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Preface

Traffic and transportation became one of the most vivid application areas for multiagent and agent technology. Traffic and
transportation systems are not only spatially distributed, but also made up by subsystems with a high degree of autonomy.
Consequently, many applications in this domain can be adequately modelled as autonomous agents and multiagent systems.

This is the seventh of a well established series of workshops since 2000. The international workshop series on “Agents in
Traffic and Transportation” (ATT) provides a forum for discussion for researchers and practitioners from the fields of artificial
intelligence, multiagent systems and transportation engineering. The series aims at bringing researchers and practitioners
together in order to set up visions on how agent technology can be used to model, simulate, and manage large-scale complex
transportation systems, both at micro and at macro level.

This seventh edition of ATT was held together with the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), in Valencia (Spain) on June 5, 2012. Previous editions were: Barcelona, together with Autonomous
Agents in 2000; Sydney, together with ITS 2001; New York, together with AAMAS 2004; Hakodate, together with AAMAS
2006; Estoril, together with AAMAS 2008; Toronto, together with AAMAS 2010.

This edition of the workshop attracted the submission of 26 high-quality papers. All papers were thoroughly reviewed by at
least three renowned experts in the field. Based on the reviewers’ reports, and the unavoidable space and time constraints
associated with the workshop, it was possible to select only 15 of these submissions as full papers, leading to an overall
acceptance rate of 58%. In the process, a number of good and interesting papers had to be rejected.

The present workshop proceedings cover a broad range of topics related to Agents in Traffic and Transportation, tackling
the use of tools and techniques based on multiagent simulation, learning, planning and data fusion, to name just a few. We
hope you will enjoy it! Finally, we owe a big “Thank you” to all people – authors, reviewers, hosts and chairs of the AAMAS
conference – who dedicated their time and energy to make this edition of ATT a success.

Valencia, June 2012 Matteo Vasirani, Franziska Klügl, Eduardo Camponogara and Hiromitsu Hattori.
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Modeling the Conscious Behavior of Drivers for Multi-lane Highway Driving 95-103

A. Rosenfeld, Z. Bareket, C. Goldman, S. Kraus, D. LeBlanc and O. Tsinomi
Learning Driver’s Behavior to Improve Adaptive Cruise Control 105-112

16:00 – 16:30 Coffee Break

16:30 – 17:45 Session 4: Data and Simulation

P. Bouman, M. Lovric, T. Li, E. van der Hurk, L. Kroon and P. Vervest
Recognizing Demand Patterns from Smart Card Data for Agent-Based Micro-simulation of Public Transport 113-122

J. Chen, K. Low, C. Tan, A. Oran and P. Jaillet
Decentralized Data Fusion and Active Sensing with Mobile Sensors for Modeling and Predicting Spatiotemporal Traffic
Phenomena

123-131

L. Martinez, G. Correia and J. Viegas
An Agent-Based Model to Assess the Impacts of Introducing a Shared-Taxi System in Lisbon (Portugal) 133-142

17:45 – 18:30 Closing Session





Urban Traffic Network Control by Distributed Satisficing
Agents

Marcelo Lopes de Lima
∗

Department of Automation and Systems
Engineering

Federal University of Santa Catarina
Florianópolis, SC 88040-900, Brazil

mllima@das.ufsc.br

Eduardo Camponogara
†

Department of Automation and Systems
Engineering

Federal University of Santa Catarina
Florianópolis, SC 88040-900, Brazil

camponog@das.ufsc.br

ABSTRACT
This work aims to present a distributed sliding-horizon con-
trol technique, applied to the control of an urban traffic net-
work, where the control agents follow a satisficing approach
coordinating themselves to obtain a solution that is satis-
factory for all agents. The coordination mechanism finds,
in a distributed way, the analytic center of the region where
all agents are satisfied. We show that the analytic center
is also Pareto optimal. Our approach is compared to the
centralized one where, instead of a coordination mechanism,
the solution is based on a fixed and ad hoc adjustment of
the relative importance of the agents.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Anal-
ysis—Optimization; I.2.11 [Computing Methodologies]:
Artificial Intelligence—Distributed Artificial Intelligence; J.7
[Computer Applications]: Computers in Other Systems

General Terms
Performance, Design, Theory

Keywords
satisficing control, satisficing theory, multiagent control sys-
tem, urban traffic control

1. INTRODUCTION
Traffic congestion, delays, and emissions of pollutants are
recurring issues in dealing with urban traffic control and
management [11]. Efforts to mitigate these problems are so
diverse as the improvement and expansion of the existing
traffic infrastructure, the implementation of control policies
with priority for public transport, and the deployment of

∗Supported by Petróleo Brasileiro S/A (Petrobras).
†Supported by CNPq/Brazil under grant #471405/2011-6.

real-time traffic control systems. Examples of such control
systems are PRODYN [6], OPAC [7], RHODES [10], and
feedback control strategies based on the linear-quadratic reg-
ulator [4] and sliding-horizon control [3]. The feedback con-
trol strategies are inherently robust as has been observed in
field studies [5]. Despite the increased performance of such
control systems, the signaling control of traffic lights is car-
ried out mostly using fixed-time control, in part due to its
simplicity and mainly because of its low implementation and
maintenance cost.

The present work aims to simplify the design, installation,
and reconfiguration of sliding-horizon control techniques by
carrying out sensing and control in a distributed manner,
and also to improve the control performance using a satis-
ficing multiagent system. In the satisficing approach, the
agents try to attain a performance at least greater than
their minimum specified level of performance but also, and
very important, they coordinate themselves to obtain a so-
lution that is satisfactory to all agents. The satisficing ap-
proach also allows negotiation between the agents when their
minimum level of performance can not be simultaneously
achieved. Although essentially different in its methods, our
approach has a philosophical trace to Satisficing Theory [12]
and Satisficing Control [8].

The contribution of this paper to the problem of traffic light
control is twofold: one is the definition of a minimum level of
performance and a negotiation policy that permit the agents
to coordinate themselves, and the other is a mechanism for
coordination. The coordination mechanism is to find, in
a distributed way, the analytic center of the region where
all agents are satisfied. We show that the analytic center
is also Pareto optimal. Our approach is compared to the
centralized one where, instead of a coordination mechanism,
the solution is based on a fixed and ad hoc adjustment of
the relative importance of the agents.

2. TRAFFIC DYNAMIC MODEL
In general, urban traffic networks are formed by junctions
connected by road links where traffic lights may be used to
coordinate the conflicting traffic flows. Among other possi-
bilities [4], the traffic lights set the percentage of green time
allocated to each link.

For this work, we will consider the network in Figure 1 with
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eight junctions and one traffic light at each link approach-
ing a junction. We can see that the network of Figure 1
can easily be represented by the directed graph of Figure
2, where the nodes are the junctions m ∈ M and the links
(i, j) ∈ E ⊂M×M are the arcs connecting the nodes. The
state variable xi,j represents the number of vehicles (queue)
in the link from node j to the affected node i.

1 2

3

45678

Figure 1: Example of a traffic network. The state
variable xi,j is the number of vehicles (queue) of
junction i affected by junction j.

6

21

7 4

3

58

Figure 2: Graph for the traffic network example.

The interaction between nodes can be generalized assuming
a generic node m and a set of input nodes I(m) = {i1, ..., iI}
and output nodes O(m) = {j1, ..., jO} as in Figure 3. For
example, node 3 has as input nodes I(3) = {1, 4} and as
output node O(3) = {2}. We divide the input nodes in
internal and external nodes, for example I(7) = II(7)∪IE(7)
where II(7) = {6} is internal and IE(7) = {∅1} is external.

...

...

Figure 3: Illustration of input and output nodes of
a node m.

The mathematical model chosen to describe the dynamics
of the vehicle queues is based on the model known as store-

and-forward [4] and is given by:

xm(k + 1) = Amxm(k) +
∑

i∈I(m)∪{m}
Bm,iui(k) (1)

where the vector xm(k) = (xm,i1(k), ..., xm,iI (k)) are the
queues of junction m influenced by the green time signals
ui(k) = (ui,i1(k), .., ui,iI (k)) at instant k.

In this model, the matrix Am is the identity, matrix Bm,m
expresses the discharge of queues xm as a function of green
times um, and matrices Bm,i, i ∈ I(m), represent how
queues xm build up as queues xi are emptied by ui green
times. Matrices Bm,i, i ∈ I(m) ∪ {m}, are functions of the
physical characteristics of the traffic network. For the ex-
ample, consider node 3 for which its matrices are:

B3,3 = T3

[
−S3,1

C3
0

0 −S3,4
C3

]

B3,1 = T3

[
ρ3,1,∅1 · S1,∅1

C1
ρ3,1,∅2 · S1,∅2

C1
ρ3,1,∅3 · S1,∅3

C1
0 0 0

]

B3,4 = T3

[
0 0

ρ3,4,∅1 · S4,∅1
C4

ρ3,4,∅2 · S4,∅2
C4

]
where T3 is the sample time (in seconds), Si,j is the satu-
ration flow on the link from j to i (in vehicles per second),
ρm,i,j is the rate at which vehicles from link j to i enter link
i to m, and Ci (in seconds) is the cycle time of junction i as
explained below. Notice that the entries in B3,3 are nega-
tive, indicating queue discharge as a function of green time
signals u3.

The concept of cycle time is illustrated in Figure 4. Each cy-
cle is composed by stages meaning a particular traffic light
configuration. In the example of Figure 4, after stage 3,
stage 1 repeats starting another cycle. From one stage to
another there is a lost time added to avoid interference be-
tween stages. The sum of all green times plus lost times in
a junction gives the cycle time for that junction.

lost time

cycle time

stage 1 stage 2 stage 3

green

green

green

Figure 4: Illustration of the cycle time.

Three constraints are imposed to the junctions:

Constraint 1: The sum of the green times um,i and lost
time Lm,i must be equal to the cycle time Cm of the
junction m to which they belong,∑

i∈I(m)

um,i + Lm,i = Cm, ∀m ∈M
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Constraint 2: The green times can not be negative,

um ≥ 0, ∀m ∈M

Constraint 3: The states are always nonnegative,

xm ≥ 0, ∀m ∈M

3. DISTRIBUTED SATISFICING CONTROL
We propose a distributed approach to control the green time
of the traffic lights, where a satisfactory global solution for
the entire network is obtained from the specification of the
agents. A convenient arrangement is to allocate one agent
to each subsystem. In other words, for each node m ∈M =
{1, . . . ,M}, the set of all nodes, we associate an agent Am
belonging to the agent set A = {A1, . . . ,AM}.

Our agents apply a sliding-horizon control scheme where
agent Am, m ∈ M, calculates a plan of actions for Nu

m

periods ahead of the current time so that the evolution in
Np
m periods of its states is satisfactory given a criterion. Nu

m

and Np
m are called control and prediction horizons respec-

tively. Given the initial state xm(0) of subsystem m, the
predicted states are given by the following equation:

x̃m = Ãmxm(0) +
∑

i∈I(m)∪{m}
B̃m,iũi

ỹm = C̃mx̃m

ym(0) = Cmxm(0)

with

x̃m =


xm(1)
xm(2)

...
xm(Np

m)

 , ỹm =


ym(1)
ym(2)

...
ym(Np

m)

 , ũi =


ui(0)
ui(1)

...
ui(N

u
m − 1)

 ,

Ãm =


Am

(Am)2

...

(Am)N
p
m

 , C̃m =

Cm
. . .

Cm

 ,

B̃m,i =


I 0 · · · 0

Am I · · · 0
...

...
. . .

...

(Am)N
p
m−1 (Am)N

p
m−2 · · · (Am)N

p
m−Nu

m

Bm,i

where vector x̃m is the predicted states Np
m periods ahead,

and vector ũm = (um(0),um(1), . . . ,um(Nu
m − 1)) consti-

tutes the action plan of agent Am, Nu
m periods ahead.

The prediction model can be restated in a compact form as:

x̃m = Ãmxm(0) + B̃mṽm (2)

where B̃m =
[
B̃m,m B̃m,i1 · · · B̃m,iI

]
and the vector

ṽm = (ũm, ũi1 , · · · , ũiI ) = (ũm, ũI(m)) is called the plan
profile of agent Am, Nu

m periods ahead.

3.1 Agent Behavior
Our goal through the following subsections is to model an
appropriate behavior for the agents so as to accomplish their
objectives and restrictions and to guarantee, in a distributed
way, individual and global specified criteria of performance.

The satisficing theory [13, 12] proposes that the objectives
of the agents should be evaluated using two indexes, one re-
lated to the goals (which therefore should be maximized) and
the other related to the cost of energy or resources (which
therefore should be minimized). These indexes will serve as
a basis for establishing the behavior of the agents.

Definition 1. Selectability (fS) is the index of the use-
fulness of the actions with respect to the objective.

Definition 2. Rejectability (fR) is the index of the cost
associated with the actions.

While the selectability function is normally concave since
the usefulness of the actions should be maximized, the re-
jectability function is typically convex because the cost of
the actions should be minimized.

Selectability and rejectability are the building blocks for the
utilities of the types of agents that will be considered in the
sequel, namely selfish and satisficing agents.

3.2 Selfish Agents
Defining the symmetric matrices Q̃m � 0 (positive semi-

definite) and R̃m � 0 (positive definite) as:

Q̃m =

Qm . . .

Qm

 , R̃m =

Rm . . .

Rm


of appropriated dimensions, we define the selectability and
the rejectability of agent Am by the following functions:

fS,m = −x̃′mQ̃mx̃m (3)

fR,m = ũ′mR̃mũm (4)

The selfish utility of agent Am is given by:

fm(ṽm,xm(0)) = fS,m − αmfR,m, αm > 0

that depends on its plan profile and on its initial state (initial
queues). From now on we will omit the dependence of the
utility on the initial state.

The maximization of the selfish utility expresses the desire
of the agent to maintain the queues and the green times
close to zero, the stable equilibrium.

3.3 Satisficing Agents
In a cost versus benefit analysis, any action that results in
an acceptable selectability compared to the rejectability is a
defensible choice that belongs to the satisficing set.

Definition 3. Satisficing Set: the region S of the do-
main where the difference between selectability and an ad-
justed rejectability results more than a minimum acceptable
level of utility, formally

S = {ṽ|f(ṽ) = fS(ṽ)− α · fR(ṽ) ≥ β}
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with α ∈ [0,∞) denoting the sensitivity to cost with respect
to the benefit and β ∈ R being the minimum acceptable level
of utility, or satisfaction. Any solution that belongs to the
satisficing set is a satisficing solution.

The objective of the satisficing agent Am is to find a satisfic-
ing solution, where its selfish utility fm results greater than
a minimum level of satisfaction βm. For the urban traffic
application, we define

βm = Np
m(−xs′

mQmxs
m) (5)

where xs
m are the maximal, but still satisfactory, average

queues of junction m. This definition of βm expresses the
desire of the agent to maintain the average queues less than
the satisfactory maximal queue.

3.4 Coordination of the Satisficing Agents
In a multiagent system, the agents should coordinate them-
selves to reach a satisfactory collective solution.

The classical way to define a global utility H for a set of
M agents is through a scalarization approach [1] according
to which the interests of selfish agents are aggregated as a
function

H(ṽ) =
M∑
m=1

wmfm(ṽm), wm > 0, ∀m ∈M

of the vector ṽ = (ũ1, . . . , ũM ). The decision process is
centralized and defined by the following problem over ṽ:

PC :

Maximize H(ṽ) =
M∑
m=1

wmfm(ṽm)

subject to ṽ ∈ D̃
(6)

where D̃ is a generic convex domain. One characteristic
of this problem is that any optimal solution ṽ? to problem
PC is Pareto optimal. Another characteristic is that the
adjustment of wm defines a particular solution in the Pareto
set.

In a distributed system, on the other hand, a solution is
reached by the interactions of the agents. Selfish agents
produce a Nash point that is normally not Pareto. Instead,
we will apply the satisficing agents which solve the following
satisficing problem:

P S
m :


find ũm ∈ D̃m
such that: fm(ṽm) ≥ βm

fj(ṽj) ≥ βj , ∀j ∈ O(m)

(7)

where each agent Am tries to find a satisficing solution for
itself and for the affected agents.

The interactions of the satisficing agents will produce a so-
lution in the jointly satisficing set,

S , {ṽ : fm(ṽm) ≥ βm,∀m ∈M}
Notice that in this case we have not just one solution but a
set of possible solutions.

Theorem 1. The analytic center ṽ† = (ũ†1, · · · , ũ†M ) of
the satisficing set S = {ṽ : fm(ṽm) ≥ βm, ∀m ∈ M} is
Pareto optimal and equivalent to the centralized solution with
wm = 1/(fm(ṽ†m)− βm).

We call coordination the process by which the agents, in a
distributed manner, try to find a jointly satisficing solution
and, in particular, the analytic center of the satisficing set.

The constrained analytic center of the satisficing set is ob-
tained in two phases. In phase I a feasible solution ṽs for
which fm(ṽs) ≥ β for all m ∈ M is calculated and used in
phase II for the computation of the analytic center ṽ† of the
satisficing set.

The phase I problem of agent Am is of the form:

F I
m(ũ¬m) : min

ûm

F I
m(ûm|ũ¬m) =

∑
j∈Õ(m)

sj

s.t. : fm(ũm|ũ¬m) ≥ βm − sm
fj(ũm|ũ¬m) ≥ βj − sj , ∀j ∈ O(m)

sj ≥ 0, ∀j ∈ Õ(m)

ũm ∈ D̃m

(8)

where ûm = (ũm, s̃m), s̃m = (sj : ∀j ∈ Õ(m)), Õ(m) =
O(m)∪ {m} and ũ¬m denotes the action plan of the agents
but agentAm. Let v̂I = (ûI

1, . . . , û
I
M ) be an optimal solution

to the set of problems {F I
m}m∈M. If F I

m(v̂I) = 0 for all m ∈
M, then the satisficing set is nonempty. If F I

m(v̂I) > 0 for
any m, then there does not exist a simultaneously satisficing
solution for all the agents, in which case {m ∈M : sm > 0}
is the subset of agents that cannot be satisfied.

Phase II solves, starting from the solution found in phase I,
the set {Fm}m∈M of problems given by:

Fm(ũ¬m) : min
ũm

Fm(ũm|ũ¬m) =

−
∑

j∈Õ(m)

log(fj(ũj |ũ¬j)− βj)

subject to ũm ∈ D̃m

(9)

where the functions Fm(ũm|ũ¬m), called log barrier func-
tions [1], force the solution to the analytic center of the
satisficing set.

Phase I and II problems can be solved by the agent set A
using a distributed interior-point method. The convergence
analysis presented in [2] ensures that the iterative solution
of the set of problems in phase I and II converges to the
analytic center when only nonneighboring agents iterate in
parallel.

In every cycle, the coordination of the agents is achieved
by the calculation of the analytic center of the problem set
{P S

m}m∈M. According to Theorem 1, the analytic center re-
sults in a Pareto solution. This Pareto solution is equivalent
to that obtained by a centralized solution if wm where not
fixed. However, the centralized approach uses fixed weights
that are adjusted in an ad hoc manner.
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3.5 Negotiation
From the definition of the satisficing set it can be seen that
a smaller sensitivity α and/or a smaller satisfaction β lead
to bigger satisficing sets. So, when the agents can not be
simultaneously satisfied, they have to negotiate adjusting
their sensibility to cost or adjusting their minimum level of
satisfaction.

4. SIMULATION RESULTS
This section presents the application of distributed satisfic-
ing agents to the control of the 8-junction urban traffic net-
work shown in Figure 1. The experimental analysis aims to
assess the performance of the distributed satisficing control
approach by comparing it to a centralized approach. The
satisficing agents solve the set {P S

m}m∈M of analytic center
problems and a centralized agent solves PC, while respecting
the constraints described in Section 2.

The centralized problem and the analytic center of the sat-
isficing problems were simulated in Matlab and solved using
CVX [9], a package for specifying and solving convex pro-
grams.

4.1 Experimental Setup
There are only four parameters that must be defined by
the user, with the advantage that all of them have physical
meaning. They are:

P.1) The satisfactory maximal average queues xs
m: an aver-

age queue that still is acceptable at each link of junc-
tion m.

P.2) The capacity of the links: the maximum number of
vehicles that the link can support.

P.3) The prediction horizon Np
m.

P.4) The cycle time Cm.

For this simulation, the satisfactory maximal average queue
was defined as two times the maximal discharge obtained
by the nominal green time set as unom

1 = (40, 40, 40) and
unom

2..8 = (60, 60), that is, xs
m = −2Bm,munom

m for all m ∈M.
The capacity of the links were set as three times the satis-
factory queue, but in a real application the capacity is easily
assessed based on the dimensions of the link. The prediction
horizon was chosen equal to 5 minutes (300 seconds) and the
cycle time equal to 2 minutes (120 seconds), for all agents.

The remaining parameters were set according to the follow-
ing rules:

R.1) Tm = Cm: the sample time Tm was made equal to the
cycle time for all agents.

R.2) Nu
m = Np

m: the horizons were made equal in all junc-
tions.

R.3) Matrix Rm = 0: in our simulation traffic signaling
does not incur any cost. Green times should not be
penalized.

R.4) Matrix Qm = diag(1/capm,i : i ∈ I(m)): the matrix
Qm was set diagonal with its elements equal to the
inverse of the capacity of each link that approaches
junction m, as proposed in [4].

R.5) βm = Np
m(−xs0′

m Qmxs0
m), where

xs0
m,i = max(xs

m,i, xm,i(0)) ∀i ∈ IE(m)

xs0
m,i = xs

m,i ∀i ∈ II(m)

With the original definition of βm (see Equation 5), an ex-
cessive number of vehicles coming from outside may become
impossible for the system to maintain all the queues less that
the satisfactory maximal average. In rule R.5, the original
definition of βm is modified to incorporate the negotiation
policy chosen for the network. For this experiment, the ne-
gotiation policy is to maintain the specification of the in-
ternal nodes and degrade only the nodes receiving vehicles
from outside the system allowing them to accumulate more
vehicles. Observe that because nodes 2, 3, 5 and 6 have only
internal input nodes, their minimum level of satisfaction is
not modified by rule R.5. On the other hand, nodes 1, 4, 7
and 8 tolerate external queue sizes greater than the satis-
factory, tolerating at least their actual number of vehicles,
whatever it is.

The network physical parameters, saturation flows Si,j in
vehicles per minute and conversion rates ρm,i,j in percent-
age, are in the appendix.

4.2 Experimental Analysis
The analysis of the satisficing agents was made against a cen-
tralized one in which weights were set wm = 1 for allm ∈M.
Notice that the tuning of the centralized agent is based on an
ad hoc definition of weights. We are considering a constant
arrival of vehicles in node 1 and 4 equal to (5, 15, 10) and
(10, 10) respectively, and initial queues x1(0) through x8(0)
as (10, 50, 20), (60, 20), (5, 35), (120, 30), (10, 20), (9, 20),
(15, 20) and (17, 9).

Figures 5 to 10 show the evolution in 10 cycles (20 minutes)
of the vehicle queues, the calculated green times, and the
utility of the satisficing and centralized agents, respectively.
The bars show the vector components stacked from below.
For example, in Figure 5, the components of the vector x1 =
(x1,∅1, x1,∅2, x1,∅3) are in black, gray and white respectively.

We can see in Figures 5 and 6 that the satisficing agents
A1 and A4 accumulate more queues than the centralized
agent although agent A4 starts to decrease its queues after
a moment of increase. Something impedes A1 to maximize
its time of green and also forces A4 to postpone in 1 cycle
any relevant green time.

The reason is that agents A1 and A4 have a compromise
with the satisfaction of the internal agents due to the solu-
tion of the satisficing problems and due to the negotiation
scheme induced by rule R.5. Due to the negotiation rule,
we can see in Figures 5 and 6 that agents A1 and A4 adjust
their minimum level of satisfaction (dash-dot line) to per-
mit lower utilities (solid lines) and to accommodate more
queues. Remember that the policy we chose was to main-
tain the specification of the internal nodes and degrade only
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Figure 5: Control in junction 1.
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Figure 6: Control in junction 4.

the nodes receiving vehicles from outside the system. This
compromise is difficult to obtain in the centralized control
due to its ad hoc nature.

In Figures 7 and 8 we see that the discharge made by the
centralized agent overcharges node 5 and node 6 making it
unable to maintain the sum of the corresponding queues be-
low the maximal satisfactory (horizontal line indicated by an
arrow) even with the maximal of green (120 seconds). In the
centralized case, the utility of nodes 5 and 6 are very below
the minimum level specified for agents A5 and A6 (horizon-
tal dash-dot line) indicating their dissatisfaction. We chose
to show only the internal junctions 5 and 6 because they
suffer the highest effect.

The satisficing agents also seem to present a better behavior
in the presence of model error. Figures 9 and 10 show the
behavior of junction 5 and 6 when the rates of flow coming
from junction 4 are greater than what is expected by the
nominal model. In this case, instead of 30%, the flow from
junction 4 to junction 5 is 70% of the junction total flow.
We see that the satisficing agents maintain the queues in a
satisfactory level while the centralized agent builds up the
queues even more.
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Figure 7: Control in junction 5.
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Figure 8: Control in junction 6.

5. CONCLUDING REMARKS
The satisficing approach offers a mechanism of coordination
that, applied to an urban traffic network, has the following
advantages if compared to a centralized classical approach:

• the adjustment of the agents are based on physical pa-
rameters instead of the ad hoc adjustment of weights;

• the definition of the minimum level of satisfaction gives
meaning to the control objectives;

• the negotiation policy offers a mechanism to alleviate
the control objectives in case of infeasibility and is flex-
ible enough to accommodate other strategies. For ex-
ample, instead of penalizing only the junction that re-
ceives vehicles from outside the system, one can define
a negotiation policy where all the agents reduce their
minimum level of satisfaction;

• and it seems to be more robust to model error.

It is also worth to mention that any satisficing solution, not
only the analytic center, is good enough to make the agents
satisfied. This fact can be used to simplify the distributed
algorithm and reduce decision time.
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Figure 9: Junction 5 under model error.
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Figure 10: Junction 6 under model error.
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APPENDIX
A. PROOF OF THEOREM

Theorem 1. The analytic center ṽ† = (ũ†1, · · · , ũ†M ) of
the satisficing set S = {ṽ : fm(ṽm) ≥ βm,∀m ∈ M} is
Pareto optimal and equivalent to the centralized solution with
wm = 1/(fm(ṽ†m)− βm).

Proof. (1) An optimal solution ṽ? = (ũ?1, · · · , ũ?M ) to
the unconstrained centralized problem PC : maxṽH(ṽ),

where H(ṽ) ,
∑M
m=1 wmfm(ṽm) and wm > 0, is Pareto op-

timal. An optimal solution is obtained when ∇ṽH(ṽ?) = 0,

that is, when
∑M
m=1 wm∇fm(v?m) = 0, because H is con-

cave. (2) On the other hand, the analytic center of the satis-
ficing set S is obtained by solving the problem minṽ{F (ṽ) =∑M
m=1− log(fm(ṽm)−βm)}. A solution is given by∇ṽF (ṽ†) =∑M
m=1

1

fm(ũ
†
m)−βm

∇fm(ũ†m) = 0 because F is convex. From

(1) and (2), it follows that the analytic center coincides with
the solution obtained by solving the centralized problem
with wm = 1/(fm(ṽ†m)− βm).

B. NETWORK PHYSICAL PARAMETERS
The network physical parameters, saturation S in vehicles
per minute and direction rate ρ in percentage, are: S1,∅1 =
5, S1,∅2 = 30, S1,∅3 = 15, S2,1 = 20, S2,3 = 25, S3,1 =
5, S3,4 = 25, S4,∅1 = 30, S4,∅2 = 15, S5,1 = 5, S5,4 =
7, S6,1 = 9, S6,5 = 7, S7,6 = 7, S7,∅1 = 10, S8,7 = 7,
S8,∅1 = 5, ρ2,1,∅1 = 25, ρ2,1,∅2 = 70, ρ2,1,∅3 = 25, ρ2,3,1 = 40,
ρ2,3,4 = 80, ρ3,1,∅1 = 7, ρ3,1,∅2 = 7, ρ3,1,∅3 = 20, ρ3,4,∅1 = 70,
ρ3,4,∅2 = 70, ρ5,1,∅1 = 8, ρ5,1,∅2 = 8, ρ5,1,∅3 = 20, ρ5,4,∅1 =
30, ρ5,4,∅2 = 30, ρ6,1,∅1 = 60, ρ6,1,∅2 = 15, ρ6,1,∅3 = 35,
ρ6,5,1 = 60, ρ6,5,4 = 90, ρ7,6,1 = 90, ρ7,6,5 = 90, ρ8,7,6 = 90,
ρ8,7,∅1 = 50.
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ABSTRACT
Traffic congestion is a serious problem in urban life causing
social problems such as time loss, economical loss, and envi-
ronmental pollution. Therefore, we propose a multi-agent-
based traffic light control framework for intelligent transport
systems. For smooth traffic flow, real-time adaptive coordi-
nation of traffic lights is necessary, but many conventional
approaches are of the centralized control type and do not
have this feature. Our multi-agent-based control framework
combines both indirect and direct coordination. Reaction
to dynamic traffic flow is attained by indirect coordination,
and green-wave formation, which is a systematic traffic flow
control strategy involving several traffic lights, is attained by
direct coordination. We show the detailed mechanism of our
framework and verify its effectiveness through comparative
evaluation through simulation.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Distributed Arti-
ficial Intelligence

General Terms
Algorithms, Performance

Keywords
ITS, intelligent traffic control, multi-agent coordination

1. INTRODUCTION
Traffic congestion in urban areas causes serious problems
in terms of economic loss, time loss, and environmental
pollution. Major solutions to eliminate traffic congestion

are intelligent car navigation [5][8] and traffic light control.
The former technology, such as the Vehicle Information and
Communication System (VICS) in Japan, and the Probe-
Car Information System, has progressed rapidly. VICS is an
innovative information and communication system that en-
ables one to receive real-time road traffic information, This
information is edited and processed by the VICS Center and
displayed on the navigation screen in text or graphical form.
The Probe-Car Information System uses cars as mobile sen-
sors for collecting data, which are sent to a central server to
produce new information for avoiding congestion and pro-
viding efficient navigation.

Even though computer-based traffic light control systems
are based on centralized control, they have disadvantages.
Therefore, we focus on improving such traffic light control
systems.

The basic steps in the traffic light control design process is
deciding on phases and calculating the control parameters.
The various traffic flows at an intersection are allowed to
move in phases. Each phase of a signal cycle is devoted to
only one traffic flow. The control parameters define the tim-
ing of switching phases. The major control parameters are
”cycle length”, ”clearance”, ”split” and ”offset” in the traffic
light control system.

• Cycle length is the time required for one cycle of traffic
light phases (e.g. green -> yellow -> red). Figure 1
shows an example of this.

• Clearance is the time it takes to clear an intersection
area.

• Split is the percentage of cycle length allocated to each
traffic light phase.

• Offset is the time lag between green indications of adja-
cent traffic lights. Figure 2 shows an example of offset
control (green-wave formation).

Traffic congestion mainly begins at intersections. Traffic
flow fluctuates dynamically during morning and evening rush
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Figure 1: Example of phases and cycle

Figure 2: Example of offset control

hours. Moreover, unexpected events, such as road accidents,
and unexpected popular events dynamically cause traffic
congestion. Therefore, it is important to be able to appro-
priately align these parameters at any time.

The current traffic light control systems can be classified into
two types; static, which use the above parameters calculated
beforehand, and dynamic, in which traffic flow is monitored
and the values of the parameters are adapted. These param-
eters are aligned dynamically (as in MODERATO in Japan
and OPAC[4] in US). In the static type, several parameter
sets are calculated beforehand according to each traffic flow
situation during rush hour, daytime or nighttime. While this
type is effective in envisioning changes in traffic flow, it can-
not deal with unexpected situations. In the dynamic type,
traffic flow is detected by sensors installed along roads, and
traffic lights are controlled based on this sensor information.
However, current systems are of a centralized control type,
which is unsuitable for the management of dynamic complex
traffic flow.current systems are of a centralized control type

In MODERATO, real-time information is not utilized appro-
priately. This is mainly due to its algorithm, which selects
a favorable parameter set matched to each traffic flow situ-
ation from the several parameter sets calculated beforehand
by off-line simulation.

For offset control in current traffic control systems, when
one-way traffic flow becomes quite high during the morn-
ing rush hour from residential areas to urban areas, green-
wave offset control (through-band offset control) is adopted.
In green-wave offset control, offset timing of several traffic
lights are aligned to allow each car to move without stop-
ping at a traffic light. Ideally, the group of traffic lights
that make up the green-wave control should be organized

dynamically. However, in the current systems, these groups
are pre-defined, and it is impossible to freely construct the
green-wave control anywhere.

The essential factor for next generation traffic light control
systems are real-time adaptability, to be able to quickly react
to the dynamic traffic flows. To achieve this, we believe that
a framework in which each traffic light is autonomous and
coordinates with others to react to dynamic traffic flow is
necessary.

We propose a traffic light control framework based on a
multi-agent paradigm to react to dynamic traffic flow, de-
crease the number of cars stopping at a red light, and adap-
tively form a green-wave control group. An agent is imple-
mented at each intersection for controlling the several traf-
fic lights that belong to that intersection. Our framework
combines indirect and direct coordination. That is, reaction
to dynamic traffic flow is attained by indirect coordination
using a spring model based on stigmergic dynamics, and
green-wave organization is achieved by direct coordination.

In section 2 we discuss related studies and explain the major
control parameters of traffic lights in Section 3. In Section 4,
we discuss our proposed framework and show the evaluation
results. We conclude our discussion in Section 5.

2. RELATED STUDIES
One approach for obtaining optimized parameters is using
a genetic algorithm (GA). Takahashi et al. proposed an
offset optimization model using a GA [13]. In this model,
offset values of traffic lights were used to represent a chro-
mosome. Sánchez et al. proposed another parameter opti-
mization model using a GA [10]. In this study, optimized
cycle length, clearance time, split, and offset could be calcu-
lated. Mikami et al. proposed a multi-agent-based model in
which reinforcement learning is used to optimize the param-
eters [6]. In this model each agent performs reinforcement
learning independently, and each parameter set, which is cal-
culated by each agent, is aggregated to the central control
module. Then the central control module uses a GA to find
the optimized parameter set. Balaji et al. also proposed
a multi-agent-based centralized optimization methodology
using a GA [1]. Kosonen et al. proposed a multi-agent
real-time traffic light control system using fuzzy inference,
and Schmöcker et al. proposed a multi-objective traffic light
control method using fuzzy logic [12]. The membership func-
tions of fuzzy logic are optimized using a GA executed in a
microscopic traffic simulator. These GA-based approaches
are attractive when there are many parameters to be opti-
mized, but require large calculation cost and time until con-
vergence. A more optimized solution can be derived with
centralized calculation approaches, but these approaches do
not exhibit real-time adaptability.

Another approach is a stochastic control model. Yu et al.
achieved traffic light parameter optimization as a decision
making problem of a controlled Markov process [14]. They
say that the stochastic approach is suitable for the traffic
light control problem, especially under the conditions of high
volume but not saturated traffic demand. However, when
the size of the road network is increased, the dimension num-
ber of the proposed control framework increases, and more
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memory space and computation time become necessary.

On the other hand, there are several related studies based on
the distributed approach to achieve real-time adaptability.
Nishikawa proposed an offset control algorithm based on the
phase oscillator model [9]. In this study, the functions of
each traffic light were modeled as oscillators and traffic lights
were coordinated through synchronization of each oscillator.
Satoh proposed a split control model based on the spring
model [11]. In this study, traffic flow was assumed to be the
same as the force of a spring. The split ratio was modeled as
the force balance of a spring. Coordination between adjacent
traffic lights was also modeled as a spring model. Traffic
lights were connected with a spring, and the split ratio of
traffic light was assumed to be the same as the force of a
spring. Oliveira proposed a multi-agent-based split control
approach [3]. Each agent calculates the congestion degree
independently and controls its split value to decrease the
total congestion degree.

These conventional approaches are all attractive, but their
performances were evaluated using quite simple and small-
scale road environments, and most of them concerned about
only a few parameters. Therefore, it is difficult to apply
them to more complex and large-scale environments.

3. MULTIAGENT CONTROL
In this chapter, we describe our multi-agent based traffic
light control framework, our proposed split control model
with spring model by indirect coordination, and our pro-
posed offset control and green-wave formation model by di-
rect coordination. As for agent based approach, useful sur-
vey was done in [2].

Generally, indirect coordination exhibits adaptability and
low coordination cost but optimality cannot be ensured. On
the other hand, direct coordination exhibits optimality but
requires high coordination cost and longer convergence time
than indirect control. A traffic light control consists of split
and offset controls. To quickly reduce the waiting queue
of cars at an intersection, control of the split value of each
traffic light is necessary. Therefore, real-time adaptability
is necessary for split control. On the other hand, to form
a green-wave control group with several traffic lights, some
deliberate coordination is necessary. Therefore, in our pro-
posed framework, split control is attained using the indirect
type of coordination, and offset control is attained using the
direct type of coordination.

For split control, each agent calculates the split value au-
tonomously by referring waiting queue of cars at a traf-
fic light it directly controls. Each agent does not interfere
with neighbor agents. That is, there is no direct coordina-
tion cost; therefore, real-time control can be achieved. On
the other hand, functions of each agent indirectly affect its
neighbor agents through the change of traffic flow. This
indirect coordination is generally called ”stigmergy1”.

For offset control in current traffic control systems (e.g.
MODERATO), several groups that may perform green-wave

1The term ”stigmergy” was introduced by French biologist
Pierre-Paul Grass in 1959 to refer to termite behavior.

control are pre-defined, so dynamic formation is impossible.
On the other hand, in our proposed framework, green-wave
control formation can be dynamically established anywhere.

In normal daily traffic flow, each agent functions based on
the indirect coordination mode. However, when the traffic
flow balance collapses near certain agents, the agents change
their coordination mode to direct coordination mode to form
a green-wave control formation. Therefore, such direct co-
ordination of an agent group can be seen as interfering with
the indirect coordination of agents. However, indirect co-
ordination has an advantage against such interference. The
important point is affinity of both coordination types.

Cycle length and clearance were not considered in most re-
lated studies. However, both parameters also affect traffic
flow; therefore, we focused on both parameters. We adopted
the Webster cycle length approximation formula, which is
also adopted in MODERATO (details are discussed in Sec-
tion 5). Clearance length is a constant value.

3.1 Definition of agent
Agent Ai, which controls the traffic lights of intersectioni,
collects the following information:

• Distance li,j between intersectioni and its directly
connected intersectionj .

• Traffic flow (number of cars) per unit time intersectioni

to intersectionj , which is defined as p(i,j).

• Average velocity of cars heading from intersectioni to
intersectionj is defined as vi,j .

• Ci is the cycle length, Si is the split value, and Oi is
the offset value of intersectioni.

• Ti shows the start time of Ci, and current step count
is ti.

• Total traffic flow into intersectioni is defined as P(i) =∑
j p(j,i)

Traffic flow p is calculated based on the total traffic flow
of the last five cycles that showed the best effect from the
results from a pre-exploratory experiment. Each agent cal-
culates and updates these values at the beginning of every
cycle.

3.2 Cycle length control
Cycle length is controlled depending on whether each agent
performs direct or indirect coordination. When the agent
is in indirect coordination mode, cycle length is calculated
using Webster’s equation.

Co =
1.5L + 5

1− λ
(1)

where Co is the optimal cycle length, L is the clearance
length, and λ is the ratio of p to the saturation traffic flow.

On the other hand, when the organization of green-wave
formation, which is formed by several agents, becomes nec-
essary, the coordination mode of these agents becomes di-
rect, and the cycle length of these agents becomes the same.
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Split[0] Split[1]
D

Figure 3: 2 phase spring model

Details of cycle length calculation are discussed in Section
3.4.

3.3 Split control by indirect coordination
Each agent at an intersection observes the traffic flow of each
road connected to the intersection during the green phase of
each road. The agent then calculates the split ratio based on
the proposed spring model so as to equalize the traffic flow
of each road. At this point, each agent calculates its split
value by using only local information and does not directly
interact with others, exhibiting real-time characteristics and
low communication cost.

Now, we consider a crossroad and 2-phase traffic light (red
and green) in this intersection. The split ratio of one of the
two phases phase1 is defined as split[0], and the other phase
phase2 is defined as split[1] = 1− split[0].

Figure 3 shows a diagrammatic illustration of our spring
model. Traffic flow is considered as force. The spring equa-
tion is defined as.

K(C − Csplit[0]) + D = K(C − Csplit[1]), (2)

where C is the cycle length, D is the difference in traffic flow
between phase1 and phase2, and K is the spring constant,
which is defined as the number of cars waiting for the red
light phase during one step.

split[0] =
(KC + D)

2KC
(3)

Therefore, we can calculate split[0] and then split[1]. How-
ever, Eq. 3 may give a split value of split[0] ≥ 1 or split[1] ≥
1, where split ≥ 1 means that the traffic light cannot change
the phase. Therefore, we define the maximum value of split
as 0.9 and the minimum value as 0.1.

3.4 Offset control by direct coordination
The offset is calculated based on the traffic flow between two
adjacent intersections. When the condition for construct-
ing the green-wave formation is satisfied for a certain agent,
the agent tries to start direct coordination with its adja-
cent agents by sending them a coordination request mes-
sage. First, we define three agent modes. Then we explain
the offset equations and show the sequence of green-wave
formation.

3.4.1 Agent’s mode
Each agent consists of three types of modes depending on
the condition of its adjacent agents and amount of traffic
flow it controls.

• Independent mode: An agent does not interact with
the green-wave formation.

• Master mode: An agent in this mode becomes the cen-
ter of coordination and is called the ”master agent”.
When the construction of the green-wave formation is
satisfied for a certain agent, that agent’s mode changes
from independent to master.

• Fellow mode: When a certain agent accepts the coor-
dination request from the master agent, the mode of
this agent changes from independent to fellow.

3.4.2 Offset calculation
The offset is calculated based on the difference between in-
bound and out-bound traffic flow on the road between two
adjacent intersections. When the difference between in- and
out-bound flows reaches a certain value, the offset is calcu-
lated to give priority to the more congested direction.

We define pl as p(i,j) or p(j,i), whichever is the larger, and
ps as p(i,j) or p(j,i), whichever is the smaller. The notations
γ and δ are thresholds of traffic flow (γ is bigger than δ).
For pl

ps
≥ γ, we consider only the more congested direction,

and the relative offset value Or is defined as

Or =
l(i,j)
vl

, (4)

where vl is the velocity of the more congested traffic flow. On
the other hand, in case of γ > pl

ps
> δ ≥ 1, it is necessary to

consider both flow directions. Therefore, the relative offset
value Or is defined as

Or =
l(i,j)
vl

( pl
ps
− δ)

(γ − δ)
(5)

Finally, when a master agent of intersection Ai sends a co-
ordination request message to an independent agent of its
adjacent intersection Aj , the offset value, which is assumed
to be Aj , is O(i,j) = −Or (p(i,j)≥p(j,i)) or O(i,j) = Or
(p(i,j) < p(j,i)). As mentioned above, when Aj accepts this
coordination request, its mode changes to fellow.

3.4.3 Direct coordination process
We describe the constructing sequence of green-wave forma-
tion through the coordination of agents.

All independent agents have the possibility of becoming a
master or fellow agent. The condition for an agent Ai to
become a master agent Axc is that Ai is in independent
mode and Pi > α, or Ai is fellow mode and Pi >= Pxc.
Pxc is defined as a master agent Axc’s total traffic flow. The
notation α is a threshold of traffic flow per unit of time to
become master mode.

Step1 If p(ic,j) ≥ β or p(j,ic) ≥ β, master agent Aic starts
direct coordination to control the offset value with its
adjacent agent Aj . Then Aic sends the calculated off-
set value O(ic,j), total traffic flow Pic, start time of
cycle Tic, and distance d(ic,j) between Aic and Aj to
Aj . The notation β is another threshold of traffic flow
per unit of time.
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Figure 4: Agent mode
In this simulator, an agent’s mode is denoted with
three colors. Left is a master agent, Middle is a
fellow agent, and Right is an independent agent.
When the clock hand points to the colored area,
the traffic light’s phase is phase1. When the clock
hand points to the white area, the phase is phase2.

Step2 If agent Aj is in independent mode, and if tj ≤ ǫCj

or tj ≥(1− ǫ)Cj , it accepts the request from Aic. The
notation ǫ is a threshold of time path between the start
and the time when Aj will accept the request.

On the other hand, if agent Aj is in the fellow mode
with another master agent Ayc, the conditions for agent
Aj to accept the request from Axc are tj ≤ ǫCj , or
tj ≥(1− ǫ)Cj and Pic > Pyc, or Pic = Pyc and l(ic,j) >
l(yc,j).

Moreover, if agent Aj itself is a master Ajc, the con-
dition for Ajc to accept the request from master agent
Aic are Pjc < Pic and tj ≤ ǫCj or tj ≥(1 − ǫ)Cj . If
Aj accepts the request from Aic, Aj becomes a fellow
agent of Aic. Then, Tj is changed to Tic, and Oj is
changed to Oic + O(ic,j).

Step3 Then fellow agent Aj checks the traffic flow p(j,k) and
p(k,j), where k is the intersection adjacent to intersec-
tion j. Then if p(j,k) ≥ β or p(k,j) ≥ β, Aj sends the
coordination request to agent Ak, which is the adja-
cent agent to Aj , similar to a bucket brigade. Agent
Aj sends the calculated offset value O(j,k), total traf-
fic flow Pic, start time of cycle Tk = Tj = Tic, and
distance d(ic,k) = d(ic,j) + d(j,k) to Ak.

Step4 If Ak accepts the request from Aj , the mode of Ak is
changed from independent to fellow.

Step5 When the bucket brigade process terminates, the green-
wave formation consisting of one master agent and sev-
eral follow agents begins coordinated offset control.

4. EXPERIMENTS AND RESULTS
4.1 Traffic Simulator
We verified our traffic light control framework through sim-
ulation to confirm its effectiveness. The movement of cars is
expressed with the Nagel-Schreckenberg (NS) model using
cellular automaton rule 1842 [7]. In the simulator, the unit
of time is called ”step(= 0.3 sec)” and the unit of distance
is ”cell”. Each car flows into the simulator from the cell on
the edge of the simulator according to an inflow probability.
The simulator consisted of roads (edges) and intersections

2Rule 184 can be used as a simple cellular automaton model
for traffic flow in a single lane of a road. In this model,
cars can move in a single direction, stopping and starting
depending on the cars in front of them.

Figure 5: Experiment 3: Road Network
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Figure 6: Experiment 1: Transition of Waiting Cars
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Figure 7: Experiment 2: Transition of Waiting Cars
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Figure 8: Experiment 3: Transition of Waiting Cars

(nodes). The road network was a grid-type network. Each
intersection had the coordinate (x, y). We prepared 1 × 20
(20 intersections) and 10× 10 (100 intersections) networks.
The distance between adjacent intersections was 50 cells.
The velocity of cars was 1 cell per step. We set each thresh-
old value, which is the best value, based on pre-exploratory
experiments as follows: α=0.25, β=0.125, γ=1.5, δ=1.1,
ǫ=0.2. The simulation environment was Intel Core 2 Duo
2.40-GHz CPU and 2.00-GB RAM.

4.2 Experiments
Experiment 1
To confirm the effectiveness of green-wave control, we pre-
pared a 1×20 straight road network. Cars enter the network
from cells at both the east and west edges. Both initial in-
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Figure 9: Experiment 4: Transition of Waiting Cars
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flow probabilities were 22.5%. We then decreased the inflow
probability from the east edge by 5% after 30000 steps, and
decreased it an additional 5% after 60000 steps. We fixed
the cycle length (400 time steps = 2 min) and split value
(split[0] = split[1] = 0.5). We compared our offset control
model with a non-offset model (all traffic lights control each
phase at the same time).

Experiment 2
We verified the effect of our spring model-based split control
algorithm. We selected two already proposed related split
control models, the Satoh and Oliveira models, for compari-
son. Because our spring model is based on indirect coordina-
tion, each agent does not receive all the information and does
not directly interact with other agents. The Satoh model
is a direct coordination-type model. Each agent also does
not receive all the information but it directly interacts with
other agents. The Oliveira model is a direct coordination-
type model. Each agent interacts with other agents, but it
does not receive all the information.

In addition to these comparative experiments, we also veri-
fied the affinity of these three split control models and our
offset control model. We prepared a 10 × 10 road network.
We also prepared one input cell having 20% inflow probabil-
ity, two input cells having 15% inflow probability, and three
input cells having 10% inflow probability (total six cells).
All other cells had 2.5% inflow probability. For verification
of the real-time adaptability of our framework, we replaced
these six cells and the other six cells having 2.5% inflow
probability after every 10,000 steps. In this experiment, we
used Webster’s cycle length control.

Experiment 3
We compared our traffic light control framework with the
current operating traffic control system model and confirmed
its effectiveness.

We assumed this road network had four residential areas,
one urban area, and one recreational area, as shown figure
5. We prepared the following traffic scenarios:

scenario 1 Traffic flow just before morning rush hour: Car
flow is generally not so heavy, but the flow to the urban
area is little heavier.

scenario 2 Traffic flow during morning rush hour: Many
cars congregate on main roads heading into the urban
area.

scenario 3 Traffic flow after morning rush hour: Car flow
to recreational area becomes high.

scenario 4 Traffic flow during daytime: Car flow is not so
heavy.

scenario 5 Traffic flow during evening rush hour: Many
cars from urban area head to the residential areas.

We changed the traffic flow according to the above sce-
narios after every 10,000 steps. We evaluated a current
operating traffic control system as a comparison. It pre-
pared some traffic light control parameters beforehand and

Figure 10: Experiment 3: Screenshot of Simulator
during Simulation

changed them according to a pre-defined time schedule. To
prepare these traffic light control parameters beforehand, we
conducted the simulation for each scenario with our frame-
work and obtained five parameter sets for each.

Experiment 4
We verified the real-time adaptability of our framework against
sudden changes in traffic flow. We modified scenarios 2 and
4 of experiment 3 as follows:

New scenario 2 The road between intersections (6,5) and
(7,5) was suddenly closed. Therefore, cars had to go
the urban area by bypassing this section.

New scenario 4 The road between intersections (6,5) and
(6,7) was suddenly closed. Therefore, cars had to re-
turn to the residential areas from the recreational area
by bypassing this section. Moreover, we assumed that
the recreational area was crowded more than usual.

We changed the traffic flow according to the above scenario
(scenario 1 -> new 2 -> 3 -> new 4 -> 5) after every 10,000
steps. We compared our traffic light control framework with
a current operating control system, as in experiment 3.

4.3 Results
Figure 6 shows the evaluation results of experiment 1. The
average total waiting queue of cars from simulation start to
end was 382 with the non-offset model, and 318 cars with
our offset control model. This result shows that the green-
wave formation can make traffic flow more smoothly. This
formation is more effective when the difference in both traffic
flows increases.

Figure 7 shows the evaluation results of experiment 2. When
we executed our offset control model, the average total wait-
ing queue of cars from simulation start to end was 419 with
our spring model, 507 with the Satoh model, and 797 with
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Figure 11: Screenshot of simulator of experiment 4
(New green-wave formation is constructed according
to change in traffic flow)

the Oliveira model. When we did not use our offset model,
the average total waiting queue of cars was 524 with our
spring model, 590 with the Satoh model, and 786 with the
Oliveira model.

In the Oliveira model, since the split value is fixed and
does not flexibly change, the waiting queue of cars becomes
longer. Moreover, This model could not attain smooth traf-
fic flow, even if it was combined with our offset control
model. On the other hand, with our spring model and the
Satoh model, the waiting queue of cars did not become long.
In addition, the length of the queue decreased when these
models were combined with our offset control model, making
traffic flow more smoothly.

Finally, when our offset control model was combined with
our spring model the total waiting queue of cars decreased
20% compared with only our split control model. On the
other hand, with the Satoh model, the queue length de-
creased by 16%. As mentioned above, our spring model is
an indirect coordination-type model, and the Satoh model
is a direct coordination-type model. Therefore, this result
shows that when the split control model is combined with
the offset control model using direct type coordination as the
upper layer, indirect-type coordination is a more desirable
approach for the split control model as the lower layer.

Figure 8 shows the evaluation results of experiment 3. The
total average waiting queue of cars from simulation start to
end was 228 with our control framework and 231 with the
current operating control system. Figure 10 shows a screen-
shot of the simulator during the simulation of experiment
3. The green, aqua and orange sectors describe an agent’s
mode (see Figure 4). Agents coordinated with others and
formed a subarea and a green-wave formation suitable for
traffic flow: many cars congregated on main roads heading
to the urban area.

Figure 9 shows the results of experiment 4. The total av-

erage waiting queue of cars from simulation start to end
was 236 with our control framework and 244 cars with the
current operating control system. Figure 11 shows a screen-
shot of the simulator during the simulation of experiment 4.
Agents coordinated with others and formed a subarea and
a green-wave formation for changed traffic flow. We could
observe that agents on bypasses threw in the coordination,
and several agents that had coordinated dissolved the co-
ordination. From 10,000 to 20,000 steps, the queue length
was 246 cars with our control framework and 276 cars with
the current operating control system, and from 30,000 to
40,000 steps, the queue length was 263 cars with our control
framework and 285 cars with the current operating control
system.

When traffic flow was normal (situation in experiment 3),
there was not much difference between our control frame-
work and the current operating control system having sev-
eral parameter sets beforehand because there was no unex-
pected event in this experiment. However, when an unex-
pected event occurs, such as a traffic accident, the difference
in the waiting queue of cars between both our framework
and the current system becomes quite large, as observed in
new scenarios 2 and 4 in experiment 4. This is because in
our framework, green-wave formation can be organized any-
where. This result shows that our control framework can
deal with sudden change in traffic flow in contrast to the
current operating control system.

With this simulation, we believe that we could show the fun-
damental effectiveness of our traffic control framework based
on a multi-agent paradigm. Several parameters used in the
simulation were optimized to the simulation environment.
Therefore, to apply our framework to a real traffic system, a
pre-experiment to find the appropriate parameter values is
necessary. For example, in the current operating control sys-
tem, MODERATO, many parameters are also necessary and
they are set empirically and corrected through actual field
observation. Therefore, we believe that a similar approach
can also be applied to our framework.

5. CONCLUSIONS
We proposed a multi-agent-based traffic light control frame-
work. To construct dynamic complex distributed systems,
top down control and bottom up control are both necessary.
In the proposed framework, we combined direct coordination
as top-down control, and indirect coordination as bottom-up
control. The important point is affinity of both coordination
types. By comparative evaluation through simulation, we
could verify the basic effectiveness of our framework. In our
framework, direct coordination can be seen as interfering
with indirect coordination. Mitigating this interference was
our strategy. However, another strategy for making both
coordination methodologies interact efficiently may be pos-
sible. Therefore, we will consider this in the future. Finally,
the current simulated road network is a simple lattice struc-
ture, so we will perform more evaluations with large-scale
and various road networks in the future.
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ABSTRACT
In multi-agent routing, there is a set of mobile agents each
with a start location and destination location on a shared
infrastructure. An agent wants to reach his destination as
quickly as possible, but conflicts with other agents must be
avoided. We have previously developed a single-agent route
planning algorithm that can find a shortest-time route that
does not conflict with any previously made route plans.

In this paper, we want to compare this route planning ap-
proach with non-planning approaches, in which intersec-
tion agents determine which agent may enter an intersec-
tion next, and where the agent will subsequently go (given
its destination). When making these decisions, the intersec-
tion agents use only locally observed traffic information.

Our experiments show that context-aware routing produces
more efficient results in case no incidents disrupt the exe-
cution. However, in the face of unexpected incidents, the
performance of the intersection management policies proves
very robust, while context-aware routing only produces good
results when coupled with effective plan repair mechanisms.

Categories and Subject Descriptors
I.2.11 [Computing methodologies]: Multiagent systems

General Terms
Algorithms, Experimentation

Keywords
route planning, traffic agents, simulation

1. INTRODUCTION
In this paper we will discuss the problem of multi-agent route
planning, in which there are multiple mobile agents each
with a start and destination location on a roadmap. The
roadmap consists of intersections and lanes connecting the

intersections, and each agent wants to find a route that will
bring it to its destination as quickly as possible.

In previous work [20], we developed a prioritized route plan-
ning approach in which agents are first assigned a priority
(typically randomly, or based on their arrival time), and sub-
sequently plan a route that is optimal for themselves and
does not create any deadlock with any of the higher-priority
agents. We named our algorithm context-aware routing, as
each planning agent is aware of its context, which is the set
of reservations from route plans of higher-priority agents.
Deadlock prevention is especially relevant in roadmaps with
bi-directional roads that can be traversed in only one direc-
tion at the same time (e.g., when the roads are not wide
enough for two vehicles to travel side by side), for instance
in application domains of automated guided vehicles [9] or
airport taxi routing [6].

In this paper, however, we will focus on infrastructures in
which all roads are directed, such as common in urban traf-
fic control (cf. [1]), and investigate how different routing
approaches influence congestion, and therefore the times
the agents reach their destinations. We will compare our
conflict-free routing approach with a number of local inter-
section management policies that we will define in section 4.
These intersection management policies make routing deci-
sions for the vehicles only on the basis of information that
is local to the intersection, namely how many vehicles are
waiting to enter the intersection, and how long they have
been waiting.

1.1 Related work
The problem of finding an optimal set of conflict-free route
plans is NP-hard [17], and all approaches that guarantee
an optimal solution1 that we know of only manage to find
solutions for a handful of agents. In domains with larger
numbers of agents, a common approach is to let the agents
plan for themselves, usually one after the other, or by it-
eratively communicating about conflicting plans (cf. [14]).
Silver [15], for example, presents an approach that is based
on the straightforward idea of letting an agent perform an
A* search, in which it checks whether the nodes it visits
during search are not occupied by other agents at the time
the agent would reach those nodes.

1Even for optimal approaches, there are often simplifying
assumptions, for example dividing time up into 15-second
intervals [3].
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A problem with a straightforward A*-with-time approach is
that it is unclear how many times a particular node must
be visited during the search. The shortest-time path that
finds the node unoccupied might not be extendible to the
destination node in case all of the node’s neighbours are
occupied at the time (see also the example in section 3).
We must therefore introduce the notion of a free time win-
dow, which is an interval during which the node is unoccu-
pied. During search, we need only consider the shortest-time
paths to each of the free time windows of a node, and then
the single-agent routing problem can be solved optimally in
polynomial time. Kim and Tanchoco [9] first developed and
analysed such an algorithm, with a runtime complexity of
O(|R|2|A|4), where R is the set of infrastructure resources
(lanes and intersections), and A is the set of agents. Our
context-aware route planning algorithm lowered that time
complexity to O(|R||A| log(|R||A|) + |R|2|A|).

Further reductions in computation time can be achieved in
case path and velocity planning are separated. In other
words, if an agent first determines a path from start to des-
tination, and then finds a conflict-free schedule along this
path. Hatzack and Nebel [6] presented such an approach in
an airport taxi routing scenario, whereas Lee et al. [10] con-
sider an automated-guided-vehicle setting, in which agents
first determine the k shortest paths between their respective
start and destination locations, and then find conflict-free
schedules along each of these paths, and choose the quickest.
In previous work [19], we compared these fixed-path schedul-
ing approaches with context-aware routing, and found that
the performance of the former seriously degrades if too many
agents plan to make use of the same roads; only if the k alter-
native routes constitute relevant alternatives can fixed path
scheduling outperform context-aware routing.

So far, we have not compared our context-aware routing
approach with non-planning approaches because these are
either in some way restrictive of the infrastructure or how
agents use it (e.g., in case agents are required to traverse the
infrastructure in a loop [8]), or because the mechanisms to
avoid or prevent deadlocks are time-consuming to run and
implement (for instance the Petri-net-based approach from
Fanti [5]). In this paper, we restrict ourselves to infrastruc-
tures that are less deadlock-prone, so we can compare the
efficiency (in terms of global plan quality) of context-aware
routing with other approaches.

In urban traffic control, most intersection management ap-
proaches make use of traffic lights, where the focus is on
learning efficient behaviour for individual intersections [1].
Coordination is often limited to neighbouring intersections,
although the implementation of higher-level agents to sup-
port the decision-making is also considered [2]. Another
interesting line of work is that into Automated Intersec-
tion Management from the group of Peter Stone (see for
instance [4]), in which intersections are not light-controlled,
but vehicle agents place reservations for conflict-free tra-
jectories in space and time over the intersection. Up un-
til recently, work had focussed on the operation of a single
intersection, but recent work by Hausknecht et al. [7] stud-
ies traffic phenomena when multiple intersections are linked
together. Vasirani and Ossowski [22, 23] propose a market-
based approach, in which intersection managers set prices

according to current and future demand, and driver agents
adapt their routes based on time and cost considerations.
Although inspired by Dresner and Stone’s Automated In-
tersection Management, Vasirani’s research is moving from
microscopic models, in which vehicle behaviour is affected
by the movements of immediate neighbours, to mesoscopic
models in which average traffic densities on roads deter-
mine traversal speeds. A difference between these urban
traffic control approaches and our work (and other plan-
ning approaches like it — often originating from Automated
Guided Vehicle (AGV) research) is the number of vehicles
per intersection; in AGV applications, an intersection can be
full with one vehicle (for instance in container terminal do-
mains), while for automated intersection management, the
intersections can hold many.

1.2 Contributions and organization
This paper makes two contributions to field of route plan-
ning and traffic control:

1. A comparison of the context-aware routing approach
with local intersection management policies, both in
terms of efficiency (measured in e.g. makespan and
sum of agent plan costs) and in terms of robustness,
i.e., how well the methods perform when unexpected
incidents may disrupt the (planned) execution.

2. The definition of a set of simple local intersection man-
agement policies.

In section 2, we first present our model for context-aware
routing, and then in section 3 we describe the context-aware
route planning algorithm, as well as two plan repair mech-
anisms that are required when incidents can occur during
plan execution. Section 4 presents our intersection manage-
ment policies, and in section 5 we discuss our experimental
results. Section 6 contains the conclusions and the ideas for
future work.

2. MODEL
We assume a setA of agents that each have to find a quickest-
time route from one location in the infrastructure to an-
other. We model the infrastructure as a resource graph
GR = (R,ER), where resources in R can be roads, inter-
sections, or interesting locations that the agents can visit.
Formally, an agent can directly go from resource r ∈ R to
resource r′ ∈ R if the pair (r, r′) is in the successor relation
ER ⊆ R×R. A resource r has a capacity c(r), denoting the
maximum number of agents that can simultaneously make
use of the resource, and a duration d(r) > 0 which repre-
sents the minimum time it takes for an agent to traverse the
resource.

