possibility to do a U-turn. A
data table is associated with each stop of the network for
each period of time (classi�ed from 0 (�uid) to 2 (heavy traf-
�c)). These data are used to de�ne the theoretical state of
tra�c and of passenger demand and to compute schedules.
For instance, at the stop p1 the estimated value of tra�c
is 1 (the circulation is normal) and the estimated value of
�ow of passengers is 2 at 8 pm (p1 may be a school). The
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dynamic schedule computing replaces the use of a theoret-
ical timetable that not remains a valid reference when the
network is disturbed (see 2.2). The STOP agents have the
knowledge (tra�c problems and passenger �ow) used by the
graph makers (sta� that compute the theoretical supply) in
order to establish a theoretical timetable. This knowledge
is also used in the assessment process and in the search for
solutions to a disturbance.
When a vehicle passes a stop on the real network, a warn-

ing message is sent from the BUS agent to the involved
STOP agent. The STOP agent updates its timetable by
removing this vehicle from its list of expected vehicles. A
STOP agent which does not receive any message detects an
anomaly and triggers the disturbance processing presented
in paragraph 4.2.
In order to only process the important disturbance, the

trigger of the disturbance management process depends on
the value of a time parameter that may be di�erent for each
STOP agent. A default value of 7min has been used (STIB
norm). When a vehicle is no longer located, the STOP
agents on the bus route have not been informed about the
passage of the bus, but they will intercept all new transit
announcements sent by vehicles not running to timetable.
The interceptor agents receive the message and update their
timetable. Overhearing provides an e�cient solution to the
problem of the inconsistent data, in that it needs few infor-
mation: the BUS agents have no information on the topol-
ogy of the routes; and only one warning message is sent for
a transit event in the network and the MAS state is updated
according to the reaction of agents to this event in their own
context.
The BUS agents are the intermediates between theoretical

data (STOP agents) and real-time data. This repartition of
roles ensures the modularity of our proposition. For exam-
ple, a modi�cation in the data collects implies a modi�cation
of the BUS agents, the rest of the MAS remaining the same.
Moreover, this decomposition facilitates the development of
more evolved functionalities as diagnostic or planning.

4.2 Multi-agent modeling of the diagnostic pro-
cess

The STOP agents have knowledge about the theoretical
structure of the network and the BUS agents have knowledge
about the actual activity of the network and also the theo-
retical activity of the vehicles (each BUS agent manages its
own timetable). We have proposed to put together within a
speci�c organization called the Incident model ([1]) all the
STOP agents and BUS agents which are related to a given
disturbance. For this purpose, we de�ne three information
sets, also called areas:

• The Successor area: This area brings together all the
stops waiting for the successor of the late bus, it mea-
sures the risk assessment of a bus train (the late vehicle
is caught up by the following one).

• The Critical area: This area brings together all the
stops where the vehicle is late, it measures the risk
assessment of a gap (the late vehicle is left behind by
the preceding bus).

• The Predecessor area: This area brings together all the
stops where the late vehicle is due but not yet late, it
measures the risk assessment of a gap.

The set of these three areas constitutes the Incident model.
The Incident model gathers in a single entity all the informa-
tion necessary to manage a given disturbance thus helping
the regulator to do its diagnosis job. The �gure 5 pictures
three disturbances (c) with their respective areas. For each
disturbance, a speci�c environment is created (a) where the
organization of the agents is hierarchic as explain below (b).
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Figure 5: Multi-agent dynamic disturbance model-

ing in a TRSS

To measure qualitatively the importance of a delay, we
have taken into account its consequences on the activity of
the network. We have de�ned two measures of risk linked
to a disturbance that are detailed in ([1]). These measures
are based on the study of a priori progression di�culties of
vehicles involved with the disturbance and take into account
the intrinsic dynamics of a disturbance.
The initial organization of the multi-agent system (in lines

and routes) is completed with a hierarchical organization of
the agents in order to aggregate information and to compute
feasible solutions (Figure 5 (b)). At each level of the hierar-
chy, information is aggregated by the agents. The two new
types of agents are the STOPAREA agents and the INCI-
DENT agent. The lowest level of the hierarchy is composed
of the elementary entities, the STOP agents. The middle
level is composed of the STOPAREA agents that make an
initial summary of the information. They collect basic infor-
mation such as theoretical tra�c evaluation and passenger
�ow from the STOP agents linked to them and they com-
pute the progression coe�cient (an indicator of the problem
of the area). The INCIDENT agent represents the top of
the hierarchy where feasible solutions are computed and is
the link between regulators and the system.
This organization is dynamic because at each cycle, STOP

agents move from one area to the other within the hierar-
chy, and from and towards the outside of the organization,
according to tra�c direction (Figure 5).
When the disturbance disappears, this organization sur-

vives during some cycles to keep the continuity of the distur-
bance process. After this period, the created agents related
to the disturbances disappeared too.
The originality of our approach is the dynamic modeling of

a disturbance process from its beginning to its end and its in-
tegration in a multi-agent system. We have de�ned a model,
called the Incident model that allows information synthe-
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sis that is useful for decision making. Through this model,
knowledge relative to the network structure and knowledge
relative to the network dynamics (stored in STOP agents
and in BUS agents, respectively) are gathered within a sin-
gle entity that is rei�ed by a speci�c environment (one en-
vironment by disturbance) where all the involved agents are
brought together. This entity allows the follow-up of the
disturbance over space and time; it is deleted when the dis-
turbance is solved.

4.3 Multi-agent modeling of the planning pro-
cess

When a disturbance has been detected and assessed, our
TDSS computes the feasible regulation procedures. Initially,
the transport service matches the theoretical demand to the
bus supply. However, when a disturbance appears, there is a
discrepancy between the service provided and the passenger
�ow. Thus, the task of the system is to adjust the initial
supply in order to satisfy the needs according to the changes
to the network.

4.3.1 Static feasible action planning
Thanks to prede�ned procedures, regulators modify the

transport service according to the state of the network and
to the possible actions of the buses on the line. They cancel
or modify the vehicle timetable in order to shift the service
to another point on the network. One of the original features
of SATIR is that BUS agents play the role of regulators, en-
abling a micro-regulation of the network. At the beginning
of its activity, each BUS agent receives the list of the runs
it is supposed to do (timetable) and that it may modify dy-
namically, thus acting as a regulator. When a disturbance is
detected, the late BUS agent requests a new run that each
BUS agent on the same line tries to insert into its timetable.
For each BUS agent, this insertion implies a modi�cation of
its timetable. And one or more regulation procedures can be
used. Timetable processing within the multi-agent system
is implemented in three steps.

• step 1, the availability of the BUS agents is computed
in order to eliminate vehicles that are not potential
solutions. Using conditions related to its own charac-
teristics (example: its size) or related to network rules
(example: the last run of a vehicle is never changed),
a vehicle is eliminated.

• step 2, the pro�les of the available BUS agents are com-
puted. We call pro�le the characteristics of a group of
BUS agents with the same relative position compared
to the late BUS agent (i.e. before, after, same direc-
tion,etc.). For each pro�le, the regulation procedures
are the same. For example, the AlightingOnly proce-
dure may be feasible for all BUS agents located before
the late BUS agent but it is useless for the BUS agents
located after it. Using the BUS pro�le may limit the
number of tests: some procedures may be forbidden or
limited to speci�c pro�les.

• step 3, the feasibility of the regulation procedures is
computed. Every regulation procedure has constraints
that BUS agents must satisfy in order to be considered
as feasible. For example, a vehicle cannot make a U-
turn if there is no location to do so.

Breaking this timetable processing down into three steps
o�ers several advantages. Since network authorities have
their own regulation rules, they do not apply the same con-
straints on vehicles and on regulation procedures. The three
steps described above enable a network to adapt the plan-
ning process to its own rules and constraints. Moreover,
the distribution of BUS agents into pro�les limits the solu-
tion space to the only feasible procedures. from a micro-
regulation viewpoint, another advantage of this planning
process is that it can be distributed and automatically ap-
plied by BUS agents.

4.3.2 Dynamic feasible action planning
The adaptation process begins with an inform message

sent by an INCIDENT agent to the late BUS agent. Be-
cause computation of the regulation procedures depends on
its position and on the information related to its current run,
the late BUS agent looks for the missing information on the
network. Firstly, it sends a message to the STOP agents
located between its own position and the end of its current
run to collect the missing data, such as passenger �ow and
run length; secondly it forwards it to the BUS agents that
are on the same line by sending a request message. The
next step is done by the BUS agents that apply the steps of
the planning process described above. Thanks to its local
knowledge of the network and of its own activity, a BUS
agent may propose feasible regulation procedures. We pro-
pose a general model of the regulation procedure as follows
(Figure 6).
For each regulation procedure we de�ne three precondi-

tions and a computation process. The preconditions are
related to the steps of the planning process and the compu-
tation process computes the insertion of a new run requested
by the late BUS agent into the BUS agent timetable. Let H
be the set of hard preconditions related to the characteris-
tics of the BUS agent (see step 1). Each condition takes into
account the internal state of the BUS agent and does not re-
quire any additional information to be evaluated. Let P be
the conditions related to the pro�le of the BUS agent (see
step 2). The BUS agent computes its own pro�le given the
current disturbance and computes the regulation procedure
that is linked to its pro�le. Let S be the soft conditions that
are related to the availability of the procedure (see step 3).
If we take the example of the AlightingOnly procedure it is
limited to the pro�les of BUS agents that are located at the
beginning of the line and before the late vehicle. The soft
preconditions, de�ned by the STIB Belgium bus network,
are the following (H = ∅ which means that AlightingOnly is
always possible):

Figure 6: The regulation algorithm
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• the distance (number of stops) between the BUS agent
and the late BUS agent is less than 5. This procedure
means that the passengers of the late vehicle have to
wait for the following vehicle and that the waiting time
must not be too long.

• the position of the terminus of the BUS agent involved
must be superior to the position of the late vehicle
terminus. If this is not the case, the procedure will be
done only on part of the run of the late vehicle.

• the distance between the late vehicle and its prede-
cessor is greater than 10 stops. Within this procedure
the late vehicle will make up lost time. The aim of this
precondition is to avoid the creation of a bus train with
the previous bus.

In order to compute these conditions, the BUS agent has
to look for the missing information. The vehicles charge is
not taken into account because the STIB network does not
have captors to give this information. For the AlightingOnly
procedure, it has to know the position of the predecessor of
the late vehicle. The name of this data and that requested
for the computation process are recorded in the data set
called D (�gure 6).
Let R1 be the run that will be modi�ed to insert the

requested run. R1 is the current run or a run that is cho-
sen according to its departure time. For the AlightingOnly
procedure, the chosen run is the current run of the BUS
agent and the adaptation consist of the computation of a
new timetable. To compute this timetable, the BUS agent
looks for the following data: number of stops, tra�c and
passenger �ow values between the vehicle and the late one.
In Figure 6, the algorithm gives the steps of the new run
computation for a BUS agent. Only the procedures that be-
long to the pro�le of the BUS agent are taken into account.
If the hard conditions are false (hardCondition line 5), the
BUS agent looks for the missing information (search_Data
line 6).
If the soft conditions are true, then the function proce-

dureValidation returns the result of the computation. Using
the data on the chosen run R1, the requested run R2 and the
collected data Dresult, this function computes the run-time
of the regulation procedure.
To close this process, each BUS agent sends the result of

its computation to the INCIDENT agent that gathers and
organizes this information for the regulator. In the next
section, the result of this process is presented.

5. EXPERIMENTATION AND RESULTS
A prototype has been implemented in C++. In order to

study the feasibility of our SATIR system, the prototype
was tested using real data recorded every 40 seconds from
buses on the Brussels Intercity Transport Company network
(STIB). In this section we give some result about the planing
process. The result about the assessment process are given
in [1]. The data was recorded on tape for around 30 buses, on
one line, over 8 days and represents more than 43,000 items.
The SATIR system was run over time through cycles on this
data representing the movement of buses on the network; it
detected 300 incidents and it recorded the disturbances data
on �le. For each day, the run time is only a few minutes.
In the following example, line number 54 has been studied

as follows: 1) Day 1: the monitoring data of the regulator

that manages line 54 was recorded. Each of the managed
disturbances and the chosen solutions were recorded. 2)
Day 2: SATIR was tested with the data related to the line
activity of day 1. A serious disturbance managed by both
the regulator and SATIR was identi�ed. 3) Day 3: SATIR
was shown to the regulators and the solutions to the same
disturbance were compared.
The disturbance is the following: a badly parked vehicle

blocked bus #54806 that ran more and more behind sched-
ule. The regulator was informed by the driver at 15:33. The
regulator chose to call the vehicles near this problem in or-
der to organize a diversion, but there is a technical problem
and the driver was unable to get the call. The consequence
was a bus train at 15:56:14.
Since the disturbance was detected by the regulator after

a call, SATIR did not have this information. As a conse-
quence the disturbance was detected by SATIR after 7 min
(which avoids a false alarm), at 15:38. The vehicle was at the
stop called ARLON and its STOP agent triggered the dis-
turbance assessment process (Figures 7). Every 3min, the
new INCIDENT agent updated the assessment. This dis-
turbance was close to line number 80. The regulator used
this proximity to choose a vehicle that was at the end of its
runs to substitute for the blocking bus. This new vehicle
does not exist in the AVM system and a �ctitious reference
was created for it. Since vehicle #54806 had a substitute
it made a U-turn to make up for lost time. The regulator
planned the U-turn where the substitute bus was inserted
(called vehicle #1). When the blocking car had gone, ve-
hicle #54806 continued its runs to the stop where vehicle
#1 was waiting. At this location, vehicle #54806 made a
U-turn and the vehicle continued the run of vehicle #54806.
SATIR was not able to �nd this regulator's solution because
this solution implied an external resource (i.e. a new bus).
Bearing this in mind, the SATIR planning process detected
two BUS agents that could provide a feasible solution, vehi-
cles #54806 and #54827.
Vehicle #54806 has two proposals that take into account

the next vehicle (#54830). The common objective is to
increase the speed of vehicle #54806 by modifying the run
mode. The �rst feasible procedure is an empty run (M =
Without-passengers, Figure 7.A); the second choice is a run
with alighting only (M = AlightingOnly, Figure 15.B). These
procedures take into account the next vehicle because they
are feasible if this vehicle is close enough to pick up the
passengers that are not picked up by vehicle #54806. All
this information is displayed to the regulators through the
interface (Figure 7 (A and B)). For each procedure, several
items of data are given: the current delay (7 mn and 4s), that
part of the delay that can be made up, how many stop are
necessary to make it up. For instance, in the �rst procedure
(M = Without-passengers), 15 stops are needed and in the
second one (M = AlightingOnly), 23 stops are needed.
Each regulator proposes solutions according to his own

knowledge, habits and experience. For the situation de-
scribed in this paper, the regulator may propose several
solutions that are di�erent to those proposed by SATIR.
In our example, the regulator has chosen external resources
although there are internal solutions. In order to validate
our model, the SATIR proposals were studied by the regu-
lators, who approved them as being feasible. If they did not
choose the AlightingOnly procedure chosen by SATIR, this
is because it may be e�cient for certain lines but not for
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Figure 7: Two SATIR proposals with vehicle

#54806 to made up a delay

others (remember that SATIR was tested on only one line
and more testing has to be done).

6. CONCLUSION
In this paper, we have presented a Transportation Regu-

lation Support System that represents a global approach to
the regulation task on a transportation network. Our propo-
sition is based on a multi-agent modeling of the transporta-
tion network. The MAS organization enables to reproduce
the functionalities of the existing information system and
thus manages the transportation network under normal op-
erating conditions (where are the buses located ?). Under
disturbed conditions (where are disturbances (bus delays,
bus advances) located ? What action has to be taken to
solve the problem?), this organization is completed by a new
organization of the agents concerned by a disturbance. The
experience gained from the development e�ort of our system
supports the proposition that the multi-agent paradigm is
an appropriate framework for transportation network mod-
eling and simulating.
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ABSTRACT
Urban traffic networks are large, dynamic systems which remain
a challenge in control engineering despite all of the scientific and
technological progress. The sheer size, wide spread of sensors and
control devices, and nonlinearities make such systems complex, be-
yond the scope of existing models, let alone control algorithms. To
this end, control engineers have looked for unconventionalmeans
for modeling and control, in particular the technology of multi-
agent systems whose appeal stems from their composite nature,
flexibility, and scalability. This paper contributes to this evolving
technology by proposing a framework for multi-agent control of
linear, dynamic systems. The framework decomposes a central-
ized model predictive control problem into a network of coupled,
but small sub-problems that are iteratively solved by the distributed
agents. Theoretical results ensure convergence of the distributed
iterations to a globally optimal solution. The framework isap-
plied to the signaling split control of traffic networks. Experiments
conducted with simulation software indicate that the multi-agent
framework attains performance comparable to conventionalcon-
trol, such as the traffic-responsive urban control strategy.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problems; I.2.11 [Artificial Intelligence ]:
Distributed Artificial Intelligence; J.6 [Computer-aided Engineer-
ing]

Keywords
Urban traffic networks, split control, distributed agents,model pre-
dictive control

1. INTRODUCTION
Much of the improvements in urban traffic control can be at-

tributed to past advances in science and technology. The existing
technology is changing the way traffic systems are designed and
operated. Today, modern operating centers receive traffic-flow data

∗This research was supported in part by Conselho Nacional de
Pesquisa e Desenvolvimento Tecnológico (CNPq) under grants
551050/2005-5 and 473841/2007-0.
†Supported by CNPq Fellowship Program.

from distributed sensors and implement control policies inresponse
to the prevailing traffic conditions. Yet, there is room for further
improvements in urban traffic control to cope with the increasing
volume of traffic which incurs pollution, excessive fuel consump-
tion, and prolonged journey times.

Over the last few years, theTraffic-responsiveUrban Control
(TUC) strategy has drawn attention for its robustness and good per-
formance, specially so under saturated traffic conditions [11]. Such
results have been corroborated in field applications in cities as Mu-
nich, Glasgow, Southampton, and Chania [3, 12, 16]. The TUC
framework models traffic flow using a variation of the store-and-
forward model originally proposed in [13], which uses purely con-
tinuous state and control variables allowing the computation of con-
trol policies with efficient algorithms. In its standard form, TUC
calculates the control signals with a two-stage multi-variable regu-
lator [11]: the first stage solves an unconstrained linear-quadratic-
regulator (LQR) problem that minimizes a quadratic function on
queue lengths and control signals; the second stage recovers fea-
sibility of the control signals produced by LQR, whereby an op-
timization problem is solved to minimize the distance of thein-
feasible solution to the feasible space. However, such two-stage
procedure does not guarantee optimality [4]. To this end, a model
predictive control (MPC) approach was proposed to explictly han-
dle the constraints, this way guaranteeing control feasibility and
improving solution quality [9].

Alongside the progress on traffic-flow modeling and control,a
great deal of research has advanced the technology of multi-agent
systems, notably in the fields of artificial intelligence andsoftware
engineering [15, 18]. This evolving technology seeks to assemble
agents of limited knowledge and abilities in a multi-agent organi-
zation to perform tasks that are beyond the expertise of its individ-
ual members. Such agents not only encapsulate information,but
they also exhibit semi-autonomous behavior by employing some
form of reasoning to cooperate with others for the interest of the
whole organization, negotiate to resolve conflicts, and even com-
pete when driven by self-interest. The problem-solving ability of
a multi-agent system emerges from the interactions and collective
effort of the agents, not only their intelligent behavior.

Multi-agent frameworks were originally restricted to the field of
computer science where typical applications are of discrete nature
such as puzzle solving, planning, and combinatorial arrangement.
More recently, control engineers realized that such frameworks can
be extended to operate dynamic systems, specially complex dis-
tributed systems such as petrochemical plants and transportation
networks [19, 22, 23]. The operation of such complex, spatially-
distributed dynamic systems is a formidable challenge to control
engineering, to a great extent due to the intrinsic complexity, sheer
size, and nonlinearities. Control engineers have turned their atten-
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tion to multi-agent systems whose appeal stems from their compos-
ite nature, flexibility, and scalability [24].

However, multi-agent systems are still a long way from deliv-
ering this promise to complex dynamic systems. Much of the lit-
erature offers methodologies, general guidelines, or otherwise ad
hoc procedures lacking formal methods that ensure convergence
and stability. To this end, this paper proposes a framework for
controlling linear dynamic systems with a network of distributed
control agents. These dynamic systems arise from the intercon-
nection of linear sub-systems with local input constraints. Appli-
cations are found in signaling split control in traffic networks and
reaction control in petrochemical plants. Given dynamic equations
and algebraic constraints, our framework formulates the optimiza-
tion problem arising from model predictive control and proceeds to
decompose the MPC problem into a network of coupled, but small
sub-problems to be solved by the agent network. An agent senses
only the state variables and sets the values of the control variables
of its sub-system, communicating with agents in the vicinity to ob-
tain the values of neighborhood variables and coordinate their ac-
tions. With a well-crafted problem decomposition and coordination
protocol, the solution iterates produced by the agents can be shown
to converge to a globally optimal solution to the MPC problem.

In essence, the decision-making and cooperative control behav-
ior of the agents emerges from the solution of optimization prob-
lems. The work reported here builds upon preceding work on dis-
tributed control [6, 8] by exploiting the linear dynamic structure to
develop simpler models and algorithms.

In a representative traffic network, computational experiments
are conducted to assess the performance of the proposed multi-
agent MPC framework. The purpose of the experiments is twofold.
First, the experiments compare a single, centralized agentwith a
network of distributed control agents at solving the MPC problem
for a number of initial conditions. Second, they compare themulti-
agent approach with the TUC strategy using metrics providedby a
professional simulation package.

The remaining sections are structured as follows. Section 2of-
fers some basic concepts about urban traffic networks, alongwith
a description of the store-and-forward model of traffic flow and the
LQR strategy used by the TUC approach. Section 3 formulates the
MPC problem for split control as a linear dynamic system consist-
ing of a network of dynamically coupled sub-systems, one foreach
intersection. Last but not least, the section develops a perfect de-
composition of the MPC problem into a network of sub-problems
and outlines a distributed algorithm for the agent network,which
can be shown to converge to an optimal solution. Section 4 reports
results from numerical analyses designed to compare the central-
ized and distributed solution of the MPC problem and from simu-
lated experiments aimed to compare the TUC LQR strategy with
the multi-agent MPC approach. Section 4 makes some final re-
marks and suggests directions for future research.

2. URBAN TRAFFIC CONTROL
An UrbanTraffic Network (UTN) comprises a set of roads, ar-

terials and streets, known aslinks, interconnected byjunctionsthat
may be controlled [11]. The traffic inside the network is divided
into streamsof vehicles. Streams grouped in a same link define its
saturation flow, which is the mean flow crossing the stop line of an
approach when the respective stream has the right of way (r.o.w.),
a sufficiently large upstream queue, and unobstructed downstream
links. The repeated sequence of signal combinations at a junction
is namedsignal cycle. Its duration is calledcycle timeor simply
cycle. A stage, or phase, is a portion of a signal cycle in which a
set of streams has the r.o.w. For safety measures, stages areinter-

Stage 1 Stage 2 Stage 3

lost
time

Cycle Time

Figure 1: Signal cycle, lost time and cycle.

posed by constantlost timesof a few seconds avoiding interference
amongst conflicting streams (Fig. 1).

The influence of traffic lights on traffic depends on four factors
[10, 20]: stage specification, cycle duration, offset amongjunc-
tions, and signaling split. Where split refers to the relative green
percentage of the cycle time assigned to each stage.

2.1 UTN Modeling
A UTN modeled in accordance with the TUC strategy [11, 12]

is represented as a directed graph with linksz ∈ Z and junctions
j ∈ J . SetsIj and Oj denote, respectively, the incoming and
outgoing links of junctionj. Cycle timesCj , lost timesLj , turning
ratestz,w, z ∈ Ij , w ∈ Oj , and saturation flowsSz , z ∈ Ij , are
considered constant and known. For the sake of simplicity,C = Cj

is assumed for all junctionsj ∈ J . Finally, the control signal of
junction j has a fixed number of stages belonging to the setFj ,
where subsetvz ⊆ Fj represents those where linkz has the r.o.w.

Letting uj,i denote the green time of phasei at junctionj, the
constraint

P

i∈Fj
uj,i + Lj = C must be enforced. Additionally,

uj,i ∈ [umin
j,i , umax

j,i ] whereumin
j,i andumax

j,i are the minimum and
maximum allowable green times, respectively.

The main differential of this strategy is the use of a variation of
the store-and-forward model, where the control cycle is required
to be greater than every cycle of the network. Therefore traffic
flow is modeled as purely continuous, allowing the use of efficient
algorithms on the control signal computation.

The dynamics of network linkz is given by equation:

∆xz(k + 1) = T [qz(k) + dz(k) − fz(k) − sz(k)], (1)

where: xz denotes the number of vehicles in linkz; qz and fz

are, respectively, the inflow and outflow of linkz during period
[kT, (k + 1)T ], wherek = 1, 2, . . . is a discrete time index and
T is the control interval;dz is the demand, vehicles entering the
network not originating from adjacent links; and, finally,sz is the
exit flow at timek.

Since exit rates are known, the exit flow may be replaced for the
following equality: sz(k) = tz,0qz(k). In addition, one may for-
mulate the inflow of linkz asqz(k) =

P

w∈Ij
tw,zfw(k), where

tw,z is the turning rate towards linkz ∈ Oj coming from link
w ∈ Ij . Assuming that inflows and outflows of linkz with r.o.w.
are equal to their saturation flow,Sz , equation (1) is written as:

xz(k + 1) = xz(k) + T

"

dz(k) −
Sz

C

X

i∈vz

uj′,i(k)

+ (1 − tz,0)
X

w∈Ij

tw,zSw

C

X

i∈vw

uj,i(k)

#

, (2)
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where the control signaluj,i(k) is the green time for vehicles going
through junctionj during phasei, whereas

P

i∈vz
uj′,i(k) is the

green time for vehicles leaving linkz. Notice thatz leaves junction
j and entersj′. Generalizing equation (2) for all network links
leads to the matrix equation:

x(k + 1) = Ax(k) + Bu(k) + Td(k), (3)

where:x(k) is the state vector;u(k) is the control vector contain-
ing signalsuj,i, ∀i ∈ Fj , ∀j ∈ J ; d(k) is the vector containing
demandsdz , ∀z ∈ Z; andA = I , B, andT are the state, input,
and disturbance matrices, respectively.

2.2 Split Control
In a traffic-responsive control strategy the signaling split must

be optimized according to the demands of involved streams. In
standard form, the TUC strategy uses the LQR theory to find an
efficient time-invariant gain matrix, which is simpler thanoptimiz-
ing a physical criterion [11] but invariably achieving a sub-optimal
control law. By assumingd(k) = 0, the dynamic system (3) be-
comes:

x(k + 1) = Ax(k) + Bu(k), (4)

allowing the application of the LQR methodology. The control law
thereof does not account for feedforward terms, which is plausible
since the main goal is to attain a satisfactory gain matrix rather than
an optimized criterion.

Intending to minimize the risk of oversaturation and spillback,
minimization of proportional occupancy of links is attempted, i.e.
xz/xmax

z , wherexmax
z is the capacity of linkz. A quadratic crite-

rion to this end has the form:

J =
1

2

∞
X

k=0

(‖x(k)‖2
Q + ‖u(k)‖2

R), (5)

whereQ andR are diagonal positive weighting matrices, respec-
tively semi-definite and definite. According to the LQR theory, an
infinite time horizon is used in (5) to achieve a time-invariant con-
trol law. As matrixQ weighs the states, that is, the number of ve-
hicles in the roads, the goal of minimizing the average occupancy
is obtained by making its diagonal elements equal to1/(xmax

z )2,
for the corresponding linkz ∈ Z. Matrix R reflects the penalty
imposed on control effort, usually defined asR = rI , wherer is
found experimentally.

Minimizing criterion (5) leads to the control law:

u(k) = u
N − Lx(k), (6)

where:u(k) is the vector with green timesuj,i,∀j ∈ J, ∀i ∈ Fj ;
uN is the matching vector containing the nominal green times; and
L is Ricatti’s gain matrix, depending onA, B, Q, andR, though
with small susceptibility to their variation [11].

As control constraints are not considered in the aforementioned
control law, they are imposed in an ad hoc manner, through the
following optimization problem for each junctionj ∈ J :

min
Uj,i

X

i∈Fj

(uj,i − Uj,i)
2 (7a)

s. to:
X

i∈Fj

Uj,i + Lj = Cj (7b)

Uj,i ∈ [umin
j,i , umax

j,i ], ∀i ∈ Fj , (7c)

whereUj,i is the closest feasible solution in Euclidean space to
uj,i.

This problem is solved in real-time for each junctionj with an ef-
ficient algorithm [10], whose convergence is guaranteed in anum-
ber of steps less than or equal to the number of stages|Fj | of the
junction. Though this approach gives a feasible solution, it does not
satisfy the optimality conditions for system (4). Additionally, be-
cause no predictions are made, the multivariable regulatorbehaves
in a purely reactive way to unknown disturbances. On the other
hand, the structure of matrixL provides the regulator a gating ef-
fect preventing oversaturation in downstream links.

Previously published works [1, 9] report that significant improve-
ment may arise from the replacement of the usual LQR proce-
dure with a solution that accounts for system constraints, such as
a model predictive control strategy. Generally speaking, amodel
predictive control approach is composed by [4, 17]:

• a prediction modeldescribing satisfactorily the process dy-
namics in a finite time horizon;

• a cost functionwhich gives the control signal when mini-
mized; and

• a sliding horizonof prediction and control, which is trans-
lated a step forward at each sample period, requiring the
computation of new control actions from which only that of
the actual time is implemented.

Following these premises the MPC problem for split control is cast
as:

P : min
T

X

k=1

1

2
[x(k)T Qx(k) + u(k − 1)T Ru(k − 1)] (8a)

s. to: ∀k ∈ T :

x(k + 1) = Ax(k) + Bu(k) (8b)

Cu(k) ≥ c (8c)

Du(k) = d (8d)

where:x(k) is the system’s state andu(k) the control input at time
k; Q is positive semi-definite andR positive definite weighting
matrices;C andc define the inequality constraints;D andd define
the equalities; andT = {0, . . . , T − 1} is the time horizon.

3. MULTI-AGENT MPC
This section develops an MPC formulation for systems consist-

ing of the interconnection of linear dynamic sub-systems with lo-
cal constraints, hereafter called linear dynamic networks. The split
control problem is cast as an MPC problem over a linear dynamic
network, where sub-systems correspond to intersections, state vari-
ables correspond to vehicle queues, and control variables represent
green times. After the problem formulation, the section presents a
decomposition of the MPC problem into a network of coupled, but
small sub-problems that are solved iteratively by the agentnetwork.
This section reports theoretical properties of the decomposition, re-
lating the MPC problem and sub-problem network, and outlines a
distributed protocol to synchronize agent iterations. Conditions are
given for the iterations of the agents to arrive at a solutionto the
centralized MPC problem.

3.1 Modeling and MPC Formulation
The dynamic representation of the traffic-flow derived from the

store-and-forward modeling approach is conveniently represented
as a system ofM interconnected sub-systems, one for each junc-
tion. Sub-systemm’s local state isxm ∈ R

nm and control signal
is um ∈ R

pm . A directed graphG = (V, E) models the cou-
plings among the sub-systems: an arc(i, j) ∈ E means that the
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Figure 2: Traffic network.

control signals from sub-systemi influence the state of sub-system
j directly. Assuming discrete-time dynamics, the state equation for
sub-systemm is:

xm(k + 1) = Amxm(k) +
X

i∈I(m)

Bmiui(k) (9)

whereI(m) = {m} ∪ {i : (i, m) ∈ E} is the set ofinput neigh-
borsof sub-systemm includingm, that is, the sub-systems affect-
ing the state ofm. Given the current state of the network,x(0),
a centralized agent following the MPC strategy would solve the
problem below at each sample instant:

P : min
M

X

m=1

T
X

k=1

1

2
[xm(k)T Qmxm(k)+

um(k − 1)T Rmum(k − 1)] (10a)

s. to: ∀m ∈ M, k ∈ T :

xm(k + 1) = Amxm(k) +
X

i∈I(m)

Bmiui(k) (10b)

Cmum(k) ≥ cm (10c)

Dmum(k) = dm (10d)

where:xm(k) is the state of sub-systemm at timek andum(k) is
its control input;Qm is positive semi-definite andRm is positive
definite;Cm andcm define the inequality constraints;Dm anddm

define the equalities; andM = {1, . . . , M} is the set with the
indices of the sub-systems.

The test bed is the traffic network depicted in Fig. 2 with 13 one-
way roads and 6 junctions. Sub-system 3 has statex3 = (x6, x7)
with the number of vehicles in roads 6 and 7, while the control
vector isu3 = (u6, u7) with the green time for each road. The
coupling graphG appears in Fig. 3. The set of input neighbors
to sub-system3 is I(3) = {1, 3, 4}. Matrix B33 expresses the
discharge of queuex3 as a function of green timesu3, while B31

(B34) expresses how queuex3 builds up asx1 (x4) is emptied. The
inequality constraints impose minimum and maximum green times
on the phases. The equalities state that the total green timeplus
lost time (yellow time) must add up to cycle time. This is a rough
explanation of the store-and-forward model proposed in [11, 21].

Notice that sub-systemm’s state at timek is a function of initial

x1, x2, x3 x4, x5

x6, x7

x8, x9x10, x11x12, x13

1 2

3

456

Figure 3: Dynamic coupling graph.

state and control signals prior to timek:

xm(k) = Ak
mxm(0) +

k
X

l=1

X

i∈I(m)

Al−1
m Bmiui(k − l)

By using this relation, collecting the control variables invector
ūm = (ūm(0), . . . , ūm(T − 1)), and dropping the constant term
from the objective [5],P becomes:

P : min f(ū) =
1

2

X

m∈M

X

i∈I(m)

X

j∈I(m)

ū
T
i Hmij ūj

+
X

m∈M

X

i∈I(m)

g
T
miūi (11a)

s. to: C̄mūm ≥ c̄m, m ∈ M (11b)

D̄mūm = d̄m, m ∈ M (11c)

whereHmij , C̄m, andD̄m are suitable matrices andgmi, c̄m, and
d̄m are suitable vectors. Here, the issue is how a network of dis-
tributed agents solvesP instead of a centralized agent. In what
follows, we develop a decomposition ofP into a set of coupled
sub-problems{Pm} and outline a distributed solution protocol.

3.2 Multi-agent Distributed Control
In our framework for multi-agent control, an agentm decides

upon the values of̄um to control sub-systemm. For the problem
decomposition to be perfect, each agentm solves a local optimiza-
tion problemPm encompassing all the terms off and constraints
that depend on̄um. Let:

• Ī(m) = {i : m ∈ I(i), i 6= m} be the set ofoutput neigh-
borsof sub-systemm;

• C(m) = {(i, j) ∈ I(m) × I(m) : i = m or j = m} be
the sub-system pairs of quadratic terms inΦm that depend
on ūm;

• C(m, k) = {(i, j) ∈ I(k) × I(k) : i = m or j = m} be
the pairs of quadratic terms inΦk, k ∈ Ī(m), that depend on
ūm.

In the traffic network,I(1) = {1}, Ī(1) = {2, 3, 5, 6}, C(1) =
{(1, 1)}, andC(1, 3) = {(1, 3), (1, 4), (1, 1), (3, 1), (4, 1)}. No-
tice thatūm appears in sub-systemsi ∈ I(m) ∪ Ī(m), but can

24



be coupled to other sub-systems—sub-system 1 is coupled to sub-
system 4 via sub-system 3, but4 6∈ I(1) ∪ Ī(1). The notion
of neighborhood will establish the interdependence among sub-
systems. Models and algorithms for imperfect problem decompo-
sition are found in [7]. According to agentm’s view of the system,
the control variables are divided in three sets:

• local variables:the variables in vector̄um;

• neighborhood variables:all the variables in vector̄ym =
(ūi : i ∈ N(m)) whereN(m) = I(m) ∪ {i : (i, j) ∈
C(m, k), k ∈ Ī(m)} − {m} is the neighborhood of agent
m. Notice thatĪ(m) ⊆ N(m).

• remote variables:the other variables which consist of vector
z̄m = (ūi : i 6∈ N(m) ∪ {m}).

According to the perfect decomposition,Pm(ȳm) is obtained
from P by i) discarding from the objectivef the terms not involv-
ing ūm and ii) dropping the constraints not associated with agent
m. More formally, agentm’s local problem is:

Pm(ȳm) : min fm =
1

2
ū

T
mHmūm + g

T
mūm (12a)

s. to: C̄mūm ≥ c̄m (12b)

D̄mūm = d̄m (12c)

whereHm is a suitable matrix andgm is a vector. For each agent
m, the perfect decomposition ensures that:

f(ū) = fm(ūm, ȳm) + f̄m(ȳm, z̄m)

for a given functionf̄m. Hereafter{Pm(ȳm)} will denote the set
of sub-problems for allm ∈ M.

3.2.1 Properties
Below, we report some properties relatingP and {Pm(ȳm)}

which are useful to design a distributed algorithm for the agent net-
work. Demonstrations and illustrations are found in [5].

PROPOSITION 1. A solution ū satisfies first-order optimality
(KKT) conditions forP if, and only if, (ūm, ȳm) satisfies KKT
conditions forPm(ȳm) for eachm ∈ M.

DEFINITION 1. (Feasible Spaces)The feasible spaces are:

• Um = {ūm : C̄mūm ≥ c̄m, D̄mūm = d̄m} is the feasible
space forPm(ȳm);

• U = U1 × · · · × UM is the feasible space forP ; and

• Ym = ×i∈N(m)Ui is the feasible space for the neighbor-
hood variables of agentm.

ASSUMPTION 1. (Compactness)The feasible space,U , is a
compact set.

ASSUMPTION 2. (Strict Feasibility)There exists̄u ∈ U such
that C̄mūm > c̄m andD̄mūm = d̄m for all m ∈ M.

Compactness is a plausible assumption since control signals are
invariably bounded. So is the strict feasibility assumption: if the
interior of U is empty, then some inequalities are indeed equalities
and should be regarded as such.

PROPOSITION 2. ProblemP given by(11a)–(11c) is convex.

COROLLARY 1. Sub-problemPm(ȳm) is convex.

PROPOSITION 3. (Optimality Conditions)[2] Becausef is a
convex function andU is a convex set,̄u⋆ is a local minimum forf
overU if and only if:

∇f(ū⋆)T (ū − ū
⋆) ≥ 0, ∀ū ∈ U (13)

A point ū⋆ satisfying condition (13) is calledstationary point.

COROLLARY 2. (Local Optimality Conditions)̄u∗ is a local
minimum forP if, and only if,(ū∗

m, ȳ∗
m) is a local minimum for

Pm(ȳ⋆
m) for all m ∈ M.

A control vector that cannot be improved unilaterally by a single
agent, a fixed point, is locally optimal for all the sub-problems and
therefore optimal forP .

3.2.2 Distributed Agent Solution
In what follows, we outline a distributed algorithm for the agent

network to arrive at a stationary solution to{Pm}. The agents fol-
low an iterative protocol wherebȳu(k) = (ū

(k)
1 , . . . , ū

(k)
M ) denotes

the solution at iterationk. Starting with a feasible control vector
ū(0), the agents exchange information locally, synchronize their
computations to preclude coupled agents from acting simultane-
ously, and iterate until convergence is attained.

ASSUMPTION 3. (Synchronous Work)If an agentm revises its
decisions at iterationk, then:

(i) agentm usesȳ(k)
m = (ū

(k)
i : i ∈ N(m)) to obtain an ap-

proximate solution toPm(ȳ
(k)
m ) which becomes̄u(k+1)

m ;

(ii) all the agents in the neighborhood of agentm keep their deci-
sions at iterationk, that is,ū(k+1)

i = ū
(k)
i for all i ∈ N(m).

ASSUMPTION 4. (Continuous Work)If ū(k) is not a station-
ary point for all problems in{Pm}, then at least one agentm

changes its decisions from̄u(k)
m to ū

(k+1)
m by approximately solving

Pm(ȳ
(k)
m ) such that̄u(k)

m is not a stationary point toPm.

Condition (ii) of Assumption 3 and Assumption 4 are ensured
if the agents iterate in a sequence〈S1, . . . , Sr〉 whereSi ⊆ M,
∪r

i=1Si = M, and all distinct pairsm, n ∈ Si are non-neighbors
for all i. 〈S1, S2, S3〉 is such a sequence for the illustrative scenario
with S1 = {2, 4, 6}, S2 = {3, 5}, andS3 = {1}. Time-varying
sequences and synchronization protocols are alternatives.

Another key issue is how an agentm solvesPm approximately,
as stated in condition (i) of Assumption 3, so thatū(k) converges
to a stationary point for{Pm}. To this end, we developed an algo-
rithm based on the feasible direction method, which is fullydevel-
oped in [5] and outlined below. Related frameworks and algorithms
for other settings appeared in [6, 8].

At the current iteratēu(k), agentm computes alocally descent
directiond̄

(k)
m = û

(k)
m −ū

(k)
m by solving a linear programming (LP)

problem that minimizes∇fm(ū
(k)
m , ȳ

(k)
m )T (û

(k)
m − ū

(k)
m ) subject

to the original constraints imposed on the decisions of agent m. It
then produces the next iterateū

(k+1)
m = ū

(k)
m +α

(k)
m d̄

(k)
m by finding

a stepα
(k)
m that satisfies theArmijo rule. Given (ū

(k)
m , ȳ

(k)
m ) ∈

Um ×Ym, d̄(k)
m 6= 0 is alocally feasible directionat(ū(k)

m , ȳ
(k)
m ) if

ū
(k)
m +αmd̄

(k)
m ∈ Um for all αm > 0 that are sufficiently small. A

locally feasible direction̄d(k)
m at a nonstationary point(ū(k)

m , ȳ
(k)
m )

is a locally descent directionif ∇fm(ū
(k)
m , ȳ

(k)
m )T d̄

(k)
m < 0.

Assumption 3, Assumption 4, and agent iterations as delineated
above—which use a locally descent direction obtained by solving
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an LP problem and satisfy the Armijo rule—ensure thatū(k) ar-
rives at a stationary point of{Pm} and, thereby, a solution toP .
Effectively, the agent network implements a distributed feasible di-
rection method for quadratic programming.

The constraint structure in split control admits simplifications
in the iterative processes of the agents. For each junctionj and
phasei, suppose the maximum green timeumax

j,i is Cj − Lj −
P

i∈Fj
umin

j,i . Then the MPC problemP , given by (11a) through

(11c), can be recast using control variables∆ūm(k) with green
times in excess to the minimum, namely∆uj,i = uj,i−umin

j,i . This
variable change simplifies the inequality constraints (11b) which
become simple bounds of the form∆ūm(k) ≥ 0. As a result, the
linear program for computing a locally descent direction issolved
analytically: the LP constraint structure consists of block-diagonal
equalities (one for each time period) and simple variable bounds;
the solution is obtained by examining the coefficients of thegradi-
ent∇fm(ū

(k)
m , ȳ

(k)
m ).

The agents are not limited to using the feasible direction method
sketched above. They can apply any quadratic-programming al-
gorithm that meets the Armijo rule or otherwise solves the sub-
problem up to optimality. The active set and gradient projection
methods [2] are candidates to replace the feasible direction algo-
rithm.

4. EXPERIMENTAL STUDIES
This section presents results from the application of the TUC

LQR strategy and the multi-agent MPC framework for the signal-
ing split control of the UTN depicted in Fig. 2. While TUC uses
equation (4) to model the system and objective (5) to computea
feedback gain matrix, it is more appropriate for the MPC frame-
work to express the control problem in terms of objective (10a)
subject to constraints (10b) through (10d), as control signals must
lie within bounds and hold constant cycle periods.

4.1 Network Set-up
Additional parameters must be specified to fully model the UTN

depicted in Fig. 2, such as saturation flows, turning rates, traffic
demands, and exit rates. The simulation environment was further
simplified: the exit rates of the network are null; lost timesin be-
tween phases are four seconds; all offsets are zero; and all network
links have equal length so that their occupancy contributeswith the
same weight in the objective function.

Up to this day, fixed-time signaling is still the most usual type
of split control worldwide. Since fixed-time control is not adap-
tive, driverslearn andpredict network dynamics which induce a
matching behavior between drivers and the traffic system. There-
fore, from a practical perspective, traffic engineers favora control
policy that penalizes deviation from the nominal fixed-timesplit,
rather than a control strategy formulated in terms of absolute con-
trol values.

Table 1 presents the nominal splits of the sample UTN and the
other aforementioned parameters—nominal splits were obtained
with Webster’s procedure. Some turn rate parameters are irrele-
vant and not presented, namely the ones that do not take part in the
inflow of another controlled link—e.g., in link 11,12:0.5 means
that 50% of that link exit flow enters link 12, while the remaining
vehicles take a route outside the scope of the controlled network
and are not accounted for. In the simulated analysis, all junctions
have a constant cycle of 120 s and have two phases, with the ex-
ception of junction 1 which has three phases. The mean inflowsin
the input links are:q1 = 800 veh/h;q2 = 1300 veh/h;q3 = 900
veh/h;q8 = 900 veh/h; andq9 = 700 veh/h.

Table 1: Network specification.
Link
(z)

Sat. Flow (Sz)
(veh/h)

Nom. Split
(uN

z ) (s)
Turn Rate (tz,w)

(to link: f%)

1 3600 29
4:0.2;6:0.05;

11:0.05;13:0.7

2 3600 49
4:0.25;6:0.3;

11:0.3;13:0.15

3 3600 32
4:0.65;6:0.05;

11:0.05;13:0.15
4 3600 72 —
5 3600 40 —
6 1800 57 5:0.5
7 3600 55 5:0.8
8 3600 63 7:0.4;10:0.6
9 3600 49 7:0.6;10:0.4
10 3600 60 12:0.8
11 1800 52 12:0.5
12 3600 55 —
13 3600 57 —

4.2 Numerical Analysis
To validate the proposed multi-agent control framework, a set

of MPC problems were solved covering a range of initial condi-
tions. A centralized agent solved the global MPC problemP , while
a multi-agent system solved the corresponding sub-problemnet-
work {Pm} for each of the initial conditions, allowing their perfor-
mance to be compared. Both approaches used a standard quadratic-
programming (QP) algorithm [14, active set method] and the fea-
sible direction method outlined above. For the distributedfeasible
direction method, experiments showed that the acceptance degree
σ = 0.3 and the step-contraction parameterβ = 0.3 for the Armijo
rule induce the best convergence rate in the given scenarios. Notice
that the distributed QP approach implicitly satisfies the Armijo rule.
A set of ten randomly obtained queues defined the initial conditions
in the experiments, whose results appear in Table 2.

As the tolerance of the optimization package used for the cen-
tralized QP computation could not be modified, results illustrate the
computational effort to reach the actual optimal cost. In other in-
stances we assume that the solution has converged once it is within
a 0.1% error margin from the optimal objective, previously com-
puted by the centralized QP algorithm.

The experimental results show a trade-off between the complex-
ity of the algorithm and the number of iterations required for con-
vergence. On the other hand, the distinction between the distributed
and centralized approach is small, specially so with respect to the
feasible direction method. Most importantly, the numerical results
confirm the multi-agent control theory outlined above, satisfying
optimality conditions for diverse initial conditions.

4.3 Simulated Analysis
The simulated results are from AIMSUN© replications of the

sample UTN. AIMSUN© has a powerful micro-simulator for traf-
fic applications which provides accurate modeling of complex net-
works. Furthermore, it offers a useful API module with the ability
to interface, through Python and C++ routines, with almost any ex-
ternal module that needs access to internal data during simulation
run time.

The solution of the optimization problems required by the LQR
strategy and the multi-agent MPC used several tools: the PSFL li-
censed Python 2.5 programming language; the OSI-Approved Open
Source numerical package for Python, NumPy; the GNU licensed
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Table 2: Computational results for a set of ten initial conditions with 0.1% error tolerance.
Quadratic Programming Feasible Direction

CPU Time (ms) Iterations CPU Time (s) Iterations
Mean Max Mean Max Mean Max Mean Max

Agent 1 21.9 46.9 3.3 7 2.16 8.12 76 290
Agent 2 15.6 46.9 2.1 4 1.98 8.20 72 290
Agent 3 10.9 46.9 2.8 8 1.85 7.59 69 280
Agent 4 14.1 31.2 3.0 6 1.85 7.50 76 294
Agent 5 1.6 15.6 2.4 5 1.83 7.70 69 280
Agent 6 6.3 46.9 1.2 2 1.81 7.67 67 280

Multi-agent 75.0 156.2 14.8 25 11.58 47.16 425 1710
Centralized 26.6 46.9 3.9 7 13.59 48.09 370.9 1299

Table 3: Average results for ten AIMSUN© replications.
Travel Time (s/km) Density (veh/km)

Avg. Std. Dev. Avg. Std. Dev.
LQR 182.759 3.928 17.853 0.355

MA-MPC 180.288 3.619 17.564 0.314

CVXOPT optimization package; and the solver MOSEK©.
The simulated scenario had a duration of one hour with the in-

flow patterns given above. Although inflows have constant mean,
vehicles do not necessarily enter the network at a constant rate be-
cause the simulator uses an exponential feed algorithm. Allframe-
works share the same weighting matrices, with state matrixQ = I
and control matrixR = rI , r = 0.003, as is usual in the TUC
policy. As mentioned earlier, the store-and-forward modelrequires
the control interval to be greater than any cycle in the network.
Following this premise, a control cycle of 200 s was defined for
the sample UTN. Furthermore, the multi-agent MPC achieved best
results when both the prediction and control horizon were set to a
single control step. Table 3 reports the average results covering a
set of 10 random initial conditions.

4.4 Discussion
The experimental results show that the proposed multi-agent MPC

framework can perform slightly better than the TUC strategyin sig-
naling split of urban traffic networks. Nevertheless, some aspects
need further investigation.

The first aspect is the length of the prediction horizon. The fact
that wider prediction degrades system performance indicates that
the TUC store-and-forward model may not be adequate for predic-
tion, suggesting that a more precise model could improve overall
system performance.

Another issue is the effect produced by the weighting matrices,
particularly the effect on control signals. The weight chosen in the
simulation penalizes control deviation from nominal signals very
lightly, allowing drastic changes without incurring substantial cost
increase in the objective function. This increases the responsive-
ness of the control system but, on the other hand, affects thesyn-
chronization among consecutive junctions.

Although offset and stage specification were not object of study
in this paper, they influence the performance metrics and should
be accounted for in simulated analyses. This justifies the design of
the sample UTN with only one-way links, which ease the specifi-
cation of stages. Although such measure increases the reliability of
the experimental model, circumventing the distortion caused by the
lack of synchronization control and offset dimensioning isanother

issue to be investigated.
Some considerations regarding the practical implementation of

the proposed strategy are pertinent. First, the method requires full
knowledge of system state, either through the installationof induc-
tive loop detectors or other means such as image detection devices.
Although the exchange of messages is necessary at every control
cycle, it does not constrain the application of multi-agentMPC
due to the large control interval. The same communication infra-
structure used in the centralized control scheme can be usedfor
distributed control with a centralized message relay. Finally, sev-
eral practical issues should be analyzed in field applications, such
as the influence of noise, delays, and poor synchronization.

The slightly better multi-agent MPC performance is furtheren-
dorsed by other advantages of this approach. First, the multi-agent
MPC circumvents the lack of reconfigurability of the TUC strat-
egy [11], as the addition of nodes to the network affects onlythe
sub-systems in the vicinity. Another advantage is the use ofmore
precise traffic-flow models, such as the non-linear representation
proposed in [1].

5. SUMMARY AND FUTURE WORK
This work has contributed to the state-of-the-art by proposing a

framework for multi-agent control of dynamic systems. The class
of systems comprises linear dynamic networks that are assembled
by interconnecting dynamically-coupled sub-systems. This repre-
sentative class encompasses dynamic networks that use the store-
and-forward model to represent traffic flow dynamics, conveniently
capturing the local couplings between neighboring junctions.