In this paper, we will restrict ourselves to (non-toroidal)
grids, where two uni-directional lanes connect each pair of
adjacent intersections. For these infrastructures, intersec-
tion resources have unit capacity and lane resources have
capacity 8; minimum traversal times are 2 time units for the
intersections and 7 for the lanes. In previous work (e.g. [18]),
we have focused on bi-directional lanes, i.e., lanes on which
travel in both directions is possible, though not at the same
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time. In such a setting, however, the local intersection man-
agement policies we will evaluate in this paper would cause
a deadlock almost instantly.

Definition 1 (Deadlock). Let Ac = {A1, . . . , Am} ⊆
A be a set of agents, and let Rc = {r1, . . . , rm} ⊆ R be a
set of resources such that, ∀i ∈ {1, . . . ,m}, agent Ai is on
resource ri, and ∀i ∈ {1, . . . ,m − 1} : (ri, ri+1) ∈ ER and
(rm, r1) ∈ ER. The agents Ac are in a deadlock if and only
if:

1. Ai’s next resource is ri+1 (∀i ∈ {1, . . . ,m − 1), or r1
if (i = m), and

2. ∀i ∈ {1, . . . ,m} the number of agents on ri equals
c(ri).

In our context-aware routing approach, deadlocks are pre-
vented by ensuring that agents never make plans that ex-
ceed the resource capacities. An agent’s plan consists of a
sequence of resources, and a corresponding sequence of in-
tervals in which to visit them.

Definition 2 (Route Plan). Given a start resource
r, a destination resource r′, and a release time t, a route
plan is a sequence π = (〈r1, τ1〉, . . . , 〈rn, τn〉), τi = [ti, t

′
i),

of n plan steps such that r1 = r, rn = r′, t1 ≥ t, and
∀j ∈ {1, . . . , n}:

meets(τj , τj+1) (j < n) (1)

|τj | ≥ d(rj) (2)

(rj , rj+1) ∈ ER (j < n) (3)

The first constraint states that the exit time of the jth re-
source in the plan must be equal to the entry time into re-
source j+1. The second constraint requires that the agent’s
occupation time of a resource is at least sufficient to tra-
verse the resource in the minimum travel time. The third
constraint states that if two resources follow each other in
the agent’s plan, then they must be adjacent in the resource
graph. The cost of an agent’s plan is defined as the difference
between the end time and the release time.

In sequential route planning, an agent must respect the plans
of all the agents that came before it. From the set of existing
agent plans, we can infer how many agents will be in each
of the resources for each point in time.

Definition 3 (Resource load). Given a set Π of agent
plans and the set of all time points T , the resource load λ is
a function λ : R× T → N that returns the number of agents
occupying a resource r at time point t ∈ T :

λ(r, t) = |{〈r, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}| (4)

In our approach the resource load represents the informa-
tion that agents need to know about the plans of the other,
higher-priority agents. This is similar to other reservation-
based approaches such as from Silver [15], but subtly differ-
ent from the approach in Nishi et al. [14], in which agents
inspect each others’ plans, in order to detect conflicts.

An agent may only make use of a resource in time intervals
when the resource load is less than the capacity of the re-
source. In such a free time window, an agent can enter a
resource without creating a conflict with any of the existing
agent plans.

Definition 4 (Free time window). Given a resource-
load function λ, a free time window on resource r is a max-
imal interval w = [t1, t2) such that:

∀t ∈ w : λ(r, t) < c(r) (5)

(t2 − t1) ≥ d(r) (6)

The above definition states that for an interval to be a free
time window, there should not only be sufficient capacity at
any moment during that interval (condition 5), but it should
also be long enough for an agent to traverse the resource
(condition 6). Within a free time window, an agent must
enter a resource, traverse it, and exit the resource. Because
of the (non-zero) minimum travel time of a resource, an
agent cannot enter a resource right at the end of a free time
window, and it cannot exit the window at the start of one.
We therefore define for every free time window w an entry
window τentry(w) and an exit window τexit(w). The sizes of
the entry and exit windows of a free time window w = [t1, t2)
on resource r are constrained by the minimum travel time
of the resource: τentry(w) = [t1, t2 − d(r)), and τexit(w) =
[t1 + d(r), t2).

An agent that wants to go from resource r to (adjacent)
resource r′ should find a free time window for both of these
resources. By definition 2 of a route plan, the exit time out
of r should be equal to the entry time into r′. Hence, for
a free time window w′ on r′ to be reachable from free time
window w on r, the entry window of w′ should overlap with
the exit window of w.

Definition 5 (Free time window graph). The free
time window graph is a directed graph GW = (W,EW ),
where the vertices w ∈ W are the set of free time windows,
and EW is the set of edges specifying the reachability be-
tween free time windows. Given a free time window w on
resource r, and a free time window w′ on resource r′, it holds
that (w,w′) ∈ EW if the following two conditions hold:

(r, r′) ∈ ER (7)

τexit(w) ∩ τentry(w′) 6= ∅ (8)

2.1 Plan execution assumptions
We make the simplifying assumption that vehicles do not
require any acceleration or deceleration. That is, an agent
can reach its desired speed instantaneously (whether this is
its maximum speed or a standstill). In addition, we assume
that an agent can see whether there is another vehicle di-
rectly in front of it on the road (or on the next road, in
case the vehicle is on an intersection). This means that the
problem of avoiding collisions is taken care of in the simula-
tor, allowing us to focus on the problems of route planning
and/or intersection management for the rest of this paper.

A final simplifying assumption concerns the start and fin-
ish locations of the vehicles. We assume that vehicles only
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enter the infrastructure once they are granted permission
to enter their start resource (an intersection, in our experi-
ments), and leave the infrastructure as soon as the destina-
tion resource has been traversed (also an intersection). This
assumption can be realistic in application domains such as
airport taxi routing (where planes land and take off) and
urban traffic, where vehicles enter and exit a city, but less
realistic in, e.g., warehousing domains. The routing problem
for vehicles that must occupy a location of the infrastructure
at all times is sometimes referred to as cooperative pathfind-
ing in the literature, and considerable effort must already be
spent in finding feasible routes for all the vehicles, let alone
efficient ones (cf. [16, 11]).

3. ROUTE PLANNING ALGORITHM
In classical shortest path planning, if a node v is on the
shortest path from node s to node t, then a shortest path to
v can always be expanded to a shortest path to t. Figure 1
shows that in prioritized multi-agent route planning, it is not
the case that a shortest route to an intermediate resource
can always be expanded to the destination: we see a blue
agent that wants to go to the rightmost resource, and a black
agent that has a plan to travel rightwards at least until the
middle intersection. At time 1 (indicated by the numbers
inside the vehicles), the blue agent might make a reservation
for the leftmost intersection (i.e., slotting in just ahead of
the black agent without hindering it), and expand this plan
to the middle intersection. From the middle intersection,
at time 2, it cannot plan to go right, because that road
is momentarily full with vehicles. However, the blue agent
must vacate the intersection, because the black agent has a
reservation to use it. Hence, the earliest plan to the middle
intersection can only be expanded in the upwards direction,
which is a detour in space, and possibly time depending on
how quickly the grey agents will start moving.

1

1
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Figure 1: If the blue agent enters the intersection
before the black agent, at time 1, then at time 2 it
has to drive upwards in order to vacate the intersec-
tion for the black agent.

The idea behind our algorithm is that we only need to con-
sider shortest partial plans to the free time windows on a
resource: if we have a partial plan that arrives at resource r
at time t that lies within free time window w, then all other
partial plans to r that arrive at time t′, (t′ ≥ t) ∧ (t′ ∈ w),
can be simulated by waiting in resource r from time t to
time t′. Waiting is possible because no conflict will ensue as
long as the agent exits r before the end of w.

Our route planning algorithm performs a search through the
free time window graph that is similar to A*: In each iter-

ation, we remove a partial plan from an open list of partial
plans with a lowest value of f = g + h, where g is the ac-
tual cost of the partial plan, and h is a heuristic estimate
of reaching the destination resource. In algorithm 1 below,
we will write ρ(r, t) to denote the set of free time windows
(directly) reachable from resource r at earliest exit time t.

Algorithm 1 Plan Route

Require: start resource r1, destination resource r2, start
time t; free time window graph GW = (W,EW )

Ensure: shortest-time, conflict-free route plan from (r1, t)
to r2.

1: if ∃w [w ∈W | t ∈ τentry(w) ∧ r1 = resource(w)] then
2: mark(w, open)
3: entryTime(w)← t

4: while open 6= ∅ do
5: w ← argminw′∈open f(w′)
6: mark(w, closed)
7: r ← resource(w)
8: if r = r2 then
9: return followBackPointers(w)

10: texit ← g(w) = entryTime(w) + d(resource(w))
11: for all w′ ∈ {ρ(r, texit) \ closed} do
12: tentry ← max(texit, start(w′))
13: if tentry < entryTime(w′) then
14: backpointer(w′)← w
15: entryTime(w′)← tentry

16: mark(w′, open)

17: return null

In line 1 of algorithm 1, we check whether there exists a
free time window on the start resource r1 that contains the
start time t. If there is such a free time window w, then
in line 2 we mark this window as open, and we record the
entry time into w as the start time t. In line 5, we select the
free time window w on the open list with the lowest value of
f(w). As in the original A* algorithm, the function f(w) =
g(w) + h(w) is a combination of the actual cost g(w) of the
partial plan to w, plus a heuristic estimate h(w) to reach
the destination from w. If the resource r associated with
w equals the destination resource r2, then we have found
the shortest route to r2, for the following reason: all other
partial plans on open have a higher (or equal) f -value, and if
the heuristic is consistent2, expansion of these partial plans
will never lead to a plan with a lower f -value. We return the
optimal plan in line 9 by following a series of backpointers.

If r is not the destination, we expand the plan. First, in
line 10, we determine the earliest possible exit time out of r
as the cost of the partial plan: g(w) = entryTime(w)+d(r).
Then, in line 11, we iterate over all reachable free time win-
dows that are not closed. When expanding free time window
w to free time window w′, we determine the entry time into
w′ as the maximum of the earliest exit time out of resource
r, and the earliest entry time into w′. We only expand the

2Because we make use of a closed list, it is not sufficient
to require that the heuristic is merely admissible (i.e., that
it would never overestimate the cost of reaching the des-
tination). For a consistent heuristic, it should hold that
h(w) ≤ g(w,w′) + h(w′), where g(w,w′) is the actual cost
of getting from w to w′.
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plan from w if there has been no previous expansion to free
time window w′ with an earlier entry time (initially, we as-
sume that the entry times into free time windows are set to
infinity). In line 14, we set the backpointer of the new win-
dow w′ to the window w from which it was expanded. Then,
we record the entry time into w′ as tentry, and we mark w′ as
open. Finally, in case no conflict-free plan exists, we return
null in line 17. The worst-case complexity of algorithm 1 is
O(|W | log(|W |)+ |EW |). In case no cyclic plans are allowed,
then |W | ≤ (|A|+ 1)|R|, and the complexity of algorithm 1
is O(|A||R| log(|A||R|)+ |A||R|2) (proof in [17]). The worst-
case complexity of maintaining the free time window graph
GW is O(|A||R|2): for each of at most R reservations of
the new plan, one or two new free time windows must be
connected to O(|W | = |A||R|) existing free time windows.

3.1 Plan repair mechanisms
We will now briefly discuss two plan repair mechanisms that
can be used to guarantee conflict-free execution for context-
aware planners in dynamic environments. The first has been
developed by Maza and Castagna [12] and can be considered
a baseline approach in the sense that it guarantees conflict-
free running without trying to find a repair solution that will
result in efficient plan execution. The second is an extension
of the first, in which agents can increase their priority over
other, delayed agents.

Both plan repair mechanisms rely on the fact that, after all
agents have made their plans, it is known for each resource
(lane or intersection) in which order the agents are scheduled
to visit it. The mechanism of Maza and Castagna is simply
to adhere to this resource priority (not to be confused with
the order in which the agents plan) during plan execution.
So, for example, if agent A1 in figure 2 is delayed, then agent
A2 (and all agents behind it) must wait in case A1 was the
first to enter intersection the middle intersection.

2

1

Figure 2: If the red agent A1 is delayed, then the
blue agent A2 must wait its turn to enter the inter-
section.

In later work, Maza and Castagna developed a repair mech-
anism that allowed agents to increase their resource priority
over delayed agents in such a way that no new deadlocks
were introduced [13]. Note that in our current setting, it is
not so obvious why such a change in priorities might lead
to a deadlock, but for infrastructures with bi-directional re-
sources, attempting a deadlock-free priority change often in-
volves increasing priority over multiple agents for a whole
corridor of resources. The second plan repair mechanism
we will employ in this paper is an improvement over the al-
gorithm from Maza and Castagna [13] in the sense that it
identifies more deadlock-free priority changes, and also leads
to a greater reduction in global delay; see [21].

3.2 Planning shortest paths
We will combine local intersection management policies with
agents that follow a shortest path between start and desti-

nation locations (for those cases that the intersection does
not determine the next road to be taken). In a grid infras-
tructure, there are many shortest paths (as we assume no
cost for turning), so we let each agent construct a random
shortest path.

4. INTERSECTION MANAGEMENT
In this section, we will first describe two types of intersec-
tion management policies, applied locally at each of the in-
tersections in the infrastructure. The first, most basic type
determines which agent is allowed to enter an intersection
next, out of the agents ready to enter. The second type
of policy then subsequently determines which lane an agent
will drive into when it leaves the intersection. Recall from
section 3 that a pre-determined path is followed in case only
the first type of policy is applied. We now describe the three
intersection entry policies that we have defined.

Definition 6 (FCFS). Under First-Come First-Served
the agent with the earliest entry request time may enter first
(ties broken arbitrarily); an agent may request entry once it
has reached the intersection.

One should note that an agent cannot request entry when it
is waiting behind another agent; only when the agent is first
in line can it request entry. The FCFS policy is simple and
fair, but it does not take into account congestion formation
on the infrastructure.

Definition 7 (LQF). Under Longest Queue First, the
agent that forms the head of the longest queue of vehicles
waiting to enter, is allowed to enter.

Longest Queue First (LQF) aims to reduce congestion in the
system by reducing the number of vehicles on the fullest of
the roads leading into the intersection. In addition to the
roads leading into an intersection, another source of vehicles
wanting to enter the intersection is formed by those agents
that have their starting point at this intersection. However,
this set of vehicles is only counted as a queue of length 1;
this means that the LQF policy gives precedence to vehicles
already on the infrastructure.

Definition 8 (WLQF). Let t∗ be the current time, ti
the time at which agent Ai requested entry to the intersec-
tion, and ni the number of agents on the same road as Ai

at time t∗. Under Weighted Longest Queue First, the agent
that is next to enter is selected according to the formula:

argmaxi∈{1,...,|A|} ni + f(t∗ − ti) (9)

for a given function f .

In this paper, we have chosen the function f to divide the
argument t∗−ti by the minimum travel time of the intersec-
tion. Hence, when the function f returns a value of, say, 5,
then it means that a particular agent has been waiting long
enough for (at most) five agents to traverse the intersection
since the time it requested entry.
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We will now describe an intersection management policy
that directs agents to their next lane resource, which we
call the Routing Table Approach (RTA), inspired by the
way internet routers send packets along their way over the
internet. Under RTA, an intersection will select one of at
most three outgoing lanes for the next part of the route of an
agent, thus not including the direction the agent just came
from. When an agent enters an intersection, it announces
its destination to the intersection agent, which then com-
putes a value for each of the eligible lanes. Note that the
routing table approach only uses information from the lane
resources adjacent to the intersection.

Definition 9 (RTA). Let t∗ be the time at which agent
Ak, with destination z is ready to leave the intersection, and
let L = {l1, . . . , lm}, L ⊂ R, be the eligible outgoing lane
resources, and let n(li) denote the number of agents on lane
li at time t∗. Then the Routing Table Approach selects the
next lane resource according to the formula:

argmini∈{1,...,|L|} g(li, z) + α(
n(li)∑|L|

j=1 n(lj)
) (10)

for some constant α and function g that returns the value of
the shortest path between its arguments.

In our experiments, we settled on a value of 5.0 for α; by
comparison, the maximum difference, in our setting, be-
tween the road with the shortest path and the road with
the longest path was 4. This means that if only one outgo-
ing lane has vehicles on it, then this lane will not be chosen.

5. EXPERIMENTAL RESULTS
In this section, we describe a set of experiments conducted to
compare the performance of context-aware routing to local
intersection management strategies. Our principal perfor-
mance measure is the makespan3, but we also look at the
sum of agent plan costs (where the cost of one agent plan
is the time at which it reaches its destination), the distance
travelled, and the number of times an intersection manage-
ment policy will lead the agents into a deadlock.

Figure 3 presents the first batch of experiments in which we
compared performances for increasing number of agents on a
grid infrastructure of five rows and five columns. Each data
point in figure 3(a) is the average of 30 runs, or as many
as were completed deadlock-free out of those 30 problem in-
stances. The first conclusion we can draw from figure 3 is
that context-aware route planning is invariably faster than
any of the local intersection management policies. A second
conclusion is that the attempt of the routing table approach
to reduce congestion (by selecting a next road with conges-
tion in mind) pays off for two out of three intersection entry
policies; RTA combined with Weighted Longest Queue First
seems to be the fastest of the local intersection management
policies, although there is not much difference with the basic
FCFS entry policy.

3All agents have a release time of 0, which means that all
agents will either try to obtain a reservation for that time.
The makespan is then simply the time at which all agents
have reached their destination.

Figure 3(b) shows, however, that RTA-FCFS and RTA-WLQF
are not the best from a completeness point of view; from
about 350 to 400 agents, an increasing percentages of ex-
periment runs result in a deadlock situation. If only in-
tersection entry management is employed, then from about
300 agents the ability to route agents reduces drastically, in
case either First-Come First-Served, or Weighted Longest
Queue First is employed. Curiously, when the entry pol-
icy Longest Queue First is employed, intersection manage-
ment has a zero-deadlock rate. This can be explained from
figure 5, in which we see a screenshot from the execution
of the same instance by RTA-LQF and RTA-WLQF. The
main difference is that the latter method, by taking into
account the waiting time of a vehicle wanting to enter the
infrastructure, will now and then release a new vehicle into
the infrastructure even when long queues of vehicles already
on the infrastructure have formed at the intersection. The
LQF approach, by contrast, will only release a new vehi-
cle when the longest queue of vehicles waiting to enter is
at most 1. Hence, using the LQF approach the number of
vehicles simultaneously on the infrastructure will be lower,
significantly reducing the probability of a deadlock.
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Figure 3: Performance comparison on (5, 5) grid
infrastructure, measured in makespan, and the per-
centage of deadlock occurrences.

As figure 3 is too cluttered to include confidence intervals,
we have plotted the standard deviations for this batch of
experiments in figure 4. The spike in the WLQF line (with
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the ‘x’ symbol) is due to the fact that it only managed a
handful of deadlock-free runs for 400 or more agents. Over-
all, we can conclude from figure 4 that context-aware rout-
ing is more predictable in its performance than the inter-
section management policies (RTA-FCFS briefly dips below
the Context-Aware line at close to 500 agents, though by
that point only around 25% of runs were deadlock free).
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Figure 4: Standard deviations for the experiments
of figure 3.

5.1 Cost and distance performance measures
We will now briefly look at the the results of the experiments
from different cost perspectives, in figure 6. In figure 6(a)
we see the cost per agent divided by the minimum attain-
able cost (i.e., the cost of traversing the shortest path when
no other agents are around), averaged over all agents. This
cost measure is a good indicator of the extent agents suffer
from the presence of other vehicles, and we see it increases
linearly with the number of agents in the system, pretty
much regardless of which method is used. Figure 6 shows
relative performances that are very similar to those in fig-
ure 3 for the makespan measure, although perhaps the best
of the intersection-entry-only policies is closer to the best of
the RTA policies.

Figure 6(b) shows the distances travelled by each agent (di-
vided by the minimum distance, and averaged over all agents),
for each of the methods. For intersection management with-
out RTA, the agents always follow a fixed, and shortest path,
so the distance ratio is always 1.0. Agents using context-
aware routing have the option of taking a slightly longer
route if the shortest one is congested, and this results in
routes that are on average 5% longer than the shortest path.
The routing table approach has agents travelling the great-
est distances, directing agents away from congested areas.
If, however, there is no way around the congested area, then
it may happen that agents are kept circling in uncongested
areas of the infrastructure until the congestion clears.

Another interesting aspect of figure 6(b) is that for RTA-
FCFS and RTA-WLQF, the average distance travelled per
agent decreases as the number of agents in the system in-
creases. One explanation might be that, as the system be-
comes heavily congested, the difference between congestion
levels on lanes decreases (i.e., if all are very congested). Cer-
tainly, if all outgoing lanes are equally congested, then the

RTA approach will always select a lane with minimum dis-
tance.

5.2 Unexpected incidents
We will now investigate robustness, i.e., the ability of each
of the methods to cope with unexpected delays. We will in-
troduce vehicle incidents that render vehicles immobile for
a fixed period of time. Incidents are generated according to
a rate parameter, which specifies the average number of in-
cidents per vehicle per time unit. Vehicles can only receive
incidents when active, i.e., not before they have entered their
start location, and not after they have vacated their desti-
nation location (recall the assumption regarding agents and
their start and destination locations from section 2.1).

In figure 7, we vary the rate of incidents from 0 to 60 in-
cidents per agent, per hour4, and we try two different inci-
dent durations: 10 seconds per incident in figure 7(a), and
30 seconds for figure 7(b). All incident-experiments were
conducted with 400 agents, about the number of agents for
which RTA-WLQF is still able to produce a large percentage
of deadlock-free runs.

In previous experiments [21, 17, 18], context-aware routing
approaches were shown to be fairly robust under incidents
of this magnitude, but for these types of infrastructures,
standard context-aware quickly loses its advantage, espe-
cially for longer incidents. An explanation would be that
on this type of grid infrastructure, there is a lot of inter-
action between the agents on a relatively small number of
intersections. This means that if one agent is delayed, many
other agents have to wait for it. Increasing the priority with
the agent order swap mechanism (CA-AOS in figure 7) re-
stores much of the performance of context-aware routing,
although for incidents of longer duration it is now matched
by the best intersection management policies. What is also
interesting to note from figure 7 is that the local intersec-
tion management policies, and in particular LQF, are very
robust in the face of vehicle incidents; although figures 7(a)
and 7(b) represent different problem instances (i.e., different
pairs of start-and-destination locations), it is interesting to
see that the makespan barely increases for longer incidents
of 30 seconds. Apparently, when one lane of cars is stuck
behind a stricken vehicle, an intersection can use that to
simply process more vehicles from the remaining lanes.

6. CONCLUSIONS AND FUTURE WORK
In this paper we compared context-aware routing, in which
agents sequentially find locally optimal and conflict-free route
plans, with local intersection management, in which an in-
tersection agent decides which vehicle is the next to enter,
and possibly directs it along the next lane. Our experi-
ments show that, without any incidents disrupting plan ex-
ecution, context-aware routing produces the most efficient
route plans, when measured in makespan or agent traversal
time, while only covering on average 5% more distance than
always following the shortest path. Moreover, the most effi-
cient intersection management policies are prone to produce
deadlock situations.
4To put 60 incidents per agent per hour into perspective,
note that the total simulation time equals the makespan,
which from figure 7 can be seen to vary from around 200 to
700 seconds.
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(a) RTA-LQF (b) RTA-WLQF

Figure 5: Execution screenshot of RTA-LQF(a) and RTA-WLQF(b) on the same instance, at one minute into
the run.
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Figure 6: Performance comparison on (5, 5) grid infrastructure, measured in agent cost and distance travelled,
divided by a lower bound on cost (and distance), which is the shortest path when other vehicles are not taken
into account.
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Figure 7: Performance comparison on (5, 5) grid infrastructure with 400 agents and makespan performance
measure, with unexpected incidents during the execution.

If we do allow unexpected incidents to occur during plan
execution, the performance of context-aware routing (with
the standard deadlock-prevention mechanism of waiting for
delayed vehicles) degrades fairly sharply as many agents end
up waiting for one delayed agent — not only directly behind
it, but also at an intersection where the delayed agent has
failed to appear. The application of the agent order swap
mechanism, which increases the priority of timely agents
over delayed ones, can return the performance of context-
aware routing to a good level. It does mean, however, that
context-aware routing needs some kind of plan repair mech-
anisms in order to be applied in realistic settings. By con-
trast, the local intersection management policies can be used
‘as is’ (although there is still the possibility of deadlock, of
course).

For future work, there are a number of lines of research we
would like to pursue. First of all, we can look into different
repair schemes for context-aware routing. The agent order
swap mechanism employed in this paper changes the pri-
orities of the agents, but keeps each agent to its originally
planned path. Full plan repair, in which an agent computes
a completely new route, has been tried in [18] with mixed
results. On the one hand, each time an agent successfully
makes a new plan it improves its own performance with-
out hindering others (because the new reservations may not
conflict with existing ones, adjusted for delays), so full plan
repair should be able to improve performance considerably.
On the other hand, continual re-planning by all agents has
not led to significant global improvement, with agents go-
ing back and forth between plans, occasionally covering the
same ground multiple times. Hence, a cleverer way of man-
aging the re-planning process is required in order to gain
real benefits.

The intersection management policies presented in this pa-
per are of course only a first step in providing intelligent
intersection control. One interesting area of possible ex-
tensions is to allow limited communication and cooperation
between intersection management agents. We could see that
the current routing table approach in particular suffered
from the limitations of its myopic approach, with agents be-

ing directed around congested areas that they had no pos-
sibility of avoiding. In addition, when developing policies
for intersection management, we must try to find a sensible
solution to the possibility of deadlocks. In the Automated
Guided Vehicle domain, for instance, a common approach is
to model the infrastructure system as a Petri net (cf. [5]),
although full deadlock prevention can be computationally
expensive in such settings.
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ABSTRACT
Travel sharing, i.e., the problem of finding parts of routes
which can be shared by several travellers with different points
of departure and destinations, is a complex multiagent prob-
lem that requires taking into account individual agents’ pref-
erences to come up with mutually acceptable joint plans. In
this paper, we apply state-of-the-art planning techniques to
real-world public transportation data to evaluate the feasi-
bility of multiagent planning techniques in this domain. The
potential of improving travel sharing technology has great
application value due to its ability to reduce the environmen-
tal impact of travelling while providing benefits to travellers
at the same time.

We propose a three-phase algorithm that utilises performant
single-agent planners to find individual plans in a simplified
domain first and then merges them using a best-response
planner which ensures resulting solutions are individually
rational. Finally, it maps the resulting plan onto the full
temporal planning domain to schedule actual journeys.

The evaluation of our algorithm on real-world, multi-modal
public transportation data for the United Kingdom shows
linear scalability both in the scenario size and in the num-
ber of agents, where trade-offs have to be made between
total cost improvement, the percentage of feasible timeta-
bles identified for journeys, and the prolongation of these
journeys. Our system constitutes the first implementation
of strategic multiagent planning algorithms in large-scale
domains and provides insights into the engineering process
of translating general domain-independent multiagent plan-
ning algorithms to real-world applications.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence – Multiagent systems

General Terms
Algorithms, Design, Experimentation

Keywords
multiagent planning, real-world application, travel sharing

1. INTRODUCTION
Travelling is an important and frequent activity, yet peo-
ple willing to travel have to face problems with rising fuel

prices, carbon footprint and traffic jams. These problems
can be ameliorated by travel sharing, i.e., groups of people
travel together in one vehicle for parts of the journey. Par-
ticipants in such schemes can benefit from travel sharing in
several ways: sharing parts of a journey may reduce cost
(e.g., through group tickets), carbon footprint (e.g., when
sharing a private car, or through better capacity utilisation
of public means of transport), and travellers can enjoy the
company of others on a long journey. In more advanced
scenarios one could even imagine this being combined with
working together while travelling, holding meetings on the
road, etc.

Today, there exist various commercial online services for
car1, bike, and walk sharing as well as services which as-
sist users in negotiating shared journeys2, and, of course,
plenty of travel planning services3 that automate individ-
ual travel planning for one or several means of transport.
On the research side, there is previous work that deals with
the ridesharing and car-pooling problem [1, 8, 14]. How-
ever, no work has been done that attempts to compute joint
travel plans based on public transportation timetable data
and geographical stop locations, let alone in a way that
takes into account the strategic nature of the problem, which
comes about through the different (and potentially conflict-
ing) preferences of individuals who might be able to benefit
from travelling together. From the point of view of (multia-
gent) planning, this presents itself as a very complex appli-
cation scenario: Firstly, even if one restricted oneself to cen-
tralised (non-strategic) planning, the domain is huge – pub-
lic transportation data for the UK alone currently involves
240, 590 timetable connections for trains and coaches (even
excluding local city buses), which would have to be trans-
lated to a quarter of a million planning actions, at least in
a naive formalisation of the domain. Secondly, planning for
multiple self-interested agents that are willing to cooperate
only if it is beneficial for them is known to be exponentially
harder than planning for each agent individually [2]. Yet
any automated service that proposes joint journeys would
have to guarantee such strategic properties in order to be
acceptable for human users (who could then even leave it to
the service to negotiate trips on their behalf).

1E.g., www.liftshare.com or www.citycarclub.co.uk.
2E.g., www.companions2travel.co.uk, www.travbuddy.com.
3E.g., in the United Kingdom: www.nationalrail.co.uk for
trains, www.traveline.info and www.google.com/transit
for multi-modal transportation.
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In this paper, we present an implementation of best-res-
ponse planning (BRP) [13] within a three-phase algorithm
that is capable of solving strategic travel sharing problems
for several agents based on real-world transportation data.
Based on a simplified version of the domain that ignores
timetabling information, the algorithm first builds individ-
ual travel plans using state-of-the-art single-agent planners
that are available off the shelf. It then merges these indi-
vidual plans and computes a multiagent plan that is a Nash
equilibrium and guarantees individual rationality of solu-
tions, as well as stability in the sense that no single agent
has an incentive to deviate from the joint travel route. This
is done using BRP as the underlying planner, as it is the
only available planner that can solve strategic multiagent
planning problems of such scale, and is proven to converge
in domains that comply with certain assumptions, as is the
case for our travel sharing domain. In a third and final step,
the resulting multiagent plan is mapped onto the full tem-
poral planning domain to schedule actual journeys. This
scheduling task is not guaranteed to always find a feasible
solution, as the previous simplification ignores a potential
lack of suitable connections. However, we show through an
extensive empirical evaluation that our method finds useful
solutions in a large number of cases despite its theoretical
incompleteness.

The contribution of our work is threefold: Firstly, we show
that current multiagent planning technology can be used in
important planning domains such as travel sharing by pre-
senting its application to a practical problem that cannot
be solved with other existing techniques. In the process,
we describe the engineering steps that are necessary to deal
with the challenges of real-world large-scale data and pro-
pose suitable solutions. Secondly, we present an algorithm
that combines different techniques in a practically-oriented
way, and which is largely based on domain-independent off-
the-shelf heuristic problem solvers. In fact, only data prepro-
cessing and timetable mapping use domain-specific knowl-
edge, and much of the process of incorporating this knowl-
edge could be replicated for similar other domains (such as
logistics, manufacturing, and network communications). Fi-
nally, we provide a potential solution to the hard computa-
tional problem of travel sharing that could be exploited for
automating important tasks in a future real-world applica-
tion to the benefits of users, who normally have to plan such
routes manually and would be overwhelmed by the choices
in a domain full of different transportation options which is
inhabited by many potential co-travellers.

We start off by describing the problem domain in section 2
and specifying the planning problem formally in section 3,
following the model used in [13]. Section 4 introduces our
three-phase algorithm for strategic planning in travel sharing
domains and we present an extensive experimental evalua-
tion of the algorithm in section 5. Section 6 presents a dis-
cussion of our results and section 7 concludes.

2. THE TRAVEL SHARING DOMAIN
The real-world travel domain used in this paper is based
on the public transport network in the United Kingdom,
a very large and complex domain which contains 4, 055 rail-
way and coach stops supplemented by timetable informa-
tion. An agent representing a passenger is able to use differ-

PostgreSQL database system

NaPTAN XML data

Transform NaPTAN

NPTDR XML data

Transform NPTDR

Data processing

Transport database

PL/pgSQL functions

Figure 1: Overview of the data transformation and
processing

ent means of transport during its journey: walking, trains,
and coaches. The aim of each agent is to get from its start-
ing location to its final destination at the lowest possible
cost, where the cost of the journey is based on the dura-
tion and the price of the journey. Since we assume that all
agents are travelling on the same day and that all journeys
must be completed within 24 hours, in what follows below
we consider only travel data for Tuesdays (this is an arbi-
trary choice that could be changed without any problem).
For the purposes of this paper, we will make the assump-
tion that sharing a part of a journey with other agents is
cheaper than travelling alone. While this may not currently
hold in many public transportation systems, defining hypo-
thetical cost functions that reflect this would help assess the
potential benefit of introducing such pricing schemes.

2.1 Source data
The travel sharing domain uses the National Public Trans-
port Data Repository (NPTDR)4 which is publicly available
from the Department for Transport of the British Govern-
ment. It contains a snapshot of route and timetable data
that has been gathered in the first or second complete week
of October since 2004. For the evaluation of the algorithm
in section 5, we used data from 20105, which is provided in
TransXChange XML6.

National Public Transport Access Nodes (NaPTAN)7 is a UK
national system for uniquely identifying all the points of ac-
cess to public transport. Every point of access (bus stop,
rail station, etc.) is identified by an ATCO code8, e.g.,
9100HAYMRKT for Haymarket Rail Station in Edinburgh.
Each stop in NaPTAN XML data is also supplemented by
common name, latitude, longitude, address and other pieces
of information. This data also contains information about
how the stops are grouped together (e.g., several bus bays
that are located at the same bus station).

To be able to use this domain data with modern AI plan-
ning systems, it has to be converted to the Planning Domain
Definition Language (PDDL). We transformed the data in
three subsequent stages, cf. Figure 1. First, we transformed
the NPTDR and NaPTAN XML data to a spatially-enabled
PostgreSQL database. Second, we automatically processed
and optimised the data in the database. The data processing

4data.gov.uk/dataset/nptdr
5www.nptdr.org.uk/snapshot/2010/nptdr2010txc.zip
6An XML-based UK standard for interchange of route and
timetable data.
7data.gov.uk/dataset/naptan
8A unique identifier for all points of access to public trans-
port in the United Kingdom.
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Figure 2: An example of the relaxed domain (e.g.,
it takes 50 minutes to travel from the stop A to B)

by SQL functions in the procedural PL/pgSQL language in-
cluded the following steps: merging bus bays at bus stations
and parts of train stations, introducing walking connections
to enable multi-modal journeys, and eliminating duplicates
from the timetable. Finally, we created a script for generat-
ing PDDL specifications based on the data in the database.
More details about the data processing and PDDL specifi-
cations can be found in [11].

2.2 Planning domain definitions
Since the full travel planning domain is too large for any
current state-of-the-art planner to deal with, we distinguish
the full domain from a relaxed domain, which we will use to
come up with an initial plan before mapping it to the full
timetable information in our algorithm below.

The relaxed domain is a single-agent planning domain repre-
sented as a directed graph where the nodes are the stops and
the edges are the connections provided by a service. The
graph must be directed because there exist stops that are
used in one direction only. There is an edge from A to B if
there is at least one connection from A to B in the timetable.
The cost of this edge is the minimal time needed for travel-
ling from A to B. A plan Pi found in the relaxed domain for
the agent i is a sequence of connections to travel from its ori-
gin to its destination. The relaxed domain does not contain
any information about the traveller’s departure time. This
could be problematic in a scenario where people are travel-
ling at different times of day. This issue could be solved by
clustering of user requests, cf. chapter 7.

A small example of the relaxed domain is shown in Fig-
ure 2. An example plan for an agent travelling from C to F
is P1 = 〈C → D,D → E,E → F 〉. To illustrate the dif-
ference between the relaxed domain and the full timetable,
there are 8, 688 connections in the relaxed domain for trains
and coaches in the UK compared to 240, 590 timetable con-
nections.

Direct trains that do not stop at every stop are filtered out
from the relaxed domain for the following reason: Assume
that in Figure 2, there is only one agent travelling from
C to F and that its plan in the relaxed domain is to use
a direct train from C to F . In this case, it is only possible
to match its plan to direct train connections from C to F ,
and not to trains that stop at C,D, E, and F . Therefore, the
agent’s plan cannot be matched against all possible trains
between C and F which is problematic especially in the case
where the majority of trains stop at every stop and only
a few trains are direct. On the other hand, it is possible to

C
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F

S1

S2

S1

S3
S2

S4

S5

Figure 3: An example of the full domain with stops

C, D, E and F for the joint plan P = {C (1)−−→D
(1,2)−−−→

E
(1)−−→ F}

match a plan with a train stopping in every stop to a direct
train, as it is explained later in section 4.3.

The full domain is a multiagent planning domain based on
the joint plan P . Assume that there are N agents in the
full domain (each agent i has the plan Pi from the relaxed
domain). Then, the joint plan P is a merge of single-agent
plans defined by formula

P =
N⋃

i=1

Pi

where we interpret
⋃

as the union of graphs that would re-
sult from interpreting each plan as a set of edges connecting
stops. More specifically, given a set of single-agent plans, the
plan merging operator

⋃
computes its result in three steps:

First, it transforms every single-agent plan Pi to a directed
graph Gi where the nodes are the stops from the single-
agent plan Pi and the edges represent the actions of Pi (for
instance, a plan P1 = 〈C → D,D → E,E → F 〉 is trans-
formed to a directed graph G1 = {C → D → E → F}). Sec-
ond, it performs a graph union operation over the directed
graphs Gi and labels every edge in the joint plan with the
numbers of agents that are using the edge (we don’t intro-
duce any formal notation for these labels here, and simply
slightly abuse the standard notation of sets of edges to de-
scribe the resulting graph).

As an example, the joint plan for agent 1 travelling from
C to F and sharing a journey from D to E with agent 2
would be computed as

〈C → D,D → E,E → F 〉 ∪ 〈D → E〉 =

{C (1)−−→ D
(1,2)−−−→ E

(1)−−→ F}
With this, the full domain is represented as a directed multi-
graph where the nodes are the stops that are present in the
joint plan of the relaxed domain. Edges of the multigraph
are the service journeys from the timetable. Every service
is identified by a unique service name and is assigned a de-
parture time from each stop and the duration of its journey
between two stops. In the example of the full domain in
Figure 3, the agents can travel using some subset of five
different services S1 to S5. In order to travel from C to D
using service S1, an agent must be present at stop C before
its departure.

3. THE PLANNING PROBLEM
Automated planning technology [9] has developed a variety
of scalable heuristic algorithms for tackling hard planning
problems, where plans, i.e., sequences of actions that achieve
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a given goal from a given initial state, are calculated by
domain-independent problem solvers. To model the travel
sharing problem, we use a multiagent planning formalism
which is based on MA-STRIPS [2] and coalition-planning
games [3]. States are represented by sets of ground fluents,
actions are tuples a = 〈pre(a), eff (a)〉. After the execution
of action a, positive fluents p from eff (a) are added to the
state and negative fluents ¬p are deleted from the state.
Each agent has individual goals and actions with associated
costs. There is no extra reward for achieving the goal, the
total utility received by an agent is simply the inverse of the
cost incurred by the plan executed to achieve the goal.

More formally, following the notation of [13], a multiagent
planning problem (MAP) is a tuple

Π = 〈N,F, I, {Gi}ni=1, {Ai}ni=1,Ψ, {ci}ni=1〉
where

• N = {1, . . . , n} is the set of agents,

• F is the set of fluents,

• I ⊆ F is the initial state,

• Gi ⊆ F is agent i’s goal,

• Ai is agent i’s action set,

• Ψ : A→ {0, 1} is an admissibility function,

• ci : ×n
i=1Ai → R is the cost function of agent i.

A = A1 × . . . × An is the joint action set assuming a con-
current, synchronous execution model, and G = ∧iGi is the
conjunction of all agents’ individual goals. A MAP typically
imposes concurrency constraints regarding actions that can-
not or have to be performed concurrently by different agents
to succeed which the authors of [13] encode using an admis-
sibility function Ψ, with Ψ(a) = 1 if the joint action a is
executable, and Ψ(a) = 0 otherwise.

A plan π = 〈a1, . . . , ak〉 is a sequence of joint actions aj ∈ A
such that a1 is applicable in the initial state I (i.e., pre(a1) ⊆
I), and aj is applicable following the application of a1, . . . ,
aj−1. We say that π solves the MAP Π if the goal state
G is satisfied following the application of all actions in π
in sequence. The cost of a plan π to agent i is given by
Ci(π) =

∑k
j=1 ci(a

j). Each agent’s contribution to a plan π

is denoted by πi (a sequence of ai ∈ Ai).

3.1 Best-response planning
The best-response planning (BRP) algorithm proposed in
[13] is an algorithm which, given a solution πk to a MAP Π,
finds a solution πk+1 to a transformed planning problem Πi

with minimum cost Ci(π
k+1) among all possible solutions:

πk+1 = arg min{Ci(π)|π identical to πk for all j 6= i}
The transformed planning problem Πi is obtained by rewrit-
ing the original problem Π so that all other agents’ actions
are fixed, and agent i can only choose its own actions in such
a way that all other agents still can perform their original
actions. Since Πi is a single-agent planning problem, any

cost-optimal planner can be used as a best-response plan-
ner.

In [13], the authors show how for a class of congestion plan-
ning problems, where all fluents are private, the transforma-
tion they propose allows the algorithm to converge to a Nash
equilibrium if agents iteratively perform best-response steps
using an optimal planner. This requires that every agent
can perform its actions without requiring another agent, and
hence can achieve its goal in principle on its own, and con-
versely, that no agent can invalidate other agents’ plans.
Assuming infinite capacity of vehicles, the relaxed domain
is an instance of a congestion planning problem9.

The BRP planner works in two phases: In the first phase,
an initial plan for each agent is computed (e.g., each agent
plans independently or a centralised multi-agent planner is
used). In the second phase, the planner solves simpler best-
response planning problems from the point of view of each
individual agent. The goal of the planner in a BRP problem
is to minimise the cost of an agent’s plan without changing
the plans of others. Consequently, it optimises a plan of
each agent with respect to the current joint plan.

This approach has several advantages. It supports full con-
currency of actions and the BRP phase avoids the exponen-
tial blowup in the action space resulting in much improved
scalability. For the class of potential games [16], it guaran-
tees to converge to a Nash equilibrium. On the other hand,
it does not guarantee the optimality of a solution, i.e., the
quality of the equilibrium in terms of overall efficiency is
not guaranteed (it depends on which initial plan the agents
start off with). However, experiments have proven that it
can be successfully used for improving general multiagent
plans [13]. Such non-strategic plans can be computed using
a centralised multiagent planner, i.e., a single-agent plan-
ner (for instance Metric-FF [10]) which tries to optimise the
value of the joint cost function (in our case the sum of the
values of the cost functions of agents in the environment)
while trying to achieve all agents’ goals. Centralised multi-
agent planners have no notion of self-interested agents, i.e.,
they ignore the individual preferences of agents.

4. A THREE-PHASE STRATEGIC TRAVEL
SHARING ALGORITHM

The main problem when planning for multiple agents with
a centralised multiagent planner is the exponential blowup
in the action space which is caused by using concurrent, in-
dependent actions [13]. Using a naive PDDL translation has
proven that a direct application of a centralised multiagent
planner to this problem does not scale well. For example,
a simple scenario with two agents, ferries to Orkney Islands
and trains in the area between Edinburgh and Aberdeen re-
sulted in a one-day computation time.

As mentioned above, we tackle the complexity of the domain
by breaking down the planning process into different phases

9 Following the definition of a congestion planning prob-
lem in [13], all actions are private, as every agent can use
transportation means on their own and the other agents’
concurrently taken actions only affect action cost. A part of
the cost function defined in section 4.4 depends only on the
action choice of individual agent.
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Input

• a relaxed domain
• a set of N agents A = {a1, . . . , aN}
• an origin and a destination for each agent

1. The initial phase

For i = 1, . . . , N do

Find an initial journey for agent ai using
a single-agent planner.

2. The BR phase

Do until no change in the cost of the joint plan

For i = 1, . . . , N do

1. Create a simpler best-response planning (BRP)
problem from the point of view of agent ai.

2. Minimise the cost of ai’s plan without changing
the plans of others.

End

3. The timetabling phase

Identify independent groups of agents G = {g1, . . . , gM}.

For i = 1, . . . ,M do

1. Find the relevant timetable for group gi.
2. Match the joint plan of gi to timetable using

a temporal single-agent planner in the full domain
with the relevant timetable.

End

Figure 4: Three-phase algorithm for finding shared
journeys for agents

that avoid dealing with the full fine-grained timetable data
from the outset. Our algorithm, which is shown in Figure 4,
is designed to work in three phases.

4.1 The initial phase
First, in the initial phase, an initial journey is found for each
agent using the relaxed domain. A journey for each agent
is calculated independently of other agents in the scenario
using a single-agent planner. As a result, each agent is as-
signed a single-agent plan which will be further optimised in
the next phase. This approach makes sense in our domain
because the agents do not need each other to achieve their
goals and they cannot invalidate each other’s plans.

4.2 The BR phase
Second, in the BR phase (best-response phase), which is also
based on the relaxed domain, the algorithm uses the BRP al-
gorithm as described above. It iteratively creates and solves
simpler best-response planning problems from the point of
view of each individual agent. In the case of the relaxed
domain, the BRP problem looks almost the same as a prob-
lem of finding a single-agent initial journey. The difference
is that the cost of travelling is smaller when an agent uses

A

C D E F

G

B H

part 1

part 2

part 4

part 5

part 3

(1) (1)

(2) (2)

(1, 2) (1, 2) (1, 2)

Figure 5: Parts of the group journey of two agents
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T1

T2 T2 T2

T1

T2

T3 T4

T5

T2

T1

Figure 6: The full domain with services from the
relevant timetable. There are five different trains
T1 to T5, and train T1 is a direct train.

a connection which is used by one or more other agents, as
will be explained below, cf. equation (1).

Iterations over agents continue until there is no change in
the cost of the joint plan between two successive iterations.
This means that the joint plan cannot be further improved
using the best-response approach. The output of the BR
phase is the joint plan P in the relaxed domain (defined in
section 2.2) that specifies which connections the agents use
for their journeys and which segments of their journeys are
shared. The joint plan P will be matched to the timetable
in the final phase of the algorithm.

4.3 The timetabling phase
In the final timetabling phase, the optimised shared jour-
neys are matched against timetables using a temporal single-
agent planner which assumes the full domain. For this, as
a first step, independent groups of agents with respect to
journey sharing are identified. An independent group of
agents is defined as an edge disjoint subgraph of the joint
plan P . This means that actions of independent groups do
not affect each other so it is possible to find a timetable for
each independent group separately.

Then, for every independent group, parts of the group jour-
ney are identified. A part of the group journey is defined as
a maximal continuous segment of the group journey which is
performed by the same set of agents. As an example, there is
a group of two agents that share a segment of their journeys
in Figure 5: Agent 1 travels from A to G while agent 2 trav-
els from B to H. Their group journey has five parts, with
the shared part (part 3) of their journey occurring between
stops C and F .

In order to use both direct and stopping trains when the
group journey is matched to the timetable, the relevant
timetable for a group journey is composed in the following
way: for every part of the group journey, return all timetable
services in the direction of agents’ journeys which connect
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Table 1: Parameters of the testing scenarios
Scenario code S1 S2 S3 S4 S5
Number of stops 344 721 1 044 1 670 2 176
Relaxed domain connections 744 1 520 2 275 4 001 4 794
Timetabled connections 23 994 26 702 68 597 72 937 203 590
Means of transport trains trains, coaches trains trains, coaches trains

the stops in that part. An example of the relevant timetable
for a group of agents from the previous example is shown in
Figure 6. Now, the agents can travel using the direct train
T1 or using train T2 with intermediate stops.

The relevant timetable for the group journey is used with
the aim to cut down the amount of data that will be given
to a temporal single-agent planner. For instance, there are
23 994 timetabled connections in Scotland. For an exam-
ple journey of two agents, there are only 885 services in
the relevant timetable which is approximately 4 % of the
data. As a result, the temporal single-agent planner gets
only the necessary amount of data as input, to prevent the
time-consuming exploration of irrelevant regions of the state
space.

4.4 Cost functions
The timetable data used in this paper (cf. section 2.1) con-
tains neither information about ticket prices nor distances
between adjacent stops, only durations of journeys from one
stop to another. This significantly restricts the design of
cost functions used for the planning problems. Therefore,
the cost functions used in the three phases of the algorithm
are based solely on the duration of journeys.

In the initial phase, every agent tries to get to its destination
in the shortest possible time. The cost of travelling between
adjacent stops A and B is simply the duration of the journey
between stops A and B. In the BR phase, we design the cost
function in such a way that it favours shared journeys. The
cost ci,n for agent i travelling from A to B in a group of n
agents is then defined by equation (1):

ci,n =

(
1

n
0.8 + 0.2

)
ci (1)

where ci is the individual cost of the single action to i when
travelling alone. In our experiments below, we take this to
be equal to the duration of the trip from A to B.

This is designed to approximately model the discount for the
passengers if they buy a group ticket: The more agents travel
together, the cheaper the shared (leg of a) journey becomes
for each agent. Also, an agent cannot travel any cheaper
than 20 % of the single-agent cost. In reality, pricing for
group tickets could vary, and while our experimental results
assume this specific setup, the actual price calculation could
be easily replaced by any alternative model.

In the timetabling phase, every agent in a group of agents
tries to spend the shortest possible time on its journey.
When matching the plan to the timetable, the temporal
planner tries to minimise the sum of durations of agents’
journeys including waiting times between services.

5. EVALUATION
We have evaluated our algorithm on public transportation
data for the United Kingdom, using various off-the-shelf
planners for the three phases described above, and a number
of different scenarios. These are described together with the
results obtained from extensive experiments below.

5.1 Planners
All three single-agent planners used for the evaluation were
taken from recent International Planning Competitions (IPC)
from 2008 and 2011. We use LAMA [18] in the initial and
the BR phase, a sequential satisficing (as opposed to cost-
optimal) planner which searches for any plan that solves
a given problem and does not guarantee optimality of the
plans computed. LAMA is a propositional planning system
based on heuristic state-space search. Its core feature is the
usage of landmarks [17], i.e., propositions that must be true
in every solution of a planning problem.

SGPlan6 [12] and POPF2 [7] are temporal satisficing plan-
ners used in the timetabling phase. Such temporal planners
take the duration of actions into account and try to min-
imise makespan (i.e., total duration) of a plan but do not
guarantee optimality. The two planners use different search
strategies and usually produce different results. This allows
us to run them in sequence on every problem and to pick the
plan with the shortest duration. It is not strictly necessary
to run both planners, one could save computation effort by
trusting one of them.

SGPlan6 consists of three inter-related steps: parallel de-
composition, constraint resolution and subproblem solution
[4, 10, 15, 19]. POPF2 is a temporal forward-chaining partial-
order planner with a specific extended grounded search strat-
egy described in [5, 6]. It is not known beforehand which
of the two planners will return a better plan on a particular
problem instance.

5.2 Scenarios
To test the performance of our algorithm, we generated five
different scenarios of increasing complexity, whose param-
eters are shown in Table 1. They are based on different
regions of the United Kingdom (Scotland for S1 and S2,
central UK for S3 and S4, central and southern UK for S5).
Each scenario assumes trains or trains and coaches as avail-
able means of transportation.

In order to observe the behaviour of the algorithm with dif-
ferent numbers of agents, we ran our algorithm on every
scenario with 2, 4, 6, . . . , 14 agents in it. To ensure a reason-
able likelihood of travel sharing to occur, all agents in the
scenarios travel in the same direction. This imitates a pre-
processing step where the agents’ origins and destinations
are clustered according to their direction of travel. For sim-
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plicity reasons, we have chosen directions based on cardinal
points (N–S, S–N, W–E, E–W). For every scenario and num-
ber of agents, we generated 40 different experiments (10 ex-
periments for each direction of travel), resulting in a total of
1, 400 experiments. All experiments are generated partially
randomly as defined below.

To explain how each experiment is set up, assume we have
selected a scenario from S1 to S5, a specific number of agents,
and a direction of travel, say north–south. To compute the
origin–destination pairs to be used by the agents, we place
two axes x and y over the region, dividing the stops in the
scenario into four quadrants I, II, III and IV. Then, the
set O of possible origin–destination pairs is computed as

O := {(A,B)|((A ∈ I ∧B ∈ IV) ∨ (A ∈ II ∧B ∈ III))

∧ |AB| ∈ [20, 160]}
This means that each agent travels from A to B either from
quadrant I to IV or from quadrant II to III. The straight-
line distance |AB| between the origin and the destination
is taken from the interval 20–160 km (when using roads or
rail tracks, this interval stretches approximately to a real
distance of 30–250 km). This interval is chosen to prevent
journeys that could be hard to complete within 24 hours.
We sample the actual origin-destination pairs from the el-
ements of O, assuming a uniform distribution, and repeat
the process for all other directions of travel.

5.3 Experimental results
We evaluate the performance of the algorithm in terms of
three different metrics: the amount of time the algorithm
needs to compute shared journeys for all agents in a given
scenario, the success rate of finding a plan for any given
agent and the quality of the plans computed. Unless stated
otherwise, the values in graphs are averaged over 40 experi-
ments that were performed for each scenario and each num-
ber of agents. The results obtained are based on running
the algorithm on a Linux desktop computer with 2.66 GHz
Intel Core 2 Duo processor and 4 GB of memory. The data,
source codes and scenarios in PDDL are archived online10.

5.3.1 Scalability
To assess the scalability of the algorithm, we measure the
amount of time needed to plan shared journeys for all agents
in a scenario.

In many of the experiments, the SGPlan6 and POPF2 used
in the timetabling phase returned some plans in the first few
minutes but then they continued exploration of the search
space without returning any better plan. To account for this,
we imposed a time limit for each planner in the temporal
planning stage to 5 minutes for a group of up to 5 agents,
10 minutes for a group of up to 10 agents, and 15 minutes
otherwise.

Figure 7 shows the computation times of the algorithm. The
graph indicates that overall computation time grows roughly
linearly with increasing number of agents, which confirms
that the algorithm avoids the exponential blowup in the ac-
tion space characteristic for centralised multiagent planning.

10 agents.fel.cvut.cz/download/hrncir/journey sharing.tgz
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Computation time also increases linearly with growing sce-
nario size. Figure 8 shows computation times for 4, 8 and
12 agents against the different scenarios.

While the overall computation times are considerable (up to
one hour for 14 agents in the largest scenario), we should em-
phasise that the algorithm is effectively computing equilib-
rium solutions in multi-player games with hundreds of thou-
sands of states. Considering this, the linear growth hints at
having achieved a level of scalability based on the structure
of the domain that is far above naive approaches to plan
jointly in such state spaces. Moreover, it implies that the
runtimes could be easily reduced by using more processing
power.

35



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4  5  6  7  8

gr
ou

p
s 

w
it

h
 t

im
et

ab
le

 [
%

]

group size [number of agents]

S1: Scotland (trains)

S2: Scotland (trains, coaches)

S3: Central UK (trains)

S4: Central UK (trains, coaches)

S5: South and central UK (trains)

Figure 9: Percentage of groups for which a timetable
was found as a function of group size.

5.3.2 Success rate
To assess the value of the algorithm, we also need to look at
how many agents end up having a valid travel plan. Plan-
ning in the relaxed domain in the initial and the BR phase
of the algorithm is very successful. After the BR phase,
99.4 % of agents have a journey plan. The remaining 0.6 %
of all agents does not have a single-agent plan because of
the irregularities in the relaxed domain caused by splitting
the public transportation network into regions. The agents
without a single-agent plan are not matched to timetable
connections in the timetabling phase.

The timetabling phase is of course much more problem-
atic. Figure 9 shows the percentage of groups for which
a timetable was found, as a function of group size. In or-
der to create this graph, number of groups with assigned
timetable and total number of groups identified was counted
for every size of the group. There are several things to point
out here.

Naturally, the bigger a group is, the harder it is to find
a feasible timetable, as the problem quickly becomes over-
constrained in terms of travel times and actually available
transportation services. When a group of agents sharing
parts of their journeys is big (5 or more agents), the per-
centage of groups for which we can find a timetable drops
below 50 %. With a group of 8 agents, almost no timetable
can be found. Basically what happens here is that the initial
and BR phases find suitable ways of travelling together in
principle, but that it becomes impossible to find appropriate
connections that satisfy every traveller’s requirements, or do
not add up to a total duration of less than 24 hours.

We can also observe that the success rate is higher in sce-
narios that use only trains than in those that combine trains
and coaches. On closer inspection, we can observe that this
is mainly caused by different service densities in the rail and
coach networks, i.e., the ratios of timetabled connections
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over connections in the relaxed domain. For example, the
service density is 33 train services a day compared to only
4 coach services in Scotland. As a consequence, it is much
harder to find a timetable in a scenario with both trains and
coaches because the timetable of coaches is much less regular
than the timetable of trains. However, this does not mean
that there is less sharing if coaches are included. Instead, it
just reflects the fact that due to low service density, many of
the envisioned shared journeys do not turn out to be feasible
using coaches. The fact that this cannot be anticipated in
the initial and BR phases is a weakness of our method, and
is discussed further in section 7.

5.3.3 Plan quality
Finally, we want to assess the quality of the plans obtained
with respect to improvement in cost of agents’ journeys and
their prolongation, to evaluate the net benefit of using our
method in the travel sharing domain. We should mention
that the algorithm does not explicitly optimises the solu-
tions with respect to these metrics. To calculate cost im-
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provement, recalling that Ci(π) =
∑

j ci(a
j) for a plan is

the cost of a plan π = 〈a1, . . . , ak〉 to agent i, assume n(aj)
returns the number of agents with whom the jth step of the
plan is shared. We can define a cost of a shared travel plan

C
′
i (π) =

∑
j ci,n(aj)(a

j) using equation (1). With this we
can calculate the improvement ∆C as follows:

∆C =

∑
i∈N Ci(πi)−

∑
i∈N C

′
i (πN )∑

i∈N Ci(πi)
(2)

where N is the set of all agents, πi is the single-agent plan
initially computed for agent i, and πN is the final joint plan
of all agents after completion of the algorithm (which is in-
terpreted as the plan of the “grand coalition”N and reflects
how subgroups within N share parts of the individual jour-
neys).

The average cost improvement obtained in our experiments
is shown in Figure 10, and it shows that the more agents
there are in the scenario, the higher the improvement. How-
ever, there is a trade-off between the improvement in cost
and the percentage of groups that we manage to find a suit-
able timetable for, cf. Figure 9.

On the one hand, travel sharing is beneficial in terms of
cost. On the other hand, a shared journey has a longer du-
ration than a single-agent journey in most cases. In order
to evaluate this trade-off, we also measure the journey pro-
longation. Assume that Ti(π) is the total duration of a plan
to agent i in plan π, and, as above, πi/πN denote the initial
single-agent plans and the shared joint plan at the end of
the timetabling phase, respectively. Then, the prolongation
∆T of a journey is defined as follows:

∆T =

∑
i∈N Ti(πN )−∑i∈N Ti(πi)∑

i∈N Ti(πi)
(3)

Journey prolongation can be calculated only when a group
is assigned a timetable and each member of the group is
assigned a single-agent timetable. For this purpose, in every
experiment, we also calculate single-agent timetables in the
timetabling phase of the algorithm.

A graph of the percentage of groups that have a timetable
with prolongation less than 30 % as a function of group size
is shown in Figure 11. The graph shows which groups ben-
efit from travel sharing, i.e., groups whose journeys are not
prolonged excessively by travelling together. Approximately
15 % of groups with 3–4 agents are assigned a timetable that
leads to a prolongation of less than 30 %. Such a low per-
centage of groups can be explained by the algorithm trying
to optimise the price of the journey by sharing in the BR
phase. However, there is a trade-off between the price and
the duration of the journey. The more agents are sharing
a journey, the longer the journey duration is likely to be.

These results were obtained based on the specific cost func-
tion (1) we have introduced to favour travel sharing, and
which would have to be adapted to the specific cost struc-
ture that is present in a given transportation system. Also,
the extent to which longer journey times are acceptable for
the traveller depends on their preferences, but these could
be easily adapted by using different cost functions.

6. DISCUSSION
The computation of single-agent plans in the initial phase
involves solving a set of completely independent planning
problems. This means that the planning process could be
speeded up significantly by using parallel computation on
multiple CPUs. The same is true for matching different
independent groups of agents to timetabled connections in
the timetabling phase. As an example, assume that there are
N agents in the scenario and t1, . . . , tN are the computation
times for respective single-agent initial plans. If computed
concurrently, this would reduce the computation time from
t =

∑N
i=1 ti to t′ = maxN

i=1(ti). Similar optimisations could
be performed for the timetabling phase of the algorithm. In
the experiments with 10 agents, for example, this would lead
to a runtime reduced by 48 % in scenario S1 and by 44 % in
scenario S5.

A major problem of our method is the inability to find appro-
priate connections in the timetabling phase for larger groups.
There are several reasons for this. Firstly, the relaxed do-
main is overly simplified, and many journeys found in it do
not correspond to journeys that would be found if we were
planning in the full domain. Secondly, there are too many
temporal constraints in bigger groups (5 or more agents), so
the timetable matching problem becomes unsolvable given
the 24-hour timetable. However, it should also be pointed
out that such larger groups would be very hard to identify
and schedule even using human planning. Thirdly, some
parts of public transportation network have very irregular
timetables.

Our method clearly improves the cost of agents’ journeys by
sharing parts of the journeys, even though there is a trade-
off between the amount of improvement, the percentage of
found timetables and the prolongation of journeys. On the
one hand, the bigger the group, the better the improvement.
On the other hand, the more agents share a journey, the
harder it is to match their joint plan to timetable. Also, the
prolongation is likely to be higher with more agents travel-
ling together, and will most likely lead to results that are
not acceptable for users in larger groups.

Regarding the domain-independence of the algorithm, we
should point out that its initial and BR phases are com-
pletely domain-independent so they could easily be used in
other problem domains such as logistics, network routing or
service allocation. In the traffic domain, the algorithm can
be used to plan routes that avoid traffic jams or to control
traffic lights. What is more, additional constraints such as
staying at one city for some time or travelling together with
a specific person can be easily added. On the other hand, the
timetabling phase of the algorithm is domain-specific, pro-
viding an example of the specific design choices that have to
be made from an engineering point of view.