The signaling split control for the store-and-forward model en-
tails solving a constrained, infinite time, linear quadratic regula-
tor problem. The TUC approach obtains a feedback control law
with the unconstrained LQR technique by disregarding the con-
straints on control signals, whose feasibility is recovered by solv-
ing a quadratic program. Model predictive control handles con-
straints in a systematic way by using a finite time, rolling horizon
and solving optimization problems on-line. This paper proposed
a decomposition of the MPC problem in a set of locally coupled
sub-problems that are iteratively solved by a network of distributed
agents. Under certain mild conditions and synchronous work, the
iterations of the multi-agent control system can be shown tobe
drawn towards a fixed point that induces a globally optimal solution
to the MPC problem. Numerical experiments illustrate the conver-
gent behavior of the multi-agent system and compare its speed with
that of an ideal, centralized agent that solves the problem single-
handed. Simulated studies corroborate the hypothesis thata control
algorithm that handles constraints explicitly can outperform strate-
gies that treat constraints in an ad hoc manner.
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The work reported heretofore is in its nascent, opening up a num-
ber of opportunities for research and studies with multi-disciplinary
contributions across the fields of multi-agent technology,control
engineering, and transportation systems. Some directionsfor re-
search are:

• numerical and simulated studies with very large networks
aimed to confirm the potential of the multi-agent MPC frame-
work;

• the formulation and application of new traffic models, repre-
senting more accurately the flow of vehicles;

• studies demonstrating the flexibility and scalability of multi-
agent systems, such as the reconfiguration of a traffic junc-
tion which would demand only local adjustments, involving
the junction and its immediate neighboring intersections;and

• the formal extension of the framework to handle constraints
on state variables, such as limits on queue lengths.
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ABSTRACT 
We present PARKAGENT, an agent-based, spatially explicit, 

model for parking in the city. PARKAGENT is based on the 

geosimulation approach, combining real-world GIS database with 

a multi-agent system. The model simulates the behavior of each 
driver in a spatially explicit environment and is able to capture the 

complex self-organizing dynamics of a large collective of parking 

agents within a non-homogeneous (road) space. The model is 

developed as an ARCGIS application and can work with a 
practically unlimited number of drivers. Standard model outputs 

include distributions of search time, walking distance, and parking 

costs, each of which can be generated per driver groups, per area 
and per time interval.  

Based on field estimations of supply of and demand for parking 

and parameters of drivers‟ behavior, we apply PARKAGENT for 
investigating several parking scenarios in an over-saturated 

situation in Tel Aviv. The model shows that, while a limited 

amount of additional parking has hardly any impact on average 

search time or walking distance, it strongly affects the occurrence 
of extreme values. We also compare the effects of a concentrated 

versus a spatially distributed addition of new parking facilities in a 

Tel Aviv neighborhood, where demand for parking essentially 

exceeds supply. 

Categories and Subject Descriptors  
H.1.0 Information systems, Models and principles, General   

General Terms  
Algorithms, Measurement, Economics, Experimentation, Human 

Factors 

Keywords 
parking, GIS, agent-based modeling, spatially-explicit modeling, 

on-street parking  

1. INTRODUCTION 
In this paper we present a geo-simulation model of parking in the 

city, termed PARKAGENT. The model is developed as a  
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Geographic Automata System [3], and represents urban reality by 

means of interacting inanimate objects, representing urban 

infrastructure elements, and animated objects, representing 
drivers. The model simulates driver‟s behavior at all stages of the 

parking process and includes description of driving towards the 

destination, searching for parking, and exiting the parking place 

after a variable period of time. Traditional approaches to studying 
parking in the city aggregate individual drivers into an “average 

one”, who, in turn, reacts to an “average” environment [e.g. 6; 8]. 

However, averages are inherently conservative and are relatively 

insensitive to policy interventions. The disaggregate view of 
parking makes it possible to capture the diversity in terms of 

driver behavior, urban structure, and transport policies, as well as 

the dynamic interplay between them. For example, a disaggregate 
view makes it possible to determine the fraction of unsatisfied 

drivers – those who either pay too much or search too long for 

parking, or who park too far from the destination. By using a 

geosimulation approach, PARKAGENT makes it possible to 
investigate spatial and temporal distributions of payments, search 

time, distance to destination, etc., which is crucial within the 

modern city with its highly heterogeneous parking facilities, 

traffic situation and parking demand.  

We are aware of only two models of similar kind [11; 12]. These 

models, however, focused on simulating the behavior within a 

constant spatial setting. They neither account for the continuous 
change in on-street and off-street parking capacity as a result of 

cars entering and exiting parking facilities, nor for drivers' 

immediate adaptation to the changing parking situation when 

driving toward destination.  

Our model, in contrast, is able to analyze the instantaneously 

varying parking situation created by the drivers themselves. We 

employ it to study residential parking in the evening hours, which 
has received relatively only limited attention in the literature. In 

contrast to commuters, who can respond in various ways to 

changes in parking policies, car-owning residents have little 

choice when returning home with their cars at the end of the day. 
In center of most cities in the industrialized world, the majority of 

them will have to find an on-street parking place, preferably close 

to the location of residence, for overnight parking. We use the 

model to analyze how these resident-parkers respond to different 
parking situations and policies at the home-end of the trip. The 

case material is taken from the city center of Tel Aviv.  

2. GEOSIMULATION AS AUTOMATA-

BASED MODELING 
Most generally, geosimulation models deal with interacting 
discrete objects and their behaviors [3]. The methodology of 
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geosimulation makes use of automata-based techniques, 

particularly cellular automata for immobile and multi-agent 
systems for mobile objects. The relationships between the objects 

are interpreted according to the logic of the entity-relationship 

model, which considers relationships separately from the objects 

that are related [2]. 

Contemporary GIS provides much support for the development of 

geosimulation models. Each GIS layer can be used to define a 

class of objects and supply the initial location, form and 
characteristics of the immobile and mobile objects. GIS can be 

further employed for storing objects‟ geographic and attributive 

properties as they change in time. Non-mapable tables are used for 

storing and managing relationships of any degree [2]. 

3. THE PARKAGENT MODEL 
The PARKAGENT model has been developed according to the 

geosimulation principles. It is a spatially-explicit model, that is, its 

dataset contains high-resolution urban GIS, with the layers 
representing every inanimate entity of traffic infrastructure 

important for investigating the parking process - street segments, 

on-street parking places, off-street parking places, and buildings 

(as destinations). Animate objects – drivers – behave, i.e. they 
drive to the destination, search for a parking place, park, and leave 

the parking place when their activity has ended. 

The model is developed as an ArcGIS application, and, despite the 

very high spatial and temporal resolution, can work with a 

practically unlimited number of drivers whose destination can be 

located anywhere in the city. The model interface contains a set of 
tools for preparing the model database on the base of GIS layers 

of the city under study, for establishing model scenarios, and for 

storing the simulation results. The results of the runs can thus be 

analyzed further. 

3.1 The Discrete Representation of Driving 

and Parking 
The focus on the parking process determines the spatial resolution 

of the model, which, in turn, entails the temporal resolution. The 

spatial resolution of the model is defined by the typical distance 

between parking cars d. The temporal resolution of the model t 

is determined by the time it takes a car to pass d at the typical 

maximal speed vmax of a car during parking search. The values of 

d and vmax in case of Tel-Aviv, as estimated in the field surveys, 

are: d ≈ 4m, vmax < 18 km/h = 5 m/sec. Consequently, we use 

t = d/vmax ≈ 1 sec as temporal resolution of the model for Tel 

Aviv case. By using this resolution, we are able to adequately 
capture the parking search process of drivers and their continuous 

decisions to park or to continue searching for a parking space. 

3.2 The Location of the Animate Objects 
Inherent to geosimulation, animate objects are located by 

relationship. That is, the location of a driving car is given by 

means of linear referencing, while the location of a parked car is 

given by reference to a parking place. Both driving along a street 
and occupying and vacating a parking place is represented by 

means of standard database operations. That is, the advance of a 

car c from location p1 on segment s1 to location p2 on segment s2, 

is represented by deleting the row (c, (s1, p1)) from the 
relationship table and inserting the row (c, (s2, p2)). It is worth 

noting that according to the geosimulation paradigm, the cars do 

not “see” each other; to recognize whether advancement on a 

street segment is possible, car c1 has to retrieve its location (c1, (s1, 
p1)), and then retrieve the location (s1, p2) next to (s1, p1). If the 

result of this transaction is NULL, then c1 can advance to (s1, p2); 

otherwise the street segment is jammed and the car can not 

advance in the current time-step (model iteration).  

3.3 The GIS Database 
The main components of the model GIS database are (Figure 1):  

- street segments (line layer) characterized by driving and 
parking permissions and prices per segment, turn permissions 

(non-mapable table of relationships) and junctions (point 

layer);  

- buildings (polygon layer), characterized by type of use and 
capacity; house entrances (point layer) employed as 

destination points; and  

- off-street parking lots (polygon layer), characterized by 
capacity and price. 

The model tools enable the construction two additional layers. 

The layer of Lanes is constructed in order to discretely represent 

one- and two-way streets. Depending on whether one- or two-way 
traffic is permitted along a street segment, one or two series of 

points are constructed, with the points located at a distance of d 

from each other. The series of points is either located on a 
segment centerline (in case of a one-way street) or on two separate 

lines at both sides of a street centerline (in case of a two-way 

street). Each series of points is thus used for representing driving 

in one direction only (Figure 1). The two lines of a two-way street 
segment touch each other at junctions. The traffic direction along 

one or two constructed lines is derived from the traffic permission 

of the segment. 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

The second additional layer consists of on-street parking places. 

These are represented by a layer of points always constructed at 
both sides of the segment centerline. Each parking place is located 

at a distance of d from the next parking place (Figure 1). In Tel 

Aviv this distance d is about 4 meters and this value is employed 
in the current version of the model.  

The layer of parking places contains all physically existing places 

for parking, including places where parking is not allowed yet 

Figure 1. The basic and derived layers of the 

PARKAGENT model in the ArcGIS model window. 
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feasible. The actual legal right to park for vehicles of a specific 

type, for specific time intervals, as well as the price for each group 
of drivers (including zero price) are either transferred from the 

road network line features or updated after the layer is 

constructed. For instance, in case parking is only allowed on one 

side of a street segment, the parking spots on one side of the 

center line receive the attribute „parking not permitted‟.  

4. DRIVER’S PARKING BEHAVIOUR  

The model works in a discrete time and space; at each time-step 

(iteration) t every non-parking vehicle can make a move, the size 
of which is determined by the vehicle‟s speed. As mentioned 

above, the model‟s temporal resolution is very high: t = 1 sec. In 

case d and t are changed, all model calculations are 

automatically adjusted to the new values.  

4.1 Representation of Car Advance  

Formally, the single car street speed of vs(treet) km/h is recalculated 

into speed vm(odel) measured in d lengths units per t. The value 

of vm is then represented as  

vm = vm,int + vm,dec  (1) 

where vm,int is an integer part of vm and vm,dec is a decimal part.  

To illustrate, let c‟s speed be 15 km/h, d = 4m and t = 1 sec. In 

this case vm = 1.04 d/t, thus resulting in vm,int = 1, vm,dec = 0.04.  

To simulate driving at a “non-integer” speed vm, we then generate 

uniformly distributed on (0, 1) a random number r and assume 

that in case there are no cars in front of car c, it advances for dc 

units of d, where  

dc = vm,int + 1  if vm,dec > r  

dc = vm,int  otherwise   (2) 

For example, for a car that drives at 15 km/h, vm,int = 1 and vm,dec 

= 0.04 and it advances one d = 4m unit deterministically and 

then one more unit with a probability of 0.04. 

During parking search, car velocity is low. As recorded during test 

trips with drivers, a driver tends to decrease her velocity to 20-25 

km/h when starting to estimate the state of parking in an area. The 

speed is further decreased to 10-12 km/h (vm,int = 0 and vm,dec ~ 

0.69 - 0.83 d/t) when a driver actually starts searching for place 

to park [5] . In the search phase, we thus ignore the possibility of 

acceleration as employed in e.g. car following models [9]. 
However, as mentioned above, to account for interaction between 

parking cars, the model drivers adjust their movements with 

respect to the car in front of them. Before advancing each t 

distance dc, the driver checks whether the position in front of her 
is free or not. If occupied, all further advancements during the 

given t is cancelled.  

The order of the cars for advancing is established randomly, anew 

at every t.  

4.2 Route Choice 
A driver located on a street segment advances according to the 

formulae (1) – (2), accounting for the cars in front of her. When 

passing a junction, the driver has to decide which direction to take 

in order to approach towards the destination. In the model, 
driver‟s decision is based on the comparison of the distance to the 

destination from all “next” junctions, which are defined as the first 

junction on the street segments the driver can choose from for 
advancement (Figure 2). To avoid looping we assume that the 

driver does not choose any of two last visited junctions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

We assume that the model driver possesses some knowledge of 

the city street network and thus selects the segment which next 

junction is closest to the destination. The model thus follows the 

approach of [4], who view route choice as the result of a sequence 
of decisions – one at each intersection encountered. 

A driver enters the system at a distance Dawareness from her 
destination, where the driver becomes “aware” of the need to start 

searching for parking. She begins searching for an actual parking 

place at a distance Dparking. In the current version of the model 

these distances are set at 300 and 150 meters, respectively, 
following field observations. 

4.3 Representation of Driver’s Parking 

Behaviour 
The rules of agent‟s behavior in the model depend on the stage of 

the parking process. Generally, approaching the Dawareness distance 

the driver follows a sequence of decisions that can be described as 

follows: (1) Decrease velocity, continue driving and estimate 
parking supply  (2) Decrease velocity to be able to park and try 

to park for free as close as possible to the destination  (3) If 

parking search lasts too long, search for a free place further from 

the destination or park at an affordable price  (4) If failed, 
search until finding any parking place, ignoring price or distance. 

Note that this sequence of decisions holds for Tel Aviv residents 

returning home, as they can park for free on-street in their own 

neighborhood. When drivers have to pay for parking, the sequence 
of decisions will obviously be more complex in nature and depend 

on parameters like willingness-to-pay for parking and value-of-

time of each individual driver.  

To formalize this view we introduce the following behavioral 

components:  

1. Driving towards destination, estimating parking supply, 

2. Searching for parking and parking before reaching the 

destination, 

Figure 2. Schematic presentation of the route choice 

component of driver’s behavioral algorithm 
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3. Searching for parking and parking after passing the 

destination, 

4. Staying at the selected parking place, 

5. Leaving the parking place and driving out of the system.  

Each of these stages is formalized as follows: 

Stage 1: Driving towards destination  

From Dawareness, a driver estimates the available parking supply by 

estimating the fraction punoc:  

punoc = Nunoc/(Nunoc + Nocc)  (3) 

where Nocc is the number of occupied, and Nunoc is the number of 

unoccupied parking places.  

Stage 2: Searching for parking and parking before reaching the 
destination 

At distance Dparking the model driver decreases her velocity to 12 
km/h. At any distance D < Dparking she estimates the expected 

number of free parking places Fexp to be found before reaching the 

destination as:  

Fexp = punoc*D/d   (4) 

The driver decides to continue driving with probability Pdrive, 
which depends on Fexp in a piecewise-linear manner: 

Pdrive = 0    if Fexp < F1 

Pdrive = (Fexp - F1)/(F2 – F1)  if F1 ≤ Fexp ≤ F2 (5) 

Pdrive = 1    if F2 < Fexp 

In the model applications the values of F1 = 1 and F2 = 3 are used. 

To guarantee driver‟s reaction to the changes in local parking 

supply as observed during driving, we assume that each driver 

instantaneously re-estimates parking supply on the way to the 

destination.  

This algorithm results in drivers parking close to the destination in 

case of a sufficiently high supply of free on-street parking places.  

Stage 3: Searching for parking and parking after passing the 

destination 

At this stage, given the fact that on-street parking is for free for 

residents, the decision to park follows the commonsensical view 

that “the driver simply tries to find an unoccupied parking place 

not too far from the destination”. We express this in the model by 
a steady increase of Dparking distance. In what follows we assume 

that Dparking grows linearly in time at a rate of Dparking, i.e. 

Dparking(t) = Dparking + Dparking*t, until reaching the maximal 
value of Dparking, max. We also assume that after passing the 

destination and choosing a street segment at a junction, the driver 

always tries to stay within or as close as possible to the area with 

Dparking(t) radius around the destination. 

In addition, we assume that the driver whose accumulated search 

time exceeds Tsearch,max, just parks at the paid parking lot closest 

to the destination. We follow Tel Aviv reality and assume that an 
off-street paid parking place is always available. 

Stage 4 and 5: Staying at parking place and leaving the system 

Each driver parks for the time interval that is attributed 

exogenously to the driver. After this given parking duration, she 
drives towards one of the exit points of the system, which is an 

attribute of the driver as well, following the algorithm (1) – (2). 

Data on parking duration are derived from field surveys and 

depend on the type of driver. 

4.4 Groups of Drivers 
In the model, we distinguish between Residents and Visitors, 

who currently differ in terms of the required parking fee and the 

time they enter and leave the area.  

4.5 Model Output 

Our model records the life-path of every model driver, based on 

which a number of aggregate outputs are produced. In this paper 

we focus on the following aggregate outputs relevant to residents: 
the distributions of parking search time and air distance to 

destination for the drivers who succeeded to park in the area, the 

dynamics of the number of free parking places, and the overall 

number of drivers searching for a parking place longer than 10 
minutes. Note, that many other aggregate parameters can be 

generated, such as the distribution of paid parking fees. All 

aggregate characteristics are constructed for each group of drivers 

searching for a parking place in a specific area during a specific 
time interval.  

The interaction between the basic components of the model could 
be also analyzed, such as the relationship between the duration of 

the parking search and the distance between parking place and 

destination.  

5. ESTIMATION OF KEY PARAMETERS 
The key parameters of the rules that guide driver‟s driving, 

parking search, parking and leaving behavior are based on a 

number of street surveys carried out in Tel Aviv in 2005-2006. 

The survey results have furthermore been used for establishing the 
initial and boundary conditions of the Tel Aviv simulations. 

Two main surveys were carried out in the case-study area, the 
Basel neighborhood in Tel Aviv, during two consecutive weeks. 

We distinguished between visitors and local residents based on the 

presence of a local tag on a car (which is supplied by the 

municipality to local residents only). The total area of the Tel-
Aviv center is about 20 km2. It is divided into nine parking areas 

of largely equal in size. Only local residents are allowed to park 

for free on-street within their parking area. The fines for illegal 

parking in Tel-Aviv are high and the enforcement is tight; in 
practice, virtually every resident of Tel-Aviv has a local tag. 

Visitors have to pay parking fees and can park on-street for a 

maximum of three hours. 

In the daytime, the main results of the surveys are as follows:  

 Close to 60% of the on-street parking places were occupied 
by owners of a local area tag.  

 Half of the remaining 40% of parking places was occupied 
by visitors, and half remained empty. 

In what follows we employ 60% as an estimate of residents‟ on-
street parking use during daytime. 

The main results of the night surveys are as follows: 
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 All feasible parking places – both legal and illegal – are 

occupied. The illegal parking is the consequence of the fact, 
well-known among local residents, that parking enforcement 

runs only between 6:30 - 21:00h.  

 The fraction of visitors recorded in the night survey was 

close to 10%. 

 Based on the plate numbers and data from the Israeli Central 

Bureau of Statistics we were able to estimate the distribution 

of the distance between a car's parking place and the driver‟s 
destination (home location). More than 50% of the drivers 

who parked on-street were located at an air distance of less 

than 100m and more than 90% at an air distance of 250m or 

less from their home, the latter corresponding to less than 5 
min street walk.  

Extrapolating the above dependency of the fraction of parked cars 

on distance to destination, we set Dparking,max = 350 m. 

 Based on the local area tags we were able to identify area 

residents parking at paid parking lots in the neighborhood. 
Residents entering the lot were asked to estimate their 

parking search time before entering the lot. The vast majority 

of residents indicated to be searching either “more than 5 

minutes for sure” or “10 minutes or so”. This confirms 
Shoup‟s [10] view that resident drivers who do not have a 

dedicated private or public off-street parking place have a 

tendency to cruise for parking in order to find a free on-street 

parking place.  

Numerically we thus assumed that the typical maximal search 

time of the residents is Tsearch,max = 10 minutes and the rate of 

growth of the area acceptable for parking is Dparking = 

(Dparking,max – Dparking)/Tsearch,max = (350 – 150)/10 = 20 m/min. 

6. APPLICATION OF THE PARKAGENT 

MODEL 

To explore the potential of the model in practice, it was employed 

to the analysis of the parking situation in the Basel neighborhood, 
which is about 1.4 km2  in size and contains a total of about 1,550 

buildings. The Basel neighborhood is suffering from a substantial 

imbalance between existing parking supply and demand for 

residential parking. The results of the survey confirm the 
municipality‟s view that the problems are most notable in the 

evening hours, when local residents have problems finding a 

parking place to park their vehicle overnight. The solution 

proposed by the municipality is the extension of a planned 
underground parking garage underneath a yet-to-be-built 

residential building and sale of the additional parking places to 

residents living nearby. This new residential building is located in 

the center of the Basel neighborhood.  

The estimate of total parking demand in the Basel area is based on 

the number of apartments and registered businesses per building, 
and on the number of parking tags issued to the residents in the 

area, both available as part of Tel Aviv Municipal GIS. The 

estimate of on-street parking supply is based on the GIS layer of 

streets. All physically available spaces in the area are used for 
overnight parking. The only unoccupied places at night are 

located at the entrances to public and private off-street parking 

places, at pedestrian crossings, and next to junctions. All these can 

be easily estimated from the GIS data. Data on off-street public 

parking supply were also taken for the GIS data, while off-street 

private parking space was estimated based on the field surveys. 

Based on the estimate of residents‟ parking demand and the 

observed 10% visitor parkers, the overall demand/supply ratio 

overnight is about 3,500/2,850 ≈ 1.23. However, the 
demand/supply ratio varies during the evening period 17:00-

21:00h, during which the share of unoccupied parking places 

drops from 20% to 0%, the share of visitors parking on-street 

decreases from the observed 20% to 10%, and residents enter the 
area to find overnight parking. 

6.1 Estimating the Effects of the New 

Parking Facility 
The question is now whether the addition of off-street parking 

places to the existing parking stock can improve the parking 

situation of the local residents. Since the additional parking places 

are sold to local residents, they de facto reduce the number of 
drivers looking for on-street parking, assuming no impact on the 

motorization rate of local residents.  

Given the preference of residents to park as close as possible to 
home, the impact of the additional parking capacity will not be the 

same all over the Basel neighborhood. To account for the distance 

between the new parking facility and drivers‟ destinations, we 

defined two concentric polygonal rings around the new parking 
facility with sizes of about 0.7x0.7 km (inner ring), and the 

remainder of the 1.4x1.0 km Basel area (outer ring). The effects of 

the new parking garage are estimated for each area separately. In 

our simulations, we have assumed that all parking places in the 
new parking garage are purchased by residents of the inner ring, 

following the reference of residents to park as close to home as 

possible. 

The simulation encompasses the period 17.00-21.00h, during 

which visitors leave and residents enter the area. We focused on 

two performance indicators: (1) the distribution of search time; 

and (2) the distribution of air distance to destination. Both are 
calculated separately for the drivers with destinations in the inner 

ring and the outer ring. We run the model for a number of 

scenarios, differing in terms of the size N of the additional off-
street parking facility. The base scenario (N=0) is compared to 

five scenarios, with values of N = 50, 100, 150, 200 and 250.  

It is intuitively evident that even the maximal possible capacity of 
the new parking lot – 250 places – cannot have a large effect on 

the average parking situation in an area where parking supply is 

about 650 places below demand (3,500 - 2,850 = 650). The model 

investigation confirms this: even for a 250 places parking lot and 
for drivers whose destination is within the inner ring, the decrease 

in average search time and walking distance for on-street parkers 

is low, especially during the last hour of the investigated period 

(20:00-21:00h). The decrease in mean search time is about 15% 
(from 250 to 215 seconds); the decrease in distance to destination 

is almost insignificant - 10% (from 150 to 135 meters). 

Obviously, the effects are even smaller in case less additional 

capacity is provided. In the outer ring the mean search time and 
distance to destination show hardly any decrease.  

That is, a new parking lot will hardly change the average 

residents‟ perception of the parking situation in the area as a 
whole. The reason for the limited impact of the additional parking 

supply is evident: with the increase in supply within the inner 

ring, drivers with destination in the outer ring will park more often 
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in the inner one, preserving the high demand/supply ratio there. 

The only residents experiencing and perceiving a real 
improvement in their parking situation, are the ones who purchase 

a parking place in the new garage.  

6.2 The Size of a New Parking Lot 

The construction of large underground multi-story garages for 
local residents is a hot issue in the public debate in Tel Aviv. To 

justify the construction, parking in these garages will be charged 

for, however, the residents‟ fees would be low, and they can use 

the garage on a day-to-day basis when need arises. In order to 
account for the attractiveness of a garage in the city center for 

visitors, we assumed that only half of the parking places in such a 

garage would be available for the residents in the evening. 

Considering the Basel neighborhood as an example, a 1,000 
places garage would be close to supply a parking place to those 

local residents who currently fail to find a free parking place in 

the area and have to park at the existing, expensive, paid lots 

overnight, and for additional visitors who want to stay in the area 
overnight.  

To estimate the quantitative consequences of this parking strategy, 

we compare two scenarios in which 1,000 off-street parking 
places are added to the Basel neighborhood. In one scenario the 

places are added as one large lot, in the other scenario they are 

distributed between four smaller lots of each 250 parking places 

located at a distance of about 500 m from each other (Figure 3). 
Note that the parking arrangement in this scenario is different 

from the scenario discussed above. In the latter scenario, the 

additional parking capacity was sold to specific residents who 

gained a dedicated parking place. In the current experiment, all 
residents can use the additional parking places against a low fee. 

Given this arrangement, we assumed that drivers continue 

searching for free on-street parking until (1) the parking lot closest 

to the destination is within Dparking(t) distance from the destination  
and the parking lot is closer to the driver in its current position 

than the destination, or (2) the maximal search time of 10 minutes 

is reached. 

We compare the two scenarios in terms of the number of “long-

searchers”, i.e. the number of drivers who fail to find a free on-

street parking place or a space in the new parking facility within 
the maximal search time of 10 minutes (and thus go to the nearest 

new parking lot). Note that drivers aim to park within walking 

distance from their home location, i.e. within a radius of 350 

meter from their destination. The results show that in case of four 
parking lots, the number of “long-searchers” – those who do not  

find a parking place within 10 minutes – varies between 250 and 

300 (from about 650 in the current situation). In case one large 
parking lot is added, the number of long-searchers varies between 

400 and 450. This substantial difference is a direct consequence of 

the revealed tendency to park as close as possible to the final 

destination (home location). With four parking lots distributed 
over the neighborhood, it is more likely that the nearest parking 

lot is at walking distance from the destination and the distance 

between the parking lot and the home location is smaller than the 

distance between a free on-street parking place and the home 
location, than in case of one large centralized parking lot. Hence, 

a smaller share of residents will continue looking for free on-street 

parking in case additional off-street parking supply is distributed 

over the neighborhood. That is, despite supplying the same 
physical place, the problems of cruising, air pollution, and parking 

rules violations may well remain substantial in case of centralized 

supply of additional parking in comparison with additional supply 
distributed over the neighborhood.  

Note that this result was obtained while investigating the Basel 

neighborhood only. The slight (perceived) reduction in parking 
pressure in the Basel neighborhood may well induce residents of 

surrounding neighborhoods within the same parking zone to enter 

the Basel area in search of a free on-street parking space. In that 

case, the effects of either scenario on the fraction of “long-
searchers” may be well lower than the estimates presented here.  

 

  

Being in line with common-sense expectations, the 
PARKAGENT model thus enables quantifying the impact of 

different spatial scenarios. As the example suggests, the model 

could be used to compare various distributions of off-street 

parking facilities over the city under various conditions and for 

various user groups and help to determine an optimal solution.  

6.3 Reflection on Results 

The experimental data and model results presented above 
demonstrate that the parking pressure as a result of excess demand 

in the dense areas of central Tel Aviv can be reduced to some 

extent by adding a network of small parking lots at an appropriate 

distance between each other. However, this finding should be 
treated with care. Like in the case of road capacity, more supply 

may generate more demand for parking. Thus, the improvement in 

search time and walking distance may be short-term effects. If 

more residents will purchase cars because of the improved 
parking situation, the long-term effect of additional capacity is 

actually likely to be negative. Given the high parking pressure and 

still relatively low level of motorization in central Tel Aviv, it is 

not unlikely that the small improvement in the parking situation 
may be enough for the marginal resident to purchase a car, or for 

car-owning rather than carless households to move in.  

7. CONCLUSIONS 
In this paper, we have presented a spatially-explicit, agent-based, 
model for parking in the city. Unlike traditionally models, it 

Figure 3. The scenario of one large parking lot of 1,000 

places in the center of the neighborhood, versus the 

scenario of four parking lots of 250 places distributed 

evenly over the neighborhood. 
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simulates the behavior of each driver in a spatially explicit 

environment. Because of this, the model is able to capture the 
complex dynamics that can occur between large sets of agents, as 

well as the impacts of non-homogeneous (road) space. As stressed 

by Arnott [1], current models are neither able to capture this 

heterogeneity, nor to estimate its possible impacts.  

The small case-study presented in the paper provides a window on 

the possibilities of PARKAGENT. Instead of investigating the 

changes in average search time as aggregated over space, which 
might be relatively insensitive to changes in parking policy, the 

agent-based model easily captures the spatially distributed effects 

of changes in parking supply. Given the disproportional human 

reaction to extremes [7], this is a major advantage of spatially 
explicit models over existing parking models.  

PARKAGENT‟s ability to simulate the complex dynamics of the 

parking system in detail and generate data about the system 
performance for different groups of drivers is especially important 

in saturated parking situations. In such situations, with an 

instantaneous demand/supply ratio essentially varying around one 

or even substantially exceeding one, averages are unlikely to 
capture the essential performance of the parking system due to the 

inherently uncertain nature of the car parking system [11]. Parking 

management is especially called for in saturated situations, where 

it is always hard to foresee the effects of interventions. In this 
situation, high-resolution, spatially explicit, models are able to 

provide details of the distribution of key parameters like search 

times and walking distances that result from different policy 

scenarios.  

Given these advantages, geosimulation thus seems to be a 

promising tool for urban decision-makers. The ultimate goal of 
the model is to help decision-makers propose, assess, and evaluate 

spatially adaptive policy measures, including optimal pricing for 

on-street parking over a heterogeneous city.  
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ABSTRACT
This work describes the development of a distributed agent-
based application devoted to the flexible transportation of
passengers. The system considers the planning and con-
trol of trip requests comming from clients. The underly-
ing 3-tier agent architecture, named MADARP, provides a
set of base agents organized around an interface, a plan-
ning and a service layer. Interface agents provide GUIs for
the interaction with customers and drivers, while planning
agents make use of a distributed version of an improved in-
sertion heuristic called ADARTW for the scheduling of pas-
sengers’ trips. They make use of the contract-net protocol
as base coordination mechanism plus a specific transporta-
tion domain&communication ontology. The agent applica-
tion was designed with the agent-oriented software engineer-
ing methodology (AOSE) PASSI and implemented over the
JADE agent platform. Performance tests were carried out,
to evaluate the application’s planning capabilities, by ana-
lyzing diverse clients’ arrival rates while varying the number
of hosts.

1. INTRODUCTION
The need to cover more diffuse travel patterns, varying pe-
riods of low demand, city-peripheral journeys, as well as
commuting trips often make conventional public transport
systems unable to guarantee the level of service required
to address the user needs. The use of Demand-Responsive
Transport services (DRTS), where routes, departure times,
vehicles and even operators, can be matched to the identi-
fied demand allows a more user-oriented and cost effective
approach to service provision.

For this approach to success it is vital an appropriate In-
formation Technology (IT) application that adequately sup-
ports the communication and interaction among the diverse
involved actors and systems. Under such scenario, software
agents leverage as an interesting paradigm to design and im-
plement this kind of software application. Software agents

are defined as autonomous entities capable of flexible be-
havior denoted by reactiveness, pro-activeness and social
ability [18]. Multiagent systems (MAS) consist of diverse
agents that communicate and coordinate generating synergy
to pursue a common goal. This higher level of abstraction
has allowed agents to tackle the increasing complexity of
nowadays open software systems.

The present work describes the development of an agent-
based application for the planning and control of a passenger
transportation system under a flexible approach. It gives
continuity to our past research [5] on heuristics for solving
the scheduling of passenger trips.

In particular the paper covers the description of the overall
MAS architecture for then detailing the agents and inter-
faces involved from the Customer, Vehicle and Transport
Enterprise sides. The used underlying optimization prob-
lem and scheduling heuristic are depicted together with some
performance tests on the planning capabilities of the system.

2. RELATED WORK
Regarding the state-of-the-art research in the field of trans-
portation scheduling, cluster-first and route-second planning
techniques have been widely covered. Borndörfer et al. [2]
presented such a two-phase approach applied to several in-
stances provided by an operator in Berlin. A constructive
method was presented by Madsen et al. [12] in a package
named REBUS, to be used by Copenhagen Fire Fighter Ser-
vices for the transportation of the elderly and handicapped.

Local search techniques have also been applied by Healy and
Moll [8] presenting a local search variant based on a strategy
called sacrificing, which consists of biasing the search in the
direction of solutions with larger neighborhoods of feasible
solutions.

In [17] Toth and Vigo have worked on a tabu threshold
post-optimization procedure to improve their parallel inser-
tion procedure. A reactive tabu search heuristic for Pickup
and Delivery Problem with Time-Windows (PDPTW) was
developed by Nanry and Barnes [13] where solutions that
violate time-window and vehicle capacity constraints are al-
lowed during the search. More recently, Cordeau and La-
porte [4] have developed a tabu search heuristic for the
multi-vehicle Dial-a-Ride Problem (m-DARP).
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On the other hand, Agent research in the transportation
domain has deserved an increasing interest. A Bus-holding
control system was proposed by Jiamin et al. [10], which
tackles the coordination of multiple lines of fixed-route buses
and the different stops, seeking the global optimality. In
their approach a MAS negotiation between a Bus Agent
and a Stop Agent was conducted based on marginal cost
calculations.

In Urban Traffic Control (UTC) systems, Ou [14] presented
a UTC which adopted MAS technology based on recursive
modeling method (RMM) and Bayesian learning. Ferreira et
al. [7] presented a multi-agent decentralized strategy where
each agent was in charge of managing the signals of an in-
tersection and optimized an index based on its local state
and ”opinions” coming from adjacent agents. Agent-based
systems devoted to Vehicle Routing (VRP) are presented
in [11] and [15]. Both make use of the Contract-Net Pro-
tocol (CNP) for the assignment of rides. In addition, [11]
uses a stochastic post-optimization phase to improve the re-
sult initially obtained. In [15] is presented the Provisional
Agreement Protocol (PAP), based on a Extended CNP and
de-commitment techniques.

Finally, none of the above solutions tackles the passenger
transportation problem under a flexible approach and at the
best of our knowledge no similar systems have been found
in literature.

3. FLEXIBLE PUBLIC TRANSPORT SER-
VICES

Flexible or Demand Responsive Transport (DRT) services
can be seen as an element of a larger intermodal service
chain, providing local mobility and complementary to other
conventional forms of transportation (e.g. regular buses and
trams, regional trains). In this context, DRT provides a
range of Intermediate Transport solutions, filling the gap
between traditional public bus services and individual taxis.

The DRT service can be offered through a range of ve-
hicles including regular service bus, mini-bus, maxi-vans,
buses&vans adapted for special needs and regular cars. The
use of each vehicle type depends on the transport service
to offer, the covered area and the target users. The aim
is to meet the needs of different users for additional trans-
port supply. The use of flexible transport services, where
routes, departure times, vehicles and even operators, can
be matched to the identified demand allows a more user-
oriented and cost effective approach to service provision.
The adaptation of transport services to match actual de-
mand enables cost savings to the operators, society and pas-
sengers.

With respect to process implementation and management,
the flexibility of the system is expressed along two main
directions: on one hand, users of DRT systems must be
provided with user-friendly instruments for accessing the
services (such as information, reservation, query update)
in several different flexible ways (the so called ”anywhere
and anytime” access). On the other hand, the organization
providing flexible services must be itself flexible, with the
capability of managing dynamic relationships in a pool of
transport resources (vehicles), which may sometimes have

Figure 1: The multiagent transportation architec-
ture

to change to better adapt the transport supply to the dy-
namic demand.

4. THE AGENT-BASED TRANSPORTATION
SYSTEM

In Figure 1 is summarized the agent architecture. A first
view shows how the underlying agents are grouped around
functional layers to provide a coherent service. While an-
other view shows the architecture from the perspective of
the different actors involved, identifying the agents pertain-
ing to each one.

Turning back to the first view, the diagram shows four layers
that group the agents and structures according to the func-
tionality provided. The Interface layer connects the system
with the real world, providing agents capable of connecting
the different actors (clients, vehicle operators) with the sys-
tem. The Planning layer contains the agents devoted to per-
form the trips processing and planning in a distributed way.
The Service layer supports the above layer providing dif-
ferent complementary functionalities needed for managing a
complete transportation service. Finally at the bottom, the
Service Ontology provides a means to integrate and make
interacting the different agents and actors from the upper
layers in a transparent and coherent way.

In the architecture, the control is distributed across the dif-
ferent layers. In general terms, the interface agents provide
the input and monitoring signal, for the planning agents to
adjust the vehicle’s planification. The service agents support
these procedures providing with the required information for
the re-planning process and the ontology offers the concepts
and formalizations for carrying out the control interactions.

The second view provided by Figure 1 shows the three main
actors involved in the transportation chain. They corre-
spond to the vehicles, the clients and the transportation
enterprise. Each of them is modeled in terms of agents.
Consequently, each vehicle actor is represented by a Vehicle
agent and a Schedule agent. In a similar way, each client
is characterized by a Client agent and a Trip-request agent.
In both cases, the pair of agents is tightly coupled as they
are modeling different aspects of the same real entity. The
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Figure 2: Portion of the Agents’ Identification Diagram

third actor is the transport enterprise, which is built up by
a series of agents and structures that provide support to di-
verse services related with the planification and control of
the passenger transportation service.

The system was designed following the Process for Agent
Societies Specification and Implementation (PASSI) which is
made up of five models containing twelve steps in the process
of building a multiagent system. Please refer to [3] for a
more detailed description on the whole PASSI methodology.
Models were developed with the PTK (Passi Toolkit add-
on for Rational Rose) and was implemented over the Jade
Agent Platform[1], which provides a full environment for
agents to work.

The PASSI methodology starts capturing the system’s re-
quirements through use cases, for then grouping them to-
gether to conform the agents. The diagram in Figure 2 shows
part of the use cases and agents involved in the system. Due
to space restrictions some service layer agents were expressed
as actors.

By starting from the transport operator side, we find the
Vehicle, which is an interface agent (with a GUI) in charge
of providing the monitoring of the route-schedule planned
for the vehicle. In addition, it can inform the Driver about
any changes to the initial schedule and can be used by him
to inform any eventuality (e.g client no show, delay, detour,
etc) that may happen regarding the trip and the customers.
In particular its interface has been designed to work on-
board the vehicle through a touch screen. This agent will
be further detailed on a next section.

The Schedule agent is the one in charge of managing the
trip plan (work-schedule) of the vehicle. In addition, the
agent is also responsible of making trip proposals upon Plan-
ner request and in case of winning will have to update its
actual plan to include the new trip. Upon changes (due
to vehicle or client events) informed either by the Vehicle
or the Planner agent, the Schedule agent will update the
plan and reschedule the remaining requests. The Schedule
agent encapsulates the underlying optimization algorithm
for scheduling the trips of the vehicle. In our system Sched-
ule agents implement a distributed version of a well known
greedy insertion algorithm called ADARTW (Please refer to
[6] for further details).

The Client is the second interface agent with a GUI, pro-
viding the connection between the end-user (Customer) and
the transportation system. Through it, the Customer can
request a trip by giving a description of the desired trans-
portation service by means of a Trip Request Profile.

Other relevant agent is the Trip-Request, which acts as a
proxy representing the Customer in the process of contract-
ing a transportation service. In fact, the trip-request agent
is involved in all the interaction of the Customer (through
the interface agent) with the transportation system. Its ac-
tivities regard the management of the client transportation
requests, including any negotiation or selection of propos-
als coming from the Planner, together with processing any
events generated by the Customer or by the system. As re-
siding on a device with more processing power (such as a
PC), this agent may have diverse degrees of autonomy for
taking decisions on the trip proposal to choose and how to
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Figure 3: Client agent GUI showing the ”Request
Data” tab in the ”Request Trip” menu

react when faced to eventualities.

Finally, the Planner agent processes all the customers’ re-
quests coming through their Trip-request agents. It initi-
ates a contract-net (CNP) [16] with the Schedule agents and
manages all the arrived proposals. It is also in charge of
managing events that may affect the trip services already
contracted and scheduled. The remaining actors correspond
to supporting agents or sub-systems from the service-layer
that interact with the agent society, such as the broker, re-
sponsible for the initial service matching, and the map, pro-
viding times and distances, among others.

4.1 The Customer Side
As stated before, the Client is an interface agent devoted
to the Customer-System interaction. In principle, this trip-
client assistant may reside on diverse devices (e.g PC, PDA,
mobile phone) in order to allow a more flexible and pervasive
access to the transportation system. In our prototype, has
been developed a Client agent for PC, remaining the versions
for more restricted devices as future work. In this sense, it
is important to highlight that all the complex processing
or decision-making (if delegated by the Customer) has been
attached to the Trip-request agent in order to lightweight
the Client (the interface agent). In the following Figure 3 a
screenshot of the Client agent GUI is shown, detailing the
tab that appears when initiating the request of a trip. In
the ”Request Data” area, on the left, is asked all the infor-
mation necessary to detail a transport service request under
the demand-responsive considered scenario. This regards
the date, the pickup and delivery points (addresses), the
corresponding times and other specific information such as
the required seats and diverse vehicle characteristics.

On the right hand, the available transport services are de-
ployed, showing for each selected service the covered area in
terms of street intersections. The services’ list can be im-
ported from the system (on line) or from a local file. At the
bottom, the Customer can send the trip request and save
the services’ list.

Figure 4: Client agent GUI showing the ”Received
Proposals Data” tab in the ”Request Trip” menu

The following Figure 4 corresponds to a screenshot of the
Client agent GUI detailing the ”Received Proposals Data”
tab which appears as an answer after sending the request
for a trip. In this form are displayed all the transporta-
tion alternatives found to be capable of performing the ser-
vice. The list of alternatives is on the right-hand box and
by selecting on each of them the left area (Selected Proposal
Data) displays the details of such proposal. The data in-
volved concerns the address and requested time for pickup
and delivery. In addition, a time window is specified for the
pickup and for the delivery in order to make more flexible
the service and tackle possible differences with the original
schedule.

Other relevant data provided regards the vehicle ID and
type, the required seats, together with diverse specific prop-
erties, such as the capacity, bicycle rack, shared/individual
use, among others. It is important to mention that all the
concepts involved in the specification of services make part
of a Service Ontology specific for this transportation domain
(for further details on the ontology please refer to [6]).

The PASSI methodology used for the modeling considers a
Task Specification step. In this activity the scope is to focus
on each agent’s behavior, decomposing it into tasks which
usually capture some functionality that conforms a logical
unit of work. Therefore for each agent an activity diagram
is developed, containing what that agent is capable of along
the diverse roles it performs. In general terms, an agent
will be requiring one task for handling each incoming and
outgoing message.

In the following Figure 5 a portion of the Task Specification
Model for the Client Agent is depicted. The diagram shows
six tasks that constitute the main Client agent capabilities
devoted to the process of requesting a transportation ser-
vice. The SendQueryAvailableService task handles the re-
quest from the Customer to search for available services and
triggers the ManageClientQuery task of the Trip-Request
agent which is in charge of requesting the Broker for pos-
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Figure 5: Part of the Task Specification Model for
the Client Agent, showing the flow of tasks involved
in the trip request processing

sible transportation services available. These are returned
by the SendActualAvailableService task of the Trip-request
and is received by the ReceivingAvailableService task of the
Client which processes and decodes the ACL message and
forwards the services’ list to the ShowAvailableService task
responsible for displaying the list in the proper form as al-
ready shown in Figure 4 right-hand box.

The Customer, when making a trip Request Profile (see
Figure 3), can browse on the available services (after load-
ing them) in the right-hand area calling to the ShowAvail-
ableService task or can send the request (by pressing the
button) after filling the left-hand information, calling the
SendTripRequest task. This Client’s task is responsible for
sending the Request Profile to the Trip-Request, being han-
dled by its ManageClientQuery task, which on its turn will
forward the request to the Planner.

The Trip-request agent will receive from the Planner the trip
proposals coming from the different Schedule agents of the
vehicles and its SendTripProposals task will send them to
the Client. On its turn, the Client will receive and handle
the proposals through its ShowTripProposals task, also re-
sponsible for displaying them on the appropriate form area
as already shown on Figure 4.

In this way, the Customer will be able to select the best alter-
native according to his preferences and will click the ”Con-
firm Selected Proposal”button on the GUI (see Figure 4 first
button lower-right corner). This action will call the Send-
ChosenProposal task of the Client responsible of forwarding
the selected proposal to the Trip-request agent, which on
its turn will forward it to the Planner, who is in charge of
communicating the proposals’ acceptance/rejection to the
diverse Schedule agents that made bids.

4.2 The Vehicle Side
As mentioned earlier, the Vehicle agent constitutes an inter-
face agent for the Driver - Transportation System interac-
tion. From the Agents’Identification Diagram of Figure 2, it
is possible to see that the Vehicle is responsible for allowing

Figure 6: Vehicle agent GUI showing the main
screen with the itinerary

the communication of incoming events to the Customer and
of vehicle events to the transportation system.

The following Figure 6 shows a screenshot of the Vehicle
agent GUI, detailing the actual vehicle itinerary with ex-
pected times. On a first view, we can realize that the lay-
out is minimalistic with simple shapes as buttons. This is
because the Vehicle agent is intended to be on-board the
transportation vehicle (car, van, maxi-taxi, etc.). Hence,
the interfaces were developed to be used in touch screens.

On the left side appears the timetable, providing the ex-
pected times (e.g. 10:00, 10:30, 11:00 and so on) of the
places to visit (either pickup or delivery points). These can
be scrolled up or down with the square buttons in the lower
part.

On the right hand the interface is divided in three. A header
on the top, showing the present date and time plus a square
led that blinks when a change to the itinerary is carried
out by the system and needs to be communicated to the
driver. On the middle-right are shown the details of the
entry selected on the left hand (the 10:00 in this particular
case). It provides the destination address to reach, the time
limit for departure in that place (10:05) for not arriving late
to the next destination (at 10:30 in this case) and the number
of passengers that go up and down in this stop. Additionally,
it is provided the best route in order to arrive from the actual
position of the vehicle to the required destination.

Finally on the footer part, the interface deploys three touch
buttons; the first allows to confirm passengers presence at
the stop, the second to inform a delay or anticipation with
respect to the schedule and the third one to turn back to
the main menu.

The Task Specification Model for the Vehicle agent is de-
picted in Figure 7. This activity diagram contains five tasks
that specify the labour carried out by the agent. The task
ObtainEventData manages the notification of events received
from the Driver when touching the Inform Event button
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Figure 7: Task Specification model for the Vehicle
Agent

of the Vehicle GUI (on Figure 6). The task handles the
GUI processing of the notification at low-level, the notifi-
cation details and forwards them to the SendEventNotifica-
tion task. This task is responsible for translating the event
notification and related data into an ACL message in align-
ment with the transportation domain ontology and finishes
by sending to the Schedule agent the ACL message with the
given event notification. The Inform Event button displays
another screen that allows to notify a delay due to a detour,
a traffic jam, or a vehicle breakdown.

On each stop the driver must confirm to the transportation
system the presence or absence of clients (Confirm Passen-
gers button on Figure 6). For this, the driver’s passenger
confirm action is managed by the ShowPassengersList task
which is responsible for displaying other tab with a detailed
list of the inbound and outbound passengers. After the list
is displayed, in the case of inbound customers the driver
can confirm the presence or absence on each particular case.
This action is managed by the SendPassengerConfirmation
task which takes the responsibility of taking the client de-
tails and sending the Schedule agent an ACL Message with
the notification.

Finally, the schedule through its SendTripUpdate task in-
forms the Vehicle agent about changes in the itinerary. These
messages are handled by the ShowDetailsOfUpdatedTrip task
of the Vehicle agent. It is in charge of notifying the driver
about a change by blinking the upper-right square led on the
screen (on Figure 6) together with updating the timetable
in order to reflect the changes.

4.3 The Transport Enterprise Side
The Planner is a key agent in the system’s architecture.
It processes all the clients’ requests coming through their
Trip-request agents. Therefore it manages all the proposals
for a given trip request coming from the diverse Schedule
agents representing each available vehicle. It is also in charge
of managing inbound and outbound events comming from
vehicles and customers. Such events regard the monitoring
of vehicles and the modification or cancellation of a trip
request.

Upon diferences in the planning (due to breakdowns, traffic-
jam, etc) the Schedule agent re-plans. In the case of having
an infeasible trip request (mainly due to the time-window re-
strictions), it informs the Planner agent about the situation.
The Planner makes a call for trip-proposals to try reallocat-
ing the request in other available vehicle. In any case, the
result is informed to the corresponding Trip-request agent,
which depending on its degree of autonomy will process the
alternatives and take a decision or will inform the client
about the change. This change may imply a different vehi-
cle processing the trip only or also a delay or an anticipation
of the pickup and delivery times defined previously.

Besides the Planner Agent, there is a whole set of service
agents collaborating to give support to the different required
functions, such as the matching of request to vehicles, the
geographical data access, the accountability of the transac-
tions and the service payment among others. From them,
the most critical ones from the planning and control point
of view are the Broker and the Map agents.

The Broker’s main role is to know which transportation ser-
vices are available and their characteristics. In addition is
able to analyze those service characteristics upon planner
request. It provides a publish/subscribe infrastructure that
allows vehicles to enter or leave the system freely and allows
clients to query the system for available transport services.

It is important to mention that the service profile gives a
static description, that is, the description does not take into
account the actual state of the vehicle while working. Some
characteristics declared in the profile depend on the state
(schedule) of the vehicle and hence, are not updated. For
example, the service profile can specify that the vehicle has
4 places for wheel chair use. But this information needs to
be checked, as it is possible to have all of them used during
a route interval. As this information is dynamic, because
it depends on the actual vehicle schedule, a further check
needs to be performed afterwards in the planning layer, by
the schedule agent when making a bid.

The Map agent represents the geographic area being con-
sidered where it can be a zone, a city or a part of it. The
Map provides the enterprise with a series of information re-
garding the actual zone being covered such as localization of
addresses and stops, street names and distances between lo-
calizations, among others. The map agent can be connected
to a Geographic information system (GIS) to provide such
information.

In our system the Map stores a graph with nodes represent-
ing the geographic area under coverage. The distance (km)
and time (min) required to go from one node to each other is
registered. The measure as distance is likely invariant, while
the time measure representation can vary greatly along the
day, specially on rush hours. Therefore the map agent can
receive updated data from a traffic agent or other external
sources of traffic information, allowing the Map to notify the
Planner about changes on estimated travel times.

5. THE SCHEDULING PROBLEM
As stated before, during the planning process schedule agents
make proposals of trip insertions which are managed by the
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Figure 8: Time-Windows model for clients pickup
and delivery intervals

planner. Therefore, each of these agents contains a schedul-
ing heuristic to search in the state space for suitable alter-
natives. The underlying optimization problem and solution
heuristic is explained in the following.

From the Operational Research (OR) perspective, the flexi-
ble transportation of passengers has traditionally been men-
tioned in literature under the name of Dial-a-Ride Problem
(DARP). In the DARP problem, users formulate requests
for transportation from a specific origin (pickup point) to
a specific destination (drop-off/delivery point). Transporta-
tion is carried out by vehicles that provide a shared service
in the sense that several users may be in the vehicle at the
same time. The aim is to design a minimum-cost set of vehi-
cle routes serving all requests. Our present implementation
of DARP has included the following modelling assumptions:

Passenger Trip Duration. When dealing with passenger
transportation is usual to add a limit to the length of the
client’s journey aboard a given vehicle. This restriction is
often mentioned in literature under the name of Maximum
Ride Time (MRT ) and is usually proportional to Direct
Ride Time (DRT ), the time needed for the trip but without
any deviations (shortest path). Therefore, the MRT has an
specific value for each client.