To assess the practical value of our contribution, it is worth
discussing how it could be used in practice as a part of
a travel planning system for real passengers. In such a sys-
tem, every user would submit origin, destination and travel
times. Different users could submit their preferences at dif-
ferent times, with the system continuously computing shared
journeys for them based on information about all users’ pref-
erences. Users would need to agree on a shared journey in
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time to arrange meeting points and to purchase tickets, sub-
ject to any restrictions on advance tickets etc. Because of
this lead time, it would be entirely sufficient if the users
got an e-mail with a planned journey one hour after the
last member of the travel group submits his or her journey
details, which implies that even with our current implemen-
tation of the algorithm, the runtimes would be acceptable.

From our experimental evaluation, we conclude that rea-
sonable group sizes range from two to four persons. Apart
from the fact that such groups can be relatively easily co-
ordinated, with the price model used in this paper, cf. for-
mula (1), every member of a three-person group could save
up to 53 % of the single-agent price. The success rate of the
timetabling phase of the algorithm for three-person groups
in the scenario S3 (trains in the central UK) is 70 %.

7. CONCLUSION
We have presented a multiagent planning algorithm which
is able to plan meaningful shared routes in a real-world
travel domain. The algorithm has been implemented and
evaluated on five scenarios based on real-world UK public
transport data. The algorithm exhibits very good scalabil-
ity, since it scales linearly both with the scenario size and
the number of agents. The average computation time for
12 agents in the scenario with 90 % of trains in the UK is
less than one hour. Experiments indicate that the algorithm
avoids the exponential blowup in the action space character-
istic for a centralised multiagent planner.

To deal with thousands of users that could be in a real-
world travel planning system, a preprocessing step would be
needed: The agents would have to be divided into smaller
groups by clustering them according to departure time, di-
rection of travel, origin, destination, length of journey and
preferences (e.g., travel by train only, find cheapest journey).
Then, the algorithm could be used to find a shared travel
plan with a timetable. To prevent too large groups of agents
which are unlikely to be matched to the timetable, a limit
can be imposed on the size of the group. If a group plan
cannot be mapped to a timetable, the group can be split
into smaller sub-groups which are more likely to identify
a suitable timetable.

Finally, the price of travel and flexibility of travel sharing
can be significantly improved by sharing a private car. In
the future, we would like to explore the problem of planning
shared journeys when public transport is combined with ride
sharing. Then, in order to have a feasible number of nodes
in the travel domain, train and bus stops can be used as
meeting points where it is possible to change from a car to
public transport or vice versa.
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ABSTRACT
We suggest an efficient algorithm for the vehicle routing
problem with time windows (VRPTW) based on agent ne-
gotiation. The algorithm is based on a set of generic negoti-
ation methods and state-of-the-art insertion heuristics. Ex-
perimental results on well known Solomon’s and Homberger-
Gehring benchmarks demonstrate that the algorithm out-
performs previous agent based algorithms. The relevance of
the algorithm with respect to the state-of-the-art centralized
solvers is discussed within a comprehensive performance and
algorithmic analysis, that has not been provided by previous
works. The main contribution of this work is the assessment
of general applicability of agent based approaches to rout-
ing problems in general providing for a solid base for future
research in this area.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Vehicle routing problem with time windows, Multi-agent
problem solving, Agent negotiation

1. INTRODUCTION
The vehicle routing problem with time windows (VRPTW)

is one of the most important and widely studied problems
in the the transportation domain. For a comprehensive lit-
erature review refer e.g. to surveys presented by [1, 2]. The
VRPTW is a problem of finding a set of routes from a single
depot to serve customers at geographically scattered loca-
tions. Each customer is visited by exactly one route with
each route starting and ending at the depot. For each route
the sum of demands of the customers served by the route
must not exceed the capacity of the vehicle serving the route
(capacity constraint). Also, the service at each customer
must begin within a given time interval (time window con-
straints). The primary objective of the VRPTW is to find
the minimum number of routes servicing all customers. Usu-
ally a secondary optimization objective is to minimize the to-
tal distance traveled. The primary objective corresponds to
solving the underlying multiple bin-packing problem while

the secondary objective corresponds to a variant of the mul-
tiple traveling salesman problem — both solved in a state
space constrained by the time windows. Traditionally the
VRPTW (together with the closely related pickup and de-
livery problem with time windows - PDPTW) is a problem
area dominated by centralized solvers e.g.[9, 11].

Real world applications of routing algorithms are often
very complex with highly dynamic, heterogenous and po-
tentially non-cooperative or privacy conscious environments
having to be captured and processed, being part of the
higher level transactions e.g. general supply chain manage-
ment processes etc. The multi-agent systems are an emerg-
ing choice for modeling systems with attributes similar to
those mentioned above. An interesting survey on real-world
applicability of agent based approaches in the transportation
domain is presented in [13].

The aim of this paper is not, however, to stress the real-
world applicability of presented algorithm. On the other
hand, we present a thorough assessment of the agent based
algorithm in terms of overall performance in an effort to
establish its position among the state-of-the-art algorithms.

2. RELATED WORK
As already mentioned, a thorough survey of VRPTW al-

gorithms is presented by [1, 2]. Thus we only refer to the
two currently leading state-of-the-art algorithms.

In [9] the authors present an algorithm based on the ejec-
tion pools principle. The algorithm is based on perform-
ing very good unfeasible insertions of customers to indi-
vidual routes, followed by an ejection procedure in which
the feasibility is recovered by ejecting some other customers
from the unfeasible routes. The algorithm equals the best
known cumulative number of vehicles (CVN) of 405 on the
Solomon’s instances with new best known cumulative travel
time (CRT) of 57233.

An improved algorithm presented in [11] further employs
a specific local search strategy guiding the ejections. Also,
a feasible insertion mechanism denoted as squeeze as well
as a search diversification perturb procedure are employed
throughout the solving process boosting the algorithm’s con-
vergence. The algorithm provides for the contemporary best
known CVN of 10290 over the whole extended Homberger-
Gehring benchmark set.

A number of approaches have been suggested for solv-
ing the VRPTW and routing problems in general by means
of multi-agent negotiation profiting from well known multi-
agent based approaches to general task allocation problems
[16]. On simple VRP good results have been reported by an
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agent based solver presented by [15]. In general, however,
there has been very few works trying to rigorously establish
the position of agent negotiation in a field dominated by
centralized solvers, with most contributions focusing on the
real-world applicability rather than outright performance.

An agent based algorithm for VRPTW is presented in [5],
built around the concepts of a Shipping Company and un-
derlying Shipping Company Truck. The planning is done
dynamically and is based on the well known contract net
protocol (CNP) accompanied by a ”simulated trading” im-
provement strategy based on finding the optimal customer
exchanges by solving a maximal pairing problem on a graph
representing the proposed exchanges. No relevant perfor-
mance assessment is provided and the algorithm is found to
be sensitive to the ordering of routed tasks.

The algorithm for PDPTW presented by [7] is essentially a
parallel insertion procedure based on CNP with subsequent
improvement phase consisting of reallocating some randomly
chosen tasks from each route. Used cost structure is based
on the well known Solomon’s I1 insertion heuristic [14]. The
performance is assessed on an ad-hoc dataset.

The algorithm for VRPTW presented by [8] is based on
agents representing individual customers, individual routes
and a central planner agent. A sequential insertion proce-
dure based on Solomon’s I1 heuristic is followed by an im-
provement phase in which the agents propose moves gath-
ered in a ”move pool” with the most advantageous move
being selected and performed. Additionally, a route elimi-
nation routine is periodically invoked — which is not well
described in the text. Experimental assessment is based on
Solomon’s instances [14] with a CVN of 436 and CRT of
59281. No runtime information is provided.

In [4] the authors propose a VRPTW algorithm based on
Order agent — Scheduling agent — Vehicle agent hierarchy.
The algorithm is based on a modified CNP insertion proce-
dure limiting the negotiation to agents whose routes are in
proximity of the task being allocated in an effort to minimize
the number of negotiations. Again no relevant performance
information is provided.

3. NOTATION
Let {1..N} represent the set of customers with the depot

denoted as 0. Let a sequence of customers 〈c0, c1, ..cm, cm+1〉
denote a route served by a single vehicle with c0 and cm+1

corresponding to the depot. For each customer ci on the
route let (ei, li, si, di) denote the earliest/latest service start
times (the time window), service time and demand at the
customer respectively. For simplicity, we will use the term
task to denote a customer and all accompanying service in-
formation. Let D denote the vehicle capacity and let ti,j
correspond to the travel time between customers ci and cj
(in an Euclidian space). We use the term partial solution to
denote a solution with some unserved customers.

Given a route 〈c0, c1, ..cm, cm+1〉 let (Ei, Li) correspond
to the earliest and latest possible service start at customer
ci computed recursively according to:

E1 = max (e1, t0,1)

Ei = max (ei, Ei−1 + si−1 + ti−1,i) (1)

and

Lm = lm

Li = min (li, Li+1 − ti,i+1 − si) (2)

As shown in [3], the time window constraints are satisfied
when Ei ≤ Li for all i ∈ 1..m. The capacity constraint is
satisfied when

∑m
1 di ≤ D.

4. ALGORITHM BASED ON AGENT NEGO-
TIATION

As mentioned above, a relevant rigorous assessment of the
key properties of the respective agent-based algorithms e.g.
runtime, convergence, etc. has not been provided by neither
of the previous studies. Thus the main contribution of this
work is: (i) the establishment of a general framework for
agent based approaches based on the state-of-the-art knowl-
edge, (ii) assessment of its algorithmic properties on known
widely used benchmark sets using a performance conscious
prototype implementation and (iii) the discussion of impor-
tant areas for future research in an effort to provide a sound
alternative to traditional solvers.

The presented algorithm is similar in its approach to the
generalizad algorithmic framework for task allocation based
problem solving described in [16, 15]. Thus the presented
framework is generic and can adopt a number of approaches
as far as the actual negotiation/allocation process is con-
cerned. It provides a base for formalizing agent negotiation
based solving approaches to routing problems in general.

A three layer basic architecture features a top layer rep-
resented by a Task Agent, middle layer represented by an
Allocation Agent and a fleet of Vehicle Agents present at
the bottom level of the architecture.

Task Agent acts as an interface between the algorithm’s
computational core and the surrounding infrastructure.
It is responsible for registering the tasks and submit-
ting them to the underlying Allocation Agent.

Allocation Agent instruments the actual solving process
by negotiating with the Vehicle Agents. The negoti-
ation is conducted based upon task commitment and
decommitment cost estimates provided by the Vehicle
Agents.

Vehicle Agent represents an individual vehicle serving a
route. It provides the Allocation Agent with the above
mentioned inputs. These are computed based on local
(private) Vehicle Agent’s plan processing.

Fiugure 1 illustrates the allocation algorithm process im-
plemented by the Allocation Agent. The process is started
given a partial solution σ and a set of unallocated tasks T .
For the dynamic problem variant the set T corresponds to
a one-element set with the actually processed task and σ
represents the partial solution σ at the time of allocation.
In static case the set T corresponds to an ordered set of all
instance tasks, while σ is a partial solution representing a
set of empty routes.

In essence, the allocation process consists of a series of ne-
gotiation interactions between the Allocation Agent and the
Vehicle Agents serving the routes within the partial solution
σ. In various places of the algorithm the Allocation Agent
may require the Vehicle Agents to: (i) estimate the cost of

40



Input: Ordered set of tasks T , Partial solution σ
Output: Solution σ after task allocation

Procedure allocate(T, σ)
begin
1: Init reallocate counters r[t] := 0 for all t ∈ T ;
2: while (exists(t ∈ T ), r[t] ≤ reallocationLimit)
3: dynamicImprove(σ);
4: Select first t ∈ {t ∈ T, r[t] minimal};
5: I := {v ∈ Insfeas(σ, t), costCommit(t, v)

is minimal};
6: if (I 6= ∅) then
7: Randomly select v ∈ I;
8: commit(t, v);
9: remove t from T ;

10: else
11: r[t] := r[t] + 1;
12: endif
13: endwhile
14: finalImprove1(σ, T );
15: finalImprove2(σ, T );
16: ..
17: return σ;
end

Figure 1: The Allocation Agent main algorithm.

committing to a given task, (ii) estimate the gain result-
ing from dropping some commitment, (iii) identify the most
costly task within their respective routes or (iv) commit to
or decommit from a given task.

The interactions with the Vehicle Agents are represented
by the costCommit(t, v) and commit(t, v) functions (lines 5
and 8) corresponding to the cost estimate of agent v com-
mitting to task t and the actual commitment. From the
Allocation Agent’s point of view these are Vehicle Agent’s
private operations. Thus they may reflect various aspects
and constraints the vehicles need to consider (e.g. load-
ing constraints, vehicle actual position, vehicle shift times,
etc.), potentially reflecting the heterogeneity of the real-
world problem being solved. Similarly, various semantics
of the actual commitments may be introduced (e.g. revo-
cable/irrevocable etc.). The other interactions mentioned
above are carried out within the improvement methods (lines
3, 14 and 15) using the corresponding gainDecommit(t, v),
worstCommitment(v) and decommit(t, v) methods and will
be described later in the text.

The process begins with resetting the reallocate counters
(line 1) and runs in a loop that is terminated when the limit
on unsuccessful allocation retries has been reached for all un-
allocated tasks or until no such tasks exist (line 2). In the
former case the allocation has not been successful. Depend-
ing on the real world problem semantics the Task Agent may
instantiate (dispatch/require) another vehicle and restart
the process using either an empty solution or reusing the
partial solution returned by the previous run.

The dynamicImprove(σ) function (line 2) corresponds
to a particular dynamic improvement method being exe-
cuted iteratively throughout the allocation process. Later
in the text we describe a set of applicable methods e.g.
ε-ReallocateWorst or ReallocateAll. At this stage the ap-
plication of a specific improvement method may enhance

the partial solution σ and therefore: (i) potentially increase
the chance of success for the latter stages of the allocation
process and (ii) possibly modify the solution in a way that
enables allocation of tasks that were not successfully allo-
cated in previous attempts. As the individual routes get
denser, the space for changing the solution decreases. Thus
the ability to improve the solution in the early stages of the
allocation process is an important feature of the algorithm.

The tasks with the lowest number of retries are processed
first in the order in which they are encountered in the set
T (line 4). An auction in which each of the Vehicle Agents
provides a commitment cost estimate for the currently pro-
cessed task is carried out on behalf of the Allocation Agent.
Thus the agents that can feasibly undertake the task (the
set Insfeas) with the best commitment costs are identified
(line 5). In a distributed environment the auction process
is carried out using the CNP protocol. A randomly chosen
agent from this set then commits to the task (lines 7 and
8) and the task is marked as allocated (line 9). In case no
agent can feasibly undertake the task (line 6), the reallocate
counter for the task is incremented (line 11).

The finalImprove1, 2(σ, T ) (lines 14, 15) correspond to
the final improvement strategies being applied. Just like
the dynamicImprove(σ) function these correspond to a cer-
tain improvement method being applied here. However, the
method used for final improvement may differ from the one
used for the dynamic improvement. For example it may be
advantageous to employ a route length conscious improve-
ment method at the end of the allocation process to address
the secondary optimization criteria of the problem. The dif-
ference in signature between the two functions illustrates the
fact that throughout the final improvement we may still try
to allocate the unallocated tasks.

Thus a particular algorithm is instantiated by supplying
the actual fleet of Vehicle Agents with respective cost esti-
mation functions and specifying the individual improvement
methods for the dynamicImprove and finalImprove1, 2
functions.

For the static variant of the VRPTW discussed within
this work, the primary optimization criteria is addressed by
running the allocation process with an initial solution σ cor-
responding to an appropriately small fleet of homogenous
empty vehicles represented by Vehicle Agents. In case the
process fails, a new Vehicle Agent is instantiated and added
to the fleet and the process is restarted.

Within the next sections we present two different variants
of VRPTW Vehicle Agent implementations based on the
state-of-the-art insertion heuristics and three improvement
methods for the static VRPTW problem variant, as well a
theoretically sound setting for the initial size of the fleet.
Several ways in which the set of tasks T can be ordered are
discussed as well.

4.1 Insertion Heuristics
The two Vehicle Agent implementations presented within

this study are based on the well known cheapest insertion
principle. Let cj be the customer associated with the task
t, let 〈c0, c1, ..cm, cm+1〉 be the corresponding route of the
agent v. Let costIns(t, v, i) represent the cost estimate of
inserting t between the customers ci−1 and ci. The cost
estimate for agent v committing to t is thus given by

costCommit(t, v) = argmin
i∈fi(1..m)

(costIns(t, v, i)) (3)
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where fi(1..m) represents the set of all feasible insertion
points on the route.

Given an insertion index i, let (Ej , Lj) represent the ear-
liest possible and latest possible service start at cj when in-
serted at index i. The Ej and Lj values can be computed
according to Equations 1 and 2 as

Ej = max (ej , Ei−1 + si−1 + ti−1,j) (4)

and

Lj = min (li, Li − tj,i − sj) . (5)

The insertion is feasible when both the time window con-
straint Ej ≤ Lj and the capacity constraint

(∑m
1 di

)
+dj ≤

D are satisfied. By storing agent’s cumulative demand Dc =∑m
1 di alongside the agent’s plan the capacity constraint can

be checked trivially by verifying that Dc + dj ≤ D.
Given the identified best insertion index i, the actual com-

mitment of the agent v to the task t requires the Ek, k = i..m
and Ll, l = 1..i− 1 values to be updated according to Equa-
tions 1 and 2 as well as the agent’s cumulative demand Dc.

As mentioned above, we evaluated two respective imple-
mentations of the Vehicle Agent’s interface functions based
on two well known insertion heuristics.

4.1.1 Travel Time Savings Heuristic
The travel time savings heuristic is notoriously known to

the routing community. Using the same example as in the
previous section, the insertion cost corresponds to

costInsTT (t, v, i) = ti−1,j + tj,i − ti−1,i. (6)

Let ck denote a customer corresponding to a task t′ already
within v’s plan. The decommitment gain is computed ac-
cordingly as

gainDecommitTT (t′, v) = tk−1,k + tk,k+1 − tk−1,k+1. (7)

The travel time savings heuristic leverages the spatial as-
pects of the problem, with a cost structure corresponding
to the impacts of agent commitments or decommitments on
the travel time of the agents. It has been shown [14, 10],
however, that an insertion heuristic exploiting the temporal
relations of the tasks given by their respective time windows
can yield significantly better results.

4.1.2 Slackness Savings Heuristic
The slackness savings heuristic thus introduces elements

to the cost structure based on the interactions between indi-
vidual time windows constraints caused by their respective
widths and placements within the agent’s route. It is a sim-
plified adaptation of PDPTW heuristic presented by [10] for
the VRPTW problem.

Given ck corresponding to a customer on agent v’s route
from previous examples, let slk = Lk − Ek represent the
slack time at customer ck. An insertion of cj requires the
Lk and Ek values to be updated along the route possibly
reducing the corresponding slk values. Reductions to slack
times correspond to the constraining effects an insertion of a
customer imposes on the rest of the agent’s route. Let sl′j =
Lj −Ej represent the slack time at the inserted customer cj
after the insertion. We denote slj = lj − ej the slack time
at cj prior to the insertion. Given sl′k = L′k − E′k, k = 1..m
being the updated slack times after the insertion, the overall

reduction in route slackness is given by

SLR(t, v, i) =

(
m∑
1

(
slk − sl′k

))
+
(
sl′j − slj

)
. (8)

The i variable in function’s signature corresponds to the
fact the sl′k, k ∈ 1..m and sl′j are particular for the insertion
index i.

The costInsSL(t, v, i) for the slackness savings heuristic is
based on both the spatial and the temporal aspects of the
insertion with

costInsSL(t, v, i) = α.SLR(t, v, i) + β.costInsTT (t, v, i).
(9)

where α and β, α + β = 1 correspond to the respective
weights of the two criteria being considered.

The removalGain(t′, v) is computed using an analogous
approach as

removalGainSL(t, v) = α.SLI(t, v)

+β.removalGainTT (t, v).
(10)

where SLI(v, t) corresponds to a slack time increase result-
ing from updated sl′i values as a result of removing cus-
tomer cj with the updated slack time at customer cj given
by sl′j = lj − ej .

4.2 Improvement Methods
Within the dynamicImprove and finalImprove1, 2 func-

tions each Vehicle Agent decommits from some of its tasks,
based on the particular negotiation method being applied.
Each decommitment is followed by an auction process in
which an agent with the lowest costCommit(t, v) commit-
ment cost estimate commits to the task. Thus the task can
be reinserted to exactly the same position within the same
agent’s plan, to a different position within the agent’s plan
or a different agent can commit to the task. We refer to
a decommitment and subsequent task reinsertion as the re-
allocation of a single task t. In the first above mentioned
case we consider the reallocation unsuccessful as the solu-
tion was not changed. Following three negotiation methods
were considered:

• ReallocateAll : For each Vehicle Agent all of its tasks
are reallocated. The tasks are processed in the order
in which they appear in respective agents’ routes. The
agents are processed in the order in which they are
added to the partial solution σ being processed.

• εεε-ReallocateRandom : For each Vehicle Agent a por-
tion of its tasks corresponding to ε ∈ (0, 1) is real-
located. For ε = 1 this corresponds to the previous
method but for an individual agent the tasks are pro-
cessed in a random order. The order in which the
agents are processed is the same as above.

• εεε-ReallocateWorst : Each agent drops commitments
to a portion of its tasks corresponding to ε ∈ (0, 1).
The tasks processed in decreasing order based on their
respective decommitment gain estimates. The order-
ing is achieved via the worstCommitment agent inter-
face function. For presented implementation this con-
sists of the agent privately invoking the gainDecommit
function for each task within its route and returning
the most costly one.
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The interactions between the Allocation Agent and the
Vehicle Agents are carried out using the Vehicle Agent in-
terface functions: costCommit, commit, gainDecommit,
decommit and worstCommitment. As already mentioned,
these are Vehicle Agent’s private operations potentially re-
flecting the real world problem semantics.

4.3 Algorithm Initial Settings
The remaining settings necessary for instantiating a par-

ticular algorithm for the static VRPTW case are: (i) the
count of empty Vehicle Agents in the initial partial solution
σ and (ii) the ordering of the set of tasks T being passed to
the allocation process.

4.3.1 Initial Vehicles Count
As already mentioned, the static VRPTW case primary

optimization criteria is addressed by instantiating a fleet of
empty vehicles and restarting the allocation process with
increased number of vehicles in case of failure until a feasible
solution is found.

A sound setting for the initial vehicles count should cor-
respond to the lower bound number of vehicles for the prob-
lem instance being solved. Such a number can be computed
based on the mutual incompatibilities of the tasks given their
respective time windows and travel times. Two tasks are
incompatible if they cannot be served by a single vehicle,
that is when it is impossible to start the service at either
of the customers at the earliest possible moment and reach
the other customer within the corresponding time window.
The minimal number of vehicles necessary for solving the
instance is bound by the size of the maximal set of mu-
tually incompatible tasks, providing for the time windows
based lower bound on the number of vehicles. Also, the cu-
mulative demand of all customers has to be lower than the
cumulative capacity of all the vehicles combined providing
for a capacity based lower bound on the number of vehicles.

Within this work thus the vehicles count in the initial
partial solution σ is set to the bigger of the two above men-
tioned lower bounds. The size of the maximal set of mu-
tually incompatible tasks is estimated using a graph based
algorithm approximately solving a maximal clique problem
on a graph with edges corresponding to the mutually incom-
patible tasks. The algorithm is described in [10].

4.3.2 Initial Task Ordering
Within the allocate(T, σ) function the task to be pro-

cessed next is chosen based upon the ordering of the set
T . We considered the following settings:

• Most Demand First (MDF): Tasks are ordered de-
creasingly by the volume of their demands, according
to the well known most-constrained-first greedy allo-
cation principle applied to the underlying multiple bin
packing problem.

• Tightest Time Window First (TTF): Tasks are
ordered increasingly by the duration of their time win-
dows following the most-constrained-first approach, this
time based on the time windows of the individual tasks.

• Earliest First (EF): Tasks are ordered increasingly by
the beginning time of their time window. This setting
causes naturally competing tasks to be allocated in
close succession.

During our experimental assessment of the presented al-

gorithm we found that none of the orderings is dominant. To
the contrary each of the orderings performed well on differ-
ent subset of benchmarked instances. Thus finding a fitting
task ordering for a particular problem instance is an inter-
esting problem in its own right, however, it is outside the
scope of this study. Instead, in an effort to appropriately
illustrate the limits of the presented algorithm, we treated
the set of orderings to be used as an additional parameter of
the algorithm, running the allocate(T, σ) function for each
of the orderings and choosing the best result from these runs.

4.4 Complexity Analysis
Given N is number of tasks for a given problem instance

and assuming the number of reallocation retries is constant,
the asymptotic complexity of the allocation process corre-
sponds to

Oclique +Oordering +N ×
(
Odyn +Oalloc

)
+Ofin1,2 (11)

where Oclique is the complexity of estimating the initial Ve-
hicle Agents count, Oordering is the complexity of the initial
ordering of the set of tasks T prior to the allocation process,
Odyn is the complexity of the dynamicImprove function,
Oalloc corresponds to the complexity of the auction process
of finding the agent with the minimal costCommit(v, t).
The Ofin1,2 corresponds to the complexity of the corre-
sponding finalImprove1, 2 functions.

The complexity of Oalloc is inherent to the heuristic be-
ing used. Given m is the number of tasks within agent v’s
route, the complexity of the costCommitTT (t, v) function is
O(m). The costCommitSL(t, v) requires the updated slack
times to be computed for each insertion point thus result-
ing in a complexity of O(m2). As the total number of tasks
in agents’ routes is bound by N , the worst case complexity
of the Oalloc is O(N) for the travel time savings heuris-
tic and O(N2) for the slackness savings heuristic. Similarly
the decommitGain(t, v) function complexity depends on the
insertion heuristic being used with decommitGainTT (t, v)
having an O(1) complexity while decommitGainSL(t, v) be-
ing O(N) in the worst case. The subsequent commit(t, v)
results in O(N) worst case complexity due to the need to
update the Ei and Li values stored alongside the winning
agent’s route having N tasks in the worst case. For the
same reasons the complexity of the decommit(t, v) function
is O(N) as well. The improvement functions correspond to
the application of a particular improvement method. With
ε = 1 all of the methods consist of reallocating all tasks
within the partial solution σ under construction. A single
task reallocation consists of a decommit(t, v) function being
invoked, followed by an auction process and the subsequent
invocation of commit(t, v). Thus the complexity of an im-
provement strategy being applied is given by Oimp = N ×(
Odecommit +Oalloc

)
resulting in O(N2) and O(N3) worst

case complexities for the two presented heuristic. Within
the ε-ReallocateWorst method, the task with the maximal
decommitGain(t, v) value has to be identified prior to each
reallocation. The complexity of such an operation is iden-
tical to the corresponding Oalloc however, so it does not
affect the above mentioned conclusion. Thus Ofin1,2 and
Odyn correspond to the complexity of Oimp for respective
heuristics.

As theOclique = O(N3) [10] andOordering = O(N log(N))
the overall worst case complexity of presented algorithm is
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Table 1: Performance of presented algorithm compared to best known results

Type Best Agents Algorithm-B Algorithm-FI Algorithm-DI Algorithm-DIA

All 10695, 5049252 – +1110, +3375926 +703, +2254681 +343, +1962274 +343, +944053
10.4%, 66.9% 6.6%, 44.7% 3.2%, 38.9% 3.2%, 18.7%

100 405, 57233 +31, +2048 +67, +39144 +49, +23847 +24, 20595+ +24, +4040
7.7%, 3.6% 16.5%, 50.6% 12.1%, 36.0% 5.9%, 33.6% 5.9%, 7.1%

200 694, 168307 – +53, +128545 +38, +89906 +21, +83809 +21, +29828
7.6%, 76.4% 5.5%, 53.4% 3.0%, 49.8% 3.0%, 17.7%

400 1380, 389688 – +120, +312576 +73, +220114 +38, +201421 +38, +84058
8.7%, 80.2% 5.3% /56.5% 2.8%, 51.7% 2.8%, 21.6%

600 2065, 823937 – +194, +596673 +127, +411362 +56, +365305 +56, +173849
9.4%, 72.4% 6.2%, 49.9% 2.7%, 44.2% 2.7%, 21.1%

800 2734, 1478704 – +278, +881897 +180, +564243 +89, +482700 +89, +221219
10.2%, 59.6% 6.6%, 38.1% 3.3%, 32.6% 3.3%, 14.7%

1000 3417, 2131385 – +398, +1417088 +236, +945209 +115, +809443 +115, +431058
11.6%, 66.5% 6.9%, 44.3% 3.4%, 38.0% 3.4%, 20.2%

C1 2914, 952995 – +470, +490242 +333, +326360 +151, +246114 +151, +131224
16.1%, 51.4% 11.4%, 34.2% 5.2%, 25.8% 5.2%, 13.8%

C2 895, 443144 – +158, +456219 +113, +283553 +48, +246208 +48, +90111
17.7%, 103.0% 12.6%, 64.0% 5.4%, 55.6% 5.4%, 20.3%

R1 2881, 1121497 – +136, +712998 +67, +482043 +48, +386052 +48, +263126
4.7%, 63.6% 2.3%, 43.0% 1.7%, 34.4% 1.7%, 23.5%

R2 600, 720454 – +18, +799141 +7, +594375 +3, +564348 +3, +190399
3.0%, 110.9% 1.2%, 82.5% 0.5%, 78.3% 0.5%, 26.4%

RC1 2801, 1064510 – +218, +483182 +120, +304586 +65, +267166 +65, +166324
7.8%, 45.4% 4.3%, 28.6% 2.3%, 25.1% 2.3%, 15.6%

RC2 603, 746602 – +110, +434145 +63, +263764 +28, +252385 +28, +12792
18.2%, 58.1% 10.4%, 35.3% 4.6%, 33.8% 4.6%, 1.7%

O(N3) for the travel time savings heuristic and O(N4) for
the slackness savings heuristic.

5. EXPERIMENTAL EVALUATION
The experiments were carried out using the set of well-

known Homberger-Gehring benchmark instances [6]. To pro-
vide reference to previous agent-based approaches we also in-
cluded the original Solomon’s instance set [14], sharing the
same basic attributes as the formerly mentioned set. Thus
the complete benchmark set consists of 6 sets of instances
with 100, 200, 400, 600, 800 and 1000 customers respectively,
with 60 instances in each set (except Solomon’s with 56 in-
stances). For each set there are 6 instance types provided —
the R1, R2, RC1, RC2, C1, and C2 type, each with a slightly
different topology and time windows properties. For C1 and
C2 types the customer locations are grouped in clusters, un-
like the R1 and R2 classes where the customers are randomly
placed. The RC1 and RC2 instance types combine the pre-
vious two types with a mix of both random and clustered
locations. The C1, R1 and RC1 also differ from C2, R2 and
RC2 in terms of the scheduling horizon, the former having
a shorter horizon resulting in routes of about 10 customers
on the average, the latter having a longer horizon providing
for routes of around 50 customers.

The reason for using these particular widely used bench-
mark sets was to provide a relevant comparison with the
state-of-the-art centralized solvers that has been missing
from previous agent-based studies. Therefore, the inclusion
of the extended Homberger-Gehring benchmarks is one of
the unique assets setting this work apart.

5.1 Algorithm Configurations
We examined four different settings for the suggested al-

gorithm. The simplest Algorithm-B setting refers to a base-
line algorithm not employing neither the dynamicImprove
nor the finalImprove1, 2 functions. Such a setting corre-
sponds to the simple parallel cheapest insertion procedure.
Algorithm-FI extends the previous setting by employing the
finalImprove1 function using one of the presented negoti-
ation methods. The Algorithm-DI refers to a setting with
both the dynamicImprove and finalImprove functions be-
ing used. For all three mentioned settings the cost struc-
ture used throughout the whole algorithm corresponds to the
slackness savings heuristic. We present these configuration
to provide an insight into the role of the dynamicImprove
and finalImprove functions within the solving process.

The full fledged algorithm as presented within this study is
denoted as Algorithm-DIA. It further extends the Algorithm-
DI setting with a finalImprove2 function using the route
length savings heuristic in an effort to address the secondary
optimization criteria.

We used the ReallocateAll improvement method for the
finalImprove1, 2 functions in all applicable settings. With
respect to the dynamicImprove function, we tested all three
presented negotiation methods in the applicable Algorithm-
DI and Algorithm-DIA settings. The presented results cor-
respond to the best of these three runs.

We used ε = 0.3 setting for the ε parameter affecting two
of the three presented improvement methods. With respect
to the α and β parameters affecting the slackness savings
heuristic cost structure we used α = β = 0.5 setting. The

44



Table 2: Equalled best known solutions per instance
types

Instance VN VN and RT RT Error on
Type Equal Equal VN Equal

All 48.6% 8.1% 24.6%

C1 33.9% 18.6% 9.9%

C2 51.7% 27.6% 9.9%

R1 30.6% 1.6% 28.4%

R2 95.1% 1.6% 26.7%

RC1 6.9% 0.0% 10.9%

RC2 72.4% 0.0% 29.3%

choice of these particular values is discussed later in the text.

5.2 Evaluation of Results
The performance of our algorithm is illustrated by Ta-

ble 1. Two commonly used metrics of quality are presented:
(i) the cumulative number of vehicles (CVN) and (ii) the cu-
mulative travel time (CRT). The ”Best” column presents the
best known CVN and CRT for given set of instances taken
from [11, 12]. The rest of the columns corresponds to the
absolute and relative errors in both criteria listed for previ-
ous agent based studies [8] (the Agents column) and for the
four settings of the presented algorithm. The results are pre-
sented for individual instance sizes (”100”corresponds to the
Solomon’s instances, while the ”200 – 1000” sets correspond
to the Homberger-Gehring instances) as well as for individ-
ual instance types that are common among both benchmark
sets. Thus, for example, the second row of the last column
shows that on Solomon’s instance set the Algorithm-DIA
setting achieved a CVN of 24 more than the CVN of the
best known solutions, with a CRT of 4040 higher, resulting
in a 5.9% and 7.1% respective relative errors.

Table 2 further illustrates the success of the full Algorithm-
DIA settings in terms of being able to match the best known
solutions in terms of: (i) the number of vehicles (VN), (ii)
both criteria (VN and total travel time - RT). Complement-
ing this information is the relative error in RT for the solu-
tions matching the best known VN.

5.2.1 Overall Quality Analysis
In overall, the presented algorithm in the full Algorithm-

DIA setting achieved a 3.2% CVN and 18.7% CRT average
relative error when compared to the best known solutions.
The algorithm was able to match the best known solutions in
48.6% in terms of the primary VN optimization criteria. In
8.1% of the cases both VN and RT criteria of the best known
solutions were achieved. The average relative RT error for
the VN best known matching instances was 26.4%. The
algorithm outperforms all previous agent-based approaches,
achieving a CVN of 429 compared to 436 presented by [8]
on the Solomon’s instances. The algorithm sets new best
known solutions for agent-based approaches on the extended
Homberger-Gehring datasets.

The performance is consistent across all instance sizes.
The difference in performance between the Solomon’s and
the extended Homberger-Gehring datasets corresponds to
the fact that slower solvers are typically not tested on the
extended datasets. Such is the case, for example, with the

Table 3: Insertion heuristic relative errors over 200
customer instances

Algorithm setting Slack savings Travel time savings

Algorithm-B 7.6% 25.1%

Algorithm-FI 5.5% 11.1%

Algorithm-DI 3.0% 5.2%

previously presented agent-based algorithm featuring within
the comparison. The results achieved on both datasets thus
suggest, that an agent based approach to VRPTW is a sound
alternative to the traditional centralized solvers.

5.2.2 Dynamic and Final Improvements Analysis
The results for the individual algorithm settings illus-

trate the significance of both the dynamicImprove and the
finalImprove1, 2 functions. With the Algorithm-B setting
there is no possibility to recover from a potentially bad allo-
cation taking place in the earliy stages of the allocation pro-
cess. For example, an early allocation may render some of
the subsequent allocations infeasible due to the time window
or capacity constraints, effectively preventing some parts of
the search space to be traversed. In overall the Algorithm-B
setting achieved an error of 10.4% in the VN criteria.

The Algorithm-FI setting extends the Algorithm-B set-
ting by allowing some exchanges of the tasks within and
between the routes during the final stage of the allocation
process. At this stage, however, as a result of previous allo-
cations, the partial solution σ is already tightly constrained.
Thus the chance of reallocating a task already in σ is cor-
respondingly small, resulting in a relative VN error of 6.6%
across all instances.

With an average relative VN error of 3.2% the Algorithm-
DI setting significantly outperforms the Algorithm-FI set-
ting. Arguably this is due to the fact that the improve-
ments are performed dynamically throughout the allocation
process on smaller and therefore less constrained partial so-
lutions. The slackness savings heuristic specifically tries to
minimize the constraining effects of the insertions. There-
fore, the Algorithm-DI setting dynamically improves the
partial solution σ in an effort to increase the chance of future
advantageous allocations or reallocations being performed.

Finally, by employing the finalImprove2 function, the
Algorithm-DIA traverses the feasible neighborhood of the
resulting solution σ using a travel-time driven cost struc-
ture in an effort to find a local travel-time minima. A suc-
cess of such an adaptive strategy is illustrated by reducing
the 38.9% relative RT error from the previous Algorithm-DI
setting to only 18.7%.

There is a notable difference in performance of Algorithm-
B and Algorithm-FI settings on clustered (C1, C2, RC1,
RC2) and non-clustered (R1, R2) instances. The customers
in clusters are temporally and spatially very close while the
distances between clusters are much higher. A good solution
is thus characterized by minimizing the number of travels
between the clusters. In an early partial solution σ where
not all customers are yet known the Algorithm-B may easily
make very bad decisions like having a vehicle visit more clus-
ters — a situation from which the final improvement of the
Algorithm-FI cannot recover. The dynamic improvements
performed within the Algorithm-DI setting help to counter
this to some extent.

45



Figure 2: Improvement methods reallocation success

Table 4: Relative errors for insertion heuristics and
individual orderings

Algorithm-B Algorithm-DI

Ordering Travel time Slack Travel time Slack

MDF 46.0% 27.9% 14.6% 9.5%

TTF 28.2% 18.5% 11.4% 8.7%

EF 25.7% 12.3% 8.5% 6.4%

BEST 23.1% 7.6% 5.5% 3.0%

RAND 36.3% 23.0% 14.8% 9.7%

5.2.3 Insertion Heuristics Analysis
The commitment/decommitment cost structure provided

by the insertion heuristics is the sole input for the other-
wise abstract allocation process. Table 3 lists relative er-
rors of the two presented heuristics measured for the 200
customer benchmark set. The results show that the slack-
ness savings heuristic outperforms the traditional travel time
savings heuristic in all three relevant algorithm settings (the
Algorithm−DIA setting actually uses both heuristics). The
difference is most pronounced with the Algorithm-B setting
while being less pronounced in Algorithm-FI and Algorithm-
DI settings. Thus, interestingly, the improvement methods
are able to exploit both of the heuristics with similar success.
The results correspond to α = β = 0.5 slackness savings
heuristic parameters that has proved to be the most effi-
cient in the computational tests that are outside the scope
of this study.

Not surprisingly the slackness savings heuristic proved
to be significantly slower of the two, with runtime in the
Algorithm-DI setting being approximately 3 times longer.

5.2.4 Ordering Sensitivity Analysis
The relative errors for various initial orderings of the set

of tasks T corresponding to the 200 customer benchmark
set are listed by Table 4. The results for both the base-
line Algorithm-B and the full-fledged Algorithm-DI settings
and for each of the used insertion heuristics are presented.
The BEST ordering row corresponds to the best results of
MDF, TTF and EF orderings, while the RAND ordering
corresponds to a baseline random ordering of the tasks.

The results suggest that neither of the proposed order-
ings is dominant in terms of outperforming the remaining
two across the whole range of instances. To the contrary,
the fact that the BEST results are significantly better than

the results of either of the orderings proves that each of the
orderings performs well on a different subset of instances.
The results thus suggest that the individual instances differ
in their nature, potentially favoring some particular order-
ing. For example, the MDF ordering attributed for 8 wins
across the 60 measured instances suggesting that these may
be the instances where leveraging the capacity aspect is ben-
eficial, while in the rest of the cases the best results were
achieved using orderings leveraging the temporal aspects of
the problem. Finding an ordering that is fitting for a par-
ticular problem instance is an interesting problem in its own
right that has not yet been addressed. To overcome this, we
treated the set of orderings to be used as an additional pa-
rameter of the algorithm, running the allocate function for
each ordering and choosing the best result from these runs.
The presented results and runtimes correspond to the MDF,
TTF and EF orderings being used.

The results further show that out of the two heuristics
the slackness savings heuristic is clearly the less sensitive to
the ordering of the two in the baseline Algorithm-B setting.
In the Algorithm-DI setting the difference is less marked.
This suggest that the dynamic improvement methods are
successful in offsetting the sensitivity of used heuristic to
ordering, a result that supports previous findings of [7].

5.2.5 Improvement Methods Analysis
We analyzed the respective performance of individual im-

provement methods used within the dynamicImprove func-
tion of the Algorithm-DI setting varying the ε parameter
where applicable. Surprisingly, beginning with ε = 0.3, the
quality of the resulting solution did not improve with big-
ger ε while the runtime did increase linearly. For the final
improvement, we found the ReallocateAll method to achieve
marginally better results. In overall, we found that the num-
ber of reallocations does not have a strong positive influence
on the quality of resulting solution.

Figure 2 illustrates the number of reallocations performed
within the individual calls of the dynamicImprove func-
tion for a 200 customer instance and the runtime in which
they occurred within an invocation of the allocate func-
tion. Note that these results correspond to the slackness
savings heuristic based implementation of the costCommit
and costDecommit functions. Note also that the y axis is
presented in logarithmic scale. The three types of points
correspond to: (i) reallocations of tasks between routes, (ii)
reallocations of tasks within a single route and (iii) reallo-
cations that failed to find a feasible improving allocation for
the task being reallocated. The three graphs correspond to
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Figure 3: Results for individual algorithm settings
for 1000 customer instances

the three presented improvement methods with ε = 0.3 for
the two ε methods. The rising curve shape for the number of
failed reallocations corresponds to the fact that throughout
the process more tasks are being allocated and processed by
the respective improvement methods.

The results suggest that neither of the methods is domi-
nant terms of reallocation success. Contrary to our expec-
tations, the ε-ReallocateWorst method did not succeed in
selecting the most likely to be reallocated tasks. Further-
more, the number of successful reallocations drops towards
the end of the solving process, suggesting that the cost struc-
ture provided by the slackness savings heuristic together
with the proposed improvement methods get stuck in lo-
cal optima. The inability to further transform the solution
towards higher quality is arguably due to the fact that the
number of feasible task reallocations drops rapidly as the
solution gets denser.

The presented negotiation methodology only allows for
traversing the solution space of partial solutions that are
feasible in terms of time window and capacity constraints.
We argue that for the negotiation based methodology to
achieve stronger results than the arguably very promising
results presented within this study, a method allowing for
traversing also the infeasible space or performing more com-
plex moves would have to be developed. Such a method-
ology could be embedded to the presented general solving
architecture in form of some backtracking strategy and ac-
companying ejection based heuristic, allowing for temporal
infeasibility of individual routes.

5.2.6 Runtime and Convergence Analysis
The convergence of Algorithm-B, Algorithm-FI and the

full Algorithm-DIA settings is illustrated by Figure 3. The
results correspond to the 1000 customers benchmark set.
Note that the x-axis uses a logarithmical scale. The results
confirm that the quality and robustness of the algorithm in-
crease with more complex setting being used with obvious
penalty in terms of runtime. Also the difference in terms of
runtime between individual algorithm settings is dramatic.
Interestingly, in many cases the very short-running settings
produce a very good quality results matching even the best
known solutions. This feature of the algorithm can be ex-
ploited by running various strategies in parallel competition
returning an improving sequence of results over time. Based
on previous evidence, using a wide set of task orderings in
combination with the shorter running solvers might, for ex-
ample, produce a very efficient and robust strategy with
ideal parallelization features.

The comparison in terms of runtime of the full Algorithm-
DIA setting with the currently leading algorithms is pre-

Table 5: Cumulative and worst runtimes for indi-
vidual instance sizes

Nagata [11] Lim [9] Algorithm-DIA

Size Avg. RT Avg. RT Avg. RT Worst RT

200 1 min 10 min 3 s 13 s

400 1 min 20 min 22 s 3 min

600 1 min 30 min 2 min 19 min

800 1 min 40 min 6 min 47 min

1000 1 min 50 min 8 min 74 min

sented by Table 5. The average runtime-per-instance as
well as the worst runtime recorded by presented algorithm
is listed for individual instance sizes of the extended bench-
mark sets. The results correspond to a C++ implemen-
tation run on AMD Opteron 2.4G system for [11], a Java
implementation run on a Intel Pentium 2.8G system for [9]
and a normalized (single threaded) runtime on a 4G RAM
AMD Athlon 2G Gentoo system running the 64-bit Sun JRE
1.6.0 22. The approach to parallelization is not mentioned
in neither [9] nor [11]. Also, the secondary travel time mini-
mization criteria is not addressed by [11]. We must note,
however, that: (i) compared algorithms outperform pre-
sented algorithm in terms of CVN and (ii) are not com-
putationally bound. Therefore to be able to draw a more
relevant conclusions, settings with similar solution quality
would have to be compared.

With respect to previously presented agent-based algo-
rithms, no comparable data were provided by any of the
previous works. The likely cause for that is that agent-
based approaches typically rely on agent execution platforms
corresponding to a loosely coupled distributed environment
(JADE etc.) making them extremely inefficient.

The results show that there is a striking difference between
the average and the worst runtime for the presented algo-
rithm. The worst results correspond to the instances where
the initial vehicles count estimation was much lower than the
VN of the particular solution being found. In such a case
the allocate function is restarted with sequentially increas-
ing empty vehicles count until a feasible solution is found.
The effect is most pronounced given an unfitting ordering
is used for the particular run. Also, the effect increases the
size of the instance. Looking back at Figure 3, the above
mentioned observation is clearly illustrated. Apparently, for
each respective algorithm setting, the runtimes for the indi-
vidual results increase with decreasing quality of the corre-
sponding solutions. We suggest that an improved restarts
strategy could be developed, addressing this shortcoming.
Such a strategy could benefit from performing variable size
steps based upon analysis of the partial solution at the end
of last step — the number of remaining unallocated tasks in
particular. Also the set of orderings could be pruned based
on their respective performance in shorter running settings
e.g. Algorithm-B, Algorithm-FI. Another option is a restart
strategy reusing the partial solution σ from the previous step
(keeping the agents’ commitments), but such an approach
didn’t prove successful in our testing.

The last interesting conclusion concerns the overall con-
vergence attributes of the presented algorithm. Considering
the previously discussed high ratio of unsuccessful realloca-
tions, the above mentioned high number of restarts and the
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fact that the implementation is a prototypal one, rather than
a fully optimized one, the listed runtimes actually corre-
spond to a very limited portion of the search space being tra-
versed in comparison with the competing algorithms. This
suggests that the algorithm navigates through the search
space very efficiently providing for a very good convergence.
This finding provides further evidence of the potential of
the method and suggests that further research is needed to
unlock its full potential.

6. CONCLUSION
This paper describes an algorithm for the VRPTW based

on agent negotiation. The performance of the algorithm is
evaluated using the well known benchmark sets in an ef-
fort to assess the relevance of agent based approaches to
routing problems in general. The algorithm outperforms all
previously presented agent based algorithms, being also the
first agent based algorithm to be tested using the extended
benchmark sets typically used by centralized performance
optimized solvers. Experimental results show that the algo-
rithm is able to match the best known solutions achieved by
the centralized solvers in 48.6% of the cases with an average
relative error of 3.2% across all tested instances with respect
to the VRPTW primary optimization criteria.

The algorithm uses a generic negotiation based task al-
location process embedded in a multi-agent hierarchy that
promises to be flexible in terms of capturing the semantics
of typically heterogenous, dynamic and privacy conscious
systems modeled within the transportation domain. For
purposes of this paper, the adaptation to the VRPTW is
achieved by supplying specific cost estimation functions for
agent commitments and decommitments that can be easily
extended or modified.

A comprehensive analysis of the algorithm is presented
suggesting promising future research opportunities in: (i)
modifying presented allocation process to employ more com-
plex moves or allow for traversing non-feasible search space,
(ii) developing a method to identify the best fitting order-
ing for a particular VRPTW instance, (iii) improving the
restarts strategy for the VRPTW case and (iv) adapting
the system for more challenging problem variants exploiting
its inherent flexibility.
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[1] O. Bräysy and M. Gendreau. Vehicle routing problem

with time windows, part I route construction and local
search algorithms. Transportation Science,
39(1):104–118, 2005.
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P. Vrba, and P. Leitao, editors, Holonic and
Multi-Agent Systems for Manufacturing, volume 6867
of Lecture Notes in Computer Science, pages 1–14.
Springer Berlin / Heidelberg, 2011.

[14] M. M. Solomon. Algorithms for the vehicle routing
and scheduling problems with time window
constraints. Operations Research, 35:254–265, 1987.
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ABSTRACT
In this work we present a multiagent Fleet Coordination
Problem (FCP). In this formulation, agents seek to mini-
mize the fuel consumed to complete all deliveries while main-
taining acceptable on-time delivery performance. Individual
vehicles must both (i) bid on the rights to deliver a load of
goods from origin to destination in a distributed, cooperative
auction and (ii) choose the rate of travel between customer
locations. We create two populations of adaptive agents,
each to address one of these necessary functions. By train-
ing each agent population separate source domains, we use
transfer learning to boost initial performance in the target
FCP. This boost removes the need for 300 generations of
agent training in the target FCP, though the source prob-
lem computation time was less than the computation time
for 5 generations in the FCP.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Management, Performance, Reliability

Keywords
Multiagent Learning, Transfer Learning, Coevolution, Lo-
gistics

1. INTRODUCTION
The use of semi tractor-trailers to move large amounts of

goods from one place to another is the backbone of the econ-
omy in developed nations. In the United States, over 70%
of all transportation of commercial goods was conducted by
truck, dwarfing all other forms of freight transportation [2].
Trucking companies face the complex problem of routing
their vehicles in such a way that they complete their con-
tracted deliveries on-time, while spending minimal fuel and
other resources. Fuel efficiency of individual vehicles has
steadily increased in recent years, due to a high amount
of research attention to aerodynamics and fuel efficient de-
signs [8, 10, 27]. This, however, only addresses one side
of the problem. If a company poorly assigns these delivery
tasks to vehicles in its fleet, a large amount of fuel can wasted
by vehicles traveling “empty miles”—miles traveled where a
vehicle has no cargo [12]. Previous work on this subject
centers around the Vehicle Routing Problem (VRP).

The VRP addresses the need to minimize the resources
consumed in a road-vehicle-based logistics environment [6].
The original VRP creates a static customer set with a set
of demands for a single good that must be satisfied by a
single depot to the customer set. Each customer typically
has a set window of time within which they will accept de-
liveries. Solutions to the VRP typically seek to minimize
the number of vehicles necessary to complete the delivery
set [6]. Algorithms that solve the classic VRP typically
fall into one of three categories: route construction, local
search, or metaheuristics [9]. Each of these solution types
are typically nonadaptive and centralized, and require full
observability of the system. The solutions also have very
little generalizability, and solving a new problem instance
will take as long as solving the first, even if the two are very
similar [9].

We address this problem by framing the domain as a
distributed multiagent system with adaptive agents. This
puts our solution strategy in the category of metaheuristics,
which are typically noted for being slow to calculate. How-
ever, we leverage the benefits of transfer learning, in which
experience from one problem instance can be used to boost
performance in another problem instance. By doing this,
less adaptation is needed between problem instances, and
acceptable performance can be attained in a new problem
instance in significantly less time than solving the new sys-
tem from scratch.

The classic VRP has been extended multiple times to in-
clude more realistic demands. One example includes soft
time windows to the classic formulation, where a delivery
may be made outside of the desired time, with a penalty
assessed proportional to the time the delivery is outside of
the desired window [9, 14]. Other extensions allow for the
inclusion of multiple depots from which deliveries may origi-
nate [23, 15], backhauls that must be made in which the cus-
tomers have goods to deliver to the depot [13], simultaneous
pickups and deliveries for back hauls [7, 17], heterogeneous
vehicles [25], and time-varying travel speed [28]. Each of
these extensions incorporates an additional level of realism
into the problem, but each also leaves out the contributions
of the other problem formulations.

In collaboration with an industry partner, we identified
key extensions to the VRP that best embody the day-to-day
operation of a truckload or less-than-truckload carrier [16].
These extensions include (i) a fixed fleet size, (ii) soft time
windows, (iii) heterogeneous vehicles, and (iv) multiple de-
pots, which we expand such that each customer acts as a
depot, creating a point-to-point delivery problem. We in-
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clude all of these extensions in the domain considered in
this work. We also include a novel extension of the VRP:
(v) an elective, nonlinear tradeoff between travel time and
fuel expenditures.

The tradeoff between travel time and travel cost serves to
model that in many cases, there are multiple routes from
one location to another that trade between time efficiency
and fuel efficiency: very often a more fuel efficient route
may be available, and simply take more time to traverse.
The inclusion of these extensions to the Vehicle Routing
Problem creates a problem domain that brings a different
focus to the coordination required for a logistically-viable
solution. Instead of a centralized controller that develops a
set of routes, each agent must coordinate with the others
such that the system performs well as a whole.

The crux of the problem then becomes controlling the
vehicles in such a way that the fleet is well coordinated, to
reduce “empty miles” and other wasteful fuel consumption.
As such, we term our formulation of the VRP the Fleet
Coordination Problem, or FCP.

While algorithms exist to address each of these extensions
(i–v) individually, none have been created that incorporate
them all. In this work we propose an adaptive, distributed
control technique for assigning the responsibility for a given
delivery event through a multiagent auction to minimize fuel
consumption. By addressing the problem in this manner we
can take advantage of transfer learning to allow experience
gained in one problem instance to generalize to other “tar-
get” problem instances. This also allows us to train the
agents initially on simple “source” problems to boost their
adaptivity or performance in the target problem.

The major contributions of this work are to:

• Provide a distributed, adaptive solution strategy to a
complex Fleet Coordination Problem

• Show that transfer learning allows agents trained in a
simple source problem to significantly reduce required
training time in the FCP

• Show that agents continue to learn through coevolu-
tion in the FCP

• Demonstrate robustness to calculation approximations
and partial transfer learning

The remainder of this paper is organized as follows: Sec-
tion 2 addresses background involving the VRP, transfer
learning, evolutionary algorithms, and coevolution. Section
3 provides a complete description of the novel Fleet Coordi-
nation Problem addresssed in this work. Section 4 provides a
treatment of the experimental methods and algorithms used
in this work, including a full description of the source prob-
lems used. Section 5 contains the experimental results of
this work, which show significant gains through using trans-
fer learning in the FCP, even in the presence of calculation
approximations or information loss. Section 6 draws con-
clusions from this work and addresses future research direc-
tions.

2. BACKGROUND
In Section 2.1, we define the Vehicle Routing Problem

and describe a number of previously studied extensions to
the VRP, as well as solution strategies that have been used

to address these problems. In Section 2.2 we provide the
relevant background on transfer learning and its previous
use in various domains. Section 2.3 provides background on
coevolution.

2.1 Vehicle Routing Problem
A classic version of the VRP is formalized as:

Definition : VRP The classic Vehicle Routing Prob-
lem (VRP) consists of a depot D and a set of nV
homogeneous vehicles V = {v1, v2, ..., vnV } with a
common maximum load Qmax and maximum route
length Lmax. These vehicles must service a set of nC
customers C = {c1, c2, ..., cnC} with demand qi ∈ N
for a good provided by depot D. Each customer must
be serviced by exactly one vehicle, and each vehicle
must return to the depot at the end of its route. The
goal is to minimize the number of vehicles nV re-
quired to service all customer demand [6, 23].

Early approaches to the VRP included three primary meth-
ods. Direct solution approaches were only viable for small
problems, while heuristic methods and methods based on
the Traveling Salesman Problem were able to handle larger
problem instances [6]. Since the development of these early
solution strategies, work in the VRP has both focused on in-
corporating realistic extensions to the VRP as well as finding
new solution strategies.

Two simple extensions include the Vehicle Routing Prob-
lem with Hard Time Windows and Vehicle Routing Prob-
lem with Soft Time Windows. These extensions add time
bounds within which each customer may be serviced. In the
case of hard time windows, no early or late deliveries are al-
lowed. In the case of soft time windows, these deliveries are
allowed, but are penalized proportionally to the deviation
from the prescribed time window [9]. These variations in-
crease the problem complexity significantly, and are readily
incorporated into other VRP variations. Most VRP imple-
mentations use hard time windows as an implied constraint
unless explicitly stated otherwise.

Two other extensions to the VRP include the Vehicle
Routing Problem with Backhauling (VRPB) which provides
each customer with a supply si ∈ N that must be hauled
back to its originating depot, and the Vehicle Routing Prob-
lem with Simultaneous Pickups and Deliveries, which is a
form of the VRPB in which the dropoff of the demanded
goods and the pickup of the supplied goods must occur si-
multaneously (in order to minimize loading effort on the part
of the customer) [13, 7]. These extensions are typically not
incorporated into other variations on the VRP.

Another variant of the VRP is the use of heterogeneous,
fixed-size fleets [25]. In this formulation, a fixed number of
multiple types of vehicles is available to deliver goods to cus-
tomers. Each different vehicle type has a unique maximum
capacity and cost per unit distance traveled.

One final notable extension is the Vehicle Routing Prob-
lem with Multiple Depots, which changes the single depot
D into a set of depots D = {d1, d2, ..., dnD}. One notable
treatment of this problem was carried out by Léauté et. al,
who framed the problem as a Distributed Constrained Opti-
mization Problem (DCOP) using various modern techniques
to solve the DCOP such as SynchBB, DPOP, and P-DPOP
before solving the resulting VRPs with a locally centralized
controller [15].
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In this work, we incorporate many of these into a single
problem domain. The FCP, described in section 3, uses soft
time windows, a heterogeneous fixed fleet, and as many de-
pots as customers (creating a point-to-point delivery prob-
lem) as well as incorporating an extension not found in the
literature: an elective tradeoff between travel speed and
travel cost.

The solution strategies for various versions of the VRP
have a number of shortcomings. Many of the solutions are
not generalizable from one problem type to another (though
some special circumstances do exist where solutions from
one problem type can be generalized to another, e.g. solu-
tions to the VRP with Soft Time Windows can be used for
the VRP with Hard Time Windows if the penalty for early
or late service is high enough), or even one problem instance
to another of the same type [9]. Additionally, many of the
algorithms are centralized, and require full system observ-
ability for calculations.

Decentralized solution strategies have been used to ad-
dress some variations of the VRP [23, 15, 3]. Of these,
however, some solve the problem using decentralized coordi-
nation, while others merely divide the problem into smaller
VRPs and solve each of these with a centralized controller [15].

2.2 Transfer Learning
None of the solution approaches used for the various em-

bodiments of the VRP would be suitable for the FCP with-
out significant adjustment, or would only work on a spe-
cialized subset of problem instances within those allowed
by the FCP. However, an adaptive, multiagent approach—
wherein an agent senses information about its environment,
reasons based on that information, and takes some action
— bears a number of advantages for the FCP. First, fram-
ing the problem in a multiagent setting allows for an effec-
tively decentralized approach with minimal communication
between agents. Second, using adaptive agents can allow the
use of transfer learning (TL) to leverage experience gained
in one problem instance to increase performance in another
problem instance [5].

At its simplest, transfer learning can allow an agent that
takes actions based only on local state information to use
the same policy in a different instance of an identically-
formulated problems [26]. However, transfer learning can
also be leveraged to use a simple training domain, or“source”
to boost performance in a more complex problem domain,
or “target”, as long as the policies can be represented in a
similar manner in both cases, and the experience gained in
the source problem is valuable in the target problem.

That is, an agent trained on source problems similar to
the target problem will gain benefits in performance or train-
ability in the target domain, but agents trained on a random
task will not gain any performance benefits, and may in fact
be hurt by the transfer [5, 18].

In this work we use a function approximator for each
agent, in the form of a single-layer, feed-forward neural net-
work. Such neural networks are powerful computational
tools that can serve as function approximators and have
been used in transfer learning in previous work [5, 21]. These
neural networks have been used in applications as complex
and diverse as computer vision, HIV therapy screening, and
coronary artery disease diagnosis [1, 4, 22].

Success in transfer learning is typically a function of the
similarity between the source problem and target problem,

training time on the source problem, and validity of the
agent’s representation in both the source and target prob-
lems [11, 18]. In the ideal case, the agents representation fits
both problems very well, and knowledge is well represented
for transfer. This occurs when the states seen and actions
taken are similar in both cases.

In this work we use transfer learning by producing single
agent domains that act as a microcosm of the FCP, in which
agents face similar, but not identical decisions. By training
on these domains, described in Section 4 before directly us-
ing the developed policies into the FCP, we gain benefits
both in initial performance and learning speed.

2.3 Evolution and Coevolution
To allow the agents to adapt to their environment, in

hopes of increasing the performance of the system as a whole,
we need a way to affect the policies with which the agents
reason about which actions to take in whatever state they
sense. In this work, we achieve this through the use of both
evolutionary algorithms, and coevolution.

Evolutionary algorithms are a biologically-inspired com-
putational technique in which a population of agent policies
is first randomly generated, and then tested in some do-
main. After calculating a scalar measurement of an agent’s
“fitness” for each agent, those with lower fitness are replaced
with slightly-altered copies of their higher-fitness counter-
parts. Through this random alteration and intelligent selec-
tion, system performance increases as the agents adapt to
the domain to maximize their fitness calculation.

Coevolutionary algorithms leverage the concept of evolu-
tion for team-based domains. In coevolution, multiple sep-
arate populations are maintained, and are used in a shared
simulation environment, where their fitness is evaluated based
on how well they perform an assigned task as a member of a
team made up of members from each population. An evolu-
tionary algorithm is carried out on each population individ-
ually, such that the populations eventually produce agent
policies that are well-suited in the team-based environment,
to maximize the team’s calculated fitness.

Coevolutionary algorithms have the potential to speed up
a search through a complex space (which readily character-
izes the FCP), but can often lead to a suboptimal area of the
search space [19, 21]. This can be due to the agents learning
to take a conservative strategy, being able to cooperate with
a broader range of teammates [19, 20]. However, in this work
we use an evolutionary algorithm on each agent population
before using transfer learning and incorporating coevolution
in the FCP (Section 4.2 – 4.3), so we have already guided
the populations into favorable areas of the search space.

3. FLEET COORDINATION PROBLEM
The Fleet Coordination Problem is a variant on the clas-

sic VRP that includes the following extensions: (i) soft time
windows, (ii) customer locations acting both as depots and
delivery locations, (iii) a heterogeneous fleet of vehicles, (iv)
a fixed fleet size, and (v) an agent-determined tradeoff be-
tween time efficiency and fuel efficiency (which can be intu-
itively thought of as the vehicle choosing a “speed” without
much conceptual loss).

The FCP can be formally defined as:

Definition : FCP The Fleet Coordination Prob-
lem (FCP) consists of an allotted time T = {t|0 ≤
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t ≤ Tend}, a set of customers C = {c1, c2, ..., cnC}
in the 3-dimensional Euclidian space, a set of nP
packages P = {p1, p2, ..., pnP }, each consisting of a
set of: a weight 0 ≤ wi ≤ Wmax, a customer origin
for the package caj ∈ C located at λaj , a customer

to deliver the package to, cbj ∈ C, located at λbj ,
the beginning and end times within which the de-
livery must be completed, taj , t

b
j ∈ T . Each package

pj = {wj , caj , cbj , taj , tbj}, must be delivered point-to-
point by one of a set of nV nonhomogeneous vehi-
cles V = {v1, v2, ..., vnV } which are each described
by fuel efficiency, weight, and allowed cargo weight
vi = {ηi, wi, κi}. Each vehicle vi travels along each
of the nK “journey legs” described by edges connect-
ing each customer directly to each other at a unitless
rate of travel Rk ∈ [0, 100] The goal is to maximize
the system level utility G, measured as a combination
of the negative total fuel consumed by all members
of the fleet and their on-time performance (Equa-
tion 10).

There are a few key points to note in this formulation.
First, it is possible to travel from any customer ca to any
other customer cb directly. This is an abstraction of a road
system, which would realistically pass through a customer
cc if that customer was sufficiently close to the straight-line
path. Each trip from a customer ca to cb consists of nK = 10
“journey legs” (“legs” for short), regardless of the length of
these legs. Agents may decide on the tradeoff between fuel
efficiency and time efficiency for each leg independently, but
the decision holds for the entire leg. This assumption was
made so that calculations would scale relative to the number
of packages to be delivered in a system, rather than the
distance travelled by the vehicles in an experimental run.

Also, the customers are not assumed to be on the Euclid-
ian plane, and in fact exist in a three-dimensional environ-
ment. The slope between any two customer locations is lim-
ited to be less than a 6% grade. This adds the complexity of
uphill and downhill travel into the decision-making required
by each agent and the fuel efficiency calculation [24].

The fuel cost for traveling from customer ca to customer
cb is characterized as a sum over all of the k legs of the
journey:

Ftot =
nK∑
k=1

Felec,k + Freq,k (1)

where

Freq,k = ηiα1δk(1 + wi sin(Sk)) (2)

Felec,k = ηiα2δkR
2
j,k + ηiα3δkRj,k (3)

where α1−3 are experimental coefficients that are held con-
stant through experimental runs, ηi are vehicle-specific fuel-
efficiency parameters, δk is the distance of leg k, wj is the
weight of truck j, Sk is the slope of leg k, and Rj,k is the
“rate-of-travel” of truck j over leg k [24]. This Rj,k value
can be loosely interpreted as a speed of travel but is more
accurately described as both a function of speed and fuel
efficiency of a vehicle’s chosen route.

Intuitively, these fuel expenditure equations break down
to this: Equation 2 calculates the minimum cost of travel
between two points, which is a function of the distance be-
tween the two points, and the slope of the road between

Algorithm 1 FCP Execution Algorithm

for j = 1→ total packages do
λa ← Package origin location
λb ← Package destination
for i = 1→ total vehicles do

if vehicle i is “busy” then
Bidding agent i bids βi,j = 0

else
Bidding agent i bids a value βi,j ∈ [0, 1]

end if
end for
Find highest bidder : vwin = argmax

i
(βi,j)

Move vwin to origin: Algorithm 2 (λvi , λa)
Increase weight of vwin by package weight wj
Move vwin to destination: Algorithm 2 (λa, λb)
Decrease weight of vwin by package weight wj
Determine if package j was delivered within desired de-
livery window (Equation 6)

end for

them. Equation 3 models that the vehicles may choose to
move along more or less fuel efficient paths (modeled by the
linear term) at a more or less fuel efficient speed (modeled
by the quadratic term) [24].

The reason for the forms of these equations follows: for
any journey, there is a physical absolute minimum fuel that
has to be spent to complete the journey. This amount of
fuel for journey k is Freq. Beyond that, due to the choice in
driving habits of the driver, and route choices by a navigator,
more fuel can be spent to get to a destination faster. This
is represented by Felec.

This fuel consumption model is not intended to compete
with to the state of the art. This model was chosen to limit
computation time, while still lending a degree of realism to
the problem domain [16].

Paired with this, the rate-of-travel decisions Rj,k also af-
fect the time of travel between the origin and destination:

Ttot =
nK∑
k=1

δk
Rj,k

(4)

where Ttot is the total time it takes for the vehicle to travel
from the two locations, λa and λb.

It is also specifically important to note that all package
deliveries must be completed; they may not be refused, and
they stay in the domain until the completion of a delivery
(some methods for internet routing allow for an amount of
packet loss and design this into the approach; this is not
viable for this problem domain).

Though we strove for applicability, This representation of
the FCP is still a rough representation of reality, and cannot
incorporate all facets of the real-world problem.

4. METHODS AND ALGORITHMS
We take a vehicle centric approach, wherein agents are

associated with the vehicles; other agent-based distributed
approaches are possible, with depots or packages themselves
treated as agents, but in the FCP, choosing a vehicle-centric
approach makes intuitive sense.

Because the target problem domain (the FCP, described
in Section 3) is so complex, we break the agent responsi-
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bilities into two categories: (i) the movement of the agent
from one location of another, and (ii) the decision of which
agent will be responsible for each package. We explain these
decisions in detail in Section 4.1. These two responsibilities
are trained on different source tasks, which are laid out in
Sections 4.2 and 4.3.

4.1 Distributed Auction and Agent Populations
First, an agent must decide how much the immediate im-

portance the vehicle will give to speed and fuel efficiency, re-
spectively, in order that the vehicle might be mobile across
the domain. This “driver” decision must be made during
each leg of each journey from a customer ca to cb, and this
directly impacts both the fuel spent on that leg, and the
time spent traversing that leg (Equations 1-4).

The other agent responsibility is choosing which package
pickup and delivery events each vehicle will be responsi-
ble for. To solve this portion of the problem, we use a
distributed, one-shot auction in which the highest bidder
takes responsibility for traveling to the customer at which
the package originates, picking up the package, and deliver-
ing it to its final destination. The agents each bid a value
βi ∈ [0, 1] that represents how well-suited they believe their
vehicle is for handling that package.

These two tasks, though they deal with similar informa-
tion — an agent must consider the distance away from a
package origin both in choosing a speed and in choosing a
bidding value — are very different decisions. To address this,
we took the split responsibilities and assigned them to two
completely separate agent groups. That is, instead of one
agent being assigned to each vehicle, a team of two agents,
consisting of one “driving” agent and one “bidding” agent, is
assigned to the vehicle, to work as a team. We characterize
each of these agents as a 4-input, 10-hidden unit, 1-output
feed-forward neural network.

The actions of each of these agents affects the performance
of their teammate as well as the system-level performance
G, in turn. Because the actions taken by the two agents
are very different, however, we choose to initially train them
in different source environments, to leverage the maximum
possible benefit from transfer learning. These two source
problems are described in the following sections.

4.2 Evolution in Driver Source Domain
To train the driving agents, we pose the simplest possible

problem, such that the driver learns the effect of its actions
on the outcomes as quickly as possible. The source problem
that we train the driver on is characterized as follows:

Definition : Driver Source Domain (DSD) A

Algorithm 2 Travel Algorithm

Given origin and destination locations (λa, λb)
Determine the length of each journey leg, δk
for k = 1→ journey legs do

Select rate of travel R(i,k)

Calculate required and elective fuel spent (Equations 2
and 3)
Calculate total fuel spent Ftot (Equation 1)
Calculate time spent Ttot (Equation 4)
Mark vehicle as “busy” for the time spent.

end for

Algorithm 3 Evolutionary Process

Initialize 100 population members of neural networks with
small weights.
for g = 1→ end generation do

Simulation Step (varies with domain)
DSD: Simulate DSD ∀ agents i (Section 4.2)
or
BSE: Calculate βi ∀ agents i (Equation 7, Section 4.3)
or
FCP: Choose nV agents at random, perform FCP (Al-
gorithm 1); Repeat until all agents have participated
once.

Fitness Step
Calculate fitness of all agents: Ui,g ∀ i (Equa-

tions 5, 8, 9 or 10)
Sort agents from highest to lowest fitness

Selection Step (select 20 survivors)
set counter = 20
set survivei = 0 ∀ i

for z = 1→ 20 do
(select high-fitness survivors)
With probability (1− ε),
counter ← counter − 1
and set survivei = 1

end for
for z = 1→ counter do

(select random survivors)
Select a random agent j with survivej == 0
Set survivej = 1

end for

Mutation Step (repopulate to 100 agents)
for Z = 1→ total agents do

if surviveZ == 0 then
Select a parent network Y where surviveY == 1
Set all weights of Z ← weights of Y
Mutate all weights using triangular distribution of
mean 0, maximum and minimum change ±0.05

end if
end for

end for

vehicle v is placed at the location of customer ca, and
assigned a package pj of weight wj . It must travel to
the location of customer cb (Algorithm 2), with the
goals of minimizing total fuel consumed during the
journey Ftot (Equation 1), and arriving before a time
Tf ∈ T .

With only two locations, one package, and one vehicle,
this embodies an extremely simple training case. The single
agent makes only ten decisions (the rate of travel for each
leg of the journey) before receiving feedback, allowing for the
feedback to be very specific to the individual agent and much
easier to learn compared to the target multiagent, long-term
environment.

Specifically, the agent is a single-layer, feed-forward neural
network that takes as inputs the distance to the destination
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δ(i,b), the slope of the next leg of the journey Sk, a mea-
sure of “time pressure” ψj , and the vehicle weight wv ; and
gives as outputs Rj,k, the “rate-of-travel” of the vehicle it is
controlling along the kth leg of the journey. ψj takes on a
value of 1 if the vehicle can make it to its destination at a
(unit-less) rate of travel of 751, a higher value if the vehicle is
under more time pressure for the delivery (a faster speed is
necessary), and a lower value if a lower speed would still re-
sult in an on-time delivery. This was done to give the agents
a sense of time that scaled correctly with the problem. It
is roughly equivalent to the human intuition of “being on
time”, while still en route to a destination.

The driving agents face exactly these same decisions within
the FCP. Though the system-level effects of their decisions
are not fully expressed within this domain, the simple prin-
ciples that it is generally better to be on time than late, and
better to be efficient about fuel expenditures are expressed
within this domain. The specifics of the training algorithm
follow.

The agents are trained through an evolutionary algorithm,
in which a population of 100 agents is allowed to perform
on the same instance of the DSD before downselection and
mutation occurs (Algorithm 3). After each agent has per-
formed once on a given problem instance (over the course of
one generation), the problem instance changes; this allows
the agent population to experience a wide variety of train-
ing situations to learn robust behaviors. In each generation,
each agent is assigned a fitness for generation g based on fuel
spent and whether they arrived before the prescribed time
limit:

Uj,g = −Ftot −H(g)L(j) (5)

where the fitness of agent j in generation g is Uj,g, the fuel
consumed on the journey is Ftot, H(g) is the positive “hand-
icap” assessed for arriving late and is a function of the gen-
eration, and L(j) is calculated as:

L(j) = max(0, Tarrive − Tf ) (6)

which returns zero if package j was on time, or the measure
of time the package was late.

In Equation 5, the handicap H(g) is initially zero, such
that the agent has an opportunity to learn the function be-
tween its actions and the fuel efficiency of the vehicle over
the journey. H(g) then steadily increases as g increases, so
that arriving on time becomes a higher and higher priority.
As g nears the final generation gN , the fuel efficiency term
and on-time term achieve a rough parity in terms of impor-
tance. Changes in the size of the experimental domain would
necessitate an adjustment of the H(g) function to maintain
this parity.

The agents learn to achieve high performance on this task
through an evolutionary algorithm, which mimics the pro-
cess of biological evolution; high-achieving agents are very
likely to survive, and lower-achieving agents are very likely
to be replaced. In this implementation, we maintain a pop-
ulation of 100 agents, and allow 20 agents to pass directly
to the next generation. The best-performing member of the
population is always maintained, and 19 additional agents
are selected; for each of the 20 agents with the best fit-
ness values, the agent is selected to survive with probability

175 was chosen as a “typical” rate of travel for this calcula-
tion, merely so that vehicles could ”make up time” if neces-
sary, at quadratic fuel cost. See Equation 3 for details.

(1−ε), and a random agent is selected to survive with proba-
bility ε = 0.3. The value of ε was chosen to encourage slower
population convergence to avoid local optima.

The 20 surviving agents serve as parents for the 80 agents
created for the next generation. Each new agent selects a
parent agent from among the survivors, and after a step
of mutation using a triangular distribution on each weight
centered at zero, with maximum and minimum deviations
of ±0.05 in the neural network is, is entered into the pop-
ulation. This evolutionary algorithm process is outlined in
Algorithm 3.

4.3 Evolution in Bidder Source Domain
In a similar manner, we must form a simple source domain

to train the bidding agents. In our first iteration of this, we
created a source similar to the driver source domain, which
instead placed multiple vehicles near a pickup location and
allowed the bidding agents to create bids for each vehicle.
This led to unacceptable performance: for any given deliv-
ery, bidding agents learned to bid relatively higher for better
suited vehicles, but they did not learn to create an appro-
priate absolute bidding gradient. In fact, the agents trained
on this BSD only utilize about 1% of the available bidding
space, that is, βmax − βmin ≤ 0.01. This bidding strategy
did not generalize well into the FCP.

Instead of this approach, we applied domain knowledge to
create a supervised learning problem. Distance, time, vehi-
cle weight and road conditions between the vehicle’s current
location and the pickup location all have an impact on a
vehicle’s suitability for a delivery. We can combine these
in a linear fashion to create a target bid equation to train
the population of agents. We call this equation the Bidder
Source Equation, detailed below:

Definition : Bidder Source Equation (BSE)
We train agent i’s bid for vehicle v (initially located
at location λi) on package pj using the equation:

βtrain = 1− k1δ(i,a) − k2S(i,a) − k3ψj − k4wv (7)

where βtrain is the bid, δ(i,a) is the distance from
the vehicle’s current location to the package origin,
S(i,a) is the average road slope between the vehicle’s
location and the package origin, ψj is a metric that
characterizes the time available to make the delivery
(see Section 4.2), and wv is the weight of the vehi-
cle. k1−4 are tunable parameters. Performance is not
sensitive to these parameters, except that k1 must be
significantly larger than the rest.

With this equation as the source problem, we can create
a random training instance and train directly on the error,
in a case of supervised learning. That is, the fitness Ui of
an agent i is:

Ui = −|βi − βtrain| (8)

We allow each agent to evaluate the circumstances provided
by the problem instance into a bid, and then use the same
evolutionary algorithm outlined in Section 4.2 in Algorithm 3.
By using the BSE, we attained bidder behaviors that used a
much larger portion of the available bidding space (βmax −
βmin ≈ 0.9). This bidding range was much more appropriate
to transfer into the FCP.

The justification for the form of Equation 7 is as follows.
Each term in the linear combination expresses a simple fact:

54



for example the first term states that a vehicle closer is more
suited for a delivery than one further away; the last states
that a lighter vehicle is more suited than one that is heavier.
The linear combination of these factors is the simplest possi-
ble form that expresses these facts. By allowing our bidders
to train on this equation, we improve their performance over
a random neural network. This equation does not seek to
represent an ideal bidding formulation for the FCP, it merely
acts as a starting point, from which the agents may deviate
as the evolutionary process continues.

4.4 Coevolution in Target Domain
The agent populations, trained first in their source do-

mains (the DSD and BSE), are then put into use in the
target domain, the FCP. We choose to keep the two popula-
tions of agents separated, calculating their fitness with the
same metric in each experiment, but allowing them to be
evolved separately. By allowing this, and by randomly pair-
ing the agents together in each problem instance together,
we employ the concept of coevolution.

In the experiments conducted for this work, a set of 10
trucks is assigned to service 25 customers for a series of
1000 package delivery events. For each generation, we draw
10 agents from each population that have not yet been used
in the current generation, pair them randomly, and assign
the teams of agents associated with vehicle i fitness values
based either on their local utility Li, or the global system
utility G. We calculate Li as the negative sum of all fuel
spent by that vehicle, plus a positive term for each package
delivered on-time.

Li =
nP∑
j=1

Ii(j)[−F(tot,j) −HL(j) + φ] (9)

where nP is the total number of packages in the problem
instance, Ii(j) is a function that indicates whether vehicle i
was the maximum bid for package j, F(tot,j) is the total fuel
expended delivering package j, H is the constant handicap
coefficient for a late delivery, L(j) is calculated by Equa-
tion 6, and φ is a constant “bonus” for making a delivery.

Because fuel costs are always a negative value, without the
positive bonus for delivering a package, the agents quickly
learn to bid low so that another agent might have to make
the delivery, making the first agent earn zero fitness for that
delivery event, while the other incurs the negative cost. This
increases the fitness of the first agent at a cost to the system
level performance. Conversely, if φ is set too high, all agents
bid very high for every delivery, because the fuel costs in-
curred are dwarfed by the bonus received for completing the
delivery.

We calculate the global system utility G as the sum of all
local rewards, without the bonuses (φ):

G =
nV∑
i=1

[Li]− (nP )φ (10)

At the system level we are concerned with the sum to-
tal of fuel spent; the package delivery bonuses merely add a
constant to the global reward, which does not affect learn-
ing. Because all of the agents are scored on the overall fuel
consumption, they learn not shy from taking a package that
they are well-suited to deliver, making the bonus term un-
necessary. The on-time delivery term remains, because this
is a matter of concern to a truckload-hauling carrier: having

a high on-time-percentage can be a selling point in attaining
new contracts, and by changing the H term in Equation 9,
we can potentially cause the agents to make many hard-
time deliveries (high H) or many soft-time deliveries (H low).
This G term will always evaluate to be negative; the agents
strive to maximize the system utility, thus minimizing the
fuel spent to make a delivery on time.

4.5 Approximation and Partial Transfer
In order to show that our approach to solving the FCP is

not brittle to changes in experimental parameters or small
changes in procedure, we choose to demonstrate results on
two additional forms of complication. First, we pose a situ-
ation in which none of the drivers are trained in any source
problem, while bidders are trained in the BSE. In the target
problem, coevolution is allowed to proceed as normal.

Additionally, to demonstrate that a variety of function ap-
proximators could be suitable for this solution strategy, we
replace the sigmoid function in the neural network we used
with a gross approximation which requires far less compu-
tational power: a 3-piece linear function:

f(x) =

 0 : x < −2
0.25x+ 0.5 : −2 ≤ x ≤ 2
1 : x > 2

(11)

The training of the network and weights remained the
same, but for the entire training process from source to tar-
get, the piecewise linear function was used instead of the sig-
moid. Note that though this function is not differentiable,
we do not use a gradient-based approach in this work; evolu-
tion still functions using this approximation by mutating the
weights associated with the networks and evaluating fitness.

5. RESULTS AND DISCUSSION
In this work, we used all 8 methods (detailed below) on a

series of 30 randomly-generated instances of the FCP, with
a fleet of 10 vehicles serving 25 customer locations, over a
course of 1000 package deliveries. In training the bidders,
we used values of {k1, k2, k3, k4} = {0.6, 0.1, 0.1, 0.2}. We
created a timescale long enough that the package conges-
tion would be low, keeping the problem instance difficulty
on the low end of those available through the FCP, and al-
lowing all deliveries to be completed while limiting vehicles
to carrying out one delivery at a time. We chose to use dif-
ferent problem instances for our statistical trials to show the
robustness in our methods and results. For each statistical
run, the same problem instance was used for all methods
test, and reported global system utility G was normalized
with respect to the mean of the first generation of all trials,
except full transfer learning. This was done to allow com-
parison across statistical trials, and to emphasize that the
global system utility G is a unitless quantity that represents
a combination of the fleet’s fuel consumption and on-time
performance (Equation 10). Error is reported as the stan-
dard deviation of the mean,2 and in many cases is smaller
than the symbols used to plot. To validate our distributed
approach to the novel FCP presented in Section 3, we de-
sired to compare the effect of using a local fitness evaluation
(Ui = Li) and a global fitness calculation (Ui = G) for

2The deviation of the mean for N statistical runs is calcu-
lated as σ√

N
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coevolution in the FCP, and testing these baseline measure-
ments against the use of full transfer learning, using both
DSD and BSE source environments. Additionally, we wish
to demonstrate that our approach is not brittle to lost infor-
mation or approximations, and compare these results to the
baseline cases, creating a set of eight experimental methods.
We show results in the following scenarios:

1. No transfer learning with fitness calculated through
local and global utilities (Section 5.2)

2. Full transfer learning with global and local fitness dur-
ing coevolution (Section 5.2)

3. Partial transfer learning (Section 5.3)

4. Transfer learning using a linear approximation of a sig-
moid (Section 5.4)

5.1 Learning From Scratch
First, as a validation of our approach and methodology

for the FCP, we compared the results of training the agents
in the target FCP from scratch, with no transfer learning,
against the use of full transfer learning from both source
problems, as outlined in Section 4. Figure 1 shows these
results, which show a substantial gain in system performance
over the training period, regardless of whether the local or
global training signal was used. This is because of the strong
coupling between the two calculations, as the global utility
G is formulated as a sum of local rewards Li, with a constant
term subtracted (Equation 10).

5.2 Full Transfer Learning
We note that the full transfer learning case shown in Fig-

ure 2 thoroughly outperforms learning from scratch, with
initial performance that is within 10% of the best converged
performance of any algorithm tested. It is important to note
here that the computation time for the full transfer learn-
ing case is roughly the same as 5 additional generations of
training time in the FCP (as the source problems are much
simpler). Full transfer learning, using both the DSD and
BSE source domains to train the driver and bidder agents,
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Figure 1: Comparison of agents evolved in the FCP
using as their fitness evaluation: G, the global sys-
tem utility (upper, dotted line); Li (lower, solid
line). Note that in 300 generations, both fitness
calculations lead to improvement in system perfor-
mance.
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Figure 2: Performance in the FCP of agents coe-
volved solely in the FCP (lower lines with square
markers) against agents evolved in separate source
domains transferred into the FCP (upper lines with
triangle markers). Note that the two full-transfer
learning cases overlap significantly, and the boost in
performance persists over 300 generations. Approx-
imate computing time for the source problems in the
full transfer cases was approximately 5 generations
on this scale.

is extremely effective in the FCP, and results of comparable
quality can be obtained in only 10% of the training time
required, when compared to learning from scratch. All of
these results hold true whether the local utility Li or global
utility G is used for the fitness evaluation calculation, as the
resulting performance is nearly identical.

5.3 Partial Transfer Learning
We also show that our methodology in this work is robust

to potential failures. First, we pose a scenario in which we
allow the bidders to be trained on their source problem, but
force the driving agents to learn from scratch in the FCP
target environment: only one of the two agent populations
benefits from transfer learning.

As seen in Figure 3 we still see some benefits both in ini-
tial performance (∼10%) and in learning speed in both the
local and global reward cases. Because of the simpler map-
ping from actions taken to fitness calculation (the bidders
are taking reasonable actions, instead of random ones as
they would when learning from scratch), noise is effectively
removed from the fitness calculation and the rate of perfor-
mance increase is improved. The driving agents are able to
learn to take reasonable actions before the bidding agents
diverge from making good decisions because of the reward
signals received in the FCP. It is important to note that in
all of these cases, the driving agents and bidding agents are
always receiving the same reward.

When we perform the same experiment in reverse, allow-
ing the driving agents to use transfer learning, while forcing
the bidding agents to start learning from scratch, we see per-
formance that is almost at the level of full transfer learning:
in the tested instances of the FCP, the drivers are capable
of wasting far more fuel than poorly assigned bids. This
is because the worst effect a poor bid can have is a vehicle
traversing across the experimental domain, while in this for-
mulation a driver is allowed to choose an excessive speed that
wastes significantly more fuel. These results were omitted
from Figure 3 for readability. In higher package-congestion
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Figure 3: Experimental results in the FCP using
three forms of transfer learning: no transfer (bot-
tom, blue and red), full transfer (top, triangles),
and bidder-only transfer learning (middle, green and
black) which could correspond to an information loss
scenario. Note that the full transfer learning cases
overlap each other.
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Figure 4: Experimental results in the FCP using
bidder transfer learning and coevolving on the global
system utility G or local agent utility Li. Because
of the relatively simple problem instance, a neural
network using a linear function as an approximation
of the sigmoid itself actually outperformed the full-
accuracy neural network.

cases or cases in which the system designer limits the speed
at which the vehicles may travel to a greater degree, we
expect that the bidding agents would have a stronger con-
tribution to overall system performance.

5.4 Transfer Learning with Linear Approxi-
mations

Finally, we examine whether the neural network function
approximation (which, with its many embedded sigmoids,
can be very computationally expensive) is strictly necessary
for our methods to work in the FCP domain. We replace the
sigmoid function in each of these calculations with a 3-piece
linear function with the same slope as the sigmoid at zero,
seen in Equation 11.

In Figure 4, we show that using the linear approximation
of the sigmoid in the FCP with bidder transfer learning actu-
ally leads to better system performance than using the neu-
ral network itself, converging to similar performance more

than 100 generations faster. Here, it is important to note
that the neural network using sigmoids itself is a function
approximator, and the linear piecewise functions simplify
this approximation.

Because the particular problem instance of the VRP shown
is low-congestion enough, the linear function is able to em-
body all necessary information for treatment of this prob-
lem. In more congested problem instances, we expect that
this would not be the case, and that the neural network using
sigmoids would begin to outperform the linear approxima-
tion at some level of problem complexity or congestion.

6. CONCLUSION
In conclusion, in this work we have proposed the novel

combination of VRP variations into the Fleet Coordina-
tion Problem domain. We proposed an adaptive solution
strategy that leverages benefits from the fields of multiagent
systems for decentralization, neural networks for function
approximation, neuro-evolution for agent training, transfer
learning for boosting initial performance and maintaining
policy applicability over problem instances, and coevolution
for simplifying the agent responsibilities and maintaining the
ability for agents to retain their skills in addressing these dif-
ferent responsibilities in the FCP.

Though we trained on two simple source domains before
placing agents in the FCP target domain, even after coevolv-
ing the agents on the combined FCP, we can still transfer
this experience through a policy transfer, by maintaining
the agents’ policies and only changing the problem instance.
Our experimental methods suggest that we can very eas-
ily take agent populations trained in one FCP and transfer
their knowledge to an FCP of similar complexity with suc-
cess, and work in the near future includes transferring agent
experience from a simple FCP to a more complex, congested
FCP instance. The FCP parameters for vehicles, packages,
time, and customers in this work were chosen such that a
suitable solution could definitely be found; problem diffi-
culty can be increased by decreasing available resources to
work with, or increasing demand. We expect that this “stair
step” method of training agents may provide better perfor-
mance in complex FCP instances than transferring straight
from the original source problem to the final target prob-
lem, or learning from scratch. We seek to discover if there
is a problem instance that cannot be successfully learned
from scratch, which is achievable through the use of transfer
learning.

Additionally, we wish to frame the FCP as a multi-objective
problem, and incorporate multi-objective metrics into our
treatment of the problem, including fitness shaping tech-
niques to assist the agents in discerning their particular con-
tribution to the system as a whole.
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ABSTRACT
Traffic routing is a well established optimization problem in
traffic management. We address here dynamic routing prob-
lems where the load of roads is taken into account dynam-
ically, aiming at the optimization of required travel times.
We investigate ant-based algorithms that can handle dy-
namic routing problems, but suffer from negative emergent
effects like road congestions. We propose an inverse ant-
based routing algorithm to avoid these negative emergent
effects. We evaluate our approach with the agent-based traf-
fic simulation system MAINS2IM. For evaluation, we use
a synthetic and two real world scenarios. Evaluation re-
sults indicate that the proposed inverse ant-based routing
can lead to a reduction of travel time.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms, Management, Measurement, Experimentation

Keywords
Traffic simulation, Multiagent-Based Simulation (MABS),
routing, Ant-inspired

1. INTRODUCTION
Traffic routing is a well established research and optimiza-
tion problem in traffic management [6]. Most research has
been done for static problems, i.e., settings where the prob-
lem structure does not change. In static problems the rout-
ing decision boils down to find the shortest path between the
start and the goal point. Once a solution has been found for
all routes the optimal ones can be used whenever needed.
These algorithms typically are based on shortest path algo-
rithms, like the well known A* algorithm.

The situation becomes more complex if we regard dynamic
problems. In a dynamic problem, the problem structure
changes while solving the problem. For routing decisions this
implies that not the traveling distance has to be optimized
but the traveling time [1]. Of course, a simple approach is
to assume a fixed average speed that can be used for every
road and to use this in the calculation of the weights of the
graph. It has turned out that this simple approach often
can help, but it also turned out not to be sufficient for roads
which load changes in time [13, 19].

One approach to handle this limitation is to gather data to
enrich the routing graph with time dependent traveling in-
formation. Based on acquired data the traveling speed on
a road is extracted and can be used during route planning.
In this approach, the dynamic problem is reformulated to
a static one which has a larger complexity than the initial
static one, as for each edge in the routing graph, time depen-
dent traveling speed information is available. But it turned
out that the data acquisition takes a lot of effort [13, 19].

Using current trends and technologies like car-2-car com-
munication [14] and autonomic road transportation support
systems [8] cars can be enabled to communicate with each
other, and also with their environment. Therefore, each car
can be seen as an autonomous entity, that has computing
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abilities and is able to send and receive information from its
current environment, and to use this information, e.g., for
routing decisions.

Fortunately, ant algorithms can handle dynamic environ-
ments, so if a road is congested the following cars will take a
different route if the road ahead of them is blocked. But due
to the principle of following other ants in an ant-optimizing
algorithm, these situations will emerge regularly, given a sit-
uation with heavy traffic, as it can be often found in urban
areas. The emergence of congestions is a negative emergent
behavior [28].

Heavy traffic is typical for urban areas nowadays. But we
can also make another observation in these areas. There of-
ten exists a number of alternative routes, as well. In this pa-
per, we investigate how to handle dynamic routing problems
in urban areas, with high traffic and a number of alternative
routes. The goal of our research is to avoid the negative
effects of these emerging congestions while preserving the
positive emergent behavior of ant algorithms for routing in
dynamic environments. Therefore, we will change the inter-
nal reasoning of the cars to navigate to their destinations.
For the evaluation of our approach we use simulation stud-
ies based on an agent-based traffic simulation system, called
MAINS2IM. In our evaluation, we are comparing our ap-
proach with existing alternative routing approaches.

The rest of the paper is structured as follows. In the next
section we discuss related work especially from the fields of
traffic simulation and ant-based routing algorithms. Then,
in Section 3, we give a brief introduction into MAINS2IM.
Since we are focusing on routing problems, we will especially
highlight routing methods of MAINS2IM in Section 4. Our
approach of adapting the ant algorithm to make it more
suitable for urban areas, by avoiding negative emergent be-
havior, is described in Section 5. In the subsequent section
we evaluate our approach in a series of simulation studies
and discuss our results. Finally, we conclude and outline
potential future research.

2. RELATED WORK
In the first part of this section, we give an introduction to
related work in the field of traffic simulation. In the second
part we discuss current research in the field of ant-based
routing algorithms. Thereby, we focus in both subsections
especially on agent-based approaches.

2.1 Traffic Simulation
The modeling of traffic is a well established field, ranging
back to early work in the first half of the preceding century,
e.g., [17]. Since then, different models and (later) traffic
simulations have been proposed. The focuses of those range
from the simulation of huge scenarios, e.g., the road traffic
in Switzerland [27], using a cellular automaton based model
proposed in [23], to the simulation of very small areas (e.g.,
[5]) with high fidelity traffic models like, e.g., [30].

Traffic simulation systems consist of models for road user be-
havior, as well as traffic demand models and routing meth-
ods. The road model is typically encoded in form of an
annotated graph. The users’ behavior is often described by
their capabilities, their goal(s), and their behavior patterns,

e.g., acceleration patterns. In this work, we focus on routing
methods.

Gehrke and Wojtusiak present an approach for inductive
learning of traffic predictions in relation to day, time and
weather which leads to a higher traffic flow in an agent-
based traffic simulation with agents using the predictions
for route planing [16].

Vasirani and Ossowski present an agent-based approach for
efficient allocation of road traffic network with help of an
artificial market [29]. The approach could be shown to be
efficient in a small scenario but has not yet been tested in a
traffic simulation system.

A crucial point is the explicit modeling of decision making
of simulated cars [2], respectively the reasoning in the sim-
ulated agents. Gawron presents an iterative algorithm for
route plan optimization towards an equilibrium [15]. In a
first simulation run, each simulated car chooses an optimal
route. Before the next run, a portion of agents re-plan with
help of the travel time knowledge gained from the previously
used roads. This is done repeatedly, until an equilibrium
condition is established. An analogous approach is used by
Raney et al. for TRANSIMS [26]. The simulation has to be
run for about fifty times in order to reach the desired state in
their scenario. Thus, this approach is very time-consuming.

Bazzan and Klügl present an agent-based approach for dy-
namic re-planning [3]. When a car agent a perceives the
occupancy of the next road on its route plan to be higher
than τ , a re-routing mechanism enables a to drive around
the potentially jammed area. The approach leads to a better
overall performance. For simulation, frequently re-routing is
time consuming. Another important aspect is at what time
of the travel the re-planning has to be done. When the next
road on the current route of a is jammed, a re-routing may
have been much better, if done earlier.

2.2 Ant-based Routing Algorithms
As pointed out before, ant-based routing algorithms have
been already investigated for traffic management [1, 4, 19].
In current work, researchers try to adapt the basic algorithm
to avoid the negative emergent effects outlined before. In the
following we discuss those approaches.

The approach by Alves et al. [1] is based on the equilibrium
theory of traffic networks, and therefore grounded in game
theory. In this approach, the cars are routed by a central-
ized traffic control management system. The central traf-
fic management system collects information about the load
dependent changes of the traveling times which are com-
puted by an ant colony optimization method. Therefore,
the ant-based routing is used to create information about
the expected load of roads, to adapt expected traveling time
information in the routing algorithm. In their approach,
cars are controlled; they have no abilities to make decisions.

The need for decentralized decision making in dynamic rout-
ing problems has been pointed out by Narzt et al. [24]. Simi-
lar to our approach it is assumed that cars become smart en-
tities that can communicate with each other and with their
environment. Cars act as ants and leave a pheromone trace
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along the way they travel. In the presented approach the
cars use the intensity of the pheromone trace to infer the
traffic density on this particular section of the road ahead.
Thus, based on this pheromone information the cars can ad-
just their local planning model and adapt the weights of the
edges, used for their routing algorithm, i.e., A*.

The idea of inferring the current traffic situation from the
pheromone trace has also been suggested by Bedi et al. [4].
In their approach, Bedi et al. discuss an approach for pick-
ing the next edge to travel towards the destination. For
calculating the probability for an edge they combine three
factors: the traveling distance, the pheromone strength and
a random factor. Based on their description, the usage of
their approach focuses the individual routing problem for a
specific road user, who specifies its starting and end point.
With this information and the traffic infrastructure differ-
ent routes are computed iteratively, trying to minimize the
probability that the car will get stuck in a traffic jam.

As previous authors Krömer et al. [19] also point out the
need for handling dynamic routing problems for traffic rout-
ing. They also point out that collecting real world data, can
be a complex task, that often has limitations in the amount
of data and the area covered. Krömer et al. present an
approach to avoid the negative emergent behavior in their
routing algorithm. They modify the original ant colony op-
timization algorithm slightly, by introducing a probability
threshold. If a probability of taking an edge becomes larger
than the threshold, e.g., because it has a high pheromone
mark, the probability will be cut to the threshold. Thus,
the probability cannot become larger than the threshold.
By adding this threshold, the authors are able to gain the
advantages of the ant-based routing, but also have a mean to
avoid that the shortest path gets blocked due to heavy usage.
In their experimentation they used realistic road infrastruc-
ture and car behavior patterns. As expected the original
ant algorithm found the shortest path faster, i.e., it could
converge faster to a solution, but traffic jams occurred. This
effect could be softened using the ant-based routing with the
probability threshold.

3. SIMULATION SYSTEM
The routing algorithms discussed in this paper have been
integrated into the simulation system MAINS2IM (Multi-
modAl INnercity SIMulation). The simulation uses carto-
graphic material from the OpenStreetMap1 initiative in or-
der to automatically generate a simulation graph, leading
to an executable traffic simulation. The system is built on
the base of the free geographical information system (GIS)
toolkit GeoTools2.

In order to set up a simulation, an OpenStreetMap (.osm)
file is clipped into a user defined map section. The new file
is split into logical GIS layers in relation to their type of ge-
ometry or for rendering purposes (e.g., landscape polygons,
waterways, buildings, points, railways, routes and roads). In
a first step, a basic graph data structure is calculated, which
then is refined by several analysis and correction steps. The
result of this transformation process is a graph with Edge-

1http://www.openstreetmap.org, accessed 03/02/12
2http://www.geotools.org, accessed 03/02/12

Informations (EI) representing roads and NodeInformations
(NI) representing the connections between roads, taking into
account urban traffic circumstances like, e.g., cross-walks,
traffic lights, roundabouts, speed limits, numbers of lanes
and priorities for the determination of the right of way.

MAINS2IM provides microscopic traffic models for cars
(passenger cars, trucks and buses), as well as bicycles and
pedestrians. The models are discrete in time and continu-
ous in space. One simulation iteration corresponds to one
second real time.

The road users in the simulation system are modeled by sim-
ple reflex agents. Each driver-car-entity has its individual
driving capabilities, e.g., different dallying behavior, accel-
eration, maximum velocity or rating for safety distances.
When a situation occurs where multiple cars prevent each
other from passing a crossing due to the right of way rules,
the involved agents are able to abstain from their right of
way and let another one pass the crossing. When a driver-
car-entity has to wait for a certain time in front of a crossing,
it may re-plan and use another route to its original destina-
tion. This is done via usage of the A* search algorithm with
prohibition of the next road of the original route.

The simulation is written in Java and can be executed on a
workstation computer. Detailed descriptions of the simula-
tion system as well as case studies can be found in, e.g., [20,
9, 10] and on the corresponding website www.mainsim.eu.

This work deals with a modification of current routing meth-
ods for traffic simulations. Thus, the next section describes
the current routing approaches in MAINS2IM.

4. ROUTING METHODS
Currently, MAINS2IM implements three different routing
methods. Two of them can be used to identify a specific
route from a starting point to a goal and one can be used
to generate probabilistic routing behavior from a specific
starting point. The following subsections 4.1 to 4.3 describe
the approaches and subsection 4.4 discusses the presented
approaches.

4.1 Precalculated Routes
In order to precalculate all possible routes in the simulation
graph, an all-pairs shortest path problem has to be solved. A
reasonable approach would be the Floyd-Warshall algorithm
[7, pp. 629-635]. It solves the problem in O

(
|V |3

)
. A dis-

tance function d (NIa, NIb) estimates the duration of travel
on the edge EI between nodes NIa and NIb. The algorithm
has one shortcoming for the problem of traffic routing: It is
not able to take account of the preceding edge on a path.
Consider the situation shown in figure 1.

The Floyd-Warshall algorithm is not capable of suppress-
ing u-turns or turns with an over sized turning angle α,
which may be unrealistic. Another method is the repeated
calculation of the Dijkstra algorithm [11], once for each NI.
Overall, this method also leads to computational complexity
of O

(
|V |3

)
. During computation of the Dijkstra algorithm,

our method not only stores the preceding NI on a way, but
also the preceding EI and thus, overcomes the aforemen-
tioned problem.
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Figure 1: Consideration of turning angles
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Figure 2: Lookup table for NI-ids

The computation of all ways in the simulation graph leads to
the challenge to store them in the simulation system. Con-
sider the simulation of a medium sized city with about 5,000
NIs, leading to about 5, 0002 = 25 · 106 paths. An efficient
method in space and time is needed to store those paths. In
MAINS2IM a collection of all NIs (NodeInformationCollec-
tion (NIC)) is implemented in form of a list data structure.
The ith element of NIC represents the NI with id i. This
leads to a simple lookup when searching for a NI with a
given ID. The IDs are stored as integer values.

Each NI stores a list of IDs. The ith entry of the list is the
ID of the nextNInext node on the way to a given destination
NIdest with ID i. The time complexity to lookup a path
in the graph is Θ (n), where n is the amount of EIs on the
way.

The space complexity of this method is about |NIC|2 ·32bit
(integer) leading to about 95MB to store all paths. Coming
back to figure 1, it is obvious that the amount of different
IDs stored in the lists is small for each list. Each NI therefor
stores a lookup table (LUT) for the IDs of its neighbors, as
shown in figure 2.

The input of the table is the number of the neighbor and
the result is the corresponding ID. The integer data type
with the smallest amount of bits in Java is used: byte (8
bit). The approach leads to a compression ratio of about
25% without noticeable loss of time.

Note that the procedure is performed three times, because
each basic type of road user (car, bicycle, pedestrian) has dif-
ferent routing characteristics and thus needs its own routes.
Considering the previous example, the required space is re-
duced from about 286MB to about 72MB. The calculations
are performed once and the entire graph data structure with
its computed paths are stored in an external file.

The method of only using precalculated routes is suitable for

static problem settings. But if multiple cars are simulated,
the problem will become a dynamic one, as traveling times
are changed due to other cars. Thus, the approach of pre-
calculating routes leads to traffic jams in main streets of the
road map, because the shortest paths use the fastest roads
which are frequently selected by many road users. In order
to obtain more heterogeneity in route choice, a probability
based routing is introduced.

4.2 Probability-based Routing
In this approach, the routing of simulated road users is done
probabilistically. Road users traveling under usage of this
method, may have a defined starting position, but the desti-
nation of travel is not predetermined. Traffic of this kind is
valuable for background traffic, influencing simulated road
users with calculated routes from a defined source to a de-
fined destination.

The approach proposed in this section is a refinement of the
method stated in [9]. Let ΩNI be the set of EIs, connected
to NI. Each NI of the graph stores a turning probability
function pt (EIcurr, EInext), for a road user of type

t ∈ {car,bicycle, pedestrian} (1)

coming from EIcurr, giving the probability to choose EInext
as the next EI for travel. The function pt holds equation 2
and 3.

pt (EIcurr, EIcurr) = 0 (2)∑
EI∈ΩNI

pt (EIcurr, EI) = 1 ∀ t, EIcurr (3)

With a given EIcurr, a route through the graph can be ob-
tained via repeated random selection of the next EI from
EIcurr. The function pt is computed with help of the pre-
calculated routes from subsection 4.1.

Each NI ∈ NIC holds counters for all types t and each
combination EIcurr, EInext ∈ ΩNI , initialized with 0. The
routes ζ

(
NIstart, NIdest

)
between all non-equal pairs of

NIstart to NIdest are identified as lists of NIs and EIs.
Each route ζ is analyzed and at each NI ∈ ζ the correspond-
ing counter for the connection between the current and the
next EI is incremented. This is done for all types of road
users. Afterwards, all counters are normalized, resulting in
pt with the conditions shown in equation 2 and 3.

The determination of pt has a complexity of O
(
|NIC|3

)
,

because of O
(
|NIC|2

)
paths and a maximum path length

of O (|NIC|). During simulation, the computation of a path
with n NIs takes Θ (n).

Both described methods are not directly capable for respect-
ing dynamic routing features. Thus, the next subsection
discusses a method based on the well-known A* search al-
gorithm.

4.3 A*-based Route Determination
The A* search algorithm is suited to solve the single-pair
shortest path problem in graph data structures. Neverthe-
less, it takes more time to calculate a way using A* search
online than by the other methods described above.
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A* search works similar to the Dijkstra algorithm, but uses
a few heuristics to speedup computation, without loss of ac-
curacy. The assumed distance d (NIa, NIb) may be adjusted
arbitrarily during runtime of the simulation, enabling for dy-
namic3 modification of the routing methods. Different kinds
of simulated road users may favor different types of roads,
e.g., one may prefer motorways, the other country roads.
This feature brings more specific characteristic behavior to
road user plans on the cost of computation time.

4.4 Discussion
We have outlined three different approaches for planning
routes for simulated road users, that have already been im-
plemented in the MAINS2IM system. The first assumes
static travel times for each EI and leads to traffic overloads
on major roads. The second method is a more dynamic ap-
proach, but without exact steering capabilities, although the
pt may be adjusted using a point of attraction, as shown in
[9]. The third approach is appropriate for dynamic rout-
ing with exact start and destination points, but will be no-
ticeable slower in computation time in large scenarios with
thousands of nodes in the graph.

The next section discusses a modification method for the
edge weight function d (NIa, NIb) in order to overcome the
overloading problems of the precalculated routes.

5. ANT-INSPIRED ROUTING
The idea of ant-colony optimization is to mimic strategies
observed from real ants. Ants leave behind trails of phe-
romones, e.g., when looking for food. When an ant has
to decide, which way to choose, it chooses the way with the
higher pheromone concentration more likely than the others.
These pheromones have a given, typical linear vaporization
rate, i.e., the trace becomes weaker in time. This leads to
the emergent effect, that short routes are found in the en-
vironment. A survey is provided by Dorigo and Blum [12].
It is obvious that this algorithm can be directly applied for
routing decisions, e.g., in traffic simulation, as done here.

Our approach uses a simplified inverse ant colony optimiza-
tion. It is inverse in the sense that a strong pheromone trace
will influence following cars not to follow their predecessors
but instead to avoid this road, taking a different route to
their goals.

The basic idea of this ant-inspired routing is that each road
holds a “smell intensity” si. The pheromone trace is used
to indicate the previous usage of a road. The higher si, the
slower a car will be able to drive on the corresponding road,
since the usage of the road is higher, which will slow down
the traffic on this road. Each EI holds two values EIa

si and
EIb

si for the two possible directions of travel on EI (with
direction a: In the course of road, direction b: contrary).

Let length (EI) be the length of the corresponding road in
m and EIvMax the speed limit on the road. The distance
estimation function d (NIa, NIb) between two nodes NIa

and NIb over EI in direction dir is adjusted by a modifica-
tion of the estimated travel velocity on EI, as shown in the

3Dynamic refers to the dynamic change of the distance es-
timation function and not to dynamic replanning.

following equation 4.

d (NIa, NIb) =
length (EI)

v∗
(4)

v∗ =
(

1− EIdir
si

)
· EIvMax

The domain of EIsi is [0 · · · 1], leading to a maximal esti-
mated travel velocity v∗ of EIvMax when there is “no smell”
and a minimal v∗ = 0, when there is a high“smell intensity”.

In each simulation iteration, each EI has to adjust its values
of EIsi, as shown in equation 5.

EIdir
si =
min

(
max

(
EIdir

si − κ+ ϑ · dens
(
EIdir

)
, 0
)
, 1
) (5)

The value of EIdir
si is absorbed by the subtrahend κ and

increased by the traffic density in the direction dir on EI,
scaled by ϑ. The result is bounded to the interval [0 · · · 1].

A road with high traffic densities results in high concentra-
tions of EIsi and thus influences cars to avoid the travel
over EI when calculating a route with help of the A* search
algorithm. This should result in more uniformly distributed
traffic loads upon the road graph and thus shorter times of
travel, because of less intense traffic jams. We expect that
this approach is especially useful in areas with a number of
different routing alternatives, and with a high traffic density.
Therefore, we consider this approach in particular useful for
urban areas, in which routing becomes especially important.

We believe that this approach can be valuable if the “phero-
mone traces” can be stored in the environment, e.g., by the
underlying traffic management system. Cars that pass the
roads can then read and update the pheromone traces.

6. EVALUATION
The evaluation of the routing methods described above be-
gins with an optimization of the parameters κ and ϑ. Af-
terwards, the ant-inspired routing method is evaluated on a
synthetic graph and on real world cartographic material.

6.1 Parameter Optimization
The optimization of κ and ϑ is done with the method Simu-
lated Annealing (see, e.g., [22]). We use Simulated Anneal-
ing, because of its good suitability for complex problems and
its ability to avoid being stuck in local optima. The fitness
of a parameter configuration is determined in the urban sce-
nario shown in figure 3.

The performance of each parameter configuration is esti-
mated by the average fitness of five replications. The amount
of simulated cars is held constantly at 400. Whenever a car
reaches its destination, a new one will be generated. Source
and destination points are chosen randomly. After a set-
tlement phase of 900 simulation iterations, a measurement
phase of 3600 counts the amount of cars fitr, that have
finished their travel in replication r.

The fitness of a setting is fit = − 1
5

∑5
r=1 fitr (negation as

the optimization problem is formulated as a minimization
problem). This fitness function is an implicit estimation of
the driving velocities of simulated cars, because the higher
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Figure 3: Town of Erlensee (13,000 inhabitants), cu-
mulated length of roads: 142km, graph consists of
937 EIs and 714 NIs.

the amount of finished cars, the more efficient the routing
and the higher the average driving velocity.

The best parameter configuration with fit = −4660.2 in the
described experiment was:

κ = 0.28077122867684745 (6)

ϑ = 2.8138856401002688 (7)

6.2 Comparison of Routing Methods
The determined parameter configuration is used for a com-
parison of the ant-inspired approach with the method of
A* search without enhancements and an iterative plan op-
timization approach.

The method of iterative route planning performs the simu-
lation of identical cars several times and an amount of 10%
of cars/agents is allowed to adjust its routing in each run,
according to the travel times the agents have experienced in
the preceding simulation runs. The method leads to a dy-
namic user equilibrium [15, 26], also discussed in Section 2.
The training phase for this method is set to 50 replications,
in order to enable the simulated cars to gain simple knowl-
edge about the traffic conditions in the simulation area. The
following experiment uses the iterative route planning ap-
proach for comparison. The first experiment for comparison
is done in a synthetical scenario, followd by two experiments
on real world road maps.

6.2.1 Synthetical Graph
For a first test of the obtained values, a highly dynamical
experiment is used: A square lattice graph with 6× 6 NIs.
Each EI has a length of 250m and EIvMax = 13, 8m · s−1.

500m

Figure 4: Synthetic graph. Circles show the posi-
tions of traffic lights.

Each NI with four EIs holds a traffic light, as shown in
figure 4.

For evaluation, we generate 100 different settings with ran-
domly generated start and goal positions for road users. Due
to the stochastic nature of the used behavioral model, each
setting is repeated with ten replications.

A car which enters the simulation, starts with velocity 0 m ·
s−1. It waits for a sufficient gap in traffic and then literally
enters the road and begins acceleration. In the beginning,
every simulated car stands still.

The result of each run is the average travel time of all cars,
that have reached the destination after the settlement phase
of 900 iterations. The measurement phase has a duration
of 3,600 iterations and is extended until the last car has
reached its destination.

Due to the stochastic nature of the used simulation model,
the result of a setting is the average value of the results from
its replications. The amount of cars is held constantly for the
first replication and identical copies of the cars with the same
start and goal positions are used for further replications with
other seed values for the random number generator.

The average travel times per run tr are compared. For the
amounts of cars (200, 300, 400), the ant-inspired approach
leads to significant4 reductions in travel time in comparison
to the A* method and exhibits lower spreadings. The val-
ues for t increase with increasing amounts of cars. In the
experiment with 500 cars, the ant-inspired approach suffers
from high-value outliers for t, even though it still leads to
the lowest travel times for 49 out of 100 runs. This indi-
cates an problem at very high traffic densities, potentially

4The statistical software R [25] is used for determination of
significance with help of the t-test using error level α = 0.05.
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#cars #runs A* ant iterative

200 100
t = 281.09 t = 224.23 t = 282.97
σ = 3.77 σ = 2.63 σ = 3.95

300 100
t = 294.55 t = 226.38 t = 297.09
σ = 3.39 σ = 2.52 σ = 3.84

400 100
t = 305.91 t = 230.47 t = 307.21
σ = 2.75 σ = 2.11 σ = 2.67

500 100
t = 326.01 t = 327.58 t = 316.56
σ = 3.58 σ = 45.19 σ = 3.35

Table 1: Average travel times t and standard devia-
tion σ in the synthetical scenario.

#cars #runs A* ant iterative

200 100
t = 302.55 t = 279.60 t = 268.62
σ = 5.28 σ = 3.59 σ = 3.23

300 100
t = 459.77 t = 287.82 t = 273.16
σ = 61.79 σ = 4.10 σ = 3.11

400 100
t = 656.43 t = 291.70 t = 276.09
σ = 32.62 σ = 4.48 σ = 3.72

500 100
t = 807.42 t = 310.54 t = 283.63
σ = 24.48 σ = 6.00 σ = 4.92

Table 2: Average travel times t and standard devia-
tion σ in graph for road map of Erlensee.

an oversteering of ϑ, leading to a total blockade of certain
roads.

6.2.2 Small Real World Scenario
As a next step, we repeat the described experiments in real
world scenarios. 100 start-goal settings with ten replications
per run are performed in the map excerpt, shown in figure 3.
The different routing methods are compared with identical
start-goal settings for the cars. The results are shown in
figure 5.

The plots show that both, the ant-inspired routing and the
iterative route planning mechanism lead to significant lower
mean travel times for all simulated traffic densities. The
iterative approach results in shorter travel times than the
remaining approaches. Both, the iterative and the ant-
inspired approach reduce traffic jams at high traffic den-
sitites, because of agent experiences on the one hand and
bad weighting of jammed areas during route planning on
the other hand. Table 2 summarizes the results of this ex-
periment.

In order to determine the effects of the different routing
methods, the results of one run are used for calculation of a
road usage map. In each simulation time step, each car in-
crements the road usage value for the EI it currently drives
on. Figure 6 shows the comparison of the different routing
methods on the map extract of figure 3. The first row (parts
(a) to (c)) takes road usage values for all three approaches
for determination of the minimum and maximum values in
order to show an overall comparison. The second row (parts
(d) to (f)) scales the values for each separate approach in
order to deliver an insight on the distribution of traffic for

#cars #runs A* ant iterative

500 50
t = 540.12 t = 554.38 t = 560.13
σ = 4.55 σ = 4.25 σ = 3.62

750 50
t = 651.45 t = 658.24 t = 611.66
σ = 10.46 σ = 16.37 σ = 6.87

1000 50
t = 800.22 t = 809.08 t = 683.88
σ = 32.62 σ = 4.48 σ = 3.72

1500 50
t = 1109.39 t = 1101.61 t = 948.37
σ = 14.76 σ = 22.05 σ = 20.91

Table 3: Average travel times t and standard devia-
tion σ in graph for road map of Hanau.

the individual approaches.

Parts (a) to (c) of figure 6 show, that the maximum of road
usage is dominated by the A* method and the ant-inspired
and iterative approach produce less intensive traffic inten-
sities in these areas. Parts (e) and (f) show that the ant-
inspired and the iterative methods lead to a wider absolute
spreading of traffic in comparison to the pure A* based rout-
ing, shown in part (d). Again this goes in line with our ex-
pectations, that the inverse ant-based algorithm can avoid
the negative emergent behavior of road congestions, since
the traffic is more balanced on the different routes of the
road network. This effect gets facilitated if multiple alter-
native routes exist.

The comparison of the different methods took place in the
same graph, the optimization was done in section 6.1. The
next step is to take the methods to another road map in
order to test for overfitting of parameter optimization.

6.2.3 Medium-sized City
The medium sized city Hanau am Main (89,000 inhabitants)
with a total length of roads 548km is used for a second exper-
iment. The resulting graph has 4,201 NIs and 5,758 EIs.
The experimental setup remains identically to the preced-
ing experiment, except that on the one hand, the amount of
simulated cars is increased. On the other hand, the number
of start-goal settings per traffic density is reduced to 50 due
to the increased computational complexity of this scenario.
Table 3 shows the experimental results.

Table 3 exhibits differences to the results of Table 2. The
iterative routing mechanism leads to the lowest values of t
at high traffic densities. The ant-inspired routing approach
is not beneficial for this scenario. It performs comparable
to the basic A* mechanism. This could be an indicator for
parameter overfitting for the parameters κ and ϑ to the road
map, shown in figure 3.

6.3 Discussion
The evaluation has shown that the ant-inspired routing me-
thod can lead to lower average travel times of simulated
cars in a synthetic scenario (section 6.2.1), as well as in a
real world simulation graph (section 6.2.2). Section 6.2.3
did not show advantages of the ant-inspired method over
the A* based or the iterative routing approach. However,
the iterative approach has been integrated as reference only
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Figure 5: Evaluation on a graph for the road map of Erlensee. Horizontal lines show average values.

and not for direct comparison as it is based on individual
“knowledge” of agents.

The ant-inspired method leads to a wider distribution of
traffic in the simulation area. This is the basic outcome of
the iterative approach. The ant-inspired routing approach
has the advantage that a distribution of traffic is done with-
out calibration runs. The amount of about 50 calibration
runs, before performing the actual simulation runs is expen-
sive and can be avoided by the approach presented in this
paper. Nevertheless, it has to be mentioned, that the cal-
ibration with 50 runs is not always necessary. It would be
better to do the calibration until the agents plans do not
change any more, as discussed in literature.

In contrast to the approach, presented by Narzt et al. [24]
our approach is not explicitly considering re-planning during
travel. This is due to the focus of MAINS2IM, namely the
simulation of whole cities, taking account of multi modal
traffic. For such large-scale scenarios, the simulation agents
must not be very complex with respect to computational
effort.

Our approach utilizes the effect that traffic jams resolve
faster, when the amount of cars filling the waiting line be-
hind the beginning of the jam decreases [21]. This is achieved
by the ant-inspired routing mechanism as newly planned
routes avoid road segments with high traffic.

7. SUMMARY AND PERSPECTIVES
In this paper, we have discussed the need for future rout-
ing approaches, especially in urban environments where a
number of alternative routes exist and traffic is dense. In
these environments a dynamic routing algorithm could help

to reduce travel times. We have focused on routing ap-
proaches using the ant-optimization paradigm. While ant-
based optimization algorithms offer a number of interest-
ing features, like fast convergence to the shortest path, and
self-stabilization in case of disruptions, there are some nega-
tive emergent effects. In particular this kind of optimization
will produce congestions, as ants follow the most intense
pheromone trail, which leads to overload situations on the
road network.

To maintain the aforementioned positive effects of ant-based
routing algorithms we have modified the conventional ant-
based optimization approach, to have a balancing effect in
the road selection. This is done with help of a simple modi-
fication of the distance function of the A* search algorithm.
We have tested our modified routing algorithm in the agent-
based traffic simulation system MAINS2IM. Within this sim-
ulation system we could show the positive effects of our
modification in a grid network. Since MAINS2IM is able to
generate a simulation model out of publicly available map
information, we are able to transfer these results from a
theoretical setting into settings based on real world map ex-
cerpts. The method’s parameters have been optimized for
a small scenario and benefits for another scenario have not
been observed. This could indicate parameter overfitting
and needs to be investigated in the future.

By using an agent-based traffic simulation system, we are
able to model each road user, with a different set of at-
tributes, leading to different characteristics, which allows us
to investigate richer models. In our particular research we
have applied local reasoning capabilities that cars can have
in taking the routing decisions locally. This goes in line
with the trend that cars become smart active entities in the
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(a) A* (b) Ant (c) Iterative
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Figure 6: Comparison of road usage ratios (white: low usage; black: high usage). First row: Same leveling
for all methods, second row: individual leveling for each method.

overall traffic management infrastructure.

The smell intensity values of the simulated roads are de-
pendent on the time dependent traffic densities of the cor-
responding roads. The transferability from density to flow
needs to be investigated in the future, because it is easier
to measure traffic flow than traffic densities in real traffic
scenarios. One aspect for future work could be to identify
a set of good measurement points to assess the traffic situa-
tion. While the simulation allows us to have an easy access
to the overall traffic situation, this is not possible for real
traffic management systems. Those systems often have only
a limited view, defined by a set of measuring and monitor-
ing points. Based on this local view a global view has to be
estimated. Therefore, the identification of measuring points
becomes of special interest, to get a good estimation of the
global state by local observations.

The described approach has not lead to benefits in a medium
sized city. This may have two reasons: overfitting of the pa-
rameters for the small scenario or too long-ranging agent
plans. If overfitting was the actual reason, the approach
would not necessarily lead to advantages over the itera-
tive routing approach with respect to computational time as
situation-dependent calibration would also be needed. All
mentioned routing approaches base on the offline A* search
algorithm. Future research needs to investigate its use for
real-time path finding algorithms like RTA* [18] in order to
use the dynamics of the pheromone concentrations during
the trips of the simulated cars for a dynamic routing with

replanning. This should lead to better results in huge sce-
narios.

The ant-based routing can be studied in the simulation set-
ting to investigate its potentials. As we have outlined before
it bases on assumptions about ongoing technology trends,
and therefore could be used also for travel time optimization
in real world scenarios. The method needs to be investigated
for robustness against influences from pedestrians and bicy-
cles and local public transport, in the future. The effect on
gas consumption and CO2 emissions can be identified with
MAINS2IM and thus, will be a field of study for further
investigations of the ant-based approach.
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Ossowski, S., 2011. ISBN 978-3-642-24602-9.

[21] H. K. Lee and B. J. Kim. Dissolution of traffic jam via
additional local interactions. Physica A: Statistical
Mechanics and its Applications, 390(23-24):4555 –
4561, 2011.

[22] K. Y. Lee and M. A. El-Sharkawi, editors. Modern
Heuristic Optimization Techniques With Applications
To Power Systems. John Wiley & Sons, 2005. ISBN
978-0-471-45711-4.

[23] K. Nagel and M. Schreckenberg. A cellular automaton
model for freeway traffic. In Journal de Physique I,
volume 2, pages 2221–2229, December 1992.