Time Windows. There are different models for construct-
ing the time windows. In our considered variant with Time
Windows (DARPTW), customers specify the arriving time,
becaming the Latest Delivery Time (LDT ). The Latest De-
livery Time (see Figure 8) constitutes the upper bound of
the delivery time-windows [EDTi, LDTi]. The majority of
real-life pickup and delivery problems are time restricted
in a tight or loose way. In our case this is controlled by
the systems’ parameters A, B and WS allowing to vary the
service Quality level to be provided. The model also con-
siders a pickup time-window, the pair (EPTi, LPTi), where
EPTi = EDTi−MRTi and LPTi = LDTi−DRTi. In this
a way, a vehicle serving the customer i must reach the pickup
and delivery points within the time-windows specified for i.

Multiple Vehicles. If the service will be done by one ve-
hicle, the corresponding problem is called the single-vehicle
variant of the problem (1-DARP). If there is a fleet of ve-
hicles available for the service, the problem is known as the
multi-vehicle variant of the problem (m-DARP) which cor-
responds to our case.

Multiple Depots. In a number of environments, not all

Figure 9: Work-schedule used by vehicles, consisting
in sequences of schedule blocks and slacks

vehicle routes start from and end on the same depot, espe-
cially when dealing with multiple vehicles.

Vehicle Route Duration. This formulation allows for
constraints on the lengths and/or durations of vehicle tours.
For example, such considerations arise from constraints on
the geographic coverage of a given vehicle, its refueling re-
quirements and restrictions on the drivers’ duty day (e.g.
different shifts or time-blocks, lunch breaks) among others.

Dynamic Model. Static formulations assume that cus-
tomer demand is known ahead in time (e.g. models assum-
ing ”advance reservations”). In contrast, in dynamic models
DARP (D-DARP), new customer requests are eligible for
immediate consideration, requiring revisions of already es-
tablished routes and schedules. In addition, dynamicity can
include delays or cancellations due to traffic-jams, accidents,
vehicle breakdowns or simply a client no-show situation, all
of which imply a re-planning of the original routes.

5.1 Greedy Insertion Heurisitc
The scheduling algorithm used by schedule agents is based
on an improved and distributed version of the ADARTW
algorithm [9], a constructive greedy heuristic. Due to the
dynamic nature of the problem being tackled it was necesary
to make use of a solver fast enough to provide results within
seconds rather than minutes, orienting the choice towards
this kind of heuristics.

The algorithm finds all the feasible ways in which a new
customer can be inserted into the actual work schedule of
a vehicle, choosing the one that offers the maximum addi-
tional utility according to a certain objective function. Fig-
ure 9 shows a schedule block that serves 3 customers (h, i, j)
while evaluating the insertion of a fourth one (customer x).
Each of them has their pick-up (+) and delivery (-) stops re-
spectively. The search must include all the schedule blocks
contained in the vehicle’s work-schedule. In a block with
already d stops (2 per customer) there are (d+1)(d+2)/2
possible insertions, considering that the customer’s pickup
must always precede his delivery and that is not possible
to pickup a client in one block and deliver him in another
(because of the block’s definition).

Once we have found that a possibility of insertion is feasible,
it is necessary to define the actual times for those events,
that is, the Actual Pick-up Time and the Actual Delivery
Time. This problem is often mentioned in literature as the
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scheduling problem, as once the sequence of trips (route) has
been fixed the following step is to define the exact position
where the sequence will be placed in time without violating
the time-windows defined for each client.

Commonly, there will be a time interval in which can be
inserted, meaning that the sequence can be scheduled more
early or late in time within that interval. Several authors
program the actual times as soon as possible for reducing
the travel and waiting times of the customers, reason why
our implementation does it in this way.

5.2 Work-Schedule
The model used for the vehicles’ work-schedules considers
that along the day a vehicle can be in any of these three
states: at a depot, in travel or inactive. When the vehicle is
at a depot means that it has not started its service period
or has just finished it. When the vehicle is in travel, means
that it is actually going to pickup or delivery passengers
generating schedule blocks. As Figure 9 shows, a schedule
block corresponds to a sequence of pickups and deliveries
for serving one or more trip requests. A schedule block al-
ways begins with the vehicle starting on its way to pick-up
a customer and ends when the last on-board customer is
discharged. The third state is when the vehicle is inactive
or idle generating a slack time. In this case the vehicle is
parked and waiting to serve a next customer and then begin
another schedule block.

Therefore, a complete vehicle’s work-schedule will have pe-
riods of vehicle’s utilization (schedule blocks) and inactive
periods (slacks times) in which the vehicle is available and
waiting.

5.3 Time-Windows Feasibility
The time-windows feasibility processing is tightly coupled to
the work-schedule model. Within the checking algorithm,
different restrictions need to be checked for a given poten-
tial solution. The most important ones are the time win-
dows, the capacity constraints (on number and type) and
the bounds on the duration of clients’ ride and of vehicle
routes.

This represented a challenging aspect of the work, as in gen-
eral is difficult to find in literature the used mechanism for
tackling this point. In Jaw et al. [9] is described only in
general terms and most research papers state a change from
the previous work but not its specific implementation.

For a block X with w events representing either a pickup
or a delivery of passengers, Jaw’s work presents the follow-
ing calculations representing how much the events can be
anticipated/posticipated in time.

BUP (Xi) = Min(Min(AT (Xi)− ET (Xi)), SLK0)

BDOWN(Xi) = Min(LT (Xi)−AT (Xi))

AUP (Xi) = Min(AT (Xi)− ET (Xi))

ADOWN(Xi) = Min(Min(LT (Xi)−AT (Xi)), SLKw+1)

SLK0 and SLKw+1 represent the (possible) slack periods
immediately preceding and following the block respectively.

Figure 10: Time-windows feasibility-check proce-
dure

ET (Xi), AT (Xi) and LT (Xi) represent the Early, Actual
and Latest Times of the event Xi respectively with 0 < i <
w + 1.

Our developed model is based on the Jaw’s calculations on
BUP and ADOWN but adds the important idea of inter-
secting the time windows restrictions along a piece of route,
allowing to simplify the processing of the time windows fea-
sibility check and making it possible to evaluate the insertion
of the whole client (pickup and delivery) at the same time.

Therefore, in the case of the implemented insertion heuristic
the starting point is the schedule block under which to eval-
uate the insertion of the new client. The Figure 10(a) shows
a detailed view when evaluating the insertion of the pickup
(X+) and delivery (X−) of a client. Between the pickup and
the delivery are one or more events separating them and at
the beginning (or ending) of the block is a slack or the bus
depot. The approach is to divide the schedule block in three
sub-blocks A, B and C for the events before the pickup, in
between and after the delivery respectively. A special case
is when both events are consecutive meaning that the block
B includes only the distance from the pickup to the delivery
of the new client.

The Figure 10(b) shows the time windows and distances
needed for the evaluation and intersection. The interval
[ETA, LTA] represents the earliest and latest times to which
the event AM can be shifted (anticipated / posticipated)
without violating the time window constraints of all the
events within its block. A similar thing happens with in-
tervals [ETB , LTB ] and [ETC , LTC ] on the events B1 and
C1 for the blocks B and C respectively. Therefore, is needed
to identify the feasible shift up and shift down for each of
the three blocks. For the block A are used the BUP and
BDOWN of the event AM as they consider the previous
events, while for the block C the AUP and ADOWN of C1

are needed. For block B is needed the AUP and ADOWN
for B1 but considering only until BN and not the events on
block C as the normal calculations would. Then, for inter-
val [ETA, LTA] we have: ETA = AT (AM )−BUP (AM ) and
LTA = AT (AM ) +BDOWN(AM ).

A similar thing happens with [ETB , LTB ] and [ETC , LTC ].
Distance D1+, D2+, D1− and D2− correspond to the dis-
tances between the nodes indicated by the respective arrows
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in the figure. The next step is intersecting the time inter-
vals of the three blocks and the two time windows coming
from the new client’s pickup and delivery events. This in-
tersection needs to consider the distances separating each of
the five intervals. For this reason, a point in the schedule
is used as reference and all the intervals are translated to
that reference obtaining a single time interval [ET,LT ]. By
using the pickup event (X+) of the new client as reference
point and following Figure 10(b) are obtained:

ET = Max(ETA +D1+;ET+;ETB −D2+;ET− −D1− −
DB −D2+;ETC −D2− −D1− −DB −D2+)

LT = Min(LTA + D1+;LT+;LTB − D2+;LT− − D1− −
DB −D2+;LTC −D2− −D1− −DB −D2+)

This [ET,LT ] interval represents the feasibility area in which
to set the new schedule with respect to the reference point.
The actual time for the reference point (X+ in this case)
must be set and hence the actual times for the whole sched-
ule block can be calculated as they depend on the fixed dis-
tances between one event and another. Defining the opti-
mal place within this interval corresponds to the scheduling
problem mentioned before.

6. EXPERIMENT SETUP
As mentioned earlier, the original architecture’s planning
approach is based in the contract-net (CNP) under self-
interested agents. Therefore, Vehicle agents pursued the
optimization of the travelling costs (utility function with to-
tal slack time and total travel time) and Client agents were
oriented towards the maximization of the perceived service
quality (utility function with excess travel time and waiting
time).

All the tests considered the same geographical net and 20
demand scenarios labeled from U1.txt to U20.txt. Each con-
sidered 50 trip requests each, distributed uniformly in a two-
hour horizon. For each demand scenario 25 runs were done.
Regarding the considered distributed environment, the sim-
ulations were carried out over PCs with Intel Pentium 4 of 2
GHz. with 256 MB Ram, connected through a 10/100 Mb.
Router.

The following tests focus on the planning capabilities of the
architecture. In this sense, the simulations consider an agent
devoted to the generation of the Trip-request agents and an-
other devoted to generating the Schedule agents. In addi-
tion, a Main agent was in charge of managing all the aspects
related to the simulation control, specifically centered on the
generation of the agents, request of output data and dele-
tion operations along the diverse runs and scenarios.

The following operational decisions were adopted: 1) the
same utility function and scheduling algorithm have been
used for all the vehicles, 2) all the clients share the same
utility function, 3) the available fleet is of 30 identical vehi-
cles with capacity 20, 4) one depot is used for all the vehicles
and 5) in all cases the effectiveness measures (utility vari-
ables) were weighted with the same value.

The generation of Trip-request agents (and hence the ar-
rival of trip-requests) to the system follows a Poisson distri-

Table 1: Distribution of agents among hosts over the
3 scenarios

2 Hosts 3 Hosts 5 Hosts Agents
1 1 1 Map Agent
1 2 2 Trip-Request Agents
2 3 3 Schedule Agents
1 1 4 Planner Agent
1 1 5 Broker Agent

Figure 11: Processing time for trip requests ordered
by arrival at Exp(3) under 2, 3 & 5 hosts.

bution. Then, the time between arrivals distributes Expo-
nential, E(λ), with lambda in terms of requests per second.
The agents involved in the simulations were the three of the
planning layer (Trip-request, Planner and Schedule agents)
plus two of the service layer (Map and Broker agents) as
Table 1 details.

6.1 Results
Figure 11 shows different curves for 2, 3 and 5 hosts’ config-
uration at a (λ) = 3 arrival rate. A big improvement exists
when changing from 2-hosts to 3-hosts configuration, while
little improvement is obtained when changing from 3 to 5
hosts. A closer look on how agents were distributed shows
that separating Trip-request and Schedule agents from the
rest has a big impact on performance, but separating the
Planner, Broker and Map agents on diverse host gets only a
small improvement in terms of processing time.

A second round considered contrasting the effect of chang-
ing the lambda (λ) coefficient over the performance of the
planning system when processing a request. In Figure 12
are compared 2 diverse arrival rates; λ = 3 and λ = 5 re-
quests per second for the 3-host and 5-host scenarios. The
two curves in the lover part correspond to λ = 3 scenarios
while the other two at the top, to λ = 5.

In contrast, the average quality of the results for all the
20 demand scenarios considered were similar. In fact the
number of vehicles used and cost of the solutions provided
are not significantly different among the two trip-request
rates even when changing the number of hosts.

These results reflect the fact that the system gets much
overloaded at a λ = 5 arrival rate, suggesting a possible
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Figure 12: Processing time for trip requests ordered
by arrival at Exp(3) and Exp(5) rates, over 3 and 5
hosts.

bottleneck in the architecture. In fact, the Planner Agent
constitutes a central point of communication among parties,
therefore for bigger-size problems the architecture needs to
be scalable.

As a possible solution, the Planner could be replicated on
diverse hosts and be organized hierarchically to balance the
workload, allowing to improve the overall performance under
such scenarios. Of course this remains a matter of further
work.

7. CONCLUSIONS
An agent-based software application for managing a flexi-
ble passenger transportation systems was described. The
undelying architecture provides a transparent and flexible
way to make interoperate users, vehicles and support-service
providers into a single application.

The methodology used allowed an appropriate level of spec-
ification along its diverse phases. The focus was centered on
the specification of the main actors involved with the system:
Customers, Drivers (Vehicles) and the Transportation En-
terprise, providing a concrete idea of interface agents’ GUIs
while covering the optimization problem involved and the
implemented scheduling heuristic.

A project next step involves a field test with a local group
of taxis already operating under a shared mode but actu-
ally organized in frequency-based route lines. Further work
considers to carry out scalability tests while replicating the
Planner agent.
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Küttner, C.: Telebus Berlin: Vehicle Scheduling in a
Dial-a-Ride System. Tech. Report SC 97-23, Berlin,
1997.

[3] Burrafato, P., and Cossentino, M.: Designing a
multiagent solution for a bookstore with the passi

methodology. In 4th Int. Bi-Conference Workshop on
AgentOriented Information Systems (AOIS-2002).

[4] Cordeau, J.F., Laporte, G.: A Tabu Search Heuristic
for the Static Multi-Vehicle Dial-a-Ride Problem.
Transportation Research B, Vol. 37B, 2003, pp.
579-594.
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ABSTRACT
Convoy driving on highways is a desirable behavior which reduces
the risk of highway accidents and makes traffic faster and more flu-
ent. Recent technologies, such as intelligent cruise control devices
explicitly facilitate convoy driving by providing a fully automated
means for following the previous vehicle. Participating in a convoy,
however, requires compromises from the vehicles, such as slowing
down to the speed of the lead vehicle; thus many drivers choose not
to join any convoy. Collaborative convoy driving systems, based
on vehicle-to-vehicle communication, promise to deliver means for
the vehicles to influence the speed of the convoy, thus improving its
utility. We discuss the mechanisms of convoy participation, includ-
ing the decision to join and leave the convoy, and the mechanisms
through which the vehicles can influence the convoy speed. In an
experimental study, we compare three influence mechanisms: the
“adapt speed to the leader” mechanism used by human drivers and
intelligent cruise control systems and two collaborative influence
mechanisms which require vehicle to vehicle communication. We
show that the collaborative cruise control methods deliver better
macroscopic performance measures: more vehicles participating in
convoys, higher average speed and lower number of overtakings.

1. INTRODUCTION
The desired speed of a driver on a highway depends on the capa-

bilities of the vehicle, the driver’s driving skills, style, current goal
and state of mind, as well his or her assessment of the likelihood
of a fine if the vehicles exceeds the posted speed limits. If the ve-
hicles on a highway have a wide spread of desired speed, it leads
to a behavior with many lane changes, overtaking, accelerations
and decelerations. In practical traffic, it increases the likelihood of
accidents, and slows down the traffic by creating bottlenecks.

The ideal traffic behavior would be for all vehicles to travel at
the posted speed limit, and to maintain this speed constant, for in-
stance, through the use of a cruise control system. It is also de-
sirable that vehicles position themselves at uniform distance from
each other, that is, they form convoys. Unfortunately, cruise control
systems have slight variations, which make vehicles “creep” closer
to each other. In these occasions the drivers need to take control

.

and either take over the vehicle in front or adjust the speed lower.
The latter might lead to a chain reaction, where the following ve-
hicles need to make similar decisions. This effectively means that
the vehicles have the choice to either (a) adjust to the speed of the
slowest vehicle in the convoy or (b) leave the convoy and engage in
a series of overtakings.

Many recent vehicles are equipped with an “intelligent cruise
control system”, which measures the distance from the vehicle in
front using a laser or radar and adjusts the speed accordingly. This
makes the job of the driver easier, as it automatically performs the
slow-down operation, and, in the limits of the previously set pre-
ferred speed, it can also perform acceleration. However, the prob-
lem still remains that the vehicles will adopt the speed of slowest
member of the convoy.

One way to improve this architecture is to create a convoy where
the vehicles communicate with each other. Note that communica-
tion alone does not change the picture, unless vehicles, in some
respect, are responsive to the “common good”. For instance, if
a convoy of 10 vehicles has a first vehicle whose desired speed
is 2mph lower than the followers, the followers might “convince”
the leader to increase the speed, rather than performing a series of
traffic-disruptive overtakings. In traditional traffic, follower vehi-
cles sometimes pressure the first vehicle by driving closer than the
comfort distance of the driver. In general, a driver might choose to
collaborate with the convoy as long as the departure from the pre-
ferred speed is not too large, as the driver himself benefits from the
smoother traffic. In is beyond the scope of this paper to discuss the
mechanisms through which the interests of the individual vehicles,
the convoy and the general public are reconciled1.

While the formation of convoys is sometimes an explicitly
planned operation, most often it is happening in an ad hoc man-
ner between vehicles whose drivers do not know each other, might
not have common goals and can communicate only through indi-
rect means. Convoys are formed and terminated dynamically; their
life cycle ranges from tens of seconds to several hours. Vehicles
can join and leave, and convoys themselves can split and merge. If
we consider the vehicles to be intelligent agents, highway convoy
driving is a microcosm of problems including communication (both
at networking and semantic level), team formation, leader election,
negotiation and planning.

In previous work [6] we have proposed an architecture which
managed the formation, creation and splitting of convoys through
vehicle to vehicle communication. As a note, our hardware im-
plementation was based on Crossbow MICA2 motes communicat-

1One way to assure this is through legislation. Considering the
safety advantages of convoy driving, it is possible to allow a higher
speed limit for convoys: eg. “speed limit 70mph, up to 80mph
when in convoy”.
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ing on the 868/916MHz range. Current efforts around the Dedi-
cated Short Range Communications (DSRC) project and the IEEE
802.11p standardization effort makes it likely that future vehicle-
to-vehicle communications will happen in the 5.9 GHz band.

The determining feature of the convoy formation is the influence
mechanism, the way in which the vehicles influence each other’s
speed. As we had seen, in convoy driving without inter-vehicle
communication the only influence mechanisms possible are the
adaptation to the speed of the vehicle in front (with or without ex-
plicit adaptations to maintain a following distance). If we assume
the existence of inter-vehicle communication, other adaptations are
possible. Examples are increasing the speed at the request of the
vehicle in the back, decreasing the speed at the request of the vehi-
cle in the back, increasing the speed at the request of the vehicle in
the front, and so on.

In [6] we have described an influence mechanism which relies
on the Social Potential Fields (SPF) model [9] proposed in the field
of mobile robots.

In addition to the influence mechanism, the traffic behavior is
also affected by the convoy participation policy of the vehicle. This
policy governs the choice of the vehicles whether to join the convoy
(and, implicitly, to obey the influence mechanism) or to leave the
current convoy and either drive alone or join another convoy. For
the purpose of this paper we will assume a very simple policy based
on threshold with friction where the desirability of the convoy is
determined by the difference in the speed of the convoy and the
desired speed of the vehicle. This policy also adds a cost for the
joining and leaving a convoy to prevent frequent defections.

Our experiments with this architecture in [6] have concentrated
on the local behavior of several vehicles. As intelligent cruise con-
trols are deployed in more and more vehicles and the possibility of
wide scale deployment of collaborative cruise control draws near
through the standardization of the vehicle-to-vehicle communica-
tion protocols, we are interested in investigating how the deploy-
ment of such systems affect the general traffic. We are mainly inter-
ested in integrative measures such as the mean velocity of vehicles,
the number, size and size distribution of convoys and the number
of vehicle overtakings.

The remainder of this paper is organized as follows. We survey
related work in Section 2. The convoy formation mechanism and
influence mechanisms considered are described in Section 3. We
then use these mechanisms in a simulation study involving a large
number of vehicles, study the emergent traffic behavior and mea-
sure the integrative properties in Section 4. We conclude in Section
5.

2. RELATED WORK
The study of vehicular traffic has attracted the interest of re-

searchers for several decades. One of the schools of thought treats
traffic in analogy to various physical phenomena. A thorough
overview of proposed models is provided by Chowdhury et al. [3].
One approach is to treat traffic flow in analogy with the hydro-
dynamic theory of fluids [1]. In this case traffic is seen as a one
dimensional compressible fluid; the characteristics of the individ-
ual vehicles are not considered, only their density on the road. An
alternative approach is the kinetic theory, where traffic is treated as
a gas of interacting particles, with each particle representing a ve-
hicle. As molecules in the gas have random movements described
by the Boltzmann equation, on its own, this model can not describe
the purposeful movements of vehicles. One approach is the Paveri-
Fontana model [8] which assumes that each vehicle, in contrast to
molecules in the gas, has a desired velocity towards which the ac-
tual velocity converges in the absence of other vehicles.

Of a particular relevance to our to our approach are the “car-
following theories” of the traffic flow. In these models the traffic is
seen as a set of objects interacting under a set of forces analogous
to the Newtonian mechanics. Various proposed models make the
force acting on the vehicle dependent either on the parameters of
the preceding vehicle, or several of the preceding vehicles. Note
that the different influence mechanisms in convoy formation (to be
discussed later in this paper) can be seen as specific instances of
these classes of models.

Another influential approach of traffic modeling uses the lan-
guage of cellular automata, a representative example being the
Nagel-Schreckenberg model [10].

What can the agent community bring to this respected body of
research? First of all, the concept that the drivers on the highway
are humans with autonomous decision making capabilities. While
humans might drive long stretches of road in ways predictable from
their environmental conditions, they also frequently exercise their
decision making capacity in joining a convoy, accelerating to catch
a green light, overtaking to escape an erratic driver and so on.
The vehicle-to-vehicle communication systems currently in devel-
opment will likely change the driving dynamics and their effects
needs to be modeled by treating the vehicles as agents.

Although the technical means of implementing vehicle-to-
vehicle communication are only beginning to become available,
there is already a significant literature in the using agents in the
control and modeling of vehicles. Dresner and Stone [4] propose
an intersection control mechanism where agent-based reservations
replace the traffic lights. They prove the superiority of the approach
through simulation and show that the reservation method closely
approximates an overpass (which is the optimal, although costly
solution for intersection management).

Laumonier et al. [7] work towards a cooperative adaptive cruise
control system. The authors propose a reinforcement learning tech-
nique for the control of the throttle to maintain the desired inter-
vehicle gap.

Girard et al. [5] propose a hierarchical implementation of a con-
trol architecture for cooperative cruise control (CACC). Some of
the interesting features of their approach includes the ability to
switch between various modes of operation depending whether the
nearby vehicles are also equipped with CACC-capable devices. In
addition, this system also implements cooperative forward collision
warning (CFCW), through which the following vehicles receive in-
formation about the sudden braking of the vehicle in front.

3. CONVOY FORMATION MECHANISMS
Our interest in convoy formation mechanisms are two-fold. On

one hand, we wish to model the driving behavior existing on current
highways, as a result of manual driving, traditional cruise control
systems and a small minority of vehicles equipped with intelligent
cruise control. On the other hand, we are interested in designing
new algorithms for the cooperative cruise control systems of near
future. Note that for the foreseeable future, vehicles with different
level of autonomy will share the same road. In fact, even if a vehi-
cle has an intelligent/collaborative cruise control system, the driver
might choose not to turn in on. For the sake of uniform treatment,
in the following discussions we will use the term “vehicle” to cover
both vehicles under the control of human driver and agents.

There are three different aspects of the participation of a vehicle
in a convoy.

• The decision to join or leave the convoy. The vehicle can
join any convoy in its physical proximity, or it can decide
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to drive outside of any convoy. For the sake of a uniform
treatment, we will consider the later as the vehicle forming
its own convoy.

• The influence of the convoy on the vehicle. Once the vehi-
cle has joined a convoy, its driving is influenced by the pres-
ence of the other vehicles in the convoy. Most importantly,
its speed needs to be synchronized with the speed of the other
vehicles. Small, temporary adjustments in speed can be used
to achieve the desired following distance / time gap between
the vehicles.

• The influence of the vehicle on the convoy. In the simplest
example, the leading vehicle determines the speed of the con-
voy, while the other vehicles do not have any influence. As an
example of visual communication, a vehicle in the rear might
be able to “pressure” the vehicle in the front to increase the
speed. In the vehicles are connected through a vehicle-to-
vehicle communication system, they will be able to reach a
negotiated agreement about the speed of the convoy, follow-
ing distance, order of the vehicles and other factors.

3.1 Convoy joining policy
In the following we introduce an algorithm for modeling the pol-

icy of the agents for convoy joining. This is both an algorithm for
practical implementation [6], as well as a model of the human be-
havior in convoy joining.

The policy we are proposing is based on the measuring of the
utility of the different convoys. Whenever a driver needs to make a
decision (whether to join a convoy, leave a convoy, or move from
one convoy to another) it will evaluate the utility of the convoy and
pick the choice with a higher utility. As the utility of a convoy
varies in time, the vehicle needs to perform periodic evaluations
of the utility of the current convoy. Different vehicles can have
different utility functions even if they are part of the same convoy.
Vehicles in a convoy, however, need to agree on the same rules for
evaluating influences, otherwise the integrity of the convoy can not
be maintained.

We assume that the utility of a convoy depends only on the speed
of the convoy and the parameters of the vehicle2. We assume that
a vehicle Vi has a current speed Pi and desired speed Di. The
vehicle also has an upper speed limit Hi (determined by physical or
legal factors, or simply by preference) and a lowest accepted speed
Li (normally determined by preference but also by fuel economy
considerations).

It is desirable to have a utility function return 0 for convoys
whose joining is not feasible for the vehicle and preferably high
values for convoys which are close to its desired speed. A simple
expression for the utility of the convoy with speed Si for a vehicle
Vj which satisfies this requirement is the following:

U ={
1− |Dj−Si|

Dj
− λ · |Pj−Si|

Pj
if Lj ≤ Si ≤ Hj

0 otherwise
(1)

Note that any offered speed that lies outside the lower and upper
speed limits has zero utility. Otherwise, the utility of an offered
speed is affected by two factors. The compromise factor |Dj−Si|

Dj

2A human driver might consider various other factors. A driver
might be reluctant to follow a driver whose behavior appears to
be erratic, or a large truck obscuring visibility. Drivers might be
offended by the bumper stickers on the previous car.

determines the amount of compromise that the vehicle needs to
make to become part of the convoy. It increases with the difference
between the desired and the offered speed of the vehicle. Thus, an
offered speed that is either higher or lower than the desired speed,
will cause the utility of the offer to become lower. The join cost
factor λ · |Pj−Si|

Pj
is the cost of joining convoy Ci, and it is zero

if Vj is either currently a member of the convoy or if the offered
speed matches the current speed of the vehicle. This factor reflects
the need to accelerate or decelerate to join a convoy. In addition,
this factor allows us to introduce “friction” in the behavior of the
vehicles. By making it expensive for a vehicle to leave a convoy,
we can reduce the number of defections and stabilize the convoys.
Experimentally, we found λ = 0.1 to be an adequate value.

3.2 Influences among the members of the con-
voy

Let us now consider the next component of the convoy forma-
tion, the influences among the members of the convoy. We will
consider three influence strategies.

Influence Strategy ASL (Adjusting to the speed of the
leader): This is the traditional case of convoys formed by human
drivers, or vehicles with intelligent cruise control systems. The ad-
vantage of this approach is that joining the convoy does not require
negotiation. Furthermore, vehicles leaving or joining the convoy
will not change the convoy speed. This means that the utility of
the convoy remains the same for a vehicle throughout the lifetime
of the convoy, increasing the stability of the convoy. The only rea-
son for a vehicle to reconsider its convoy joining decision is if the
convoy passes next to another convoy with a higher utility for the
particular vehicle.

The disadvantage, however, is that the speed of the convoy is
dictated by its slowest vehicle.

Influence Strategy AVG (Average desired speed):
In this influence strategy the protocol calls for the participating

members to compute the average of their desired speeds, and then
all members adjust to that speed. Naturally, this requires commu-
nication. The speed needs to be recalculated every time a vehicle
joins or leaves the convoy. This phenomena is mitigated somewhat
by the fact that the vehicles which join will likely have a desired
speed close to the current speed of the convoy. The change in the
speed of the convoy, in addition to the inconvenience of accelerat-
ing or decelerating, also poses the potential problem that by chang-
ing the utility of the convoy, it can reach a point where it is not
worth for a given vehicle to remain in the convoy. If the vehicle
decides to leave the convoy, this would lead to yet another speed
adjustment, which, on its turn, might lead to further vehicles leav-
ing. This way, a convoy spontaneously splits into a slower and a
faster convoy.

Influence Strategy SPF (Social potential fields): Social poten-
tial fields [9] are a distributed behavior control scheme based on
the idea of applying artificial forces among agents to keep them
in group formation. In a social potential field, we have an artifi-
cial force between each pair of agents which can be described as
the sum of an attractive and repulsive component, both being in-
verse polynomial with the distance. The movement of the vehicle
is determined by the sum of the forces acting on the vehicle. The
formula we used for the force between two vehicles with the inter-
vehicle distance r:

F (r) =
−c1

ra1
+

c2

ra2
where c1, c2 ≥ 0, a1 > a2 > 0 (2)

where a1, a2, c1 and c2 are user-defined constants. We assume that
the forces are active only between the vehicles which are part of the
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Table 1: Example scenario configuration
Simulation parameter Value
Highway length 1 km
Number of vehicles 5
Communication range 50m
Vehicle configuration ID Position Speed(m/s)

1 800 20
2 600 28
3 400 25
4 200 32
5 0 35

same convoy and in communication range of each other. Although
more complex than the previous approaches, the influence strategy
based on social potential fields has the following advantages:

• The convoy speed is dependent on the force parameters and
can be adjusted using the parameters c1, c2, a1 and a2.

• The influence mechanism is able to regulate the inter-vehicle
distance in the convoy.

• The influence mechanism does not suggest abrupt changes in
the speed of the vehicles.

As the forces are dependent on the distance, the SPF influence
strategy requires the knowledge of inter-vehicle distances.

3.3 An example
To illustrate the various phenomena at work, let us consider a

small scenario which implements the SPF influence strategy and
the proposed convoy joining policy. This example includes only 5
vehicles V1..V5 over a timespan of 10 seconds. While this simula-
tion was performed with the same implementation used in Section
4, in this example we handcrafted the initial state of the scenario to
illustrate as many interesting events as possible over a short times-
pan. The parameters of this scenario are listed in Table 1.

We recorded the evolution of the speed and position of each ve-
hicle. To achieve a better visualization of the configuration of the
convoy, our position graphs represent the relative position of the
vehicles in relation to the last vehicle. The reason for this visual-
ization approach is the fact that the relative movements of the ve-
hicles are small compared with their common longitudinal move-
ment, which would tend to dominate the absolute position plot.

Figure 1 shows the results of the scenario run, using the SPF
influence algorithm. The top graph represents relative movement
(with the origin of the relative coordinate system attached to V5),
while the bottom graph represents the speed of the vehicles. The
time scales are aligned to facilitate the observation of the correla-
tion between speed changes and vehicle position. The thin lines
represent the position of the vehicles if they choose not to join any
convoy. This requires the vehicles to overtake the preceding vehi-
cle even if the desired speed difference is small. In our case we
have several overtakings (shown by intersecting thin lines). The
bold lines represent the evolution of the vehicle locations with the
assumption that the convoy formation mechanism is working.

Let us outline the series of events in the scenario:

• The vehicles start at time 0 with 200m distance between
them. No convoy is formed as none of the vehicles are in
each other’s proximity. In absence of any convoy formation
mechanism the speed of the vehicles is constant (shown by
horizontal lines).

• V1, having a higher speed, approaches V2 from behind.
Once they reach into each other’s proximity, they agree to
form a convoy and they adjust their speed through the SPF
mechanism. This is a gradual process through which the
speed of V1 is decreasing, while the speed of V2 is increas-
ing. The speed of the vehicles settles at the agreed convoy
speed at the moment when they achieve their desired follow-
ing distance.

• Similarly, V3 approaches V4 from behind. They agree to
form a convoy {V3, V4}.

• The convoy {V3, V4} is approached from behind by vehicle
V5, which joins the convoy. This requires an increase of
speed for V3 and V4 and a decrease of speed for V5.

• Finally, the convoy {V1, V2} is approached from behind by
the convoy {V3, V4, V5}. The vehicles agree to merge the
convoys, which requires V1 and V2 to increase the speed and
V3, V4 and V5 to decrease.

The result is a convoy of 5 vehicles with a uniform speed and
uniform inter-vehicle distance.

4. SIMULATION STUDY
In the following, we describe the results of a series of experi-

ments in which we simulated the behavior of vehicles on a stretch
of road using various convoy formation approaches. The simula-
tion was implemented in the Java based Yet Another Extensible
Simulator (YAES) [2] framework.

We have maintained the same convoy joining decision mecha-
nisms across our experiments, but varied the influence mechanisms.
The reason for this choice is that the decision of joining a convoy
is, and will likely remain for a long time a decision of the hu-
man driver. However, once the convoy joining decision is made,
the small adjustments will likely be delegated to the cruise con-
trol mechanism (traditional, intelligent or cooperative). At the first
glance, it appears that identical convoy joining strategies would cre-
ate identical sets of convoys (potentially with different speeds). It
turns out, however, that this is not true over time. Starting from
independent vehicles, indeed, the first set of convoys are formed
in an identical way. Later, however, when, for instance vehicle V4
makes the decision whether to join the convoy {V1, V2, V3} the
decision is based on the speed of the convoy, which is function
of the influence mechanism. As a result, the set of convoys will di-
verge over time, and the different influence mechanisms may create
a completely different macroscopic picture of the highway. As we
had seen, current vehicular traffic essentially uses a form of ASL
influence (even if the vehicles are equipped with intelligent cruise
controls).

The question we are trying to answer is whether any of the more
complex, collaboration based mechanisms (such as AVG or SPF)
can achieve a better performance. Note that we are not interested
in the behavior of the individual vehicles, but in the overall picture
of the traffic: is it safer, more fluent, faster?

The parameters of the simulation are listed in Table 2. For these
experiments, we considered a 60km long stretch of the highway
with the number of vehicles ranging from 100 to 900 modeling vari-
ous vehicle densities and traffic conditions. The data was collected
by observing the traffic conditions for 600 seconds. The simula-
tions were repeated 100 times with random initial conditions and
the average values and the 95% confidence intervals were calcu-
lated.
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Figure 1: Convoy formation with the SPF influence mechanism. Top: relative position of the vehicles with respect to Vehicle-5. Thin
lines: without convoy formation, thick lines: with convoy formation. Bottom: the evolution of the speed of the vehicles during convoy
formation.
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Table 2: Highway configuration used for the simulation
Simulation parameter Value
Highway length 60 kilometer
Number of vehicles 100-900 vehicles
Vehicle initial speed Uniformly distributed between

10m/s to 40m/s
Vehicle desired speed Uniformly distributed between the

vehicle’s initial
speed to 40m/s

Vehicle communication
range

50m
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Figure 2: The number of convoys as a function of the density
of the vehicles on the highway. The number of convoys formed
increase with the density of the vehicles. The ASL and AVG ap-
proaches result in large number of convoys. The SPF approach
results in the lowest number of convoys.

4.1 Number of convoys formed
Figure 2 shows the number of convoys function of the density of

the vehicles. This number includes single-vehicle convoys, thus it
is practically the number of independently operating units on the
highway. Obviously, for a given traffic situation, the lower this
value, the better, as it leads to a more fluent traffic. However, these
results can not be interpreted in isolation, as it is also important to
consider how well the speed of the convoy reflects the desires of the
vehicles. For instance, a large convoy moving at the speed limit is
desired, whereas a convoy formed of vehicles stuck behind a slow
moving vehicle is not.

We find that the number of convoys vary greatly among the var-
ious influence strategies. With the ASL and AVG approaches, the
number of convoys increases approximately linearly with the den-
sity, with the AVG approach creating about half as many convoys
as the ASL approach.

The SPF approach, however, maintains a roughly constant num-
ber of convoys, in fact the number of convoys even show a slight,
but noticeable decrease at high densities.

4.2 Distribution of convoy sizes
Figure 3 shows the distribution of the convoy sizes after the

elapse of 600 seconds of simulation using 900 vehicles. As the
size of the convoys ranges from 1 to 110, for sizes above 10 vehi-
cles we have clustered them in groups of sizes 11-30, 31-50, 51-70,
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Figure 3: Distribution of the convoy sizes using a simulation
involving 900 vehicles.

71-90 and 91-110.
For the ASL influence mechanism, the most frequent case is con-

voys of size 1 (i.e. vehicles which are not part of any convoy),
followed by convoys of 2 and 3 vehicles. From here, the number of
convoys continues to drop very quickly. There were no convoys of
10 vehicles or more formed with the ASL influence mechanism.

For the AVG approach, the largest number of convoys had the
size of 2 vehicles, followed by 3, 4 and finally 1 vehicle. The
AVG approach allowed the occasional formation of larger convoys
as well, up to the 31-50 vehicle range.

Finally, the SPF approach also shows the largest number of con-
voys consisting of 2 and 3 vehicles. However, the SPF influence
mechanism allowed the creation of several very large convoys, up
to the 90-110 vehicle range (naturally, as there are only 900 ve-
hicles in the experiment, there can not be a very large number of
convoys of this size).

The conclusion of this experiment is that every influence mecha-
nism produces a different distribution of the convoy sizes. The ASL
mechanism favors small convoys or even individual vehicles (note
that our experiments did not model "convoys by necessity" where
vehicles get stuck behind a slow moving vehicle). The AVG and
SPF mechanisms prefer larger convoys with 2-4 vehicles, with an
occasional larger convoy of up to 50 vehicles for AVG and up to
110 vehicles for the SPF.

4.3 Distribution of convoy speed
Figure 4 shows the distribution of the convoy speed at the end of

600 seconds of simulation using 900 vehicles. For better visualiza-
tion, we have clustered the convoys in the speed ranges of 0-4, 5-9,
10-14, 15-19, 20-24, 25-29, 30-34, 35-39 and 40-44 (m/s).

We did not consider aspects of the highway traffic such as speed
limits, or the risks of high speed driving, aspects which should not
normally be regulated through the convoy mechanism. Under these
assumptions, the higher the average speed of the vehicles, the better
for the traffic.

With the ASL influence mechanism, the highest percentage of
convoys are moving at the very slow speed of 10-14 m/s, followed
by a smaller and smaller percentage of convoys moving at higher
speed. A very minute percentage of convoys move at speed 30 m/s
or higher.

With the AVG influence mechanism, the highest percentage of
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Figure 4: Distribution of the convoy speed using a simulation
involving 900 vehicles.

convoys are moving at the speed of 25-29 m/s, followed by the
convoys moving at speed 20-24 m/s and then 30-34 m/s. A very
small percentage of convoys move at the slow speed of 10-14 m/s
or the highest speed of 35-39 m/s.

And finally, with SPF influence mechanism, the highest percent-
age of convoys are moving at the speed of 25-29 m/s, followed by
a considerably large percentage of the convoys moving at the speed
of 30-34 m/s.

So, the ASL mechanism favors convoys moving at very slow
speed while both AVG and SPF approach favor faster moving con-
voys. The percentage of convoys moving at the speed of 25m/s or
higher is largest with the SPF mechanism.

4.4 Average difference between measured and
desired speed of the vehicles

From the point of view of the individual vehicle, the ideal driv-
ing environment is one in which the vehicle is alone on the road.
In this situation, a vehicle would simply drive at its desired speed.
When sharing the road with other vehicles, the agent might either
form convoys, or attempt to achieve its desired speed by overtaking
all the slower vehicles, irrespectively of the speed difference. On
most roads, the act of overtaking in itself involves a certain amount
of delay. Furthermore, a traffic environment where every vehicle is
attempting to overtake all slower vehicles becomes highly chaotic
and unsafe. On the other hand, convoy driving requires the vehi-
cle to adjust its speed to the convoy, thus renouncing to its desired
speed in exchange for the safety and predictability of convoy driv-
ing. In general, the lower the difference between the desired speed
of the vehicle and the actual speed of the convoy, the better the
convoy formation model is.

Figure 5 shows the average difference between the vehicles’
measured and desired speed. The data used to plot this graphs
was obtained by observing the middle 60 vehicles from a group
of 900 vehicles moving on the highway. This was done to avoid the
perturbations which occur at the periphery of the simulation envi-
ronment. For instance, a fast vehicle at the front of the simulation
would not have any slow vehicles in front of it, a fact which is an
artifact of the simulation setup and it would reduce the accuracy
of the measurement. The no-convoy graph was obtained under the
assumption that all the vehicles in the traffic are trying to maintain
their desired speed by overtaking all slower vehicles. We assumed
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Figure 5: The average difference of the desired speed of the
vehicles from their measured speed.

that every overtaking incurs a small delay. Thus, with a large num-
ber of vehicles on the road, even the “no-convoy” approach does
not guarantee the vehicle to move with its exact desired speed.

The graph shows that the smallest compromise is obtained by the
“no-convoy” approach, followed in order by SPF, AVG and ASL.
We can see that the collaborative convoy driving approaches SPF
and AVG require a significantly lower amount of compromise be-
tween the actual and desired speed. This is a direct consequence of
the fact that for these approaches all the vehicles in the convoy con-
tribute to the choice of speed. This is a significant result because it
provides strong motivation for the development of the collaborative
convoy driving devices, and it makes it likely that the drivers will
actually use them, as they can achieve speeds much closer to their
desired speed compared to other approaches.

Convoy formation requires the vehicles to compromise over their
desired speed. The ASL approach results in a large difference from
the desired speed, because the vehicles will agree on the slow speed
of the front vehicle. The AVG approach is somewhat better, while
the SPF approach shows the smallest difference. This means that
the SPF approach allows the vehicles to drive the closest to their
desired speed. This is because SPF based convoys tend to agree
on higher than average speed and the vehicles generally have the
desire to move at higher speed. Also the utility function guarantees
that vehicles do not join convoys that have large difference from
their desired speed.

4.5 Number of overtakings
Figure 6 shows the number of overtakings as a function of the

density of the vehicles. In general, the smaller the number of over-
takings, the safer the traffic. The data used to plot the graphs was
also obtained by observing 60 vehicles in the middle of the high-
way.

As expected, in the absence of any convoy formation approach,
there are large number of overtakings. This number increases with
the density of the vehicles. As expected, the number of overtakings
are reduced by using the convoy formation approaches. The num-
ber of overtakings are the smallest for the SPF approach, followed
by AVG and ASL. This can be attributed to the larger convoy sizes
resulting from the SPF approach. While the number of overtakings
increases with vehicle density for all three approaches, the increase
is the slowest for SPF, making it the most scalable approach.
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Figure 6: The number of overtakings as a function of the den-
sity of the vehicles.

5. CONCLUSIONS
It is a well-known fact that convoy driving has a beneficial ef-

fect on the fluency of the traffic, improving safety, and (in average)
reducing traveling time. Naturally, convoy driving can be accom-
plished without the mediation of communicating agents, by adapt-
ing to the speed of the previous vehicle (which is the equivalent
of the ASL strategy). This is the approach taken both by human
drivers, as well as intelligent cruise control systems. For more com-
plex strategies, however, it is necessary for vehicles to exchange
information with each other. The AVG and SPF influence strategies
we proposed can not be accomplished without inter-vehicle com-
munication.

Our experimental results show that these collaborative strategies
have significant benefits by allowing the formation of larger con-
voys, bringing the average speed of the convoys closer to the de-
sired speed of the participating agents and reducing the number of
overtakings.

As we had seen, the technical means for a widespread deploy-
ment of the collaborative cruise control systems will become avail-
able in the near future. These will likely by dual-control systems,
where the decision to join a convoy will be under the control of
the human driver, while the speed adjustments necessary to main-
tain the convoy and the communication necessary to determine the
overall convoy speed will be under the control of the agent. As we
had seen, even very simple convoy influence mechanisms can yield
significant improvements in overall traffic behavior. More com-
plex influence mechanisms, based on advanced negotiation models,
global traffic awareness and so on will bring a new set of research
challenges.
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ABSTRACT
Multi Agent Simulation has increasingly been used for trans-
portation simulation in recent years. With current tech-
niques, it is possible to simulate systems consisting of several
million agents. Such Multi Agent Simulations have been ap-
plied to transportation simulation for whole cities and even
large regions. In this paper we demonstrate how to adapt an
existing multi agent transportation simulation framework to
large-scale pedestrian evacuation simulation. The underly-
ing �ow model simulates the tra�c based on a simple queue
model where only free speed and bottleneck capacities are
taken into account. The queue simulation, albeit simple,
captures the most important aspects of evacuations such as
the congestion e�ects of bottlenecks and the time needed to
evacuate the endangered area.
During the simulation, each evacuee optimizes his/her

personal evacuation route to �nd the fastest escape route.
At this point two di�erent routing solutions are considered:
(1) An �empty network� routing solution, where every evac-
uee follows the path that would be fastest in an empty net-
work. (2) A �Nash equilibrium� approach, where, via itera-
tions every evacuating person attempts to �nd a route that
is optimal for him/herself under the given circumstances.
Both approaches can be considered as benchmarks: the �rst
as one where congestion e�ects are not taken into account
in the path choice; the second one as one which might be
achieved by appropriate training or guidance while main-
taining acceptability in the sense that no person could gain
by deviating from this solution. The results from the simu-
lation give an estimate of the time it could take to evacuate
the endangered area. We applied the system to a hypothet-
ical scenario, namely a dam-break of the Sihlsee dam near

,

Zurich, which would lead to an inundation of large parts of
the city of Zurich within two hours. We show how well both
approaches perform with respect to evacuation time and the
out�ow rate of evacuees.

Keywords
multi agent simulation, large-scale evacuation simulation

1. INTRODUCTION
The evacuation of whole cities or even regions is an im-

portant problem, as demonstrated by recent events such as
the evacuation of Houston in the case of Hurricane Rita or
the evacuation of coastal cities in the case of Tsunamis. A
robust and �exible simulation framework for such large-scale
disasters helps to predict the evacuation process. Further-
more, it is possible to recognize bottlenecks in advance, so
that an elimination of those bottlenecks is possible. This
should lead to a better preparedness for an event of evac-
uation for cities or regions that face a high risk of natural
disasters.

2. RELATED WORK
Disaster and evacuation planning has become an impor-

tant topic in science and politics. In principle there are two
di�erent situations: evacuation of buildings, ships and air-
planes or the like on the one hand, or evacuation of whole
cities or even regions on the other hand. The former involves
normally the evacuation of pedestrians, where the latter is
rather associated with the evacuation by car.
In the area of pedestrian evacuation simulation, there has

been done considerable research in the last 20 years. A good
overview about models and software for pedestrian evacua-
tion simulation can be found in the proceedings of the con-
ference �Pedestrian and Evacuation Dynamics� [35, 9, 10].
Corresponding to the two di�erent types of problems, there
are two di�erent basic approaches for simulating the tra�c
�ow:
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(1) Methods of dynamic tra�c assignment (DTA) have
been applied to evacuation simulation on the city or re-
gional scale. Some examples are: MITSIM [19], DYNAS-
MART [22] or VISSIM [14]. The DTA approach is based on
the analogy between tra�c and hydrodynamic characteris-
tics of �uids. That means DTA is a macroscopic approach
and reduces the problem of evacuation dynamics to a well
known physical problem. On state of the art hardware it
is possible to handle even large-scale scenarios with this ap-
proach. � However, in DTA it is not straightforward to deal
with the inhomogeneity of a population. For this, a micro-
scopic simulation is needed, where all people are simulated
as individuals.
(2) Microscopic simulations are often based on Cellular

Automata (CA) [28, 29, 16]. In CA models each evacuee is
designed as an individual; therefore it is possible to simu-
late also population structures where people have di�erent
speeds or ranges, or more complex behavior. The modeling
of complex behavior in evacuation simulation has become
important in recent years. People could for example ignore
warnings or might not choose the nearest emergency exit,
furthermore people tend to follow others (herd behavior)
[15, 23]. Agent oriented research groups have modeled such
behavior [27, 30]. In general it is expected that complex
behavior leads to longer evacuation times, consequently a
simulation that ignores such behavior patterns is probably
optimistic.
The aim of this approach is to develop a simulation frame-

work for large-scale scenarios, e.g. for large cities with a
population of hundreds of thousands. A standard CA-based
approach is not applicable here, because the area of those
cities could be several hundred square kilometers. In this
case a CA-model would consist of more than 109 cells, lead-
ing to rather long computing times.
In contrast, a DTA approach, as pointed out earlier, is

not able to handle complex individual behavior. One possi-
ble approach to deal with such large-scale scenarios but to
retain persons as individual agents is based up on a modi�ed
queuing model [11, 36]. The queuing model simpli�es streets
to edges and crossings to nodes; the di�erence to standard
queuing theory is that agents (particles) are not dropped but
spill back, causing congestion. This graph-oriented model is
de�ned by lengths/widths, free speed and �ow capacity of
the edges. This simpli�cation leads to a major speedup of
the simulation while keeping results realistic. For example,
the simulation of the whole (motor) tra�c of Switzerland
(approx. 5 million trips) takes less then 5 minutes for 24h
real time [32]. In this work the adaptation of the existing
multi agent transportation simulation framework to large-
scale pedestrian evacuation simulation is described.

3. MULTI AGENT SIMULATION
Our simulation is constructed around the notion of agents

that make independent decisions about their actions. In
this case study, each evacuee is modeled as an individual
agent in our simulation. In the simulation the agents try
to �nd the best (in terms of time) escape route, whereby
the real world is modeled as a network constructed of nodes
(intersections) and links (roadway between intersections).
The overall approach consists of three important pieces:

• Each agent independently generates a so-called plan
which encodes its intended escape route.

• All agents' plans are simultaneously executed in the
simulation of the physical system. This is also called
the tra�c �ow simulation or mobility simulation.

• There is a mechanism that allows agents to learn. In
our implementation, the system iterates between plans
generation and tra�c �ow simulation (i.e. system-
atic relaxation [20, 4]). The system remembers several
plans per agent, and scores the performance of each
plan. Agents normally chose the plan with the high-
est score, sometimes re-evaluate plans with bad scores,
and sometimes obtain new plans. Further details will
be given below.

The simulation approach is the same as in many of our
previous papers (e.g. [33, 3]) on the same subject. The re-
sults of this paper are based on a re-implementation of the
MATSim framework in Java [25]. Since not all elements of
MATSim are important for an evacuation simulation, the
following exposition is a shortened and simpli�ed descrip-
tion of key elements.
A plan contains the itinerary of activities the agent wants

to perform during the day, plus the intervening trips the
agent must take to travel between activities. An agent's
plan details the order, type, location, duration and other
time constraints of each activity, and the mode, route and
expected departure and travel times of each trip. This paper
concentrates on �home� and �evacuated� as the only activi-
ties, and �walk� as the only mode.
A plan can be modi�ed by the router module: The

router is implemented as a time-dependent Dijkstra algo-
rithm. It calculates link travel times from the output of the
tra�c �ow simulation. The link travel times are encoded in
variable-sized time bins, so they can be used as the time-
dependent weights of the links in the network graph.
The tra�c �ow simulation executes all agents' plans

simultaneously on the network. In the work presented here,
the plans contain the departure time and the exact routes,
and agents just follow these prescriptions; learning is imple-
mented via iterations (see below). The tra�c �ow simula-
tion is implemented as a queue simulation, where each street
(link) is represented as a FIFO (�rst-in �rst-out) queue with
three restrictions [11, 5]. First, each agent has to remain for
a certain time on the link, corresponding to the free speed
travel time. Second, a link �ow capacity is de�ned which
limits the out�ow from the link. If, in any given time step,
that capacity is used up, no more agents can leave the link.
Finally, a link storage capacity is de�ned which limits the
number of agents on the link. If it is �lled up, no more
agents can enter this link. The tra�c �ow simulation pro-
vides output describing what happened to each individual
agent during the execution of its plan.
The outcome of the tra�c �ow simulation (e.g. conges-

tion) depends on the planning decisions made by the decision-
making modules (in this case, the router). However, those
modules can base their decisions on the output of the tra�c
�ow simulation (e.g. knowledge of congestion) using feed-
back from the multi-agent simulation structure [20, 4]. This
sets up an iteration cycle which runs the tra�c �ow simula-
tion with speci�c plans for the agents, then uses the planning
modules to update the plans, these changed plans are again
fed into the tra�c �ow simulation, etc., until consistency
between modules is reached.
The feedback cycle is controlled by the agent database,
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Figure 1: Inundation map provided by the Zurich
civil defense o�ce

which also keeps track of multiple plans generated by each
agent, allowing agents to reuse those plans at will. The repe-
tition of the iteration cycle coupled with the agent database
enables the agents to learn how to improve their plans over
many iterations. This circle continues until the system has
reached a relaxed state. At this point, there is no quantita-
tive measure of when the system is �relaxed�; we just allow
the cycle to continue until the outcome seems stable. The
actual number of iterations that are needed depends on the
scenario. Normally 100 to 200 iterations are su�cient to
reach this �relaxed� state (also see below).
In order to compare plans, it is necessary to assign a quan-

titative score to the performance of each plan. In principle,
arbitrary scoring schemes can be used (e.g. prospect theory
[2]). In this work it is assumed that the agents are only in-
terested in minimizing their individual evacuation time. For
that reason, the utility of a plan is just the negative of the
time needed to reach the safe area.

4. SCENARIO
A hypothetical event of a dam-break of the Sihlsee dam

was chosen. This would lead to an inundation of parts of the
city of Zurich. According to the civil defense o�ce there will
be an advance warning time of about 110 minutes until the
inundation will reach the city center. The civil defense o�ce
also provides an instruction sheet [1] with an inundation map
of the area at risk (shown in �gure 1).

4.1 Data Basis
There are two main inputs that have to be provided to the

simulation framework. At �rst the simulation needs a net-
work. We extracted the evacuation network by projecting
the inundation map from the civil defense o�ce onto the net-
work of Switzerland provided by NAVTEQ1. This extraction

1NAVTEQ is a provider of digital maps for in-vehicle navi-
gation systems (see also http://www.navteq.com/)

Figure 2: Empty evacuation network

has been done semi-automatically. First, all boundary nodes
were selected manually, and after this all links and nodes in-
side the so selected area were selected automatically. So the
overall e�ort of pre-processing was manageable. The origi-
nal NAVTEQ network of Switzerland consists of about 400k
nodes and 880k links. After cropping, the resulting network
consist of 3037 nodes and 6120 links. It is shown in �gure 2.
The other important input to the simulation framework

is a so-called �plans �le�, containing information about peo-
ple and their plans, including home and work locations. A
synthetic population for the area of Zurich was generated
by [26] and provided to us. The population was generated
using data from the Swiss census for the year 2000 [12] and
information about facilities in the city center. Every per-
son in this synthetic population obtains one complete day
plan, describing all activities the person performs during a
day. The �rst work location appearing in a plan of each
agent was extracted to build the agents' initial locations for
the evacuation. In the end, there were 165571 agents with a
work activity within the endangered area. This set of agents
and locations builds our start setup for the evacuation; this
means we will simulate a break of the Sihlsee dam during
regular working hours.

4.2 Calibration of the Queuing Model
Since the underlying simulation framework is mainly de-

signed for the simulation of motorized transportation, sev-
eral adaptations are necessary. At �rst it is obvious that the
evacuees do not care about the tra�c direction. So we al-
lowed all links in the street network to be used in both direc-
tions. Given the link length, the queuing model is described
by three parameters for each link. The parameters are: �ow
capacity, storage capacity and free �ow speed. These
parameters had to be calibrated to achieve an appropriate
�ow dynamic for pedestrians. In literature the �ow dynamic
of pedestrians is often described by fundamental diagrams
[37, 31]. These diagrams show the velocity as a function of
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Figure 3: Weidmann's fundamental diagram com-
pared to queuing model

the density of pedestrians. Weidmann pointed out that the
relation between density and velocity is adequately captured
by the so-called Kladek-formula [37]2:

vF,hi(D) = vF,hf × [1− e
−γ×( 1

D
− 1

Dmax
)
]

With:

• vF,hi the velocity at a particular density [m/s],

• vF,hf the velocity at free �ow [m/s],

• γ a free parameter [persons/m2],

• D the actual density [persons/m2] and

• Dmax the density at which no �ow occurs [persons/m2].

Empirical studies showed the best results with γ = 1.913
persons/m2, vF,hf = 1.34 m/s and Dmax = 5.4 person/m2.
Our queuing model, however, generates a speed-density

relationship of the form v = min[vmax, 1/D] [36]. Therefore
a complete agreement is not possible. However, as shown
in �gure 3, the �ow dynamic produced by our queue model
is not too far away from Weidmann's fundamental diagram.
The details of the calibration are explained in the following
paragraphs.
As the above mentioned NAVTEQ network is designed for

transport simulation, we had to adjust the networks param-
eters accordingly. In the original network �le, there is only
information about number of lanes but not the width of the
street, so we had to estimate it. According to the hand-
book Strassenprojektierung [6] the lane width on streets in
Switzerland has to be 2.20-3.00 m for automobiles and 3.10-
3.90 m for trucks. Taking this information, we set the width
of all lanes in the network to 3.50 m. For pedestrian evac-
uation the �ow capacity is assigned in persons per meter
per second, but it depends on the actual density of persons.
According to Weidmann [37] the maximum �ow is about 1.3
persons/(m · s) at a density of 2 persons/m2. The SFPE
Handbook of Fire Protection Engineering [8] supports these
values. Together with the lane width we got the �ow capac-
ity of 4.55 persons/(lane · s).
2Newer studies [34] imply other fundamental diagrams then
those from Weidmann or Predtetschenski and Milinski. An
adaptation of these values could, in consequence, become
necessary in future.

Figure 4: Sketch of the modi�ed evacuation network

Another parameter for the queue simulation is the storage
capacity of the links. Not to contradict the �ow rate in Wei-
dmann's fundamental diagram we set the storage capacity
to 2 persons/m2.
The free �ow speed was set to 1.666m/s. This value is

slightly higher then the 1.34m/s recommended in literature,
but the values presented by Weidmann re�ect the pedestrian
�ow under normal conditions and not in a case of emergency.
Before we can apply this approach to �real world� scenarios
we have to verify all parameters and check if they are real-
istic.
Overall, there are 101 links that lead out of the evacuation

area. Most of them have one or two lanes. The aggregated
capacity of all these �escape links� is 787.15 persons/s. How-
ever, this capacity is a theoretical value since it is unlikely
that the evacuees will �nd a way to distribute themselves
in such a smooth way over the network. Rather it is ex-
pected that this out�ow rate has a much lower value at the
initial iteration, where all evacuees proceed on the assump-
tion that the network is empty and there is free speed on all
links. With the optimization of the evacuation procedure
the out�ow rate is expected to increase as the evacuees will
make better use of all roads.

4.3 Initial Routing
Initial plans use the shortest path (according to free speed

travel time) out of the evacuation area for all agents. Within
the MATSim framework a shortest path router based on
Dijkstra's shortest path algorithm [7] has been implemented.
This router �nds the shortest path in a weighted graph from
one node to any other, whereby the actual weights for a link
are de�ned by a time-dependent cost function. Since we
want to evacuate the city as fast as possible, the weights
represents the (expected) travel time3.
There is, however, no particular node as the target of the

3For the initial evacuation plans the expected travel time is
determined by free travel speed.
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Figure 5: Evacuation time vs. iteration number

shortest path calculation, as the evacuees have more than
one safe place to run to. Instead, in the underlying domain
every node outside the evacuation area is a possible desti-
nation for an agent that is looking for an escape route. To
resolve this, the standard approach (e.g. [24]) is to extend
the network in the following way: All links which lead out of
the evacuation area are connected, using virtual links with
in�nite �ow capacity and zero length, to a special �evacu-
ation node� (see �gure 4). Doing so, Dijkstra's algorithm
will always �nd the shortest route from any node inside the
evacuation area to this evacuation node.

4.4 Re-Planning and Learning
At the end of each iteration, every agent scores the per-

formed plan. In this study the scoring function is simply
the negative of the travel time. This score is then memo-
rized for the plan. After an agent has updated the score of
its actual plan, it will be selected with a probability of 10%
for re-routing. This replanning probability is a con�gurable
parameter; 10% is a good compromise between slow conver-
gence on the one hand, and over-reaction of the system on
the other hand. In the re-routing procedure, the Dijkstra
router is again applied to �nd the fastest escape route for
the particular agent. The di�erence to the initial routing is
that the weights for the links are no longer based on free
speed travel times but on the experienced travel times from
the last iteration. The travel times of all links are recorded
and averaged into time bins. More precisely, the link traver-
sal times of all pedestrians entering a link during a speci�c
time bin are averaged. Those link travel times are then used
when, during the Dijkstra computation, a speci�c link is en-
tered by the algorithm. More details can be found in [18].
The size of these bins is con�gurable; for the present study,

a size of 15 mins was used. If no tra�c for a particular time
bin and link occurs, free speed travel time is assumed for
this time bin and link.
For agents that have not been chosen for re-planning, the

plans with the highest scores (i.e. the plan with the fastest
escape route) are selected for the next iteration. Repeating
this iteration cycle, the agent behavior will move towards a
Nash equilibrium. If the system were deterministic, then a
state where every agent uses a plan that is a best response
to the last iteration would be a �xed point of the iterative
dynamics, and at the same time a Nash Equilibrium since no
agent would have an incentive to unilaterally deviate. Since,

Figure 6: Evacuation progress

however, the system is stochastic, this statement does not
hold, and instead we look heuristically at projections of the
system such as in Fig.5. In all such plots, 100 iterations is
more than enough to arrive at a horizontal line, indicating
that the iterative dynamics has reached a steady state.
In most (but not all) evacuation situations, the Nash equi-

librium leads to a shorter overall evacuation time than when
everybody moves to the geographically nearest evacuation
point. On the other hand, a Nash equilibrium means that
nobody has an incentive to deviate. The Nash equilibrium
in an evacuation situation can therefore be considered as a
solution that could be reached by appropriate training.

5. RESULTS
The simulation run was performed on a dual core CPU

at 2.33 GHz with 2 GB of RAM. The computer runs JAVA
jdk1.5_012 on Linux. The evacuation simulation was
stopped after 100 re-planning cycles. The average runtime
for an iteration was 123 seconds and the overall runtime was
3 hours and 24 minutes. The simulation consumed up to
1393MB of RAM. Besides the evacuation time, the out�ow
rate of the evacuation area has been recorded, too.
As expected, the evacuation time decreases signi�cantly

with the iterations. Especially within the early iterations,
it drops very fast. A diagram that represents this process
is shown in �gure 5. The evacuation takes 7205 seconds at
the initial iteration. Beginning with iteration 15 there are
only small changes and it �uctuates randomly around 2676
seconds.
These values show only how long the overall evacuation

takes but it tells nothing about the evacuation process itself.
Therefore we evaluated the evacuation process for iteration
0, 1, 5, 10 and 100 in detail. Figure 6 shows the results.
The initial iteration results in a steep gradient (high out-

�ow) at the beginning but it �attens very fast. As the it-
erations progress the initial gradient gets even steeper and
becomes more linear.
Some statistics of the out�ow of evacuees for the discussed

iterations are given in table 1. Overall the results are as ex-
pected: both the maximum �ow and the median �ow are
increasing with the iterations. Nevertheless, there are some
interesting details. One interesting aspect is the low value
for the median of the initial or 5th iteration. A possible rea-
son for this phenomenon is that many agents try to perform
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Iteration max mean median

0 127 22.98 5
1 129 24.32 5
5 139 34.78 10
10 139 50.26 46
100 148 59.94 68

Table 1: Statistics of the out�ow rate (persons/s)

the same escape route. If this happens they will line up in a
few long queues, which will result in a low constant out�ow
rate.
The comparison of the snapshots for iteration 0 and 100

in �gure 7 supports this hypothesis. Both snapshots were
taken after 30 minutes of evacuation. The escape directions
are indicated by black arrows. In iteration 0 there are con-
siderably more evacuees at this point then in iteration 100.
In the latter, the agents take advantage of six evacuation
points (indicated by the red circles). This is much more ef-
fective then the behavior in the initial iteration, where only
four evacuation points are used. Bottlenecks can also be de-
tected. Figure 8 depicts this issue. In this �gure the links
are colored dependent on congestion. A green color indi-
cates that the agents travel with free �ow speed and as the
color moves to red the �ow speed decreases. It is not sur-
prising that these congestion instances emerge at bridges,
but the snapshot is taken after 100 iterations of learning
and that means: there seems to be no better solution for
the individual agent then to queue up on these bridges.4

6. DISCUSSION
The simulations concentrate on two types of agent behav-

iors: One where every agent follows the shortest path to the
safe area; one where a Nash equilibrium is reached. Both
can be considered as benchmarks:

• The �rst as one where agents are rational about their
path choice, but unaware of congestion e�ects.

• The second as a solution that could be reached by
training, assuming that agents follow the training so-
lution also in the real situation.

Clearly, both can only be considered as benchmark solu-
tions. In panic situations, people tend to be irrational and
to display herd behavior [15]. Still, if even the Nash equilib-
rium solution does not leave enough time, then this would
be a strong indicator that major measures would need to be
taken to rectify the situation.
It should also be stated that Nash equilibrium and system

optimum do not need to coincide � i.e. that solutions even
better than the Nash equilibrium might be possible. Such
solutions would, however, be unstable in the sense that peo-
ple would have an incentive to deviate. Such solutions seem
even more improbable than Nash equilibrium solutions.
Finally, one should mention that MATSim already con-

tains the �rst hooks towards en-route replanning [17]. This
would allow to add situation-based behavior into the simu-
lation.

4For those who know the area: Since this preliminary study
is based on a vehicular tra�c network, it ignores links which
can be used by pedestrians only. This could be corrected by
using di�erent network data.

Figure 7: Comparison of two snapshots

Another issue concerns the mode choice: The investiga-
tion assumes that all evacuation is done by foot while it
might be reasonable to assume that some people use cars
or cycles, and they might even leave vehicles in the street
to continue on foot if progress by vehicle becomes too slow.
For the time being, such issues are not considered. The
queue model could, to a certain extent, be parameterized
to deal with mixed tra�c, as long as all modes move with
the same speed. Beyond that, one would arguably need to
switch to a true two-dimensional model such as [15] or [21].
Such models could still operate on networks [13].

7. CONCLUSIONS
We introduced a microscopic pedestrian simulation frame-

work for large-scale evacuations. It is implemented as a
Multi Agent Simulation, where every agent tries to opti-
mize its individual evacuation plan in an iterative way. The
simulation framework is demonstrated through a case study
based on a hypothetical dam-break of the Sihlsee dam near
Zurich. Despite the underlying behavioral model being quite
simple, the simulation gives plausible results regarding the
predicted evacuation time and bottlenecks. The runtime
performance shows that this approach is well suited for large
scale scenarios. With state of the art hardware it is no prob-
lem to simulate much larger scenarios with over one million
agents. In future work it is planed to apply this framework
to an evacuation simulation in the case of a Tsunami warn-
ing for the Indonesian city of Padang. The improvement
of the behavioral model (e.g. herd behavior [15] modi�ed
for large-scale scenarios [13]) could also be a topic of future
work.
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ABSTRACT
While intermodal transport has the potential to introduce
efficiency to the transport network, this transport environ-
ment also suffers from a lot of uncertainty at the interface of
modes. For example, trucks moving containers to and from
a port terminal are often uncertain as to when exactly their
container will be released from the ship, from the stack, or
from customs. This leads to much difficulty and inefficiency
in planning a profitable routing for multiple containers in
one day.

In this paper, we examine agent-based solutions as a mech-
anism to handle job arrival uncertainty in the context of a
drayage case at the Port of Rotterdam. We compare our
agent-based solution approach to a well known on-line opti-
mization approach and study the comparative performance
of both systems across four scenarios of varying job arrival
uncertainty. We conclude that when less than 50% of all jobs
are known at the start of the day then an agent-based ap-
proach performs competitively with an on-line optimization
approach.

1. INTRODUCTION
Scheduling the routes of trucks to pick-up and deliver con-

tainers is a complex problem. In general such Vehicle Rout-
ing Problems (VRPs) [19] are known to be NP-complete,
and therefore inherently hard and time consuming to solve
to optimality. Fortunately, these problems have a structure
that can facilitate efficient derivation of feasible (if not op-
timal) solutions. Specifically, the routes of different trucks
are more or less independent. Such “locality” in a problem
is a first sign that an agent-based approach may be viable.

Modeling and solving a VRP by coordinating a set of
agents can bring a number of advantages over more estab-
lished approaches in the field of operations research even
when using state-of-the-art mixed integer solvers such as
CPLEX [7]. Agent advantages include the possibility for
distributed computation, the ability to deal with propri-
etary data from multiple companies, the possibility to react

quickly on local knowledge [5], and the capacity for mixed-
initiative planning [1].

In particular, agents have been shown to perform well in
uncertain domains. That is, in domains where the problem
is continually evolving [5]. In the VRP, for example, a very
basic form of uncertainty is that of job arrivals over time.
To the best of our knowledge, however, the effect of even
this basic level of uncertainty on the performance of agent-
based planning in a realistic logistics problem has never been
shown.

We think it is safe to assume, based on its long history,
that current practice in operations research (OR) outper-
forms agent-based approaches in settings where all infor-
mation is known in advance (static settings). However, in
situations with a lot of uncertainty, agent-based approaches
are expected to outperform these traditional methods [8].

In this paper we investigate whether a distributed agent-
based planning approach indeed suffers less from job arrival
uncertainty than a centralized optimization-based approach.
Our main contribution is to determine at which level of job
arrival uncertainty agent-based planning outperforms on-
line operations research methods. These results can help
transportation companies decide when to adopt an agent-
based approach, and when to use an on-line optimization
tool, depending on the level of uncertainty job arrivals ex-
hibit in their daily business.

In Section 2 we provide a survey of current work on agent-
based approaches to logistics problems. In Section 3 we then
introduce the case of a transportation company near the
port of Rotterdam. Based on this literature review and the
specific nature of our case study VRP, we propose a state-
of-the-art agent-based approach where orders are auctioned
among trucks in such a way that each order is assigned to
the truck that can most efficiently transport the container.
Moreover, these trucks continuously negotiate among each
other to exchange orders as the routing situation evolves.
This agent-based approach is the topic of Section 4. In
the following section, Section 5, we describe the central-
ized on-line optimization approach used in comparison to
our distributed agent-based system. The structure of our
test problems and the computational results are the topics
of Section 6. In our final section we discuss the consequences
of our results, summarize our advice to transportation com-
panies, and give a direction for future work.
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2. LITERATURE SURVEY
In their frequently cited 1995 paper, Fischer et al. ar-

gued that multi-agent models fit the transportation domain
particularly well [5]. Their main reasons were that (i) the
domain is inherently distributed (trucks, customers, compa-
nies etc.); (ii) a distributed agent architecture can cope with
multiple dynamic events; (iii) commercial companies may be
reluctant to provide proprietary data needed for global op-
timization and agents can use local information; and (iv)
inter-company cooperation can be more easily facilitated by
agents. To illustrate the idea, the authors also provided a
detailed agent architecture for transportation problems that
evolve over time thereby exhibiting uncertainty over time.
This architecture makes a distinction between a higher and
a lower architectural level. At the higher level, company
agents negotiate over transportation requests to eliminate
ill-fitting orders. On the lower level, truck agents (clustered
per company) participate in simulated market places, where
they bid on offered transportation orders. Truck agents use
simple insertion heuristics to calculate their costs and use
those costs to bid on auctions implementing an extended
contract net protocol [17]. Although the heuristics that
agents use to make decisions are rather crude, the authors
suggested that in dynamic problems (problems with high un-
certainty), such methods survive better than sophisticated
optimization methods.

Fischer et al.’s bi-level approach recognizes that one short-
coming of a fully distributed system is that agents only have
access to local information [5]. The need to balance be-
tween the omniscience of a centralized model and the agility
of a distributed model, was similarly recognized by Mes et
al. [12]. They also introduce a higher level of agents, but
with a different role than the high-level agents of Fischer et
al. Mes et al.’s two high-level agents (the planner and the
customer agent) gather information from and provide infor-
mation to agents assigned beneath them. The role of the
higher level agents is to centralize information essential for
the lower level agents to make the right decisions.

Some researchers have gone even further in proposing cen-
tralized agent-based models. These researchers focused on
centralizing the problem information to be able of make bet-
ter distributed decisions. In one of the few models that is
actually applied in a commercial company, Dorer and Cal-
isty cluster trucks geographically, using one agent per clus-
ter [4]. This way, one agent plans for multiple trucks. They
use insertion heuristics to initially assign orders to trucks,
and then use cyclic transfers [18] to enhance the solution.
In an even more centralized model, Leong and Liu use a
fully centralized optimizer to initialize the agents [11]. The
agents’ role is then to change the plans as events are re-
vealed. The authors analyze the performance of their model
on a selection of Solomon benchmark sets, and show that it
performs competitively.

As noted previously, however, the move towards central-
ization can hinder the ability of the agents to react quickly
on local information. Given the uncertain environment of
our problem, we are interested in the competitiveness of a
system with fully distributed agents. One example of a fully
distributed agent approach in the transportation domain
is that of Brückert et al. They proposed a more detailed
(holonic) agent model [1]. They distinguished truck, driver,
chassis, and container agents that have to form groups (called
holons) to serve orders. Already formed holons use the same

techniques to allocate tasks as Fischer et al., but the higher
agent level is omitted, since they model only a single com-
pany case. The main focus of their research is computer-
human cooperative planning, and they do not test their
model extensively against other models.

Generally, the decision to use a distributed approach is
based on the expectation (included already in the reasons of
Fischer et al.) that distributed models handle uncertainty
better. The agent architecture in these fully distributed
models is completely flat, the models avoid centralizing in-
formation, and agents can use only local information when
making decisions. Having lost the power of using (partial)
global information, distributed agents need other ways to
enhance their performance.

In the model of Fischer et al., as well as in the models
of many of their followers, agents use simple approximation
techniques to make decisions. In the related domain of pro-
duction planning Persson et al. embed optimization in the
agents to improve local decisions [13]. They show that op-
timizing agents outperform the approximating agents, but
they also show that central optimization still outperforms
the optimizing, but distributed, agents.

While Persson et al. concentrated on making optimal de-
cisions within agents, there is still a need to coordinate be-
tween the distributed agents. For example, in the transport
problem context, when orders are assigned to trucks sequen-
tially, at every assignment the truck with the cheapest in-
sertion gets the order. Later, however, it might turn out
that it would be cheaper to assign the same order together
with newly arrived orders to another truck. From the truck
point of view it means that trucks that bid early and win
assignments might not be able to bid later on more benefi-
cial (better fitting) orders. This problem is called ‘the eager
bidder problem’ [16], and several researchers proposed al-
ternative techniques to solve it. Kohout and Erol introduce
an enhancement process that works between agents [9]. The
process mimics a well known enhancement technique called
’swapping’ or two-exchange [2]. Kohout and Erol implement
this swapping process in a fully distributed way, and show
that it yields significant improvement.

Perugini et al. extend Fischer’s contract-net protocol to
allow trucks to place multiple possibly-conflicting bids for
partial routes [14]. These bids are not binding, trucks are
requested to commit to them only when one of the bids is
accepted by an order agent. Since auctions are not neces-
sarily cleared before other auctions are started, agents have
a chance to “change their mind” if the situation changes.
This extension helps to overcome the eager bidder problem
to some extent and thereby produces better results. An-
other possible way to tackle the same problem is to use
leveled commitment contracts introduced by Sandholm and
Lesser [15]. Leveled commitment contracts represent agree-
ments between agents that can be withdrawn. If a truck
agent finds a new order that fits better, it can decommit
an already committed order and take the new one. Hoen
and La Poutré employ truck agents that bid for new orders
considering decommitting already assigned ones [6]. They
show that decommitment yields more optimal plans in a
single-company cooperative case.

Returning to Fischer’s reasoning, however, the primary
reason for using distributed agent models is that they are
usually expected to outperform central optimization models
in problem instances with high levels of uncertainty. Tak-
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ing this for granted, researchers usually show that their dis-
tributed algorithm is better than the distributed algorithms
of others. Experiments studying the behavior of distributed
methods over varying levels of uncertainty in comparison to
centralized optimization methods are generally absent from
the literature.

If advanced swapping and decommitment techniques are
used, can fully distributed agents perform competitively with
(or better than) centralized optimization in highly uncer-
tain settings? Can the time gained in doing local operations
compensate for the loss of not considering crucial global in-
formation? In our opinion these questions have not been
fully answered. In this paper, we construct a distributed
agent model using the most promising techniques as identi-
fied in the agent literature and compare this approach via
experiments on a real data set to a state-of-the-art central-
ized on-line optimization approach. The lack of appropriate
comparisons between agent-based approaches and existing
techniques for transportation and logistics problems possibly
indicates a belief on the part of agent researchers that agent-
based systems outperform traditional methods [3]. Our goal
is to add credibility to this belief by studying a state-of-the-
art agent-based system in comparison to a state-of-the-art
centralized optimization approach for a real-world dynamic
transportation problem. In the following section we define
in detail the exact VRP that we use to study both the dis-
tributed agent-based and centralized optimization-based ap-
proaches.

3. VEHICLE ROUTING PROBLEM
Many of the agent-based approaches for vehicle routing

problems are tested on generated data-sets. These data-sets
are usually constructed to test specific features of the agent
system - often focusing on the extreme ends of the perfor-
mance spectrum. We, however, want to understand the po-
tential of agent solutions in the highly uncertain real world.
To that end we are fortunate to have access to operational
data from a mid-sized Dutch logistics service provider (LSP)
engaged in the road transport of sea containers. While the
LSP that we study is active in several sectors, we focus only
on the container division which has a fleet of around 40
trucks, handling an average of 65 customer orders each day.

The process of executing an order starts with receiving an
order, generally one day before execution is required. While
the orders are often called in one day early, the company
does not generally use this information in planning routes
or establishing schedules. This is due to the unreliable na-
ture of the order information and the resulting uncertainty
encountered during execution. An order is a customer re-
quest to the LSP for pickup and transport of a specific con-
tainer from a container terminal (in the case of an import
container) to the customer, with delivery within a certain
time window. Arriving at the customer’s requested location,
the container is then unloaded, and the empty container is
brought back to a container terminal or empty depot. This
concludes the order, and the truck is ready for its next or-
der. The process is reversed for export containers. What
adds uncertainty to this process is that not all containers
are available at the time indicated in the received order: ei-
ther they have not physically left the ship at the expected
time or they are delayed for administrative reasons, e.g. an
unsettled payment or customs clearing. The LSP can only
transport containers that have been released, and are al-

lowed to leave the container terminal. For this reason it is
hard to optimize the system in a traditional sense, since not
all information is known beforehand, and will only become
available at some point in time during the day.

The planning and control of operations is currently per-
formed manually by a team of three human planners, who
take care of order intake, arrange the proper amount of
trucks based on the expected workload, and assign current
orders to trucks. Given the primarily manual method of
operations, the addition of a computerized decision support
system may greatly enhance the profitability and scalability
of the LSP’s operations.

To formalize the structure of this case study problem we
make several formal assumptions:

• Each demand is available for scheduling at the time
it is announced. The announcement of a demand in-
cludes all information on: the pick-up location (zip-
code), the customer location (zipcode), return drop-off
location (zipcode), and the required time windows for
arrival at each of these three locations.

• Loading and unloading at the terminals and customer
takes time. Picking up a container requires 60 min-
utes; servicing the container at the customer requires
60 minutes; and returning a container to the final ter-
minal takes 30 minutes.

• All travel times are measured according to data on the
Benelux road network.

• No time window violations are allowed; if a job is going
to violate time windows then it is rejected at a penalty.

• The penalty for rejecting a job is equal to the loaded
time of the job. Given the problem structure defined
here, loaded time serves as a proxy for revenue.

• Given the demand structure, the truckload nature of
the problem, and the fact that the truck must remain
with the container at the customer location, we bundle
the pick-up, drop-off, and return activities into one job.
The loaded time of a job is then the time spanning the
arrival at the pick-up terminal through the completion
of service at the return terminal - including all loading
and unloading times.

• All trucks in the fleet are equivalent.

Given this context, the objective of this vehicle routing
problem is to derive a schedule in real-time that serves as
many jobs as possible at the least cost. Cost is defined here
in terms of time, as the time spent traveling empty (i.e. non-
revenue generating travel) to serve all jobs in addition to the
loaded time penalty affiliated with rejecting jobs. By adding
a penalty for rejecting jobs equal to the loaded distance (in
terms of time) of each job, the obvious cost-minimizing so-
lution of rejecting all jobs is avoided. In this regard, it is
important to note that in our setting the loaded distance of
an order is approximately four times as great as the empty
distance incurred in serving that job.

4. AGENT-BASED APPROACH
Based on the agent-based modeling literature and the as-

sumptions related to our problem as introduced in Section
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3, our goal is to design, using selected techniques from the
literature, a distributed agent model that can outperform a
centralized optimization approach. Since we are primarily
interested in distributed agent models, we use an uncompro-
misingly flat architecture: no agents can concentrate infor-
mation from a multitude of other agents. The global idea
of our agent-based planning system is to apply an advanced
insertion heuristic in a distributed setting and combine this
with two heuristics for making (local) improvements: sub-
stitution of orders, and random attempts for re-allocation of
orders. The only two kinds of agents that participate in this
planning system are truck agents and order (or container)
agents.

Our order agents represent container orders. The partic-
ularity of container orders is identical to the real-world case
of the previous section in that they are described by the
three stops required: a pick up at a sea-terminal, a deliv-
ery at the customer’s, and a drop-off return at a possibly
different sea-terminal. With each of the three stops there
is a time window and a service time associated, which are
obeyed by the trucks. Truck agents represent trucks with
a single chassis, which means that they can transport only
one order at a time. They make plans in order to transport
as many containers as they can.

Order agents hold auctions in order of their arrival, and
truck agents bid in these auctions. This results in partially
parallel sequential auctions. Trucks may bid on multiple
orders at the same time; these bids are not binding. If a
truck happens to win more than one order, it takes only the
first one. All the other orders it won parallel to the first
one are rejected, which results in the rejected order agents
starting a new auction. Truck agents ultimately accept only
one winning bid on parallel auctions as all bids submitted
in parallel are highly dependent on the order of previously
won and accepted bids. In this way, in the end, the orders
are auctioned sequentially, even if they happen to arrive at
the same time.

To clear an auction, order agents choose the best bid as
winner, and respond positively to the winner and negatively
to the others. For this we chose a one-shot auction (and
more specifically, a Vickrey auction [20]) for its computa-
tional efficiency, as in the model of Hoen and La Poutré [6].
If the winner confirms the deal, a contract is made. These
contracts are semi-binding, so truck agents might break it
in order to achieve a better allocation.

At the heart of the agent model are the decisions truck
agents make. The most important decision they have to
make is the bid they submit for a given order. Every truck
agent submits a bid that reflects its cost associated with
transporting the given order. This cost is a quantity in the
time domain. To calculate it, a truck considers inserting the
new order into its plan, or alternatively substituting one of
the already contracted orders by the new one.

To calculate the cost of insertion, the truck agent tries to
insert the new order in-between every two adjacent orders in
their plan (see Figure 1), plus at the beginning and the end.
At every position, it calculates the amount of extra empty
time it needs to drive if this order is inserted there. Suppose
that an agent considers the position between container i and
j, and calculates that the empty time the truck needs to
travel to pick up j after returning i is dij . Here we use dij

to represent the distance (in time) between the two jobs i
and j, and dii to denote the loaded distance of job i. The
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amount of extra empty time the truck would need to drive
for container l then equals insl

ij = dil + dlj − dij .
In addition to insertion, a truck agent also considers sub-

stitution (analogous to what others call decommitment). To
calculate the cost of substituting one of the already con-
tracted orders by the new one, it sums up the cost compo-
nents. The first component is the insertion cost of the new
order at the place of the substituted order, the second com-
ponent is the lost profit on the substituted order, and the
third component is a penalty term. For example, we com-
pute the cost of substituting order j with order l (subsl

j)
in Figure 4. Here subsl

j = insl
ik + profitj + djj . The in-

sertion term insl
ik is the same as defined above. The value

of profitj is the difference of the price received for order j

and its insertion cost: profitj = pricej − insj
ik. This term

represents the market position of the substituted order in
the bid. If the competition for order j is fierce, the profit on
j would be low (since the second-best bid was hardly higher
than the winning bid). This results in a low substitution
cost, therefore such orders are more likely to be substituted.
An order that is well suited for a specific truck is likely to
produce a high profit for that truck, therefore it will have
a high substitution cost. The last term in this expression,
the amount of loaded time of order j, serves as a penalty
on substituting that job. Using such a penalty discourages
the substitution of long orders that may be harder to fit
somewhere else. Additionally, the orders that are finally re-
jected (those that do not manage to make a contract with
any truck agents) will be shorter, which will result in a bet-
ter total cost. Algorithm 1 describes how new orders are
dealt with.

In addition to bidding on auctions for new orders, truck
agents have another way to enhance the overall solution.
At random time intervals, every truck randomly selects an
order in its plan and releases it. Trucks never select the
order they are currently serving and also not one, for which
the execution is about to begin (the pick-up time of the
container is less than 10 seconds away – this small time
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Algorithm 1 Insertion and substitution of orders

1. Compute the extra costs for every possible insertion
and every possible substitution

2. Order the merged list of insertions and substitutions
in increasing order of these costs

3. Iterate over this list

(a) If the new order’s time windows are violated, con-
tinue with the next alternative.

(b) If a time window of an order after the new one is
violated, continue with the next alternative.

(c) Else the cheapest feasible position is found. Re-
turn this position.

buffer is selected to provide as much opportunity for route
improvement as possible). Note, the same time limit is also
applied to the insertion and substitution decisions explained
earlier. An order agent that is released (just as those order
agents that are substituted) initiates a new auction to find
another place. In most cases, these auctions result in the
very same allocation as before the release. Nevertheless,
sometimes they do manage to find a better place and make
a contract with another truck.

Whenever an order agent finalizes a contract with a truck
agent, it sends a message to all other order agents to notify
them about the changed plan of the given truck. This is
important for order agents that do not have a contract yet.
Any change in the trucks’ plans may be their chance to
find their place in a truck. Those order agents will start an
auction in response to the notification message in the hope
of finally making a contract.

To summarize the agent-based approach, let us list the
main techniques that characterize it:

• Orders are allocated to trucks via second-price auc-
tions sequentially, at the time they become known to
the agent system.

• Truck agents consider insertion and substitution of
new orders in their plan. Substituted orders are re-
leased from the truck. Released order agents hold a
new auction to find another place. If a truck cannot
deliver an order within the time windows, it rejects it.

• Truck agents randomly release contracted order agents.
Randomly released order agents also hold a new auc-
tion to find a place.

• Order agents notify each other whenever they change
the plan of a truck (make a contract). Rejected orders
(without a contract) thereby get a chance to hold a
new auction and find a truck.

To evaluate this approach, we implemented a real-time
truck simulator that we connected to the agent system. Ev-
ery truck agent assumes responsibility for a simulated truck.
In the coupled agent-truck-simulator system, agents send
plans to trucks for execution. Simulated trucks drive along
the road network of the Benelux as the plans prescribe. They
periodically report their position as well as their activities to
the agents. This way truck agents can follow the execution

Figure 3: Cycles in the MIP solution structure.

of the plans and make decisions with the knowledge of what
is happening in the (simulated) world.

Finally, we have a third element in the system, whose role
is to monitor both the agents and the simulator, thereby
gathering all information necessary to evaluate the perfor-
mance of the agents, and to calculate the total cost of the
routing. Just as described in Section 3, the ultimate objec-
tive of the agents is to minimize the total cost of the routing
which is specified in terms of the time trucks travel empty
plus the loaded-travel-time penalty associated with rejecting
a container. The next section describes the on-line optimiza-
tion approach that is used in comparison to the agent-based
approach, based on this total cost.

5. ON-LINE OPTIMIZATION APPROACH
To estimate the value of the agent-based solution ap-

proach (described in Section 4), we study it in comparison to
an optimization-based solution approach, reflective of those
currently embedded in commercially available vehicle rout-
ing decision support software (DSS). We therefore examine
two optimization based solution approaches: (i) a mixed-
integer program for solving the static a priori case in order
to provide a baseline benchmark, and (ii) an on-line opti-
mization approach, comparable to the agent approach, and
designed to represent current vehicle routing DSS.

At the core of both the static a priori solution and the
on-line optimization is a mixed integer program (MIP) for
a truck-load vehicle routing problem with time windows,
which is given to CPLEX [7]. This MIP is based on the
formulation put forth by Yang et al. [21]. The complete
description of our modifications to Yang et al.’s MIP is the
focus of this section. Before introducing the notation and
mathematical formulation for this problem, we begin with
a small example to illustrate exactly how Yang et al.’s MIP
works to exploit the structure of this truckload pick-up and
delivery problem with time windows.

Imagine a scenario with three trucks and four jobs. The
model of Yang et al. is constructed such that it will find a set
of least cost cycles describing the order in which each truck
should serve the jobs. For example, as depicted in Figure 3,
the outcome may be a tour from truck 1 to job 1, then job
2, then truck 2, then job 3, then back to truck 1. This
would indicate that truck 1 serves job 1 and 2, while truck 2
serves job 3. The cycle including only truck 3 indicates that
truck 3 remains idle. Similarly, the cycle including only job
4 indicates that job 4 is rejected.

Given the assumptions in Section 3, we designate the fol-
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lowing notation for the given information.
K the total number of vehicles available in the fleet.
N the total number of known demands.
dij as introduced in 4, the travel time required to go

from demand i’s return terminal to the pick-up ter-
minal of demand j. Note, if i = j then the travel
time dii represents the loaded distance of job i.

dk
0i the travel time required to move from the location

where truck k started to the pick-up terminal of de-
mand i.

dk
iH the travel time from the return terminal of demand

i to the home terminal of vehicle k.
vk the time vehicle k becomes available.
li the loaded time required of job i (time from pick up

at originating terminal to completion of service at
the return terminal). Note, li = dii.

τ−i earliest possible arrival at demand i’s pick-up ter-
minal.

τ+
i latest possible arrival at demand i’s pick-up termi-

nal.
M a large number set to be 2 ·maxi,j{dij}.
Note: τ−i and τ+

i are calculated to ensure that all sub-
sequent time windows (at the customer location and return
terminal) are respected. Given the problem of interest, we
specify the following two variables.
xuv a binary variable indicating whether arc (u, v) is

used in the final routing; u, v = 1, . . . , K + N .
δi a continuous variable designating the time of arrival

at the pick-up terminal of demand i.
Using the notation described above, we formulate a MIP

that explicitly permits job rejections, based on the loaded
distance of a job.

min
PK

k=1

PN
i=1 dk

0ixk,K+i +
PN

i=1

PN
j=1 dijxK+i,K+j

+
PN

i=1

PK
k=1 dk

iHxK+i,k

(1)
such that

K+NX
v=1

xuv = 1 ∀u = 1, . . . , K + N (2)

K+NX
v=1

xvu = 1 ∀u = 1, . . . , K + N (3)

δi −
KX

k=1

(dk
0i + vk)xk,K+i ≥ 0 ∀i = 1, . . . , N (4)

δj − δi −MxK+i,K+j+
(li + dij)xK+i,K+i

≥ li + dij −M
∀i, j = 1, . . . , N (5)

τ−i ≤ δi ≤ τ+
i ∀i = 1, . . . , N (6)

δi ∈ R+ ∀i = 1, . . . , N (7)
xuv ∈ {0, 1} ∀u, v = 1, . . . , K + N (8)

In words, the objective (1) of this model is to minimize
the total amount of time spent traveling without a profit
generating load. This objective is subject to the following
seven constraints:

(2) Each demand and vehicle node must have one and only
one arc entering.

(3) Each demand and vehicle node must have one and only
one arc leaving.

(4) If demand i is the first demand assigned to vehicle k,
then the start time of demand i (δi) must be later than
the available time of vehicle k plus the time required
to travel from the available location of vehicle k to the
pick up location of demand i.

(5) If demand i follows demand j then the start time of
demand j must be later than the start time of demand
i plus the time required to serve demand i plus the
time required to travel between demand i and demand
j; if however, demand i is rejected, then the pick up
time for job i is unconstrained.

(6) The arrival time at the pick up terminal of demand i
must be within the specified time windows.

(7) δi is a positive real number.

(8) xuv is binary.

Mathematically this model specification serves to find the
least-cost (in terms of time) set of cycles that includes all
nodes given in the set {1, . . . , K, K + 1, . . . , K + N}. We
define xuv, (u, v = 1, . . . , K + N) to indicate whether arc
(u, v) is selected in one of the cycles. These tours require
interpretation in terms of vehicle routing. This is done by
noting that node k, (1 ≤ k ≤ K) represents the vehicle k
and node K + i, (1 ≤ i ≤ N) corresponds to demand i.
Thus, each tour that is formed may be seen as a sequential
assignment of demands to vehicles respecting time window
constraints.

The model described above is used to provide the optimal
(yet realistically unattainable) lower bound for each day of
data in each scenario. We denote this approach as the static
a priori case. In this case, we obtain the route and schedule
as if all the jobs are known and we have hours to find the
optimal solution. Thus, not only is this lower bound real-
istically unattainable due to a relaxation on the amount of
information available, but also due to a relaxation on the
amount of time available to CPLEX for obtaining the opti-
mal solution. In this way, because the problem instances are
relatively small (note, using this MIP structure CPLEX can
handle a maximum of about 100 jobs and about 50 Trucks,
yet our instances are only 34 trucks and 65 jobs) we are able
to uncover the optimal solution for all 26 problem instances
across all four uncertainty scenarios.

In order to provide a fair comparison with the agent-based
approach, the MIP is then manipulated for use in on-line
operations. In our on-line approach, this MIP is invoked
at 30 second intervals. At each interval, the full and cur-
rent state of the world is captured, and then encoded in
the MIP. This “snapshot” of the world includes information
of all jobs that are available and in need of scheduling, as
well as the forecasted next available location and time of all
trucks. The MIP is then solved via a call to CPLEX. The
decision to use 30 second intervals was driven by the desire
to be comparable to the agent-based approach while still
providing CPLEX enough time to find a feasible solution
for each snapshot problem. The solution given by CPLEX
is parsed and any jobs that are within two intervals (i.e.
60 seconds) of being late (i.e. missing the time specified by
δi in the latest plan) are permanently assigned if travel is
not commenced in the next interval. Any jobs that were
designated for rejection in the solution are rejected only if
they are within two intervals of violating a time window;
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otherwise they are considered available for scheduling in a
subsequent interval. The procedure continues in this fashion
until the end of the working day at which point all jobs have
been served or rejected.

The test problems and the results from the static a priori
benchmark, the on-line optimization, and the agent-based
solution approach as applied to these test problems are the
topic of the next section.

6. COMPUTATIONAL EXPERIMENTS
In this section we report the computational results on the

performance of the agent-based approach in comparison to
the optimization-based approach. The first subsection (6.1)
describes how the test problems were generated and in sub-
section 6.2 we present the results of these tests.

6.1 Test Problems
The data we used for our experiments was based on data

provided to us by the LSP described in Section 3. In all,
we were given the execution data from January 2002 to Oc-
tober 2005 as well as the data from January 2006 through
March 2006. We could not, however, simply use this data
in its raw form. We first had to make multiple corrections
to the customer address fields as many addresses referred to
postal boxes and not to the physical terminal locations. Af-
ter cleaning the address fields, we then extracted a random
sample of jobs from the original data-set in order to generate
a set of 26 days with 65 orders per day. The company from
which these data are taken serves between 50 and 80 jobs
per day, thus 65 jobs per day represents the average daily
job load.

Just as discussed before, each order consists of a pickup
location, customer location, and return location. To stan-
dardize the data for our experimental purposes we specified
time windows at all locations as follows: for the terminals
(the pickup and return locations) the time windows span a
full twelve hour work day from 6am to 6pm and the time
windows at the customer locations are always 2 hours. The
start of the 65 customer time windows occurs throughout the
working day in accordance with the data provided by the
LSP, which roughly follows a uniform distribution. Given
the variation in customer locations, the workload per day
varies similarly. On average each job requires approximately
4.2 hours of loaded distance. When the routing is optimal in
the case that all jobs are known at the start of the day the
average empty time per job is approximately 25 minutes.

Given our interest in determining how the agent solution
performs on this pick-up and delivery problem with time
windows and order arrival uncertainty, we further rendered
our 26 days of data into four separate scenarios with varying
levels of order arrival uncertainty. This was done by altering
the arrival times of the orders, i.e., the time at which the
order data is revealed to the LSP. We generated these points
in times over the day using a uniform distribution. We used
such a uniform distribution as the original data did not show
a fit with other distributions. The four different scenarios
reflecting different levels of order arrival uncertainty were:

Scenario A: All orders (100%) are known at the start of
the working day, 6AM.

Scenario B: About half of the orders (50%, selected ran-
domly from the 65 jobs) are known at the start of the
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Figure 4: Mean, over 26 days, of the total cost for
the three approaches across the four scenarios. Bars
indicate ± standard deviation.

working day, 6AM. The other half of the orders arrive
two hours before the start of the customer location
time window (i.e., four hours before the end of the
customer location time window, leaving slightly less
than two hours on average before the latest departure
time from the pickup location).

Scenario C: Only seven of the jobs (10%, selected ran-
domly from the 65 jobs) are known at the start of the
working day, 6AM. The remaining 58 jobs arrive two
hours before the start of the customer location time
window.

Scenario D: None of the jobs (0%) are known at the start
of the working day. All 65 jobs arrive two hours before
the start of the customer location time window.

If we classify these scenarios in terms of the effective de-
gree of dynamism for vehicle routing problems with time
windows as developed by Larsen et al. in 2002 [10] then val-
ues of dynamism for Scenarios A, B, C, and D are .5, .7,
.8, and .9, respectively. Noting that this form of measuring
uncertainty may range from 0 to 1 with 1 being the most
uncertain, then we may say that our test problems range
from partially uncertain to mostly uncertain.

6.2 Computational Results
All three solution approaches were applied to each of the

26 days of data in the four scenarios. The mean cost over
the 26 days of these experiments may be seen in Figure 4.
From this graphical depiction, the on-line optimization pro-
cedure clearly outperforms the agents only in Scenario A.
In fact, in Scenario A in which all information is known at
the start of the day, the on-line optimization performs at
a level quite close to the realistically unattainable bench-
mark optimal. The on-line optimization does not, however,
achieve optimal in Scenario A as the snapshot problem in
the first 30 second interval represents the full problem size.
A size for which finding the optimal solution in thirty sec-
onds is quite difficult. In all cases, CPLEX does, however,
provide a feasible solution which can then be improved in
future intervals. In the remaining three scenarios, however,
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Table 1: Mean ± standard error over 26 days for on-line optimization and the agent-based approach on the
total cost for scenarios A, B, C, and D.

A B C D
On-line Opt. 28.07 ± .38 34.09 ± .70 36.06 ± .92 36.24 ± .95

Agents 36.4 ± .64 35.37 ± .86 36.81 ± .80 35.85 ± .64

Table 2: Results of the t-test on the null hypothesis that the means of the total cost of the two datasets are
equal (with .05 significance).

A B C D
Calculated t-value 11.16 1.16 .61 .34
Tabulated t-value 2.01 2.01 2.01 2.01

Result Reject Fail to Reject Fail to Reject Fail to Reject

the agents perform at a level competitive to the on-line op-
timization.

To fully understand the competitive nature of the agents
in the dynamic settings of Scenarios B, C, and D a t-test
was performed to determine if the average total cost of the
routing solutions were statistically equivalent. The results
of these tests may be seen in Tables 1 and 2. From these
results we may conclude that for the reality-based datasets
used in this study, agent-based solution approaches perform
competitively with the on-line optimization when at least
half of the jobs is unknown at the start of the day.

While the study of total cost and associated t-test results
are promising for the agent approach, we must also look
at the portion of this total cost due to the job rejection
penalty and the portion of the cost due to empty travel
time. Figure 5 depicts the penalty of rejected jobs on the
left axis and the number of jobs rejected on the right axis.
Note, we do not include the a priori optimal in this figure as
no jobs were rejected using this approach. While the on-line
optimization demonstrates a clear trend in the number of
rejections (the more dynamic the setting the more jobs are
rejected at a higher penalty), the agent approach does not
demonstrate any trend. In comparing Figure 6 and Figure 5,
it is clear that this irregular job rejection trend of the agent
approach is having a significant impact on the trend in the
total cost of the agent approach (see Figure 4).

Figure 6 depicts the average number of hours spent trav-
eling empty in the routing solution provided by each ap-
proach in the four scenarios. From this figure, all three ap-
proaches show a general trend toward an increased level of
empty travel with an increased level of uncertainty. Interest-
ingly, however, the agent approach shows far more stability
in this regard. In this sense we may conclude that despite
the agents’ poor performance in our less uncertain settings,
they are, however, less susceptible than on-line optimiza-
tion to the effects of high uncertainty. Yet, in the end, both
systems perform comparatively well in the most uncertain
setting.

7. DISCUSSION
In this paper, we studied an on-line truckload vehicle rout-

ing problem arising from a real-world case study. We pro-
posed a state-of-the-art agent-based solution approach and
compared that approach to a well known on-line optimiza-
tion approach. The computational results, from 26 days
of data spanning four different scenarios representing vari-
ous levels of job arrival uncertainty, indicate that the agent-
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based approach is highly competitive in cases where less
than 50% of the jobs are known in advance.

Given these results, agents should be considered as a vi-
able decision support mechanism for transportation planners
that must cope with uncertain job arrivals. If, however, the
job arrival environment is relatively static, that is more than
half of the jobs are known at the start of the day, then opti-
mization should remain the tool of choice. Admittedly, this
recommendation carries the following caveat. The agents do
suffer a certain level of instability as reflected in the lack of
a trend in job rejections relative to the level of uncertainty.
The reason is that while job rejection is explicitly handled
in the optimization model, it is implicit in the agent model.
When an agent rejects an order, it has no way of knowing
whether other agents will reject it too. In general, it is there-
fore more difficult to implement a global notion such as the
number of rejected orders in an agent approach. In prac-
tice, a transportation provider must be very explicit about
routing priorities. If a consistent or predictable level of job
rejections is important then on-line optimization is a better
choice.

One of the reasons that the agent-based solution performs
consistently in terms of empty distance traveled is because
of the sequential auction method used to handle jobs that
arrive simultaneously. Thus, in Scenario A, in which the
uncertainty is low, the agents must run many auctions at
the start of the day; on-line optimization on the other hand
may exploit all of this information at once to obtain a near
optimal solution. In Scenario D, on the other hand, the
agents approach the auctions in very much the same way as
in Scenario A except that they are spread more evenly over
time. In contrast the on-line optimization is forced to adopt
job assignments that may preclude the assignment of jobs
arriving late in the day.

In short, agent-based systems perform well in settings
where less than half of all jobs are known in advance. Agents
do, however, present issues concerning tractability in terms
of rejected jobs. The number and penalty of rejected jobs is
particularly variable with no clear trend across the four sce-
narios. Finally, in steep contrast to the online optimization,
the agents used in this study are not well suited to exploit
large batches of job arrivals; agents tend to perform better
when a small number of jobs arrive evenly spaced through
out the planning horizon.

Noting from these cases the impact of clumped job ar-
rivals on the two approaches brings us to our first extension
of this work. We recommend that both systems be tested
across several problem sizes and a variety of uncertain job
arrival patterns to truly understand the effect of clumped
job arrivals.

Turning now to the theme of uncertainty, job arrival un-
certainty as studied here represents only one narrow def-
inition of uncertainty. A simple extension to this defini-
tion by including variable numbers of jobs across the days
(i.e. each day would have a different number of jobs taken
from the range 50 to 80) will provide additional insight on
the strengths and weaknesses of agents in handling uncer-
tainty. Furthermore examining other sources of uncertainty
in the transportation domain, such as loading, unloading,
and travel time variability, will not only add realism to the
study, but will also yield a more robust view on the ben-
efits and drawbacks of an agent approach as compared to
centralized approaches.