[24] W. Narzt, U. Wilflingseder, G. Pomberger, D. Kolb,
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ABSTRACT
Convoy formation, maintenance and dissolution is a multi-
faceted problem, with different domains creating a range
of constraints, some of which can be helpful, but equally
that can complicate the situation. The scenario under con-
sideration here is, in the long-term, a mix of human- and
agent-controlled vehicles in a public, transportation setting.
However, the focus here is on agent-controlled vehicles and
the problem of “knowledge fusion”, or more precisely (i) how
much/how little, and (ii) what kind of inter-vehicle commu-
nication is sufficient to enable adequate individual and group
situational awareness to permit the effective operation of a
convoy. This can be viewed as a global problem, but it is also
a local problem, as each convoy participant must weigh up
the costs and benefits arising from (i) the loss of autonomy –
being subject to the governance of the convoy – and, (ii) the
loss of privacy – needing to communicate data and inten-
tions to some other convoy participants. We report on the
first steps, examining communication issues and strategies,
in realising this scenario by means of Belief-Desire-Intention
agent controllers that operate vehicles in a 3D virtual envi-
ronment.

Keywords
multiagent systems, intelligent transportation systems, con-
voy management

1. INTRODUCTION
Constructing an Artificial Intelligence that can enable vehi-
cles to navigate under autonomous control has been an area
of research for a number of years, with output from initia-
tives such as the US Defense Advanced Research Projects
Agency (DARPA) “Grand Challenge” (e.g. 2005 winning
entry [20]) showing the promise of real vehicles fitted with
arrays of sensors being able to navigate through difficult ter-
rain.

Given the number of research efforts (e.g. [12, 16]) that are
demonstrating autonomous vehicles operating on roads, a
potential progression of such work is automating vehicle con-
voys. Indeed, the ‘SAfe Road TRains for the Environment’
(SARTRE) project [2] is investigating the use of autonomous
vehicle control to enable“vehicle platoons”and has produced
outputs identifying convoy functionality required and what
may be communicated within such a platoon. However, such
work is in early stages, and there does not seem to be consid-
eration of potential benefits in communicating higher levels
of SA awareness (as aiding understanding of the situation).

At the same time, Vehicle-to-Vehicle (V2V) communication
is an active research area (e.g. [18]). However, the focus
in V2V research tends to be on the hardware and network
protocol layers, whereas our concern is what data should
be communicated in order to allow vehicles to cooperate
as part of a larger collective and to achieve common goals
with measurable benefits e.g. improved fuel consumption,
reduced journey time, etc.. We believe an open architec-
ture is required that can enable the vehicles to pursue goals
and manage their action selection through varying commu-
nication strategies. In order to produce an assessment of
benefits in various approaches to V2V communication, such
an architecture has been constructed.

An essential idea that has inspired our approach is that of
situational awareness (SA) [10] and how its principles may
be transferred to the domain of autonomous vehicles. The
desire is to be able to capture sufficient information, at var-
ious levels of detail, about the environment, coupled with
additional data pertaining to the vehicle itself, in order to be
able to complement sensor-derived perceptions with higher
level comprehensions about situation of the vehicle and its
context.

The Belief-Desire-Intention [5] model has been adopted as
an effective means to meet these requirements. BDI pro-
vides an agent based software architecture with a store of
beliefs and available plans to achieve goals. These provide a
loose mapping to core SA concepts (perception, comprehen-
sion, and projection), and facilitate the communication of a
vehicle’s current beliefs and future intentions to other vehi-
cles. The aim is that this should augment the autonomous
decision making process of other vehicles, as they will be
informed of potential future events (e.g. an emergency stop
occurring, and the reason for that stop) much more rapidly,
rather than relying on physical sensors and beliefs inferred
from that sensor feed.

The successful application of a BDI approach to convoy co-
ordination has been demonstrated in earlier research [19]
where focus was on varying convoy coordination methodolo-
gies (e.g. centralized, de-centralized, multi-agent team) and
the impact on convoy split/merge activities.

We outline a range of scenarios that have been constructed
to explore the impact of various V2V communication strate-
gies, in place of or as a complement, to pure sensor ap-
proaches. The motivation here is that there are some issues
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which may be best perceived at a low physical sensor level,
such as that the car in front is closer than some threshold.
However, some, (such as the vehicle in front speeding up in
order to bring the convoy speed closer to the optimum for
fuel efficiency, or the vehicle behind is leaving the convoy
because it is turning off at the next junction), are clearly
at the level of information, not data. The same communi-
cation strategy is not necessarily appropriate for all three
of these. In the first instance, we report on the use of two
approaches: data push and data pull. Push is the basic and
most obvious, where vehicles publish their position data to
other vehicles (without it being requested), which may even
avoid the need to depend on physical sensors in some cir-
cumstances. This permits convoy members to remain in-
formed of the position of other vehicles in the convoy, and
manage their own movement based on this. Pull demands a
request-response protocol, but may reduce the overall level
of communication, whereby a vehicle requests information
if, say, they have not received updates in a required time
window, and vehicles might share their current plans and
future intentions.

The remainder of the paper is set out as follows: in the next
section we survey some of the large amount of related work.
In section 3 we outline the simulation testbed, comprising
of the Tankcoders 3D environment and the agent driving
team. We have identified several scenarios that we set out
in section 4, before presenting some preliminary results in
section 5. We finish with some issues for future work (sec-
tion 6) and conclusions (section 7).

2. RESEARCH BACKGROUND
This work attempts to combine a number of research ar-
eas in order to tackle the problem of autonomous vehicle
convoys. We focus first on situational awareness (SA) in or-
der to inform the design approach to the simulation so that
a vehicle’s perceptions, comprehension, and projections are
accessible and observable. A number of metrics have been
proposed in an attempt to measure SA, and although it is a
challenging unit to quantify, the effects of incorrect or lack of
SA are dominant features in many accident investigations.
Hourizi [14] relates Endsley’s components of SA [11] failures
in understanding the current state of an aircraft, given as:

1. Failure to perceive important elements in the environ-
ment;

2. Failure to comprehend the elements that have been
perceived;

3. Failure to predict the future status of those compo-
nents.

Because SA can be likened to human understanding of the
environment, and it is this which informs human decision
making, then it follows that an incorrect or lack of SA can
be the cause of incorrect actions and decisions being taken.
There is little (human) self awareness as to whether (one’s)
SA is accurate, complete, inaccurate, or incomplete – we
have very limited awareness of what we do not know. Fur-
thermore, belief in SA is measured by the self as well, and
so liable to be fallible to the (self) human in the decision
making loop. If, in contrast, we place the derivation of SA
within an AI context, especially within a multiagent col-
lective, where members can contribute to others’ SA, this

raises the possibility that some of the weakness identified
above may be addressed. Revisiting the previous excerpt of
Hourizi’s work with this in mind:

1. Failure to perceive important elements in the environ-
ment;

Perceptions (e.g. obstacle detected) are passed
between members of the agent collective in
order to negate this issue

2. Failure to comprehend the elements that have been
perceived;

Other vehicles contribute their understand-
ing of events; complex non-understood per-
ceptions are referred to some other entity for
resolution

3. Failure to predict the future status of those compo-
nents.

Entities within the simulation exchange their
intentions and goals, adding information as
to how events are likely to unfold.

The intention of combining the SA constructs with a BDI
model is to address these issues and thus improve the abil-
ity of an automated system to control a vehicle, and fur-
thermore with potential advantages over solely human con-
trol. Specifically, for the convoy scenarios being explored,
members of the convoy are dependent on data exchange be-
tween their members. The aspiration is that allowing ve-
hicles to exchange a range of, but especially higher level,
data/information pertaining to their understanding of the
current situation will aid members of the convoy in their ac-
tion selection, improving the efficiency of the convoy as well
as its ability to deal with unexpected events in the simula-
tion.

That said, the issue of how much information should be
passed between distributed agents also needs consideration.
In [6], the approach proposed is to communicate only infor-
mation that is needed and beneficial to other agents but it
is not clear that the sender is capable of establishing these
criteria. The motivation for addressing the quantity of com-
munication is due to the cost of such communications and
potential bandwidth limitations in the given scenario.

However, there is also concern regarding security and pri-
vacy: how much information should be revealed, as even
some may be too much.There is a further advantage of an au-
tomated system handling such information exchange: that
humans would find such communication tedious, even in-
vasive, as well as distracting. Furthermore, humans most
likely could not make good use of the information because
the driving task is fairly routine. Recent [17] reports high-
light that vehicle communication could lead to significant
benefits in reducing motorway pile-ups.

The concept of self driving cars has been gathering increased
momentum, with efforts by Google [16] to produce a self
driving car, along with significant interest in developing such
a concept from vehicle manufacturers. Earlier efforts took
place during the series of DARPA funded challenges, and fo-
cusing on the 2007 entry of Tartan Racing, the “Perception
and World Modelling” component [21], is of relevance here.
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It performs “Situation Assessment” on received sensor data
of tracked objects, integrates this with other knowledge of
the world, and attempts to estimate the intention of this
object. In relation to this SA-like concept, it is reported
that the system struggles to perform well when approaching
intersections and projecting future events (e.g. will a vehicle
leave or join at that intersection). This provides an example
of how communication of BDI constructs between vehicles
could prove useful; rather than having to rely on some visual
cue (e.g. an indicator light), vehicles would have been in-
formed as to what was likely to happen at that intersection
based on other vehicles belief and intention set. Allowing
vehicles to communicate their planned events would poten-
tially have the benefit that excessive braking and accelera-
tion would be reduced, as vehicles are able to take account
of expected future events rather than relying on last minute
reactions.

Other work [19] has demonstrated the application of BDI
to vehicle convoys in Collaborative Driving Systems (CDS),
though the intention here is to explore what information ex-
change best supports SA (both individual and group) gen-
eration amongst the vehicles in order to improve road travel
(safety, energy consumption, etc).

With this motivation and design selection in place, we turn
to the construction of a suitable test bed which can support
the assessment of different communication strategies, and
their impact on convoy performance.

3. SIMULATION TESTBED
In order to assess the affect of various vehicle communica-
tion implementations, a testbed has been developed where a
number of scenarios can be explored. To reduce the number
of technological challenges faced from the outset, a simula-
tion based approach has been selected as it offers the ability
to assess performance of the system in a more controlled
fashion. As the BDI component is software based, it can
be tested using a simulated vehicle, allowing a base set of
functionality to be established using some test scenarios.

There are a number of BDI implementations available, from
which we have chosen to use Jason [3], because of its ease
of extension using Java, an active support community, and
the existing integration with the TankCoders virtual envi-
ronment we are using for visualization of driving.

The TankCoders project [13] aimed to support research into
Jason agent teams working cooperatively in a virtual envi-
ronment, which it achieves by integrating Jason with a tank
simulation based on the jMonkeyEngine 3D engine.

This has been revised as work has progressed, however the
intention is to maintain it as being non-vehicle and non-
domain specific with the aim of retaining applicability be-
yond the current vehicle scenario (e.g. unmanned aerial ve-
hicles). This abstraction not only enables alternative vehicle
types to be deployed within the TankCoders simulation, but
decouples the high level call made from a Jason agent (e.g.
moveToXZ) and the lower level implementation determined
by the target platform (e.g. turnWheel, applyTorque, etc).
This supports another objective of this work, which is to
demonstrate the relevance of this research to real physical

platforms as well simulated entities.

There is also the matter of building up an enhanced set
of behaviours which could be considered as fundamental to
the safe operation of the vehicle, an example of which is the
emergency stop condition. The process of that behaviour
itself resides in the agent and is not especially complicated
(e.g. apply brakes, come to a complete stop, do no fur-
ther actions), however by having that available, we can then
consider situations in which it might be invoked. A ‘bottom-
line’ approach to safety for any vehicle proceeding in a given
direction is that, if there is some obstacle in that direction,
which would be struck in the near future, then do not pro-
ceed any further in that direction. In other words, a collision
avoidance behaviour. Such a behaviour also relates back to
the earlier situational awareness notion, as it is a higher
level inferred projection based on: (i) perceptions: obsta-
cle detected and vehicle’s current speed, (ii) comprehension:
obstacle is of a significant size and will damage vehicle and
(iii) projection: given current speed a collision will occur in
n seconds.

With this in mind, we have developed a (naive) initial so-
lution to the problem whereby each vehicle is placed within
a collision volume that is constructed according to the vehi-
cle’s current orientation, speed, and a given time interval n.
This represents the physical space that the vehicle will pass
through for the next n seconds. If any object is detected
within this volume, then the vehicle performs an emergency
stop. Jason is able to construct this volume in the simulated
environment and dynamically update as the vehicle moves,
which demonstrates both a benefit of working in simulation
(that the scenario can be augmented with data derived by
the Jason agent, even going so far as to explain some of its
SA), and the strengths of that agent in being able to derive
additional data and use it to inform action selection.

Behaviours such as this can be thought of as providing prim-
itive building blocks to allow much complex composite be-
haviours to be constructed. In the convoy scenario, vehicles
may well follow closely behind each other, and this collision
detection could get triggered if they follow too closely for
some reason. In that case, the more primitive (and impor-
tant) behaviour of avoiding a collision should take prece-
dence, but the set of conditions which led to it occurring
also need to be investigated in case there is a fault in how
the convoy is behaving.

3.1 Agent capability
The simulation framework (elements of which are described
above) provides one side of the story. The agents that are
responsible for controlling the vehicles are the other. Thus,
it was also necessary to develop agents that are capable of
exhibiting convoy behaviour. Firstly, we have discarded the
notion of a single controlling agent and replaced with a driv-
ing team, which allows us to break away from centralized
control and to enable vehicles to be dynamically extended
with additional capabilities as required, for example, only
needing to instantiate one agent to handle convoy behaviour
when the vehicle joins a convoy. The first agent used to sup-
plement the coordinator agent is a driver agent, which has
the primary responsibility for the vehicle’s navigation. This
separates off some responsibility, because the driver agent
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determines a speed and asks the central agent to achieve
this, and introduces flexibility, because some other agent
may request the coordinator agent to reduce speed, for ex-
ample, and introduces robustness, for example the ability
to encapsulate alternative solutions via the BDI plan failure
mechanisms. More discussion of the driving team approach
appears in the next section.

Agents are able to interact with each other via Jason’s com-
munication mechanism. The infrastructure supports two
communication languages (KQML and FIPA-ACL), and at
present we use KQML following from the TankCoders project.
The specific implementation is not the subject of interest,
but rather the capability which it provides. Whilst sup-
porting intra-vehicle agent communication (for example the
driver agent asks the coordinator agent to achieve some
speed), it also provide an inter-vehicle communication ca-
pability, allowing not just information related to beliefs, but
also plans and goals to be sent between vehicles. Vehicles
can use such information to better improve the projection el-
ement of their SA, and perhaps also modify their own plans
based on the plans of other vehicles. At present, only a small
set of performatives are in use – primarily askOne, achieve
and tell. This enables vehicles to add data to other vehi-
cles knowledge bases (e.g. inform vehicles of obstacles which
they may not have detected via physical sensors), enquire as
to another vehicle’s beliefs (e.g. what is your position), and
ask another vehicle to achieve some goal (e.g. move to a
given position). These are considered as fundamental to al-
low vehicle groups (in this case a specific convoy) to achieve
a collective goal and handle self organisation. It is the effects
of varying this communication behaviour which is the sub-
ject of investigation in the convoy scenarios and which is now
presented, with the specifics of the convoy agent approach
presented in the results section.

Key extensions to the agents’ available plans are detailed
below (details regarding beliefs have been largely omitted
for the sake of brevity).

Coordinator agent:

• +!chosenSpeed(V) – set the vehicle speed via its API;
update driver agent belief with new value.
• +!requestTurnToAngle(A) – call vehicle API to achieve

an orientation.
• +!updateColPred(X1,Y1,Z1,X2,Y2,Z2) – update co-

ordinates of collision prediction volume.

Driver agent:

• +!emergencyStop, +!arrivedAtDestination – ask co-
ordinator to achieve zero speed and to unachieve re-

questTurnToAngle(_), abolish own desired XZ and
drop desire moveToKnownPosition.
• +!cruise – ask coordinator agent to achieve +!cho-

senSpeed(V).
• +!applyBrakes, +!standardSpeed, +!speedUp, +!slow-
Down, – adjust vehicle speed away from default value.
• +!moveToKnownPosition – using desiredXZ(X,Z), if

arrived then +!arrivedAtDestination, otherwise de-
termine direction A to X,Z; ask coordinator agent to
achieve requestTurnToAngle(A), then cruise.

Convoy member agent:

• +vehAheadInfo(X,Y,Z,_,_,_,_) (Data push scenario)
Using X,Y,Z of vehicle ahead, determine distance to
that vehicle and ask driver agent to achieve stan-

dardSpeed, speedUp or slowDown to maintain convoy
gap. Tell driver agent to update its belief to de-

siredXZ(X,Z) and then to achieve moveToKnownPosi-

tion.
• +!convoyMgmtPlan (Data pull scenario) At three sec-

ond intervals, ask the vehicle ahead convoyMember-

Info(X,Y,Z,_,_,_,_). Tell driver agent to update its
belief to desiredXZ(X,Z) and then to achieve moveTo-

KnownPosition.

4. VEHICLE CONVOY SCENARIOS
The vehicle convoy domain has been selected for a num-
ber of reasons. This topic has been attracting attention
recently, with the potential benefits of vehicle platoons be-
ing reported [2]: up to twenty percent reduction in fuel
consumption, ten percent reduction in fatalities, and im-
proved driver convenience (for passenger-drivers in the vehi-
cles where control has been ceded to the platoon). Benefits
have also been claimed recently [9] with improved traffic
efficiency as a key goal. In relation to environmental consid-
erations, [15] shows that the total trip time for journeys can
be significantly improved through vehicle to vehicle commu-
nication. This study also shows that if navigation systems
share traffic information, then journey times can be short-
ened, highlighting the potential benefit that sharing simple
beliefs of BDI constructs may bring.

However, the application of this research does not reside
purely in vehicle convoys; rather this has been selected as
a key area where vehicle behaviours (such as information
sharing and common goals) lend themselves to explore the
benefits of SA-like knowledge exchange in a challenging but
relevant context. As such, there are a number of limitations
to the scenarios in use. Firstly, there is no road model; vehi-
cles are bounded only by physics such as collisions with other
objects and terrain. Secondly, there is no traffic model; at
this stage we are only considering how vehicles communi-
cate at an intra-convoy level. This will be extended once
the scenarios become more broad as we wish to build up a
larger SA picture into the convoy performance (e.g. exter-
nal convoy members informing of obstacles ahead, and the
convoy deciding on a course of action based on this). This
will add further understanding to the question being posed,
as if we are addressing how much intra-vehicle communica-
tion is required, it certainly follows that non-convoy member
communication (e.g. position updates from other vehicles)
requires consideration.

We have chosen to modularize the structure of the driving
system by developing substantial new behaviours as separate
agents, rather than as additional behaviours of an existing
agent. This is already clear in the initial structure where
there is a coordinator agent and a driver agent. The moti-
vation is that new behaviours can be added (or removed) by
the introduction (or removal) of an agent, rather than the
modification of an existing agent: it only requires that the
central coordinating agent is informed of new functionality
(or its loss), while the collection of agents function as in-

72



dividual self-interested entities under the governance of the
common objective of getting the vehicle to its destination
(for example).

Two further motivations for this behavioural decoupling are:
(i) to keep individual agent behaviour specifications “small
enough” to be maintainable and to minimise the potential
impact of hard-to-identify bugs arising from the aggregation
of behaviour within a single BDI reasoning engine, and (ii) to
keep constituent agent reasoning cycles short enough that
response times might potentially be adequately controlled
for close enough to real-time behaviour. It remains to be
seen how well each of these is borne out in practice.

One such additional behaviour is the agent responsible for
vehicle behaviour in the convoy collective. At its most basic,
on instantiation this agent is informed of the vehicles in front
and behind in the convoy of which it is a member, and on
receipt of the vehicle in front position data, it seeks to move
to that position. Both the driver agent and convoy member
agent are currently generic, so the same agent capability is
embedded across all the vehicles in a convoy.

As mentioned previously, KQML is used as the communica-
tion language in this testbed. KQML is used at both intra-
and inter-vehicle communication. For example to allow a
driver agent to request a speed from the coordinator agent,
or to allow a coordinator agent to update a driver agent on
current position within simulation. At inter-vehicle level, it
allows the convoy agent of vehicle 1 to ask the convoy agent
of vehicle 2 for the current location of vehicle 2.

It is this communication mechanism, coupled with the in-
trinsic BDI data constructs, which is the topic of interest
regarding the impact it has on the success and efficiency of
convoy behaviour(s) in the scenario(s). The main commu-
nication strategies can be broken down in line with the BDI
paradigm, that is, inter-vehicle sharing of beliefs, desires and
intentions.

Our first step has been an investigation of the benefits of
sharing beliefs and two convoy scenarios are presented in sec-
tion 5 based on this. The two approaches differ in how the
data is transmitted; the first requires all vehicles to inform
other vehicles of their position at every tick of the simula-
tion, while the second implements a request approach where
each vehicle determines when to ask some other vehicle for
its current position details.

At present, we are focussing on belief sharing and this has
produced some initial statistics and observations on (con-
voy) behaviour, depending on whether the data is pushed
(i.e. sent out at some tick interval to n agents), or pulled
(agents request information from other agents at their cho-
sen interval). The first implementation of a convoy has
been based on each convoy member knowing the identity
of the convoy member behind it, and at each simulation tick
using a KQML performative send(vehicleBehind, tell,

vehicleInfrontPosition(X,Z)) to advise its position to
the vehicle following. Upon receipt of a vehicleInfrontPo-

sition(X,Z) belief, a convoy member establishes the goal
of moveToXZ(X,Z) thus following the path of the vehicle in
front.

5. RESULTS
The experiments presented at this point are based around
five scenarios. The first three scenarios are baseline assess-
ments of the operation of the framework, and use no con-
voy member agents. The fourth scenario implements the
data push communication strategy, in which, data is pushed
at a regular interval between convoy members, where each
member passes its position to the vehicle behind. The fifth
scenario implements the data pull strategy, in which data
is pulled by request from a specified agent to the requestor.
Precise details are given in the following section.

5.1 Convoy scenarios
The detail of each scenario, and the intention of what it
should assess, is as follows:

Scenario 1: Four vehicles, with a driver agent but no des-
tination to achieve, no convoy member agent.
Assess: Baseline of physics simulation and ren-
dering of four vehicles.

Scenario 2: Four vehicles, with a driver agent and given a
destination, no convoy member agent. Assess:
Impact of using the driver agent on the initial
baseline.

Scenario 3: Two vehicles, with a driver agent and given des-
tination, no convoy member agent. Assess: Im-
pact workload of half as many vehicles and driver
agents.

Scenario 4: Four vehicles, with a driver agent, where lead
vehicle’s driver agent is given a destination, and
each vehicle has a convoy member agent based
on convoy strategy 1. Assess: Initial convoy
strategy dependent on high communication traf-
fic between convoy agents.

Scenario 5: Four vehicles, with a driver agent, where lead
vehicle’s driver agent is given a destination, and
each vehicle has a convoy member agent based
on convoy strategy 2. Assess: Impact of reduced
communication between convoy agents.

In the following push and pull strategies, there is an assump-
tion that a ’convoy join’ behaviour has already taken place,
resulting in three vehicles following the lead vehicle. Part of
this behaviour would involve determining whether the con-
voy is heading (at least partly) in the direction required. On
joining the convoy, there is an abdication of route planning
responsibility as part of the ceding of individual autonomy
to the collective convoy, and instead navigation involves fol-
lowing the trail of the vehicle in front.

5.1.1 Data push strategy
Convoy strategy one implements the following approach:

• Only the lead vehicle knows the final destination.
• The lead vehicle’s coordinator agent starts the move-

ment by sending a message to its driver agent regarding
the desired location:
send(driverAgent, tell, desiredXZ (500,2500))

followed by a message to achieve a movement to that
destination:
send(driverAgent, achieve, moveToKnownPosition).
• Each vehicle in the convoy starts a convoy member

agent.
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• Each convoy member agent is told the vehicle’s driver
agent name (in order to be able to send messages re-
garding updated positions to move to) and the name
of the convoy member agent of the vehicle behind (in
order to push data to the correct vehicle).
• On every simulation update cycle, the coordinator agent

tells its convoy member agent and driver agent the ve-
hicle’s new position.
• When a driver agent receives a position update, it uses

this to calculate the distance remaining to the de-

siredXZ and perform any necessary actions (e.g. course
corrections, or stop if at that location).
• When a convoy member agent receives a position up-

date from its coordinator agent, it performs the data
push of telling the following convoy member agent this
new position.
• When a convoy member agent receives a position up-

dates from the vehicle ahead, it tells its driver agent
as a new desiredXZ followed by the request to achieve
moveToKnownPosition.

5.1.2 Data pull strategy
Convoy strategy two implements the following approach:

1. Only the lead vehicle knows the final destination.
2. The lead vehicle’s coordinator agent starts the move-

ment by sending a message to its driver agent regarding
the desired location:
send(driverAgent, tell, desiredXZ (500,2500))

followed by a message to achieve a movement to that
destination:
send(driverAgent, achieve, moveToKnownPosition).

3. Each vehicle in the convoy starts a convoy member
agent.

4. Each convoy member agent is told the vehicle’s driver
agent name (in order to be able to send messages re-
garding updated positions to move to) and the name
of the convoy member agent for the vehicle ahead (in
order to pull data from the correct vehicle).

5. Each convoy member agent starts a convoy manage-
ment plan, in order to handle the data pull aspect.
At present, every 3 seconds this plan uses the KQML
performative askOne to ask the vehicle ahead’s current
position.

6. When a convoy member receives a reply containing the
position of the vehicle ahead, it sends this to its driver
agent as a new desiredXZ followed by the request to
achieve moveToKnownPosition.

5.2 Scenario results
The focus of the discussion here is on scenarios four and five,
as these demonstrate the affect of varying the convoy com-
munication strategy. Scenarios one, two and three demon-
strate consistent behaviour and sufficient performance of the
simulation to have confidence in the output from scenarios
four and five.

Figure 1 plots the position reports of each convoy member,
as the convoy forms and moves from starting positions (ap-
proximately 0,2000) to the fixed destination given to the lead
vehicle (500,2500). Figure 1 shows the convoy positions dur-
ing the fourth scenario, i.e. convoy strategy one (data push).
By comparison, in Figure 2 the position of each vehicle is

shown for the fifth scenario, i.e convoy strategy two (data
pull). In this simple situation where the destination of the
lead vehicle is not changing, it is evident that there is little
difference between the two approaches in terms of the route
taken by the convoy and its member vehicles. However, it
can be observed that, during the transition from start con-
ditions to the steady state behaviour when moving towards
the (non-changing) destination, vehicle 4 (starting at the
farthest left in the figures) does differ between the two sce-
narios. This shows the impact of increasing the gap between
position updates: between updates from the vehicle in front
vehicle 4 has diverged slightly from the convoy direction. In
this particular scenario (i.e. with a fixed destination for the
lead convoy vehicle) there is no real impact as, with the next
position update, the vehicle realigns to the convoy. However,
in a case where the lead convoy vehicle changes route more
frequently (i.e. navigation through a congested city with
many intermediate destinations or waypoints) this could re-
sult in greater divergence from the convoy grouping. This
also suggests where benefits may arise from obtaining higher
level information from the convoy member in front (e.g. de-
sired final location) rather than low level details (current
position), and this will be the subject of investigated in fu-
ture scenarios.

During the scenarios involving these two convoy strategies
data was collected to capture the effect of the different ap-
proaches on the communication volume, specifically the num-
ber of percepts and the number of messages. In Figure 3
the marked contrast can be seen between strategy one (data
push) and strategy two (data pull). The approach of a data
push has resulted in approximately five times as many per-
cepts being registered by vehicles two, three and four com-
pared to the same vehicles using a data pull approach. This
result is expected, as the same data (of vehicle position) is
being communicated in both scenarios, however in the data
pull strategy the communication frequency is lower (as the
responsibility for when to ask for this data resides with the
receiving vehicle and it does so every few seconds compared
to at every opportunity) and as such fewer percept updates
are received. In Figure 4 the number of messages transmit-
ted for the four vehicles is shown, and a similar profile to
that of Figure 3 can be seen. Compared to Figure 3 how-
ever, data points do not begin until approximately 20 sec-
onds have elapsed. This is due to how the simulation starts;
as soon as the environment is instantiated (and the vehicle
agents created) they begin receiving percepts. However, un-
til the vehicles begin moving and using the convoy strategy
there will be no exchange of messages, and this only occurs
after the simulation has been fully initialised (approximately
20 seconds into the data capture).

In both figures it can be seen that vehicle 1 follows the same
profile across both scenarios. This provides an expected cor-
relation, as in both convoy strategies the lead vehicle is per-
forming a role where its communication is significantly dif-
ferent to the rest of the convoy. The lead vehicle receives no
external position updates as it is not following any other ve-
hicle, instead only sending data to the vehicle behind. This
would seem to confirm that there are no other sources of
percept generation (e.g. mass broadcast of position data to
all convoy members rather than to the specified target vehi-
cle), which confirms the observed results are indeed due to
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Figure 1: Vehicle positions with convoy strategy one

Figure 2: Vehicle positions with convoy strategy two

Figure 3: Vehicle percept updates

Figure 4: Vehicle message counts

the variation in convoy strategy rather than other factors.

Although no specific performance metrics have been de-
veloped yet, there was a notable impact on the simula-
tion during scenario five, as the frames per second rate
dropped from approximately 19fps to 12fps. The system per-
formance (measured by frame rate) during these two scenar-
ios is shown in Figure 5, where this difference in performance
can be seen. With the performance of the simulation drop-
ping to such levels, we conclude that the resources consumed
by communication are impacting the ability of the system
to carry out computation. Video capture of the two convoy
strategies is available in mp4 format, for scenario 4 (data
push) at http://people.bath.ac.uk/vb216/dataPush.mp4

and for scenario 5 (data pull) at http://people.bath.ac.

uk/vb216/dataPull.mp4.

In both videos it can be seen that the frame rate differs
from that shown in Figure 5, due to the increased load on
the system of capturing the video stream. However, it can
be seen that there is still a performance difference between
the two scenarios, with data-pull outperforming data-push.

If the simulation performance drops much further, it has
been observed that unexpected and unpredictable agent be-
haviour occurs and convoy behaviour breaks down. This
issue is one of the motivations for the decoupling of software
components discussed in the next section.

6. FUTURE WORK
At present Jason is quite tightly integrated with the Tank-
Coders platform, which is good in some respects for per-
formance, although we have already experienced stochastic
behaviour arising from tracing that has further obscured the
issues we were attempting to observe. In the next phase of
our work, despite some concern over the performance impact
of the introduction of middleware, we wish to decouple the
various components for four reasons:

1. We seek to avoid a repeat of the problem cited above,
that monitoring perturbs the system further.

2. Experience elsewhere has taught us that large numbers
of agents on a single Jason instance can be problem-
atic, so we would like to be able to connect multiple
Jason instances to a single TankCoders environment.
In addition, this would permit driver teams to be lo-
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Figure 5: System performance variation

cated anywhere on the Internet, not just on the same
machine as the virtual environment.

3. A critical feature of the next phase is the introduction
of normative framework [8] to capture the rules of the
convoy in the form of an externally reference-able en-
tity that governs the behaviour of individual teams,
as well as subsequently exploring interaction between
convoy instances [7] to handle operations such as merg-
ing, splitting and passing through one another. Pre-
vious experience [1] of its integration, encourages us
to decouple the normative framework from the agent
platform.

4. Finally, useful though working with the TankCoders
environment is, the harshest environment is the phys-
ical world and so we wish to substitute physics mod-
els of vehicles with simple robot vehicles, in this case
LEGO Mindstorms platforms carrying android mobile
phones as communication devices.

In pursuit of these goals, we are currently developing the
means for the various components identified above to com-
municate using the Extensible Messaging and Presence Pro-
tocol (XMPP). XMPP is in widespread use underpinning
internet messaging systems, but it is equally applicable for
inter-program communication and for the collection of sen-
sor data (our initial application). Thus, by taking an event-
oriented view of the world and treating each of the above
components as event consumers and producers in conversa-
tions enabled by XMPP, it is relatively straightforward to
achieve the desired decoupling.

Further work is also necessary on the simulation system it-
self. Some refinement is required on the generation of system
level metrics, such as those presented in Figures 3 and 4, in
order to improve the efficiency of data collection and ensure
there is minimal impact on system performance. An exten-
sion is also planned to provide a breakdown of the message
and percept types being communicated, in order to under-
stand further what is being exchanged between agents. As
the scenarios grow more complex, this is expected to be es-
sential in order to follow the interactions occurring between
the vehicles and their agents.

The scenarios also need to be extended to add both realism
and challenge to the vehicle agents. A more complex convoy
route is required to more clearly demonstrate merits between
differing convoy strategies, and also to identify strengths
and weaknesses of varying communicated data (e.g. beliefs
vs intentions). As the complexity increases, so too will the
likelihood of calling upon the ability of Jason to handle plan
failures, as unexpected situations and interactions occur.

With this in place, more advanced metrics measuring the im-
pact of varying convoy strategies are needed. Two already
under development are fuel management and convoy route
deviation measures. The first involves the integration of a
simplified engine model into the simulation, such that inef-
ficiencies (e.g. high engine revs, excessive acceleration and
braking) in the drive of the vehicle will be reflected in the
fuel consumption. Such work will also introduce the ability
to explore competing objectives between agents (e.g. fuel
management requiring a slow speed to conserve fuel, convoy
agent requiring a high speed to maintain convoy position).
The second, convoy route deviation measure, is to extend
the results being produced which produced Figure 1 and
Figure 2. This will produce a metric indicating how well the
convoy is performing in geographic cohesiveness and high-
light deviations from its route.

A major future development is to utilise a normative frame-
work within the system and to capture a reasonable set of
both legal governance and societal convention into this ar-
chitecture. The design and implementation of the normative
solution will require significant effort. Work has been pre-
sented in [1] demonstrating a methodology for the utilisa-
tion of institutional models of governance in open systems.
This raises a number of questions which will need consid-
eration, such as whether an individual agent should refer
its action selection to a normative control, or does a nor-
mative agent model actions at an individual vehicle level,
how will the convoy be regulated, and are certain actions
allowable but involve a punishment mechanism? The work
of [1] also demonstrates the feasibility of integrating BDI
(and specifically Jason) with institutional models. The work
of Bradshaw [4] also touches on the notion of potential ac-
tions vs permitted actions, raises the question of how some
adjustable autonomy will be managed (e.g. action selection
when in convoy vs action selection when driving as indi-
vidual). Some larger scenarios are likely to be required to
investigate these questions, and the effort of both this and
the normative framework itself positions this work in a more
ready state for transition into a real-world domain.

As discussed earlier, another aspect of development is the de-
coupling of this study from the TankCoders-jMonkeyEngine
simulation in order to connect it with a real sensor-actuator
capability. This process is underway, with integration to an
XMPP based sensor framework in early stages. This will
allow the simulation of a vehicle instance from TankCoders
to be replaced with a real vehicle, passing geographical data
back to Jason and responding to Jason agent requests. Work
is progressing to formalise the specifics of message exchange
format, and this will then form the basis of a ratification of
the V2V communication strategy by introducing real world
limitations, e.g. latency, bandwidth.
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We plan to experiment with an Android device coupled with
a real world platform (a remote control car with an IOIO
breakout board) that provides a sensor suite from the an-
droid device (orientation, position) coupled with an appro-
priate actuator. In addition, work is in progress to couple
this system to the LEGO Mindstorms platform, with a fuller
set of functional XMPP message being developed.

7. CONCLUSIONS
This work demonstrates that a usable simulation framework
has been constructed, capable of supporting the next phase,
which will focus on the investigation of benefits in BDI type
message exchange to support of vehicle convoy behaviour.
Results to date are:

1. Demonstration of a working simulation with Jason Belief-
Desire-Intention agent controlled simulated vehicles.

2. An agnostic control design, where agents are not spe-
cific to a vehicle (e.g. weight, size, power), or type (e.g.
locally simulated vehicle, or remote XMPP vehicle).

3. An initial convoy scenario exploring the performance
of a ‘data push’ of vehicle positions.

4. A second convoy scenario exploring the performance
of a ‘data pull’ of vehicle positions.

5. An initial suite of metrics to measure aspects of system
and convoy performance.

Having established our foundations, we will now work to-
wards more credible vehicle scenarios. Following this, the
integration of a normative framework will be explored such
that the governance of this vehicle collective is established.
Finally, the applicability to real platforms will be demon-
strated through the use of remote physical vehicles.
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ABSTRACT
The simulation of pedestrian dynamics is a consolidated area
of application for agent-based models: successful case stud-
ies can be found in the literature and off-the-shelf simula-
tors are commonly employed by decision makers and con-
sultancy companies. These models, however, generally do
not consider the explicit representation of pedestrians ag-
gregations (groups), the related occurring relationships and
their dynamics. This work is aimed at discussing the rel-
evance and significance of this research effort with respect
to the need of empirical data about the implication of the
presence of groups of pedestrians in different situations (e.g.
changing density, spatial configurations of the environment).
The paper describes an agent-based model encapsulating in
the pedestrian’s behavioural specification effects represent-
ing both traditional individual motivations (i.e. tendency to
stay away from other pedestrians while moving towards the
goal) and a simplified account of influences related to the
presence of groups in the crowd. The model is tested in a
simple scenario to evaluate the implications of some mod-
eling choices and the presence of groups in the simulated
scenario. Moreover, the model is applied in a real world
scenario characterized by the presence of organized groups
as an instrument for crowd management. Results are dis-
cussed and compared to experimental observations and to
data available in the literature.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications

General Terms
Experimentation

Keywords
∗Crystals Project, Centre of Research Excellence in Hajj
and Omrah (Hajjcore), Umm Al-Qura University, Makkah,
Saudi Arabia.

pedestrian and crowd modeling, interdisciplinary approaches

1. INTRODUCTION
Agent–based approaches to the simulation of complex sys-
tems represent a relatively recent but extremely successful
application area of concepts, abstractions, models defined
in the area of autonomous agents and multi–agent systems
(MAS). Agent-based models have been adopted to model
complex systems in very different contexts, ranging from
social and economical simulation to logistics optimization,
from biological systems to traffic. Large groups and crowds
of pedestrians represent a typical example of complex sys-
tem: the overall behavior of the system can only be defined
in terms of the actions of the individuals that compose it,
and the decisions of the individuals are influenced by the pre-
vious actions of other pedestrians sharing the same space.
Sometimes the interaction patterns are competitive, since
pedestrians may have conflicting goals (i.e. they might wish
to occupy the same spot of the shared environment), but
collaborative patterns can also be identified (e.g. leave room
to people getting off a subway train before getting on). The
overall system is characterized by self-organization mecha-
nisms and emergent phenomena.

Despite the complexity of the studied phenomenon, the rele-
vance of human behaviour, and especially of the movements
of pedestrians, in built environment in normal and extraor-
dinary situations, and its implications for the activities of
architects, designers and urban planners are apparent (see,
e.g., [3]), especially considering dramatic episodes such as
terrorist attacks, riots and fires, but also due to the grow-
ing issues in facing the organization and management of
public events (ceremonies, races, carnivals, concerts, par-
ties/social gatherings, and so on) and in designing naturally
crowded places (e.g. stations, arenas, airports). Computa-
tional models for the simulation of crowds are thus growingly
investigated in the scientific context, and these efforts led to
the realization of commercial off-the-shelf simulators often
adopted by firms and decision makers1. Models and simula-
tors have shown their usefulness in supporting architectural
designers and urban planners in their decisions by creating
the possibility to envision the behavior of crowds of pedes-
trians in specific actual environments and planned designs,
to elaborate what-if scenarios and evaluate their decisions

1see http://www.evacmod.net/?q=node/5 for a significant
although not necessarily comprehensive list of simulation
platforms.
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with reference to specific metrics and criteria. Despite the
substantial amount of research efforts this area is still quite
lively and we are far from a complete understanding of the
complex phenomena related to crowds of pedestrians in the
environment: one of the least studied and understood as-
pects of crowds of pedestrians is represented by the impli-
cations of the presence of groups [6]. In particular, little
work in the direction of modeling and simulating relatively
large groups within a crowd of pedestrians encompassing
some form of validation (either quantitative or qualitative)
against real data can be found in the literature.

The main aim of this work is to present motivations, fun-
damental research questions and directions, and results of
an agent–based modeling and simulation approach to the
multidisciplinary investigation of the complex dynamics that
characterize aggregations of pedestrians and crowds. In par-
ticular, in this paper we will present an agent–based model
of pedestrians considering groups as a first–class abstraction
influencing the behaviour of its members and, in turn, of the
whole system. The model has been tested (i) in a schematic
situation that has also been analyzed by means of field ex-
periments to characterize the implications of groups in the
overall pedestrian dynamics and (ii) in a real world scenario
in which pedestrians were organized in large groups for sake
of crowd management.

The paper breaks down as follows: the following section will
set the present work in the state of the art of pedestrian and
crowd modeling and simulation, with specific reference to
recent works focusing on the modeling and implications of
groups. Section 3 will introduce the model that was adopted
in an experimental scenario, described in section 4, and in
a real world scenario, described in section 5. The scenarios
will be described and the achieved results will be discussed.
Conclusions and future developments will end the paper.

This work is set in the context of the Crystals project2,
a joint research effort between the Complex Systems and
Artificial Intelligence research center of the University of
Milano–Bicocca, the Centre of Research Excellence in Hajj
and Omrah and the Research Center for Advanced Science
and Technology of the University of Tokyo. The main focus
of the project is on the adoption of an agent-based pedes-
trian and crowd modeling approach to investigate meaning-
ful relationships between the contributions of anthropology,
cultural characteristics and existing results on the research
on crowd dynamics, and how the presence of heterogeneous
groups influence emergent dynamics in the context of the
Hajj and Omrah. The implications of particular relation-
ships among pedestrians in a crowd are generally not con-
sidered or treated in a very simplistic way by current ap-
proaches. In the specific context of the Hajj, the yearly
pilgrimage to Mecca that involves over 2 millions of peo-
ple coming from over 150 countries, the presence of groups
(possibly characterized by an internal structure) and the
cultural differences among pedestrians represent two funda-
mental features of the reference scenario. Studying implica-
tions of these basic features is the main aim of the Crystals
project.

2http://www.csai.disco.unimib.it/CSAI/CRYSTALS/

2. RELATED WORKS
A comprehensive but compact overview of the different ap-
proaches and models for the simulation of pedestrian and
crowd dynamics is not easily defined: scientific interdisci-
plinary workshops and conferences are in fact specifically
devoted to this topic (see, e.g., the proceedings of the first
edition of the International Conference on Pedestrian and
Evacuation Dynamics [23] and consider that this event has
reached the fifth edition in 2010). A possible schema to
classify the different approaches is based on the way pedes-
trians are represented and managed. From this perspective,
pedestrian models can be roughly classified into three main
categories that respectively consider pedestrians as parti-
cles subject to forces, particular states of cells in which the
environment is subdivided in Cellular Automata (CA) ap-
proaches, or autonomous agents acting and interacting in an
environment.

The most successful particle based approach is represented
by the social force model [9], which implicitly comprises
fundamental proxemical [8] concepts like the tendency of
a pedestrian to stay away from other ones while moving
towards his/her goal. Proxemics essentially represents a
fundamental assumption of most modeling approaches, al-
though very few authors actually mention this anthropolog-
ical theory [26, 12].

CA based approaches can be roughly classified in ad-hoc
approaches for specific situations (like the case of bidirec-
tional flows at intersections described in [4]) and general
approaches, whose main representative is the floor-field ap-
proach [21], in which the cells are endowed with a discretized
gradient guiding pedestrians towards potential destinations.

While particle and CA based approaches are mostly aimed at
generating quantitative results about pedestrian and crowd
movement, agent based approaches are sometimes aimed at
the generation of effective visualizations of believable crowd
dynamics, and therefore the above approaches do not nec-
essarily share the same notion of realism and validation.
Works like [1] and [10] essentially extend CA approaches,
separating the pedestrians from the environment, but they
essentially adopt similar methodologies. Other approaches
like [15, 24] are more aimed at generating visually effec-
tive and believable pedestrians and crowds in virtual worlds.
Other approaches, like [17], employ cognitive agent mod-
els for different goals, but they are not generally aimed at
making predictions about pedestrian movement for sake of
decision support.

A small number of recent works represent a relevant effort
towards the modeling of groups, respectively in particle-
based [14, 28] (extending the social force model), in CA-
based [20] (with ad-hoc approaches) and in agent-based ap-
proaches [18, 19, 25, 13] (introducing specific behavioral
rules for managing group oriented behaviors): in all these
approaches, groups are modeled by means of additional con-
tributions to the overall pedestrian behaviour representing
the tendency to stay close to other group members. How-
ever, the above approaches only mostly deal with small groups
in relatively low density conditions; those dealing with rela-
tively large groups (tens of pedestrians) were not validated
against real data. The last point is a crucial and critical
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element of this kind of research effort: computational mod-
els represent a way to formally and precisely define a com-
putable form of theory of pedestrian and crowd dynamics.
However, these theories must be validated employing field
data, acquired by means of experiments and observations of
the modeled phenomena, before the models can actually be
used for sake of prediction.

3. GA-PED MODEL
We will now briefly introduce a model based on simple re-
active situated agents based on some fundamental features
of CA approaches to pedestrian and crowd modeling and
simulation, with specific reference to the representation and
management of the simulated environment and pedestrians;
in particular, the adopted approach is discrete both in space
and in time. The present description of the model is sim-
plified and reduced for sake of space, reporting only a basic
description of the elements required to understand its basic
mechanisms; an extended version of the model description
can be found in [2].

3.1 Environment
The environment in which the simulation takes place is a
lattice of cells, each representing a portion of the simulated
environment and comprising information about its current
state, both in terms of physical occupation by an obstacle
or by a pedestrian, and in terms of additional information,
for instance describing its distance from a reference point or
point of interest in the environment and/or its desirability
for pedestrians following a certain path in the environment.

The scale of discretization is determined according to the
principle of achieving cells in which at most one pedestrian
can be present; traditionally the side of a cell is fixed at 40
or 50 cm, respectively determining a maximum density of 4
and 6.5 pedestrian per square meter. The choice of the scale
of discretization also influences the length of the simulation
turn: the average speed of a pedestrian can be set at about
1.5 meters per second (see, e.g., [27]) therefore, assuming
that a pedestrian can perform a single movement between
a cell and an adjacent one (according to the Von Neumann
neighbourhood), the duration of a simulation turn is about
0.33 seconds in case of a 50 cm discretization and 0.27 in
case of a finer 40 cm discretization.

Each cell can be either vacant, occupied by an obstacle or
by a specific pedestrian. In order to support pedestrian nav-
igation in the environment, each cell is also provided with
specific floor fields [21]. In particular, each relevant final or
intermediate target for a pedestrian is associated to a floor
field, representing a sort of gradient indicating the most di-
rect way towards the associated point of interest (e.g., see
Fig.1 in which a simple scenario and the relative floor field
representation are shown). The GA-Ped model only com-
prises static floor fields, specifying the shortest path to desti-
nations and targets. Interactions between pedestrians, that
in other models are described by the use of dynamic floor
fields [16], in our model are managed through the agent per-
ception model.

3.2 Pedestrians
Pedestrians in the GA-PED model have a limited form of
autonomy, meaning that they can choose were to move ac-

cording to their perception of the environment and their
goal, but their action is actually triggered by the simula-
tion engine and they are not thus provided with a thread
of control of their own. More precisely, the simulation turn
activates every pedestrian once in every turn, adopting a
random order in the agent selection: this agent activation
strategy, also called shuffled sequential updating [11], is char-
acterized by the fact that conflicts between pedestrians are
prevented.

Each pedestrian is provided with a simple set of attributes:
pedestrian = 〈pedID , groupID〉 with pedID being an identi-
fier for each pedestrian and groupID (possibly null, in case
of individuals) the group the pedestrian belongs to. For the
applications presented in this paper, the agents have a single
goal in the experimental scenario, but in more complex ones
the environment could be endowed with multiple floor fields
and the agent could be also characterized by a schedule, in
terms of a sequence of floor fields and therefore intermediate
destinations to be reached.

The behavior of a pedestrian is represented as a flow made
up of three stages: sleep, movement evaluation, movement.
When a new iteration starts each pedestrian is in a sleep-
ing state. The system wakes up each pedestrian once per
iteration and, then, the pedestrian passes to a new state of
movement evaluation. In this stage, the pedestrian collects
all the information necessary to obtain spatial awareness.
In particular, every pedestrian has the capability to observe
the environment around him, looking for other pedestrians
(that could be part of his/her group), walls and other ob-
stacles, according to the Von Neumann neighbourhood. The
choice of the actual movement destination between the set
of potential movements (i.e. non empty cells are not consid-
ered) is based on the elaboration of an utility value, called
likability, representing the desirability of moving into that
position given the state of the pedestrian.

Formally, given a pedestrian belonging to a group g and
reaching a goal t, the likability of a cell cx,y is defined as:

li(cx,y, g, t) = wt · goal(t, (x, y)) + wg · group(g, (x, y))

− wo · obs(x, y)− ws · others(g, (x, y)) + ε. (1)

where the functions obst counts the number of obstacles in
the Von Neumann neighbourhood of a given cell, goal re-
turns the value of the floor field associated to the target t in
a give cell, group and other respectively count the number
of members and non-members of the group g, ε represents
a random value. Group cohesion and floor field are posi-
tive components because the pedestrians wish to reach their
destinations quickly, while staying close to other group mem-
bers. On the contrary, the presence of obstacles and other
pedestrians have a negative impact as a pedestrian usually
tends to avoid them. A random factor is also added to the
overall evaluation of the desirability of every cell.

In the usual floor field models, after a deterministic elab-
oration of the utility of each cell, not comprising thus any
random factor, the utilities are translated into the probabili-
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Figure 1: Schematic representation of a simple scenario: a 2.5 by 10 m corridor, with exits on the short ends
and two sets of 25 pedestrians. The discretization of 50 cm and the floor field directing towards the right
end is shown on the right.

ties that the related cell is selected as movement destination.
This means that for a pedestrian generally there is a higher
probability of moving towards his/her destination and ac-
cording to proxemic considerations, but there is also the
probability, for instance, to move away from his/her goal or
to move far from his/her group. In this work, we decided to
include a small random factor to the utility of each cell and
to choose directly the movement that maximizes the agent
utility. A more thorough comparison of the implications of
this choice compared to the basic floor field approach is out
of the scope of this paper and it is object of future works.

4. EXPERIMENTAL SCENARIO
The GA-Ped model was adopted to realize a set of simula-
tions in different starting conditions (mainly changing den-
sity of pedestrians in the environment, but also different
configurations of groups present in the simulated pedestrian
population) in a situation in which experiments focused at
evaluating the impact of the presence of groups of different
size was being investigated.

4.1 Experiments
The environment in which the experiments took place is
represented in Fig. 1: a 2.5 by 10 m corridor, with exits on
the short ends. The experiments were characterized by the
presence of two sets of 25 pedestrians, respectively starting
at the two ends of the corridor (in 2 by 2.5 m areas), moving
towards the other end. Various cameras were positioned
on the side of the corridor and the time required for the
two sets of pedestrians to complete their movement was also
measured (manually from the video footage).

Several experiments were conducted, some of which also con-
sidered the presence of groups of pedestrians, that were in-
structed on the fact that they had to behave as friends or
relatives while moving during the experiment. In particu-
lar, the following scenarios have been investigated: (i) single
pedestrians (3 experiments); (ii) 3 couples of pedestrians for
each direction (2 experiments); (iii) 2 triples of pedestrians
for each direction (3 experiments); (iv) a group of six pedes-
trians for each direction (4 experiments).

One of the observed phenomena was that the first experi-
ment actually required more time for the pedestrians to com-
plete the movement; the pedestrians actually learned how to

Indiv. Couples Triples Groups of 5
Den. Sp. Fl. Sp. Fl. Sp. Fl. Sp. Fl.
0,4 1,54 0,62 1,55 0,62 1,47 0,59 - -
0,8 1,33 1,06 1,41 1,12 1,32 1,05 1,14 0,91
1,2 1,14 1,37 1,19 1,43 1,12 1,35 0,98 1,18
1,6 0,95 1,52 0,99 1,59 0,93 1,49 0,83 1,32
2,0 0,73 1,46 0,78 1,56 0,74 1,47 0,66 1,32
2,4 0,41 0,98 0,41 0,99 0,44 1,06 0,42 1,00
2,8 0,22 0,60 0,23 0,64 0,25 0,70 0,24 0,66
3,2 0,13 0,42 0,14 0,46 0,16 0,50 0,14 0,46

Table 1: Simulation Results: values on average
speed (meters per second) and flow (persons/m·s),
considering different densities (persons per square
meter) of pedestrians and different configurations
of groups.

move and how to perform the experiment very quickly, since
the first experiment took them about 18 seconds while the
average completion time over 12 experiments is about 15
seconds.

The number of performed experiments is probably too low to
draw some definitive conclusions, but the total travel times
of configurations including individuals and pairs were con-
sistently lower than those not including groups. Qualitative
analysis of the videos showed that pairs can easily form a
line, and this reduces the friction with the facing group. Sim-
ilar considerations can be done for large groups; on the other
end, groups of three pedestrians sometimes had difficulties
in forming a lane, retaining a triangular shape similar to the
‘V’ shaped observed and modeled in [14], and this caused a
total travel times that were higher than average in two of
the three experiments involving this type of group.

4.2 Simulation Results
We applied the model described in Sect. 3 to the previous
scenario by means of an agent-based platform based on GA-
Ped approach. A description of the platform can be found
in [5]. We employed the gathered data and additional data
available in the literature to perform a calibration of the pa-
rameters, essentially determining the relative importance of
(a) the goal oriented, (b) general proxemics and (c) group
proxemic components of the movement choice. In particular,
we first identified a set of plausible values for the wt and wo
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Figure 2: Fundamental diagram for different config-
urations of pedestrian based on simulation results in
Table 1.

parameters employing experimental data regarding a one-
directional flow. Then we employed data from bidirectional
flow situations to further tune these parameters as well as
the value of the wg parameter: the latter was set in order to
achieve a balance between effectiveness in preserving group
cohesion and preserving aggregated measures on the overall
pedestrian flow (an excessive group cohesion value reduces
the overall pedestrian flow and produces unrealistic behav-
ior).

We investigated the capability of our model to fit the funda-
mental diagram proposed in the literature for characterizing
pedestrian simulations [22] and other traffic related phenom-
ena. This kind of diagram shows how the average velocity
of pedestrians varies according to the density of the sim-
ulated environment. Moreover, we wanted to distinguish
the different performance of different agent types, and es-
sentially individuals, members of pairs, groups of three and
five pedestrians over a relatively wide spectrum of densities.
To do so, we performed continuous simulations of the bidi-
rectional pedestrian flows in the corridor with a changing
number of pedestrians, to alter their density. For each den-
sity value displayed in the graph shown in Figure 2 is related
to at least 1 hour of simulated time.

The achieved fundamental diagram represents in qualita-
tively correct way the nature of pedestrian dynamics: the
flow of pedestrians increases with the growing of the density
of the corridor unit a critical value is reached. If the sys-
tem density is increased beyond that value, the flow begins
to decrease significantly as the friction between pedestrians
make movements more difficult.

An overview on the results of the simulations are shown in
Table 1 in which values on average speed and flow, consid-
ering different densities of pedestrians and different config-
urations of groups are presented.

The simulation results are in tune with the experimental
data coming from observations: in particular, the flow of
pairs of pedestrians is consistently above the curve of indi-
viduals. This means that the average speed of members of
pairs is actually higher than the average speed of individu-

als. This is due to the fact that they easily tend to form a
line, in which the first pedestrian has the same probability
to be stuck as an individual, but the follower has a gener-
ally higher probability to move forward, following the path
“opened” by the first member of the pair. The same does
not happen for larger groups, since for them it is more diffi-
cult to form a line: the curves related to groups of three and
five members are below the curve of individuals for most of
the spectrum of densities, precisely until very high density
values are reached. In this case, the advantage of follow-
ers overcomes the disadvantage of offering a larger profile to
the counter flow and the combined average velocity is higher
than that of individuals.

5. REAL WORLD SCENARIO
5.1 Environment and observations
The model was also adopted to elaborate different what-if
scenarios in a real world case study. In particular, the sim-
ulated scenario is characterized by the presence of a station
of the Mashaer line, a newly constructed rail line in the area
of Makkah. The goal of this infrastructure is to reduce the
congestion caused by the presence of other collective means
of pilgrim transportation (i.e. buses) during the Hajj: the
yearly pilgrimage to Mecca that involves over 2 millions of
people coming from over 150 countries and some of its phase
often result in congestions of massive proportions. In this
work, we are focusing on a specific point of one of the newly
constructed stations, Arafat I. One of the most demanding
situations that the infrastructure of the Mashaer Rail line
must be able to sustain is the one that takes place after
the sunset of the second day of the pilgrimage, which in-
volves the transport of pilgrims from Arafat to Muzdalifah.
The pilgrims that employ the train to proceed to the next
phase of the process must be able to move from the tents
or other accommodation to the station in an organized flow
that should be consistent with the movement of trains from
Arafat to Muzdalifah stations. Since pilgrims must leave the
Arafat area before midnight, the trains must continuously
load pilgrims at Arafat, carry them to Muzdalifah, and come
back empty to transport other pilgrims.

The size of the platforms was determined to allow hosting
in a safe and comfortable way a number of pilgrims also
exceeding the potential number of passengers of a whole
train. Each train is made up of 12 wagons, each able to
carry 250 passengers for a total of approximately 3000 per-
sons. In order to achieve an organized and manageable flow
of people from outside the station area to the platforms,
the departure process was structured around the idea of
waiting–boxes: pilgrims are subdivided into groups of about
250 persons that are led by specific leaders (generally carry-
ing a pole with signs supporting group identification). The
groups start from the tents area and flow into these fenced
queuing areas located in immediately outside the station,
between the access ramps. Groups of pilgrims wait in these
areas for an authorization by the station agents to move to-
wards the ramps or elevators. In this way, it is possible to
stop the flow of pilgrims whenever the number of persons on
the platforms (or on their way to reach it using the ramps
or elevators) is equal to the train capacity, supporting thus
a smooth boarding operation.

Three photos and a schematic representation of the real
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Figure 3: Photos and a schematic representation of the real world scenario and the related phonomena.

world scenario and the related phenomena are shown in Fig-
ure 3: the bottom right photo shows a situation in which the
waiting-box principle, preventing the possibility of two flows
simultaneously converging to a ramp, was not respected,
causing a higher than average congestion around the ramp.
This anomaly was plausibly due to the fact that it was the
first time the station was actually used, therefore also the
management personnel was not experienced in the crowd
management procedures.

5.2 Simulation Results
Three different scenarios were realized adopting the previ-
ously defined model and using the parameters that were em-
ployed in the previous case study: (i) the flow of a group
of pilgrims from one waiting box to the ramp; (ii) the si-
multaneous flow of two groups from two different waiting
boxes to the same ramp; (iii) the simultaneous flow of three
groups of pilgrims, two as in the previous situation, one
coming directly from the tents area. Every group included
250 pilgrims. The goal of the analysis was to understand if
the model is able to qualitatively reflect the increase in the
waiting times and the space utilization when the waiting box
principle was not respected.

The environment was discretized adopting 50cm sided cells
and the cell space was endowed with a floor field leading
towards the platform, by means of the ramp. The different
speed of pedestrians in the ramp was not considered: this
scenario should be therefore considered as a best case situ-
ation, since pilgrims actually flow through the ramp more
slowly than in our simulation. Consequently, we will not dis-
cuss here the changing of the travel time between the wait-
ing boxes and the platform (that however increased with the
growth of the number of pilgrims in the simulated scenario),
but rather different metrics of space utilization. This kind of
metric is tightly related to the so called level of service [7], a
measure of the effectiveness of elements of a transportation
infrastructure; it is also naturally related to proxemics, since
a low level of service is related to a unpleasant perceived sit-
uation due to the invasion of the personal (or even intimate)
space.

The diagrams shown in Figure 4 report three metrics de-
scribing three different phenomena: (i) a situation in which
an agent in a cell of the environment was willing to move
but it was unable to perform the action due to the excessive
space occupation; (ii) a situation in which an agent actually
moved from a cell of the environment; (iii) the “set sum”
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Figure 4: Space utilization diagrams related to the three alternative simulated scenarios.

of the previous situations, in other words, the situations in
which a cell was occupied by agent, that either moved out of
the cell or remained stuck in there. More precisely, diagrams
show the relative frequency of the above events on the whole
simulation time. The three metrics are depicted graphically
following the same approach: the background color of the
environment is black and obstacles are red; each point asso-
ciated to a walkable area (i.e. a cell of the model) is painted

in a shade of gray according to the value of the metric in
that specific point. The black color is therefore associated
to point if the environment in which the related metric is 0;
the white color is associated to the point in which the met-
ric assumes the highest value in the scenario (also shown in
the legend). For instance, in all diagrams in the third row
the points of space close to the ramp entrance are white or
light gray, while the space of the waiting area from which
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the second group starts is black in the first column, since the
group is not present in the related situation and therefore
that portion of space is not actually utilized.

The difference between the first and second scenario is not
apparent in terms of different values for the maximum space
utilization metrics (they are actually slightly lower in the
second scenario), but the area characterized by a medium-
high space utilization is actually wider in the second case.
The third scenario is instead characterized by a noticeably
worse performance not only from the perspective of the size
of the area characterized by a medium-high space utiliza-
tion, but also from the perspective of the highest value of
space utilization. In particular, in the most utilized cell of
the third scenario, an agent was stuck about 66% of the sim-
ulated time, compared to the 46% and 44% of the first and
second scenarios.

This analysis therefore confirms that increasing the number
of pilgrims that are simultaneously allowed to move towards
the ramp highly increases the number of cases in which their
movement is blocked because of overcrowding. Also the uti-
lization of space increases significantly and, in the third sit-
uation, the whole side of the ramp becomes essentially a
queue of pilgrims waiting to move towards the ramp. An-
other phenomenon that was not highlighted by the above
diagrams is the fact that groups face a high pressure to mix
when reaching the entrance of the ramp, which is a negative
factor since crowd management procedures adopted in the
scenario are based on the principle of preserving group co-
hesion and keeping different groups separated. According to
these results, the management of the movement of group of
pilgrims from the tents area to the ramps should try to avoid
exceptions to the waiting box principle as much as possible.