Another extension of this work is the introduction of op-
timization into the agent approach. In this way, the agents
may be able to capitalize on the benefit of optimization
in less uncertain situations and the benefit of local heuris-
tics in more uncertain situations. We conclude by stating
that agent-based approaches may have even greater benefits
when we consider modeling other forms of uncertainty such
as travel time uncertainty, loading and unloading time un-
certainty, and so forth. The field for agent-based approaches
to the VRP is wide open, but should also be carefully ex-
plored to ensure that the practical everyday needs of real-
world transport planners are met.
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ABSTRACTThe problem of advaned intersetion management is beingdisovered as a promising appliation �eld for multiagenttehnology. In this ontext, drivers interat autonomouslywith a oordination faility that ontrols the tra� �owthrough an intersetion, with the aim of avoiding ollisionsand minimizing delays. This is partiularly interesting forthe ase of autonomous vehiles that are ontrolled entirelyby agents, a senario that will beome possible in the nearfuture.In this paper, we seize the opportunities for multiagentlearning o�ered by suh a senario, by introduing a oordi-nation mehanism where teams of agents deentrally oordi-nate their veloities when approahing the intersetion. Weshow that this approah enables the agents to improve theintersetion e�ieny, by reduing the average travel timeand so alleviating tra� ongestions.
1. INTRODUCTIONTra� ongestion is a ostly problem of ities in all de-veloped ountries. Many human-entered instruments andsolutions (e.g. message signs, temporary lane losings, max-imum veloity hanges), are deployed in highways and roadsin order to speed up the tra� �ow. Nevertheless, in linewith the reent advanes of telemati infrastrutures, theproblem of road tra� management is being disovered asa promising appliation �eld for multiagent tehnology [1℄.Multiagent systems (MAS) are the ideal andidates for theimplementation of road tra� management systems, due tothe intrinsially distributed nature of tra�-related prob-lems.In this ontext, the problem of advaned intersetion man-agement, where drivers interat autonomously with a oor-dination faility that ontrols the tra� �ow through an in-tersetion so as to avoid ollisions while minimizing delays,is reeiving more and more attention.In [2℄ is presented a reservation-based system in whihvehiles request an intersetion manager to reserve the ne-essary time slots during whih they may pass through theintersetion. This work opens many possibilities for multi-agent learning, with the goal of improving the e�ieny ofintersetions.

In this paper, we present a oordination mehanism basedon Probability Colletives (PC) [10℄. With suh an ap-proah, teams of agents deentrally oordinate their veloi-ties during their approximation to the intersetion, with theaim of reduing the average travel time by making better,non-on�iting, reservations.The paper is strutured as follows: in setion 2 we presentthe intersetion management problem, as proposed by Dres-ner and Stone [2, 3℄; in setion 3 we introdue our proposalfor making the agents learn to oordinate their ations inorder to improve the intersetion e�ieny; in setion 4 weshow the results of the experiments and we disuss the pos-sibility of improving them. Finally in setion 5 onlusionsand future work is outlined.
2. RESERVATION-BASED INTERSECTION

MANAGEMENTThe reservation-based system proposed in [2℄ onsists oftwo di�erent kind of agents: intersetion managers and driveragents. An intersetion manager is responsible for managingthe vehiles that want to pass through the intersetion, byassigning the neessary time slots; a driver agent is respon-sible for ontrolling the vehiles to whih it is assigned.Eah driver agent, when approahing the intersetion, �allsahead� the intersetion manager and requests a reservationof spae and time in the intersetion. Suh a request on-tains the neessary information to simulate the vehile jour-ney through the intersetion, suh as the vehile properties(vehile ID, vehile size,. . . ) as well as some properties ofthe proposed reservation (arrival time, arrival veloity, typeof turn, arrival lane, arrival road segment,. . . ).The intersetion manager then determines whether or nota request is feasible, by heking the on�rmed reservationsthat are stored in its database. If the request is on�rmed bythe intersetion manager, the driver agent stores the reser-vation details and tries to meet them. Otherwise, it slowsdown and makes another request at a later time.The reservation system o�ers many opportunities for im-proving the e�ieny of intersetion, by inorporating learn-ing mehanisms in the agents of suh senario [4℄. For ex-ample, sine the intersetion manager serves the requests ina ��rst-ome-�rst-served� fashion, it is possible to relax thisonstraint and allow the intersetion manager to respond torequests at a later time. In this way the intersetion man-ager an evaluate more ompeting requests at the same timeand make a more well-informed deision.While the learning opportunities for the intersetion man-ager are of the form of single agent learning, the very multi-
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agent learning opportunities reside in the driver agents. Inthe urrent implementation, driver agents must estimate thearrival time at the intersetion, the arrival veloity, the ar-rival lane . . . without ommuniation nor oordination withthe other driver agents; eah agent makes its request on thebasis of its atual veloity, and, if the request is rejeted, thedriver slows down and tries again. On the other hand, byletting the agents form teams and oordinate their ations,we provide them with more information that they use tomake deisions.
2.1 Intersection modelWe started from the model of intersetion managementproposed by Dresner and Stone [2, 3℄. A driver agent an-not ross the intersetion without a on�rmed reservation.For this reason, we assume that when it reahes a minimumdistane to the intersetion, it is obliged to start makingreservation requests. If a driver agents arrives at the inter-setion without a on�rmed reservation, it stops and keepstrying to �nd a time slot when it may pass. The full�lmentor not of this norm is not guaranteed by any authority. Sim-ply it is assumed that the driver agents are rational and thatit is not onvenient for them to risk a rash by rossing theintersetion without a on�rmed reservation.If a request is on�rmed by the intersetion manager, thedriver agent ontinuosly heks if it an meet the requestonditions. If it realizes that is not able to meet them, dueto the tra� onditions, it anels its reservation by sendinga message to the intersetion manager, and prepares a newreservation request. Again, doing so is in its interest beausea driver agent an only have one reservation, and a on�rmedreservation that is not possible to meet is useless to hold.
2.2 Agent modelOur environment imposes a series of onstraints on theagent behaviour. We assume that eah driver agent has apreferred veloity whih tries to keep along the entire jour-ney. We also assume that when a vehile appears in a laneof a road segment, it annot hange it during the approahto the intersetion1. In this way, if a front vehile proeedsat a lower veloity, the following vehile is obliged to slowdown. Furthermore, as demonstrated in [3℄, it is not on-venient that the driver agents ould turn from any lane, soin our model turning right (respetively left) is only possi-ble from the rightmost (respetively leftmost) lane of a roadsegment.The ations that a driver agent an autonomously take arerelated to the veloity at whih it rosses the intersetion.In partiular, an agent ould set its veloity to a value inthe (disretized) interval [1, preferredV elocity].So, for the generi driver agent ai, the variable xi thatde�nes its ation is

xi = 〈vehicleID, direction, lane,
turn, arrivalT imeAtIntersection,
arrivalV elocityAtIntersection〉The �eld arrivalT imeAtIntersection is impliitly set bythe spei� arrivalV elocityAtIntersection, while the �elds

vehicleID, direction, lane and turn are onstant parame-ters.1This is a feature that we plan to remove from the model inthe future.

We assume that there are no misunderstandings regardingthe ontology that desribes the geometri on�guration ofthe intersetion, e.g. the lane 3 along the North diretionorresponds to the same physial lane for every vehile.
3. LEARNING TO COORDINATE

3.1 Global objectiveTo improve the e�ieny of the intersetion, we take theperspetive of a system designer, whose goal is minimiz-ing the travel time of the vehiles. The travel time for thegeneri driver agent ai depends not only on its veloity whilerossing the intersetion, but also on the on�its that mayour among di�erent ompeting requests.Let C be a set of driver agents, C = {a1, a2, . . . , an}. Eahagent an take an ation of the form de�ned in setion 2.2.So, the vetor x = 〈x1, x2, . . . , xn〉 de�nes the joint ationof this set of agents. A possible funtion 2 that rates �howgood� is a joint ation, from the system designer perspetive,is
G(x) = (1 + P (x)) ·D(x) (1)where P (x) is the number of ollisions resulting from thefull joint ation x, and D(x) is the time spent by the agentsto ross the intersetion. We remark that a generi jointation x ontains all the neessary information to simulatethe agent journeys through the intersetion, in the sameway it is done by the intersetion manager, so that is is alsopossible to alulate the number of on�its among them aswell as the travel time.

3.2 Agent private utilityThe multiagent learning hallenge here is making agentslearn to at in an environment that is not merely a blak-boxthat produes a reward for every ation taken by the agent,but it is atually omposed of other learning agents, i.e. thereward an agent reeives for its ations depends also on theations of other agents. So there is a strit relation betweenthe private utility funtion of a single agent and the globalobjetive of the system.A reent advane in this diretion is that proposed by theCOlletive INtelligene (COIN) [7, 8, 9℄ framework. The aimof COIN is studying the properties that a utility funtion ofa learning agent situated in a multiagent environment mustmeet. COIN introdued the onepts of fatoredness andlearnability of an agent private utility funtion. A privateutility funtion gi is meant to be fatored if it is aligned withthe global utility G, i.e. if the private utility inreases, theglobal utility does the same. Furthermore, it has to be easilylearnable, i.e. it must enable the agent to distinguish its on-tribution to the global utility from that of the other agents.For example, the Team Games Utility, TGUi(x) = G(x),is trivially aligned, but is poorly learnable. If for exampleagent ai takes an ation that atually improves the globalutility, while all the other agents take ations that worsenthe global utility, agent ai wrongly believes that its ationwas bad.2It is possible to formulate other objetive funtions thattake in onsideration di�erent relationship between ollisionsand time, as well as inluding other aspets, suh as onges-tion or lane hanges.
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Better results have been obtained [9℄ with the Di�ereneUtility (DU), de�ned as follows:
DUi(x) = G(x)−G(CLi(x)) (2)where x if the joint ation of the olletive, G(x) is theglobal utility derived from suh joint ation, and G(CLi(x))is the �virtual� joint ation formed by replaing with a on-stant fator c all the omponents of x a�eted by agent ai. Ifthis onstant is −→0 , i.e. the null ation, the DU is equivalentto the global utility minus the global utility that would havearisen if the agent ai had been removed from the system.Suh an utility funtion is aligned with the global utility;in fat, sine the seond term in equation 2 does not dependon the ation taken by agent ai, any ation that improves

DUi(x) also improves the global utility G(x). Furthermore,it is more learnable than TGU beause, by removing agent
ai from the dynamis of the system, it provides a learersignal to agent ai.In the ase of intersetion management, the driver agentomputes the DUi(x) as follows:
DUi(x) = (1 + P (x)) ·D(x)− (1 + P (CLi(x))) ·D(CLi(x)))where CLi(x) = 〈x1, . . . , xi−1, xi+1, . . . , xn〉

3.3 Probability Collectives (PC)One the agents in a olletive have been provided with�well-designed� private utility funtions, many methods areavailable for supporting the agent deision making, suh asreinforement learning [5℄. In this paper we draw upon anovel method alled Probability Colletives (PC) [10℄, whihhas been developed within the COIN [7, 8, 9℄ framework,for the agent deision making. PC replaes the searh forthe most valuable ation aross the spae of ations withthe searh aross the spae of probability distributions overthose ations. In other words, PC aims at learning the agentdeision strategies that maximize the global objetive.Formally, let C = {a1, a2, . . . , an} be a olletive of nagents. Eah agent ai an take an ation by setting its ationvariable xi, whih an take on �nite number of values fromthe set Xi. So these |Xi| possible values onstitute the ationspae of the agent ai. The variable of the joint set of n agentsdesribing the olletive ation is x = {x1, x2, . . . , xn} ∈ X,with X = X1 ×X2 × ...×Xn.Given that eah agent has a probability distribution (i.e.mixed strategy in game theory sense) over its possible a-tions, qi(xi), the goal of PC is to indue a produt distribu-tion q =
Q

i
qi(xi) that is highly peaked around the x thatmaximize the objetive funtion of the problem, and thenobtaining the optimized solution x by sampling q.The main result of PC is that the best estimation of thedistribution qi that generates the highest expeted utilityvalues is the minimizer3 of the Maxent Lagrangian (one foreah agent):
Li(qi) = Eq[gi(x)]− T · S(qi) (3)where qi is the agent probability distribution over theagent ai ations, xi; gi(x) is the agent ai private utility fun-3Without loss of generality, the global utility funtion isonsidered as a �ost� to be minimized, by simply �ippingthe sign of the utility value

tion (e.g. theDi�erene Utility de�ned in equation 2), whihmaps a joint ation into the real numbers; the term Eq[gi(x)]is the expeted utility value for agent ai, subjeted to its a-tion and the ations of all the agents other than ai; S(qi)is the Shannon entropy assoiated with the distribution qi,
S(qi) = −

P

xi
qi(xi) ln[qi(xi)]; T is an inverse Lagrangianmultiplier, whih an be treated as a �temperature�: hightemperature implies high unertainty, i.e. exploration, whilelow temperature implies low unertainty, i.e exploitation.Sine the Maxent Lagrangian is a real valued funtion ofa real valued vetor, it is possible to use gradient desentor Newton methods for its minimization. Using Newtonmethods, the following update rule is obtained:

qt+1
i = qt

i − αqt
i × {

Eq[gi|xi]− Eq[gi]

T
+ S(qt

i) + ln[qt
i ]} (4)where Eq[gi] is the expeted utility, Eq[gi|xi] is the ex-peted utility assoiated with eah of the agent ai's possibleations, and α is the update step. Equation 4 shows how theagents should modify their distributions in order to jointlyimplement a step in the steepest desent diretion of theMaxent Lagrangian.Sine at any time step t, an agent might not know theother agents' distributions, in this ase it wouldn't be ableto evaluate any expeted value of gi, beause they depend onthe full probability distribution q. Those expetation valuesan be estimated by repeated Monte Carlo sampling of thedistribution q to produe a set of (x; gi(x)) pairs. Eah agent

ai then uses these pairs to estimate the values Eq[gi|xi], forexample by uniform averaging of the gi values in the samplesassoiated with eah possible ation.
3.4 PC for intersection managementPC is a broad framework for the analysis, ontrol and op-timization of distributed systems that o�ers new approahesto problems. Nevertheless, in order to be atually instanti-ated in a partiular domain, several design deisions mustbe made.Sine the entire framework is based on the Monte Carlo-based estimation of the produt distribution that maximizesthe global objetive, it is neessary to have a ommunia-tion struture that enables to build the set of sampled jointations. For example in [6℄ suh a set is onstruted usinga token-ring message passing arhiteture. In this work, weopted for letting the agents asynhronously request the otheragents in the olletive to sample their distributions. Theneah agent onstruts loally its set of sampled joint ationsand uses them to update its distribution with equation 4.We assume that the agents truthfully sample their distri-butions without manipulation, even if investigating how anagent an exploit the oordination mehanism for its pur-poses deserves a further analysis.Another design deision is the setting of the initial tem-perature T and the initial probability distribution qi. Theinitial temperature usually depends on the partiular do-main, beause its order of magnitude is stritly related withthe expeted utility values (see equation 4). In our exper-iments we set the initial temperature to 1. On the otherhand, the initial probability distribution qi is usually ini-tialized with the maximum entropy distribution, i.e. theuniform distribution over the ation spae Xi. In this waywe don't make any assumptions about the desiderability ofa partiular ation and all the ations are equiprobable.
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Usually, the Lagrangian minimization proeeds as follows:for a given temperature T , the agents jointly implement astep in the steepest desent diretion of the Maxent La-grangian using equation 4. Then the temperature is slightlyredued, and the proess ontinues, until a minimum tem-perature is reahed. The annealing shedule we implementedwas geometrially reduing the temperature T as long as adriver agent approahes the point after whih it is obligedto send a request to the intersetion manager, as desribedin setion 2.1. When a driver agent arrives at that point, itevaluates the ation with the highest probability, sets its ve-loity aordingly (see setion 2.2) and makes a reservationrequest with the given veloity.Algorithm 1 skethes the algorithmi struture of an agentprogram that implements PC for the intersetion manage-ment problem. The algorithm starts initializing the tem-perature T and the probability distribution qi (line 01 and02). The main loop ontrols the annealing shedule of thetemperature T (line 09), until the driver agents reahes theminimum distane to the intersetion (line 03).The minimization of Li for a �xed temperature is aom-plished by repeatedly determining all the onditional ex-peted values Eq[gi|xi] (line 06) and then using these valuesto update the distribution (line 07). Suh values are ob-tained by requesting samples to the agents in the olletive(line 04) and storing them when they are reeived (line 10),in order to have an estimation of the entire distribution q.At the end of the algorithm, agent ai selets its �best�ation by sampling the distribution qi or diretly seletingthe ation with the highest probability, and then store therequest that will be sent to the intersetion manager.From this point on, the agent starts to behave like inthe reservation-based senario desribed in setion 2 (formore details, see [2, 3℄). It sends reservation requests to theintersetion manager, until it reeives a on�rmation or arefuse message. In the �rst ase, the driver agent stores thereservation details and tries to meet them. Otherwise, itdereases its veloity and makes another request in the nextstep.A driver agent is not allowed to ross the intersetion withan out-of-date reservation or without reservation at all. Aon�rmed reservation goes out-of-date if the agent is notable to meet its details, i.e. the agent annot be at theintersetion at the time spei�ed in the reservation, due tothe tra� onditions. In this ase, the driver agent ananel the reservation with the intersetion manager andmake a new one, whose onstraints it is able to meet.If an agent arrives at the intersetion with no on�rmedand valid reservation, it is obliged to stop at the intersetion.At this point, the driver agent is only allowed to proposereservations for the time slots in the near future.
4. EXPERIMENTAL RESULTSIn this setion we present the results of the experimentsonduted with the simulator of a 4-ways-3-lanes interse-tion (see �gure 1). The metri we used to evaluate the e�-ieny of the intersetion was the average travel time of a setof vehiles. During the simulation, a total of 100 vehiles aregenerated using a Poisson distribution f(k, λ) = λke−λ/k!,where λ is the number of expeted ourenes (i.e. vehiles)in a given interval. In all the experiments, the λ parame-ter is kept �xed, while we progressively redue the interval,simulating in this way di�erent (inreasing) tra� densities

Algorithm 1 PC for intersetion management01: T ← 102: qi ← uniformDistribution03: while minimum distane not reahed do04: requestMCsamples05: if m not empty then06: e ← evalConditionalExpetations(m)07: qi ← updateQ(e)08: end if09: T ← updateT10: m← storeInomingMCSamples11: end while12:13: bxi ← mostProbableAtion14: velocity ← bxi.arrivalV elocityAtIntersection15: store request R = 〈vehicleID, direction, lane,
turn, arrivalT imeAtIntersection,velocity〉Eah spawned vehile has a preferred veloity, whose valueis generated randomly using a gaussian distribution with

µ = 3 and σ2 = 1, and the maximum allowed veloity wasset to 10.

Figure 1: Simulator snapshotOne hallenge in the implementation of the oordinationmehanism was oping with the extreme dynami and asyn-hronous nature of the system, as well as with the on-straints imposed by the real-time.Furthermore, while in multiagent reinforement learningit is assumed that in every learning episode the set of agentsremains the same, in this ase this assumption does not hold,beause the set of learning agents is reated dynamially.One a driver agent appears in the managed area, its IDis stored by the road infrastruture. Then the road infras-truuture periodially ommuniates the set of olleted IDsto the agents, in order to reate olletive of oordinatingagents.In �gure 2 we plotted the average travel time of 20 experi-ments for two di�erent on�gurations. In one on�guration,eah driver agent ommuniates exlusively with the inter-setion manager by making reservation requests solely onthe basis of its knowledge; in the other on�guration, the
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driver agents implement the oordination mehanism beforestarting making reservation requests.If the tra� density is low, the average travel time ofthe two on�gurations is approximatively the same. Thisis reasonable, sine with low tra� density few reservationrequests are rejeted, so no previous oordination is needed.Similarly, with high tra� density the average travel timetends to be the same for the two on�gurations. Again thisis reasonable, beause the intersetion tends to be saturatedby vehiles stopped at the intersetion, waiting for its reser-vation request to be on�rmed.On the other hand, it is notieable a tra� density intervalwhere the oordination between driver agents bene�ts theintersetion system by reduing the average travel time upto approximatively the 7% (see �gure 3).

Figure 2: Average travel time

Figure 3: Average travel time redutionNotwithstanding, there is spae for further possible im-provements of the agents learning apabilities. Firstly, theagent ation spae to at in the environment is quite re-dued, sine it an only set the veloity at whih it intendsto ross the intersetion. For example, if there is a on�rmedreservation of a very slow vehile, whih oupies the inter-setion for many time slots, it is reasonable to think thatthere is no way for an approahing agent to make a requestthat will not be refused, no matter the veloity it proposes.So, a possible improvement ould derive from giving theagents the possibility of hanging its lane.Furthermore, with the agent model desribed in setion 3,a olletive of agent searhes the produt distribution q to

maximize a global utility funtion G(x). This is a funtion ofthe joint ation x, and do not take in onsideration externalfators (i.e. noise). In the domain of the intersetion man-agement, for a given x = 〈x1, x2, . . . , xn〉, an agent is onlyable to evaluate the number of on�its that ours amongthe xis and their travel times, by simulating the journey ofeah agent ai through the intersetion. If for example the in-tersetion is saturated due to a rash, or it has been reservedby very slow vehiles, the olletive is not able to reat tothese events and adjust its olletive behaviour, sine it doesnot have suh information.A way to irumvent this problem is modifying the stru-ture of the global utility as a funtion of a 2-players gamebetween the olletive and the external world. At eah timestep, the olletive sets its joint ation x, while the worldplays y. Suh a vetor y ontains any external informa-tion not diretly under ontrol of the olletive. Then theglobal objetive G(z) is alulated, as a funtion of the fullvetor z = 〈x, y〉. In the domain of the intersetion man-agement, the vetor y ould ontain information about thetra� onditions in front of eah driver agent, or about theon�rmed reservations that the intersetion manager has inits database. Nevertheless, suh modi�ation ould haveside e�ets that may worsen the learning rather than im-proving it.Another issue that it is worth mentioning is that the mul-tiagent learning performed by the driver agents omes as asort of oordination on-the-�y: an agent does not learn fromthe behaviours of the other agents that it observes, rathersuh information is expliitly provided by exhanging sam-ples of the agents' distributions. This setting speeds up thelearning, although it has an assoiated ost for the ommu-niation overhead. Basially the key point for an agent isevaluating the expeted utility of its ations, Eq[gi|xi] (seeequation 4). Within this formalization, suh a value is ob-tained using an estimation of the joint distribution q, byusing the samples provided by all the agents.If we remove the ommuniation between agents, the onlyway for an agent to evaluate the expeted utility Eq[gi|xi] isatually exeuting di�erent ations in several episodes (i.e.rossing the intersetion several times at di�erent veloities),then using the utility values of the di�erent ations it hasexeuted in these episodes to ompute Eq[gi|xi] and adaptits mixed strategy qi. Within this formalization, no ommu-niation is needed, although the learning proess will takemuh more time.
5. CONCLUSIONSThis paper showed that the intersetion management prob-lem o�ers many opportunities for multiagent learning [4℄.In partiular, we started from the COIN framework for thede�nition of agent private utilities, and we applied Probabil-ity Colletives to make the agents learn to oordinate theiration. The preliminary experiments showed some improve-ments of the intersetion e�ieny, with a redution of theaverage travel time for a given tra� density interval.Future works inludes evaluating the model under di�er-ent metris (e.g. delay, ongestion, number of refused reser-vation. . . ), onsidering di�erent private utility funtions andglobal objetives, as well as modifying the model as de-sribed in setion 4. More generally, the road tra� manage-ment senario is open to a plethora of interesting researhlines, from the study of �ooperative vs ompetitive� agent
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behaviour, to the impat of �maliious� agents that try toexploit the oordination mehanism.
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ABSTRACT
Fully autonomous vehicles promise enormous gains in safety,
efficiency, and economy for transportation. However, before
such gains can be realized, a plethora of safety and reliabil-
ity concerns must be addressed. In previous work, we have
introduced a system for managing autonomous vehicles at
intersections that is capable of handling more vehicles and
causing fewer delays than modern-day mechanisms such as
traffic lights and stop signs [3]. While the system is safe
under normal operating conditions, we have not discussed
the possibility or implications of unforeseen mechanical fail-
ures. Because the system orchestrates such precarious “close
calls” the tolerance for such errors is very low. In this pa-
per, we make four main contributions. First, we introduce
safety features of the system designed to deal with these
types of failures. Second, we perform a basic failure mode
analysis, demonstrating that without these features, the sys-
tem is unsuitable for deployment due to a propensity for
catastrophic failure modes. Third, we give extensive em-
pirical evidence suggesting that not only is this method ef-
fective, but that it is so even when normal communications
are disrupted. Finally, we provide an analysis of the data
indicating that despite the apparent potential for disastrous
accidents, autonomous intersection management is likely to
improve driver safety considerably.

Keywords
Autonomous Vehicles, Multiagent Systems, Intelligent Trans-
portation Systems

1. INTRODUCTION
Fully autonomous vehicles promise enormous gains in safety,

efficiency, and economy for transportation. By taking the re-
sponsibility of driving away from humans, autonomous ve-
hicles will completely eliminate driver error from the com-
plicated equation of automobile traffic. By some estimates,
driver error can be blamed for as much as 96% of all au-

tomobile accidents [11]. Thus, even if each accident were
substantially worse, overall autonomous vehicles would rep-
resent an improvement in safety over the current situation.
With automobile collisions costing the U.S. economy over
$230 billion annually, any significant decrease would be a
major triumph for artificial intelligence [6].

Traffic intersections are a compelling problem for multia-
gent systems. Often a source of great frustration for drivers,
intersections represent both a sensitive point of failure as
well as a major bottleneck in automobile travel. While fully
autonomous open-road driving was demonstrated over ten
years ago, events such as the DARPA Urban Challenge prove
that city driving, including intersections, still pose substan-
tial difficulty to AI and intelligent transportation systems
(ITS) researchers.

We have proposed a reservation-based multiagent frame-
work for managing vehicles at intersections, including both
human-driven vehicles and fully autonomous vehicles [3]. In-
stead of using traditional traffic lights, the mechanism allows
autonomous vehicles to “call ahead” to arbiter agents sta-
tioned at intersections and reserve space-time in the inter-
section. When a vehicle obtains a reservation, it can proceed
through the intersection without stopping. By coordinating
the actions of many autonomous vehicles, the system dra-
matically decreases time spent stopped or slowing down due
to intersections. Because the system heavily exploits the
precision sensory and control capabilities of computerized
drivers, it offers dramatic improvements in efficiency. How-
ever, this increased efficiency is quite precarious. The sys-
tem orchestrates what can only be described as “extremely
close calls”, with vehicles missing each other by the smallest
(albeit adjustable) margins1. Figure 1 contains a screenshot
depicting a particularly busy intersection.

While the system is safe in the face of communication
failures, we have not addressed the possibility or effects of
mechanical failures or unlikely “freak” accidents. In a world
without vehicle malfunctions, this would be little cause for
concern. However, one can easily imagine an otherwise ordi-
nary problem, such as a flat tire or a slippery patch of road,
quickly becoming a nightmare.

Even though the vast majority of automobile accidents
can be blamed on driver error (or in some cases, the limita-
tions of human drivers), if individual incidents are a hundred
times more deadly, no reasonably achievable reduction in
incident frequency will effect an overall improvement. How-

1Our project website includes videos of simulations that
demonstrate this phenomenon: http://www.cs.utexas.
edu/∼kdresner/aim/
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Figure 1: A screenshot showing a busy intersection
with a lot of “close calls.”

ever, if in the rare event of an accident, the total damage
can be kept under control—perhaps at most a few times as
many as normal—then, as a whole, riding in automobiles
will be a safer experience than it is today.

In this paper, we make four main contributions. First, we
introduce safety features of the system designed to deal with
these types of failures. Second, we perform a basic failure
mode analysis, demonstrating that without these features,
the system is unsuitable for deployment due to a propen-
sity for catastrophic failure modes. Third, we give extensive
empirical evidence suggesting that not only is this method
effective, but that it is robust in the face of poor communica-
tions. Finally, we provide an analysis of the data indicating
that despite the apparent potential for disastrous accidents,
autonomous intersection management is likely to improve
driver safety considerably.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly summarizes our reservation system and earlier
results. In Section 3, we elucidate the safety mechanisms in
the system to deal with potentially catastrophic mechanical
failures and argue for their necessity. Section 4 presents em-
pirical evidence evaluating our addition to the system. We
discuss these results and their implications in Section 5 and
conclude in Section 6.

2. BACKGROUND INFORMATION
Our multiagent intersection control mechanism comprises

the interactions of two classes of agents: intersection man-

agers and driver agents [3]. Driver agents are computer
programs that pilot vehicles, while intersection managers
are specialized arbiter agents stationed at each intersection
that control access to that intersection. In order to cross the
intersection, driver agents must first obtain approval from
the intersection manager.

2.1 Assumptions
We make several important assumptions about the ca-

pabilities of intersection managers and driver agents. We
assume that intersections can be equipped with a wireless
communication device with enough strength and bandwidth

to communicate with hundreds of driver agents simultane-
ously. We also assume that the intersection manager has
access to sufficient computational resources to process all
the messages from these driver agents and respond to them
quickly. Because our simulator can execute all the driver
agent and intersection manager algorithms in real time, in
one process on a desktop computer, we believe this is a re-
alistic assumption. Finally, we assume that vehicles can
be similarly outfitted, both in terms of communication and
computation, and that these vehicles have access to GPS
navigation equipment, detailed electronic maps of their en-
virons, short-wave radar and lidar systems, and any other
sensing technology required for them to accurately and re-
liably determine their location and sense the objects and
vehicles around them. These assumptions are all reasonable
given current technology.

2.2 Communication Protocol
A major part of the reservation mechanism is the com-

munication protocol that governs all transmissions between
agents [2]. In this protocol, when a vehicle approaches an
intersection, the driver agent controlling that vehicle “calls
ahead” to the intersection manager, requesting permission
to cross. This request comes in the form of a Request mes-
sage. In addition to parameters describing the physical char-
acteristics of the vehicle, such as its size and performance
capabilities, a Request message includes the direction the
driver agent would like to leave the intersection, as well as
estimates of its arrival time and arrival velocity. The inter-
section manager can then use this information, along with an
intersection control policy to decide whether or not to grant
the reservation. If it chooses to grant the reservation, it
responds with a Confirm message containing some restric-
tions the vehicle must obey in order to cross safely. Accord-
ing to the protocol, the intersection manager can also use the
restrictions in the Confirm message to make a counter-offer.
The driver agents acceptance of the confirmation is implicit;
as soon as the intersection transmits the Confirm message,
the vehicle “has” the reservation described therein. If the
intersection manager decides not to grant the reservation,
it responds with a Reject message, which can optionally
include a reason for the rejection. According to the rules
of the protocol, no vehicle may enter the intersection under
any circumstances without a reservation.

Once a vehicle has a reservation, its safety is guaranteed
in the intersection, provided it crosses the intersection in
accordance with that reservation. If the driver agent con-
cludes at any time that it cannot meet the reservation, it
can send a Cancel message to the intersection manager,
at which point the vehicle is no longer considered to have
a reservation. Additionally, vehicles can attempt to change
their reservations, with a Change-Request message. This
message is the same as the Request message, except that if
the intersection manager responds with a Reject message,
the vehicle maintains its original reservation.

2.3 First Come, First Served
Our framework includes several intersection control poli-

cies, including some that emulate current-day mechanisms
like stop signs and traffic lights. However, most of the ex-
tremely efficient policies are based around the “first come,
first served” (FCFS) algorithm. This algorithm divides the
intersection into an n×n grid of reservation tiles, where the
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parameter n is called the granularity of the policy. When it
receives a Request, an FCFS policy simulates the trajec-
tory of the vehicle across the intersection using the parame-
ters in the message. Throughout the simulation, the policy
determines which of the reservation tiles are occupied by
the simulated vehicle, and whether or not any of them are
already reserved by another vehicle while the simulated ve-
hicle would occupy them. If no such conflicts are detected
throughout the simulation, the appropriate tiles are reserved
for the required times, the policy creates the reservation, and
the intersection manager sends the relevant information to
the requesting agent in a Confirm message. Otherwise, the
driver agent receives a Reject message.

While FCFS policies are limited to use by autonomous
vehicles only, we have also created a policy called FCFS-

Light, which can accommodate human drivers [4]. Briefly,
an FCFS-Light policy is similar to standard FCFS, except
that it incorporates a light model, which both controls a set
of physical lights at the intersection, and provides informa-
tion to the policy about the state of those lights. Areas of the
intersection that correspond to conventional paths through
the intersection are blocked off from use by autonomous ve-
hicles whenever the light controlling access to that path is
green, yellow, or recently red. This creates a de facto reser-
vation for any human that might be crossing the intersection
based on that green light. While this does allow a sort of
“backwards compatibility”, it must be noted that by na-
ture, FCFS-Light policies tend to be much less efficient
than standard FCFS policies.

2.4 Safety Guarantees
While this paper focuses on some of the ways our mecha-

nism can react to gross mechanical failures, we must point
out the ways in which it compensates for smaller, more com-
mon errors. As long as all vehicles follow the protocol and all
the technology works as expected, no two vehicles should be
able to occupy the same space in the intersection at the same
time. Only one vehicle can reserve any particular reservation
tile at one time, and vehicles can only cross the intersection
in accordance with their reservations. Unfortunately, even
under normal operating conditions, this is not quite enough.
Communication failures including dropped and corrupted
messages, as well as small errors in the vehicle’s sensors and
actuators could all cause problems. The mechanism is de-
signed to be robust against all of these. The driver agent’s
implicit acceptance of reservation confirmations means that
the worst possible consequence of a dropped or corrupted
message is additional delay, and not a collision. Buffering
in the intersection control policies adds protection against
small sensor errors by reserving space for vehicles as if they
were larger than they actually are.

3. ADDING A SAFETY NET
A collision in purely autonomous traffic can have any

number of causes, including software errors in the driver
agent, a physical malfunction in the vehicle, or even mete-
orological phenomena. In modern-day traffic, such factors
are largely ignored for two reasons. First, the exclusively
human-populated system, with its generous margins for er-
ror, is not as sensitive to small or moderate aberrations.
Second, none of these causes are significant with respect to
driver error as causes of accidents. In fact, according to a
study from the 1980’s, vehicle and road issues alone were

responsible for fewer than 5% of accidents [11]. However,
in the future of infallible autonomous driver agents, it is
exactly these issues which will be the prevalent causes of
automobile collisions. The safety buffers in our mechanism
are adjustable—given some maximum allowable error in ve-
hicle positioning, the buffers can be extended to handle that
error—but no reasonable adjustment can account for gross
mechanical malfunction like a blowout or failed brakes. Be-
cause these types of issues are infrequent, we believe the
safety of the intersection control mechanism will be accept-
able even if individual occurrences are slightly worse than
accidents today. As we will show in Section 4, without the
safety measures presented in this section, the system is prone
to spectacular failure modes, sometimes involving dozens of
vehicles.

3.1 Assumptions
In Section 4, we will show how our modification can re-

duce the average number of vehicles involved in a crash from
dozens to one or two. In order to make this improvement,
we must make a few assumptions above and beyond those
originally made by Dresner and Stone [3].

3.1.1 Detecting the Problem
First, we assume that the intersection manager is able

to detect when something has gone wrong. While this is
certainly a non-trivial assumption, it is necessary for any
reasonable solution. Simply put, the intersection manager
cannot react to something it cannot detect. There are two
basic ways by which the intersection manager could detect
that a vehicle has encountered some sort of problem: the
vehicle can inform the intersection manager, or the intersec-
tion manager can detect the vehicle directly. For instance,
in the event of a collision, a device similar to that which
triggers an airbag can send a signal to the intersection man-
ager. Devices such as this already exist in aircraft to emit
distress signals and locator beacons in the event of a crash.
The intersection manager itself might notice a less severe
problem, such as a vehicle that is not where it is supposed
to be, using cameras or sensors at the intersection. How-
ever, this method of detection is likely to be much slower
to react to a problem. Each has advantages and disadvan-
tages, and a combination of the two would most likely be
the safest. The specifics of the implementation are beyond
the scope of this paper. What is important is that whenever
a vehicle violates its reservation in any way, the intersection
manager should become aware as soon as possible. Because
our simulations only deal with collisions, we assume that the
colliding vehicle sends a signal and the intersection manager
becomes aware of the situation immediately.

The communication protocol also includes a Done mes-
sage that vehicles transmit when they complete their reser-
vations. One way to reliably sense when a vehicle is in dis-
tress would be to notice a missing Done message. This does
have two drawbacks however. First, the Done message is
optional, mainly because there is no incentive for the driver
agent to transmit it. Second, the intersection manager may
not be able to notice the missing message until some time
after the incident has occurred. We hope to investigate this
alternative in future work.

3.1.2 Informing the Other Vehicles
The second assumption we make is that there exists a
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way for the intersection manager to broadcast the fact that
something is wrong to the vehicles. We already assume that
the intersection manager can communicate with the vehi-
cles, but this new assumption is a bit different. Under nor-
mal operating conditions, individual messages each contain-
ing multiple pieces of information are transmitted between
agents [2]. In case of an emergency, however, the intersec-
tion manager needs only to communicate one bit of infor-
mation: whether or not something is wrong. This can come
in the form of a coded signal (to prevent fakes) repeated
continuously on a specific frequency. As with the previous
assumption, the specifics of the implementation are not rele-
vant to this work. We assume that the intersection manager
can transmit such a signal, and that the vehicles receive it.
As we will show in Section 4, even without assuming the
vehicles receive the signal, it is still possible to drastically
improve the safety properties of the mechanism in the face
of mechanical failures.

3.2 Incident Mitigation
When a vehicle deviates significantly from its planned

course through the intersection, resulting in physical harm
to the vehicle or its presumed occupants, we refer to the
situation as an incident. Once an incident has occurred, the
first priority is to ensure the safety of all persons and vehi-
cles nearby. Because we expect these incidents to be very
infrequent occurrences, re-establishing normal operation of
the intersection is a lower priority and the optimization of
that process is left to future work.

3.2.1 Intersection Manager Response
As soon as our intersection manager is notified of an inci-

dent, it ceases granting reservations. All subsequent received
requests are rejected without consideration. Due to the na-
ture of the protocol, reservations cannot be revoked by the
intersection manager. However, given our assumptions, in
such a dire situation the intersection manager can signal to
the vehicles that an incident has occurred. This signal is
repeatedly broadcast, and is not part of the reservation pro-
tocol. Ideally, all vehicles would receive the signal and stop
immediately, including those holding approved reservations.

This concept extends naturally to policies that can accom-
modate humans, such as FCFS-Light. Analogous to refus-
ing further reservation requests, upon detecting an incident,
the intersection manager immediately turns all lights red.
In a real-world implementation, a more conspicuous visual
cue could be provided, but semantically it is only important
that the intersection inform the human drivers that they
may not enter.

3.2.2 Vehicle Response
The driver agent also has a role to play once an inci-

dent has taken place. Normally, when a vehicle is approach-
ing the intersection, it ignores any vehicles sensed in the
intersection—what might otherwise appear to be an immi-
nent collision on the open road is almost certainly a precisely
coordinated “near-miss” in the intersection. Once the driver
agent has received the emergency signal from the intersec-
tion manager, it disables this behavior. Thus, if something
is wrong, and the vehicle is in the intersection, the driver
agent will not blindly drive into another vehicle, if it can
help it. If the vehicle is not in the intersection, it will not
enter, even if it has a reservation.

A first approach might be to make all driver agents that
receive the signal immediately decelerate to a stop. How-
ever, this is actually less safe. If all vehicles that receive the
signal come to a stop, vehicles that would otherwise have
cleared the intersection without colliding may find them-
selves stuck in the intersection—another object for other
vehicles to run into. This is especially true if the crashed
vehicle is off on the very edge of the intersection where it is
unlikely to be hit. Trying to stop all the other vehicles in
the intersection would make the situation much worse.

If a driver agent does detect an impending collision, how-
ever, it is allowed to take evasive actions or apply the brakes.
Since this is a true multiagent system with self-interested
agents, we cannot prevent the driver agents from doing so.
Thus, our driver agent only brakes if it believes a collision
is imminent.

4. EXPERIMENTAL RESULTS
In this section, we present empirical evaluations of our

claims using a custom simulator described in our earlier
work [3, 4].

4.1 Experimental Setup
With the great efficiency of the reservation-based system

comes an extreme sensitivity to error. While buffering can
protect against the more minute discrepancies, it cannot
hope to cover gross mechanical malfunctions. To determine
just how much of an effect such a malfunction would have,
we created a simulation in which individual vehicles could
be “crashed”, causing them to immediately stop and remain
stopped. Whenever a vehicle that is not crashed comes into
contact with one that is, it becomes crashed as well. While
this does not model the specifics of individual impacts, it
does allow us to estimate how a malfunction might lead to
collisions.

In order to ensure that we included malfunctions in all dif-
ferent parts of the intersection, we triggered each incident
by choosing a random (x, y) coordinate pair inside the inter-
section, and crashing the first vehicle to cross either the x

or y coordinate. This is akin to creating two infinitesimally
thin walls, one horizontal and the other vertical, that inter-
sect at (x, y). Figure 2 provides a visual depiction of this
process.

After initiating an incident, we ran the simulator for an
additional 60 seconds, recording any additional collisions
and when they occurred. Using this information, we con-
structed a crash log, which is essentially a histogram of
crashed vehicles. For each step of the remaining simulation,
the crash log indicates how many vehicles were crashed by
that step. By averaging over many such crash logs for each
configuration, we were able to construct an “average” crash
log, which gives a picture of what a typical incident would
produce.

Because our system is compatible with humans, we felt
it necessary to also include experiments with the human-
compatible intersection control policies [4]. When a signifi-
cant number of human drivers are present, the FCFS-Light

policies do not offer much of a performance benefit over tra-
ditional traffic light systems. As such, we limited our exper-
imentation to scenarios in which 5% of the vehicles are con-
trolled by simulated human drivers. These human drivers
have a very simple behavior that attempts to maintain a fol-
lowing distance that is proportional to the vehicle’s velocity.
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Figure 2: Triggering an incident in the intersection
simulator. The dark vehicle turning left is crashed
because it has crossed the randomly chosen x coor-
dinate. If a different vehicle had crossed that x coor-
dinate or the randomly chosen y coordinate earlier,
it would be crashed instead.

With only 5% human drivers, an FCFS-Light policy can
still create a lot of the precarious situations that are the
focus of this investigation.

For these experiments, we ran our simulator with scenar-
ios of 3, 4, 5, and 6 lanes in each of the four cardinal direc-
tions, although we will discuss results only for the 3- and
6-lane cases (other results were similar, but space is lim-
ited). Vehicles are spawned equally likely in all directions,
and are generated via a Poisson process which is controlled
by the probability that a vehicle will be generated at each
step. Vehicles are generated with a set destination—15% of
vehicles turn left, 15% turn right, and the remaining 70% go
straight. The leftmost lane is always a left turn lane, while
the right lane is always a right turn lane. Turning vehicles
are always spawned in the correct lane, and non-turning
vehicles are not spawned in the turn lanes. In scenarios
involving only autonomous vehicles, we set the traffic level
at an average of 1.667 vehicles per second per lane in each
direction. This equates to 5 total vehicles per second for
3 lanes, and 10 total vehicles per second for 6 lanes. Sce-
narios with human-driven vehicles had one third the traffic
of the fully autonomous scenarios—the intersection cannot
be nearly as efficient with human drivers present. We chose
these amounts of traffic as they are toward the high end of
the spectrum of manageable traffic for the respective vari-
ants of the intersection manager. While we wanted traffic
to be flowing smoothly, we also wanted the intersection to
be full of vehicles to test situations that likely lead to the
most destructive possible collisions.

4.2 How Bad Is It?
As we suspected, the average crash log without the safety

measures is quite grisly. As explained in Section 3.2.2, driver
agents must ignore their sensors while in the intersection,
because many of the “close calls” would appear to be im-
pending collisions. Without any way to react the situation
going awry, vehicles careen into the intersection, piling up
until the entire intersection is filled and crashed vehicles pro-

trude from the intersection. Figure 3 shows that for both
6-lane cases—fully autonomous and 5% human drivers—the
rate of collisions does not abate until over 70 vehicles have
crashed. Even a full 60 seconds after the incident begins,
vehicles are still colliding. In the 3-lane case, the intersec-
tion is much smaller, and thus it fills much more rapidly; by
50 seconds, the number of collided vehicles levels off.
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Figure 3: Average crash logs (with 95% confidence
interval) for 3- and 6-lane intersections, for the sys-
tem with the safety measures from Section 3 dis-
abled. In 3(a), the intersection manages only au-
tonomous vehicles, while 3(b) includes 5% human
drivers.

In both of the scenarios with human drivers, shown in
Figure 3(b), the number of vehicles involved in the average
incident is noticeably smaller. This outcome is likely the
result of two factors. First and foremost, the FCFS-Light

policy must make broad allowances to accommodate the hu-
man drivers, and thus overall is inherently less dangerous.
The characteristic “close calls” from the standard FCFS pol-
icy are less common. Second, the simulated human driver
agents do not drive “blindly” into the intersection—trusting
to the intersection manager—the way the autonomous vehi-
cles do. Also of note in Figure 3(b) is the visible periodicity
of the light model portion of the policy. As paths open up
for autonomous vehicles due to changes in the lights, they
drive unwittingly into the growing mass of crashed cars.

4.3 Number of Collisions
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Fully Autonomous 5% Human
3 Lanes 6 Lanes 3 Lanes 6 Lanes

Safety Off 27.9 ± 1.3 90.9 ± 4.9 19.3 ± 1.1 49.3 ± 2.7

Recv.
0% 2.63 ± .13 3.23 ± .16 2.23 ± .10 2.35 ± .13

20% 2.44 ± .13 3.15 ± .17 2.07 ± .10 2.29 ± .13
40% 2.28 ± .12 2.90 ± .16 1.91 ± .10 2.07 ± .12
60% 1.89 ± .10 2.69 ± .15 1.72 ± .09 1.98 ± .11
80% 1.71 ± .08 2.30 ± .13 1.46 ± .07 1.65 ± .09

100% 1.36 ± .06 1.77 ± .10 1.22 ± .05 1.50 ± .09

Table 1: Average number of vehicles involved in
incidents for 3- and 6-lane intersections with Sec-
tion 3’s safety features disabled, and the system in-
tact with various percentages of the vehicles receiv-
ing the emergency signal. Even without any vehi-
cles receiving the emergency signal, our modifica-
tion dramatically decreases the number of crashed
vehicles. As more vehicles receive the emergency
signal, the amount decreases further.

There are two main components to the safety mechanism
we described in Section 3. First, the intersection manager
stops accepting reservations. Second, the intersection man-
ager emits a signal informing the vehicles that an incident
has taken place. There is a possibility that this second part
might not always work perfectly; some vehicles might not
receive the signal. As part of our experiment, we inten-
tionally disabled some of the vehicles’ ability to receive the
emergency signal. A parameter in our simulator controls the
fraction of vehicles created with this property, and we inves-
tigated the effect of varying this parameter on the number
of vehicles incidents.

With the safety measures in full effect, the number of
vehicles involved in the average incident decreases dramat-
ically. Table 1 shows the numerical results for both the 3-
and 6-lane intersections, along with a 95% confidence inter-
val. While we would have liked to include the average crash
logs for these runs in Figure 3, they would have been impos-
sible to distinguish from one another. For that reason, we
present them in Figure 4.

Figure 4 shows the effect of the safety measures on in-
tersections with 6 lanes, with the proportion of receiving
vehicles varying from 0% to 100% in increments of 20%.
Even with no vehicles responding to the warning signal, the
overall number of vehicles involved in the average incident
declines by a factor of almost 30 in the fully autonomous
scenario, and a factor of over 20 in the scenario with 5%
human drivers. As expected, when more vehicles receive
the emergency signal, fewer vehicles wind up crashing. The
graphs in Figure 4 only show the first 15 seconds of the in-
cident, because in no case did a collision occur more than
15 seconds after the incident started.

4.4 Severity of Collisions
While it is reassuring to know that the number of vehicles

involved in the average incident can be kept fairly low, these
data do not give the entire picture. For example, compare
an incident in which 30 vehicles each lose a hubcap to one
in which two vehicles are completely destroyed and all oc-
cupants killed. While we do not currently have any plans to
model the intricate physics of each individual collision with
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Figure 4: The first 15 seconds of average crash logs
for 6-lane intersections with all safety measures in
place. As more vehicles react to the signal, safety
improves further.
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high fidelity, our simulations do give us access to the veloc-
ity at which the collisions occur. In the previous example,
we might notice that the 30 vehicles all bumped into one
another at low velocities, while the two vehicles were trav-
eling at full speed. To quantify this information, we record
not only when a collision happens, but the velocity at which
it happens. In a collision, the amount of damage done is
usually proportional to the amount of kinetic energy that is
lost. Because kinetic energy is proportional to the square of
velocity, we can use a running total of the squares of these
crash velocities to create a rough estimate of the amount of
damage caused by the incident. Figure 5 shows an average
“damage log” of a 6-lane intersection of autonomous vehi-
cles. Qualitatively similar results were found for the other
intersection types, but are not displayed here due to space
concerns.
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Figure 5: Average total squared velocity of crashed
vehicles for a 6-lane intersection with only au-
tonomous vehicles. Sending the emergency signal
to vehicles not only causes fewer collisions, but also
makes the remaining collisions less dangerous.

As Figure 5(a) shows, the improvement by this metric
is quite dramatic as well. When no vehicles receive the
emergency signal the total accumulated squared velocity de-
creases by a factor of over 25. When all vehicles receive the
signal, it decreases by another factor of 2. Of particular
note is the zoomed-in graph in Figure 5(b). Without the
emergency signal, the total squared velocity accumulates as

if no modification had been made, until the first vehicles
stop short of the intersection at around 3 seconds; without
a reservation, they may not enter. When the emergency
signal is broadcast and all the vehicles receive it, the im-
provement is almost immediate.

5. DISCUSSION AND RELATED WORK
We believe that these experimental results raise a very

important issue. People are often hesitant to put their well-
being (physical or otherwise) in the hands of a computer
unless they can be convinced that will receive a significant
safety benefit in exchange for surrendering precious control.
Humans often suffer from the overconfidence effect, erro-
neously believing they are more skillful than others. In a
1981 survey of Swedish drivers, respondents were asked to
rate their driving ability in relation to others. A full 80% of
those asked placed themselves in the top 30% of drivers [10].
It is this effect that creates the high standard to which com-
puterized systems are held. It is insufficient for such systems
to be marginally safer, or safer for the average user; they
must be the very paragon of safety.

5.1 A Safer System Overall
In our experiments, we showed that the number of vehi-

cles involved in individual incidents can be drastically re-
duced by virtue of some of the safety properties built into
our intersection control mechanism. In fact, when all vehi-
cles received the warning, a large portion of the incidents
involved only one vehicle: the one we intentionally crashed.
Even in the worst case—6 lanes of traffic and no vehicles
receiving the warning signals—an average of only 3.23 vehi-
cles were involved. But how does this compare with current
systems? If we conservatively assume that accidents in traf-
fic today involve only one vehicle, this represents a 223%
increase per occurrence. Thus, all other things being equal,
if the frequency of accidents can be reduced by 70%, the the
autonomous intersection management system will be safer
overall. A 2002 report for the Federal Highway Administra-
tion blamed over 95% of all accidents on driver error [11].
The report blamed 2% of accidents on vehicle failures and
another 2% on problems with roads. It is important to note
that these numbers are for all driving, not just intersection
driving. Accidents in intersections are even more likely to
be caused by driver error, sometimes by drivers willfully dis-
obeying the law: running red lights and stop signs or making
illegal “U”-turns.

Even if we make overly conservative assumptions—that
all driving is as dangerous as intersection driving, and that
driver error is no more accountable for intersection crashes
than it is in other types of driving—our data suggest that
automobile traffic with autonomous driver agents and an in-
tersection control mechanism like ours will reduce collisions
in intersections by over 80%. We believe that in reality, the
improvement will be staggeringly greater.

The technique presented in this paper is just one method
for improving the safety of this system’s failure modes. More
sophisticated methods involving explicit cooperation amongst
vehicles may create an even safer system. The main thrust
of our discussion is not that this particular safety mecha-
nism is by any means the best possible. Rather, it is that
even with this fairly simple response to accidents, the overall
safety of the system can be strengthened well beyond that of
current automobile traffic—all without sacrificing the bene-
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fit of vastly improved efficiency.

5.2 Related Work
To the best of our knowledge, this paper represents the

first study of the impact of an efficient, multiagent intersec-
tion control protocol for fully autonomous vehicles on driver
safety. However, there is an enormous body of work re-
garding safety properties of traditional intersections. This
includes the general—correlating traffic level and accident
frequency [9] and analyses of particular types of intersec-
tions [1, 5, 7]—as well as plenty of the esoteric, such as
characterizing the role of Alzheimer’s Disease in intersection
collisions [8]. However, because it concerns only human-
operated vehicles, none of this work is particularly applica-
ble to the setting we are concerned with in this paper.

6. CONCLUSION
In this paper, we discussed our previously proposed mul-

tiagent intersection control mechanism for autonomous ve-
hicles. We believe the mechanism is promising, but we are
not willing to sacrifice too much in the way of safety in the
pursuit of efficiency. Our empirical results support our hy-
pothesis that the mechanism can attain its high levels of
efficiency without compromising on safety.

This work still leaves some unanswered questions. For
example, we have examined only one method of disabling
vehicles. In the future, we would like to explore other pos-
sibilities such as locking a vehicle’s steering, simulating a
blowout, sticking the accelerator, or disabling the brakes.
For this paper, our aim was to initiate incidents that would
test the limits of the intersection control mechanism by dis-
rupting as much of the traffic flow as possible. A truly com-
prehensive failure mode analysis must include a much wider
array of potential hazards. While our very conservative esti-
mates indicate that this intersection control mechanism will
be vastly safer than current systems with human drivers, we
would like to conduct a more detailed study comparing the
two, to quantify the improvement more precisely.

Autonomous vehicles, and the promise of easier and more
efficient travel that they offer are a fascinating and excit-
ing development. Before the benefits of this technology can
be realized, much more work must be done to ensure that
they are as safe as possible for the hundreds of millions of
passengers that will use it on a daily basis. This failure
mode analysis of our autonomous intersection management
mechanism calls attention to the need for keeping an eye to-
ward safety throughout the development of the algorithms
and protocols that will control the transportation systems
of the future. In this way, we believe we have accomplished
a portion of this important work. Further analysis will of
course be necessary, first in simulation, and ultimately with
real physical vehicles.
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ABSTRACT 
In the traffic simulation field, there is a general agreement that 

microscopic simulation is becoming more viable, improving the 

way in which system elements are represented. However, even 

with more powerful computational resources made available 

trading off between realism and too much abstraction is an 

important issue to overcome, as traditional micro-simulation 

approaches still fail to profit from all benefits that realism could 

offer to traffic modelling. In this work we bring this discussion 

forward and propose a multi-agent model of the traffic domain 

where integration is ascribed to the way the environment is 

represented and in which agents interoperate in microscopic 

simulations. While most approaches still deal with drivers and 

vehicles indistinguishably as a single entity, in this work vehicles 

are merely moveable objects whereas the driving role is played by 

an agent fully endowed with different cognitive abilities situated 

in the environment. We start by discussing on the role of the 

environment dynamics in supporting a truly emergent behaviour 

of the system, and then on an extension of the traditional car-

following and lane-change models with the concept of situated 

agents. A physical communication model is proposed to explore 

the different perception abilities of each single driver agent as the 

basis for different interactions and overall system behaviour. 

Some performance issues are also identified and the result is a 

more flexible structure that allows for a more realistic 

representation of drivers’ behaviour in microscopic simulation 

models. 

Categories and Subject Descriptors 

D.2.1 [Software Engineering]: Requirements/Specifications – 

methodologies (agent-oriented) 

I.2.11 [Distributed Artificial Intelligence]: intelligent agents, 

multi-agent systems. 

General Terms 

Algorithms, Design, Human Factors. 

Keywords 

Situated Agents, Agent-based Traffic Simulation, Microscopic 

Modelling and Simulation, Car-Following, Lane-Changing 

1. INTRODUCTION 
The issues concerning traffic and transportation in urban scenarios 

are so evident that regular users have already realised that most 

infrastructures are working near their saturation condition mostly 

due to the more than ever increasing demand. This inevitably 

implies considerable economic, social, and environmental losses 

that must be minimised somehow. Some attempts to cope with the 

potential limitation of road capacity have been put into practice, 

such as physical modifications to the infrastructure and the 

improvement of control systems. The former is no longer the best 

alternative to tackle such a problem. Besides the high cost of 

implementation, it causes disruptions and damages the 

environment. In the latter situation, some good advances and 

successful experiences have contributed to the reduction of 

problems related to traffic jams. Despite the relatively good 

improvements they are able to produce, they cannot be considered 

a lasting solution either. Therefore, current research still seeks 

alternative means to cope with the traffic and transportation 

domains. 

Using simulation is imperative in planning and realising the 

correct relation among the parameters of the domain. However, 

most analyses are carried out on an individual basis as an attempt 

to reduce the number of variables observed and to simplify the 

process of finding out their correlations. This brings about the 

issue of how different standpoints from which the domain is 

viewed could be coupled in the same model and simulation 

environment in order to allow for wider analysis perspectives 

[1][9][16]. This is not a recent concern, though. The basic general 

framework for a fully transportation theory identifies two different 

concepts, borrowed from Economics, which encompass all aspects 

related to demand formulation and supply dynamics within the 

framework, including multi-modal selection and activities 

planning [11]. 

Arguably, realistic models are the first instrument to allow the 

integration of different analysis perspectives in virtually any 

application domain. However, modelling is not an easy task and 

abstraction is often necessary in order to make thinks feasible. The 

autonomous agent metaphor has been increasingly used in this 

way and offers a great deal of abstraction while important 

cognitive and behavioural characteristics of the system entities are 

preserved. Also, advances in engineering environments for multi-

agent systems have fostered the idea of overall system behaviour 
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that emerges from the interaction of microscopically modelled 

entities. 

In this paper we bring this discussion forward and ascribe to the 

environment the responsibility for coping with the complexity 

inherent in the transportation domain, more specifically in the 

field of traffic modelling and simulation, in order to provide 

engineers and practitioners with an adequate framework for 

integrated analyses. Complexity is expected to emerge from the 

interaction of simpler self-cantered autonomous entities in pursuit 

of maximizing some individual or collective utility measure. We 

start by discussing on some potential applications of the concepts 

of agents and multi-agent systems to such a complex domain, in 

section 2, and try to bring about the importance of the 

environment abstraction to agent-based simulation in section 3. A 

detailed explanation on the interaction mechanism used to support 

the implementation of situated agents is presented in section 4. In 

section 5 we conceive the architecture of a system to support 

practical simulation of traffic scenarios on the basis of the 

concepts discussed, which is followed by some interaction 

examples to illustrate the approach proposed, in section 6. Some 

conclusions are drawn and presented with important 

considerations for future developments. 

2. MAS-T: MULTI-AGENT SYSTEMS 

APPLIED TO TRANSPORTATION 
The abstraction approach of MAS consists of representing a 

system by multiple entities that exist in a common environment 

and interact in order to achieve specific goals. These entities that 

are coined agents, exhibit intelligence, autonomy and some social 

ability. Some examples of applied MAS in the field of traffic and 

transportation engineering can be found in the literature 

[2][5][13]. However, most of the applications are concerned with 

the control system, even though it is possible to recognise an 

increasing interest in the driver element. The assumption in the 

former examples relies on the representation of adaptable control 

system as a community of controller agents, which co-operate in 

order to achieve an optimum plan to meet the variable demand 

[14]. In these cases the movement is represented on the basis of 

simplified models that, in the great majority, adopt a simple 

approach of using a reactive structure. Other models where 

communication mechanisms and drivers with mental attitudes are 

of importance are found in [3][15][17]. 

Transportation Engineering is definitely a very broad field of 

knowledge and contemporarily has evolved so quickly as 

Intelligent Transportation Systems (ITS) start to make part of 

everyone’s daily life. According to [4], the underlying concept of 

ITS is to ensure productivity and efficiency by making better use 

of existing transportation infrastructures.  

From what has been discussed above it is reasonable to see this 

domain as formed of heterogeneous entities, which are 

geographically and functionally distributed throughout the 

environment. They pursue individual or collective goals, interact 

with one another and may transform the environment as well. 

From observation it is possible to realise three main components 

in our application domain, namely the moving element, the 

control system and the road network. 

In very basic terms, the moving element is the vehicle that moves 

from one point to another throughout the network. Disregarding 

the importance of pedestrians in this first stage of this work, we 

consider bicycles, motorcycles, automobiles, trucks and buses as 

examples of moving elements. However, they are actually moving 

objects steered by their drivers and sometimes occupied by many 

other passengers that are people with a trip purpose. Also, their 

decision concerning how the trip will be carried out in most cases 

seeks to minimize some individual sense of cost. Therefore, we 

make a clear distinction between travellers and vehicles. 

From a transport planning perspective, the inhabitants of urban 

areas are potential travellers with specific trip needs. Prior to each 

journey, travellers must make some options basically regarding 

mode of transport (whether to drive their own cars or to take a 

public transport service, for instance), the itinerary and a 

departure time. To the contrary, in the traffic system perspective 

flow is actually formed of each single vehicle. Nonetheless, 

vehicles moving throughout the network are steered by their 

drivers and hence drivers and vehicles are dealt with 

indistinguishably in virtually the totality of microscopic models 

[7][8][10]. In the microscopic point of view, it is the driver 

behaviour that influences traffic flow. Actually drivers manifest an 

interesting yet implicit social interaction – they compete for the 

limited resources of the network infrastructure. These different 

interactions may emerge on an aggregate perspective as these 

properties will become available in terms of natural stimuli to the 

inhabitants, who will behave accordingly as they have different 

perception capabilities and different goals.  

3. THE ENVIRONMENT ABSTRACTION 
The perspective over environments for MAS has been changing 

in the direction of an increasing importance of this entity. Danny 

Weyns and colleagues [19] stress out the importance of 

considering the environment as a first-order abstraction in the 

engineering processes of developing MAS. Weyns recalls a 

classical definition of autonomous agent: “a system situated 

within and a part of an environment that senses that environment 

and acts on it, over time, in pursuit of its own agenda and so as to 

effect what it senses in the future” [6]. From this definition he 

states “the importance of the environment as the medium for an 

agent to live, or the first entity the agent interacts with” [20]. He 

also recalls the notion of embodiment as “the fact that an 

autonomous agent has a “body” that delineates it from the 

environment in which the agent is situated”. 

Let us take a better look at the definitions above (of autonomous 

agent and of embodiment). The first states that the agent is not 

only situated in the environment: it is a component part of that 

environment. While not contradicting, this is diverse from the 

second definition which presents the agent and the environment as 

separate (and separable) entities. We could redefine an agent’s 

body as a subset of the environment. This allows us to clearly 

define the agent (the agent still has a body) while providing a 

wider and more complex notion of environment. We will refer as 

the agent’s body as the agent’s internal environment. The 

environment without the agent’s body is the agent’s external 

environment. 

In [12], authors differentiate a physical environment and a 

communication environment. The physical environment models 

the physical existence of objects and agents, whereas the 

communication environment includes the structures that support 

exchange of information (knowledge). These include roles, groups 
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and communication protocols. They further define social 

environment as a restriction to the set of communication 

environments. A social environment is “a communication 

environment in which the agents interact in a coordinated 

manner”. Note how the definition somehow restricts the forms of 

communication that may occur in a MAS. Tummolini and 

colleagues [18] introduce Behavioural Implicit Communication, 

in which case communication clearly occurs at the physical level 

(via perception), diverging from Odell’s definition [12]. 

Both views can be unified by extending communication to the 

physical environment. We then classify communication into two 

main modes: implicit communication, occurring in the physical 

environment and explicit communication, occurring in the 

communication environment and regulated by high-level 

protocols (out of the scope for this paper). We further classify 

implicit communication into two distinct forms: physical 

communication (related to the observability of objects and agents) 

and behavioural communication (related to the observability of 

agent’s actions). For the rest of this paper, we will focus on the 

implicit forms (physical and behavioural). 

Physical communication occurs when an agent produces 

influences over its external environment, these influences produce 

a state change in that environment, that state change is perceived 

and interpreted by another agent (could be more than one), and 

this agent possibly changes his own behaviour in face of the 

interpretation. As an example of physical communication, 

consider the following scenario. When a driver wishes to 

communicate a lane change to the neighbouring agents, it 

switches the appropriate car light on. This implies producing an 

influence that will most likely result in a state change of the 

vehicle object controlled by the driver. This change will be 

detected by the agents that “pursuing their own agenda”, are 

scanning the environment for visual perception. Some of the 

agents will interpret the state change as an intention of the peer 

driver and possibly change their own behaviour in face of the 

peer’s intentions. 

Behavioral communication works the same way around, with the 

difference that it occurs when an agent produces influences over 

its own internal environment. Examples would be a semaphore 

controller agent switching the signals, or a flagman waving his 

arms. The action consists of a list of influences over the agent’s 

own body (the internal environment), although success or failure 

may still depend on the external environment (i.e., a power failure 

would prevent the semaphore controller from switching the 

lights). This is a very important feature of the model. An agent 

does not fully control its internal environment, since it is also a 

part of the coexisting agent’s external environment, and so the 

agent may be “forced” by these external actions, at least up to 

some extent. Finally, an action may influence both the internal 

and external environments at the same time. This is transparent in 

our model, since both forms of communication are leveled by the 

way agents send their influences and receive the “messages” (via 

perception). 

With these notions of environment and communication in mind, 

we will elaborate a definition of physical environment that 

stresses on the fact that an agent (and all other agents and objects) 

is part of the environment, instead of being merely inserted in it. 

We define it as collection of entities and laws. Entities may be 

objects (inanimate, yet possibly reacting or interactable) and 

agents (animate and partially autonomous). These entities and 

their interactions are ruled by a set of laws about their own 

properties and about the environment. All these collections are 

dynamic (objects may be created, consumed, transformed into 

other objects; agents may enter or leave the environment, “die” or 

be “born”). As a draft of a more formal approach we may say that  

Env(t) = {Objs(t), Ags(t), Laws(t)}. 

An object is characterized by: 

 A set of perceptible features (PF), representing all possible 

features that may be perceived by agents. A feature may or 

not be active. We could identify the set of active features in a 

given time t as PF(t). It should also be possible to provide 

the features with operational (run-time) parameters. As an 

example, consider the lights of a car. They are always 

perceptible but the current state of the light may change in 

each time step (it makes sense that a light is a feature that is 

always active but it may be “on” or “off” e.g., it is a run-time 

parameter of the feature). 

 A set of interactable features (IF), representing interfaces 

that provide the environment access to modify the object 

state. Agents will not have direct access to the IFs. The set of 

active features in a given time t is IF(t). 

 A set of properties (SP), representing part of the internal 

state of the object. Note that we do not restrict the internal 

state to SP. Instead, we consider SP is part of the entities’ 

internal state (which also includes the PF and IF sets). 
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Figure 1 - Primary interfaces of objects and agents with the 

external environment 

To limit the agents’ autonomy, reflecting the fact that agents are 

conditioned by the environment of which they are a part of, and 

allow for influences of the environment over themselves, we 

define agent as a subclass of object. The agent may at best have 

partial control over these influences. This is fundamental to our 

approach. We long for a highly complete model to accommodate 

complex environments, allowing agents and agent’s actions to be 

perceived by other agents (agents’ actions also have perceptible 

features) and forced influences from the environment to be 

performed on the agents. Besides the inherited sets, an agent has:  
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 A set of perception abilities (PA), that the agent uses to send 

messages to the environment expressing the current foci of 

the preceptors and receive messages from the environment 

with perceptual representations (we will elaborate on this). 

For performance reasons, only one message is sent/received 

at each time step, possibly containing several 

foci/representations. 

 A set of action abilities (AA), that the agent uses to send 

messages to the environment expressing influences over the 

agents internal and/or external environments (again, we will 

restrict agents to send only one message in each time step, 

though possibly expressing several influences).  

Figure 1 illustrates how these sets provide the interface with the 

external environment of both agents and objects. 

4. THE INTERACTION MECHANISM 
To connect the basic concepts of our model, we illustrate the 

relations among the fundamental entities and roles in a class 

diagram where the roles are specified as “interfaces” (Figure 2). 

The basic design of the suggested architecture is to consider that 

every entity in the traffic system is an object that influences the 

PF’s of agents (which are also objects). To achieve a desired 

perception of a part of the environment an agent becomes a 

listener by sending its foci to a mediator. All objects within the 

listener foci become its casters (becoming a caster of a listener 

means that the listener must perceive the casters’ PF). The 

mediator is responsible for translating the casters’ PF according to 

the current state and laws that rules the world and sending the set 

of perceptions to the listener accordingly. The interpretation of the 

set of PF’s received by each listener are stored or updated in the 

knowledge base of the respective agent. We name this type of 

knowledge as the agent cognitive map. Anticipating performance 

issues, and relating model elements to real world counterparts, we 

consider that the traffic environment can be divided into zones, 

each of which will be assigned a mediator. More on this topic will 

be discussed later on in this paper.  

 

Figure 2 - Class diagram with the fundamental entities and 

roles 

Thus, each mediator contains a representation of all entities inside 

its zone. So a listener sends its influence (for example a car that 

accelerates influences the external environment) and its foci to the 

mediator that updates its zone representation. The mediator 

contains a representation of every agent structure, allowing the 

correct interpretation of the agent’s set of PF and all its internal 

states, and updates the necessary information into that structure 

based on the influence sent by the listener. The influence created 

by an agent affects the entire surrounding environment and 

consequently the perception of it. The mediator is also responsible 

for finding the correct casters for each listener based on the foci 

sent by each agent in every time step. All objects inside a given 

foci become casters to that listener. These casters are basically the 

entities that exist in the mediator, representing agents or objects in 

its environment zone that are inside the agent foci. 

The mediator is able to read and write the state of any object 

including access to the objects’ PF’s (for example, if an agent is a 

car and it decides to turn on the lights it will change the 

characteristics of the front vehicles because they become more 

illuminated, so a perception feature (illumination) was changed in 

those vehicles because of an influence made by the listener. 

Therefore the mediator needs to access those objects internal 

perception future set, search for the illumination perception future 

in it and change it to a new value accordingly). If necessary, then 

the mediator alters the perception features of the casters based on 

the influence provoked by the listener and after it reads all of the 

casters perceptions features. With this information it builds the 

perception of the listener having into account the laws of the 

environment (for example, if a listener is looking at its front and 

has a truck and a car as its casters, if the caster car is in front of 

the truck and the listener car is very near to the truck the listener 

car cannot receive perception of the caster car, unless the law of 

the environment rules that trucks are transparent). 

ListenersMediatorCasters

write()

send( [foci, infl] )

send(perc)

update-Fn()

buildPercepts()read()

T = k

T = k + 1
write()

send( [foci, infl] )

send(perc)

update-Fn()

buildPercepts()read()

[foci, infl] = reason(perc)

[foci, infl] = reason(perc)

Figure 3 - Sequence diagram, detailing the interactions 

With this perceptions received the listener must update its 

cognitive map. A cognitive map can be understood as a human 

driver mental perception of the objects surrounding its vehicle 

(other cars, traffic signs, traffic lights, people, buildings, and so 

on). An agent cognitive map is dynamically updated according to 

the perceptual representations received by its PA and by the 

execution of AA. After finishing updating the cognitive map a 

time step cycle is terminated. When a new one begins each agent 

has to decide on the action (influence) it must take, and where to 

focus its attention. The decisions are made based on the 

information of the cognitive map updated on the last time step, 

and on its own desires (desired destiny, desired speed, desired 

sight, and so forth). Sometimes the information contained on the 

cognitive map is not enough for an agent to transform a desire 

into an intention causing the agent to engage in a course of 

actions (e.g., it desires a left lane change but the left back vehicle 

perception is too old to risk it without updating it first). In these 
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cases, an agent can continue its movement and focus its attention 

to the desired scene in order to obtain the necessary information 

to fulfil its desires. 

The model of the interaction mechanism explained is depicted in 

Figure 3, in form of a sequence diagram, and the concepts herein 

presented are illustrated in a more concrete way through an 

example scenario in section 6. 

5. SYSTEM OVERVIEW 
According to what has been discussed so far a distributed system 

is defined to support the implementation of a microscopic 

simulation engine (MSE). The MSE contains all the world states 

and objects, and the laws of the world. It also contains the 

mediators that will translate and send the updated perceptions of 

objects to the agents that need them. The necessity of a distributed 

system is a must to guarantee system efficiency and also as a 

natural way to implement the entities of our application domain.  

Basically the world is represented by a set of zones each 

containing a mediator. Each zone runs independently, having  a 

centralised process that is responsible for the coordination of the 

world time steps (it guarantees that every zone processes the 

correct time step, meaning that it is not possible to have different 

zones processing simultaneously at different time steps).  This 

synchronous process is also responsible for reading the topology 

of the networks, dividing them into zones, receiving the 

registration of mediators, and assigning them an appropriate zone. 

A simulation cannot be started until each zone has been assigned 

a mediator.  It also allows registration of graphical interface 

modules providing them, in the registration, with the address of 

each mediator. Such a structure also allows for the simulation to 

run with no graphical support, which can contribute to speed up 

simulation studies. 

 

Figure 4 - Class Diagram of the environment domain 

 

Figure 5 - System Physical Overview 

Each mediator provides a communication interface responsible for 

sending the updated zone states to the different graphical interface 

modules so they can create real-time graphical representations of 

the simulation in runtime. There is also a centralised process that 

provides a communication interface for these graphical modules 

in order to allow them to stop or to start simulation runs, change 

environment characteristics such as the set of laws, load different 

networks, save simulation states, and so on. Such a centralised 

process is named SEC (Simulation Engine Controller). 

In Figure 4, it is possible to identify the domain entities, as well as 

their relations. A connection between two nodes represents a road. 

A road is a set of road segments. The division of a road into road 

segments depends on the different number of lanes or the different 

geometry a road can have. For example, if in the beginning of a 

road there are two lanes, but in the middle of the road it passes to 

have only one lane, it means that the road has two road segments 

– a road segment with two lanes and another road segment with 

just one lane. The world objects are decomposed into two 

different entities, namely the entities that have the capacity to 

move (vehicles and people, for instance) and the ones that are 

static (traffic controllers, road signs – both horizontal and vertical, 

road obstacles, and so on). In every given time an entity is 

situated in a lane. 

A system physical overview is represented in Figure 5. In that 

structure a mediator has always the necessary information to 

construct perceptions for the correct behaviours of the world 

agents. Their interaction will follow the mechanism proposed in 

this research. 

5.1 Environment Zones 
Since the perception treatment and communication can be a heavy 

load for overcrowded networks the distribution of the 

environment perceptions becomes critical in order to improve the 

global efficiency of the simulation. 

In order to assure that each agent receives the world perception 

efficiently in every time step, we assume that the process that 

delivers it has a limited capacity of the number of agents it has to 

inform. So a distributed division of the environment is a question 

of defining the correct capacity limit and number of perceptions a 
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mediator will be dealing with. Such an organisation easily 

resembles the concept of traffic zones, used in control and 

management systems in most urban areas. 

 

Figure 6 - Example of a possible network 

As defined before, the entities responsible for the delivery of the 

perceptions are the Mediators. Analyzing the scenario presented 

in Figure 6 and assuming that M1 has a limit capacity of 3000 

vehicles, M2 of 2000 vehicles and M3 of 1500 (the limit capacity 

of Mediators is calculated based on the processing capacity of the 

machine in which they are instantiated). The division into 

different Mediator zones is easy to obtain. Each link (Road 

Segment) has a physical capacity, limiting the quantity of vehicles 

it can contain. This means that in the worst scenario each road 

segment will only ensure that number of vehicles. So a mediator 

zone is defined as a set of road segments, whose sum of their 

capacities is equal or lower to the limited vehicle capacity of its 

mediator. 

This way it is possible to guarantee that the mediator will process, 

in the worst scenario, the world perceptions of a number of 

drivers equal or lower to its own capacity. Translating it to the 

scenario of Figure 6, M1 will be assigned zone 1 (Z1 in the 

figure), M2 will be assigned Z2 and M3 will be assigned Z3. This 

means that each of the Mediators will be responsible for 

translating the zone objects’ perceptible features to all agents 

inside its assigned zone that ask for it. 

6. EXAMPLE SCENARIO 
Consider the following scenario as depicted in Figure 7, 

representing the current state of the environment and already 

populated with all the casters and listeners that will interact 

throughout the example. The visual focus (for the current time 

step) of the agents controlling vehicles A, B, C and D is 

represented by the highlighted circle slices. In fact we opted to 

represent all of these vehicles to explain different situations that 

occur in traffic simulations and also to explain the concepts 

related to the “car following” (CF) and “lane changing” (LC) 

behaviours. Let us call the agents by the letters on the vehicles. 

Along with their foci, they have also expressed the influences over 

the environment for this time step. 

 

 

Figure 7 - An example of a time-step of the simulation 

 

 

 

Figure 8 - Cognitive map of agent A 

 

To ease the understanding of the concept of CF let us centre on 

agent A. Since it wants to go in front, its foci are naturally the 

front area. Take into account that as it becomes a listener the front 

vehicle becomes its caster. In the meantime the cognitive map of 

the agent (see Figure 8) is updated according to the interpretation 

of the received PF’s (given by the Mediator). This information is 

given with regard to the object which is being observed by the 

subject driver, so perceptions are enclosed into balloons attached 

to the object being observed. 

For this specific example agent A will take the particular action of 

“BRAKING”. That’s because it does not have any previous 

deduction (previous time step) of the other vehicle’s velocity 

(“REALLY FASTER”; “FASTER”; “SLOWER” and “REALLY 

SLOWER”). In the next time step it will send that action to its 

mediator. 

More complex situations can occur, like demonstrated by agents B 

and C. Agent B was having the same attitude as the one 

demonstrated before but new variables will make it to change (see 

Figure 9). Assuming that it wants to go in front, a new lane 

appears in that direction and the front vehicle was evaluated as 

going “SLOWER”. It will take the action 

“CHANGE_TO_LEFT_LANE” then. This kind of actions 
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transpires when an agent wants to maintain or achieve its desired 

velocity and is inherited from the lane changing concept. 

 

 

Figure 9 - Cognitive map of agent B 

The previous figure also illustrates a representation of a “front 

right vehicle” that is having the intension of turning right. If in the 

next time step it transforms its intention into an influence, it will 

be deleted from agent B cognitive map. 

At the same time agent C is in a delicate situation. It needs to go 

to the right lane to accomplish its path direction previously 

defined (supposing). Like in real situations, in which we need to 

look into the mirrors and take care with the front vehicle, it sets its 

foci to the front, back and right sides. The Mediator informs it 

about all the casters positions, velocities, acceleration and 

intentions (PF’s) and the evaluation of its cognitive map will be 

like the one represented in Figure 10. The fact that the back right 

vehicle is being faster than itself will not permit the lane changing 

in the current time step (according to its own AA’s) forcing it to 

wait for the next time step. If in future steps the back right vehicle 

does not pass him or new similar situations occur it will be 

impossible to make that action and agent C will be forced to stop. 

 

Figure 10 - Cognitive map of agent C 

Taking into account that in human behaviours there is also a 

factor of cordial attitudes, it is agreeable to think that agent C can 

try to change to another lane to let pass the back vehicle (since its 

velocity evaluation is “FASTER”). This kind of actions is also 

inherited from the lane changing concept. 

The representation of agent D intends to illustrate two different 

kinds of laws in the present scenario (transparent and opaque 

objects). The PA’s are affected by this laws since the Mediator 

interprets the PF´s according to them and to the agent’ foci. As a 

consequence the casters are not the same in the two different 

configurations. In the case of agent D there are two vehicles 

directly in front of it and inside its foci (C and B). If the laws of 

the environment are configured to opaque objects then the 

mediator won’t give D the PF’s of object B (vehicle C is a truck 

and blocks the visibility of agent D). Otherwise if the laws are 

configure to allow transparent objects then both C and B PF’s will 

be included in the information that the mediator will send to agent 

D. This example shows the influence that the laws of the 

environment can have in the capture of perception of each agent.  

In Figure 8, Figure 9 and Figure 10 notice the numbers that 

appear inside the parentheses and after the evaluation word. Those 

numbers represent the last time that the evaluation of that caster 

was done. That means those agents have more or less trust on 

their evaluations according to their PA’s (for instance, if a back 

car is FAR and SLOWER the agent does not need to verify 

whether it is near every time step). It is possible to have a factor in 

each agent that dictates how each agent will trust on predicting 

future positions of its surrounding objects. For example, consider 

that an agent looks back in time step n and gets the perception of 

an agent called X. If in the time step n+20 the agent needs the 

information about agent X to perform an influence, it must decide 

whether to have to look back to update X perception on its 

cognitive map or if it trusts its future prediction on information 

perceived 30 time steps ago. 

A prototype of the proposed system is being developed and some 

basic features of the communication mechanism were 

implemented, demonstrating the potential of this approach in 

extending traditional car-following and lane-changing behaviours. 

The environment is a first-order abstraction that plays an 

imperative role in this framework being developed. An example of 

its interface is depicted in Figure 11. 

 

Figure 11 – Prototype of the simulation environment 

7. CONCLUSIONS 
In this work we propose a multi-agent model to cope with the 

complexity inherent in microscopic traffic simulation modelling in 

order to provide engineers and practitioners with an adequate 

framework for integrated analyses. The physical conceptualization 

of the environment using the interaction mechanisms presented as 

the basis for every interaction among agents and the environment 

itself allows for different perception abilities of individuals to be 

implemented and assessed, which is expected to have a direct 
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influence in the emergence of the system overall performance in 

different circumstances. Therefore, a truly agent-based 

microscopic simulation approach must necessarily be build on the 

basis of the concept of situated agents and consider the 

environment as a first-order abstraction, playing as relevant roles 

as other entities in the system. In this way, as drivers are integrant 

parts of the environment and interact directly with it, more 

realistic behaviours can now be considered. With such a concept 

of environment, traditional car-following and lane-changing 

models can be extended to feature more contemporary 

performance measures, which can include influence of road-side 

parking, collisions, interaction with traveller information systems, 

en-route decision-making, and many others. This is just possible 

as different perception abilities of drivers can now be considered 

in the way they interact with their environment. An initial 

prototype with very simple features of the presented model has 

been implemented, to demonstrate car-following and lane-

changing behaviours. The very next steps in this research include 

the improvement of this prototype to fully demonstrate all the 

potential of the concept of situated agents and the role of the 

environment in implementing more realistic microscopic traffic 

simulations. Also in the agenda, we expect to devise an 

appropriate methodology for validating and calibrating such 

agent-based microscopic traffic models. Following this, some 

simulations and analyses of performance measures will be carried 

out as well. 
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ABSTRACT
As computers inevitably begin to replace humans as the
drivers of automobiles, our current human-centric traffic
management mechanisms will give way to hyper-efficient
systems and protocols specifically designed to exploit the
capabilities of fully autonomous vehicles. We have intro-
duced such a system for coordinating large numbers of au-
tonomous vehicles at intersections [4, 5]. Our experiments
suggest that this system could alleviate many of the dangers
and delays associated with intersections by allowing vehicles
to “call ahead” to an agent stationed at the intersection and
reserve time and space for their traversal. Unfortunately,
such a system is not cost-effective at small intersections, as
it requires the installation of specialized infrastructure. In
this paper, we propose an intersection control mechanism
for autonomous vehicles designed specifically for low-traffic
intersections where the previous system would not be prac-
tical, just as inexpensive stop signs are used at intersections
that do not warrant a full traffic light installation. Our
mechanism is based on purely peer-to-peer communication
and thus requires no infrastructure at the intersection. We
present experimental results demonstrating that our system,
while not suited to large, busy intersections, can significantly
outperform traditional stop signs at small intersections: ve-
hicles spend less time waiting and consume less fuel.

1. INTRODUCTION
Recent advances in technology have made it possible to

construct a fully autonomous, computer-controlled vehicle
capable of navigating a closed obstacle course. The DARPA
Urban Challenge [1], at the forefront of this research, aims to
create a full-sized driverless car capable of navigating along-
side human drivers in heavy urban traffic. It is feasible that,
in the near future, many vehicles will be controlled without

direct human involvement. Our current traffic control mech-
anisms, designed for human drivers, will be upgraded to
more efficient mechanisms, taking advantage of cutting-edge
research in the field of Multiagent Systems (MAS). Previ-
ously, we introduced an MAS-based traffic management sys-
tem that has the potential to vastly outperform current traf-
fic signals [4, 5]. In this system, vehicles negotiate with an
agent stationed at the intersection, which grants each vehicle
a specific time and space for its traversal. However, the high
infrastructure costs associated with this system make it un-
economical at low-traffic intersections. For these situations,
we propose a new control mechanism, based on peer-to-peer
interaction, that requires no specialized infrastructure at the
intersection.

1.1 A Managed Intersection Control Mecha-
nism

Previously, we proposed an intersection control mecha-
nism to direct autonomous agents safely through an inter-
section [5]. This system is based on the interaction of two
classes of agents: intersection managers and driver agents.
Driver agents “call ahead” to an intersection manager at the
intersection, reserving the time and space needed to cross.
Specifically, when approaching an intersection, a driver agent
sends a request message containing a predicted arrival time
and velocity, along with basic information about the vehicle
it is controlling. The intersection manager responds with
either a confirmation message containing details of the ap-
proved reservation, or a denial message, signaling that the
parameters sent by the driver agent are unacceptable. In
the case of confirmation, the driver agent will attempt to
meet the parameters of the reservation, and will cancel the
reservation if it cannot. In the case of denial, the driver
agent must try to make a different reservation.

Intersection managers base their decisions on the supplied
parameters and an intersection control policy. The most ef-
ficient policies, including FCFS or “first come, first served”,
simulate the trajectory of the vehicle through the intersec-
tion. At each stage in the simulation, the intersection man-
ager checks whether the vehicle is within a certain buffer
distance of any other vehicle in the intersection. If the re-
questing vehicle can cross the intersection without entering
any space-time reserved by another vehicle, the policy cre-
ates the reservation, and the intersection manager approves
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the request. Otherwise, the policy does not create a reser-
vation, and the intersection manager denies the request. By
integrating these policies with traditional traffic light sys-
tems, we have also demonstrated that the system can ac-
commodate human traffic [6]. This multiagent approach of-
fers substantial safety and efficiency benefits as compared
to existing mechanisms, such as traffic lights and stop signs.
Vehicles pass through the intersection faster, and congestion
at intersections is significantly reduced.

Although at the city level this system is mostly decentral-
ized, at each individual intersection, traffic is coordinated by
a single arbiter agent, the intersection manager. We there-
fore designate this system a managed intersection control
mechanism. An intersection controlled by a traffic light is
also a managed intersection—the traffic light being the ar-
biter agent. Conversely, we designate intersection control
mechanisms without an arbiter agent, such as stop signs and
traffic circles, unmanaged intersection control mechanisms.

1.2 One Size Does Not Fit All
Managed intersection control mechanisms have a major

drawback: cost. An arbiter agent of some sort must be
stationed at the intersection, and our previously proposed
managed system, this agent must have sufficient computa-
tional resources and communications bandwidth to rapidly
negotiate a high volume of requests. Although the through-
put benefits in large intersections would certainly warrant
this expense, the system would be uneconomical for small
intersections. Stop signs are a low-overhead, unmanaged
system designed for low-traffic intersections, complementing
larger intersections managed by traffic lights. In this paper,
we propose an unmanaged intersection control mechanism
for autonomous vehicles, designed specifically for low-traffic
intersections. Our system—based on peer-to-peer communi-
cation and requiring no specialized infrastructure—is a sim-
ilar complement to the managed intersection we previously
proposed [5]. We make similar assumptions about the driver
agent, such that a driver agent capable of using the managed
system can be modified to use both systems seamlessly. We
also present empirical data comparing our system to both
traffic lights and stop signs. We focus our analysis primarily
on the comparison between our system and the class of in-
tersections that would currently be managed by a stop sign
(low-traffic intersections), as these are the intersections for
which our system is intended.

The remainder of this paper is organized as follows. In
Section 2 we introduce the goals of our system, state our
assumptions about the agents’ world knowledge, and outline
the protocol of our system. Section 3 describes the behavior
of each individual driver agent. In Section 4, we present
and discuss the empirical results of our system. Section 5,
contains a discussion of current related work and presents
some directions for further research. We summarize and
conclude in Section 6.

2. AN UNMANAGED AUTONOMOUS IN-
TERSECTION

To address the issue of high cost associated with man-
aged autonomous intersections, we have created a low-cost
alternative for low-traffic intersections. In this section, we
introduce our unmanaged autonomous intersection control
mechanism. First, we specify the goals of our system. Next,

we describe our assumptions about the driver agents. We
then outline the protocol for communication between vehi-
cles, and describe the rules that each vehicle must follow.

2.1 Goals Of The System
For an unmanaged intersection control mechanism for au-

tonomous vehicles to be both effective and economically vi-
able, we believe it should have the following properties:

• Vehicles using the system should get through the inter-
section more quickly than they do using current mech-
anisms (i.e. stop signs).

• The protocol should have minimal (ideally none) per-
intersection infrastructure costs.

• The protocol should guarantee the safety of the ve-
hicles using it. Specifically, if all vehicles follow the
protocol correctly, no collisions should result.

2.2 Assumptions
To safely navigate an intersection, a driver agent needs ac-

cess to specific information: the layout and location of the
intersection, any speed limits, and a variety of other param-
eters. As with our managed system, we assume that vehicles
have access to this information either on board the vehicle
or via a remote database. We assume that each vehicle is
outfitted with a wireless communication device with suffi-
cient range to communicate with other vehicles approaching
the intersection. This range is approximately 200 meters
in our scenario, but could vary based on the size of the in-
tersection. We assume that this communication device has
sufficient bandwidth to handle vehicle-to-vehicle communi-
cation, although our implementation relies on very small
data packets, and we do not expect bandwidth to be a seri-
ous constraint. Finally, we assume that the latency of this
device is sufficiently low. In our testing, we simulate a 20ms
latency, but this is not a strict requirement of our system,
as the parameters of the protocol can be adjusted to suit
the environment (see Section 2.3).

In addition to these intersection-specific assumptions, we
also assume that each vehicle has all the abilities required
of autonomous open-road driving. These include access to
a GPS-like navigation system that can provide an accurate
and precise position, as well as laser range finders or short-
wave radar capable of reliably sensing other vehicles in the
immediate vicinity.

Finally, we assume that driver agents have access to in-
formation about the vehicle they are controlling, including
its current velocity, position, and heading.

By analyzing the physical layout of the intersection, agents
can determine which of the paths through it are compatible.
That is, which paths can safely be followed simultaneously
without the risk of a collision. For example, right turns
from the rightmost lanes in any direction are always com-
patible, whereas any paths that intersect are not. Rather
than having each agent independently find these paths, we
assume that the list of compatible trajectories is part of the
agent’s knowledge of the intersection. Because driver agents
may use this information to plan their trajectory through
the intersection, possibly allowing two vehicles to cross si-
multaneously, it is important that each agent have the same
notion of which paths are compatible.

2.3 Communication Protocol
Unlike the protocol for our managed intersection [3], our
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protocol for unmanaged autonomous intersection control is
designed for communication among only one type of agent:
driver agents. In our system, each agent sends and receives
information to and from each other agent, maintaining up-
to-date information about every vehicle approaching the in-
tersection. Dropped packets and limited transmission dis-
tance may cause agents to have outdated or inconsistent
information. Because data transmission is largely asyn-
chronous in an ad-hoc wireless network of mobile agents,
this protocol cannot rely on a dialogue between agents. As
such, the protocol is simple, consisting only of broadcast
messages. There are two types of messages: Claim and
Cancel.

2.3.1 Claim
A Claim message is sent by an agent in order to announce

its intentions to use a specific space and time in the intersec-
tion. Claim contains information describing both the vehi-
cle’s intended path through the intersection, as well as when
it believes its traversal will take place. Once the agent has
chosen these parameters, it broadcasts its Claim repeatedly.
The message contains seven fields:

• vehicle id—The vehicle’s unique Vehicle Identifica-
tion Number (VIN).

• message id—A monotonically increasing counter spe-
cific to this message. Other agents will use message id

to identify the most recent message from this vehicle.
This number is not changed when a specific message
is rebroadcast; it is incremented only when a vehicle
generates a new message to broadcast.

• stopped at intersection—A boolean value represent-
ing whether the vehicle is stopped at the intersection.

• lane—The lane in which the vehicle will be when it
arrives at the intersection. Each lane incident to the
intersection has an absolute index available as part of
the intersection’s layout information.

• turn—The direction in which this vehicle will turn.
• arrival time—The time at which this vehicle will en-

ter the intersection.
• exit time—The time at which this vehicle will exit

the intersection.

2.3.2 Cancel

An agent sends a Cancel message to release any cur-
rently held reservation. This message cancels any pending
reservation; even if other agents have differing or outdated
information about an agent’s reservation, the agent can still
cancel. The Cancel message is broadcast repeatedly, with
the same period as Claim, to ensure it is received by all
other agents. This message has two fields:

• vehicle id—This vehicle’s VIN.
• message id—A monotonically increasing number spe-

cific to this message. This is the same as the message id

field in Claim.

2.3.3 Message Broadcast
Because each message contains all the latest relevant in-

formation about the sending vehicle, agents need only pay
attention to the most recent message from any other vehi-
cle. Each message is also broadcast repeatedly with a set
period to ensure its eventual delivery, should a new vehicle
enter the transmission range of the sender. As a result, al-
though occasional dropped messages may increase the delay

in communications between vehicles, they should not pose
a significant threat to the safety of vehicles in our system.
In situations with higher rates of packet loss, messages may
need to be broadcast more frequently to compensate. Con-
versely, in low-latency, high-reliability scenarios, messages
can be sent less frequently.

For security purposes, we also assume that each message
is digitally signed, ensuring that driver agents cannot falsify
the vehicle id parameter. Messages that do not conform
to the protocol or are not digitally signed are ignored.

2.3.4 Conflict, Priority, and Dominance
In order to facilitate the discussion of agent behavior and

protocol analysis, we define the following relations on Claim

messages.
Two Claim messages are said to conflict if all of the fol-

lowing are true:
• The paths determined by the lane and turn parame-

ters of the Claim messages are not compatible
• The time intervals specified in the Claim messages are

not disjoint
We define the relative priority of two Claim messages

based on the following rules, presented in order from most
significant to least significant:

1. If neither Claim specifies that the sending vehicle is
stopped at the intersection, the Claim with the earliest
exit time has priority.
2. If both Claim messages specify that the respective
sending vehicles are stopped at the intersection, the
Claim whose lane is “on the right” has priority. Here,
“on the right” is defined similarly to current traffic laws
regarding four-way stop signs. This binary relation on
the incident lanes is globally available as a characteristic
of the intersection.
3. If neither message’s lane can be established as be-
ing “on the right,” the Claim whose turn parameter
indicates the sending vehicle is not turning has priority.
4. If priority cannot be established by the previous
rules, the Claim with the lowest vehicle id has pri-
ority.

.
Finally, given two claims c1 and c2, we say that c1 domi-

nates c2 if either of the following rules is true:

• The stopped at intersection field of c1 is true and
the stopped at intersection field of c2 is false.

• The stopped at intersection fields of c1 and c2 are
identical, c1 and c2 conflict, and c1 has priority over
c2.

2.4 Required Agent Actions
The consequences of failure in a traffic management sys-

tem can be disastrous. As such, in addition to a communi-
cation protocol, a rigid set of rules must govern the inter-
action of agents within the system. With human drivers,
traffic laws serve this purpose: if every driver obeys traffic
laws, there is little or no potential for automobile accidents.
Our multiagent system relies on an analogous set of rules.
While there is nothing physically preventing an agent from
ignoring them, the safety of each agent’s vehicle can only
be guaranteed if that agent follows the rules. Note that the
rules restrict only how the agent behaves while in the inter-
section; driver agents have full autonomy everywhere else.
The rules are as follows:
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1. A vehicle may not enter the intersection if its own
Claim is dominated by any other current Claim.
2. A vehicle may not enter the intersection without first
broadcasting an Claim for at least Tp seconds. In our
implementation, Tp = .4.
3. A vehicle must vacate the intersection at or before
the exit time specified in its most recent Claim mes-
sage.
4. If a vehicle is going to traverse the intersection, it
must follow a reasonable path from the point of entry to
the point of departure. This means, for example, that
a vehicle going straight through the intersection must
remain within its lane, and that a vehicle turning right
must not enter any other lanes.
5. The stopped at intersection field of an agent’s
Claim must be set to true if and only if the agent is
stopped at the intersection.
6. The agent may not broadcast unless it is within a
certain distance of the intersection. This distance is
called the lurk distance. In our implementation, the
lurk distance is 75 meters.

2.5 Selfish and Malicious Agents
Agents in our system are assumed to be self-interested—

they may take any possible legal action in order to en-
sure they traverse the intersection in as little time possible.
Agents have little incentive to lie about their lane, path, or
exit time, because lying about any of these puts the vehicle
at risk for collision. However, an agent may have an incen-
tive to falsely claim that it is stopped at the intersection.
While there is a chance this may slow down the traffic in
front of the offending vehicle, if there is no such traffic ex-
ists, an agent may gain some advantage by falsely claiming
that it is stopped at the intersection, allowing its Claim to
dominate the Claims of other moving vehicles. This may
result in the vehicle crossing the intersection earlier. This
type of behavior is not currently disincentivized by our pro-
tocol, but if it were to become a problem, could be tested at
random intersections to ensure compliance. This is analo-
gous to current traffic enforcement, which relies on sporadic
monitoring and associated penalties to decrease rule viola-
tions.

As with any multiagent system, malicious agents are a
potential problem. In current traffic scenarios, nothing pre-
vents someone from deliberately crashing into another vehi-
cle, or disabling traffic signals. Similarly, a malicious driver
agent could flood the network with useless traffic, preventing
the system from operating properly. While nothing can be
done to stop a determined saboteur, the fact that all mes-
sages are signed makes it impossible for vehicles to conceal
their identity while using the protocol.

3. DRIVER AGENT BEHAVIOR
Our proposed unmanaged intersection control mechanism

relies not only on the communication protocol defined in
Section 2.3, but also on the existence of driver agents that
can abide by the protocol. Our prototype driver agent’s
behavior is comprised of three phases: lurking, making a
reservation, and intersection traversal.

3.1 Lurking
As the vehicle approaches the intersection, it begins to

receive messages from other agents. However, it may not

broadcast a reservation until it is within the lurk distance.
The lurk distance is calculated to ensure that an agent is
within transmission range of other vehicles long enough to
be reasonably sure that it is aware of every pending Claim.
Claims are broadcast repeatedly at a set frequency; more
frequent broadcasts reduce the amount of time an agent
must spend within transmission range to assemble all pend-
ing Claims. Therefore, lurk distance depends on both trans-
mission range and broadcast frequency. In our simulations,
we set lurk distance to 75 meters—a reasonable approxima-
tion given current communication technology.

3.2 Making a Reservation
The most important part of our driver agent behavior

starts when vehicle reaches the lurk distance. At this point,
it needs to let the other driver agents know how it intends
to cross the intersection. We call this part of the process
“making a reservation,” as an analogue to our managed sys-
tem, which also uses a reservation paradigm [5]. During this
time, the vehicle needs to compute its expected arrival time,
arrival velocity, departure time, and given the messages it
has accumulated from other vehicles, determine the soon-
est time at which the intersection will be available. This
behavior is shown in Algorithm 1.

Algorithm 1 Behavior of the driver agent from coming
within lurk distance of the intersection to entering the in-
tersection.
1: loop
2: if do not have a current Claim then
3: generate a new Claim

4: end if
5: if not at the intersection and another vehicle is then
6: broadcast Cancel

7: else
8: if arriving estimate changes or Claim is dominated

then
9: generate a new Claim

10: end if
11: broadcast the Claim

12: end if
13: end loop

As an agent approaches the intersection, it generates a
Claim based on predictions of its arrival time, arrival veloc-
ity, and path through the intersection (line 3). To predict
the time required to cross the intersection, the agent must
know its arrival velocity. Initially, the agent calculates the
earliest possible arrival time, and the predicted velocity of
the vehicle at this time based on the speed limit and its own
acceleration constraints (the physical constraints of the ve-
hicle, in addition to the constraints imposed by traffic front
of it) Based on this arrival velocity, the agent predicts the
time at which it will exit the intersection, assuming that it
can accelerate as needed within the intersection. If the agent
has received no Claims from other vehicles that dominate
this Claim, the agent will begin to broadcast this Claim

(line 11).
Otherwise, the agent generates a new Claim at the ear-

liest possible time such that it will not be dominated by
any existing Claim of another vehicle (line 9). To do so,
the agent searches through existing Claims to find the next
block of time that it could potentially dominate, assuming
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it can arrive at the highest legal velocity. After finding a
suitable block, the agent predicts its arrival velocity based
on arrival time (which is generally lower than the maximum
legal velocity), which it uses to determine the actual time
required to cross the intersection. If the agent can traverse
the intersection in the available time, it begins broadcasting
a Claim; if not, it searches for the next suitable block and
repeats these calculations.

3.3 Intersection Traversal
Once a vehicle has made a reservation, it needs only to

broadcast the Claim continually and to arrive at the inter-
section in accordance with its reservation. However, some-
times the vehicle may want to change an existing claim in or-
der to take advantage of an unexpected early arrival (line 8).
On the other hand, traffic patterns may occasionally cause
a vehicle to arrive late. If a vehicle predicts that it cannot
fulfill the parameters of its Claim message, it must either
send a Cancel a new Claim. Similarly, if a new Claim

message arrives that dominates the driver agent’s Claim,
the driver agent must also make a new reservation.

Once the vehicle reaches the intersection, it crosses in
accordance with its Claim. While in the intersection, for
safety purposes, the vehicle continues to broadcast its Claim,
however this Claim cannot be dominated, as the vehicle is
already executing the intersection traversal, which is clear
from the fact that the current time is after the arrival time

in the Claim. After a vehicle has vacated the intersection,
it stops transmitting its Claim.

3.3.1 Vehicle Control
The driving actions taken by a vehicle to complete its

reservation are very similar to those of the driver agent in
our managed mechanism [3]. If a vehicle predicts that it will
arrive late, it accelerates. If a vehicle predicts that it will
arrive early, it slows down (unless it believes it can make an
earlier Claim). The vehicle must also ensure that it arrives
with sufficient velocity to traverse the intersection within
the constraints of its reservation.

3.3.2 Canceling “Bad” Reservations
In some situations, a vehicle is unable to reach the inter-

section at the proper time and velocity. To detect these
situations, the vehicle is constantly predicting its arrival
time. As with the driver agent presented in our work on
managed intersections, this agent calculates its arrival time
and velocity either optimistically or pessimistically [5]. If
a vehicle detects no vehicles in front of it, it will make an
optimistic projection of arrival time, assuming it can accel-
erate as needed before it arrives. However, if a vehicle is
obstructed by traffic, it will make a pessimistic projection
of arrival time based on the assumption that it cannot ac-
celerate before it arrives at the intersection. If the vehicle’s
predicted arrival time is later than that of its reservation,
the vehicle will cancel its current reservation and attempt
to make a reservation for a later time.

3.3.3 Improving Reservations
If a driver agent predicts that it will arrive at the inter-

section before the time specified in its reservation, it may
be able to improve its reservation before reaching the inter-
section. To accomplish this, the agent looks for blocks of
intersection time between its predicted arrival time and the

arrival time specified in its reservation. If the vehicle deter-
mines that it can broadcast a suitably large Claim that will
not be dominated, it will immediately begin broadcasting
this Claim. As specified by the communication protocol,
this implicitly cancels any previous reservation held by the
vehicle.

If a vehicle arrives at the intersection before the time spec-
ified in its reservation, it changes its Claim to reflect that
it is stopped and waiting to cross (as required by the pro-
tocol). As a result, this agent’s Claim will now dominate
the Claim of any vehicle not stopped at the intersection.
The stopped agent will then begin broadcasting the earli-
est possible non-dominated Claim. If no other vehicles are
stopped, this will be Tp seconds from the current time, as
the vehicle must broadcast its claim for at least this amount
of time before entering the intersection. If other vehicles
are stopped at the intersection, the agent will broadcast a
Claim for the earliest block of time not dominated by the
Claim of any stopped vehicles.

4. EMPIRICAL RESULTS
This section presents empirical results comparing our un-

managed autonomous intersection to intersections outfitted
with four-way stop signs and traffic lights. After describing
our metrics and experimental setup, we compare the aver-
age delay induced by each of these control policies. We then
use these results estimate the amounts of traffic for which
a stop sign outperforms a traffic light. This range is the
primary focus of the analysis of our system, as we consider
it to be the range over which an unmanaged policy is more
appropriate than a managed policy. We also compare the
relative fuel consumption associated with the stop sign and
unmanaged autonomous policies. Finally, we discuss the ef-
fects of dropped messages on our unmanaged autonomous
control policy.