6. CONCLUSIONS
The paper has discussed a research effort aimed at investi-
gating the implication of the presence of groups in pedestrian
and crowd dynamics. In particular, the paper has shown a
sample situation in which data coming from experimental
observations were used to calibrate and validate a simulation
model that correctly captures some aspects of the impact
of groups in the overall system dynamics. The validation
was performed considering both travel times and other data
gathered in actual experiments and also by comparing the
achieved fundamental diagram with existing results from the
literature. In addition, a real-world case study was also de-
scribed: this work considered a train station in which differ-
ent policies for crowd management were compare adopting
space utilization metrics. The achieved results are in tune
with observations carried out on the field and the model is
able to reproduce phenomena related to group behaviours
in pedestrian simulation.

Future works are aimed at modeling and simulating more
complex group structures, such as hierarchical group struc-
tures (e.g. families, friends, elderly with accompanying per-
sons inside larger groups) and their implications on overall
system dynamics, validating results both quantitatively and
qualitatively with specific reference to the morphology as-
sumed by the group in medium and high density situations.
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C. Rogsch, and A. Seyfried. Evacuation dynamics:
Empirical results, modeling and applications. In R. A.
Meyers, editor, Encyclopedia of Complexity and
Systems Science, pages 3142–3176. Springer, 2009.

[23] M. Schreckenberg and S. D. Sharma, editors.
Pedestrian and Evacuation Dynamics.
Springer–Verlag, 2001.

[24] W. Shao and D. Terzopoulos. Autonomous
pedestrians. Graphical Models, 69(5-6):246–274, 2007.

[25] J. Tsai, N. Fridman, E. Bowring, M. Brown,
S. Epstein, G. A. Kaminka, S. Marsella, A. Ogden,
I. Rika, A. Sheel, M. E. Taylor, X. Wang, A. Zilka,
and M. Tambe. Escapes - evacuation simulation with
children, authorities, parents, emotions, and social
comparison. In Tumer, Yolum, Sonenberg, and Stone,
editors, Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems – Innovative
Applications Track (AAMAS 2011), pages 457–464,
2011.

[26] J. Was. Crowd dynamics modeling in the light of
proxemic theories. In ICAISC (2), pages 683–688,
2010.

[27] A. Willis, N. Gjersoe, C. Havard, J. Kerridge, and
R. Kukla. Human movement behaviour in urban
spaces: Implications for the design and modelling of

effective pedestrian environments. Environment and
Planning B, 31(6):805–828, 2004.

[28] S. Xu and H. B.-L. Duh. A simulation of bonding
effects and their impacts on pedestrian dynamics.
IEEE Transactions on Intelligent Transportation
Systems, 11(1):153–161, 2010.

87



88



Micro-Simulation Model for  
Assessing the Risk of Car-Pedestrian Road Accidents

Gennady Waizman 

Department of Geography and 
Human Environment,  

Tel Aviv University 
Ramat Aviv 

Tel Aviv, 69978, Israel 
+972-54-2012193 

gennadyw@post.tau.ac.il 
 

Shraga Shoval 

Department of Industrial 
Engineering and Management, 

Ariel University Center of Samaria 
Milken Campus,  

Ariel, 40700, Israel 
+972-3-9066325 

shraga@ariel.ac.il 

Itzhak Benenson 

Department of Geography and 
Human Environment,  

Tel Aviv University 
Ramat Aviv 

Tel Aviv, 69978, Israel 
+972-3-6409896 

bennya@post.tau.ac.il 
 

 

ABSTRACT 
The data on traffic accidents clearly points to "Black Spots" that 

continually cause a high rate of accidents. However, road safety 

research is still far from understanding why this particular place on 

a road is risky. The reason is the deficit of knowledge of how 

pedestrians and drivers interact when facing a potentially 

dangerous traffic situation, and in the lack of an integrated 

framework that relates the data on human behavior to real-world 

traffic situations. We tackle the problem by developing SAFEPED, 

a multi-agent microscopic 3D simulation of cars’ and pedestrians’ 

dynamics at the black spot. SAFEPAD is a test platform for 

evaluating experimentally estimated drivers' and pedestrians' 

behavioral rules and estimating accident risks in different traffic 

situations. It aims to analyze disadvantageous design of the Black 

Spot and to assess alternative architectural solutions. 

Categories and Subject Descriptors 
I.6.5 Computing Methodologies, Simulation and Modeling, Model 

Development 

General Terms 
Algorithms, Design, Reliability, Experimentation, Human Factors, 

Standardization 

Keywords 
Traffic accidents, Black Spot, agent-based modeling, spatially-

explicit modeling 

1. INTRODUCTION 

1.1 Micro-simulation of road accidents 

between the cars and pedestrians: from static 

to dynamics view  
Accident statistics reveal factors of risk and establish the 

dependencies of accident rates on the characteristics and 

parameters of roads, cars, pedestrians, traffic and the environment 

of the accident location [1, 2, 3]. However, statistical models are 

inherently static and, thus, unable to reflect the chain of events that 

cause an accident [4]. The static view of the accident may explain 

the persistent fraction of the “black spot” - seemingly regular road 

locations with an unexpectedly high and stable accident rate [5] – 

 

 

 

but cannot be used for assessing the consequences of changes in 

the infrastructure or traffic conditions at the location.  

Treatment of a specific black spot is typically based on an 

engineers’ insight of the local conditions. The effectiveness of the 

safety measures is confirmed by comparing the accident rates 

before and after the implementation of safety measures. Successful 

implementations are usually reported, such as the installation of the 

several hundred countdown signals at the crossings in San 

Francisco, that reduced the number of pedestrian injuries caused by 

crashes with vehicles by 52% [6]; or the system for detecting 

pedestrians approaching a crosswalk zone and warning the drivers 

of pedestrian presence [7].  

However, failures are often not reported. Traffic engineers lack 

tools for assessing the proposed safety measures, and say nothing 

about their economic justification. Safety measures are costly, 

while their success is not guaranteed. As a result, urban decision-

makers have essential difficulties when deciding on changes in 

traffic regulations and infrastructure, even when the location is 

identified as a black spot.  

The development of a dynamic simulation model of traffic 

accidents at a black spot provides a solution to this problem. Using 

this model, the chain of events (based on the behavior of the 

vehicles and pedestrians) that caused the accident can be 

investigated. This paper presents the pilot version of such a model.  

1.2 Field studies of the accident micro-

dynamics 
Last decade a series of large-scale studies aimed at developing 

reliable indicators of vehicle pre-crash conditions were performed 

within the framework of the Intelligent Transportation Systems 

program of the U.S. Department of Transportation. The research 

focused on “last second” urgent maneuvering, and resulted in 

significant amounts of data collected during real-time observations 

of driver behavior and car movement [8, 9, 10, 11], as well as 

during simulator-based driving [12, 13]. On-road data includes 

kinematic characteristics of the vehicle, real-time measurements of 

the distance to the other objects, and video of driver’s behavior. 

Laboratory experiments aimed to study drivers’ behavior in 

potential accident scenarios, such as a lane-change maneuver.  

The above studies provided important information on vehicle-

vehicle interaction in pre-accident and accident situations. 

However, vehicle – pedestrian interaction were beyond the focus 

of the program, therefore the recorded number of vehicle – 
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pedestrian incidents and behavior of the participants, was low [10, 

12].  

In parallel, computer-based analysis of the videos taken on the 

roads became popular and provided essential knowledge on 

pedestrian decision-making when cars were approaching, as well 

as in more complex situations. These studies are employed for 

developing static, discreet choice models that describe the 

probability of road crossing or other action based on the distance to 

approaching car, or its velocity and road geometry [14, 15, 16, 17, 

18] 

1.3 Modeling car-pedestrian conflict  
Usually agent-based (AB) models focus on either vehicle or 

pedestrian traffic and avoid combining these two flows within the 

same model. The major reasons are inherent behavioral differences 

between pedestrians and drivers in regard to route choice and 

compliance with traffic regulations. Popular models of car traffic, 

such as VISSIM, PARAMICS, SUMO or Aimsun [19] use an 

intentionally simplified view of pedestrians. Models of crowding 

specify pedestrian interactions but ignore details of vehicle traffic 

[15]. 

The model of pedestrians’ disobedience to traffic laws at the 

crosswalks [20] is a rare example of a dynamic model of car-

pedestrian interactions. It is based on Cellular Automata and 

combines the vehicle flow sub-model of Nagel-Schreckenberg [21] 

with the pedestrian sub-model. However, Cellular Automata's view 

of space inherently restricts agents’ movement to relatively large 

cells introduced for describing vehicle flows and is too rough for 

microscopic representation of pedestrian motion.  

In this paper, we propose SAFEPAD – a high-resolution, spatially 

explicit dynamic simulation model as a tool for forecasting the 

effects of changes in traffic environments. SAFEPAD is based on 

the continuous representation of space and the objects’ 

movements, and in this respect follows the recent approaches and 

achievements in robotic algorithms for motion planning and 

collision avoidance. It is a spatially-explicit agent-based model that 

explicitly represents spot infrastructure and moving objects in fine 

3D detail, and operates at a time resolution of 1/20 of a second. 

Behavioral rules of SAFEPAD agents – vehicles and pedestrians –

are based, when possible, on the experimental data.  

2. SAFEPED, the Agent-Based model of car-

pedestrian interactions 
AB techniques provide the basis for modeling vehicular-pedestrian 

conflict [22, 23]. By dynamically simulating the behavior of every 

car and pedestrian (represented by the precise 3D models) within a 

precise 3D model of the spot infrastructure, the researcher is able 

to record agents’ actions and their outcome (e.g., an accident). This 

model identifies risk factors and investigates the effectiveness of 

proposed safety measures.  

The advantages of the AB approach for modeling and studying 

traffic accidents are numerous. Results of experiments on the 

behavior of participants can be directly interpreted in terms of 

agents’ behavioral rules, which can be used by the simulation 

model to assess an infinite number of scenarios with different 

numbers of cars and pedestrians of various kinds, and behaviors 

and in various environmental and architectural settings. The 

frequency and severity of accidents can then be quantitatively 

projected for any situation. The goal of our research is to develop 

the AB model of car-pedestrian interaction at a specific spot as a 

tool for assessing, planning and engineering decisions of road 

safety. The user of SAFEPED can change the 3D geometry of the 

spot and characteristics of the traffic flow, and then assess whether 

the proposed changes will decrease accident rate and severity.  

The motion behavior rules of the SAFEPED agents follow the 

robotic approach to real-time motion planning and maneuvering 

for vehicles and pedestrians. These rules account for basic 

imperfections of human visual perception, limitations in pedestrian 

locomotion and car mobility, and are based on the robotic 

algorithms of motion in a dynamic environment proposed by 

Fiorini and Shiller [24]. 

SAFEPED is a working prototype that works at a high time 

resolution of 1/20 of a second. At each time step, agents, 

considered in a random order or priority, decide on their motion 

behavior for the next time step and perform it. 

2.1 The 3D presentation of the spot 
SAFEPED is built on precise 3D representation of the Black spot's 

land surface and infrastructure including road borders, parked cars, 

pedestrian crossings, buildings, trees, traffic lights and signs 

(Figure 1). Combined with the orthophoto, this provides realistic 

representation of the spot geometry.  

 

Figure 1: SAFEPAD model scene showing agents’ trajectories  

2.2 SAFEPED agents and their behavior  
SAFEPED simulates movement of both drivers and pedestrians, 

acting in a 3D environment. Drivers and pedestrians behave 

autonomously according to a set of probabilistic behavioral rules. 

Each agent, driver or pedestrian, is assigned an agent’s profile that 

includes height, width, velocity, steering and 

acceleration/deceleration capabilities.  

2.2.1  Agents’ motion at a macro-level:  

Each SAFEPAD agent tries to maintain the desired velocity, and 

aims to follow a predefined trajectory, shown in Figure 1 as a blue 

dashed line for a vehicle and red dashed line for pedestrian. 

However, it is often impossible to follow the trajectory because of 

other moving and stationary objects. In this example, driver and 

pedestrian agents react, not necessarily adequately, to the behavior 

of the other autonomous agents when they see them. The agent, 

driver or pedestrian, decides whether to deviate from the trajectory 

to the left or to the right, accelerate, decelerate or even stop, and 

returns to the trajectory should the road conditions make it 

possible.  

We choose the trajectory-based approach in order to reduce 

generating accident situations in which drivers or pedestrians 
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follow potentially dangerous paths. An agent enters the site at the 

end of one of the predefined trajectories and follows it, trying to 

maintain the desired velocity while taking into account the other 

agents and environmental elements (Figure 1). In addition, at every 

intersection of agents’ trajectories, SAFEPED makes it possible to 

set decision-making priorities that reflect traffic rules and 

agreements. An agent moving along the continuous green path has 

priority over an agent moving along the continuous red path 

(Figure 1). When two agents, one on the continuous green path and 

the other on the continuous red path, approach the point of 

intersection of their trajectories and take account of each other ( 

according to their movement decision rules), both agents know that 

an agent on the green path would act before the agent on the red 

path. Note that this includes the case when the agent on the green 

path decides that the agent on the red path is moving too fast, and 

rather than risk a potential collision, the agent on the green path 

decides to stop and give a way to the other agent. If the trajectories 

of two agents intersect and priorities are not assigned, both agents 

know there are no priorities (i.e. the order of their actions in the 

simulation will be random). 

2.2.2 Agents’ micro-behavior behavior in conflict situations 

Road safety demands motion planning in dynamic environments, 

where cars and pedestrians should avoid dynamic and static 

obstacles. This is far more complex than the static problem and, in 

this case, robotics uses velocity space instead of the standard 3D 

space (referred to as “configuration space” in robotics). The 

problem of avoiding one or many mobile or immobile obstacles is 

treated directly in the velocity space, providing the trajectory 

which satisfies an optimization criterion. In our model, agents, 

drivers, and pedestrians follow robotic motion planning algorithms 

for dynamic environments. We employ the version of this 

algorithm that is proposed by Fiorini and Shiller [24]. One of the 

advantages of this algorithm is its applicability to a set of objects 

that essentially vary in their inherent velocities, vehicles and 

pedestrians in our case.  

The algorithm considers Velocity Obstacle (VO) - the set of all 

velocities of a moving object that will result in a collision with 

another moving object at some moment in time, assuming that the 

other object maintains its current velocity. In our model, the 

concept of VO is applied for computation of avoidance maneuvers; 

accelerating/decelerating cars, and pedestrians that follow 

curvilinear trajectories (Figure 2).  

 

 

 

 

 

 

 

              (a)                                            (b) 

Figure 2: An example of the avoidance maneuver algorithm as 

implemented in SAFEPED.  

In Figure 2a, the red car is moving at a velocity of VA, the black 

car at VB and the red car is trying to avoid collision with the black 

car by changing its velocity. The white sector in Figure 2a denotes 

the set of relative velocities VAB of the red car relative to the black 

car that will result in a collision. The white sector is constructed in 

the configuration space, taking into consideration the physical 

dimensions of each car (represented by the radius of the 

circumference circles of each car). The gray sector denotes the 

domain of the absolute velocities of the red car that leads to 

collision with the black car. The gray sector is a simple 

transformation of the white sector along VB. In Figure 2b, the red 

domain denotes the set of available velocities of the red car, 

constrained by maximal possible acceleration of the car that 

guarantees no collision. This sector is constructed by subtracting 

the velocity obstacle domain that results in a collision (the gray 

sector) from the domain of all possible maneuvers of the red car. 

The blue point denotes a safe avoidance velocity for the red car 

that does not require a change in the car direction. If accident 

avoidance demands acceleration or deceleration that is beyond the 

human and car abilities, the red domain vanishes, and accident 

occurs. 

2.2.3 Agents’ vision 

SAFEPED agents see the 3D environment within the “view cone” 

of up to 180o angle (Figure 3a). In the pilot version of SAFEPED, 

agents are unaware of traffic lights, and this feature has yet to be 

added. We interpret the human visual system as a pinhole camera. 

The 3D shape (currently minimal 3D box) of each object within 

the view cone is projected on the retinal plan of the agent’s “eye” 

(Figure 3b).  

 

(a) 

 

(b) 

Figure 3: SAFEPED scene with the agents’ view cones (blue); 

the car marked by cross is chosen for follow up (a); 3D 

visibility in the SAFEPED, the driver’s view from the car (b). 
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Based on this information, an agent detects objects close to the line 

of sight, defines which objects are obscured by others, and to what 

degree. Objects that are fully obscured for 3 seconds become 

invisible to the agent, and the agent does not react to them. These 

objects are currently represented by parallelepipeds; a more precise 

representation of the objects by mesh technique is currently in 

development. 

2.3 SAFEPED output and performance 
All agents' actions are continuously recorded at every time step, 

and can be replayed. Possible types of accidents (head-on collision, 

one-sided collision, car-pedestrian collision, etc.) are defined and 

instantaneously checked. The model keeps track of agents' 

location, set of available velocities, eyesight behavior, decisions on 

velocity, distance to other agents, and acceleration/deceleration.  

SAFEPED analysis of a typical site considers up to a hundred 

simultaneously moving agents. Even at a finest resolution of the 

spot and the agents' 3D geometry, we did not encounter any 

computational difficulties with the pilot version of the SAFEPED.  

The first version of the SAFEPAD is ready for evaluation. For a 

general view see 

http://www.youtube.com/watch?v=ia3W8oiTVYw&feature=relate

d. Our formalization of visibility is given by 

http://www.youtube.com/watch?v=6KFcfFRElt8&feature=related, 

and http://www.youtube.com/watch?v=axWEGNetpM0 illustrates 

a traffic accident. 

3. Experiment with an obscured car  
Following is an experiment with SAFEPAD that aims at testing 

agents’ micro-motion algorithm in potentially risky situations.  

3.1 Experimental setup 
The experimental setup is presented in Figure 4: the pedestrian 

crosses a multi-lane street on a non-regulated crossing.  

 
 

 

 

 

 

Figure 4: Experimental setup: high truck A is stopped in the 

lane adjacent to the sidewalk and obscures the view of both the 

pedestrian and of approaching car B 

High truck A is stopped in the lane closest to the sidewalk and 

obscures the pedestrian’s view. Vehicle B approaches the 

crosswalk from the second lane and the view of the driver is 

obscured too. US Transportation Agency publication describes this 

situation as follows: ”The pedestrian entered the traffic lane at 

midblock in front of standing or stopped traffic and was struck by 

another vehicle moving in the same direction as the stopped 

traffic” [25]. According to [3] multiple threat crashes comprise 

17.6 percent of pedestrian crashes on marked crosswalks.  

The actual road crossing between Weizmann St. and Moshe Sharet 

St. in Tel Aviv, Israel was chosen for constructing the 3D 

representation of a junction infrastructure. We investigate the 

emergence of the accident situations for three different locations of 

the obscuring high truck: at a distance of 0.75, 2.25 and 3.75 m 

from the crosswalk (Figure 5). 

 

 

 

                (a)                              (b)                                (c) 

Figure 5: Three experimental situations: high truck parks at a 

distance of 0.75m (a), 2.25m (b) and 3.75m (c) from the 

crosswalk 

We investigated the risk of contact between the car and the 

pedestrian, such as the pedestrian being hit by the car's right fender 

(Figure 6), as dependent on velocities and attention times of the car 

and pedestrian. According to [26] we set the pedestrian reaction 

time as 0.28 ±0.07 sec and driver reaction time as 0.70-0.75 sec. 

[27]. This includes all components of reaction, e.g. movement time 

of ~0.2 sec required to lift the foot from the accelerator and then to 

touch the brake pedal. 

 

 

 

 

 

 

Figure 6: Car's right fender hits pedestrian when truck parks 

at 0.75m distance from the crosswalk. 

3.2 When can each participant avoid the 

accident on its own? 
Let us investigate the conditions in which pedestrian and driver 

may take control of the situation and are capable of avoiding a 

collision, even if the other participant chooses the worst line of 

action.  

We start with a pedestrian that does not look around and crosses 

the street at a high speed of 6km/h (Table 1). In case of a truck 

stopped at 0.75 m form the crosswalk, the driver succeeds in 

noticing the pedestrian and stops safely when the truck’s speed is 

lower than 12 km/h in case the pedestrian reacts slowly, and 13 

km/h in case the pedestrian reacts fast. The reaction time of the 

pedestrian is based on estimates presented in [26] - 0.28 ±0.07 sec, 

and we used 0.28 - 0.07 = 0.21 sec and 0.28 + 0.07 = 0.35 sec as a 

reaction time for “fast” and “slow” pedestrian.  Similarly, when the 

truck is located 2.25m and 3.75m from the crosswalk, the driver is 

able to stop if his/her speed is below 24-28km/h. 

Table 1. Driver full control speed in case of inattentive 

pedestrian crossing at 6 km/h 
 Pedestrian's 

Reaction 

Distance between truck and crosswalk 

0.75 m 2.25 m 3.75 m 

Slow 12 km/h 24 km/h 26 km/h 

Fast 13 km/h 25 km/h 28 km/h 

Let us now consider an ignorant driver driving at a speed of 50 

km/h. To avoid an accident in case of a truck at 0.75 m, a slow 

reacting pedestrian must walk at 3.7 km/h or slower, while a fast 

reacting pedestrian can walk at speeds up to 4.6 km/h (Table 2). 
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For the two other positions of obscuring truck, a pedestrian 

walking at any reasonable speed is capable of detecting the car and 

stopping.  

Table 2. Pedestrian full control speed in case of inattentive 

driver at 50 km/h 
Pedestrian’s 

Reaction 

Distance between truck and crosswalk 

0.75 m 2.25 m 3.75 m 

Slow 3.7 km/h 5.1 km/h Above 6.0 km/h 

Fast 4.6 km/h 6.0 km/h Above 6.0 km/h 

Let us now focus on the most dangerous situation of close-by 

obscuring truck and investigate the case when, in order to avoid an 

accident, both the driver and pedestrian have to react to each other, 

i.e., when the driver’s speed is above 12-13 km/h. 

3.3 The situation in which both participants 

have to be careful 
Figure 7 presents the maximal safe speeds for the car and 

pedestrian in the case of inattentive and attentive agents, as 

obtained in the model for the obscuring truck at a distance 0.75 m. 

As can be seen from the chart, attentive agents can move faster and 

avoid the accident. Pedestrian reaction is very important in this 

case. Slowly-reacting attentive pedestrian will be in danger if the 

car’s speed is above 20 km/h, while the fast-reacting pedestrian is 

in danger if the car’s speed is above 35 km/h. Note that to avoid a 

crash regardless of the car’s speed, the pedestrian should not walk 

faster than 2 km/h.  

 

 

 

 

 
 

 

Figure 7: Maximal safe speeds for car and pedestrian with 

obscuring truck at a 0.75m distance 

The crash is a qualitative event and, to be really safe, one needs to 

include essential margins to the estimates presented in Tables 1, 2 

and in Figure 7. Let us estimate these margins. 

3.4 Safe avoidance of crash  
The situation in which the driver and pedestrian successfully 

avoided an accident by passing each other at a distance of 5 cm can 

be hardly considered safe. The human view of safe resolution of 

the accident demands a significant distance between the car and 

pedestrian during the entire period of their interaction.  

In our experiments with SAFEPAD we have chosen 0.5 m as 

“minimal safe” distance between the car and pedestrian. We 

investigate only the case of a truck at 0.75 m, and present the worst 

case for a slowly reacting pedestrian. As can be seen from Table 3, 

the safe speeds are essentially lower than those that are required in 

order to avoid the accident. 

To conclude, our model study confirms the importance of 

advanced stop lines on the road before crosswalk as an accident 

prevention measure. The simulations demonstrate that the distance 

between the advanced stop line and the crosswalk should be about 

2m, higher than the intuitive estimate of the 1.5 m as proposed by 

[28]. 

Table 3. Minimal distance between the car and slowly reacting 

pedestrian, truck at the distance of 0.75m from the crosswalk 
Pedestrian’s 

speed, km/h 

Car’s speed, km/h 
50 45 40 35 30 25 20 

5.5 crash crash crash crash crash crash 0.17 

5.0 crash crash crash crash crash 0.06 0.16 

4.5 crash crash crash crash 0.10 0.19 0.29 

4.0 crash crash crash 0.08 0.08 0.26 0.36 

3.5 0.04 0.04 0.06 0.10 0.18 0.28 0.47 

3.0 0.10 0.09 0.11 0.20 0.26 0.36 0.45 

2.5 0.22 0.20 0.47 0.71 1.05 1.08 0.47 

2.0 0.94 1.14 1.00 0.99 1.01 1.02 0.42 

Shaded cells – unsafe speeds 

Italic – pedestrian can stop and avoid accident on his/her own 

4. Discussion 
The proposed SAFEPED model is unlimited in “measuring” 

vehicular-pedestrian interaction in scenarios with a wide range of 

agents’ behavior. High temporal and spatial resolution of the 

SAFEPAD, similar to that of driver simulators and real-time in-car 

equipment, provides high potential for combining it with field 

studies [8, 9, 10, 11, 12, 13]. SAFEPED can serve as a tool for 

assessing accident risks at specific spots, and can identify measures 

to decrease these risks.  

By direct assignment of human-based behavioral rules to the 

model agents, SAFEPED is capable of implementing arbitrarily 

cognitive-perceptual parameters of drivers’ and pedestrians’ 

behavior, including strategic and tactical behavioral components.  
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ABSTRACT
The current state of the art in simulating highway driving
extensively relies on models using formulas similar to those
describing physical phenomena such as forces, viscosity or
potential fields. While the parametrization of these formu-
las can account for the limitations of the driver (such as re-
action delay), they are badly suited for modeling conscious
behavior. In this paper we describe our simulation archi-
tecture which uses an agent-based model to represent the
conscious tactical and strategic behavior of the agent. This
model will act as a high level input to a state-of-the-art vir-
tual physics model which models the physical vehicle and
the subconscious aspects of the driver behavior.

The concrete aspects of driving modeled in this paper are
the strategic lane preferences of the drivers, with a special
attention to the optimal lane positioning for a safe exit. We
have used the model to simulate the traffic on Orlando’s
Highway 408. The results match well with the real world
traffic data. The increased simulation detail can be applied
to crash prediction and the control of intelligent transporta-
tion system devices, such as variable speed limits.

1. INTRODUCTION
Existing microscopic traffic simulation models heavily rely
on mathematical formulas similar to those describing various
physical phenomena: forces, viscosity, potential fields and
so on. We will call these virtual physics models. Over the
course of the last fifty years there was a gradual shift from
formulas relying on fluid dynamics towards the individual
treatment of the vehicle as a particle subject to a collection
of forces.

These models have been proved predict well the integrative,
long term parameters of the traffic, such as throughput or
average speed in congested traffic. These values are highly
useful for making long-term decisions such as highway plan-
ning. Their level of detail, however, is insufficient to model
events depending on specific driver decisions – such as the

incidence of crashes. On the other end of the spectrum,
we find purely agent based simulators such as the NetLogo
[9] based http://ccl.northwestern.edu/netlogo/models/

Traffic2Lanes. These efforts are successful as proofs of con-
cepts, yet their realism and simulation accuracy is arguably
lower than state of the art virtual physics models.

Our work is centered on improving the accuracy of micro-
scopic highway simulation through agent based modeling of
the conscious aspect of the driver behavior. These type
of models are sometimes called “nanoscopic” traffic simula-
tions [6, 3]. Lower level behavior, such as the vehicle physics,
the driver’s reflexive action, and those aspects of the driver’s
behavior which have been learned to the point of becoming
automated will be handled by the virtual physics model aug-
mented to allow for the integration of the agent based com-
ponent. For the starting point of the contributions described
in this paper see [5].

The conscious part of the driver’s behavior can be classified
into strategic and tactical behavior. Strategic behavior in-
volves decisions which are planned for the overall success of
the drive (safe and fast arrival to the destination). Exam-
ples involve route planning, joining or leaving convoys, and
choosing the appropriate highway lanes. Tactical behav-
ior includes actions taken to achieve short term advantages:
overtaking a slow moving vehicle, escaping from a dangerous
situation, increasing the distance from an erratically moving
vehicle and so on. Our technical approach will be to separate
the behavior of the driver into three simulation modules, as
described in Figure 1.

The virtual physics model models the physics of the ve-
hicle as well as those aspects of the driver which are either
reflexive (such as emergency braking) or learned to the point
of becoming sub-conscious (such as lane following and keep-
ing a constant distance from the car in front). Our current
model is based on [5], but we shall investigate other models
as well.

The agent model models the conscious cognition of the
human driver. This includes both strategic planning (which
exit to take, which lane to prefer for long distance driving)
and tactical (the decision to join a convoy or overtake a slow
moving car). The agent model will receive input from the en-
vironment (including sensor data, signaling data, vehicle-to-
vehicle and vehicle-to-infrastructure communication). The
agent model acts through the virtual physics model, by tem-
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Figure 1: Overall architecture of the simulation
model integrating the virtual physics model, the hu-
man agent and the automation model.

porarily changing its parameters, which, when the action is
finished, will return to default values.

The automation model which models the action of the
driver assist technologies, such as intelligent cruise control,
emergency brakes, lane following and others. This compo-
nent replaces the virtual physics model with a separate con-
trol system. The transitions between the virtual physics and
the automation model need to model the real world transi-
tion of control between driver control and automation.

Due to space limitations, this paper will concentrate on a
single, important aspect of strategic behavior, the planning,
decision and execution of lane changes. For an even more
concrete focus, we describe in detail the planning for a safe
exit from a congested highway - which requires a number of
lane changes ahead of the exit. It was found that about 10%
of the crashes occurring on highways are sideswipe crashes
while about 11% of them are angle crashes [7]. Both types
are associated with lane changes (the reminder of the crashes
are mostly rear-end crashes). Modeling the mechanics of this
process is of a major importance as it can predict traffic
simulations with high crash risk.

The reminder of this paper is organized as follows. Section 2
describes the virtual physics models which are the baseline of
the contribution described in this paper. Section 3 describes
the model through which the agent’s preferences for specific
lanes are enacted. Section 4 introduces a probabilistic model
of success for lane changes. In Section 5 we apply the model
to the problem of safe exit/merge from highways. We apply
our work on the simulated traffic of Orlando’s Highway 408
in the real world traffic data. We conclude in Section 6.

2. VIRTUAL PHYSICS-BASED MODELS
As shown in Figure 1, our agent-based driver model is closely
integrated with and acts through the virtual physics model.
To motivate this architecture, and to provide the founda-
tion for the presentation of the agent model, we will briefly
describe a collection of technologies which together are a
good sample of the state of the art in virtual physics based
models. These components will be used in our system to
model vehicle physics and subconscious driver behavior. The
virtual physics model has three main components: a time-
continuous car following model, a lane change model and a
human driver model.

2.1 Car following models
Car following models describe the behavior of a car on a
single lane highway. Most such models calculate the accel-
eration or deceleration of the car though a formula of the
following general pattern:

dvi(t)

dt
= f(∆xi, vi,∆vi) (1)

where ∆xi = xi+1(t) − xi(t) is the distance between the
vehicle and its immediate leader, and ∆vi = vi(t)− vi+1(t)
is the approaching speed. The specific formula we choose to
use is the one introduced by Treiber et al. [10]:

dvi(t)

dt
= a

[
1−

(
vi

v0

)4

−
(
δ(vi,∆vi)

∆xi

)2
]

(2)

where a is the maximum acceleration of the vehicle, v0 is
the desired speed, and δ(.) is the desired distance from the
leading vehicle. This distance depends on a number of pa-
rameters through the following formula:

δ(vi,∆vi) = ∆xmin + viT +
vi∆vi

2
√
ab

(3)

where ∆xmin is the minimum distance in case of congestion
(vi = 0), T is the safe time headway which models the buffer-
ing time of the driver, and b is the comfortable deceleration,
which couldn’t be less than -9 m/s2 on a dry road.

Let us now discuss the intuitions behind this formula. On
a free road, the instant acceleration changes from the max-
imum acceleration a (when the vehicle is still vi = 0) to 0
(when the vehicle reaches its desired speed vi = v0). If a
vehicle follows a leader with a negligible approaching speed
(∆vi ≈ 0), the term viT in Equation 3 dominates such that
the vehicle maintains a distance viT from the leader.

In the situation when the vehicle approaches the leader with
a high speed, the last term vi∆vi/2

√
ab dominates and the

formula dictates a deceleration. The most extreme case is
when the vehicle moves with its desired speed v0 and ob-
serves a still obstacle at the distance of xi. To avoid a col-
lision, the vehicle must brake with deceleration −b when it
reaches a distance of ∆xi = v2

i /2b. Indeed, this is exactly
what the model predicts:

dvi(t)

dt
= −a

(
δ

∆xi

)2

= −a

(
vi∆vi

2
√

ab

)2

∆x2
i

= − v4
i

4b∆x2
i

= −b
(4)
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The car following model, defined in this way is considered
collision free.

2.2 Lane changing models
Our baseline model extends the car following model with
the lane change model described by Kesting et al. [2]. This
model assumes that lane changes happen instantaneously:
for a shift to the left lane, a vehicle which has been previously
in the middle lane, at time t disappears from the middle lane
and appears in the left lane. This opens the possibility that
a car, coming from behind in the new lane with a higher
speed can not break sufficiently quickly and collides with
the lane changing car. The model assumes that it is the
responsibility of the lane changing car to ensure that the
rear left vehicle j− 1 has sufficient buffer distance such that
it can decelerate before hitting the lane changing vehicle

âj−1(t) ≥ −bmax (5)

If this condition is not satisfied, the vehicle concludes that
it is not safe to change lanes.

The second feature of the lane changing model is the anal-
ysis of the motivations to change lanes, and the “politeness
of the drivers”. We assume that the goal of the vehicles is
to achieve their desired speed, which implies a certain de-
sired acceleration âi. The motivation of the driver to change
lanes is such that it can achieve this acceleration (which, we
assume, is not achievable in the current lane). However,
the changing of lanes might also trigger accelerations in the
other vehicles: for instance, it allows the current follower to
accelerate, and it might force the new follower to brake.

The notion of politeness models the fact that the driver
might consider the accelerations of the other vehicles as well
when taking a decision to change the lane. The politeness
parameter p specifies how much does the vehicle discount
the other vehicles’ desired acceleration compared to its own.
A value p = 0 indicates an impolite, fully selfish driver which
does not care about other drivers (however, it still considers
the safety criteria). The vehicle i will decide to change the
lane if the following inequality is verified:

(âi + p · (âj−1 + âi−1)− (ai + p · (ai−1 + aj−1)) ≥ ∆pth

(6)
where ∆pth is the politeness threshold. The left hand side
is the difference between the new accelerations âi, âj−1 and
âi−1 if the vehicle i successfully changes into the target lane
and the old accelerations ai−1 and aj−1 if it doesn’t change
lane. The intuition is that the vehicle favors to change lane
only when the advantage of the action is greater than the dis-
advantage it exerts to its neighboring vehicles. However, be-
cause the vehicle i can not obtain the parameters (T, v0, a, b)
for its successor i − 1 and j − 1, the utility of lane change
can only be calculated by vehicle i’s own parameters.

2.3 Human driver model in the virtual
physics approach

A human driver is in some aspects “less capable”, but in
other aspects “more capable” than the abstract driver envi-
sioned in the models considered up to this point. State of
the art microscopic traffic models consider some aspects of
the human driver such as reaction time, fatigue and cogni-

tive limitations and integrate them in the equations of the
virtual physics model.

For instance, our baseline model inspired from Treiber et al.
[11] implements the following aspects. First, we consider the
fact that humans can not perform an indefinite number of
decisions per unit of time. This is modeled by considering
a time step ∆t. At every time step ∆t the drivers observe
the traffic and make a decision about acceleration. This
acceleration value will remain constant for the next interval
∆t:

vi(t+4t) = vi(t) + v̇i(t)4t

xi(t+4t) = xi(t) + vi(t)4t+
1

2
v̇i(t)4t2 (7)

Another aspect of the human behavior modeled is the reac-
tion time T ′ necessary to reason about the traffic situation
and make decisions accordingly. This can be achieved by
substituting in Equation 1 the current state (∆xi, vi, ∆vi)
at time t− T ′. If t− T ′ falls between two simulation steps,
then it will be adjusted as:

x(t− T ′) = βxt−n−1 + (1− β)xt−n (8)

2.4 A critique of virtual physics models
Virtual physics integrate physical aspects (such as maximum
acceleration a and maximum breaking b) with psychological
aspects such as desired speed v0, and even cognitive limi-
tations such as the reaction time tr. A well tuned virtual
physics model can provide a good simulation of the overall
flow of the traffic. It can not, however, model well the details
of specific situations.

For instance, the model presented above assumes that the
only justification for a lane change is to achieve a more fa-
vorable acceleration. This obviously covers only short term
behavior, but even then, it fails to account for some impor-
tant aspects of driver behavior, such as the preference to
overtake on the left side or the tendency to return to the
preferred lane after overtaking. The model completely ig-
nores strategic lane change behavior, such as merging into
traffic, moving to a preferred lane, positioning to the right
lane for a forking highway and the preparation for exit.

Let us consider the issue of politeness as described in the
model above. A driver might act politely towards cars which
are trying to merge into the traffic from a merging lane which
is shortly terminating. The same driver might aggressively
pursue its goal of changing lanes when this is necessary for
him to make the desired exit. The problem is not with the
physical expression of the politeness, but with the fact that
this politeness is modulated by higher level cognitive acts,
which can not be modeled as forces.

3. STRATEGIC LANE CHANGE BEHAV-
IOR

Many highway simulation models assume that the lane
change decision is based on a near-term optimization cri-
teria. The vehicles will change lanes if they can get closer
to their desired speed. This, of course is only true under
the ideal assumption of an infinitely long highway, with no
road signs or obstacles and drivers who have no preconceived
ideas about the traffic lanes.
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In a real world traffic, especially for highways traversing
cities, however, there are a number of considerations which
affect this behavior:

- Entrances: the drivers enter the highway on the
rightmost lane which often serves as a temporary merg-
ing lane. The drivers need to merge into traffic before
the lane ends.

- Exits: when drivers exit the highway, they need to po-
sition themselves to the appropriate exit lane (usually
one or two rightmost lanes, but occasionally a leftmost
lane). Depending on the traffic, the approaching ma-
neuver must be started long before the exit.

- Avoid the rightmost lane. If the highway has more
than two lanes, and there is a zone with many en-
trances and exits, then most drivers prefer not to drive
on the rightmost lane, to avoid interference with cars
entering and exiting the highway.

- Leftmost lanes as high speed lanes. The leftmost
lane is usually deemed a high-speed lane and is avoided
by vehicles which drive slower by choice or necessity
(such as trucks). Vehicles which are pushing the posted
speed limits, however, are preferring the leftmost lane.

- Lane number variations. The number of lanes on
the roads changes with the location. Lanes terminate,
new lanes are added in busy areas. The termination
of lanes is usually signalled ahead.

- High occupancy vehicle lanes. Some highways des-
ignate the rightmost lane as a high occupancy vehicle
lane. This would naturally be a preference for qualify-
ing vehicles, but it also requires the traversal of many
other lanes for entrance and exit.

Beyond the conditions imposed by the highway configura-
tion, the lane change behavior also depends on the strategies
of the individual drivers. Some drivers might try to reduce
the number of lane changes, while others make them every
time it might offer a short term advantage. Some drivers
prefer to position themselves to the correct exit lane long
time ahead, while others might wait to the last minute to
move towards the exit. Some drivers prefer the leftmost
lane, while others try to avoid it and prefer middle lanes.

In this paper we introduce a framework which models the
static and dynamic lane preferences of the drivers. The
framework integrates with the virtual physics based mod-
els described in the previous section - it does not replace
but augments them. The preference model does not elimi-
nate the optimization for the desired speed from the sources
of driver decision. For instance, in an open highway with
the planned exit far away, speed optimization might trump
the preferences for certain lanes. When approaching the de-
sired exit, however, positioning to a preferred lane gradually
takes priority.

This agent-based model of traffic simulation allows us to
study aspects of traffic which are impossible with previous
models. Examples of the kind of questions we can answer
are:

- Are highway exits which are close to each other a help
or hinder to the smoothness of traffic?

- How does a left exit changes the shape of traffic?

- Do drivers which wait for the last moment to move
for the exit lane help or hinder traffic? What about
their performance (time to destination?) Their safety?
Other’s safety? Overall driving comfort?

- Do drivers who prefer the inside lane move faster?

We start by defining our notion of utility of a lane. The
first idea would be to use the left hand side of Formula 6 as
the utility metric. This value, however, can be negative: it’s
range is [−C,C] where

C = (a+ bmax) (1 + p) (9)

We need, however, a strictly positive utility metric for the
further definitions. To achieve this, we add C to the formula.
Thus the utility of the current, left and right lanes will be
defined as:

Uc = ∆pth + C

Ul = (âi + p · (âj−1 + âi−1)− (ai + p · (ai−1 + aj−1)) + C

Ur = (âi + p · (âh−1 + âi−1)− (ai + p · (ai−1 + ah−1)) + C

The preference model modifies the virtual physics model by
assigning the preference value Wc ∈ [0.0, 1.0] to the lanes
of the road. The preference values are assigned to the indi-
vidual lanes based on a longer term planning process. The
virtual physics model will consider the weighted utilities of
the lanes Uw

c = Wc · Uc and so on.

This way, the vehicle might not move to a low priority lane
even if that would confer a temporary advantage. Yet, the
agent’s behavior would still retain the smoothness associated
with the virtual physics model. When all the lanes have the
same preference, the behavior reverts to the basic virtual
physics model.

The preference weights are directly associated to the lanes
of the highway, yet the vehicle needs to make decisions one
lane change at a time. Thus the vehicle occasionally needs
to accept a decrease in utility in order to reach a preferred
lane after more lane changes.

To resolve this problem, we define the lane change prefer-
ences as follows. Wc is the preference of the vehicle’s current
lane. Wl and Wr are the maximum of all the preferences to
the left and right of the vehicle, respectively.

Let’s now consider some examples of the use of the prefer-
ences by the agent:

i) When entering the highway, the agent will set the pref-
erence of its terminating entrance lane to zero. This
will cause it to move to the highway’s continuing lanes
as soon as it is safe (see Figure 2(a)).

ii) When driving on the highway, the vehicle will assign
higher preference to the lanes it prefers driving on. The
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Figure 2: The agent tries to evaluate the preferences
of lane changes.

preference gradients will be, however, milder. This al-
lows the other components of the simulation to override
this behavior, if significant advantage is to be gained -
or if the tactical maneuver requires it (see Figure 2(b)).

iii) When the vehicle needs to “give a way” to a police car
or emergency vehicle, it will set the specific lane(s) to
zero preference, which will force it to move to one of
the non-zero preference lane as soon as it is safe. Once
the emergency vehicle has passed, the vehicle resets its
lane preferences to the previous ones (see Figure 2(c)).

iv) If the vehicle prepares to exit, it will modify the lane
preferences to prefer the exit lane. Note that this
does not mean that the vehicle will immediately change
to the exit lane, as a number of other safety condi-
tions need to be satisfied for each lane change(see Fig-
ure 2(d)).

v) Avoiding entering lanes. Let us consider a vehicle which
is on inter-city routes prefers to drive on the rightmost
lanes. These lanes, however become extremely busy be-
fore and after exits with cars which are entering and
exiting the highway. Thus many drivers prefer to the
left side of the road around the exit to their default
preferences after the merge finished. This shows in Fig-
ure 2(e). Note that this preference has again relatively
mild gradient, and can be overwritten by other consid-
erations.

3.1 Modeling lane changes under different
conditions

The default virtual physics model assumes lane changes hap-
pened as the result of an opportunity. In real life, however,
there are cases where the vehicle is forced to change lanes,
even if the change doesn’t improve the utility. For instance,
the agent needs to give up its fast left lane in order to exit,
or it needs to give way to an emergency vehicle.

These situations are modeled in our simulator by setting the
preference of the current lane to zero. Even in these cases,
although the vehicle wants to change lanes, it might not be
able to, because the safety conditions will not be satisfied.

We define the time to change lane the amount of time be-
tween the moment when the weighted utility dictates a lane
change until the moment when the lane change is safely ac-
complished. If the vehicle is not able to change the lane
before the utilities are reversed (or the lane ends), we say
that the vehicle missed the lane change.

To mimic the behavior of human agents in such situations,
we introduced a speed adaptation technique. The safety con-
dition for lane change is more likely to be satisfied if the
vehicle modifies the speed such that it matches the one of
the desired destination lane. Thus, under situations of forced
lane change, the vehicle will change its desired speed to the
current speed of the neighboring vehicle in the destination
lane. If the vehicle needs to cross several lanes (as the case
of the exit) it will change its desired speed in steps, always
adapting it to the speed of the next destination lane. Once
the forced lane change situation is terminated, the desired
speed of the vehicle reverts to the one dictated by the virtual
physics model.
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4. A PROBABILISTIC MODEL OF SUC-
CESS FOR LANE CHANGES

Many drivers prefer to drive during most of the journey on
the faster lane on the left side of the highway. To finish the
journey, however, they need to exit from the rightmost lane.
Thus, for most drivers, exiting the highway is a maneuver
which requires several consecutive forced lane changes. In
situations of heavy traffic, this can represent a significant
safety risk.

Different drivers approach the problem of exit differently.
Some prepare a long time ahead, moving towards the right-
most lanes. This, however, increases congestion on those
lanes. Others remain on the fast lanes until the last moment
– this however, requires several successive lane changes with
very little room for error.

In this section, we describe in detail the considerations of
preparation to exit, based on the lane change preference
model introduced in the previous section. Similar consid-
erations apply for the case when a vehicle needs to merge
from a lane which soon will terminate.

Probability of successful lane change: The need to pre-
pare in advance for exit is due to the fact that a driver who
intends to perform a lane change might not be able to exe-
cute it for a certain amount of time.

The difficulty of the lane change depends on the local den-
sity of the vehicles in the target lane Di and the average
speed difference between the vehicle and the neighboring
vehicles in the target lane ∆Vi. An experienced driver can
estimate Pr(t,Di,4Vi) - the probability that it can success-
fully change lanes in time t for a specific value of the density
and speed difference. For the purpose of our simulation, we
have collected this data by identifying lane change events in
the simulator logs. The probability was extracted from the
histograms of the time it took to actually perform the lane
change.

Probability of successful exit If the vehicle is currently
n lanes away from the exit lane, it will need to successfully
execute n lane changes before exit. The driver needs to start
its exit preparations at such a time / distance ahead so that
it can successfully exit with a certainty (high probability).

In the rest of this paper we will use 90% for this probability
value. This value requires some explanation, as it appears
to be low: it would imply that 10% of the drivers will miss
their exits. In reality, only a much smaller number of misses
happen. What will happen in practice is that either (a)
some of the other drivers will change their behavior such
that they allow the vehicle to exit or (b) the vehicle will
move even if the safety conditions are not satisfied. Note
that case (b) does not immediately imply a crash, only a
dangerous situation.

Let us now analyze how a driver can calculate the prepara-
tion time necessary for a safe exit with 90% certainty. Sup-
pose we have Pr(ts, Di,4Vi)- the probability of a single lane
change which is finished at time t when the next lane i has
density Di and speed difference4Vi. In general, if the agent
tries to change from lane i to j in time n, the probability

that it can succeed is

Pr(i, j, n) =
∑n−(j−i)+1

t=1 Pr(t,Di+1,4Vi+1)Pr(i+ 1, j, n− t) i < j∑n−(i−j)+1
t=1 Pr(t,Di−1,4Vi−1)Pr(i− 1, j, n− t) i > j

1 i = j

(10)
The probability of successful change across multiple lanes
can be calculated through a recursive algorithm. As the
probability of successful exit is monotonically (but not lin-
early) increasing with the time of exit preparation, we can
find the minimum preparation time necessary to achieve any
given successful exit probability through binary search in the
space of calculated probabilities.

For a driver it is usually easier to tie the exit preparation to
a specific distance to the exit rather than to a specific time
to exit, as the current distance to the exit is usually easy to
estimate from the information on the road signs. The “time
to prepare” can be converted into “distance to prepare” by
simply estimating the average speed of the vehicles on the
lanes separating the vehicle from the exit lane.

Using these algorithms we can envision a fictional optimal
exit model. This driver would first observe the relative
speeds and densities in all the lanes which separate the vehi-
cle from the exit lane. Then, using the calculations outlined
above, the driver would be able to calculate the optimal time
when it needs to start its exit maneuver (for a specific value
of safe exit probability).

5. EXPERIMENTAL RESULTS
5.1 Simulation parameters
For the experimental study we have run experiments us-
ing our simulator which implements the virtual physics and
agent models. The agent model also includes a number of
tactical behavior components not discussed in this paper
(such as communication through signaling), which ensures a
higher accuracy and realism of the overall simulation. The
experiments have been performed on a detailed, lane-by-lane
model of a 22.13 mile stretch of Highway 408. Inflow and
outflow information was acquired from the statistics of the
expressway authority1. The vehicle inflow was modeled as
a Poisson traffic, matching the specified average inflow rate.
The statistical data, however, does not provide an explicit
mapping between the point where a specific vehicle enters
and leaves the highway. Thus, for our model, we choose
exit points for the vehicle stochastically, with the probability
that the vehicle entering at entrance i will have a destination
at exit j being:

Pr(j) =
Out(j)

Out(j) +
∑

k>j Out(k)−∑l>j In(l)
(11)

where In(l) is the inflow rate of entrance with label l, and
Out(k) is the outflow rate of exit with label k. The denom-
inator in the Equation 11 is the total number of vehicles
which will pass or exit the location. However, the selection

1http://www.expresswayauthority.com/Corporate/ about-
Statistics/HistoricalTraffic.aspx
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Table 1: Default parameters of the simulation
Parameter Symbol Value
simulation step ∆t 0.1s
maximum deceleration bmax 5.0m/s2

vehicle length xlength 4m
minimum distance ∆xmin 2m
acceleration a 1.5m/s2

desired deceleration b 2.0m/s2

headway time T 1.5s
desired speed v0 105km/h± 20%
politeness p 0.5
politeness threshold ∆pth 0.2
visibility range xvisibility 400m
reaction time T ′ 0.4s
lane change time tlane 2.0s

probability is calculated with the assumption that the ve-
hicle doesn’t exit before j, so we need to normalize them
as

Pr(i, j) =
∏

i<m<j

(1− Pr(m))Pr(j) (12)

To simulate the highway in the rush hour, we increase the
inflow and outflow rate by the flow ratio. The parameters
of the simulation are summarized in Table 1.

For the following experiments we will study two different
types of vehicle behavior with the same virtual physics
model but different agents. The SIG agent does not change
the speed of the vehicle when trying to change lane. In con-
trast, the VAR agent is changing its desired speed to match
the destination lane, according to the technique described
in Section 3.1.

5.2 Rate of exit misses function of the exit
preparation distance

In this experiment, we study the rate of the exit misses (or,
in a different interpretation, of the dangerous exits) in func-
tion of the distance where the vehicles start their preparation
for exit by changing their lane preferences to prefer the exit
lane (as in Figure 2(d)).

Figure 3(a) shows rate of exit misses for the two agents SIG
and VAR for regular traffic on Highway 408. We find that for
both agent types the miss rate decreases with the distance,
but in general the VAR agent has a lower miss rate.

Figure 3(b) shows the same measurements for rush hour
traffic (with the inflow and outflow increased five times).
The conclusions from the normal traffic situation extend to
this scenario as well. The rate of exit misses of the VAR
agent did not change significantly, on the other hand the
miss rate of the SIG agents is much higher, and it cannot be
reduced below about 20% even with early preparation.

We conclude that the technique of adapting the speed to the
target lane is a major component of safe driving under high
traffic conditions. While this might appear as a common-
sense advice for an experienced driver, it is an observation
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Figure 3: The rate of exit misses function of the
preparation distance with normal inflow and outflow
rate 3(a), and during rush hour 3(b).

which does not appear in purely virtual physics based mod-
els, yet it emerges naturally when that model is augmented
with an agent-based conscious behavior simulator.

5.3 Average lane change time
In this series of experiments we studied how long it takes for
a SIG or VAR agent to perform a single lane change under
various traffic situations. We assumed a very long prepara-
tion distance (1000m) and for each lane change forced by the
strategic agent behavior we logged the traffic situation and
the time to succeed ts. Thus, the log does not contain the
opportunistic lane changes dictated by the virtual physics
model. To gather all possible local traffic situations, we run
a set of simulations with different flow ratios.

In Figure 4(a) (SIG) and Figure 4(b) (VAR), we divided the
density and speed difference into small ranges and plotted
the average time to succeed function of density and speed
difference.

The first conclusion we can reach from these graphs is that
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Figure 4: Average lane change time for the SIG and
VAR agent in various traffic situations.

both the speed difference and the density affect the time to
change lanes. As expected, the time for the VAR agent is
consistently shorter than for the SIG agent, reconfirming the
validity of the speed adaptation strategy. For example, when
the density is 30 vehicles per km, and the speed difference
is 20 km/h, it takes 17.49s to do a lane change. However,
if the agent adapts the desired speed, it only takes 6.94s to
change a lane.

Another insight is that if the vehicle density is low, the speed
difference has little effect on the lane change time, because
the agent can simply let the high speed vehicle pass and
change into the next lane before the new one comes. In the
high density lane, however, as the speed difference increases,
it needs to wait a long time before the safety condition is
satisfied. On the other hand, with the same speed difference,
the more vehicles in the agent’s next lane, the more time it
needs to take for a single lane change.

We conjecture that an experienced driver has an intuitive
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Figure 5: The average speed compared to the de-
sired speed for arrived vehicles during rush hour on
Highway 408.

understanding of the values of these graphs (choosing the
graph which corresponds to his own driving style, SIG or
VAR). What this means that given a specific traffic condi-
tion, the driver can estimate the time it will take to change
lanes. This estimation will serve as input for the next ex-
periment.

5.4 Adaptive preparation distance
It appears that the safest choice is to choose a VAR type
agent as a sufficiently long preparation distance such that
the risk of missing the exit is minimized. Unfortunately, such
an agent would loose performance. Figure 5 shows the aver-
age speed for all arrived vehicles compared to their desired
speed. The average speed of the VAR agent is significantly
lower, which translates to longer trip times. Some of this
is the unavoidable cost of safety. However, by maintaining
the same preparation distance both under easy and difficult
conditions, the agent is unnecessarily loosing performance.

Figure 6 plots the missing rate as well as the averaged speed
in the function of the inflow ratio. We compare four strate-
gies: SIG and VAR with a fixed preparation distance of
600m, and their “intelligent” variants with adaptive prepa-
ration distance INT-SIG and INT-VAR. We find that, as ex-
pected, the adaptive strategies have a more “flat” diagram,
allowing us to choose our preferred compromise between per-
formance and risk.

6. CONCLUSIONS
Agent-based modeling can contribute significantly to the ac-
curacy of microscopic highway simulations, in modeling the
conscious behavior of the driver and the action of the au-
tomated driver aids. Yet, agent researchers need to thread
carefully: we are contributing to a field with 50 years of his-
tory, with a collection of finely tuned models, which perform
very well as long as their operational assumptions are main-
tained. There is little to be gained from insisting on a“pure”
agent-based model. First, there are low level aspects of the
driving which do not conform to the definition of an agent.
Second, even if we manage to force our model into an agent
straitjacket, we will need to reinvent the significant amount
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Figure 6: The rate of exit misses and average speed
in the function of flow ratio on Highway 408

of fine tuning which went into the virtual physics models.
On the other hand, if we successfully integrate the virtual
physics and agent models, the benefits are immediate.

This paper described an approach where the model of the
conscious driver – representing the strategic thinking about
lane preferences and planning for a safe exit – is integrated
with and acts through the virtual physics model. We found
that the model makes successful predictions on issues which
are out of reach of the virtual physics based models. For
instance, our model correctly predicts that the highest safety
risk for exits appears at the case of moderate congestion,
both low traffic cases and high congestion is comparatively
more safe. This matches well with the results of studies of
predicting crash prone situations for rear-end crashes [8] and
lane-change crashes [7, 4, 1].
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ABSTRACT
Adaptive Cruise Control (ACC) is a technology that allows a vehi-
cle to automatically adjust its speed to maintain a preset distance
from the vehicle in front of it based on the driver’s preferences. In-
dividual drivers have different driving styles and preferences. Cur-
rent systems do not distinguish among the users. We introduce a
method to combine machine learning algorithms with demographic
information and expert advice into existing automated assistive sys-
tems. This method can reduce the number of interactions between
drivers and automated systems by adjusting parameters relevant to
the operation of these systems based on their specific drivers and
context of drive. We also learn when users tend to engage and dis-
engage the automated system. This method sheds light on the kinds
of dynamics that users develop while interacting with automation
and can teach us how to improve these systems for the benefit of
their users. While accepted packages such as Weka were success-
ful in learning drivers’ behavior, we found that improved learn-
ing models could be developed by adding information on drivers’
demographics and a previously developed model about different
driver types. We present the general methodology of our learning
procedure and suggest applications of our approach to other do-
mains as well.

1. INTRODUCTION
Cruise control is a known technology that aids drivers by reducing
the burden of controlling the car manually. This technology con-
trols the vehicle speed once the user sets a desired speed. Cruise
control is not only convenient, but it has the potential to improve
the flow of traffic [15], and can be effective in reducing driver fa-
tigue and fuel consumption [1]. In this paper, we focus on a second
generation of cruise controls– adaptive cruise control (ACC). ACC
is designed as a comfort-enhancing system, which is an extension
of conventional cruise control (CC). The ACC system relieves the
driver from some of the longitudinal-control tasks by actually con-

trolling speed and headway keeping, but the driver can choose to
engage or disengage the ACC at any time. The major difference
between ACC and CC is the use of radar technology to maintain a
preset distance between the vehicle with the ACC and other vehi-
cles on the road. This distance is controlled by a "gap" parameter
which sets the minimum gap (headway distance) to the vehicle in
front of it. Figure 1 shows a picture of a steering wheel with the
ACC technology. Note the existence of a "gap" switch on the left
side of the figure.

While ACC adds more automation to the driving experience, it typ-
ically also requires the driver to set and adjust one more parame-
ter, the gap setting. The current approach is to preset the gap set-
ting to a default value which can be adjusted by the driver man-
ually based on his driving preferences. Another approach taken
in previous published attempts was to learn this setting focusing
on mechanisms such as fuzzy logic [8, 9]. In these previous ap-
proaches, rules were learned manually after having interviewed
human drivers. Based on these rules the gap setting value was ad-
justed automatically to the conditions of the drive without consider-
ing the particular driver in the vehicle. Individual drivers, however,
differ in their driving styles and preferences. Therefore, a person-
alized learning approach may be valuable.

In this paper, we primarily focus on a method that learns how to
quickly and accurately adjust the gap setting based on the specific
driver and context of a drive. To accomplish this task, we created
general driver profiles based on an extensive database of driving
information that had been collected from 96 drivers [5]. We used
post-processing of data from that study. Our general method is
that once a new driver is identified we classify this driver as being
similar to previously known drivers and set the initial gap setting
accordingly.

The challenge of this study was to process real world data so as to
obtain the most accurate and practical rules from the learning algo-
rithms. We found that the information gleaned from demographics
and the driver’s type was crucial for creating more accurate learn-
ing models. This work focuses on which attributes will help, and a
general methodology for adding them. By following this method-
ology, we found that a better application could be created in this
domain, and are confident that better applications can be created in
other domains as well.
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Figure 1: A steering wheel fitted with ACC technology.

This paper is organized as follows. In Section 2 we introduce re-
lated work and specify the driver type information that aided in
modeling driving behavior. Then, Section 3 describes the theoret-
ical and implementation challenges the ACC learning agent must
overcome. Section 4 details the extensive database used to create
the ACC agent. Section 5 provides empirical support for the suc-
cess of effectiveness of this agent. Finally, Section 6 concludes and
presents possible directions for future research.

2. RELATED WORK

The concept of using a group of characteristics to learn people’s
behavior has long been accepted by the user modeling community.
Many recommender systems have been built on the premise that
a group of similar characteristics, or a stereotype, exists about a
certain set of users [12]. Even more similar to our work, Paliouras
et. al [10] suggested creating questionnaires, distributing them, and
then creating decision trees to automatically define different groups
of users. Similarly, our application assumes that some connection
exists between users, which can be learned using machine learning
techniques. We propose that this approach be applied to customize
settings within an application, here ACC, and not within recom-
mender systems.

Previously, Fancher et. al [7], analyzed a group of 36 drivers and
their acceptance of adaptive cruise control (ACC). While all drivers
enjoyed and accepted the ACC, they found that drivers could be di-
vided into three types with each group demonstrating specific driv-
ing tendencies which impact their headway and closing speeds, rel-
ative to vehicles ahead. In very general terms, these groups were
assumed to be: one that is most aggressive, another that is least
aggressive, and a third that is in between. Although it is clear that
more detailed grouping may exist, and that a different profiling of
the drivers’ population can be made, for the purpose of this study
the characterization analysis was aimed at identifying the above
three grouping types. The three driving styles are: 1. Hunters (ag-
gressive drivers who drive faster than most other traffic and use
short headways); 2. Gliders (the least aggressive drivers who drive
slower than most traffic or commonly have long headways); and
3. Followers (whose headways are near the median headway and
usually match the speed of surrounding traffic). In this scheme of
things, Hunters are drivers who tend to drive faster than the sur-
rounding flow and they tend to travel at shorter headway times than

those adopted by other drivers. In contrast, at the other end of driver
characteristics, Gliders tend to travel slower than the surrounding
flow and they tend to travel at longer headway times than those
adopted by other drivers. Between the Hunters and Gliders lie the
Followers who tend to go with the flow of traffic. They tend to
adapt their driving behavior to the situation they are in.

The idea of assisting the driver in the task of longitudinal control
has been the focus of research in the last decade [8, 9]. Opera-
tion tests have given insight into this task. However, the goal of
this project was to attempt to create an intelligent ACC agent that
could potentially set this longitudinal value autonomously through
adjusting its gap setting per each driver.

In this paper, we use driver characterization into types (hunter,
glider or follower) in addition to other demographic information
to attempt to build an application that predicts how the ACC should
set its gap (headway) given this information and road situation. In
general, other research has previously found that we can better pre-
dict people’s behavior by combining relevant behavior theory, here
about people’s driving type and demographics, in conjunction with
machine learning methods. These studies have included how other
behavior theories: Aspiration Adaptation [14] and the Focal Points
[18] could be used in conjunction with machine learning algorithms
to create an improved classifier. These results also showed some
positive correlation between the complexity of the problem domain
and the improvement in performance when augmenting the behav-
ior model. Thus, the more complex the learning task, the added
gain in the learning model by adding behavior information. This
paper explores how the behavior model of a driver’s type impacts
their gap setting.