4.1 Metrics
In our analysis, we examine two key metrics: average delay

and average cumulative acceleration. The primary metric is
the average of the delay experienced by each vehicle as it
crosses the intersection. The baseline for delay is the time it
would take a vehicle to traverse a completely empty intersec-
tion. Because a vehicle must slow down to turn, the baseline
is different for left turns, right turns, and straight passages
through the intersection. We measured the trip time for an
unobstructed vehicle following these three paths, giving us
an accurate baseline for comparison. Delay is measured as
actual trip time minus baseline trip time, which isolates the
effect of the intersection control policies and allows us to
accurately compare the among them.

The second metric we use is the average of the the cu-
mulative acceleration of each vehicle during its trip through
the intersection. We define the cumulative acceleration of a
vehicle, denoted a, as:

a =

s
X

i=0

|ai|

where s is the trip length of the vehicle measured in sim-
ulator steps, and ai is the acceleration of the vehicle at
simulator step i. Note that the baseline for a is nonzero
in turning vehicles, as vehicles must slow down to turn and
accelerate again to the speed limit afterwards. We chose to
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compare the average cumulative acceleration to examine the
relative fuel efficiency of each system. Although not a direct
measure of fuel efficiency, a vehicle’s cumulative acceleration
provides a reasonable approximation of gasoline usage, be-
cause substantially more fuel is required to accelerate than
to maintain a constant velocity. Average delay is also an
indicator of fuel efficiency, as the delay experienced by a ve-
hicle correlates with the amount of fuel consumed while the
vehicle was not accelerating (either idling at the intersection
or traveling at a constant velocity). Thus, we can compare
the relative fuel efficiency of each system by comparing both
average delay and average cumulative acceleration.

4.2 Experimental Setup
To test these policies, we use a custom simulator which

simulates a four-way intersection with one lane of traffic in
each direction (see Figure 1). This small, symmetrical in-
tersection is representative of those intersections currently
configured as a four-way stop, and thus provides the best
test case for unmanaged control mechanisms. We control
traffic levels via a Poisson process governed by the proba-
bility of creating a new vehicle in a given lane at each time
step. We simulate traffic levels between 0 and 0.5 vehi-
cles per second, with 15% of vehicles turning left and 15%
turning right. Each data point represents the average of 20
simulations, with each run consisting of 30 minutes of sim-
ulated time. All data are shown with error bars indicating
a 95% confidence interval.

Figure 1: A screenshot of the simulator.

The traffic light timing is configured such that, in succes-
sion, each direction receives a green light for 10 seconds,
followed by 3 seconds of yellow. There is a large body
of theory and empirical evidence concerning the timing of
traffic lights, but this work is largely irrelevant to our sim-
ulated scenario for two reasons. First, much of the the-
ory deals with the timing of lights across multiple inter-
sections, whereas we are examining one intersection in iso-
lation. Second, our simulator generates symmetric traffic,
which greatly simplifies light timing by eliminating the need
to account for higher traffic levels in a particular direction or
lane. For these reasons, we established a reasonable timing
pattern experimentally by evaluating 10 different candidate
patterns and selecting the one that led to the lowest average
delay.

It should be noted that our four-way stop sign policy does
not allow multiple vehicles to inhabit the intersection simul-
taneously. In the real world, stop signs can allow a limited
sharing of the intersection. This is most apparent in inter-
sections with multiple lanes of traffic in each direction: in
this situation, cars traveling parallel to one another can cross
the intersection at the same time. There is significantly less
potential for sharing the intersection when there is only one
lane of traffic in each direction. A human driver may observe
the vehicle currently crossing the intersection and predict
the vehicle’s actions for the remainder of its journey (al-
though this prediction is not always accurate!). If the other
vehicle’s path does not conflict with the intended path of the
human driver, he or she may enter the intersection slightly
before the other vehicle has exited. However, the benefits of
this behavior are significantly reduced in small intersections.
Therefore, we believe that our four-way stop sign policy is
a reasonable approximation of a real-world four-way stop.

4.3 Delay
As shown in Figure 2, our system significantly reduces

the average delay experienced by each vehicle. When traffic
flow is below 0.35 vehicles per second, the four-way stop is
a more effective policy than the traffic light. Because an
unmanaged mechanism performs best over this domain, we
consider [0,0.35] vehicles per second to be the target domain
of our system.
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Figure 2: A comparison of average delay of the traf-
fic light, four-way stop, and our unmanaged mech-
anism. The x-axis represents the traffic level, ex-
pressed in vehicles per second. The y-axis repre-
sents the average of each vehicle’s delay, in seconds.

Our unmanaged system results in near-zero delay at traf-
fic levels below 0.2 vehicles per second. In these situations,
most agents are able to cross the intersection without slow-
ing down to wait for other vehicles. With the four-way stop
sign, each vehicle must stop even if no others are present,
resulting in a baseline average delay of approximately 3 sec-
onds. The traffic light system has a higher baseline average
delay, around 18 seconds.

When traffic flow is between 0.2 and 0.35 vehicles per sec-
ond, our system shows a somewhat increased delay. In these
cases, cars must often slow down to accommodate other ve-
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hicles, but but only rarely will a vehicle need to make a
complete stop. With the stop sign policy, vehicles begin to
queue at the intersection, and must often wait for vehicles in
front of them to cross. The traffic light policy shows almost
no increase in delay at these levels.

At traffic levels above 0.35 vehicles per second, the stop
sign policy deadlocks. At these traffic levels, our system is
similar to a four-way stop: because there is almost always
at least one vehicle waiting to cross, agents must wait until
they are stopped at the intersection to make a reservation
(as described in Section 2.4). However, the intersection shar-
ing in our system (allowing four simultaneous right turns,
for example) provides a noticeable benefit at these traffic
levels. Our unmanaged system can safely handle traffic lev-
els up to approximately 0.4 vehicles per second, at which
point traffic begins to back up. The traffic light shows only
a slight increase in delay at these traffic levels. In these situ-
ations, our data suggest that a managed mechanism is more
appropriate.

4.4 Average Acceleration
Another benefit of our system is reduced average accelera-

tion, as shown in Figure 3. With the stop sign policy, every
vehicle must come to a complete stop at the intersection
and accelerate to the speed limit after crossing. If vehicles
are queued at the intersection, each vehicle must stop at the
back of the queue. As the queue moves forward, each vehicle
accelerates for a brief period of time, then decelerates to a
stop until another car leaves the front of the queue. This
behavior results in a very high average acceleration for the
stop sign policy.

For low levels of traffic, our system allows most vehicles
to pass directly through the intersection without slowing or
stopping. Even at high traffic levels, when our system is
essentially a modified four-way stop, our system results in
lower average acceleration than a four-way stop. This is be-
cause our system causes shorter queues than a stop sign,
reducing the amount of acceleration and braking required
for each vehicle to reach the front of the queue. Combined
with the data on average delay, these results suggest that our
unmanaged autonomous system would allow significantly re-
duced fuel consumption.

4.5 Dropped Messages
We designed our system to be resistant to occasional com-

munication failures such as dropped messages. In our previ-
ously proposed managed intersection, the vehicles must wait
for a response from the intersection manager before enter-
ing the intersection [5]. Because of this, dropped packets
may increase the delay of the system, but will not cause
a collision. In our system, we have found no statistically
significant correlation between dropped packets and delay.
Rather, dropped packets introduce a possibility of failure
that increases with the percentage of packets dropped.

To quantify this effect, we varied the proportion of dropped
messages between 0 and 0.7 at intervals of 0.1, running 400
thirty-minute simulations at each level. The traffic level in
these simulations was 0.3 vehicles per second. When fewer
than 40% of messages were dropped, the system behaved
normally. Between 40% and 60% packet loss, the system
began to experience safety failures—five of the 1200 simu-
lations in this range resulted in collisions. At 70% packet
loss, the frequency of collisions is significantly higher, with
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Figure 3: A comparison of average acceleration of
the four-way stop and our unmanaged mechanism.
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collisions occurring in seven of 200 simulations.
These results suggest that, as proposed, our peer-to-peer

protocol can tolerate moderate levels of packet loss with
no ill effects, but that serious communication issues might
make it unsafe. While a thorough analysis of communica-
tion failures is beyond the scope of this paper, research in
distributed systems has shown that fast and reliable infor-
mation dissemination in ad-hoc wireless networks such as
the kind we are simulating is possible [2]. We thus leave
further communication analysis to future work.

5. DISCUSSION AND RELATED WORK
We have presented a system which allows autonomous

agents to coordinate their safe passage through an inter-
section without an intersection manager, and demonstrated
that it outperforms the current mechanisms for both man-
aged and unmanaged intersections over its target traffic lev-
els. We have specified a detailed protocol meeting the con-
straints of vehicle-to-vehicle communication, which adds few
assumptions on top of those in the managed autonomous
intersection. Because of this, it would be easy to create a
driver agent that can utilize both managed and unmanaged
intersections. As this driver agent approaches the intersec-
tion, it determines whether the intersection is managed us-
ing previous experience or, if the agent has never encoun-
tered the intersection, by attempting to communicate with
the intersection manager. If the agent receives a response, it
uses the appropriate managed intersection protocol; if not,
it uses our unmanaged intersection protocol.

5.1 Future Work
After introducing the reservation-based protocol for man-

aged intersections based on the assumption that all cars are
autonomous, we later presented a policy which allows both
computer- and human-controlled vehicles to safely interact
at the same intersection [6]. Our protocol for unmanaged
intersections can be similarly adapted to accommodate hu-
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man drivers using traffic signs. The human drivers would be
directed to behave as if they were stopped at a two-way stop,
yielding to all approaching vehicles (this also assumes that
the computer-controlled vehicles have some signal identify-
ing them as autonomous). Because our system is designed
for low-traffic intersections, human drivers could generally
expect to wait for no more than a few seconds. Our pro-
posed system for accommodating human drivers and the
corresponding managed system both put human-controlled
vehicles at somewhat of a disadvantage–an incentive for hu-
man drivers to transition to fully computer-controlled vehi-
cles. Future research could formalize and optimize a policy
for accommodating human drivers in our unmanaged au-
tonomous intersection.

Another potential area for future research is allowing the
system to adapt to asymmetric traffic flow. Many intersec-
tions consistently receive higher traffic in some lanes than
others. In these intersections, a two-way stop is often more
efficient than a four-way stop. In our current system, all
agents stopped at the intersection are given equal priority,
regardless of the number of vehicles queued behind them.
This approximates the behavior at a four-way stop. How-
ever, by granting priority to lanes with longer queues, our
system could alleviate congestion in high-traffic lanes. This
would allow our system to function like a two-way stop in sit-
uations with asymmetric traffic flow, while functioning like
a four-way stop in situations with more symmetrical traffic.

5.2 Related Work
Intersection management—especially for intersections of

autonomous vehicles—is an exciting and promising area of
research for autonomous agents and multiagent systems.
Many projects in AI and intelligent transportation systems
address this increasingly important problem. Using tech-
niques from computer networking, Naumann and Rasche
created an algorithm in which drivers attempt to obtain to-

kens for contested parts of the intersection, without which
they cannot cross [8]. While this allows vehicles to cross
unimpeded in very light traffic, the system has no notion of
“planning ahead”; only one vehicle may hold a token at any
given time, no agent can plan to have the token in the future
if another agent has it currently. Kolodko and Vlacic have
created a system very similar to ours on golf cart–like Imara

vehicles [7]. However, their system requires all vehicles to
come to a stop, irrespective of traffic conditions.

In the context of video games and animation, Reynolds
has developed autonomous steering algorithms that attempt
to avoid collisions in intersections that do not have any sig-
naling mechanisms [9]. While such a system does have the
enormous advantage of not requiring any special infrastruc-
ture or agent at the intersection, it has two fatal drawbacks
that make it unsuitable for use with real-life traffic. First,
the algorithm does not let driver agents choose which path
they will take out of the intersection; a vehicle may even
find itself exiting the intersection the same way it came in,
due to efforts to avoid colliding with other vehicles. Second,
the algorithm only attempts to avoid collisions—it does not
make any guarantees about safety.

6. CONCLUSION
Recent research has already produced fully autonomous,

computer-controlled vehicles. As these vehicles become more
common, we will be able to phase out human-centric traffic

control mechanisms in favor of vastly more efficient computer-
controlled systems. This will be especially beneficial at in-
tersections, which are a major cause of delays. For a transi-
tion of this magnitude, infrastructure cost will be a central,
if not primary, concern. This paper presents a novel, unman-
aged intersection control mechanism requiring no specialized
infrastructure at the intersection. We have described in de-
tail a protocol for our unmanaged autonomous intersection,
and created a prototype driver agent capable of utilizing this
protocol. As illustrated by our empirical results, our proto-
col can significantly reduce both delay and fuel consumption
as compared to a four-way stop. Unsignalized intersections
far outnumber those that are sufficiently large or busy to
warrant the cost of a managed solution. Whereas busier
intersections may need to wait for the funding and instal-
lation of requisite infrastructure, our proposed mechanism
has the potential to open every one of these unsignalized in-
tersections to be used safely and efficiently by autonomous
vehicles.
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ABSTRACT 
Since critical socio-technical systems include people 
interacting with equipments in workplaces, their intrinsic 
reliability problems have been concerned with both these two 
“actors”. Air Traffic Control (ATC) is going to be such a 
system in which controllers use a large number of distributed 
software tools to provide safety ATC services. The reliability 
of these services relies on the availability of the various tools. 
Indeed, a partial failure of a tool in use can have tragic 
consequences. This paper presents a multi-agent approach to 
this problem. We propose an agent-based decision-aided 
system that helps controllers in using their multiple software 
tools in situations where some tools are not available due to 
technical incidents. We build and test our system in an ATC 
simulation environment, thus develop an Agent-Based 
Simulation (ABS). Experimental work has demonstrated the 
significance of our system to air traffic controllers.   

Keywords 
Agent-based decision-aided system, Reliability, Socio-technical 
system, Air Traffic Control. 

1. INTRODUCTION 
Air Traffic Control (ATC) provides services whose objective is to 
direct aircraft on the ground and in the air. Its tasks are to separate1 
aircraft (keep an aircraft in a minimum distance from another 
aircraft), to ensure safe orderly and expeditious flow of traffic, 
and to give information to pilots, such as weather and navigation 
information. 

1.1 A critical socio-technical system 
The forecast growth in air traffic requires the adoption of new 
technologies and related procedures enabling the safe and 
efficient provision of ATC services to a larger number of 
aircraft. This will be made possible by the use of software 
tools to support air traffic controllers (see the First ATC 
Support Tools Implementation (FASTI) program [18]).  
                                                                 
1This is an improved version of a paper with the same title which 

was accepted as a short paper at AAMAS’08 Industrial Track. 

Our work is concerned with the next generation of software 
systems for ATC. These systems will process some advanced 
flight data [7], which will be much more complicated than the 
currently used data. This will increase the controllers’ capacity 
at the expense of a complexification of their task, but also will 
raise the technical issue of reliability.  

On the “human” side, moreover, the integration of 
sophisticated tools in the controllers’ daily work currently 
faces difficulties, like in any critical socio-technical system 
[9][16][20][21][23][28]. On the one hand, controllers have to 
change their usual, trusted working procedures. The safety and 
power that the tools are expected to provide will only become 
effective if the controllers are able to make the most of the 
functionalities of their tools. And this strongly depends on 
their familiarity with the tools. On the other hand, the 
controllers need to feel confident in the reliability of their 
software tools. In this paper, we report on an experiment with 
a Multi-Agent System (MAS) which aims at building 
confidence for air traffic controllers. 

1.2 A multi-agent approach 
We argue that the best way to prove a support system’s 
reliability is to show that the ATC system, as a whole, can still 
provide full traffic control services when errors suddenly 
appear. Indeed, if the controllers are timely and adequately 
informed of the incidents, they can accordingly adjust their 
current control tasks and the following tasks. They can often 
manage without some of their tools. According to the 
Guidance Material for Contingency Planning [6], this kind of 
working mode can be seen as a type of Degraded Mode of 
Operation.  

Therefore, there exists a need for a decision-aided system that 
helps the controllers in using their multiple software tools, 
particularly in situations where some tools are not available, or 
in other words when technical incidents happen. Our aim is to 
show that a suitable use of multi-agent technology can help in 
this respect. To develop such a system, we propose a solution 
based on software agents (see Section 3). 

1.3 Outline of the paper 
The paper is organized as follows. Section 2 presents the ATC 
system and analyzes a typical example of technical incident. 
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Section 3 proposes our MAS solution. Section 4 describes the 
development of our ABS for experiments. Then in Section 5, 
an experimental scenario clearly shows how our agents react to 
a typical network failure. Section 6 summaries feedback from 
ATC experts on our MAS, which has been gathered in several 
demonstration sessions. Section 7 discusses related work. 
Finally, Section 8 draws a conclusion. 

2. TYPICAL EXAMPLE 
2.1 Future ATC system architecture  
The current ATC system is airspace-based. The airspace is 
divided into many sectors whose size depends on the average 
traffic volume and the geometry of air routes. There are usually 
two air traffic controllers to handle the traffic in each air sector: 
an executive controller who communicates with pilots, and a 
planning controller who plans his colleague’s work. Also, the 
sectors are regrouped into regions each of which is under control 
of a control center. For example, the Athis-Mons center is 
responsible for air traffic control in the Parisian region. 

The general structure of the ATC system sketched above 
would not be expected to change. But a new architecture 
would have to support the introduction of distributed software 
tools. The system will be distributed over local area networks 
(LANs) in each control center and the wide area network 
(WAN) between centers. Figure 1 illustrates a typical 
application context where two different control centers are 
connected with a common flight data-processing center 
through the inter-center network (a WAN). In each control 
center one (or several) application server(s) host(s) the various 
software tools in use. These application servers are connected 
with the Controller Working Positions (CWP) by means of a 
local network (LAN).  The LANs of the control centers are 
connected via the inter-center WAN. Each tool is thus at the 
same time exchanging data with the common flight data-
processing centre and interacting with the controller user 
interfaces of the different controllers in the same control centre. 
 

 
Figure 1. Basic future ATC system architecture. 

 
A typical example of support tool is the Medium-Term Conflict 
Detection (MTCD) [18]. Once aircraft trajectories have been 
predicted, they can be employed to detect medium-term 
conflicts. There also exist many other tools such as Short-Term 
Conflict Alert (STCA), MONitoring Aid (MONA), Airspace 
Penetration Warning (APW), and Minimum Safe Altitude 
Warning (MSAW). 

2.2 Scenario  
In this section, we would like to analyze a typical situation in 
which a technical incident occurs. It can help with understanding 
the influence of the incident on the controllers’ work and what 
they need in such a situation. 

We hence consider two (executive) controllers (named Co1 and 
Co2) responsible for two neighboring sectors (named S10 and 
S12), at the border of two control centers (named A and B). 
They are often in handover situations, i.e. they have to transfer 
the control of aircraft flying from one sector to the other (and 
therefore from the responsibility of one control center to the 
other center).  
 

 

    
Figure 2. Typical example of a handover situation: the two 

controller’s screens on both sides of the border. 
 

We suppose that at a moment there are several potential 
conflicts among which a particular one concerns two aircraft: 
TH003 flying from S10 to S12, and TH004 flying in the opposite 
direction. Moreover, all the conflicts are going to happen in 
S10. 

These conflicts can be automatically detected by Co1’s MTCD 
or “manually” by Co1 himself. He does or does not perform 
control operations to resolve a detected conflict, depending on 
the aircraft real trajectories which probably evolve before the 
conflict happens. Since Co1 can only resolve conflicts one by 
one, he has to sequence all the detected conflicts to be 
resolved. Therefore, he needs to decide to (or not to) resolve a 
conflict at least T minutes before it happens. Indeed, T is 
common to all the detected conflicts, and it has to be 
sufficiently large that the controller can perform good conflict 
sequencing. 

We suppose that a network failure occurs at the time when the 
potential conflicts appear: center B is disconnected from the 
flight data-processing center (see the basic ATC system 
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architected illustrated by Figure 1). Consequently, a demand 
for exit flight level change for TH004 sent by Co2 to the data-
processing center is lost. Accordingly, the flight data of TH004 
are no longer accessible from center A and therefore unusable 
for Co1’s MTCD.  

This failure makes Co1’s MTCD unable to detect conflicts not 
only for TH004, but also for all the aircraft flying from center 
B. However, it still correctly detects the “local conflicts” that 
only concern the aircraft flying in Co1. So we can see it as 
“locally available”. 

We now consider the controller’s (Co1’s) reaction to the 
unavailability of his MTCD. It is supposed that there exists a 
fault detection equipment [1] which will give him some 
warning. We are thus interested in when he is informed of the 
tool unavailability and in which additional information he gets. 
We would like to underline the two following cases. 

In the first case, Co1 is only aware of the unavailability of his 
MTCD when some potential conflicts are closely going to 
happen (in less than T minutes). As discussed above, this will 
embarrass his conflict sequencing, and can then make him 
nervous.  

In the second case, Co1 is already aware of the unavailability 
of his MTCD but does not know its “local availability”. He has 
to detect himself all the potential conflicts. To do that, he 
verifies and follows all the aircraft he suspects. However in 
reality, MTCD is not totally unavailable, and still locally 
available. Such an exhaustive verification will unnecessarily 
increase Co1’s workload because, in fact, he can still rely on 
the results given by MTCD for the local conflicts.  

In conclusion, we notice that, in situations where some tools are 
not available, the controllers need not only to be timely informed 
of the unavailability of the tools, but also to obtain adequate 
information about their state, e.g. the “local availability” of 
MTCD. One could see that if the controllers are guaranteed to be 
provided what they require to manage without the unavailable 
tools, they will feel more confident on the reliability of the 
support system. 

3. OUR MULTI-AGENT SYSTEM  

3.1 Objectives 
To fulfill the need presented in the previous section, a 
decision-aided system for air traffic controllers is needed. Its 
missions are to communicate with the controllers, to inform 
them of the environment state and to show them information of 
tools’ availability. More ambitiously, the decision-aided 
system would be endowed with the capacity to propose 
corrective actions to be performed following technical 
incidents. 

Besides, this system helps with mitigating the effects of 
software faults in a distributed environment. It monitors 
software components which run on different machines, and 
keeps an eye on the interactions between the users (i.e. the 
controllers) and these components. To this end, it also has to 
be distributed. It observes complex data (e.g. air traffic data) at 

the input and output of each computation module of any soft-
ware tool. 

More importantly, this system builds up confidence for users 
of a safety-critical software system. In consequence, it has to 
guarantee a safety level with respect to the services it offers. 
All its monitoring services have to run in real-time so that it 
can inform the users of some change of the software system’s 
state as soon as it happens. Moreover, information it provides 
need to be not only concise but also adequate, in such a way 
that the users can determine exactly what to do in response to 
this change.  
In view of these requirements of the decision-aided system to 
be developed, we propose a MAS solution. Our MAS 
communicates with the controllers through assistant agents and 
monitor the software tools through monitor agents. The 
capacity of the agents to exchange data with each other will 
allow acquiring in real-time information to be presented to the 
controllers. 

3.2 Agent design 
Since our agents have to take care of the monitoring of 
software tools and of the communication with the controllers, 
we design different kinds of agents to perform these two 
common tasks. We currently use three monitoring agents for 
each tool, i.e. a data sentinel, a middleware sentinel and a 
computation sentinel, and assign an assistant agent to each 
controller. 

1 Data sentinel agent: observes the input and output data of 
a specific software tool and communicates with other 
agents in order to discover data losses; for example, as 
shown in the experimental scenario below, data sentinels 
ubiquitously check exchanged data (the absence of needed 
data at some network node often results from data losses). 

2 Computation sentinel agent: observes the input and output 
data of a specific software tool and communicates with 
other agents in order to discover computation faults; for 
instance, a computation sentinel checks timeout errors of a 
computation module of a tool. 

3 Middleware sentinel agent: receives from the middleware 
the notifications of faults related to a specific software tool 
(this also means that the monitoring agents do not employ 
any sophisticated fault detection technique [10][12][24]).  

4 Assistant agent: communicates with other agents in order 
to determine the automated tools’ availability, and informs 
a controller of this availability; an assistant agent can 
observe the controller’s actions in such a way that it can 
notify the monitoring agents of relevant events. 

At the individual level, all the agents presented above need not 
to be complicated. A monitoring agent simply reacts to 
technical incidents that it discovers itself or of which it is 
notified by other monitoring agents. An assistant agent would 
only be endowed with some limited reasoning capacity to be 
able to propose corrective actions to perform (which are 
predefined) following incidents. The simplicity of the agents 
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would bring not only more reactivity, but also more robustness 
to the MAS.  

3.3 Distribution of our MAS 
Based on the basic ATC system architecture presented in Section 
2, we install in a control center a group of coordinated agents that 
are distributed over the whole corresponding LAN. The agents on 
the various LANs also communicate over the inter-center WAN, 
making up a global MAS. 

 

 
Figure 3. Monitoring and assistant agents. 

 

Each local group of agents is composed of assistant agents and 
of monitoring agents. We associate an assistant agent with 
each Controller Working Position (CWP). Each tool instance 
is observed by monitoring agents. Please note that monitoring 
and assistant agents may be hosted on any of the machines, or 
even on additional independent network nodes, as long as they 
retain the capacity to display information on the controller’s 
screen. At the level of implementation, only special agents 
playing the role of interface between our MAS and the whole 
tool system (see 4.3) need to be hosted on the same machines 
as the tools to which they connect. 

When an incident occurs, the related tool’s monitoring agent 
first discovers the critical situation by using the data it gathers 
from the tool’s input/output, as well as the information it 
receives from other monitoring or assistant agents. Then, it 
transmits information about the tool’s state to the assistant 
agents of the CWPs that use this tool. These assistants display 
green/yellow/red flags on their controller's screen, thereby 
indicating the tool’s total/partial availability, together with the 
relevant information. 
By exchanging observed tools’ data and controllers’ actions 
with each other, the agents can inform the controllers about the 
possible actions to take after the incident. For instance, in the 
scenario presented in Section 5, the monitoring agents 
exchange events of request for data change so that they can 
find out lost data due to network failures. Then, when the 
controllers see this information shown by their assistants, they 
know that the related aircraft’s flight plan is inconsistent and 
that they cannot use MTCD anymore to detect conflicts for it. 

4. SIMULATING OUR SYSTEM 
Of course, the future ATC system we have described above has 
not yet been implemented. Moreover, any novel application to a 

critical system like ATC has to be tested in simulations before its 
real world implementation. We hence build and test our MAS into 
a simulation environment, thus develop an Agent-Based 
Simulation (ABS). We employ the eDEP platform (Early 
Demonstration & Evaluation Platform) [5], which offers not only 
realistic air traffic data but also a distributed simulated ATC 
environment. We also use the DimaX platform [2], which helps 
with developing reliable MASs. 

4.1 ATC simulation platform - eDEP 
 

 
Figure 4. CWP for the executive controller of the sector S10  

(S10 is the sector in light brown; white radar tracks mark 
aircraft; and red dots indicate aircraft  

potentially in conflict). 

 

eDEP [4] is a Java platform developed by Eurocontrol that 
uses RMI (Remote Method Invocation) to distribute its 
components over a LAN. It gives a set of standard ATC 
elements, e.g.: 

1 Airspace: a database of static airspace information;  

2 Integrated air surveillance: a database of surveillance 
radar tracks;  

3 Flight Path Monitor: uses track data produced by the IAS 
to monitor the progress of a flight according to its planned 
path through the airspace; 

4 Initial flight plan: an initial plan that defines route 
constraint points and altitude limits;  

5 Trajectory predictor: a trajectory prediction algorithm 
which uses aircrafts’ kinematic models to predict the real 
motion of a particular aircraft;  
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6 Controller Working Position (CWP): the main graphical 
interface to the system based on a plane view display of 
the control sector (see Figure 4). 

The support tools for air traffic controllers, e.g. STCA and 
MTCD, are implemented in eDEP as independent components 
which can run on different machines. 

4.2 Multi-agent platform – DimaX 
DimaX [2] is a Java multi-agent platform which provides a 
generic and modular agent architecture, and allows high 
heterogeneity in agent types (reactive, deliberative and 
hybrid). It is in fact based on the extension of modeling and 
implementation facilities offered by object-oriented languages. 
In DimaX, an agent at the smallest granularity is simply a 
single-threaded object, and a complicated agent can be 
constituted by smaller agents. Also, this platform allows 
adding new behaviors to any agent by using programming 
libraries.  
In addition, DimaX provides a Naming Service which localizes 
agents at the time of message sending. A name server maintains 
the list (i.e. white pages) of all the agents within its administration 
domain. When an agent requests interacting with the others, it 
does not need to know their physical locations. Given the agent 
identifiers, the name server returns the corresponding agents 
physical addresses. 
Since we would like our MAS to be used in a critical socio-
technical system like ATC, the MAS itself has to be reliable. 
DimaX can help with developing such MAS. This multi-agent 
platform is in fact the result of the integration of its previous 
generation (named DIMA – Development and Implementation 
of MAs) and a fault-tolerance framework (named DarX [17]), 
which brings in services, e.g. Fault Detection Service and 
Replication Service, which provides transparent support for 
making MAS fault-tolerant through adaptive replication. 

4.3 Implementing our ABS 
We manage at least two Controller Working Positions 
(implemented by the CWP component in eDEP), belonging to 
two different control centers. The LAN of each control center 
is realized on at least two computers (one for the CWP and the 
other for the application server). The data-processing center is 
realized as a separate machine. This machine together with the 
two LANs make up our image of the inter-center WAN. Each 
application server runs a copy of each of five tools, i.e. 
MTCD, STCA, MONA, APW, MSAW (also provided as eDEP 
components). 

The integration of our DimaX agents and eDEP components 
follows the FIPA Agent Software Integration Specification [8]. 
The DimaX platform already includes a generic wrapper agent 
ready to provide any other agent (e.g. a monitoring agent or an 
assistant agent) with services which allow this latter agent to 
connect to software components. Special wrappers are then 
built by extending the generic one. They need to be hosted on 
the same machine as the components they “wrap”. 

 

 
Figure 5. Monitoring and wrapper agents for MTCD 

(partial UML diagram). 

 

Based on the agent model discussed in 3.2, as a first step we 
install three monitoring agents and two wrapper agents for 
each of software tools: 

1 XXX_DataSentinel, XXX_ComputationSentinel,

XXX_MiddlewareSentinel: observes the XXX2 
component’s input/output data, communicates with other 
agents and collects notifications from the middleware in 
order to discover faults;  

2 XXX_ObservationWrapper, XXX_GeneralWrapper: 
special wrappers which respectively provide XXX 
observation and general-purpose services to the three other 
XXX_agents; 

We endow the CWP with a CWP_Assistant which 
communicates with other agents in order to determine the 
automated tools’ availability, and shows this availability in its 
user interface. The following figure illustrates the 
CWP_Assistant’s user interface. It uses green/yellow/red 
flags to show the status of the various tools that run on the 
LAN. Additionally, it displays a few lines of explanation about 
the tool that is marked with (***). 
 

 
Figure 6. CWP_Assistant’s user interface. 

 
The CWP_Assistant observes the controller’s actions through 
observation services provided by a CWP_InterfaceWrapper, 
which monitors the CWP’s GUI in the same way as the 
monitoring agents access to the software tools through their 
observation wrappers. 
                                                                 
2 XXX stands for the tool name, e.g. MTCD or STCA. 
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Figure 7. CWP_Assistant and wrapper agents 

(partial UML diagram). 

5. AN EXPERIMENTAL SCENARIO 

5.1 Objective 
The first tests of our agents on the ABS use several 
experimental scenarios one of which corresponds to the 
example presented in Section 2. In this section, we will describe 
in detail this scenario which will show how the assistant and 
monitoring agents behave in situations where a typical fault 
occurs within the support system. This experiment also aims at 
demonstrating the usefulness of our MAS for air traffic 
controllers. 
Precisely speaking, this scenario illustrates the reaction of our 
MAS to the possible unavailability of a tool due to a failure of the 
connection between a control centre and the common flight data-
processing centre. 

5.2 Experimental setup 
The experiment runs on the following connected machines: 

1 two client machines hosting two CWPs for two controllers 
belonging to two different control centers (named centers 
A and B); 

2 two tool servers hosting two MTCD instances for the two 
control centers; 

3 a data server placed in the common flight data-processing 
center. 

5.3 Event sequence 
 

 
Figure 8. All machines run smoothly and  

are fully connected in a handover situation. 
 

We are in a handover situation (as described in 2.2): there are 
aircraft flying from control center B to control center A. At 
first, all machines run smoothly and are fully connected. Each 
controller has unlimited access to the tool server on his LAN 
and can freely obtain the flight data he needs. The assistant 
agents display green labels indicating that the software tools 
are working at full capacity (see Figure 8). 

The controller in center B (called CB) then makes a flight data 
change request (e.g. a demand for exit flight level change for 
an outgoing aircraft). However, due to some accident, control 
center B has been disconnected from the flight data-processing 
center. Due to the disconnection, this request is not sent to the 
data center.  

 

 
Figure 9. Control center B is disconnected from 

the flight data-processing center (1st phase). 
 

Now, CB’s assistant agent detects that a data change request 
was issued by CB. It notifies the data sentinel agent of MTCD 
in B of this request. This agent in its turn informs the 
monitoring and assistant agents in control center A through 
their simulated WAN connection.  

The data sentinel agent of MTCD in A discovers that no such 
flight data change was received from the data-processing 
center. This also means that the flight data concerning an 
aircraft which is controlled by center B are no longer 
accessible from A and therefore unusable for conflict 
detection.  

 

 
Figure 10. Control center B is disconnected from  

the flight data-processing center (2nd phase). 

 
In consequence, the assistant agent of the controller in center A 
displays a yellow flag, informing his controller that MTCD is 
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only available locally, i.e. it only gives correct results for 
aircraft under control of center A (see Figure 9). 

Knowing this, the data sentinel agent of MTCD in control 
centre A signals back to the monitoring agents in B that there 
was on its side a flight data change request which was not 
taken into account. This agent notifies the CB’s assistant agent 
of this incident. 

Finally, the CB’s assistant agent then displays a red flag, 
informing his controller that MTCD is now unavailable (see 
Figure 10). 

6. VALIDATION 

6.1 Technical incidents 
We have used our ABS to demonstrate typical scenarios to 
experts including both researchers in the field of ATC and 
professional air traffic controllers. These scenarios showed the 
reaction of our system to various technical incidents, each of 
which belongs to one of the following categories: 

1 Network failure: the instant unavailability of tools due to a 
failure of the WAN connection between centers (like in the 
scenario presented above); 

2 Timeout error: the instant unavailability of tools due to an 
unexpected timeout error of a tool’s elementary 
computation module; 

3 Machine failure: the instant unavailability of tools due to 
successive failures of tool servers.  

6.2 Feedback 
The first series of demonstration sessions was addressed to 
researchers from Eurocontrol (European Organisation for the 
Safety of Air Navigation). They questioned the kind of 
information exchanged by agents.  They particularly sought to 
understand the advantages of this exchange in comparison to a 
simple duplication of lost data. Furthermore, they stressed the 
need of the involvement of operational points of view in the 
validation process.  
The second series of experiments was therefore concerned with 
professional controllers. They firstly concentrated on the 
CWP_Assistant’s interface and recommended many 
modifications for it. Although they admitted that adequate 
information of tools’ unavailability would be important for them 
(if there was any), they still found it difficult to accept eventual 
technical incidents, to think of incidents and to discuss solutions.   
In order to merge the two different visions for our MAS solution 
to the reliability problem in ATC, we mixed researchers and 
operational operators (i.e. controllers) together in the third series 
of experiments. With the help of the researchers, the controllers 
concentrated on the information they require in each situation and 
gave valuable recommendations for each of scenarios. For 
example, concerning the one we have presented in Section 5, they 
suggested that although this scenario was only related to MTCD, 
in such situation of network failure, all the other tools (i.e. STCA, 
MONA, APW, MSAW) would find themselves in the same state 
as MTCD. 

7. RELATED WORK 
Researchers often take into account human factors in critical 
socio-technical systems [9][21] either by specifying users’ 
working procedures [16][20] or by applying system design 
methods that help to prevent human errors [23][28]. Little 
work has dealt with the daily relation between human 
operators and their powerful equipments, particularly in 
situations where technical incidents happen. On the other hand, 
fault-tolerant methods applied to this kind of system have 
mainly solved purely technical reliability problem. Then they 
could not build total confidence for human operators while 
using automated tools.  

Concerning the use of so-called “sentinels” in fault-tolerant 
component-based systems, as well as in certain MAS, the work 
of Klein, Dellarocas and colleagues [3][13][14] is also related 
to the monitoring of a complex critical system. However, they 
do not use simple communicating sentinel agents but 
complicated “sentinel components” to detect and deal with 
exceptions occurring inside application components. These 
“big” sentinels hence have their own reliability problem. 
Besides, Hägg [11] and Shah et al. [25][26][27] employ 
sentinel agents to detect and recover errors in negotiation 
processes between BDI agents. Nevertheless, these application 
agents have to be sufficiently “small” that the sentinel agents 
can fully inspect their code. This condition does not hold in a 
system having complicated equipments like ATC. 

Regarding other agent-based systems used in ATC, we have 
been motivated by the work of Ljungberg, Rao and Georgeff 
[15][19] on a decision-support tool that helps air traffic 
controllers at an airport to predict optimal landing flows. It is a 
good example of Distributed Artificial Intelligence built into a 
single program. However, we argue that in order to develop 
such assistant tools in the future distributed ATC system (see 
Section 2) it will be necessary to distribute them over 
LAN/WAN networks, and to make them interact with other 
automated tools. In this perspective, they will not assist an 
individual controller but a group of cooperating controllers. 
Moreover, one could recognize that the technical framework 
presented in this paper, which supports the integration of a 
MAS in a distributed ATC simulation environment, would not 
be limited to fault-tolerant objectives. It could be reused to 
build and test agent-based systems that, for example, make 
predictions on the evolution of the traffic.  

8. CONCLUSION AND FUTURE WORK 
This paper describes the way in which a MAS can help in 
mitigating the effects of software malfunction in a complex 
critical system and building confidence for its users, i.e. air 
traffic controllers. Because of safety restrictions, experiments 
on real traffic control are not allowed. Therefore, we have 
developed an ABS, by using eDEP, an ATC simulation 
platform, and DimaX, a multi-agent platform, following the 
FIPA specifications [8]. 

This simulation has been used to demonstrate the usefulness of 
our MAS for the future ATC system to air traffic controllers. 
Indeed, we run typical applicative scenarios that show the 
reaction of our MAS to the instant unavailability of software 
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tools due to incident techniques. Some experiments with 
professional controllers have also been performed in order to 
validate the conformity of the information provided to them 
with what they require in situations where some software tools 
are not available. 

However, the agents themselves, like any supplementary layer 
added to a system, bring their own liability to fault. A natural 
extension of the present work will be to set up mechanism for 
ensuring a degree of fault-tolerance at the agent level, which 
would be of a computational, domain independent nature. The 
possible techniques would include adaptive replication [17] 
and exception handling [4]. 
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ABSTRACT 
 
The identification of risky areas along the railroad in the context 
of a railway system is a complex problem. A railway system is 
spatially and functionally distributed; its subsystems have a high 
degree of autonomy, and are in constant interaction with each 
other and with their geographic environment. In order to 
identify risky areas in the vicinity of rock falls zones we need to 
model and simulate the train behaviours in large scale 
geographic environments. Such a process involves coping with a 
variety of dynamic variables including the train characteristics, 
the environment properties as well as the weather conditions. 
The traditional mathematical and statistical modelling 
techniques which are usually used for the identification of risky 
areas do not satisfy all the requirements of such a complex 
process where spatial constraints are of high importance. In this 
context, multi-Agent geo-Simulation provides a flexible 
approach that can be used to easily simulate complex systems in 
large scale georeferenced environments. The purpose of this 
paper is to present Train-MAGS, an agent-based geosimulation 
tool which simulates train behaviours and identifies risky areas 
in large scale geographic environments. We show how agent-
based simulation opens interesting perspectives regarding the 
development of new functionalities to improve risk assessment 
in the transportation field, more particularly for railway 
networks. 

Keywords 
Agent Based Simulation, Geosimulation, Train Derailment, 
Large-Scale Geographic Space, Risk Assessment.  

1. INTRODUCTION 
Our literature review showed that the agent paradigm and 

multi-agent systems in traffic and transportation are used to 
address several issues in various fields including traffic 
modelling, decision support systems for better transportation, 
logistics planning, sea freight transportation, vehicle 
dispatching, and railway transportation traffic and scheduling  
[1-3].  

In this paper we focus on transportation and traffic 
systems. While most of works in this domain concern 
transportation infrastructures (road or networks) which do not 

really depend on geographical constraints, we are interested in 
large railway systems which are highly constrained by the 
geographical environment. Indeed, we use Agent-Based 
Simulation (ABS) with the purpose of predicting and analyzing 
potential perturbations which are not only related to the 
transportation infrastructure (here, tracks and trains) or to its 
users’ behaviours (here train conductor) - as previous works do -
, but also to the real environment (particularly the geographic 
space) in which the transport infrastructure is situated. We thus 
aim at showing how ABS can solve complex problems in large 
railway systems.   

In this paper we present the Train-MAGS project, an agent-
based geosimulation prototype. Geosimulation is a modelling 
approach which is concerned with the construction of high-
resolution spatial models. These models are used in order to 
explore ideas and hypotheses about how spatial systems operate 
when developing simulation software and tools to support agent-
based simulation, and applying simulation to solve real 
problems in geographic contexts [4]. In this project, we aim at 
investigating the contribution of the multi-agent geosimulation 
to help identify risky areas in the vicinity of rock falls zones in 
large scale geographic environments. We thus use agents which 
have an enhanced knowledge with respect to the virtual 
geographic environment [4]. Moreover, we examine how our 
agent-based approach can be applicable to a wide range of 
complex transportation systems’ simulations where the spatial 
dimension is of major importance. The rest of the paper is 
organized as follows. Section 2 introduces the problem of the 
identification of risky areas in large scale railway systems. 
Section 3 presents the multi-agent geosimulation approach for 
the modelling and simulation of complex system in spatial 
environments. Section 4 highlights the main characteristics of 
Train-MAGS: the proposed multi-agent geosimulation simulator 
for trains. Section 5 presents the main functionalities of the 
Train-MAGS tool and how the simulation results are assessed. 
Section 6 presents future perspectives and extensions of the 
Train-MAGS platform. Finally, Section 7 concludes with some 
summary discussion. 

2.    IDENTIFICATION OF RISKY AREAS 
Canada has a large railway system, with 49,422 kilometres, 

that today primarily transports freight [5]. There are two major 
privately owned transcontinental freight railway systems, the 
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Canadian National and Canadian Pacific Railway. These 
companies operate hundreds of freight and passenger trains each 
day over some of the world’s most rugged terrain, and in some 
of the world’s worst weather conditions. Train derailment 
constitutes a major problem for these companies. In 2007, 465 
derailments were reported in Canada. Apart of their high cost, 
these accidents may lead to the release of hazardous materials, 
and to property and environment damage [5]. 

Train derailment, which is prone to uncertainty, is 
influenced by a large number of constraints such as the geologic 
state of the terrain (which can cause rock falls), weather 
conditions (e.g. rain, snow, fog), human behaviours (e.g. fatigue 
of the conductor), and train characteristics (e.g. braking system, 
weight). In this paper, we define a risky area as a portion of the 
rail track that precedes a possible obstacle (e.g., a rock fall) and 
on which the train should limit its speed so that it can avoid 
derailment if the probable obstacle is confirmed. Even if some 
special sensors can be used (e.g. sensor spots are currently used 
to detect rock falls), monitoring a very large railway system 
remains impossible because it would be too expensive. 
However, developing software to help identify risky areas could 
help railway companies to optimize the train traffic by setting 
adequate speed limits in these areas and allowing higher speeds 
elsewhere. The stakes for railway companies are high since they 
are committed to deliver on time the freight to their customers. 
Any delay implies penalties that increase the railways’ 
operating costs. In such a context, any way of diminishing the 
risks of train derailment may be invaluable. In this project, we 
are particularly interested in rock fall hazard zoning [6], and the 
identification of risky areas in the vicinity of such zones that are 
prone to various types of rock falls. The traditional way of 
identifying such risky areas consists in having an expert follow 
the tracks on a special car in order to visually inspect the 
landscape surrounding the tracks in order to visually identify the 
areas where there is a higher probability of rock falls. Then, for 
each risky area, the inspector needs to assess the maximum 
speed of the train that would enable a train operator to brake in 
time in order to stop the train before reaching a possible obstacle 
on the tracks. Indeed, the distance required to bring a train to a 
complete stop depends on the capacity of the train’s operator to 
detect the obstacles on the tracks, on the train’s speed and on the 
tracks’ conditions (i.e. slipperiness, presence of snow). The 
inspection of risky areas1 is complex, requires a scarcely 
available expertise and can be only carried out on certain 
portions of an extended railway network and at certain times. 
Moreover, the procedure should be done under several different 
circumstances (e.g., different weather conditions). Hence, there 
is a significant interest to develop simulation software that may 
help practitioners to identify such risky ares under different 
conditions.  

Few papers have addressed problems related to the 
simulation of train behaviours from an analytical point of view  
[7-10]. However, the increase of the parameters that must be 
considered to achieve a realistic train operator’s perception of 
obstacles leads to a complex mathematical system. Moreover, 
the formulation of a mathematical model, which includes 

                                                                 
1 In this paper we only consider rock falls as a potential direct 

risk. 

various factors such as the geologic state of the terrain, weather 
conditions, human behaviours, and train characteristics, seems 
complex and not obviously feasible. The complexity of the 
formulation and the resolution of such analytical models 
motivated us to find an alternative approach that addresses the 
simulation of train behaviours while taking into account the 
abovementioned parameters and factors. In addition, other 
modelling and simulations capabilities are required if we want 
to plausibly address the problem of obstacle perception. We 
need to create geosimulations (simulation of phenomena taking 
place in virtual geographic spaces generated from georeferenced 
data) involving autonomous agents that are ‘spatially-aware’ in 
the sense that they are able to perceive the terrain characteristics 
of the virtual geographic world.      

Agent technologies started to penetrate the transportation 
domain only recently [3, 11]. Agents are able to represent 
various kinds of entities in the transportation domain. Agents 
may simulate users involved in traffic, means of transport 
(trucks, trains, planes, ships), or elements of the traffic 
infrastructure. Agents can also be used to simulate the 
behaviours of such entities as well as their interactions with 
each other and with their geographic environment [12]. Thanks 
to the flexibility provided by the agent paradigm for the 
characterization (attributes, capabilities, and behaviours) of 
trains in their context, agent technology is an appropriate choice 
for modelling trains in the transportation domain [13].  

3. GEO-SIMULATION AND MULTI-
AGENT SYSTEMS 

Geosimulation is a modelling approach which is concerned 
with the construction of high-resolution spatial models. These 
models are used in order to explore ideas and hypotheses about 
how spatial systems operate when developing simulation 
software and tools to support agent-based simulation, and 
applying simulation to solve real problems in geographic 
contexts [4]. Geosimulation differs from conventional urban 
simulation in its constituent ‘elements’. Geosimulation models 
operate with human individuals and infrastructure entities, 
represented at spatially non modifiable scales such as 
households, homes, or vehicles. Many of these entities are 
animated (visually and dynamically) [14]. Geosimulation is a 
useful tool to integrate the spatial dimension in models of 
interactions of different types (economics, political, social, etc.) 
[15]. The GIS plays an important role in the development of 
geosimulation models. New methodologies for manipulating 
and interpreting spatial data developed by geographic 
information science and implemented in GIS have created 
added-value for this data [16]. 

[4, 14, 16] presented Multi-Agent Geo-Simulation as a coupling 
of two technologies: the Multi-Agent Based Simulation 
technology (MABS) and the Geographic Information systems 
(GIS). Based on the MABS technology, the simulated entities 
are represented by software agents that can be autonomous in 
their behaviours. They can interact with other agents and with 
the spatial environment. They may be reactive, proactive, 
mobile, social or cognitive [16]. Thanks to the agents’ 
capabilities, we can use them to model and simulate complex 
entities or systems. Using the GIS technology, spatial features 
of geographic data can be introduced in the simulation.  
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Multi-agent geosimulation is a powerful concept that can be 
used to simulate complex systems in georeferenced 
environments. According to our literature review, there exist a 
small number of multi-agent geosimulation candidate platforms 
that can be used to simulate systems in geographic environments 
using the agent paradigm. As examples, we can cite the 
platforms CORMAS (Common-pool Resources and Multi-Agent 
Systems) [17] and MAGS (Multi-Agent Geo-Simulation) [16]. In 
our work we use the MAGS platform to simulate the train 
behaviours in large scale geographic environments [16]. Our 
objective is to show how multi-agent geosimulation opens 
interesting perspectives regarding the development of new 
functionalities to improve risk assessment in the transportation 
field, more particularly for railway networks. 

4. THE TRAIN-MAGS APPLICATION 
In this section we first present an overview of the Train-MAGS 
application design. Next, we focus on the system architectural 
features as well as the involved agent types. 

4.1 Design Overview 
The Train-MAGS application can be thought of as a layered 
architecture as illustrated in Figure 1 (rectangles on the right 
side). We briefly present the four layers of our architecture in 
general as well as its application to the identification of risky 
areas in the vicinity of rock falls zones for trains in large scale 
geographic environments. This design philosophy is inspired by 
the layered simulation model proposed in [4]. It aims at building 
a parallel between the real world (rectangles on the left side, 
Figure 1) and the Virtual Geographic Environment VGE (right 
side). 

 
Figure 1: The Train-MAGS Design Overview 

 
1st Layer: It is the software platform which is in charge of 
reproducing the real geographic world in the VGE. A GIS is 
essential to reproduce real spatial data in the simulation 
environment. In addition, human users need a visual tool to 
supervise the geographic environment. It is thus necessary to 
transform GIS data into a simulation software platform which is 
visual for human users and navigable for software agents. 
Therefore, the Train-MAGS application embodies, at each cell 
of the simulated environment, information elevation, percentage 
slope, slope direction, etc. This information is relevant to the 
simulation of train and conductor’s behaviours.  
2nd layer: It is responsible of modelling the dynamic factors 
influencing the real world. In fact, a GIS cannot describe all the 
spatial data that influence the environment. External factors 
such as atmospheric phenomena and weather conditions make 
the environment much more dynamic and unpredictable. 
Complementary models (such as rock falls) have to be used to 

simulate this dynamism. Data used by these models should first 
be captured from the real world and then continuously updated. 
The model can thus provide a reliable and progressive 
simulation of the environment. In our example, there is a need to 
model dynamic data.  
3rd layer: This is the multi-agent layer. It represents actors 
(those who perform actions in the real terrain) of the real world. 
There is a need for software agents situated in the terrain 
(Concretely, these could be sensors or electronic devices which 
sense their neighbourhood and in which agents are embedded). 
We also need agents in the VGE. Agents within the real world 
may then communicate with agents within the VGE, which 
guarantees a better coherency between data collected from both 
the real and the VGE. Each actor should have a software agent 
as a representative within the VGE. In our example, an actor is a 
Train which would possess a mobile platform in which an agent 
(Train Agent) is embedded. This train interacts with the Train 
Agent via an interface and communicates with its representative 
in the VGE via remote messages. Before they can act (navigate, 
perceive, etc.) within the VGE, software agents need to be 
coherently linked to real world actors.  
4th layer: It represents the functionalities which are domain-
specific. Actually, the three previous layers provide a 
foundation for applications aiming to help decision makers as 
well as users of the simulation platform with the goal of better 
strategic decisions. These applications are located in the fourth 
layer. For our example, the goal of the simulation of the train 
behaviours is to identify risky areas and to propose 
recommended speed limits in the vicinity of rock falls zones. 