3. LEARNING METHOD

Current ACC systems allow the user to choose a value for the gap
setting between six possible values (1–6). These values control the
distance the ACC autonomously maintains with the vehicle in front
of it. Currently, one value is set as default (in our case this value
was 6) and the user may change it during his drive as he wishes.
In order to study the problem of predicting what gap setting a per-
son would select, we constructed two different types of models.
The first type of model was a regression model which attempted
to predict the number a given driver would select given the current
driving conditions. The second type of model was a decision tree
model which treats each number within the system as discrete val-
ues representing different categories a driver can choose. Our goal
was to use the output of either model to automatically set the gap
setting. Towards this goal, the second model is seemingly the better
choice as its output directly correlates to a value within the system.
In contrast, the regression model outputs a decimal value (e.g. 3.5)
that must be first rounded to the closest value within the system to
be used. However, the advantage of this model is that a mistake
between two close values (e.g. 3.5 being close to 3 and 4) is not as
mathematically significant as mistakes between two extreme val-
ues (e.g. between 2 to 6). In contrast, the discrete decision tree
model weighs all types of errors equally. In practice, the regres-
sion model will likely be more useful if the user is willing to accept
errors between two similar values.

Additionally, we focus on two secondary goals, when the ACC is
first engaged, and when the ACC is disengaged. Here, the goal was
not to create an agent to autonomously engage or disengage the
ACC. However, by analyzing when people are most comfortable
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with the ACC, we hope to understand the user acceptance of such
systems.

In both of these learning tasks, we are confronted by the known
dataset imbalance problem [2]. In many real-world problems, as
is the case here, each class is not equally represented. In fact, in
the specific case of the ACC engagement task, over 90% of manual
driving cases continue their manual driving, and in only a small per-
centage of cases do people engage the ACC. From a statistical per-
spective, a classifier could then naively classify all cases as being in
the majority case and still have extremely high accuracy. However,
because only the "minority" cases are relevant, novel methods are
needed to find them. While several algorithms exist, we specifically
focused on the MetaCost algorithm [4] because of its flexibility in
controlling the bias size given to the minority case.

A second key implementation challenge lie in the algorithms them-
selves. While we used the popular Weka learning package [16]
to implement all learning algorithms, the content experts often be-
lieved that the resulting models were extremely overfitted. Unfor-
tunately, many theoretical learning algorithms are prone for over-
fitting when applied to real-world datasets [17] and the content ex-
perts involved with the project found this to be the case in this do-
main as well. To overcome this challenge we used simplified deci-
sion trees. The idea of using simplified decision trees is not new,
and a variety of algorithms have been developed for simplifying
decision trees [6]. However, these algorithms were developed for
increased performance. In this application, we intentionally sac-
rificed a certain level of performance to reduce overfitting. Thus,
we applied these algorithms for a different reason than the one they
were developed for, but still achieved the desired result – a non-
overfitted decision tree.

Specifically, we used the reduced error pruning method developed
by Quinlan [11], named REPTree with in the Weka learning pack-
age [16]. According to this approach, a decision tree of maximum
height Tmax is reduced to TDepth, with TDepth ≤ Tmax, ostensi-
bly to produce improved performance. In our application we chose
the maximum value for TDepth that the content experts deemed was
not overfitted, as we found that the best performance was achieved
when TDepth = Tmax and our goal was to achieve the best per-
formance within the model without producing an overfitted model.
Empirical results detailing specifics of the models used to create
the ACC’s agent are explained in the next section.

4. EXPERIMENTAL SETUP

Data for our analysis were taken from the Automotive Collision
Avoidance System Field Operational Test (ACAS FOT) [5]. In that
study, to understand how different drivers use an ACC, each of 96
drivers was presented with a vehicle fitted with the ACC which they
used for a period of 4 weeks. During the first week the ACC system
was not available. That is, if the driver engaged the cruise control,
it simply maintained speed just like the conventional system (CC).
During the next three weeks, if the driver chose to engage the cruise
control, it functioned as ACC. In general, three different datasets
were considered. The first, and most basic, dataset were objec-
tive characteristics that can be studied based on the location of the
vehicle itself, e.g., headway distance to the lead vehicle, vehicle
speed, longitudinal acceleration, road type (country, city, or high-
way), weather (including day or night) and road density (is there
traffic). A second dataset added driver characteristics. These prop-
erties focus on driver demographics such as age, sex, income level

Figure 2: The importance of driver type and demographics in
predicting the gap setting within the ACC for a discrete deci-
sion tree model.

(high, medium, low), and education level (High School, Under-
graduate, and Graduate ). The ACAS FOT data consists of a good
mixture of these demographics with a 51% male to 49% female
split, 31% young (aged 20–30), 31% middle aged (aged 40–50),
and 38% older drivers (aged 60–70), and people from a variety of
education and socioeconomic levels. The last dataset also logged a
previously developed measure used to quantify a driver’s behavior
[7].

The experimental design of the ACAS FOT was a mixed-factors
design in which the between-subjects variables were driver age and
gender, and the within-subject variable was the experimental treat-
ment (i.e. ACAS-disabled and ACAS-enabled). The disabled pe-
riod was treated as a baseline measure, since the research vehicle
operated like a conventional passenger vehicle. The drivers oper-
ated the vehicles in an unsupervised manner, simply pursuing their
normal trip-taking behavior using the ACAS test vehicle as a sub-
stitute for their personal vehicle. Use of the test vehicles by anyone
other than the selected individuals was prohibited. The primary em-
phasis on user selection for the field operation test was to roughly
mirror the population of registered drivers, with simple stratifica-
tion for age and gender. No attempt was made to control for ve-
hicle ownership or household income levels. Thus, although the
ACAS FOT participants may not be fully representative of drivers
who might purchase such a system, they were selected randomly
and represent a wide range of demographic factors.

5. RESULTS

In this section we present results for the three previously defined
problems: predicting a driver’s gap setting within the ACC using
both discrete and regression models, predicting when a driver will
engage the ACC, and predicting when a driver will disengage the
ACC. In all three problems we present how the driver type and
other demographic information helped improve the model’s accu-
racy. Additionally, we analyze which attributes were most signifi-
cant in this application, how we avoiding overfitting, and how we
addressed the dataset imbalance problem within this application.

5.1 Setting the ACC’s Gap Setting

Figure 2 presents the accuracy of the decision tree model to learn a
driver’s preferred gap setting in the discrete model. Clearly, adding
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the demographic data here is crucial, as the model’s accuracy drops
from over 66% accuracy with this data to less than 37% accuracy
without this. As a baseline, we also include the naive classifier,
which is based on the most common gap setting– here the value
of 6, which is also the system’s default. Note that the naive model
had an accuracy of nearly 27%, far less than other models. The
user’s type did improve accuracy, as adding this information to the
type increased accuracy to near 70%. In line with our previous
work [13], we hypothesized that adding this behavior model yields
less significant increases if it can be learned from other attributes
within the data. Here, we believed that adding information about
drivers’ type is less important, as their type was already evident
from information such as the driver’s demographics.

To support this hypothesis, we constructed a decision tree (again
C4.5) to learn the driver’s type. We found that this value could be
learned with over 95% accuracy (95.22%) when learned with the
full Reptree (Tmax)– which strongly supports our hypothesis. We
present a pruned version of this tree (TDepth = 4) within Figure 3.
From an application perspective, we were not shocked to find that
a driver’s age factored heavy in their driving behavior. This charac-
teristic is factored in actuary’s insurance tables, and is a known fac-
tor in car insurance premiums [3]. Note that this characteristic was
the first level below the root of the tree, demonstrating this quality.
However, possibly equally interestingly is that we found education,
not gender to be the next most important factor as it formed the
second level within the decision tree. This factor is typically not
considered by insurance companies [3], but may be worth consid-
ering. Only in the third level did we find the popular characteristic
of gender to factor in, but income also weighed in as an equally
important important factor. Overall, we found that young men or
women with only a high school degree tended to "hunters" or those
with extremely aggressive driving habits, college educated women,
and people with higher degrees but lower paying jobs tended to be
the less aggressive "gliders". Middle aged men with high school
degrees, all middle aged people with college degrees, and people
with higher degrees buy lower paying jobs also typically belonged
to the middle "gliders" category. But older women with college
degrees, people with low or medium paying jobs with only high
school degrees, and all older people with higher degrees tend to be
of the least aggressive "follower" type. Naturally, exceptions ex-
isted, and this simplified tree only is approximately 75% accurate.
Nonetheless a general direction is evident from this tree, and was
one that the content experts felt was not overfitted.

TDepth Accuracy [%]
2 47.55%
3 56.41%
4 62.43%
5 65.46%
6 67.51%
7 68.50%

Table 1: Analyzing the tradeoff between the model’s accuracy
and the height of the tree TDepth.

Similarly, it was important to find a decision tree that models drivers’
gap settings that is not overfitted as well. Note that the accuracy of
the Figure 2 given all data is nearly 70%. However, while this value
is based on the mathematically sound C4.5 algorithm [11], the con-
tent experts again felt this decision model was overfitted. We then
proceeded to reduce the size of the tree as to generalize the model,
thus preventing this phenomenon. However, as Table 5.1, demon-

Figure 5: The importance of driver type and demographics
in predicting the gap setting within the ACC for a regression
model.

strates reducing the table size does not improve the model’s ac-
curacy, as previous theoretical works suggest [6], but did produce
trees that were acceptable to the content experts. Note that raising
TDepth yields marginal increases in model accuracy with TDepth

= 7 being nearly accuracy to the result in Figure 2. In general,
we found that the experts were happy with much smaller trees, but
those with similar accuracy. For this problem, we display in Figure
4 the resultant tree of TDepth = 4 which is only 6% less accurate
the full tree in Figure 2. However, for comparison, the full tree pro-
duced with the unpruned C4.5 algorithm has a total size of 1313
leaves and branches, while the pruned tree only has a total size of
50 leaves and branches. Thus, from an application perspective, this
tree was strongly favored by the experts, even at the expense of a
slightly less accurate model. Note that the rules themselves are still
heavily influenced by the driver type and demographic information,
with driver type being the first level of the tree and the second and
third levels of the tree again being primarily based on demograph-
ics such as age, gender, education, and income level.

Similarly, we were able to create an accurate regression model,
the results of which are found in Figure 4. Within these models,
correlation values can range from 1.0 (fully positive correlated)
to -1.0 (fully negatively correlated) with 0 be with no correlation.
We found a model with both demographic and type data yielded
a correlation of 0.78, while without this information the accuracy
dropped to 0.75. Using only vehicle specific data yielded a model
of only 0.4, and the naive model (here using the average gap value
of about 3.5) yielded a value of nearly 0. Again, we found that the
type only slightly improved the model’s accuracy, as much of this
information was already subsumed within the drivers’ demograph-
ics. Here again, the experts opted for a reduced model, despite the
sacrifice of slightly less accuracy.

5.2 Predicting when the Driver will Engage
and Disengage the ACC

While the focus of the ACC is on the gap setting that differentiates
the adaptive cruise control, from the "standard" cruise control, we
also considered two additional problems: when people activate the
ACC and when they deactivate it. The goal behind the gap value
task was to allow an autonomous agent to set, at least initially, this
value within the ACC. However, by understanding when people
are more likely to use this product we can hopefully increase its
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Figure 3: The decision tree for learning a driver’s "type".

acceptability and use. Similarly, by understanding when people
disengage the ACC we can hopefully create new generations of this
technology where people will use it longer and not feel compelled
to disengage it.

In both of these learning tasks, we are confronted by the known
dataset imbalance problem [2]. In this paper, we constructed two
models for these two problems based on the same three types of
datasets. The first model is a basic C4.5 without any modification.
As was the case in gap setting task, we considered attributes based
on the behavior type model, driver demographics and the vehicle’s
characteristics. In the second model, we again used the same three
datasets, but created a learning bias to find the important minority
cases. We specifically focused on the MetaCost algorithm [4].

Table 2 displays the complete results demonstrating the tradeoff
between a model’s accuracy and the success in finding the minor-
ity cases in the task of predicting when a driver engages or dis-
engages the ACC. The first four rows represent different models
created to predict when a person would activate the ACC. The first
model is the standard decision tree algorithm C4.5. In addition,
we considered three weight biases within the MetaCost algorithm:
0.5, 0.7 and 0.9. Note that raising these weights allows us to give
greater weight to the minority case, thus increasing the recall of
cases found, but at a cost to the overall accuracy of the model.
For each of these models we trained four different models: one
created with all information, one without the type information but
with the demographic information, one without the type and with-
out the demographic information, and a naive model that assumes
the majority case– that a person continues driving in manual mode.

The accuracy of each of these models are found within the first four
columns in Table 5.2, and the corresponding recall levels for these
models are found in the last four columns of the table. Similarly,
we also considered the task of predicting when a person turns off
the ACC, and trained models based on the same four algorithms
with the same four datasets. The results for the accuracy and the
recall of these models are found in the last four rows of Table 2.

Ideally, one would wish for a perfect model: e.g. one with 100%
accuracy and recall of all cases. Unfortunately, this is unrealistic,
especially in tasks involving people which are prone to variations
due to noise. Nonetheless, the overall conclusion is that by adding
more information, and specifically about a person’s demographics,
we were able to achieve higher overall accuracies with better recall.

We would like to present the driver for a recommendation as to
when to engage the ACC. Towards this goal, we wish to build a
model that is as accurate as possible, but with a minimum thresh-
old. Thus, we wished to set the desired confidence level of the
model, as found based on the recall of the minority class, before
presenting a recommendation to the user. Figure 6 displays the in-
terplay between the overall model’s accuracy and the recall within
the minority cases in the task of predicting when a driver engages
the ACC. Again, the most desirable result is one in the upper right
corner– high accuracy and recall. However, as one would expect,
and as evident from Table 2, the naive case of continuing with-
out engaging the ACC constitutes over 91% of the cases, but this
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Figure 4: The decision tree for learning the ACC’s Gap Setting for TDepth =4.

Figure 6: Comparing the overall model accuracy and recall for
cases for engaging the ACC

model will have recall of 0 for the minority case. By modifying
the weights within the MetaCost algorithm we are able to get pro-
gressively higher recall rates over the basic decision tree algorithm.
Also note that the model trained with all information achieves sig-
nificantly better results than one without the type and demographic
information.

Similarly, Figure 7 displays the same interplay between the overall
model’s accuracy and the success in finding the minority cases in
the task of predicting when a driver disengages the ACC. In this
task, the naive case assumes that the driver will continue with the
ACC constitutes over 86% of the cases, but this model will have
recall of 0 for the minority case (see the left side of Figure 7). Note
that we were again able to raise the recall within the minority case
by creating weight biases of (0.5, 0.7 and 0.9), but again at the ex-
pense of a lower overall accuracy. However, as opposed to the en-
gage ACC task, we noticed that the gain from the demographic and
type information was not very significant. In fact, upon inspection
of the output trees, we noticed to our surprise that people’s deci-
sion to disengage the ACC was more dependent on how quickly the
ACC slowed the vehicle down, and not on the overall behavior of
the driver. Thus, it should be noticed that simply adding attributes
is not a panacea for higher accuracy– it only improves accuracy
when relevant to the learning task at hand.

Overall, these results suggest that finding attributes beyond the ob-
served data can be critical for accurately modeling a person’s be-
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ACC On All Info Without Type Without Demo Naive All Info Without Type Without Demo Naive
C4.5 92.67 92.32 91.22 91.27 0.35 0.32 0.07 0
MetaCost 0.5 92.42 91.97 90.97 91.27 0.40 0.36 0.13 0
MetaCost 0.7 91.93 91.38 90.37 91.27 0.45 0.42 0.18 0
MetCost 0.9 87.99 86.60 77.12 91.27 0.63 0.61 0.51 0
ACC Off All Info Without Type Without Demo Naive All Info Without Type Without Demo Naive
C4.5 88.71 88.64 88.42 86.37 0.37 0.37 0.35 0
MetaCost 0.5 88.59 88.55 88.14 86.37 0.43 0.42 0.41 0
MetaCost 0.7 87.68 87.49 87.31 86.37 0.49 0.49 0.49 0
MetCost 0.9 82.03 82.23 81.15 86.37 0.66 0.67 0.66 0

Table 2: Analyzing the tradeoff between overall model accuracy (left side of table) and recall of the minority cases (right side) in
both the task of when people turn the ACC on (top) and off (bottom).

Figure 7: Comparing the overall model accuracy and recall for
cases for disengaging the ACC

havior. Similar to previous studies that found that other behavior-
ial theories can better predict people’s actions [14, 18], this work
found that a driver’s preferred gap setting could be better predicted
by using a model of driving behavior [7]. Even if this measure was
not readily available, an accurate estimate of this value could be
learned based on a driver’s demographic data.

Generally, one of the goals of this paper is to encourage people
who build applications to consider incorporating data from exter-
nal measures, such as psychological or behaviorial models. As was
true in other domains as well [14, 18], exclusively using behav-
ior models alone, such as the driver type possible in this domain
[7], is not sufficient. By combining the driver type with other data,
we achieved a prediction accuracy of nearly 70% within the dis-
crete decision tree model (Figure 2) and a correlation of 0.78 within
the regression model (Figure 4). However, when we used only the
driver type information and removed the demographic information
these models dropped to an accuracy of 46% and 0.55 respectively.
This suggests that exclusively using behavior models is not as ef-
fective as the approach we present. Thus, we advocate for synthe-
sizing data gleaned from behaviorial models in conjunction with
observed domain data, something we believe can be effective in
many other domains as well.

Practically, we are studying how either or both of these attributes
can be used in the company’s ACC. The advantage to using the
demographic data alone is that ostensibly it can be provided before
the driver begins using the car (e.g. in the showroom) and thus can
be used to accurately model the driver from the onset. However,

people may be reluctant to provide this information due to privacy
concerns. Using driver profiling information is relatively difficult
to calculate and is based on observed behavior over a period of time
[7]. Thus, this value cannot be used to initially set values within the
ACC. However, this data can be collected without privacy concerns
and can be used to further improve the system’s accuracy over time.

6. CONCLUSIONS

This paper presents an in-depth analysis into how learning approaches
could be applied to create an intelligent Adaptive Cruise Control
(ACC) agent that learns a driver’s profile – both in terms of what
gap setting she will chose, and when she is likely to engage or dis-
engage their ACC. To create this agent we used real-world data
from the past experience of many drivers from the ACAS field test
data [5]. Specifically, we created driver models based on two learn-
ing approaches: regression and decision trees. Both were able to
learn accurately the gap setting of an individual given his demo-
graphics characterization and driving type (hunter, glider or fol-
lower) with nearly 70% for the decision tree model and with a
correlation of 0.78 for the regression model. These experiments
emphasized the need for driver information including a behavior
model about the driver’s type [7] in addition to the information
collected on the trips themselves and their demographic informa-
tion. These results stress the fact that drivers may be very different
from each other and previous approaches that set the gap setting
similarly for all drivers [8, 9] are less effective. Therefore, driver
characterization is essential for adapting automated systems in the
vehicle. These differences among humans are made more salient
when trying to learn when users engage or disengage from an auto-
mated system such as the ACC. Reactions could be very different
teaching us also about the tendencies of users towards automation.

We present solutions for two practical challenges in applying learn-
ing algorithms to this challenging domain: preventing overfitted
models, and creating effective models in cases where a strong ma-
jority category existed but the important events were in the minority
category. We address the overfitting issue by created simplified de-
cision trees, and we use the MetaCost algorithm [4] to learn from
unbalanced data sets. We present extensive results details specifics
of this application and how these algorithms were used within this
challenging transportation domain.

More generally, adapting automated processes to better serve hu-
mans is a challenging task because humans are characterized by
inconsistent behaviors, have difficulties in defining their own pref-
erences, are affected by their emotions, and are affected by the
complexity of the problems they face within the context of these
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problems. By understanding the current state of acceptance of auto-
mated systems and learning about differences among human users,
we can improve the next generations of adaptive automated systems
adjusted to their particular human users.
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ABSTRACT
In public transportation the question of how to achieve a
good match between demand and capacity is essential for
operators to provide a high quality service level within rea-
sonable costs. Agent-based micro-simulation is a promising
method to evaluate the impact of operational decisions and
selected tariffs at both the level of the individual passen-
ger and the aggregate level of the operator. During recent
years, this technique has been applied successfully to sev-
eral large scale real life cases. However, the demand of the
agent population in these simulations is usually derived from
aggregated census data and surveys conducted among a rel-
atively small sample of the travelers. With the advent of
smart card ticketing systems new opportunities to generate
an agent population have surfaced. We use a unique smart
card dataset containing four months of individual mobility
data from passengers among three modalities in an urban
Dutch public transportation system to generate agent pop-
ulations. We model the temporal flexibility of agents based
on patterns observed in the check-in/check-out behavior of
individual travelers. We then run simulations to study how
these agent populations react to a discounted tariff in the
off-peak hours. Finally, we discuss opportunities to improve
our approach in the future.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Miscella-
neous

General Terms
Experimentation, Algorithms, Management

Keywords
Agent Based Micro-simulation, MATSim, Pattern Based De-
mand, Public Transport, Revenue Management, Smart Card
Data

1. INTRODUCTION
In public transportation systems without seat reserva-

tions, the question of how fluctuating demand can be ser-
viced in a cost-efficient way poses a major challenge. Peaks
in demand have a high toll on the costs, since they dictate
the required amount of staff and the number of vehicles,
while vehicles that are almost empty generate a net loss for
the operator. Tools that allow the public transport operator
to evaluate the effects of operational and strategic decisions

on costs and demand are therefore vital to achieve the goal
of improving the service quality and financial performance.
However, most of the tools used in practice aggregate the
passengers to homogeneous flows, either because detailed
data is not available, or to reduce the complexity the de-
cision maker has to face. During recent years, smart card
systems have been introduced that log all movements of in-
dividual passengers through the systems. This gives a lot
of detailed data that was previously unavailable. However,
given the body of research related to smart card data, we
can see that incorporating such data into the tools used for
decision making is a non-trivial task [17].

A promising approach is agent-based micro-simulation. In
such a simulation, individual passengers and vehicles are
modeled through agents that interact with the public trans-
portation system according to their individual goals. In this
paper, we will use the MATSim simulation package [1] which
has an active user-base and has been applied to a number
of large scale scenarios. Within MATSim, all agents try to
adapt their plans in such a way that their utility is improved.
The simulation runs until there is no significant improve-
ment within the agent population, i.e. until the population
reaches an approximate equilibrium.

The major issue in generating an agent population from
real life observations is the question how we can prevent
agents to divert from this equilibrium in an unrealistic way,
without restricting the agents in such a way that their only
preference is to replicate the observed state.

We will limit our field of application to the study of rev-
enue management. In revenue management[21] we want to
control demand by adapting our pricing strategy in such a
way that we get a better match between the available ca-
pacity and the demand emerging from the population. Our
population can try to adapt to our pricing strategy by shift-
ing the time at which they travel. We will study how the
population reacts to an off-peak discount, but we believe
that our approach is suitable for many other applications.
One idea is to include the choice for mode of transport.

When generating our agent population, we run into the
problem that the number of observed journeys differs a lot
between individual passengers. We solve this problem by
combining three types of demand that we can detect in our
smart card dataset: trip-based, tour-based and pattern-based
demand. Our first goal is to show how we can efficiently gen-
erate the agent population from our smart card data using
these three demand models. Our next goal is to discuss how
we can experiment with different parameters for the demand
models to study revenue management. The final goal is to
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discuss our results and how we can improve our methods in
the future.

The remainder of this paper is organized as follows: in
Section 2 we discuss prior literature and related work. In
Section 3 we discuss smart card datasets in general and our
dataset in particular. Section 4 addresses the modeling of
demand, based on the smart card dataset. In Section 5
we discuss the simulation and our experimental setup. We
present the results of our experiments in Section 6. Finally,
we discuss our results and opportunities for extensions of
our approach in Section 7.

2. RELATED WORK
In recent years, smart card ticketing systems have at-

tracted notable attention from the research community. A
recent literature review on the use of smart card data in
public transportation is given by [17]. They divide the stud-
ies into three categories: strategic-level studies, tactical-level
studies and operational level studies. Since some of the pub-
lic transportation systems only work with check-ins, part of
the literature focuses on estimating the destination of pas-
sengers given their check-in location and time (for example,
[23]). Some literature describes how the behavior of pas-
sengers can be analyzed. A notable example is [15], where
spatial and temporal variations are measured across different
types of cards. However, the literature review [17] contains
not a single reference to the use of smart card data within a
simulation context. Moreover, their conclusion contains the
following quote:

For the mass of data available on individual trips,
new modeling methods will be needed, such as
the Totally Disaggregate Approach, because clas-
sical models cannot be used at a such detailed
level of resolution. [...] It will then be possible to
calibrate individual base models from these large
datasets. [17]

In the simulation of road traffic, microscopic simulation
models have been a topic for quite some years. In the
1990’s, it was mostly a topic studied as a field of application
for super computers [10]. With the increase of computing
power, more applications emerged in the 2000’s, including
[22]. With the introduction of MATSim [1], we saw a rise
in literature related to micro-simulation. MATSim has been
applied to some very large scale scenarios, including simu-
lations of Berlin [19] and Zürich [13], both including more
than a million individual travelers. Recently, MATSim was
expanded from the simulation of road traffic, to the simula-
tion of public transportation as well [18]. The website of the
project contains a list with the most important publications
related to the project and is updated regularly.

The kind of microscopic demand which is fundamental in
the design of MATSim, is called activity-based demand [9]
and was already discussed in the context of micro-simulation
by [14] in 1997. This is an approach where travel demand is
modeled by means of the activities the individual travelers
want to perform over the day. One way to record the activ-
ities of individual travelers is by using surveys (for example
[5]). In recent studies, census data was used to perform this
synthesis of the activity based demand [4]. A survey on this
approach to demand generation is given by [16].

Apart from modeling the activity patterns of travelers, a
lot of research regarding the behavior of travelers has been

performed, resulting in many sophisticated methods. Most
notably, we would like to mention the field of discrete choice
modeling [7], since it has spawned a lot of research within
the domain of transportation. One of the main tools within
discrete choice modeling is the stated-choice survey, where
respondents have to select their preferred alternative.

A comprehensive textbook on revenue management is [21].
The focus of studies related to revenue management has been
on systems where reservations are made in advance. In our
setting, however, we do not have a mechanism where we can
decide whether we accept new customers. This is different
from, for example, long distance trains and the airline indus-
try where tickets are always bought in advance. An example
of a study related to revenue management in a comparable
railway setting is [12]. This study shows some of the diffi-
culties in applying revenue management within our context.
An example of a succesful application for long distance trains
with seat reservations is [8].

3. SMART CARD DATA
During recent years, the Dutch smart card, called “OV-

chipkaart” was introduced as a cross-operator travel prod-
uct. Starting from 2009, the smart card was made the
mandatory product of travel in major Dutch cities, such as
Amsterdam and Rotterdam, replacing paper tickets. One of
the unique features of the Dutch system is that passengers
have to check-in and check-out with the smart card in all
modes of travel, including railways.

We use data collected from smart card usage over the
course of four months from a major public transport opera-
tor in the Netherlands. During this period, the only avaible
tickets were different smart card products. The transactions
in our dataset denote either a check-in or check-out in a vehi-
cle or on a platform. Moreover the smart card data contains
the mode of travel, the unique id of the chip on the smart
card (which we will call the media id), the time stamp of the
transaction (in seconds) and the location of the transaction.
Due to the sensitivity of the data for the operator and pri-
vacy concerns for the passengers, we will only show relative
numbers and figures in this paper.

We prepared our raw dataset of almost 60 million trans-
actions in such a way that we could process each transaction
sequentially. We had to split up the dataset into separate
chunks, using a round robin approach to assign media id’s
we had not seen before to a fixed chunk for that id. Af-
terwards, we sorted the separate chunks on media id and
time stamp in main memory. We combined the results into
a single dataset. While processing this set sequentially, we
would be sure to encounter all transactions belonging to a
certain media id together, with increasing time stamps.

After sorting the dataset, we linked check-ins and check-
outs to make trips. Passengers who forget to check-out gives
rise to inconsistencies in the dataset. It is relatively easy to
filter these inconsistencies out, by assuming that a consec-
utive check-in and check-out belong together. This is rea-
sonable, since the system has a maximum amount of time
after which a check-in becomes invalid. After this linking
step we know all the trips made by the passenger. Since the
passengers have to check-in and check-out in each vehicle,
we have separate trips when the passenger makes a transfer
on his journey. Another preprocessing step is to link consec-
utive trips that are close in time to each other into journeys.
This yields our main dataset. Figure 1a shows the numbers

114



of unique passengers traveling over the course of a typical
weekday. Figure 1b showsa histogram describing how many
journeys were made with a single smart card. As we can
see, most of the smart cards have made only a relatively low
number of journeys, but there are plenty of passengers with
many journeys.

4. DEMAND MODELING
When it comes to demand modeling for the simulation

of public transport, a traditional approach is to use origin-
destination matrices estimated from sources such as census
data and manual counts of the number of passengers in some
sampled vehicles [16]. The main drawback of this approach
is that it becomes very difficult and expensive to measure
the exact progression of passenger flows over the day. With
smart card data, we know the origin, destination and exact
time of travel of each individual travel, which allows for new
opportunities with respect to measuring these flows.

Regarding flows of passengers in the network, we can take
different approaches. The basic approach is to consider a
flow through the network as a set of journeys: passengers
who travel from a certain origin to a certain destination at
a certain time. We will refer to this approach to demand
as trip-based demand. However, in many cases there will be
passengers who travel multiple times within the same day.
In many of these cases, their consecutive journeys combine
to a tour from origin to origin, with some intermediate des-
tinations. In such cases, events happening at one of the
intermediate destinations, will also influence the events in
the remainder of the tour. Since our goal is to model in-
dividual passengers instead of aggregated flows, these tours
contain valuable information. We will refer to this approach
to demand as tour-based demand.

In activity-based micro-simulation, each individual trav-
eler can be represented by an agent and this approach thus
allows for microscopic analysis of a public transport system.
The drawback is that we need a lot of information to model
these agents. Even if we assume that all activities take place
at a station, not all required information is available in the
smart card data. The smart card data tells us where, when
and how people travel, but it doesn’t tell us why people
travel, which is something that is vital to activity-based de-
mand modeling.

Not all is lost, however: the traditional approach uses
various statistical methods and interpolation techniques to
fill the gaps of unknown information, in order to be able
to simulate a public transport system. We can apply such
an approach to the smart card data as well: we use the
information which is available, such as location, modality
and time of travel as much as possible and fill the gaps of
information using estimation methods.

We will refer to the approach that goes beyond the notion
of tour-based demand, but does not yet reach the precision
of activity-based demand, as pattern-based demand. In a
broad sense, we define pattern-based demand as demand
produced by activities of such a nature that certain pat-
terns will emerge in the travel behavior of passengers who
perform the activity routinely. The most typical example
of such an activity is working, since people usually work at
regular times at a certain location. Other types of activities
are education (which is usually bound to a schedule that
may or may not change regularly), a periodic visit to family
members and visiting sports events. In this paper, we will

focus on patterns generated from working activities, since
we believe that these will be most easy to recognize. In ad-
dition to this, we will consider educational activities with a
fixed schedule as working activity, since the implications for
the temporal flexibility of a passenger are usually similar.
To summarize, we have:

Trip-based demand Demand with only a single journey.

Tour-based demand Demand consisting of a tour of jour-
neys, with consecutive arrivals and departures at the
same station. Also, the first and last station are equal.

Pattern-based demand Demand that exhibits a recur-
ring pattern, produced by some regular underlying be-
havior of the passenger (which is possibly unkown).

4.1 Detecting customer patterns
Commuters usually live and work at the same place. This

leaves patterns of frequent home → work → home journeys
in the smart card data. We can scan consecutive journeys for
these patterns. This way we can derive an activity profile for
a customer. For the sake of convenience, we limit ourselves
to the class of activity profiles described in the following
definition:

Definition 1. Activity Profile
An activity profile is a tuple (l, bpref , epref , δb, δe) where

• The activity takes place at location l

• The preferred starting time of the activity is bpref

• The activity will not start before bpref − δb and not
after bpref + δb

• The preferred ending time of the activity is epref

• The activity will not end before epref−δe and not after
epref + δe

• The preferred duration of the activity is epref − bpref

Now for each passenger, we will try to decide whether he
is commuting and what his home and working stations are.
To do this, we have to make a few assumptions.

1. We assume that somebody who is commuting travels
a lot. Therefore, if the number of times traveled in
the considered dataset is not above a certain threshold
(which should be chosen according to the length of the
time period under consideration), we conclude that the
passenger is not a commuter.

2. We assume that a commuter has a fixed home and a
fixed location of work and that the stations associated
with these locations will be the two most frequently
visited stations. To be sure these frequent stations are
visited more frequently than other stations, we define
thresholds for the number of times they should occur.

3. We assume that, if we include weekends, someone will
spend more time at home than at work. Since we can
measure the time between a consecutive arrival and a
departure from a station, we classify the station where
the greatest amount of time is spent as the home sta-
tion.
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(a) Demand histogram of a weekday (b) Histogram of the number of passengers that made a
certain number of journeys within 4 months

Figure 1: Demand as observed in the smart card dataset

4. We assume flexibility in time of travel and the length of
the working activity is represented by a certain amount
of variation in their travel times between their home
and working stations.

We use the first assumption to decide whether we will try
to recognize a pattern for a certain passenger at all. The
second and third assumptions can be used to recognize a
passenger’s home station and working station. Finally, we
use the fourth assumption to model the flexibility of a pas-
senger based on this variance. These assumptions give us
the following efficient algorithm:

Algorithm: Detecting Customer Patterns.

Parameters A minimum sample size θ, thresholds t0 and
t1 with 0 < t0, t1 ≤ 1

Input A set J of n journeys of a single passenger

Output A home station s and a pattern (t, bpref , epref , δb, δe)
that describes a working activity profile as defined in
Definition 1

Step 1 if n < θ then conclude there is no valid pattern

Step 2 Find stations a, b with maximal frequency as a start
or endpoint over the journeys in J

Step 3 Denote na, nb as number of journeys that have a
or b as a start or endpoint, n as the total number of
journeys in J

Step 4 if ¬(na ≥ t0n ∧ nb ≥ t1n) then conclude there is
no valid pattern else

Step 4a ∆a := average time difference between con-
secutive (a, b) and (b, a) journeys

Step 4b ∆b := average time difference between con-
secutive (b, a) and (a, b) journeys

Step 4c if ∆a ≥ ∆b then s := a; t := b else s :=
b; t := a

Step 5 Take the average arrival time of (s, t) journeys as
preferred starting time bpref

Step 6 Take the average departure time of (t, s) journeys
as preferred ending time epref

Step 7 Take the standard deviation of (s, t) arrival times
as the start time flexibility δb

Step 8 Take the standard deviation of (t, s) departure times
as the ending time flexibility δe

Step 9 return s, (t, bpref , epref , δb, δe)

It is not difficult to see that each of the steps can be
performed in time linear with respect to the set of journeys
J , except for Step 2, where we have to calculate frequency
statistics. To take the first and second most frequent station,
we can sort the stations based on their frequencies. Since at
most O(n) station occur in J , this gives a O(n logn) time
bound. In [20], it is discussed that this selection problem
takes O(n logn) time in general. Since there are no loops in
the algorithm, we may conclude that it runs in O(n logn)
time for a single passenger with n journeys.

4.2 Deriving the Agent population
We will now discuss how to derive an agent population

from our dataset. In the beginning of Section 4, we discussed
the difference between trip-based, tour-based and pattern-
based demand. Since there are smart cards that are used
only once and passengers who have highly irregular travel
patterns (because they don’t use public transport to com-
mute), we will not be able to derive a pattern for each cus-
tomer and we may not even be able to find a tour in the
data for each customer. Therefore, we will take a step-wise
approach, where we first try to calculate a pattern for a pas-
senger. If this succeeds, we will generate demand for this
passenger based on the pattern we found. If we fail to find
a pattern, we search for a tour and generate tour-based de-
mand by introducing dummy activities at the intermediate
stations of the tour. If we even fail to find a tour, we will
generate trip-based demand by generating agents for each
trip the customer made.

We will choose a single day (preferably not during the
weekend) to model. We first filter our dataset such that
we only retain customers that have traveled on that day.
After filtering, we decompose our dataset into three parts:
one group contains customers of which we know a lot, one
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group contains customers of which we have a tour and lastly,
one group of customers with a single or unpredictable travel
pattern. For each customer, we will have to generate an
activity plan for the day. We will take a different approach
to the generation of plans for each group of customers.

A plan for the day is a list of activity profiles with planned
ending times for all activities. There is one exception: the
last activity of the agent should be a home activity, which
has no ending time. The ending time in the plan of an agent
may differ from the ending times in the activity profile: an
agent may try to deviate from his preferred time if this gives
him an improvement in utility. The planned ending time is
exactly what allows the agent to do this. When we start gen-
erating plans for our agent population, we will initially stick
with the preferred ending times from the activity profiles as
the planned ending times. For the group of customers for
which we have derived a pattern, we can generate a home →
work → home activity plan. For the group of customers for
which we only have a tour, we only have a set of locations.
For the activity profiles, we can easily derive a starting and
ending time, using the check-out and check-in time at each
intermediate station. The flexibility is a problem, however.
For the time being, we decide to select a global value for the
δb and δe of tour-based agents. We take a similar approach
with the trip-based customers, where we generate a single
agent for each trip. For each journey we observe from u to
v, we generate an agent with a home→ dummy→ home pat-
tern, where the first home activity should be performed at
location u and the dummy and last home activity should be
performed at location v. This gives us the following efficient
algorithm for demand generation:

Algorithm: Generation of Demand.

Input A day d and a set of customers C with for each c ∈ C
their respective set of journeys Jc

Output An agent population for day d

Step 1 P := {p : p ∈ C, Jc contains a journey during day d}

Step 2 Ppat := {p : p ∈ P, Jp has a pattern }

Step 3 Ptour := {p : p ∈ P\Ppat, Jp makes a tour at day d}

Step 4 Ptrip := P \ (Ppat ∪ Ptour)

Step 5 Initialize agent set A := ∅

Step 6 for each p ∈ Ppat

Step 6a Generate an agent with a “home → work →
home” plan

Step 6b Add the agent to A

Step 7 for each p ∈ Ptour

Step 7a Generate an agent with a plan containing the
tour locations and ending times of p’s tour at day
d

Step 7b Add the agent to A

Step 8 for each p ∈ Ptrip, for each (u, v) journey traveled
by p on d

Step 8a Generate an agent with a “home (at u) →
dummy (at v) → home (at v)” plan of which the
dummy activity should start at the check-out time
of the journey

Step 8b Add the agent to A

Step 9 return A

The running time of this algorithm is proportional to the
size of the Jc sets. Let us define n =

∑
c∈C |Jc|. If we

define k = |C| as the number of customers and m as the
maximum number of journeys for a single customer, we can
easily see that n ≤ mk. Steps 1-3 are regular filtering steps,
that can be performed by examining each set Jc or by ap-
plying the earlier algorithm and can therefore all run in
O(mk logm) = O(n logm) time. The loops in steps 6-8 each
iterate at most over k customers and generating the plan for
each customer can be done in O(m) time. Therefore, steps
6-8 run in O(mk) = O(n) time as well. Therefore, the whole
algorithm runs in O(n logm) time.

5. SIMULATION

5.1 MATSim
For our agent-based simulation, we used the MATSim

0.3.0 software package. To run a MATSim based simulation,
we need three ingredients: the agent population, a network
describing how vehicles can travel between nodes and a pub-
lic transportation schedule. When we start the simulation,
all agents calculate an initial plan. The main loop consists of
a simulation and a replanning phase. During the replanning
phase, each agent can adapt his activity plan. They do so
by using certain modules available in MATSim, called mu-
tators. During the simulation phase, all plans are executed
and all events related to movements and activities of agents
and vehicles are generated. The mutators used by the agents
to adapt their plans, can be given individual probabilities.
An example of such mutators are the rerouting mutator,
that recalculates the fastest route between activities based
on the network congestion of the previous day. Another ex-
ample is the time mutator, that shifts the planned starting
and ending times of the activities randomly, while retaining
their sequential order.

Recently, the mobility simulation of MATSim has been ex-
tended with support for public transport [18]. This mobility
simulation is an extension of the road-traffic simulation. In
MATSim, model public transport vehicles as cars with a
driver and a lot of space for additional passengers moving
over a network that is given as input.

To generate the required network, we used a list of stations
with their geographical locations and the available schedule
information for all three modalities. We add the stations
as nodes in the network. If there was a vehicle that visited
two stations consequently in the schedule, we added a link
between the two stations, with the distance of the link based
on Euclidean distance between the two stops. We enforce
the vehicles to wait at each stop until their scheduled time of
departure. The mobility simulation itself is a discrete event
simulation through a queuing network generated from the
input network.

MATSim allows us to transfer money from or to an agent,
but this mechanism is not triggered automatically. We added
a module that imposes fares on the agents. It keeps track
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θ pattern tour trip
80 26% 32% 42%
120 14% 40% 46%
160 4% 48% 48%
200 1% 50% 49%
∞ 0% 50% 50%

Table 1: Population distributions for different θ values

of the moments agents enter and exit the vehicles and the
distances traveled by the vehicles. The fare of a journey
consists of a base tariff that is the same for all journeys
and a distance tariff with a certain fixed amount per meter
traveled. An additional aspect is the transfer time: if the
check-out time and check-in time of two consecutive jour-
neys is small enough, the agent doesn’t have to pay the base
tariff a second time. At the end of the simulation of a sin-
gle day, the accumulated fares are billed to the agent and
transformed into disutilities during the evaluation of the ex-
ecuted plan. The utility function itself is described in [11].
The main idea is that traveling gives a disutility, while per-
forming an activity gives utility. We did not yet implement
an extension of this scoring function that assigns a personal
price sensitivity to each agent, so this is currently a common
parameter for all agents. We used 6 and −6 as the (global)
coefficients for the performing and traveling utilities and−18
as the coefficient for late arrival.

5.2 Experimental Setup
We ran our experiments on a desktop PC with a quad-

core Intel Core 2 Quad Q6600 processor and 8 GB of RAM
running Windows 7 Professional SP1, 64-bit. Since we want
our passengers to have their working station in at least half
of their journeys and we want their home station to be at
least as frequent as their working station, we chose t0 = 0.6
and t1 = 0.5. Prior to our experiments, we generated popu-
lations for different values of θ. We examined a few possible
values, of which the distributions are presented in Table 1.
Since θ = 80, θ = 120 and θ = ∞ give us the greatest vari-
ations, we chose these for our experiments. For the tour-
based and trip-based demand, we wanted our agents to keep
as close as possible to their observed travel time, so we fixed
δb and δb for their activity patterns to 5 minutes. This gives
us a total of three different agent populations.

For our pricing strategy, we took figures inspired by the
real world pricing policies. We set the base tariff to 0.75
and the distance based tariff to 0.115. The allowed trans-
fer time is set to 30 minutes. For our experimentation with
revenue management policies, we ran each of our popula-
tions through the network two times: once with a single
tariff over the full day and once with a discount of 1% out-
side the peak hours (the peak hours are between 7:00–9:00
and 16:00–19:00). We chose 1% because our agents will al-
ways try to optimize their utility, even if the increase is very
small. The check-in time determines whether the discount
is given. To allow agents to shift their times, we enabled
MATSim’s time mutator module. Running each population
against both pricing policies, we get a total of six experi-
ments.

After some preliminary experiments, we saw that the in-
crease of agent-utilities slowed down significantly between
the 60th and 100th iteration. To be sure our simulation

reached a state that is close to an equilibrium, we ran each
simulation up until the 180th iteration.

6. RESULTS
Generating our agent population could be done very effi-

ciently from our sorted dataset of journeys that we derived
in Section 3. The average time required to process this full
set of 27 million journeys and write the agent population
to MATSim input files was on average 107 seconds. Our
simulation could roughly execute a complete iteration of the
mobility simulation in a little less than two minutes. Some
additional time was needed for finding all the shortest routes
through the transit network and dumping all the plans of the
agents after each 10th iteration. A complete run of a single
scenario took roughly five hours. The vehicle loadings ob-
served after the first iteration were in all of our six scenarios
relatively similar to Figure 2e. But at the 180th iteration,
we saw notable differences.

Let us first consider the case where we have a homoge-
neous pricing strategy over the whole day. When we move
from θ = 80 (Figure 2a) to θ = 120 (Figure 2c), we see that
the peak during the morning peak becomes a bit smaller,
while the evening peak becomes a plateau that is a bit wider.
This implies that, as soon as we treat some passengers who
where pattern based in the θ = 80 case as tour or trip-based
during the θ = 120 case, they tend to move away from the
morning peak, but towards the evening peak. When we in-
crease θ to ∞ (Figure 2e), we see that the morning peak in-
creases a bit and the evening peak increases a lot. This sug-
gests that some of the pattern-based agents in the θ = 120
case actually traveled during the morning peak in the θ =∞
case, where they were less flexible.

One thing that should be noted is the high peak close to
the end of the day in both Figure 2a and Figure 2b. This is
a clipping artifact and implies that a certain group of agents
prefers to travel at the end of the day and suggests there is a
problem with the calibration of these agents. Although the
problem decreases when we increase θ, the problem does
not disappear entirely, even when we have θ = ∞. We
ignore this problem for the time being, but it suggests that
we should be careful in drawing conclusions based on these
results, and it is an issue that should be addressed in the
future.

Now let us consider the scenarios where we discounted the
off-peak hours. The most obvious result is the fact that this
generates new peaks outside the peak-hour windows that
are even higher than the rush hour peaks. This implies that
even with a relatively small 1% discount, most of the agents
have an incentive to divert from their initial plans. There
can be two reasons for this behavior: either the agent is
flexible enough to divert without losing utility, or the disu-
tility of being early or late is smaller than the utility gained
from the discount. We can study the result of decreasing the
flexibility by comparing the results for θ = 80 (Figure 2b)
with the results for θ = 120 (Figure 2d). A noticeable differ-
ence can be observed in the patterns that emerge within the
peak-hour time windows. The evening peak in Figure 2d
has a triangular structure, compared to the θ = 80 case.
When we increase θ to ∞, we get this triangular pattern
in the morning peak as well and the effect is even stronger
in the evening peak. Since all agents will travel by public
transport and many agents diverted to the off-peak hours,
the discount resulted in a drop in revenue.
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(a) θ = 80, plain tariff (b) θ = 80, off-peak discount

(c) θ = 120, plain tariff (d) θ = 120, off-peak discount

(e) θ =∞, plain tariff (f) θ =∞, off-peak discount

Figure 2: Vehicle loadings after 180 iterations for different sample size thresholds θ. On the horizontal axis, the time of day
is displayed. On the vertical axis, the number of people currently travelling is displayed.
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7. DISCUSSION
Our results show that our proposed method of generat-

ing an agent population from a smart card dataset and
performing a microscopic simulation where each customer
is presented by an agent is achievable within a reasonable
amount of time. Generating the agent population and per-
forming a single run of the simulation (given that all routes
are calculated) both take under two minutes of time.

The results themselves show that the agents in our popu-
lation react heavily to our discounted pricing policy, even if
we have very inflexible agents in the θ =∞ case. However,
we see that a certain number of agents still prefers to travel
within the more expensive time window and in case of the
θ = 120 and θ =∞ cases, we see a triangular peak emerging
within the peak hours. This suggests there is a population
of agents for which the utility of arriving late is worse than
the fare reduction. This should typically hold for agents who
have to make a short distance trip, because for these agents
the fare reduction is relatively low, compared to agents who
have to travel a longer distance. This holds for real life
passengers as well: a reduction on a small fare is of course
much smaller than a reduction on a large fare. However, we
can argue that the response of the agents is still too radical.
We think the simulation will benefit greatly from calibration
and utility functions that are not entirely linear with regard
to the fare (especially when comparing prices, humans tend
to disregard small price differences to some extent). Adding
individual price sensitivities to our population of agents will
be another way to improve in this regard.

When we compare the differences between our populations
for different values of θ, we see that all populations maintain
the property that during the typical peak hours demand is
greatest. The value of θ seems to have the biggest impact on
the evening peak. For lower values of θ, this part of the de-
mand spreads outs to a much larger extent than the morning
peak. This corresponds to the observation that usually the
evening peak is longer in time and not as sharp as the morn-
ing peak. This is something which we can observe to some
extent in Figure 1a as well. The main issue with the lower
values of θ seems to be that we get greater clipping artifacts
around 5:00 and 24:00. We hope this can be addressed by
calibrating the utility functions, or by limiting the flexibil-
ity of agents when we come across individuals with extreme
cases.

In the remainder of this section, we will discuss different
topics for future research. In Section 7.1 we discuss how to
improve the demand generation itself. We discuss the possi-
bilities with regard to calibration of the parameters used by
the simulation in Section 7.2. Section 7.3 addresses the ques-
tion how we can incorporate additional datasets in order to
distinguish different types of activities. Finally, Section 7.4
addresses the issue of validation.

7.1 Demand Generation
First of all, we must consider our demand generation algo-

rithm. In our algorithm we make a couple of assumptions.
The assumption that people who commute travel a lot, is
very fundamental and probably realistic. The assumption
that commuters have a fixed home and fixed working loca-
tion probably often holds, but may be relaxed a bit: it can
be broken by people who have more than one place to spend
the night, or who have a job that has different locations that
get visited in regular patterns. With enough observations,

it may be possible to detect such patterns as well. The as-
sumption that people spend more time at home probably
holds often as well, but we must be careful with regard to
outliers: it may be possible that somebody switches mode
while at work (either by taking a bike or a car). In such an
event, it would be possible that our approach reveals that
somebody stayed for days at his working station, while this
was not true in reality. The assumption that the variation in
travel behavior of a passenger reflects his flexibility with re-
gard to travel time is the most doubtful. Studies with more
information regarding this assumption would be extremely
valuable in improving our demand generation process.

While we have shown that our approach can efficiently
generate an agent population from a real life smart card
dataset, the fact that we have taken an approach that is
very efficient and straightforward to implement has the dis-
advantage of being relatively crude. One may argue that we
can introduce sophisticated pattern recognition and data-
mining techniques in this process, in order to generate an
agent population that is closer to reality. One area for fu-
ture improvement is that we use the average starting time
and ending time of working activities, but ignore their pos-
sible correlations. In Figure 3 we can examine the scatter
plot of the durations, starting and ending times of working
activities performed by pattern-based individuals within the
four months of our dataset. While a more thorough analysis
is necessary, it seems probable that some correlations can be
exploited. Improving our method in this regard is a priority,
since we believe that this is useful information to make the
behavior of the agent population more realistic.

7.2 Calibration
In order to reflect real life behavior more closely, calibra-

tion of our simulation is a required to use it in a decision
support setting. The single global price elasticity for all
agents is something that should be implemented on an in-
dividual level. We can do this in two ways. We can change
the program to specify a utility function of each individual
agent. Alternatively, we can adapt our fare-module to mimic
price sensitivity. We can use a personal transformation func-
tion for each agent that scales the fares down for insensitive
agents and scales the fares up for sensitive agents. Another
kind of sensitivity that is valuable to model, is the sensitiv-
ity to the crowdedness of vehicles. If vehicles become too
crowded, additional delay can induce delays in the public
transportation system. This aspect was mostly ignored in
our current simulation.

The right values for the price elasticities will be very dif-
ficult to estimate from only check-ins and check-outs. The
main problem in this regard is the fact that we do not know
what possible alternatives were available and have been con-
sidered by the passenger, before he made his journey. In the
field of discrete choice modeling, this kind of data is referred
to as revealed choice data. In situations where surveys are
conducted and the subjects are exposed to multiple alter-
natives from which they must select a single option, we get
stated choice data. Within the field of discrete choice mod-
eling, most of the research effort has been performed on
analyzing stated choice data. This allows us to accurately
and efficiently estimate properties such as price elasticities
within a population. In our case, it would be necessary
to combine information obtained from stated choice exper-
iments to calibrate the simulation obtained from revealed
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(a) Starting time vs ending time (b) Starting time vs duration (c) End time vs duration

Figure 3: Correlations of starting times, ending times and duration (θ = 120)

choice data. Some literature on how to combine revealed
and stated choice data has been published during the 1990’s
([6] and [3] are two examples). However, [17] reveals that
there is little research in this area concerning smart card
data.

7.3 Extensions based on additional datasets
One possible way to move our pattern based demand closer

to real activity based demand models is by combining the
smart card dataset with other datasets. A promising ap-
proach might be to look at regional information of stations.
We could use such datasets to construct profiles of stations,
which would allow us to make better guesses with regard to
the activities that can be performed around the stations. If
a station is close to a large industrial plant or office build-
ings, it is very probable that passengers traveling there do
so because they have to work. A station close to a shop-
ping mall will not only attract the employees of the shops,
but customers as well. Local stations that coincide with a
railway station or an airport are likely to attract passengers
that want to travel further, or want to travel home. Sta-
tions in residential areas will likely serve as home stations,
or as stations that get visited by passengers who want to
visit friends or family. We propose to use data provided by
the OpenStreetMap project [2], since this contains tags with
information on available activities at certain locations.

After we generate profiles for all our stations with such in-
formation, we can take this information into account while
recognizing patterns. This would allow us to make better
guesses of the temporal flexibility of passengers for which
we don’t have a large enough set of journeys. Suppose we
observe a passenger who starts his day with a journey from
a residential area to an area with a lot of office buildings
and stays there for 6 hours, then travels to an area with
a shopping mall and stays there for 1 hour, after which he
travels home. Even if we never observed any other journeys
by this passenger, we can still make an educated guess about
what he was doing and thus to what extend he could have
been flexible. However, this calls for much more sophisti-
cated statistical models than the one we are currently using.
Depending on the kind of questions we want to study, it may
or may not be worth the effort to go this far.

7.4 Validation
Validating a simulation like this is not a trivial task. One

aspect that we can validate is the question whether the sim-
ulation can be used as a predictive tool for the movement
of passengers through a public transportation network. The

straightforward way to do this is by splitting the dataset at
a certain moment in time. We can then use the first part
of the dataset to generate agent populations and compare
the outcomes to what is observed in the second part of the
dataset. At first, we should choose a moment within a pe-
riod where no policy and scheduling changes have occurred.
If we can pass this test, we can raise the bar by choosing the
moments at which a policy change has occurred, such as the
introduction of a new schedule or new pricing schemes.

Another aspect that we may want to validate, is the ques-
tion whether the emerging activity patterns of the agents
represent the real-life activity patterns of the passengers rep-
resented by the agents. Validating this aspect requires much
greater effort than validating the movements of passengers.
One approach could be to use survey data containing activ-
ity logs registered in diaries and compare the diaries to the
activity plans in the simulation. There may be some privacy
issues with this approach, since it would require that we link
the smart card id’s to the participants, in order to match a
diary to an agent. A possible workaround is to generate
faux check-in/check-out data from the diaries by generating
a check-in and a check-out for the journeys documented in
the diaries. We could then use this dataset as if it were a
smart card dataset and investigate to what extend the gen-
erated activity patterns of the agents reproduce the original
activity plans.

In a similar way, we can consider the study of other lo-
cation tracking datasets, such as triangulation logs from
mobile phone operators or the location logs from the mo-
bile phones themselves. The main advantage is that such a
dataset contains more details on the whereabouts of individ-
uals, which gives more opportunity to estimate what they
are doing. For example, using smart card data we may ob-
serve that a person checks out at a station near a shopping
mall and checks in four hours later. However, we have no
data to decide whether it is probable that this person has
been shopping or that this person has been working as an
employee at one of the stores. If we have a mobile phone log,
we may observe that the person has visited a great number
of stores during these four hours. This would be evidence
that he was not working as an employee.

8. CONCLUSIONS
We have shown how we can use smart card data to gen-

erate different types of demand. We developed an agent-
based simulation that allows us to analyze the movements
of the agents through our multimodal public transportation
network. We experimented with different settings for the
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number of trip-based agents and with a 1% discount in the
off-peak hours. Finally, we discussed several opportunities
for future research.

As soon as we sorted our dataset in such a way that we
could process all journeys customer by customer in chrono-
logical order, demand generation could be done very effi-
ciently. We used simple rules to determine whether a cus-
tomer should be modeled using trip based, tour based or
pattern based demand. We have evaluated the impact of
different thresholds for the pattern based customers on the
resulting approximate equilibrium. We have also seen that
an off-peak discount can be used to let a part of the agent
population shift their travel times. In our case, this lead to a
lower revenue. However, the effect on the required capacity
must be taken into account when making a tradeoff between
costs and revenue.

There are many opportunities for future research. First,
our simulation can greatly benefit from proper calibration.
Additionally, our method for demand generation can be im-
proved upon, both by taking a closer look at the smart card
data itself using more advanced techniques and by combin-
ing the smart card data with additional datasets. Including
heterogeneity in the price sensitivity of the agents would be
another improvement over the current situation. Finally,
the simulation should be validated. We believe that an im-
proved version of our simulation can be helpful in both the
design of revenue management systems, including location
based and modality based tariff schemes and other fields of
study within a public transport context.
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ABSTRACT
The problem of modeling and predicting spatiotemporal traf-
fic phenomena over an urban road network is important to
many traffic applications such as detecting and forecasting
congestion hotspots. This paper presents a decentralized
data fusion and active sensing (D2FAS) algorithm for mobile
sensors to actively explore the road network to gather and
assimilate the most informative data for predicting the traf-
fic phenomenon. We analyze the time and communication
complexity of D2FAS and demonstrate that it can scale well
with increasing number of observations when the number of
sensors is large. We provide a theoretical guarantee on its
predictive performance to be equivalent to a sophisticated
centralized approximate Gaussian process prediction model.
This result implies that the computational load of the cen-
tralized model can be distributed among the mobile sensors,
thereby achieving efficient and scalable prediction. Empir-
ical evaluation on a real-world traffic phenomenon dataset
over an urban road network shows that our D2FAS algo-
rithm is significantly more time-efficient and scalable (i.e.,
in the number of observations and sensors) than existing
state-of-the-art algorithms while achieving comparable pre-
dictive performance.

1. INTRODUCTION
Knowing and understanding the traffic conditions and phe-
nomena over road networks has become increasingly impor-
tant to the goal of achieving smooth-flowing, congestion-free
traffic, especially in densely-populated urban cities. Accord-
ing to a 2011 urban mobility report [28], the traffic conges-
tions in the USA have caused 1.9 billion gallons of extra fuel,
4.8 billion hours of travel delay, and $101 billion of delay and
fuel cost. Such huge resource wastage can be potentially
mitigated if the spatiotemporally varying traffic phenomena
(e.g., speeds and travel times along road segments) are pre-

dicted accurately enough in real time to detect and forecast
the congestion hotspots; network-level (e.g., ramp metering,
road pricing) and user-level (e.g., route replanning) mea-
sures can then be taken to relieve these congestions, so as
to improve the overall efficiency of road networks.

In practice, it is non-trivial to achieve real-time, accurate
prediction of a spatiotemporally varying traffic phenomenon
because the quantity of sensors that can be deployed to ob-
serve an entire road network is cost-constrained. Tradition-
ally, static sensors such as loop detectors [9, 34] are placed
at designated locations in a road network to collect data for
predicting the traffic phenomenon. However, they provide
sparse coverage (i.e., many road segments are not observed,
thus leading to data sparsity), incur high installation and
maintenance costs, and cannot reposition by themselves in
response to changes in the traffic phenomenon. Low-cost
GPS technology allows the collection of traffic data using
passive mobile probes [35] (e.g., taxis/cabs). Unlike static
sensors, they can directly measure the travel times along
road segments. But, they provide fairly sparse coverage
due to low GPS sampling frequency (i.e., often imposed by
taxi/cab companies) and no control over their routes, in-
cur high initial implementation cost, pose privacy issues,
and produce highly-varying speeds and travel times while
traversing the same road segment due to inconsistent driv-
ing behaviors. A critical mass of probes is needed on each
road segment to ease the severity of the last drawback [30]
but is often hard to achieve on non-highway segments due
to sparse coverage. In contrast, we propose the use of active
mobile probes [33] to overcome the limitations of static and
passive mobile probes. In particular, they can be directed to
explore any segments of a road network to gather traffic data
at a desired GPS sampling rate while enforcing consistent
driving behavior.

How then do the mobile probes/sensors actively explore a
road network to gather and assimilate the most informative
observations for predicting the traffic phenomenon? There
are three key issues surrounding this problem, which will be
discussed together with the related works:

Models for predicting spatiotemporal traffic phenom-
ena. The spatiotemporal correlation structure of a traffic
phenomenon can be exploited to predict the traffic condi-
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tions of any unobserved road segment at any time using
the observations taken along the mobile sensors’ paths. To
achieve this, existing Bayesian filtering frameworks [2, 34,
35] utilize various handcrafted parametric models predict-
ing traffic flow along a highway stretch that only correlate
adjacent segments of the highway. Hence, their predictive
performance will be compromised when the current observa-
tions are sparse and/or the actual spatial correlation spans
multiple segments. Their strong Markov assumption further
exacerbates this problem. It is also not demonstrated how
these models can be generalized to work for arbitrary road
network topologies and more complex correlation structure.
Existing multivariate parametric traffic prediction models
[8, 18] do not quantify uncertainty estimates of the predic-
tions and impose rigid spatial locality assumptions that do
not adapt to the true underlying correlation structure.

In contrast, we assume the traffic phenomenon over an ur-
ban road network (i.e., comprising full range of road types
like highways, arterials, slip roads, etc.) to be realized from
a rich class of Bayesian non-parametric models called the
Gaussian process (GP) (Section 2) that can formally char-
acterize its spatiotemporal correlation structure and refine
it with growing number of observations [21]. More impor-
tantly, GP can provide formal measures of predictive un-
certainty (e.g., based on variance or entropy criterion) for
directing the mobile sensors to explore highly uncertain ar-
eas of the road network. The work of [9] used GP to repre-
sent the traffic phenomenon over a network of only highways
and defined the correlation of speeds between highway seg-
ments to depend only on the geodesic (i.e., shortest path)
distance of these segments with respect to the network topol-
ogy. Different from the work of [9], we further improve the
correlation structure of GP by enabling it to exploit road
segment features (e.g., length, number of lanes, direction,
speed limit) for differentiating road types, which is not found
in the works described above.

Data fusion. The observations are gathered distributedly
by each mobile sensor along its path in the road network
and have to be assimilated in order to predict the traffic
phenomenon. Since a large number of observations are ex-
pected to be collected, a centralized approach to GP predic-
tion cannot be performed in real time due to its cubic time
complexity.