4.2 Architecture 
The Train-MAGS architecture includes the simulation core 
engine (corresponding to the 1st layer, Figure 1) which interacts 
with several simulation models (2nd layer) such as the physical 
model (weather conditions: rain, snow, fog), the model of risk 
(rock falls frequency and location), and a braking model which 
represents the braking process of the train in case of obstacle 
detection. The simulation engine also exploits a VGE built from 
GIS data. Finally, the Train-MAGS tool enables us to create two 
types of agents (forming the 3rd layer):  

• Mobile (moving) agents with navigation, perception and 
decision making capabilities [16]. These mobile agents are 
immersed in the VGE and processed by the simulation core 
engine. In Train-MAGS, the Train Agent, which represents 
the train, is a mobile agent.  

• Observer Agents which do not represent any real entities. 
They are responsible for collecting data (see sub-section 
4.2.3).  

All these agents are spatially-aware in the sense introduced in 
Section 2.  Figure 2 illustrates the conceptual architecture of the 
Train-MAGS application. All the elements mentioned above are 
detailed in the following sub-sections. 
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Figure 2: The Train-MAGS Conceptual Architecture. 

4.2.1 Virtual Geographic Environment (VGE) 
The VGE is a grid (bitmap) which is created from topographic 
data of a portion of the Albreda region (Canada), a digital 
elevation model and a data base providing the characteristics of 
the rail tracks. In addition, a module of the Train-MAGS system 
generates a set of other bitmaps [16] which are used by the 
Train Agent to get information about the space surrounding it 
and to simulate its perception process [11]. First, the system 
generates an Elevation Map which provides agents with data 
about the grades and slopes in the simulated area (at each cell of 
the grid). Next, it generates a bitmap called Ariadne Map from 
GIS data [16]. This map represents the rail track which is 
followed by the Train Agent (see Figure 3). The spatial 
information is recorded in a raster mode which enables the 
Train Agent to access the information contained in various 
bitmaps that encode different kinds of information about the 
terrain characteristics (e.g. slope, elevation) and the objects 
contained in the VGE (e.g. bridge, tunnel). 

4.2.2 Train Agent Characterization 
The Train Agent actually represents both the train and its 

operator. As the train representative and similarly to a real train, 
it follows the rail tracks, adjusts its speed according to the 
terrain’s characteristics (mainly according to the grade of the 
terrain), and simulates the braking system. The Train Agent uses 
its navigation capability (see sub-section 4.2.2.2) to achieve its 
goals. As the operator’s representative, it mainly simulates the 
perception of the operator (see sub-section 4.2.2.1). 

The Train Agent (as all agents in the MAGS Platform [16]) 
is characterized by a number of variables whose values describe 
the agent’s state at any given time. We distinguish static states 
and dynamic states. A static state does not change during the 
simulation and is represented by a variable and its current value. 
For example, the train category (e.g., passenger train, freight 
train) is a static characteristic which does not change during the 
simulation. A dynamic state is a state which can possibly 
change during the simulation. For example, the Train Agent’s 
speed and its braking distance to stop can change during the 
simulation depending on the context. Using both static and 
dynamic variables, the system simulates the evolution of the 
Train Agent in the VGE and triggers behaviours depending on 
changes of its states and on the achievement of its goals [16]. 

4.2.2.1 Perception 
Perception is an important agent’s ability which must be 

carefully simulated in a VGE if we want that agents exhibit 
plausible cognitive spatial behaviours. The Train Agent 
simulates both the displacement of the train and the perception 
of its operator who checks for potential problems on the rail 
tracks ahead of the train position. By analogy to human spatial 
perception, we identified several perception modes for the Train 
Agent: 1) perception of terrain characteristics (elevation and 
slopes) in the area surrounding the agent; 2) perception of the 
landscape surrounding the agent (including trees and static 
objects such as rocks on tracks); 3) perception of other mobile 
agents navigating in the agent’s range of perception (pedestrians 
or cars crossing rail tracks, other trains); 4) perception of 
“dynamic areas” with specific properties such as foggy areas. 

Several research works have already tried to address the 
problem of simulating perception in an environment represented 
using a height map. The goal of these techniques was to 
determine the visibility of all the cells of the height map which 
are in an observer’s field of vision. They use lines of sight in 
order to test the cells’ visibility (labelled as visible or not) from 
the observer’s location.  

 
Figure 3: The Train Agent Field of Perception. 

In MAGS [16] we use an approach extending Franklin’s 
algorithm in a way that enables agents to perceive the 
environment as well as other agents in real time [16]. The Train 
Agent’s perception field is represented by an isosceles triangle, 
the main vertex being at the agent’s location, the congruent 
sides of the triangle limiting the perception field and the bisector 
of the main angle corresponding to the agent’s direction of 
movement. The length of the bisector corresponds to what we 
call the Perception Radius (PR). The angle of perception is a 
parameter that can be adjusted (currently set to 160 degrees to 
mimic conductor’s perception in the front of the train) (Figure 
3). Since perception takes into account the terrain elevations, an 
area which is hidden by an elevated portion of terrain will not be 
perceived (obviously) as shown in Figure 3. 

4.2.2.2 Navigation 
In order to optimize the agent’s navigation function, we exploit 
the Ariadne Map (Figure 3). The Train Agent can directly 
access it in order to determine which cells around it correspond 
to its path (rail tracks).  The Train Agent navigates using a 
following-a-path mode [16] which consists in forcing the agent 
to follow a predefined path in the VGE corresponding to the rail 
tracks. The Train-MAGS’s navigation module is able to access 
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the Ariadne Map’s portion which is perceived by the agent. 
Data extracted from the Ariadne Map is then used to compute 
the agent’s next move. Moreover, depending on the terrain’s 
characteristics, the Train Agent adjusts its speed in the VGE in 
order to reflect the real situation. 

4.2.2.3 Objective-Based Behaviours 
In Train-MAGS an agent is associated with a set of 

objectives or goals that it tries to reach. The objectives are 
organized in hierarchies, which are trees composed of nodes 
representing composite objectives and leaves representing 
elementary objectives that are associated with actions that the 
agent can perform. Each agent owns a set of objectives 
corresponding to its needs. An objective is associated with rules 
containing constraints on the activation and the completion of 
the objective. Constraints are dependent on time, on the agent's 
states, and the environment's state. The selection of the current 
agent's behaviour relies on the priority of its objectives. Each 
need is associated with a priority, which varies according to the 
agent's profile. An objective's priority is primarily a function of 
the corresponding need's priority. It is also subject to 
modifications brought by the opportunities that the agent 
perceives or by temporal constraints [16]. 

4.2.3 Observer Agents  
In the MAGS platform, an Observer Agent is an agent 

whose behaviour is dedicated to data collection during the 
simulation process [16]. The Observer Agents are immersed in 
the VGE at specific geo-referenced locations in order to closely 
observe particular phenomena. Their perception and memory 
capabilities are basically used to perform data collection. This 
data is then analyzed in order to better understand the observed 
phenomenon. In the context of train behaviours’ simulation, we 
use Observer Agents located in the obstacles’ surroundings in 
order to observe the changes of the train’s behaviour when it 
detects the obstacle. The train position, added to obstacles’ 
positions, the braking distance, and the terrain grade are used to 
assess the capability of the train to brake before hitting the 
obstacle. Observer Agents are located at the intersection of rail 
tracks and rock fall zones which are represented graphically by 
nested ellipses as shown in Figure 5. The simulation process, 
when the Observer Agent perceives Train Agent, it starts 
collecting data related to the context such as the Train Agent’s 
position, the terrain topology, and the risk level of the area. On 
the basis of this data the system carries out an analysis in order 
to assess the Train Agent behaviour in the vicinity of risky 
areas. The result of such an analysis is presented in Section 5. 

4.2.4 Obstacle Agents  
In the Train-MAGS platform, obstacles are introduced in 

the simulation scenario using a specific type of agent called 
Obstacle Agents. Obstacle Agents represent physical 
obstructions in the real world. This type of agent may be 
stationary or mobile [16]. Stationary Obstacle Agents (SOA) 
include landslide, fallen trees, significant quantities of concrete 
materials, and equipment or freight fallen from other trains as 
well as any object that is liable to pose a danger to the safe 
passage of trains. On the other hand, Mobile Obstacle Agents 
(MOA) include farm livestock or other animals that have 
entered upon the track as well as road vehicles at a level 
crossing. These agents can be immersed in the VGE by the user 

at simulation run time at specific geo-referenced locations.  In 
the current version of the Train-MAGS platform, only 
Stationary Obstacle Agents are implemented. The integration of 
Mobile Obstacle Agents is part of the future works as discussed 
in section 7. 

4.2.5 Weather Conditions  
Certain gaseous phenomena such as smoke and fog are 

related to the VGE’s atmosphere and cannot be modelled using 
agents. They are associated with areas or volumes whose 
properties (boundaries, local density, etc.) change dynamically 
under the influence of external forces like the wind. A good way 
to simulate such phenomena is to use particle systems. The 
MAGS platform provides such tools which have been used to 
simulate tear gas in crowd simulation in urban areas [16]. 
However, in the current version of the Train-MAGS tool, 
atmospheric phenomena such as fog, rain and snow, are not yet 
included since we did not get the corresponding data yet for the 
area in which we conducted our experiments. Weather 
conditions need realistic data to be modelled and simulated.  

4.3 Operating Modes 
The Train-MAGS is a two-phase project which aims at 

providing a multi-agent geo-simulation platform which is able 
to operate in two different modes: Pre-execution mode and 
Real-time mode. The Pre-execution mode is already supported 
by the current version of this simulation tool, while the Real-
time mode is under implementation.  

4.3.1 Pre-execution Mode 
A decision maker may use the Train-MAGS platform in 

order to analyze and assess different situations by simulating 
various scenarios involving stationary and mobile obstacle 
agents. The Train Agent’s behaviours are thus evaluated by the 
decision maker and speed limits are defined with respect to the 
to the risk identification process. Using Train-MAGS in the Pre-
execution the user can achieve the following goals: 

• Identification of risky areas; 

• Elaboration of a table which summarizes the recommended 
speed limits with respect to the identified risky areas in 
large scale geographic environments. 

4.3.2 Real-time Mode 
The Train-MAGS system’s architecture can be coupled to a 

real-time monitoring system. Hence, the Train-MAGS 
application may be used for different purposes taking advantage 
of its simulation capabilities. Indeed, this tool could first keep 
track in the simulation environment of the effective moves of 
the train in the real world using a GPS (Global Positioning 
System) tracking system. Second, it could periodically update 
the information regarding the geographic environment using the 
data sent by sensors and actuators located at specific geo-
referenced positions. Finally, the Train-MAGS could suggest 
possible strategies as soon as an unexpected event is reported. 
Possible events include detection of stationary or mobile 
obstacles along the rail tracks. The proposed suggestions consist 
in modifying the train behaviour such as reducing its speed. The 
Real-Time mode is a challenging objective since it aims at 
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exploiting the Train-MAGS platform as a monitoring system for 
trains. This topic will be discussed in Section 6. 

5. SIMULATION AND RESULTS  
In this section, we discuss the implementation of the Pre-

execution mode. The Train-MAGS application, which 
corresponds to the 4th layer in Figure 1, enables a user to create 
the VGE and to specify the train’s characteristics (category, 
speed, perception radius, etc.). It also offers the possibility to 
create two different types of simulation scenarios: the 
interactive scenario and the modelling rock fall Probabilities 
scenario.  

The interactive scenario allows the user to introduce, at 
simulation run time, geo-referenced rock fall hotspots in the 
VGE. The Train Agent can perceive rock fall hotspots using its 
perception function. When an obstacle is detected on the tracks, 
the Train Agent triggers its braking process. The braking 
process is a complex computation model which takes into 
account several variables such as the train category, the speed, 
the terrain characteristics, and the state of the rail track. These 
variables are collected thanks to the Observer Agents. The 
braking process is launched after the train’s conductor perceives 
the obstacle. Thus, the simulation of the braking process 
strongly depends on the Train Agent’s perception (it also 
depends on the response time of the conductor, but this 
parameter is not considered here for simplification reasons). The 
objective of the interactive scenario type is to determine the 
capacity of the simulated train to brake at a safe distance from 
the perceived obstacle, given the aforementioned parameters.  

Modelling Rock Fall Probabilities Scenario enables the user to 
simulate the risk instead of the event (rock fall zones instead of 
obstacles detection) (Figure 4). Thanks to data generated by 
statistic models of the rock fall phenomenon, rock fall 
probabilities are modelled by nested ellipses and introduced in 
the VGE as shown in Figure 5. Ellipses are used instead of the 
original non regular shapes for simplification reasons. Each 
ellipse represents a probability level. The probability increases 
towards the centre line of these ellipses. Thus, the smallest 
ellipse represents the highest probability of rock fall. From the 
Train Agent’s point of view, a higher probability of rock fall 
corresponds to a higher level of risk. The Train Agent uses its 
perception field and computes the minimum distance from 
which the operator may perceive a possible rock within the zone 
delimited by the ellipse while taking into account the elevation 
of the terrain (grade) measured by the Observer Agents. 

 
Figure 4: The distribution of rock fall probabilities in key 
areas of the Albreda region (Canada). The map was 
generated by statistic models and built upon GIS layers for 

areas of special interest around railway traffic corridor, 
with layers depicting rock fall risks. 

Given this distance, the Train-MAGS application determines 
(using heuristic data provided by Canadian National) the 
maximum speed which is allowed for the train in order to be 
able to brake on time if an obstacle is perceived inside one of 
the ellipses.  

 
Figure 5: Perceiving the Rock fall Zones . 

In order to determine the risk level (from the Train Agent’s 
point of view) depending on the train’s position, the Train 
Agent’s perception field is coloured ranging from green to red, 
where the green colour warrants a safe area and the red colour 
indicates that the train is in a risky area (a risky area, defined in 
Section 2, is thus the distance between the current position of 
the train and the ellipse’s perimeter). Figure 5 presents the 
changes of the colours of the Train Agent’s perception field as a 
consequence of the risk level of the area crossed by the train. 
The computation of the braking distance to the obstacle can also 
be used to determine the maximum allowed speed in order to 
enable the train to stop before reaching the rock fall zone. This 
speed depends on the perception distance (which depends on 
several constraints including the weather conditions and curves), 
the terrain topology (grade of the tracks), and the distance 
between the Train Agent and the rock fall zone. The Train-
MAGS system generates for each rock fall probability other 
output such as a table indicating the maximum allowed speeds 
for a given region (Table 1).  

Table 1: Recommended Speeds for a risky area (the 
considered train weights 24 tons: 3 locomotives+196 cars).  

 

(green) (yellow) 

(red) (orange) 
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Using such a table, the train behaviour may be changed by 
reducing its speed in order to be able to brake on time in case of 
an obstacle is detected (e.g., perceived by the conductor). In this 
table we suppose that the conductor has a limited visibility 
(450m) and that the train is approaching a curve. The zone 
between (73,767) and (123,736) is a zone where rock falls are 
possible. Since this zone is partially hidden -due to the topology 
of the area (the curve)-, a conductor may see (according to our 
simulation) the beginning of this zone only from position 
(48,780), i.e. at a distance of 280m (even if the visibility is 
450m). However, later and once he is at position (60,776), he 
may see the rock fall zone with the highest risk (level 5) at a 
longer distance 430m (probably because at this position, the 
conductor has a better view of the rail track, i.e. no curve). The 
recommended (maximum allowed) speeds are calculated given 
the distance between the train and the rock fall zone (e.g., 280m, 
430m), the risk level (from 1 to 5), and the terrain grade 
measured by the Observer Agents (in Table 1, grades are 
positive, which indicates an uphill rail portion. Recommended 
speeds would have been lower if grades were negative). In 
Table 1, the risky area, defined in Section 2, is the rail track 
portion between (48,780) and (111,736) (1st and last rows of 
Table 1). Beyond this area, the risk level is “0” and the train can 
have a higher speed (e.g., 50Km/h in the last row of Table 1). 

6. TOWARDS REAL TIME RISK 
ASSESSMENT 

The Assessment of risk through the identification of risky 
areas is achieved using the Train-MAGS platform in the Pre-
execution mode. Moreover, with advances in computation, 
telecommunication, and sensing technologies, it is nowadays 
possible to monitor large spaces and particularly the geologic 
state of a given portion of the terrain [6]. 

The next phase of the Train-MAGS project aims at 
synchronizing the simulation environment with the real world in 
order to assess risk in Real-time mode. To this end, the VGE is 
synchronously coupled with the real environment [9], which 
means that the VGE should reflect in real-time what is actually 
happening in the terrain. Therefore, we suppose that trains are 
equipped with GPS devices and that specific sensors and 
actuators are deployed in critical zones to measure certain 
geologic parameters (which are used to monitor certain geologic 
parameters that could indicate a potential rock fall) [6]. The 
Train Agent is synchronously linked to the real train and keeps 
track of its effective moves within the VGE. Each sensor device 
deployed in the terrain has its representative in the VGE: Sensor 
Agent. Sensor Agents are thus in charge of receiving data from 
the physical sensors which are deployed in areas of interest. In 
this case they are considered as situated agents who are not 
really proactive. Nevertheless, Observer Agents communicate 
with these Sensor Agents to collect, filter and fuse data, and 
derive potential risks of rock falls. Hence, the Observer Agent 
that detects a danger notifies the Train Agents which are 
concerned (those which, according to their current geo-
referenced positions, are in the vicinity of and heading to this 
risky zone) by this potential threat. Each Train Agent modifies 
autonomously its behaviour by adjusting its speed when 
approaching the risky area. This briefly summarized our vision 
of a real-time risk assessment system for trains. 

7. DISCUSSION AND CONCLUSION 
Modelling and simulating the train behaviours including the 
geographic environment, the train’s characteristics, the train 
operator’s capabilities (perception and decision making), and 
the obstacles along the track, is a complex process. Several 
simulation tools have been developed to simulate train 
behaviours ranging from the game industry, to the physical 
dynamics of the train [8, 9] ending with traffic analysis and the 
performance assessment of the railway traffic [3, 10]. These 
simulators are generally built using mathematical and statistical 
models. In general, the complexity of these mathematical 
models leads to a trade-off between simplicity and accuracy of 
the model. Increasing the complexity usually improves the fit of 
a model. However, it can also make the model difficult to 
understand and to work with, and can also raise computational 
problems such as numerical instability. For example, when 
modelling the train’s behaviour, we may include different parts 
and sub-systems of the train (the train, the tracks, etc.) in the 
model and would thus get a more detailed view of the system. 
However, the computational cost of adding such a large amount 
of details would effectively inhibit the usage of such a model. 
Additionally, the uncertainty would increase as a result of an 
overly complex system, because each separate part induces 
some amount of variance in the model. It is therefore usually 
appropriate to make some approximations to reduce the model 
to a sensible size. Engineers often can accept some 
approximations in order to get a simpler model. However, in the 
context of the identification of risky areas in large scale 
geographic environment, we need to model and to simulate the 
train’s behaviour as well as its interactions with the spatial 
environment. Fortunately, the multi-agent geo-simulation 
approach provides an efficient tool for the simulation of 
complex systems while taking into account the spatial 
dimension. This approach gives a particular attention to the 
specific features of geographic data which can be introduced in 
the simulation and be accessible for agents. Hence, we used 
such a multi-agent geosimulation approach to model and to 
simulate the train behaviour using spatially aware agents in 
order to identify risky areas in large scale geographic 
environment.  

Railway transportation is a complex system that may 
benefit from artificial intelligence techniques towards the 
development of ‘intelligent transportation systems’ [33]. In this 
paper we showed how certain characteristics of this system may 
be adequately modelled using autonomous agents and multi-
agent systems. The Train-MAGS platform is a proof of concept 
of the proposed agent-based geosimulation prototyping 
approach which relies upon the agent’s capabilities and the 
geographic environment built upon reliable GIS data. This 
simulation tool provides the possibility to build a table of 
recommended speeds in the surroundings of risky areas. This 
table may help to inform the train’s operator about the vicinity 
of risky areas along the rail tracks. The Train-MAGS 
experiment also demonstrates the importance of using realistic 
GIS data in order to build the VGE as well as the identification 
of risky areas. We also showed how agent-based geosimulations 
can contribute to identify risky areas in large scale geographic 
environments. As a result of this kind of modelling, one could 
also meet the growing interest in making traffic and 
transportation more secure, efficient, resource-saving and 
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ecological. Besides, only few research works have been found 
addressing the effects of weather condition on train behaviours, 
we still need to analyze train behaviours under various weather 
conditions. Indeed, the breaking model as well as the Train 
Agent’s perception, navigation, and decision making capabilities 
are deeply related to such factors. Therefore, we are currently 
working on the integration of particle systems in order to extend 
the Train-MAGS capabilities to support gaseous phenomena 
simulation. Such capabilities will allow us to simulate 
atmospheric phenomenon including heavy rains, fog, and snow. 
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ABSTRACT 
The paper presents a model, multi-agent architecture, 
implementation approach and software prototype of a multi-agent 
system for autonomous air traffic control within airport airspace 
capable of automatic detection of potential violations of safety 
policies by individual aircraft and consequent incident 
management. It features a model facilitating practical 
implementation of the concepts of openness and agent-based 
autonomy of air traffic control, social rules, distributed safety 
policy for conflict resolution, as well as predictive analysis and 
P2P interaction–based coordination of aircrafts' motion. The main 
results are validated by simulation.  

Categories and Subject Descriptors 
H.4.2 [Decision Support]: Distributed autonomous control 
system – distributed multi-agent system, autonomous real-time 
control, peer-to-peer behavior coordination.  

General Terms 
Algorithms, Management, Design, Experimentation, Security.  

Keywords 
Multi-agent system, autonomous air traffic control, P2P agent 
interaction, safety policy, incident detection and deconfliction.  

1. INTRODUCTION 
Due to ever increasing intensity of air traffic and increasingly 
rigid safety requirements, development of novel principles of Air 
Traffic Control (ATC) currently became a well recognized 
problem. Indeed, Air Traffic Control Operators (ATCO) are 
currently overloaded with their responsibilities and perform at the 
limit of their capacity. That is why the expected increase of air 
traffic intensity will inevitably exceed the capacity of existing 
ATC systems. An additional factor making the control problem 
highly critical is the increased frequency of abnormal situations, 
such as aircraft hijacking. In such situations, due to their highly 
dynamic and unpredictable nature, ATCO may completely fail to 
monitor and control the situation.  

It is well recognized that satisfactory resolution of the described 
situation hinges upon providing individual aircraft as much 
control autonomy as possible and delegating them end-to-end 
routing and collision avoidance from the very take-off and to 
landing. Consequently, the free flight concept [1] for aircraft 
routing during cruising was formulated in the professional 
community ([8], [9]). This concept implies that every aircraft is 
provided some routing flexibility and the collision avoidance task 
is delegated to the autonomous pilot-assisting software based on 
distributed safety policy. Unfortunately, little attention is paid to 
the development of new principles of ATC within the airport 
airspace (AAS), where air traffic density is much higher while 
control processes are highly dynamic and the physical space is 
very limited.  
Recent achievements in Multi-Agent System (MAS) thory 
provide a convenient framework for modeling and a technology 
for software implementation of autonomous ATC system within 
AAS. Indeed, agent-based modeling of collective behavior of 
distributed autonomous entities constrained by social rules and 
supported by distributed policy for conflict resolution, is the focus 
of many recent MAS research [6]. It provides adequate 
framework for autonomous ATC systems in question. 
Additionally, recent results in Peer-to-Peer (P2P) agent systems, 
in particular, development of reference model of P2P agent 
platform [7] and its subsequent software implementation ([2], [4]) 
provide unique architecture and technology for development of 
open systems with highly transient population of autonomous 
entities of MAS. It is important to note that the last property is 
intrinsic for ATC tasks.  
The paper presents a conceptual model, multi-agent architecture, 
specification technology, and software prototype implementing 
ATC system within AAS. Together, these technologies implement 
the principles of openness and autonomy based on social rules, 
distributed safety policy for conflict resolution, predictive 
analysis and P2P interaction–based coordination of aircraft 
motions. Section 2 outlines basic domain knowledge and 
separation standards intended to assure the safety of aircraft 
motion. Section 3 describes typical behavior patterns of "normal" 
and hijacked aircraft and offers an organization concept of an 
ATC focused on agent-based autonomous path planning and P2P 
conflict resolution strategy. Section 4 outlines the developed 
distributed conflict resolution policy. Section 5 describes the 
developed architecture of a multi-agent ATC. Section 6 illustrates 
graphical user interface of the developed software prototype 
implementing basic ideas of the paper. Section 7 provides the 
conclusion describing the paper contribution and future work. 
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2. AIR TRAFFIC CONTROL DOMAIN 
KNOWLEDGE 
2.1. Airport Airspace Topology 
The high level notion of the airspace topology is intended to 
specify admissible trajectories of aircrafts sharing the airport 
airspace. It is worth noting that airspace topology does not 
address real-time air traffic configuration that concerns positions, 
speeds and courses of the set of aircrafts operating within AAS. 
Fig. 1 and 2 exemplify airspace topology (in horizontal and 
vertical projections respectively) in the New York City area 
uniting three airports, JFK, LaGuardia and Republic.  

Airport airspace encompasses two zones: (i) arrival zone and (ii) 
approach zone. Arrival zone comprises Arrival schemes. E.g., Fig. 
1, shows nine arrival schemes. Every arrival scheme begins with 

the entry point and is specified as a sequence of legs [3] ending 
with the holding area.  

Approach zone comprises approach schemes. These schemes are 
not depicted in Fig. 1 due to too small scale of the figure. Each 
approach scheme begins at the approach zone entry point, consists 
of sequence of legs and ends at an airport runway.  
Movement schemes within each approach zone can be classified 
in two categories (with some vagueness), (i) standard approach 
schemes and (ii) missed approach schemes, where the latter 
occurs in exceptional situations (technical problems, hijacking, 
etc). As a rule, a missed approach results in the necessity to use a 
holding area. Transition schemes bind the destination points of the 
arrival schemes and entry points of approach ones. As a rule, each 
arrival scheme is bound with several approach schemes. 
Transition schemes are used for binding different arrival schemes.  

Fig. 2 depicts movement schemes (arrival and departure) 
projected onto vertical plane. In the left part of the figure, along 
the vertical axis, the echelon scale (from 0 till 30,000 feet with 
quantization step of 1000 feet) is depicted. The vertical projection 
of landing path through the arrival and approach schemes passing 
through SHANK, FRILL, etc. points is given by solid line.  

The specification of the airport airspace topology also determines 
admissible echelons, i.e. admissible altitude ranges for passing 
through exit points of the legs. For example, while passing 
through the SHANK point, aircraft are required to use the 
echelons in between 24, 000 – 30,000 feet. Some legs may be 
bound with holding areas. E.g., all legs of an arrival scheme 
shown in Fig. 2, excluding the CCC leg are bound with the 
holding zone. 

Airport airspace topology specification also contains departure 
schemes. They begin at a runway and end at exit points of airport 
airspace. Since climbing rate of an aircraft typically exceeds its 
descending rate, the exit points are located (in horizontal plane), 
between outer boundaries of the approach and arrival zones. 

2.2. Separation standards 
Separation standards defined for various air traffic–related 
situations constitute the basis for air traffic safety. They must be 
observed at any time by all pairs of aircraft that autonomously 
follow the distributed rule-based safety policy (see subsection 4.3) 
thus assuring conflict-free air traffic. Let us outline the separation 
standards for pair-wise motion of aircrafts for various situation 
cases. 

a. Horizontal movement of aircraft occupying different echelons. 
An attribute determining minimal admissible vertical distance 
between pair of aircrafts if they are flying strictly horizontally is  

further denoted by the symbol AD  (Fig. 3).  

b. "Following" motion of aircrafts within the same echelon of 
altitude. The attributes determining separation standards for this 

Figure 1. Airspace topology within New York City area
(Horizontal projection), and arrival and approach 
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case are BD –minimal longitudinal distance measured along the 

axis line of the legs and CD –minimal distance between 
trajectories of aircrafts measured in directions orthogonal to the 

longitudinal axes of aircrafts (Fig. 4).  

c. Transversal motions of aircraft occupying the same altitude 
echelon It is said that the aircrafts are moving along the cross-cut 
trajectories if the angle value between the trajectories in 
horizontal plane is more than of 70 and less than of 110 degree 
(Fig. 5). The attribute determining the separation distance 
between such aircrafts is denoted as DD . It represents the 
distance from an aircraft to the trajectory crossing point when one 
of the aircrafts has reached the crossing point.  

d. Head motion of aircraft one of which is changing the altitude 

echelon. It is said that aircrafts have head motion if one of them is 
moving horizontally while the other one is climbing or 
descending with a vertical speed AV  if the angle between the 
course of horizontally flying aircrafts and projection of the course 
of the other aircraft onto horizontal plane is more than of 110 
degrees. The distance ED  corresponds to horizontal distance 
between aircrafts when one of them has reached the trajectory 
crossing point. Two cases are to be distinguishes here: (1) the 
aircraft that earlier reached the crossing point is the one changing 
the echelon; (2) the aircraft that earlier reached the crossing point 
is the one flying horizontally. The difference between these cases 
is that ED  in the first case has to be greater than in the second 

case. Denote corresponding values of ED  as 1ED , and 2ED  
respectively (see Fig. 6 and 7 respectively). It is important to note 

that admissible values of 1ED  and 2ED  depend on the vertical 

speed AV of the aircraft changing the echelon.  

Generally, admissible values of distances AD , BD , CD , DD , 

1ED  and 2ED depend on different air traffic–related situation 

attributes. The following admissible values of these distances 
have been assumed: 
• AD = 0.3 km; 

• BD = 10 km in the arrival zone and 5 km in approach one; 

• CD = 10 km in the arrival zone and 5 km in approach one; 

• DD = 20 km in arrival zone and 10 km in approach one; 

• 1ED = 30 km if AV <10 m/sec and 60 km otherwise; 

• 2ED =15 km if AV < 10 m/sec and 30 km otherwise. 
The same attributes are used to represent separation standards 
between normal aircraft and the abnormal one (hijacked, 
technically-challenged, etc.). Moreover, the same policy 
providing safety of normal aircrafts in the presence of a hijacked 
one is used.  

3. TYPICAL BEHAVIOR PATTERNS OF 
NORMAL AND HIJACKED AIRCRAFTS  
Existing model of an aircraft movement intended for landing or 
take-off comprises the typical behavior patterns and negotiation 
procedures with corresponding ATCO as it is described below. 

a. Landing: Entry into airport airspace  
As the aircraft is approaching the arrival zone, its pilot informs 
the ATC operator of the corresponding sector of the arrival zone 
about the intended altitude and entry point of arrival. Depending 
on the situation, the pilot does or does not receive the approval of 
his intention and the assigned arrival movement scheme. 

b. Landing: Behavior patterns within arrival zone  
Within arrival zone, aircraft is moving along the axes of legs 
constituting the assigned arrival scheme. During the movement, 
the aircraft is passing through the arrival zone points, exit points 
of the previous legs and entry points of the subsequent ones.  

Every arrival scheme point is assigned the admissible altitude 
echelons and therefore, while passing through a scheme point, the 
aircraft is permitted to pass through this point using one of the 
echelons assigned by the arrival zone ATCO. At some of these 
points, the holding areas exist. While approaching such a point, 
the aircraft either receives permission to enter the subsequent leg, 
or a request to enter the corresponding holding area where aircraft 
has to wait for ATCO permission to continue movement along the 
next leg of the assigned scheme.  

Vertical plane 

Figure 6. Distance 1ED  

1ED

Vertical plane 

2ED

Figure 7. Distance 2ED  

Horizontal plane Horizontal plane 

Figure 4. Distances BD and CD  

CDBD  

Horizontal plane 

Figure. 5. Distance DD  

DD  

α β 
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While moving inside legs, the aircraft holds assigned altitude 
echelons and changes them during descending according to 
designation made by ATCO.  

When one aircraft has to pass another one (e.g. due to the 
difference in admissible speeds for aircrafts of different classes) 
both have to deviate from the leg axis at predefined distances to 
the different sides. When passing is completed both aircrafts have 
to return to the leg axis and continue the movement. An important 
requirement is that both aircrafts have to return to the leg axis 
prior the current leg exit point. For this behavior pattern the 
aircrafts are permitted to simultaneously perform the passing and 
echelon change evolutions.  

When an aircraft is moving inside a holding area it spends some 
time performing several circles within the holding zone depending 
on the situation. Within the zone, the aircraft stays at a single 
altitude echelon, but it is also may descend to a lower one.  

Vectoring is an important behavior pattern that violates the leg 
boundaries. When vectoring is completed, the aircraft has to enter 
a leg of the same or other arrival scheme. Every vectoring 
requires building a new trajectory. Typical vectoring caused by 
weather conditions, technical problems, etc., implies turning at 30 
degrees from the leg axis in horizontal plane, flying 20 km, and 
returning to the former course using the same or other echelon.  

c. Landing: Movement inside approach zone  
Entry into approach zone requires permission of responsible 
ATCO. While having no permission, the aircraft has to wait inside 
a holding area of the arrival zone. Movement inside the approach 
zone is carried out according to the designated approach scheme.  

If, due to a reason, an aircraft that entered an approach zone 
cannot perform landing, it continues movement using a scheme of 
missed approach linked to its approach scheme while returning to 
one of the landing trajectories. In any case, to entry a new (or 
next) landing trajectory, the aircraft needs permission of ATCO of 
the respective approach zone. Otherwise, it has to wait within a 
holding zone specifically designated for missed approach case.  

d. Take-off  
Prior to take-off the aircraft pilot is assigned a movement scheme, 
informs ATCO about expected take-off time and waits for the 
permission for take-off. Depending on the current air traffic 
situation, the permission may be received with some delay. Inside 
the approach zone the aircraft uses the predefined departure 
scheme. While moving inside arrival zone, the taking-off aircraft 
uses the predefined departure scheme ending at the selected exit 
point of departure from the airport airspace.  

e. Behavior patterns of hijacked aircraft 
An important difference between the motion patterns of normal 
and hijacked aircraft is that the latter may ignore commands of 
ATCO and violate the rules of air traffic within AAS by not using 
predefined legs, waiting zones, entry and exit points, violating the 
predefined echelon altitudes, etc. In the paper, a limited set of 
typical behavior patterns are simulated. They include (a) motion 
of hijacked aircraft within the arrival zone, and (b) patterns using 
"broken line" trajectory. Nevertheless, even such geometrically 
simple patterns significantly complicate the air traffic control 
task. 

4. ATC ORGANIZATIONAL PRINCIPLES  
4.1. Existing Organizational Principle of ATC 
Organizational principles of ATC determine how air traffic 
control functions are divided between ATCO and a pilot operating 
within AAS. Thus, two main roles of the ATC domain 
organization, "pilot" and "air traffic operator"1, are defined. 
According to the currently existing ATC organizational 
principles, the main control operations performed by ATCO are: 
a. Commands to aircraft approaching to the airport airspace: 

A.  Permission to entry into the AAS.  

b. Commands to an aircraft operating within arrival zone: 
B. Permission to transit into next leg.  
C. Directives to transit into lower altitude echelon. 
D. Coordinating evolutions of aircrafts in the passing 

situations.  
E. Permission to entry the approach zone for the subsequent 

landing.  
F. Changing the aircraft speed. 
G. Performing vectoring. 

c. Commands to an aircraft operating within approach zone: 
H. Permission to a taking-off aircraft to take-off.   

Unfortunately, such ATCO–centered organization of ATC is too 
inflexible and unable to support a significant increase of air traffic 
intensity and safety.  

4.2. Advanced ATC Organizational Principle  
The proposed ATC organization is focused on achieving openness 
and autonomy of ATC system supported by distributed safety 
policy for conflict resolution and P2P interaction–based 
autonomous coordination of aircrafts' movement. Like the 
existing ATC organization system, the main participants of the 
proposed one are Aircraft pilots responsible for autonomous 
solution of the tasks A, B, C, D, F and G within the approach 
zone and Air traffic operator whose responsibilities address 
control functions regarding tasks E in the arrival zone, and the 
tasks H within approach zone. Two important issues constitute the 
basis of control functions of the aircraft pilot role: 1) organization 
of information exchange and 2) safety policy determining the 
aircraft's autonomous behavior. Let us consider these issues.  

Autonomous behavior of an aircraft in constrained environment, 
i.e. the airport airspace, assumes that each aircraft has to possess 
the information on current positions, courses and anticipated 
movement plans of other aircrafts operating within AAS, at least 
those that potentially may violate the separation standards. In the 
proposed ATC organization, this information is gathered by 
Aircraft pilot on the P2P basis. The list of potential peers may 
include only the aircraft that follow the same or overlapping 
arrival schemes, and this fact can be used for a significant 
decrease of information exchange. The latter is achieved via 
decomposition of the aircraft of the arrival zone in independent 
groups. The formation of groups and, hence, the decomposition 
may be achieved on the sector basis. Every sector is composed of 
the sequence of legs between two consequent entry points of the 
holding zones and the name of sector's exit point is assigned as 

                                                                 
1 This notice is important since "role–based" Gaia methodology 

[13] for multi-agent ATC system design is below used. 
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identifier of the sector. Thus, every sector is composed of 
sequence(s) of legs belonging to one or several arrival schemes 
that end in particular entry point of holding zone and start in an 
exit point of the previous holding zone. Therefore, the total count 
of the sectors is equal to the total count of holding areas. Note 
that the whole approach zone is considered as a sector.  

The aircrafts operating within the same sector constitute a 
group(Sector). Since arrival scheme may include several sectors, 
each aircraft can belong to several groups depending on its 
behavior strategy and current air traffic situation. That is why 
aircraft groups may be overlapping. Each group group(Sector) is 
assigned the name of the corresponding sector. To further 
decrease the computational complexity and communication 
overhead, it is assumed below that, every aircraft, at any time 
instant t, takes into account potential conflicts within two groups, 
namely the sector of its current location id1 and the next one it 
plans to transit to, id2,. Thus, in the developed approach, to 
compute its own conflict–free behavior in the arrival zone, the 
aircraft relies upon information exchange with aircrafts of no 
more than two groups determined on P2P interaction basis.  

Table 1. Information to exchange among aircrafts of a group 

Aircraft's related data 

Aircraft <Aircraft's identifier> 

Class <Aircraft's class> 

Current sector <id of sector in which aircraft is 
currently located> , 

Next sector <id of sector into which the aircraft has 
to overcome next>  

Update time <time of information update>  

Movement related data   

On Altitude <Current altitude echelon>  

To Altitude  <Next selected altitude echelon>  

In holding area <Holding area usage>  

Information about transition into the next sector  

Transition point <Name of entry point>  

Transition time <Next sector transition time>   

Transition status <Intention /Decision> 

Approach <Flight Scheme within the next zone> 
(For the aircraft of the approach zone)  

Schedule delay  

S-Delay <Accumulated delay>  

F-Delay <Total accumulated delay of the flight>  

According to the proposed ATC organizational structure, within 
the arrival zone, the aircrafts have to autonomously solve the tasks 
A, B, C, D, F, G using P2P communication both for group 
discovery and conflict resolution if any. The information 
circulating among aircrafts of the same group is given in Tab. 1.  

Let us note that every aircraft has to possess the information about 
all aircraft in the group(s) to which it belongs at the current and 
next movement step. Note that the above data are updated and 
sent to group peers when aircraft is making a decision from the set 

{A, B, C, D, F, G}. After receiving the updated information, the 
aircraft software has to assess the impact on safety of its own 
planned movement. If a conflict occurs, to avoid it, the aircraft 
starts P2P negotiation implementing the safety policy (see below).  

4.3. Outline of Safety Policy and Deconfliction 
Algorithm 
Safety policy is a set of rules determining priorities of the aircraft 
of the same group to be addressed by the current movement plan. 
It is implemented as a distributed deconfliction algorithm. To 
reduce the complexity of the deconfliction task, the algorithm is 
performed in two steps. At the first step, every aircraft computes 
its own pair-wise priorities regarding to all peers and at the next 
step the aircraft of the highest priority is automatically "granted" 
permission to use the sector's "resources" of the arrival zone (legs, 
holding zones) according to its current plan. Then these steps are 
iteratively repeated by the rest of the group aircrafts while taking 
into account the resources already reserved by aircrafts of the 
same group that have higher priority. Note that described safety 
policy concerns only landing aircrafts. Presently, the safety policy 
for taking-off aircrafts is still being developed.  

The general approach to priority assignment to normal aircraft is 
as follows. First, relative orders for any pair of the airspace 
sectors are introduced. They are determined as "geometrical" 
precedence of the sectors of airport airspace starting from entry 
points and ending at runways. According to a general rule, an 
aircraft that entered through a particular entry point of its 
trajectory proceeds along a uniquely predefined sequence of the 
sectors of the arrival zone. Thus, it is said that sector iX  

immediately precedes the sector jX  ( iX < jX ) if the former is 

the next sector in the aircraft landing scheme. This relation 
determines the order in which sectors and, therefore, groups are 
deconflicted. At the next step, the aircrafts of the same group are 
prioritized according to the set of safety policy rules given below.  

Rule 1  
If 1Y )( 1Xgroup∈  and 2Y )( 2Xgroup∈  and 1X < 2X  then 

aircraft 1Y  is of higher priority than aircraft 2Y  

Rule 2  
If sector iX  is a sector of the arrival zone and both aircrafts, 

1Y  and 2Y , belong to the sectors that immediately precede the 

sector 1X  then their priorities are determined either by Rule 3 

if no hijacked aircraft exists in AAS or by Rule 4 otherwise.  
Rule 3 

Let two aircrafts, 1Y  and 2Y , have the exit times from the 
current sector )t,Y(t c1ExitSector  and )t,Y(t c2ExitSector  

respectively scheduled. If )Y(t 1ExitSector < )Y(t 2ExitSector  

then priority of the aircraft 1Y  is higher than 2Y one. 

Let us note that, at a time instant, the aircrafts may belong to 
different sectors but plan to use the same sector as next one. In 
this case the rule 3 is also applicable.  
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If two aircrafts occupy different sectors but potentially may 
conflict with hijacked aircraft then special functions 

)SectorX,t(Conf 1
 and )SectorX,t(Conf 2  representing "the degree 

of conflict" are introduced for those sectors. Values of these 
functions are used as the arguments of the next rule,  
Rule 4 
If normal aircraft 1Y 1SectorX∈  and 2Y 2SectorX∈ , and 

)SectorX,t(Conf 1 > )SectorX,t(Conf 2  then priority of the 

aircraft 1Y  is higher than priority of the aircraft 2Y .  

It is worth to note that in practice more rules and more aircraft 
attributes have to be used in the ordering process, e.g., 

• Class of aircraft (it determines the range of aircraft's speed 
depending on the flight altitude and therefore influences of 
aircrafts' preferences);  

• Current echelon occupied by aircraft;  
• Current deviation of the aircraft attributes from the scheduled 

ones;  
• Fuel status, etc.   

The mandatory requirement to any set of rules is that they have to 
provide conflict–free movement of the aircrafts. The selected rule 
sets can differ in resulting efficacy of ATC according to a 
criterion of multiple ones. A natural criteria, for instance, of air 
traffic control is maximal averaged capacity in terms of the total 
count of landing and departing aircrafts subject of safety 
requirements. But this task is out of the paper scope so far.  

5. ARCHITECTURE OF MAS ATC: 
FORMAL SPECIFICATION 
For design of Multi-agent ATC and Airspace Deconfliction 
System (ATC–AD MAS), extended Gaia methodology [10], was 
used. According to it, MAS architecture is specified in terms of a 
diagram representing its meta–model (Fig. 8) and "liveness 
expressions" specifying architecture in more detail. The meta–
model specifies MAS architecture in terms of the roles to be 
assigned to agent classes, active software entities and the 
interaction of these components. Liveness expressions specify the 
role scenarios in different use cases. For the system in question, 
each role is mapped onto particular agent class. Therefore, the 
terms "role" and "agent class", in this application, may be 
denoted by the same identifier, however, the term "agent class" is 
below mainly used. In the developed system, three agent classes 
and one active software entity are introduced as described below:  
 Pilot assistant agent class (PA-agent class); each agent of this 
agent class assists to the pilot of particular aircraft in 
autonomous ATC and in deconfliction situations; 

  Air traffic control operator agent class (ATCO-agent class); 
each agent of this class assists the ATCO in decision making 
within the approach zone (sector);  

 Hijacked aircraft agent class (HA-agent class); each agent of 
this class simulates and monitors of hijacked aircraft behavior. 

Simulation server plays here the role of an active program entity. 
It is intended for simulation and visualization of real time 
situation in the airport airspace. It initiates real time events 
reflecting the results of operation of entities involved in air traffic 
and air traffic control. Simulation server also provides the 
interface to user; in particular, it supports the following functions:  

 Visualization of the current air traffic situation within the 
airport airspace;  

 Generation of the hijacked aircraft trajectory; 
 Visualization of conflicts occurring between pairs of normal 
aircrafts and between normal aircrafts and hijacked ones.  

According to Gaia methodology used in this development, formal 
specifications of agent classes (roles) are done in terms of liveness 
expressions. They specify the basic scenarios of agent classes' 
behavior in various tasks (use cases). In particular, specification 
of PA-agent class consists of 14 liveness expressions 
(Initialization, Simulation cycle, Aircraft grouping, Arrival 
timetable monitoring, etc.) presented in Fig. 8. ATCO agent class 
model consists of two liveness expressions, Query and 
Permission. Agent class simulating movement of the hijacked 
aircraft includes also two liveness expressions that are 
Initialization and Trajectory forecasting. 
Specification of target system architecture in terms of liveness 
expressions is developed in detail but omitted in the paper due to 
lack of the space. These descriptions are done in context of the 
Use cases in which these liveness expressions are involved. In the 
developed model, seven such use cases (tasks of the target 
system), U1–U7 (see Fig.8), are identified:  

 (U1) Initialization of PA-agent class instances and 
initialization of the agent instance simulating the movement 
of the hijacked aircraft; 

 (U2) Execution of simulation cycle; 
 (U3) Grouping of aircrafts (instances of PA-agent class) that 
is used to reduce the overall information exchange traffic and 
to achieve the reduction of computational complexity of the 
airspace deconfliction  algorithm;  

 (U4) Autonomous planning of its own movement within the 
arrival zone by PA-agent class instance representing 
individual aircraft;  

 (U5) Re–planning of own movement within the arrival zone 
by PA-agent class instances in order to avoid conflicts with 
normal and hijacked aircrafts;  

 (U6) Normal aircraft's take-off control;  
 (U7) Control of the arriving aircrafts during their movement 
within the approach zone (from the time when aircraft 
requests permission to entry the approach zone until the 
landing).  

While performing these tasks, corresponding agents implement 
behavior specified in terms of liveness expressions.  
Two types of liveness expression Initiation are used:  

 Agent initiates running of a liveness expression in response to 
input messages, e.g. (Fig. 8), PA- agent class instance initiates 
running of the liveness expression "Take-off" when receives 
the message from ATCO–agent with "Take-off permission".  

 Agent itself initiates a liveness expression as a result of its 
proactive emergent behavior, i.e. as a result of occurrence of 
some event(s) within the environment. An example is the 
initiation of PA-agent class instance liveness expression 
"Grouping" after transition of the normal aircraft from a 
sector to another one.  
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6. GRAPHICAL USER INTERFACE 
Main window (Fig. 10) is used for visualization of the followings:  

• Airport airspace topology (horizontal projection);  
• Current positions of the aircrafts at the simulation time 

instant, and  
• Detected conflicts.  

If, at the current time instant, a conflict between a pair of the 
aircrafts is detected then this conflict is depicted by red line 
connecting the conflicting aircrafts when it exists. Interface also 
depicts some "statistics" of the detected conflicts. For this 
purpose, the sequence of the executed simulation cycles is 
depicted in the lower part of the window; the cycles exhibiting 
conflict(s) are depicted in red color whereas conflict–free cycles 
are depicted in green color.  
The program component supporting graphical user interface 
operation checks separation standards while doing this 
independently of the ATC MAS and depicts the results; this 
functionality may also be used for agent behavior validation.  
Graphical Interface Options assume image scaling, optional 
filtering of data visualized on image, and altitude-based filtering 
of data represented in horizontal projection mode. 
Simulation control includes such functional capabilities as scaling 
of the simulation speed; simulation process interruption in the 
case if a conflict happens, simulation mode control (continuous or 

cycle-based simulation; detection of the time instant when 
hijacked aircraft appears. Additionally, Simulation mode control 
assumes the selection of a movement scheme and visualization of 
aircrafts' movements in vertical plane and manual input of 
hijacked aircraft movement data. 
An example of visualization of an arrival scheme-related situation 
in vertical plane is given in Fig. 10. In this figure, the arrival 
scheme corresponding to sequential passing through points 

Figure 9. Main window 

Air traffic control operator 
agent 

Pilot assistant agent 

Arrival plan

Approach

Simulation 
cycle

Aircraft 
grouping

Permission to 
entry into 

approach zone

Initialization
Simulation server 

Pilot assistant agent 

Aircraft 
group-related 

data

Maneuver 
selection 

Maneuver 
admissibility 

evaluation

Initialization P1

P9

Take-off P11

P10

P12

P6 

P7

P3Simulation 
cycle 

Take-off 
permission

Maneuver 
coordinationP8

U1 

U3

U6 

U4

U7 

U2 
P5 

Query 

Permission 

Conflict 
avoidance

U5

Agent simulating motion of 
hijacked aircraft 

Trajectory 
forecasting P13

Information 
about hijacked 

aircraft

P4 

Initialization 

P2 

Legend:  – Active entity – Role 

P4 - Protocol

U7 – Use case 

 - Liveness expression – Protocol 

Figure 8. Meta-model of Multi-agent Airspace Deconfliction System 

–Rules of pro-active behavior 

124



HANK, FRILL, PLYMOUTH, PROVIDENCE, TRAIT, PARCH, 
CALVERTON, ROBER (see Fig. 9) of the JFK (New York City) 
airport is depicted. In this picture, the trajectories of the aircrafts 
situated in the "proximity" of the legs (at distances less than 5 km) 
constituting this scheme are depicted.  
On the background of this window, horizontal lines depict the 
echelons ("every third" one is depicted in order to make the 
picture readable). In particular, 10 echelons presenting altitudes of 
3000 feet, 6000 feet etc. till the altitude 30000 feet)are depicted in 
Fig. 10. The lines represent altitude boundaries of admissible 
echelons for corresponding legs assumed by the JFK AAS 
topology. Since flexible selection of the echelons is considered as 
a basic strategy of ATC, this graphical interface may be also 
utilized for graphical validation of the agents' behavior and the 
overall deconfliction algorithm.  
Trajectory of the hijacked aircraft movement is specified prior to 
the simulation process. This specification is done in two steps. In 
the first step, its trajectory is specified in horizontal projection. 
This is done via selection of a sequence of the points of the 
trajectory. During the second step, the trajectory is specified in 
vertical projection. For this purpose special interface (not shown 
in the paper) is used. It defines the altitudes of the points selected 
at the first step of the procedure. The time instant corresponding 
to the appearance of the hijacked aircraft is defined manually 
during the simulation procedure. The hijacked aircraft is selected 
from the database presenting the aircraft speed as the function of 
the altitude and aircraft class.  
Specification of particular air traffic situation is based on the use 
of real life timetable of arrival and departure. This is done using 
an editor of graphical user interface. In the developed version, a 
timetable of the JFK airport of New York City was utilized.  

8. CONCLUSION 
The paper offers a model, multi-agent architecture, formal 
specification methodology, and a software prototype 
implementing ATC system. The main paper contribution is that it 
suggests a feasible realization of ATC system featuring such 
important properties as openness and autonomy based on social 
rules, distributed safety policy for conflict resolution (collision 
avoidance), as well as on predictive analysis and P2P interaction–

based autonomous coordination of aircrafts' motions. Design of 
the MAS in question is accomplished using Multi-Agent System 
Development Kit (MASDK 4.0), the recent version of the 
software tool that is being developed by the authors since 2000. 
This software tool implements extended version of Gaia 
methodology [10] in purely graphical style [5].  
The further efforts are need to bring the model of air traffic 
control to the reality. Many aspects should be taken into 
consideration. The most important of them is the necessity to 
enrich the set of the aircrafts' behavior patterns while including 
vectoring, taking-off patterns, "missing approach" behavior, 
pattern intended to change the target airport, influence of weather 
conditions. It is also necessary to enrich the behavior patterns of 
hijacked aircrafts. 
The set of rules determining behavior of aircrafts according to 
distributed security policy has also to be enriched and 
investigated from two view points, computational efficiency and 
quality of the air traffic control, e.g. from capacity view point. 
They should constitute the topics of further research. 
Nevertheless, the paper ideas will basically be preserved.  
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Figure 10. Visualization of movement scheme – 
related situation in vertical plane  
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