To resolve this, we propose a decentralized data fusion ap-
proach to efficient and scalable approximate GP prediction
(Section 3). Existing decentralized and distributed Bayesian
filtering frameworks for addressing non-traffic related prob-
lems [3, 4, 20, 26, 32] will face the same difficulties as their
centralized counterparts described above if applied to pre-
dicting traffic phenomena, thus resulting in loss of predictive
performance. Distributed regression algorithms [7, 22] for
static sensor networks gain efficiency from spatial locality
assumptions, which cannot be exploited by mobile sensors
whose paths are not constrained by locality. The work of
[5] proposed a distributed data fusion approach to approxi-
mate GP prediction based on an iterative Jacobi overrelax-
ation algorithm, which incurs some critical limitations: (a)
the past observations taken along the mobile sensors’ paths
are assumed to be uncorrelated, which greatly undermines
its predictive performance when they are in fact correlated

and/or the current observations are sparse; (b) when the
number of robots grows large, it converges very slowly; (c)
it assumes that the range of positive correlation has to be
bounded by some factor of the communication range. Our
proposed decentralized algorithm does not suffer from these
limitations and can be computed exactly with efficient time
bounds.

Active sensing. The mobile sensors have to actively gather
the most informative observations for minimizing the uncer-
tainty of modeling and predicting the traffic phenomenon.
Existing centralized [13, 14, 15] and decentralized [12, 31]
active sensing algorithms scale poorly with increasing num-
ber of observations and/or mobile sensors. We propose a
decentralized active sensing algorithm that overcomes these
issues of scalability (Section 4).

This paper presents a novel Decentralized Data Fusion and
Active Sensing (D2FAS) algorithm (Sections 3 and 4) for
sampling spatiotemporally varying environmental phenom-
ena with mobile sensors. Note that the decentralized data
fusion component of D2FAS can also be used for static and
passive mobile sensors. The practical applicability of D2FAS
is not restricted to traffic monitoring; it can be used in
other environmental sensing applications such as precision
agriculture, mineral prospecting [16], monitoring of ocean
and freshwater phenomena [6, 23, 17] (e.g., plankton bloom,
anoxic zones), forest ecosystems, pollution (e.g., oil spill), or
contamination (e.g., radiation leak). The specific contribu-
tions of this paper include:

• Analyzing the time and communication overheads of D2FAS
(Section 5): we prove that D2FAS can scale better than
existing state-of-the-art algorithms with increasing num-
ber of observations when the number of sensors is large;
• Theoretically guaranteeing the predictive performance of

the decentralized data fusion component of D2FAS to be
equivalent to that of a sophisticated centralized approxi-
mate GP prediction model (Section 3). This result implies
that the computational load of the centralized model can
be distributed among the mobile sensors, thereby achiev-
ing efficient and scalable prediction;
• Improving the correlation structure of GP model by en-

abling it to exploit road segment features (e.g., length,
number of lanes, direction, and speed limit) and the road
network topology (Section 2.1);
• Empirically evaluating the predictive performance, time

efficiency, and scalability of D2FAS algorithm on a real-
world traffic phenomenon (i.e., speeds of road segments)
dataset over an urban road network (Section 6): D2FAS is
more time-efficient and scales significantly better with in-
creasing number of observations and sensors while achiev-
ing predictive performance close to that of existing state-
of-the-art algorithms.

2. GAUSSIAN PROCESS REGRESSION OVER
GRAPH

The Gaussian process (GP) can be used to model a spa-
tiotemporal traffic phenomenon over a road network as fol-
lows: The traffic phenomenon is defined to vary as a realiza-
tion of a GP. Let V be a set of road segments representing
the domain of the road network such that each road segment
s ∈ V is specified by a p-dimensional vector of features and
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is associated with a realized (random) measurement zs (Zs)
of the traffic condition such as speed if s is observed (un-
observed). Let {Zs}s∈V denote a GP, that is, every finite
subset of {Zs}s∈V follows a multivariate Gaussian distri-
bution [25]. Then, the GP is fully specified by its prior

mean µs , E[Zs] and covariance σss′ , cov[Zs, Zs′ ] for all
s, s′ ∈ V . In particular, we will describe in Section 2.1
how the covariance σss′ for modeling the correlation of mea-
surements between all pairs of segments s, s′ ∈ V can be
designed to exploit the road segment features and the road
network topology.

A chief capability of the GP model is that of performing
probabilistic regression: Given a set D ⊂ V of observed road
segments and a column vector zD of corresponding measure-
ments, the joint distribution of the measurements at any set
Y ⊆ V \D of unobserved road segments remains Gaussian
with the following posterior mean vector and covariance ma-
trix

µY |D , µY + ΣY DΣ−1
DD(zD − µD) (1)

ΣY Y |D , ΣY Y − ΣY DΣ−1
DDΣDY (2)

where µY (µD) is a column vector with mean components
µs for all s ∈ Y (s ∈ D), ΣY D (ΣDD) is a covariance ma-
trix with covariance components σss′ for all s ∈ Y, s′ ∈ D
(s, s′ ∈ D), and ΣDY is the transpose of ΣY D. The posterior
mean vector µY |D (1) is used to predict the measurements
at any set Y of unobserved road segments. The posterior
covariance matrix ΣY Y |D (2), which is independent of the
measurements zD, can be processed in two ways to quan-
tify the uncertainty of these predictions: (a) the trace of
ΣY Y |D yields the sum of posterior variances Σss|D over all
s ∈ Y ; (b) the determinant of ΣY Y |D is used in calculating
the Gaussian posterior joint entropy

H[ZY |ZD] , 1

2
log(2πe)|Y ||ΣY Y |D| . (3)

In contrast to the first measure of uncertainty that assumes
conditional independence between measurements in the set
Y of unobserved road segments, the entropy-based measure
(3) accounts for their correlation, thereby not overestimating
their uncertainty. Hence, we will focus on using the entropy-
based measure of uncertainty in this paper.

2.1 Graph-Based Kernel
If the observations are noisy (i.e., by assuming additive inde-
pendent identically distributed Gaussian noise with variance
σ2

n), then their prior covariance σss′ can be expressed as

σss′ = k(s, s′) + σ2
nδss′

where δss′ is a Kronecker delta that is 1 if s = s′ and 0
otherwise, and k is a kernel function measuring the pair-
wise “similarity” of road segments. For a traffic phenomenon
(e.g., road speeds), the correlation of measurements between
pairs of road segments depends not only on their features
(e.g., length, number of lanes, speed limit, direction) but also
the road network topology. Therefore, the kernel function
should be defined to exploit both the features and topology
information, which will be described next.

Let the road network be represented by a weighted directed
graph G , (V,E,w) comprising a set V of vertices that

denotes the domain of all possible road segments, a set
E ⊆ V × V of directed edges such that there is a directed
edge (s, s′) from s ∈ V to s′ ∈ V iff the end of segment s
connects to the start of segment s′ in the road network, and
a weight function w : E → R+ measuring the standardized
Manhattan distance [1] of each directed edge:

w((s, s′)) ,
p∑

i=1

|[s]i − [s′]i|
ri

where [s]i ([s′]i) is the i-th component of the feature vector
specifying road segment s (s′), and ri is the range of the
i-th feature. The weight function w serves as a dissimilarity
measure between adjacent road segments.

The next step is to compute the shortest path distance
d(s, s′) between all pairs of road segments s, s′ ∈ V (i.e.,
using Floyd-Warshall or Johnson’s algorithm) with respect
to the topology of the weighted directed graph G. Such a
distance function is again a measure of dissimilarity, rather
than one of similarity, as required by a kernel function. Fur-
thermore, a valid GP kernel needs to be positive semidefinite
and symmetric [27], which are clearly violated by d.

To construct a valid GP kernel from d, multi-dimensional
scaling [1] is applied to embed the domain of road segments

into the p′-dimensional Euclidean space Rp′ . Specifically,

a mapping g : V → Rp′ is determined by minimizing the
squared loss

g∗ = arg min
g

∑
s,s′∈V

(d(s, s′)− ‖g(s)− g(s′)‖)2 .

With a small squared loss, the Euclidean distance ‖g∗(s)−
g∗(s′)‖ between g∗(s) and g∗(s′) is expected to closely ap-
proximate the shortest path distance d(s, s′) between any
pair of road segments s and s′. After embedding into the
Euclidean space, a conventional kernel function such as the
squared exponential one [25] can then be used:

k(s, s′) = σ2
s exp

−1

2

p′∑
i=1

(
[g∗(s)]i − [g∗(s′)]i

`i

)2


where [g∗(s)]i ([g∗(s′)]i) is the i-th component of the p′-
dimensional vector g∗(s) (g∗(s′)), and the hyperparameters
σs, `1, . . . , `p′ are, respectively, signal variance and length-
scales that can be learned using maximum likelihood esti-
mation [25]. The resulting kernel function k1 is guaranteed
to be valid.

2.2 Sparse Approximation
Although the GP is an effective predictive model, it faces a
practical limitation of cubic time complexity in the number
|D| of observations; this can be observed from computing
the posterior distribution (i.e., (1) and (2)), which requires
inverting the covariance matrix ΣDD that incurs O(|D|3)
time. If |D| is expected to be large, then GP prediction
cannot be performed in real time. For practical usage, we
have to resort to computationally cheaper approximate GP
prediction.

1For spatiotemporal traffic modeling, the kernel function k
can be extended to account for the temporal dimension.
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A simple method of approximation is to select only a subset
U of the entire set D of observed road segments (i.e., U ⊂ D)
to compute the posterior distribution of the measurements
at any set Y ⊆ V \D of unobserved road segments. Such a
sparse subset of data (SoD) approximation method produces
the following predictive Gaussian distribution, which closely
resembles that of the full GP model (i.e., by simply replacing
D in (1) and (2) with U):

µY |U = µY + ΣY U Σ−1
UU (zU − µU ) (4)

ΣY Y |U = ΣY Y − ΣY U Σ−1
UU ΣUY . (5)

Notice that the covariance matrix ΣUU to be inverted only
incurs O(|U |3) time, which is independent of |D|.

The predictive performance of SoD approximation is sensi-
tive to the selection of subset U . In practice, random subset
selection often yields poor performance. This issue can be
resolved by actively selecting an informative subset U in an
iterative greedy manner: Firstly, U is initialized to be an
empty set. Then, all road segments in D \ U are scored
based on a criterion that can be chosen from, for example,
the works of [10, 11, 29]. The highest-scored segment is se-
lected for inclusion into U and removed from D. This greedy
selection procedure is iterated until U reaches a pre-defined
size. Among the various criteria introduced earlier, the dif-
ferential entropy score [11] is reported to perform well [19]; it
is a monotonic function of the posterior variance Σss|U (5),
thus resulting in the greedy selection of a segment s ∈ D \U
with the largest variance in each iteration.

3. DECENTRALIZED DATA FUSION
In the previous section, two centralized data fusion approaches
to exact (i.e., (1) and (2)) and approximate (i.e., (4) and (5))
GP prediction are introduced. In this section, we will discuss
the decentralized data fusion component of our D2FAS algo-
rithm, which distributes the computational load among the
mobile sensors to achieve efficient and scalable approximate
GP prediction.

The intuition to our decentralized data fusion algorithm is
as follows: each of the K mobile sensors constructs a local
summary of the observations taken along its own path in
the road network and communicates its local summary to
every other sensor. Then, it assimilates the local summaries
received from the other sensors into a globally consistent
summary, which is exploited for predicting the traffic phe-
nomenon as well as active sensing. This intuition will be
formally realized and described in the paragraphs below.

While exploring the road network, each mobile sensor sum-
marizes its local observations taken along its path based on
a common support set U ⊂ V known to all the other sensors.
Its local summary is defined as follows:

Definition 1 (Local Summary). Given a common sup-
port set U ⊂ V known to all K mobile sensors, a set Dk ⊂ V
of observed road segments and a column vector zDk of cor-
responding measurements local to mobile sensor k, its local
summary is defined as a tuple (żk

U , Σ̇
k
UU ) where

żk
U , ΣUDk Σ−1

DkDk|U (zDk − µDk ) (6)

Σ̇k
UU , ΣUDk Σ−1

DkDk|U ΣDkU (7)

such that ΣDkDk|U is defined in a similar manner to (5).

Remark. Unlike SoD (Section 2.2), the support set U of
road segments does not have to be observed since the local
summary (i.e., (6) and (7)) is independent of the correspond-
ing measurements zU . So, U does not need to be a subset of
D =

⋃K
k=1Dk. To select an informative support set U from

the set V of all possible segments in the road network, an
offline active selection procedure similar to that in the last
paragraph of Section 2.2 can be performed just once prior to
observing data to determine U . In contrast, SoD has to per-
form online active selection every time new road segments
are being observed.

By communicating its local summary to every other sensor,
each mobile sensor can then construct a globally consistent
summary from the received local summaries:

Definition 2 (Global Summary). Given a common
support set U ⊂ V known to all K mobile sensors and the lo-
cal summary (żk

U , Σ̇
k
UU ) of every mobile sensor k = 1, . . . ,K,

the global summary is defined as a tuple (zU ,ΣUU ) where

zU ,
K∑

k=1

żk
U (8)

ΣUU , ΣUU +
K∑

k=1

Σ̇k
UU . (9)

Remark. In this paper, we assume all-to-all communica-
tion between the K mobile sensors. Supposing this is not
possible and each sensor can only communicate locally with
its neighbors, the summation structure of the global sum-
mary (specifically, (8) and (9)) makes it amenable to be
constructed using distributed consensus filters [20]. We omit
these details since they are beyond the scope of this paper.

Finally, the global summary is exploited by each mobile sen-
sor to compute a globally consistent predictive Gaussian dis-
tribution, as detailed in Theorem 1A below, as well as to
perform decentralized active sensing (Section 4):

Theorem 1. Let a common support set U ⊂ V be known
to all K mobile sensors.

A. Given the global summary (zU ,ΣUU ), each mobile sen-
sor computes a globally consistent predictive Gaussian

distribution N (µD2FAS
Y ,ΣD2FAS

Y Y ) of the measurements at
any set Y of unobserved road segments where

µD2FAS
Y , µY + ΣY U Σ

−1
UUzU (10)

ΣD2FAS
Y Y , ΣY Y − ΣY U (Σ−1

UU − Σ
−1
UU )ΣUY . (11)

B. Let N (µPITC
Y |D ,ΣPITC

Y Y |D) be the predictive Gaussian dis-
tribution computed by the centralized partially indepen-
dent training conditional (PITC) approximation of GP
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model [24] where

µPITC
Y |D , µY + ΓY D (ΓDD + Λ)−1 (zD − µD) (12)

ΣPITC
Y Y |D , ΣY Y − ΓY D (ΓDD + Λ)−1 ΓDY (13)

such that

ΓAB , ΣAU Σ−1
UU ΣUB (14)

and Λ is a block-diagonal matrix constructed from the
K diagonal blocks of ΣDD|U , each of which is a matrix

ΣDkDk|U for k = 1, . . . ,K where D =
⋃K

k=1Dk. Then,

µD2FAS
Y = µPITC

Y |D and ΣD2FAS
Y Y = ΣPITC

Y Y |D.

The proof of Theorem 1B is given in Appendix A. The
equivalence result of Theorem 1B bears two implications:

Remark 1. The computational load of the centralized PITC
approximation of GP model can be distributed among K
mobile sensors, thereby improving the time efficiency of pre-
diction. Specifically, supposing |Y | ≤ |U | for simplicity, the
O
(
|D|((|D|/K)2 + |U |2)

)
time incurred by PITC can be re-

duced to O
(
(|D|/K)3 + |U |3 + |U |2K

)
time of running our

decentralized algorithm on each of the K sensors, the latter
of which scales better with increasing number |D| of obser-
vations.

Remark 2. We can draw insights from PITC to elucidate
an underlying property of our decentralized algorithm: It is
assumed that ZD1 , . . . , ZDK , ZY are conditionally indepen-
dent given the measurements at the support set U of road
segments. To potentially reduce the degree of violation of
this assumption, an informative support set U is actively
selected, as described earlier in this section. Furthermore,
the experimental results on a real-world traffic phenomenon
dataset2 over an urban road network (Section 6) show that
D2FAS can achieve predictive performance comparable to
that of the full GP model while enjoying computational gain
over it, thus demonstrating the practicality of such an as-
sumption for predicting traffic phenomena. The predictive
performance of D2FAS can be improved by increasing the
size of U at the expense of greater time and communication
overhead.

4. DECENTRALIZED ACTIVE SENSING
The problem of active sensing with K mobile sensors is for-
mulated as follows: Given the set Dk ⊂ V of observed road
segments and the currently traversed road segment sk ∈ V
of every mobile sensor k = 1, . . . ,K, the mobile sensors have
to select the most informative walks w∗1 , . . . , w

∗
K of length L

each and with respective origins s1, . . . , sK in the road net-
work G:

(w∗1 , . . . , w
∗
K) = arg max

(w1,...,wK)

H
[
Z⋃K

k=1 Ywk

∣∣∣Z⋃K
k=1 Dk

]
(15)

where Ywk denotes the set of unobserved road segments in-
duced by the walk wk. Interestingly, it can be shown us-
ing the chain rule for entropy that these maximum-entropy
walks w∗1 , . . . , w

∗
K minimize the posterior joint entropy (i.e.,

2The work of [24] only illustrated the predictive performance
of PITC on a simulated toy example.

H[ZV \⋃K
k=1(Dk

⋃
Yw∗

k
)|Z⋃K

k=1(Dk
⋃

Yw∗
k
)]) of the measurements

at the remaining unobserved segments (i.e., V \⋃K
k=1(Dk

⋃
Yw∗

k
))

in the road network. After executing the walk w∗k, each mo-
bile sensor k observes the set Yw∗

k
of road segments and

updates its local information:

Dk ← Dk

⋃
Yw∗

k
, zDk ← zDk

⋃
Yw∗

k
, sk ← terminus of w∗k .

(16)

Without imposing any structural assumption, solving the
active sensing problem (15) will be prohibitively expensive
due to the space of possible joint walks (w1, . . . , wK) that
grows exponentially in the number K of mobile sensors. To
overcome this scalability issue, ZYw1

, . . . , ZYwK
are assumed

to be conditionally independent given the measurements at
the set D =

⋃K
k=1Dk of observed road segments. Such an

assumption is not uncommon: it is often made in order to
calculate the widely-used sum of posterior variances (i.e.,
mean-squared error) criterion (Section 2). In practice, this
assumption usually becomes less restrictive when the num-
ber |D| of observed road segments increases to potentially
reduce the degree of violation of conditional independence,
the correlation of measurements between road segments de-
creases, and/or the mobile sensors are sufficiently far apart.
Using the chain rule for entropy and subsequently the condi-
tional independence assumption, the active sensing problem
(15) reduces to

max
(w1,...,wK)

H
[
Z⋃K

k=1 Ywk

∣∣∣ZD

]
= max

(w1,...,wK)

K∑
k=1

H
[
ZYwk

∣∣∣Z⋃k−1
i=1 Ywi

⋃
D

]
= max

(w1,...,wK)

K∑
k=1

H
[
ZYwk

∣∣∣ZD

]
=

K∑
k=1

max
wk

H
[
ZYwk

∣∣∣ZD

]
,

which can be solved in a decentralized manner by each mo-
bile sensor k:

w∗k = arg max
wk

H
[
ZYwk

∣∣∣ZD

]
= arg max

wk

∣∣∣ΣYwk
Ywk
|D
∣∣∣ (17)

such that the second equality follows from (3) and the poste-
rior covariance matrix ΣYwk

Ywk
|D can be obtained using one

of the data fusion methods described earlier, specifically, us-
ing (2) of full GP model (Section 2), (5) of SoD (Section 2.2),
or (11) of D2FAS (Section 3). If full GP or SoD is to be per-
formed separately on each of the K mobile sensors rather
than centrally, then the observations that are gathered dis-
tributedly by the sensors have to be fully communicated to
every sensor. In contrast, D2FAS only requires exchanging
local summaries (Definition 1) between sensors.

Algorithm 1 below outlines the key operations of our D2FAS
algorithm to be run on each mobile sensor k, as detailed
previously in Sections 3 and 4.

5. TIME AND COMMUNICATION OVER-
HEADS

In this section, the time and communication overheads of
our D2FAS algorithm are analyzed and compared to that of
decentralized active sensing coupled with full GP (FGP) or
SoD data fusion method to be run on each of the K sensors.
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Algorithm 1: D2FAS(U,K,L, k,Dk, zDk , sk)

while true do
/* Data fusion (Section 3) */

Construct local summary by (6) and (7)
Exchange local summary with every sensor i 6= k
Construct global summary by (8) and (9)
Predict measurements at unobserved road segments by
(10) and (11)
/* Active Sensing (Section 4) */

Compute maximum-entropy walk w∗k by (11) and (17)
Execute walk w∗k and observe its road segments Yw∗

k

Update local information Dk, zDk , and sk by (16)

5.1 Time Complexity
Our D2FAS algorithm comprises the data fusion and active
sensing components. The data fusion component involves
computing the local and global summaries and the predic-
tive Gaussian distribution, as shown in Algorithm 1. To
construct the local summary using (6) and (7), each sen-
sor has to evaluate ΣDkDk|U in O

(
|U |3 + |U |(|D|/K)2

)
time

and invert it in O
(
(|D|/K)3

)
time, after which the local

summary is obtained in O
(
|U |2|D|/K + |U |(|D|/K)2

)
time.

The global summary is computed in O
(
|U |2K

)
by (8) and

(9). Finally, the predictive Gaussian distribution is derived
in O

(
|U |3 + |U ||Y |2

)
time using (10) and (11). Supposing

|Y | ≤ |U | for simplicity, the time complexity of data fusion
is then O

(
(|D|/K)3 + |U |3 + |U |2K

)
.

The active sensing component involves computing the ma-
ximum-entropy walk by (11) and (17). Let the maximum
outdegree of G be denoted by ∆. Then, each mobile sensor
k has to consider ∆L possible walks. For each walk wk, eval-

uating the determinant of ΣD2FAS
Ywk

Ywk
incurs O

(
L|U |2 + L3

)
time. The time complexity of active sensing is therefore
O
(
∆LL(|U |2 + L2)

)
.

Hence, the time complexity of D2FAS is O((|D|/K)3+|U |3+
|U |2K+ ∆LL(|U |2 +L2)). In contrast, the time incurred by
decentralized active sensing coupled with FGP and SoD are,
respectively, O

(
|D|3 + ∆LL(|D|2 + L2)

)
andO(|U |3|D|+∆L

L(|U |2 + L2)). It can be observed that D2FAS can poten-
tially scale better with increasing number |D| of observations
when the number K of sensors is large. The scalability of
D2FAS vs. FGP and SoD will be further evaluated empiri-
cally in Section 6.

5.2 Communication Complexity
Let the communication overhead be defined as the size of
each broadcast message. Recall from Algorithm 1 (i.e., D2FAS)
that, in each iteration, each sensor broadcasts a O

(
|U |2

)
-

sized summary encapsulating its local observations, which
is robust against communication failure. In contrast, FGP
and SoD require each sensor to broadcast, in each iteration,
a O(|D|/K)-sized message comprising exactly its local ob-
servations to handle communication failure. If the number
of local observations grows to be larger in size than a local
summary of predefined size, then our D2FAS algorithm is
more scalable than FGP and SoD in terms of communica-
tion overhead.
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Figure 1: Traffic phenomenon (i.e., speeds (km/h)
of road segments) over an urban road network
in Tampines area, Singapore during evening peak
hours on April 20, 2011. It comprises 775 road seg-
ments including highways, arterials, slip roads, etc.
The mean speed is 48.8 km/h and the population
standard deviation is 20.5 km/h.

6. EXPERIMENTS AND DISCUSSION
This section evaluates the predictive performance, time effi-
ciency, and scalability of our D2FAS algorithm on a real-
world traffic phenomenon (i.e., speeds of road segments)
dataset over an urban road network, as shown and detailed
in Fig. 1. The performance of D2FAS is compared to that
of decentralized active sensing coupled with two state-of-art
data fusion methods: full GP (FGP) and SoD (Section 2).
A network of K mobile sensors is tasked to explore the
road network to gather a total of up to 960 observations.
To reduce computational time, each sensor repeatedly com-
putes and executes maximum-entropy walks of length L = 2
(instead of computing a very long walk), unless otherwise
stated. The size of the support set U is set to be 64. The
experiments are run on a Linux PC platform with Intel R©
CoreTM2 Quad CPU Q9550 at 2.83 GHz.

6.1 Performance Metrics
The first metric evaluates the predictive performance of a
tested algorithm: it measures the root mean squared error
(RMSE) √

1

|V |
∑
s∈V

(zs − µ̂s)2

over the entire domain V of the road network that is in-
curred by the predictive mean µ̂s of the tested algorithm,
specifically, using (1) of FGP, (4) of SoD, or (10) of D2FAS.

The second performance metric evaluates the time efficiency
and scalability of a tested algorithm by measuring its in-
curred time.

6.2 Results and Analysis
Fig. 2 shows the results of the performance of the tested algo-
rithms averaged over 40 randomly generated starting sensor
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Figure 2: Graphs of (a-f) predictive performance and (g-l) time efficiency vs. total no. |D| of observations
gathered by varying number K of mobile sensors.

locations with varying number K = 4, 6, 8, 10, 20, 30 of sen-
sors. It can be observed that D2FAS is more time-efficient
and scales significantly better with increasing number |D|
of observations (Figs. 2g to 2l) while achieving predictive
performance close to that of FGP and SoD (Figs. 2a to 2f).
Hence, the real-time performance and scalability (i.e., in the
number of observations) of our D2FAS algorithm enable it
to be used for persistent large-scale traffic modeling and pre-
diction where a large number of observations are expected to
be available. The slightly better predictive performance of
FGP and SoD are expected since they are able to exploit all
collected observations for data fusion. In contrast, D2FAS
can only exploit local summaries over the small support set
U . As mentioned earlier in Section 3, the predictive perfor-
mance of D2FAS can be improved by increasing the size of U
at the expense of greater time and communication overhead.

Using the same results as that in Fig. 2, Fig. 3 plots them
differently to reveal the scalability of the tested algorithms
with increasing number K of mobile sensors. It can be ob-
served from Figs. 3a to 3c that the predictive performance of
all tested algorithms improve with a larger number of sensors
because each sensor needs to execute fewer number of walks
and its performance is therefore less adversely affected by its
myopic selection (i.e., L = 2) of maximum-entropy walks.
As a result, more informative unobserved road segments are
explored. As shown in Fig. 3d, the time incurred by D2FAS
decreases due to its decentralized data fusion component
that can distribute the computational load among a greater
number of sensors. In contrast, it can be seen from Figs. 3e
and 3f that the time incurred by FGP and SoD increase:
as discussed above, a larger number of sensors result in a
greater quantity of more informative unique observations to
be gathered (i.e., fewer repeated observations), which in-
crease the time needed for data fusion. When K ≥ 10,
D2FAS is at least 1 order of magnitude faster than FGP
and SoD. Hence, the scalability (i.e., in the number of sen-
sors) of our D2FAS algorithm allows the deployment of a
large-scale mobile sensor network to achieve more accurate
traffic modeling and prediction.

Fig. 4 shows the results of the performance of our D2FAS
algorithm with varying length L = 2, 4, 6, 8, 10 of maximum-

0 200 400 600 800 1000
6

8

10

12

14

16

18

20

Total No. |D| of Observations

R
M

S
E

 (
k
m

/h
)

 

 

K=4
K=6
K=8
K=10
K=20
K=30

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Total No. |D| of Observations

In
c
u
rr

e
d
 T

im
e
 (

s
)

 

 

K=4
K=6
K=8
K=10
K=20
K=30

(a) D2FAS (d) D2FAS

0 200 400 600 800 1000
4

6

8

10

12

14

16

18

20

Total No. |D| of Observations

R
M

S
E

 (
k
m

/h
)

 

 

K=4
K=6
K=8
K=10
K=20
K=30

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Total No. |D| of Observations

In
c
u
rr

e
d
 T

im
e
 (

s
)

 

 

K=4
K=6
K=8
K=10
K=20
K=30

(b) FGP (e) FGP

0 200 400 600 800 1000
5

10

15

20

Total No. |D| of Observations

R
M

S
E

 (
k
m

/h
)

 

 

K=4
K=6
K=8
K=10
K=20
K=30

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Total No. |D| of Observations

In
c
u
rr

e
d
 T

im
e
 (

s
)

 

 

K=4
K=6
K=8
K=10
K=20
K=30

(c) SoD (f) SoD

Figure 3: Graphs of (a-c) predictive performance
and (d-f) time efficiency vs. total no. |D| of obser-
vations gathered by varying number K of sensors.
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Figure 4: Graphs of (a) predictive performance and
(b) time efficiency vs. total no. |D| of observations
gathered by 2 mobile sensors running D2FAS with
varying length L of maximum-entropy walks.

entropy walks; we choose to experiment with just 2 sen-
sors since Fig. 3d reveals that a smaller number of sensors
produce poorer predictive performance and higher incurred
time. It can be observed that the predictive performance
improves with increasing walk length L because the selec-
tion of maximum-entropy walks is less myopic. When L
increases to 10, the incurred time increases to about 10 sec-
onds, which is reasonable in practice. By deploying a larger
number of sensors, the incurred time is expected to decrease
while improving the predictive performance.

7. CONCLUSION
This paper describes a decentralized data fusion and active
sensing algorithm for modeling and predicting spatiotempo-
ral traffic phenomena with mobile sensors. Analytical and
empirical results have shown that our D2FAS algorithm is
extremely time-efficient and scales significantly better with
increasing number of observations and sensors while achiev-
ing predictive performance close to that of state-of-the-art
FGP and SoD. Hence, D2FAS is practical for deployment
in a large-scale mobile sensor network to achieve persistent
and accurate traffic modeling and prediction. For our future
work, we will assume that each sensor can only communi-
cate locally with its neighbors (instead of assuming all-to-all
communication between sensors) and develop a distributed
data fusion approach to efficient and scalable approximate
GP prediction based on our D2FAS algorithm and consensus
filters [20].
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APPENDIX
A. PROOF OF THEOREM 1B
We need to first simplify the ΓY D (ΓDD + Λ)−1 term in the
expressions of µPITC

Y |D (12) and ΣPITC
Y Y |D (13).

(ΓDD + Λ)−1

=
(
ΣDU Σ−1

UU ΣUD + Λ
)−1

= Λ−1 − Λ−1ΣDU

(
ΣUU + ΣUDΛ−1ΣDU

)−1
ΣUDΛ−1

= Λ−1 − Λ−1ΣDU Σ
−1
UU ΣUDΛ−1 .

(18)
The second equality follows from matrix inversion lemma.
The last equality is due to

ΣUU + ΣUDΛ−1ΣDU

= ΣUU +
K∑

k=1

ΣUDk Σ−1
DkDk|U ΣDkU

= ΣUU +
K∑

k=1

Σ̇k
UU = ΣUU .

(19)

Using (14) and (18),

ΓY D (ΓDD + Λ)−1

= ΣY U Σ−1
UU ΣUD

(
Λ−1 − Λ−1ΣDU Σ

−1
UU ΣUDΛ−1

)
= ΣY U Σ−1

UU

(
ΣUU − ΣUDΛ−1ΣDU

)
Σ
−1
UU ΣUDΛ−1

= ΣY U Σ
−1
UU ΣUDΛ−1

(20)

The third equality is due to (19).

From (12),

µPITC
Y |D = µY + ΓY D (ΓDD + Λ)−1 (zD − µD)

= µY + ΣY U Σ
−1
UU ΣUDΛ−1 (zD − µD)

= µY + ΣY U Σ
−1
UUzU

= µD2FAS
Y .

The second equality is due to (20). The third equality fol-
lows from

ΣUDΛ−1 (zD − µD) =
K∑

k=1

ΣUDk Σ−1
DkDk|U (zDk − µDk )

=
K∑

k=1

żk
U = zU .

From (13),

ΣPITC
Y Y |D

= ΣY Y − ΓY D (ΓDD + Λ)−1 ΓDY

= ΣY Y − ΣY U Σ
−1
UU ΣUDΛ−1ΣDU Σ−1

UU ΣUY

= ΣY Y −
(

ΣY U Σ
−1
UU ΣUDΛ−1ΣDU Σ−1

UU ΣUY

−ΣY U Σ−1
UU ΣUY

)
− ΣY U Σ−1

UU ΣUY

= ΣY Y − ΣY U Σ
−1
UU

(
ΣUDΛ−1ΣDU − ΣUU

)
Σ−1

UU ΣUY

−ΣY U Σ−1
UU ΣUY

= ΣY Y −
(

ΣY U Σ−1
UU ΣUY − ΣY U Σ

−1
UU ΣUY

)
= ΣY Y − ΣY U

(
Σ−1

UU − Σ
−1
UU

)
ΣUY

= ΣD2FAS
Y Y .

The second equality follows from (14) and (20). The fifth
equality is due to (19).
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ABSTRACT 
This paper presents a simulation procedure to assess the market 
potential for the implementation of a new shared taxi service in 
Lisbon (Portugal). The proposed shared taxi service has a new 
organisational design and pricing scheme which aims to use the 
capacity in traditional taxi services in a more efficient way. In 
this system a taxi acting in “sharing” mode offers lower prices to 
its clients, in exchange for them to accept sharing the vehicle 
with other persons who have compatible trips, (time and space)  
while also increasing the revenue for the operator. 

The paper proposes and tests an agent based simulation model in 
which a set of rules for space and time matching between the 
shared taxis and passengers is identified considering a maximum 
deviation from the original route and then presents an algorithm 
that considers the following different objectives: minimum cost 
per passenger.km, maximum revenue per vehicle.km, minimum 
passenger in-vehicle time, minimum vehicle idle time. 

An experiment for the city of Lisbon is presented with the 
objective of testing the proposed simulation conceptual model 
and to show the potential of sharing taxis for improving mobility 
management in urban areas. 

General Terms: Algorithms; Design; Performance 

Keywords: Agent-based models; shared taxi systems; ride 
matching 

1. INTRODUCTION 
The rising of automobile usage deriving from urban sprawl and 
car ownership growth is making traffic congestion more 
frequent and harder in urban areas. Moreover the majority of the 
trips are single occupant vehicle trips (SOV) resulting in more 
automobiles for the same persons. In 1990 approximately 90% 
of the work trips and 58% of the other trips in the United States 
were done in SOV [1]. Numbers of 1997 show that the 
occupation rate of the automobiles in commuting trips for the 15 
Countries of the European Union was, at that time, in the 
interval between 1.1 and 1.2 persons per vehicle [2]. This results 
in air pollution, energy waste and unproductive and inefficient 
consumption of the time that persons have, and this does not 
show a tendency to slow down. In fact, traffic congestion and 
the corresponding environmental damage present a tendency to 
be aggravated. 

This brings direct disadvantages for the users but also for the 
general economy and society at large. In 2001, the White Book 
on Transport Policy in the European Union stated that “if 
nothing is done, the cost of congestion will, on its own, account 
for 1 % of the EU’s gross domestic product in 2010” [3], with a 

significant part of these costs respecting to urban transportation: 
traffic congestion associated to the automobile commuter trips. 
This is happening even in countries with high fuel prices, good 
Public Transport (PT) systems and dense land occupation [1]. 

PT cannot be the only alternative because providing transport 
capacity for peak periods would result in too many vehicles 
staying idle in non-peak periods, and too many people would be 
served with two or more transfers. Thus, there is the need to 
consider other alternatives, outside the classical transport modes. 
This is actually not a new idea. In the seventies, with the Arab 
Oil Crises, scientific interest arose for new transport alternatives, 
mainly in the United States. In fact it was in this decade that the 
first extensive research on this subject was published. In 1974 
Ron Kirby and Kisten Bhat of the Urban Institute in 
Washington, U.S., released their report named: “Para-transit: 
Neglected Options for Urban Mobility” [4], this term, “Para-
transit” was used as a general term to describe the various forms 
of flexible transportation that do not follow fixed routes or 
schedules such as shared taxis or carpooling. 

Each one of these new modes has been studied and developed in 
the last decades, with several research projects and experiments 
being run and tested all over the world but the most advanced 
mainly in the USA and in Europe. They have been generally 
studied as isolated measures for controlling traffic congestion or 
for improving mobility options and, in some cases, they were 
able to have some (albeit rather limited) impact in reaching these 
objectives. 

The shared taxi alternative denotes the use of common taxi-cabs 
by more than one person (or small party) serving multiple trips 
in the same taxi route [5]. This allows increasing the taxi 
operator's profit because costs should not vary significantly 
while there is the possibility of collecting a price from each 
passenger, even implementing a lower fare which should attract 
more passengers to this mode. Being a PT option but at the same 
time a low capacity mode, it is ideal for serving as a feeder 
system for other heavy transportation modes such as suburban 
trains [6]. 

However, there are not only advantages in using this system. In 
order for it to work there has to be people willing to share the 
vehicle with unknown passengers. In this case this should be 
softened by the presence of the taxi driver when compared to 
carpooling. Regarding trip time there may also be some 
discomfort for the extra riding time resulting from detours, this 
may or may not be compensated by lower transport costs and 
shorter waiting time for an available taxi. 

All these questions make this an interesting mode for policy 
consideration, and for being modelled through simulation, 
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studying the effect of different operational parameters on the its 
market potential, mobility enhancement and transferring SOV 
trips to more efficient transport options. 

In this paper we present such a simulation model developed 
under the principles of agent-based techniques. In the next 
section we review the existing shared taxi experiments followed 
by the system that we propose. The conceptual model is 
developed next presenting its main components, relationships 
and necessary input data and possible output indicators. In the 
following section an experiment is conducted using the 
conceptual model implemented in the simulation software 
AnyLogic (Xj Technologies). In this experiment we aim at 
proving the usefulness of the model by trying to answer the 
question as to how many less taxicab vehicles would be needed 
to attend current taxi demand if they were all functioning in 
shared mode. In the final section of the paper we end taking 
conclusions about the shared taxi mode and the simulation 
method. 

2. THE SHARED TAXI EXPERIENCE 
The idea of sharing taxis is not entirely new, both for economic 
reasons and for convenience there have been experiences in 
different countries of the world. However, the concept may vary 
greatly and is sometimes confused with other transportation 
alternatives as, for instance, vanpooling or mini-bus services. 
These are usually classified as paratransit transport services [7], 
a term which initially covered only unregulated services and is 
now extending to several offers being integrated in city transport 
networks. 

These paratransit services usually operate under fixed routes, 
picking up passengers in pre-determined stops or at any point 
and leaving them in any place along a fixed route, charging a 
lower fare when compared to the regulated transport services. 
They found their share in places where supply was weaker. Not 
surprisingly it was in third world countries that these alternatives 
flourished, nourished by poor quality PT services and a great 
latent demand for travelling. For instance, while illegal, it is still 
normal in Korea to share a taxi with people having similar 
destinations [8]. 

Nevertheless these transport alternatives have also found their 
space in developed countries. One of the examples is carpooling, 
which has taken a very significant share of US commuters, is 
present even in Europe where PT systems are traditionally of a 
superior quality in service and comfort [9]. 

The most similar transport mode with the shared taxi systems 
has actually appeared very early in the 20th century in the USA 
and it had the curious designation of jitney. “During the 
economic downturn of 1914, some Los Angeles motorists down 
on their luck began giving rides at a nickel, or ‘jitney’, per trip 
and tended to shadow streetcar routes” [10]. 

The concept of collective taxi has been used for many years in 
Istanbul, Turkey, where it is a popular transportation alternative. 
There, it is called the dolmus which means to fill in Turkish. 
These cabs run a pre-determined route, with each passenger 
paying only a portion of the normal fare, making it a win-win 
situation where passengers pay less and drivers earn more 
money for the same distance. Passengers can get out anywhere 
along the route for a single set fare that is the same for all 
passengers no matter what their destination. Although their use 

is declining, dolmushes still operate within cities, and between 
cities and nearby towns and villages. 

Despite the unregulated transport experiments with shared taxis 
or mini-bus and their progressively being included in the 
regulated services which always demands a certain level of 
standardisation of the operation, these systems objectives have 
not reduced their value along the years. There is still demand for 
intermediate modes between private transportation and high 
capacity PT vehicles such as buses and subway systems. That is 
why the shared taxi is being recovered as a modern transport 
option. 

Advanced initiatives have been tested in order to take advantage 
of modern communication technology, namely cell phones, to 
help make viable the concept of shared taxi. A seed-stage 
company in the UK has developed a system that collates 
requests for point-to-point travel from a dispersed set of clients 
via SMS (they text-message by cell phone their destination 
postcode to the system), and then packages clients going in the 
same direction into one vehicle at a discounted fare. This is 
active now in four cities: London, Liverpool, Bournemouth and 
Isle of White. Passengers are instructed to go to pre-determined 
pickup points to meet the driver who will have received a text 
confirming each passenger’s booking reference [11]. 

In Brussels, Belgium, taxis are a regulated private sector 
undertaking, legally defined as door-to-door transport (strictly 
distinguished from limousine and car rental), with a proportional 
distance and time-based fare. Local authorities grant licenses, set 
price levels, supervise compliance with social legislation and 
define policy objectives. There is no possible confusion with the 
PT operators, whose core business is regular collective transport, 
based on fixed routes and timetables, integrated into bus, 
tramway and subway networks. Both are struggling against their 
polarised public images: whereas PT is upgrading to decrease its 
reputation as overcrowded, unreliable transit for the captive 
masses, taxis are striving to be seen as more than elite luxury 
transport [12]. In this city, authorities decided to implement a 
new night taxi service operated by a dispatcher and call-centre 
as a public service contract. The operator has been equipped 
with an optimisation system technology, and has upgraded the 
necessary number of cabs of affiliated taxi operators. No extra 
vehicles or drivers were put into circulation: ordinary taxis 
alternate between traditional taxi trips or shared taxi trips, as 
dispatched by the central. The operator provides a monthly 
listing of trips, their real cost (as registered by the taximeters) 
and fare revenue. The authorities then compensate for the 
difference, and the central distributes this sum among the taxi 
companies involved. For the taxi companies, each shared taxi 
trip is simply an extra trip, yielding full revenue. 

From a modelling perspective, some incipient models have been 
recently developed to explore the shared taxi concept. Most of 
them use an optimisation [1316], simulation [17] or simulation-
optimisation approach that support the ride matching algorithms, 
as well as a network operation model in dynamic models[1820]. 
Some of the simulation models have explored an Agent-based 
formulation [1720]. 

Overall it is noteworthy to verify that the previously referred 
studies have used simulation models and have pointed them as a 
good method to test the proposed dispatching strategies given 
the highly dynamic characteristics of the taxi services. 
Moreover, it is obviously impractical to deploy new taxi 
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directives immediately in the real world without carefully 
studying them, which can be done through a realistic computer 
simulated environment. 

3. A NEW SHARED TAXI SYSTEM 
As we have seen, when taxi shared services are successful they 
are so for two main reasons: short supply of traditional taxi 
services and other PT modes and/or allowing saving money in 
travel expenses. It is not surprising that the night period has 
come up as the best period for operating such transportation 
option: supply of PT is rather low during this period of the day, 
moreover there are many young people going out who often do 
not have a driving license, or want to drink beyond the legal 
limit for driving and whose only option is the taxi, an option 
which is usually expensive and that could be reduced through 
sharing the vehicle. 

The system that we propose should be more comprehensive and 
not just an alternative for a night out, it should be a real option 
for any kind of trip at any period of the day within the 
boundaries of an urban area. Nevertheless the price must also 
play a strong role for sharing the taxi in such a way. 

One should be reminded that the taxi is one of the best transport 
options that a person can have when convenience, comfort and 
safety are considered. A person is driven in a private vehicle 
which picks him up at the origin's door and drops him off at a 
precise destination point, without worries about parking the 
vehicle, and carrying a load whenever needed. Travel time 
maybe affected by traffic congestion during peak periods of the 
day but in many cities (as in Lisbon) less so than for a private 
car, as taxis are allowed to use Bus lanes. Moreover, as they are 
making a point to point trip, they can take detours recommended 
by GPS-based navigation systems, whereas when using 
traditional PT options the route is fixed. 

The only problem remains to be the price of riding a cab. This 
varies from country to country, however it is never as low as 
other PT modes, hence it makes it a transportation option for 
higher income people or for those who do not own a private 
vehicle [21]. Sharing the taxi allows dividing the cost of the ride 
as already mentioned. However, the key question is: how is it 
possible to maintain the advantages of the taxi while sharing the 
vehicles? We have seen that most taxi sharing schemes are 
supported by pre-defined routes and/or have pre-located stops 
where people have to go, thus in practice the door to door 
advantage is lost. 

The system which we propose makes use of current 
communication technology and GPS in order to bring flexibility 
to the system, managing virtually any possible origin and 
destination in an urban area. Trip requests are sent through a cell 
phone stating current position (or wished boarding point) and 
asking for a ride for a specific destination point. A central 
dispatcher collects this request and must then find a taxi match 
(this process is explained in the next section). 

Central dispatching is already used as part of regular taxi 
services in order to improve customer demand compliance by 
computing in real time the closest taxi available [22]. However, 
the task of matching passengers and vehicles is obviously not 
straightforward as some of the cabs will already be transporting 
one or more passengers who have to be adequately served and 
reach their destination in acceptable time. The detours for 
picking and dropping-off other passengers may hinder many 

matches to be formed. This is not the case with the majority of 
the examples of current shared taxi practice where taxis stay 
practically in pre determined routes constrained by the existing 
stops. 

4. THE SIMULATION FRAMEWORK 
Every simulation experiment should start by a conceptual model 
which determines the relationship between its main elements 
and aims capturing the way the real system will function once it 
is implemented. 

Because this is a simulation model of a system which will work 
in real-time, the simulation is based in a typical working day. 
The environment where the simulation takes place is a Road 
Network of the city where shared-taxi vehicles circulate and 
trips should be created according to census data or trip 
generation indicators. A Dispatcher will manage a centralised 
operation assigning taxis to clients using as his main information 
sources: the location of shared taxi vehicles, their current 
occupancy rate and the location of clients (assuming for 
simplification purposes that all passengers will want to be 
picked up at their current coordinates). 

The simulation model for shared taxi services which we present 
is developed through agent-based simulation which is a class of 
computational models for simulating the actions and interactions 
of autonomous agents (either individual or collective entities 
such as organisations or groups) with the objective of assessing 
their effects on the system as a whole. 

The models simulate the simultaneous operations and 
interactions of multiple agents, in an attempt to re-create and 
predict the appearance of complex phenomena. The process is 
one of emergence from the lower (micro) level of systems to a 
higher (macro) level. As such, a key notion is that simple 
behavioural rules generate complex behaviour. 

This structure makes it clear how to program each element of 
the Agent-Based model for the shared taxi system and 
understand its possibilities. Using this classical structure one 
may begin by defining these elements for the two types of agent 
in the model: Taxis and Clients. 

4.1 Client Agent 
When a client decides to take a taxi, he first decides which type 
of service he will take: hail a taxi near their origin (where he 
may decide to go to a specific point of the network with greater 
probability of finding an available taxi); walk to a close taxi 
rank; or call a dispatching company. The selection of the action 
is randomly generated but with different probability profiles 
according to the city area and time of the day, trying to 
reproduce the knowledge that clients have. The possible states of 
this agent are then: searching for a taxi, waiting for an assigned 
taxi, or riding a taxi. 

The general flowchart of the client agent is presented in Figure 
1, where the different states, transitions and interaction are 
detailed. The decision process will be dependent of the type of 
taxi market selected by the client (e.g. hailing, taxi rank or 
phone request for a shared taxi service). 
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Figure 1. Simulation flowchart of the clients’ agent 

The rules for his behaviour are: 

 Hail a taxi in the initial node or walk to a better hailing 
location; 

 Walk to the “best” taxi rank within a walking threshold of 
his current location (using a trade-off function between the 
probability of finding a taxi and the willingness to walk); 

 Dial to a dispatching service (randomly selected among the 
existing available options) to ask for a share taxi service; 

 When the client goes to a road node or taxi rank, he waits 
for a taxi using a FIFO serving procedure;  
o If the client does not get a taxi after a threshold 

waiting time, he may re-evaluate (using a 
probabilistic approach) the decision of waiting or 
calling a dispatcher company to get a taxi; 

o After waiting up to a maximum of waiting୫ୟ୶, the 
client leaves the system. 

 When the client calls for a taxi and one is assigned to him, 
he automatically accepts that assignment; 

 If a taxi is not assigned to him immediately, he waits for a 
given period (e.g. 1 minute) and places another taxi order, 
being the waiting time accounted since the first call for a 
taxi. After a maximum of three trials, the client considers 
selecting another dispatcher; 

 After waiting more than the limit threshold (waiting୫ୟ୶) 
without a taxi being assigned, he gives up from the service 
and goes out of the system. 

4.2 Taxi Agent 
A taxi can be connected to different taxi dispatching companies, 
being operated by a single driver (owner of the car) or belong to 
a taxi firm where several drivers work in shifts. The 
organisational model of supply is an input of the model. The 
possible states of this agent are then: being on route to pick-up a 
specific passenger (allocated by the Dispatcher); being on route; 
in service with passengers on board; being on route to a taxi 
rank; browsing the area for passengers; waiting at a taxi rank for 
an assignment; or being idle (taxi driver resting). 

The general flowchart of the taxi agent is presented in Figure 2, 
where the different states, transitions and interaction are 
detailed. 

 
Figure 2. Simulation flowchart of the taxi agent 

The main rules of behaviour are: 

 The taxi is normally heading to a taxi rank to wait for the 
next service. This next service may be picking up a client at 
that taxi rank or, if in the meanwhile the central dispatch 
assigns him a passenger, he will deviate from the current 
destination. When the taxi decides to stop at a taxi rank,  it 
uses a route passing through areas where the probability of 
finding a customer is higher; 

 The taxi not connected to a central dispatch system also 
routes through the network covering mainly the areas 
which historically have had a higher demand for taxi trips; 

 The taxis located at a taxi rank give up waiting for a 
passenger if the service time in the taxi queue leads to a 
waiting time greater than a threshold. In this situation, the 
taxis either search for another taxi rank or route through the 
network (Monte Carlo generated); 

 Taxis have shifts thus they are not always active. These are 
city and country specific and must be set because it 
determines the percentage of active taxis. If the taxi is 
connected to a central dispatch system, the company 
office’s location will be selected as stop location; 
otherwise, the taxi will select randomly a node of the 
network to become inactive. 

4.3 Simulation Environment 
The environment where the agent based simulation takes place 
is a road network where taxi vehicles circulate and trips are 
created according to mobility survey data of the city. The road 
network contains link attributes, resulting in different travel 
times for different periods of the day. In each period, the 
network should accurately translate the impedance of travelling 
from point to point in the simulated urban area, reproducing the 
measured average congestion of road sections for the different 
periods of the day. Yet, the model presents a static non-
equilibrium based traffic assignment procedure for the taxis, in a 
fixed traffic state, depending on the hour of the day. This 
simplification reduces considerably the computational burden of 
the model because it avoids the inclusion of other modes using 
the same road infrastructure (i.e. private cars and PT vehicles). 

The model assumes that taxi drivers are experienced and that 
they are able to choose the shortest path for their destination, 
thus we use the Dijkstra’s Algorithm, which computes in real 
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time the shortest (quickest) path between any given pair of 
nodes on the road network for a given time period during the 
day. We assume that the variation of the number of taxis in 
service in our simulation does not affect the predefined 
travelling speeds on the links of the network. 

This changing environment is then used as interface for the 
different agents of the system, which interact through this 
platform and generate new data that changes its state variables. 
The different information linkages among agents and between 
agents and the environment can also be seen in Figure 1 and 
Figure 2. 

The model presents five main types of interactions. A key 
element of interaction of the model is the taxi request, which can 
activate the three different types of taxi operational modes (rank, 
hail and call). Depending on the selected option by the user 
other types of interfaces are activated. If the clients chose to dial 
to a taxi company, a dispatcher service is activated to match the 
user and the active taxis. Otherwise, the client will connect to 
the taxi through the walking network: either by hailing a taxi or 
by walking to the most adequate taxi rank nearby. This demand 
data is then collected by the system to provide information to the 
taxi driver about the historical distribution, time and space 
dimensions, of the clients. This information is then used by taxi 
drivers to choose the most adequate taxi ranks to stop at 
different hours of the day. Furthermore, this information is also 
used to choose the most attractive routes for finding clients in 
the street. The last element of interaction between the agents and 
the environment is used in the hailing market, where the 
“vision” of the clients of a taxi that is approaching and of a taxi 
driver of a client request is modelled. This component considers 
the geometry of the road network (length of the road links and 
angles at intersections) assessing the maximum range of 
visibility at a certain location. Moreover, the probability of a taxi 
being able to stop and get the client is also a function of the 
estimated traffic flow of the street where the client is located. If 
arc is congested is more difficult for a taxi driver to switch to the 
right lane and stop for boarding. All these processes are 
parameterised in the model, considering fixed parameters for all 
clients and taxi instead of a statistical distribution with a specific 
value generated for each individual agent. 

4.4 The Dispatcher 
The Dispatcher was not conceived in the model as an Agent, but 
as an entity that defines a set of rules for matching together taxis 
and passengers, concentrating all real-time information required 
to produce and monitor these trips.  

The choice of which taxis to match with each client follows a 
linear programming optimisation model. The problem was 
formulated with an objective function that aims to combine the 
minimisation of passenger travel time (the one(s) riding and the 
one requesting a taxi), while also considering the revenues of 
each individual taxi and the equity among them (always a strong 
concern in the real world). 

There are several ride-matching optimisation algorithms 
formulated in the literature [23]. Yet, most of these models 
formulate a simultaneous matching between several drivers, 
going to their destinations, and several ride requests, aiming to 
achieve a system optimum considering all demand and supply 
gathered in a time interval. This is especially important when 
there is great density of clients and drivers, but in our case we 
believe that the simplicity of only considering one client at a 

time makes the simulation much faster and the solution will not 
be significantly far from the optimum due to the low density of 
requests in the city (distance between callers is too high for there 
to be any true competition for the same taxi). 

We should note however that it would be easy to integrate in the 
simulation model any kind of algorithm to match passengers and 
clients, which is one of the advantages of simulation techniques.  

The current formulation reduces significantly the complexity of 
this problem by evaluating the best ride matching alternative for 
a single client, following a request order. The smaller size of this 
problem allows searching exhaustively for an optimal solution 
within a small to medium size domain of solutions in a very 
short simulation time. 

The strategy for selecting taxis is shown in Figure 3, in it we 
may see multiple taxis available within a coverage area centred 
in the client’s coordinates. We also describe the coefficients 
used to build the constraints of the problem.  

 
Figure 3. The taxi-client matching problem 

In order to solve this combinatorial problem, we started by 
defining the maximum de-route time (Mdt) and de-route 
distance (Mdd) that the passenger is willing to accept for the 
current trip. These parameters of the simulation were initially set 
by the authors as percentage of Ett and Etd values respectively, 
function of travelled time and distance. 

Then, for each client i, the dispatcher’s computer specifies: The 
expected travel time (Ett) and travel distance (Etd) for the given 
origin and destination of the passenger, computed by the shortest 
path algorithm for the current time period of the day (Dijskstra’s 
Algorithm included in the agent-based model). 

It also computes for each taxi j and each client i at time instant t, 
the following variables: the waiting time for the taxi (Twt), the 
taxi travel time (Ttt) and travel distance (Ttd). This travel time 
takes into consideration the minimum sum of disturbance time 
for each passenger on board that would be introduced to the 
current riders and to the new client. This time is also computed 
using a combinatorial problem which can be expressed by: 

௫ ்ݐݐܶ ൌ ௫ ்ݐݐ  ݉݅݊ ቐݐݐ   ݐݐ

௧௦

ୀ,ୀାଵ
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Where ்ܶݐݐ௫   is the travelling time between the current 
position of the taxi and pick-up point of client P, ݐݐ the 
travelling time between the pick-up point of client P and the 
drop-off point of client i, and ݐݐ the travelling time between 
the drop-off point of client j and the drop-off point of client k. 

Expected travel time (Ett)
Expected travel distance (Etd)

Taxi travel time (Ttt)
Taxi travel distance (Ttd)

Taxi waiting time (Twt)

Maximum de‐route  time (Mdt)
Maximum de‐route distance (Mdd)
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The estimation of the taxi travel time (Ttt) is done using the 
procedure presented in Figure 4, where we may see the different 
approaches depending on the number of passengers already on-
board of the taxi. 

 
Figure 4. Example of the Taxi travel time (Ttt) estimation for 
different number of passengers on-board 

The model contains the information on which road network arc 
the taxi and the passenger are currently positioned. It also 
collects the code of the zone in which the passenger is contained 
as well as the codes of neighbouring zones (vector Nz). 

Then the problem is to select the taxis which are within a certain 
distance (e.g. 2 km) of the client’s position scanning also their 
neighbouring zones (Nz) which comply with the client’s 
constraints to travel time and distance acceptance (Mdt and 
Mdd). The mathematical formulation of the problem is the 
following: 

݉݅݊
݅ א ݏ݅ݔܽܶ ك ݖܰ ك ܴ ك 2݇݉

൛ܶݐݓ  ݐݐܶ  1000 · ݕݐ݉ܧ

െ 2500 · ܤܧ െ 3000 · ݏݏ1ܲܽ  1500 ·  ሽݏݏ2ܲܽ

Subject to: 

Ԗ i݆   Ttt୨  Ett୧ ڄ ൫1  Mdt୨൯ 

Ԗ i݆   Ttd୨  Etd୧ ڄ ൫1  Mdd୨൯ 

Where ܶݐݓ is the waiting time of client j to be picked-up by 
taxi i; ݕݐ݉ܧ is a binary variable which takes the value 1 if taxi 
i is empty; ܤܧ is a binary variable which takes the value 1 if 
taxi i has been without passengers for the last 5 minutes; 
  is a binary variable that takes the value 1 if taxi i has oneݏݏ1ܲܽ
client already on-board; finally 2ܲܽݏݏ is also a binary variable 
that takes value 1 if the taxi i has already two clients on-board. 

The objective function, while minimising the client travel time, 
also assigns preferentially clients to taxis which have been 
empty during the last five minutes and also to taxis with two 
clients already on-board, presenting the same premium as the 
previous (weights in the objective function), and especially to 
taxis that have one client already on-board, which lead to greater 
taxi revenues and maximum discounts to the clients. 

This optimisation procedure, while not corresponding to a NP-
Complete problem, also presents increasing computing times 
with the problem dimension, which has been addressed in the 
simulation by reducing the subset of candidate taxis in each 
optimisation procedure. The considered subset includes 50% of 
the total taxi fleet contained by the relevant zones (vector Nz) or 
a minimum number of candidate 50 taxis. 

This method allows a considerable reduction of computational 
time in large scale simulations (typically all the trips in an urban 

area), by reducing the number of times the shortest path 
algorithm has to be applied for the estimation of the objective 
function, especially during the peak hours when the average 
frequency of requests is considerably increased. 

Another important algorithm which is used dynamically during 
the simulation is the estimation of taxi densities along the road 
network for the different zones, and the estimation of this 
indicator deviation relative to historical data. This information is 
used to determine the most suitable destinations in the network 
for each taxi that is going to route for passengers at a given 
simulation period t. 

The Dispatcher gathers information about passenger requests 
from previous days at the same hour of the day and joins this 
information to the historical data in order to estimate the 
predicted concentration of taxi passengers during the next hours. 
At each time period, the Dispatcher measures the deviation of 
taxis available for clients calls (empty or with available 
capacity) in each zone of the city relative to its estimation of 
what would be required and distributes recommendations for 
direction of browsing based in the utilities of the different zones. 
Zone i utility function for time period t is given by: 

ܼ ௧ܷ ൌ
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Where ܦܧ௧ is the estimated taxi demand of zone i for the time 
period t (an hour), ܦ௧ are the collected taxi calls for zone i for 
the time period t in the k day, ܵܪ is the estimated taxi share for 
the study area, and ܱܦ௧ௗ is the total number of trips in the study 
area for the period t that were originated in zone i. 

The obtained utilities are then converted to probabilities of 
selecting each zone, and for each taxi order, the model generates 
a random number and assigns a destination zone. The final 
destination road network node is obtained by a random 
generation procedure among the nodes contained by the selected 
zone. 

5. LISBON CASE-STUDY 
The initial test bed of this new simulation procedure was the 
municipality of Lisbon, Portugal. Lisbon is the Capital city of 
Portugal and is the largest city of the country with 
approximately 565,000 inhabitants in an area of 84.6 km2. 
Lisbon is situated on the Atlantic Ocean coast on the Tagus 
estuary, being the most western capital in mainland Europe. 
Lisbon is the centre of the Lisbon Metropolitan Area (LMA), 
which has approximately 2.8 million inhabitants, representing 
roughly 25% of Portugal population, with an area of 2,962.6 
km2, formed by other 18 municipalities. 

The taxi market in Lisbon is formed by approximately 3,500 
taxis, which have to apply and pay a municipal license. The 
number of available licenses is capped, and has not increased in 
recent years, which led to a significant enhancement of its 
(unofficial) value. Taxis have to apply and pay a municipal 
license [24]. The number of available licenses is capped, and has 
not increased in recent years, which led to a significant increase 
of its (unofficial) value. These licenses cannot be traded directly 
on the market, still companies are the owners of the licenses and 
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companies are tradable which indirectly leads to a license 
market. 

This license allows taxis to operate simultaneously in three 
market types regarding the way clients access the service: rank 
market, hail market and pre-booked market: 

 Rank places are designated places where a taxi can wait for 
passengers and vice versa. Taxis and customers form 
queues regulated by a FIFO system. Disadvantages are that 
due to the FIFO policy established, price has no effect on 
customer choice of which taxi to take. 

 In the hail market, clients hail a cruising taxi on the street. 
There is uncertainty about the waiting time and the quality 
of the service customers will find. The advantage here is 
that the customer does not have to walk to a taxi rank. 

 In the pre-booked market, consumers telephone a 
dispatching centre asking for an immediate taxi service or 
for a later taxi service. Only in this kind of market 
consumers can choose between different service providers 
or companies. At the same time, companies can get clients’ 
loyalty providing a good door to door service. 

The three markets described are active in Lisbon and taxis may 
operate in them at the same time. Some taxi drivers are 
associated to a taxi phone dispatching company paying a fee to 
have access to that pool of clients. The client also has to pay the 
phone call when he wants to access that service. A recent study 
performed by Mobility and Transport Institute (IMT) showed 
that only approximately 48% of the taxis are associated with a 
dispatching company, being the other 52% restricted to the 
hailing and taxi rank market [24]. 

These three service configurations have different market 
expressions across the world, although they are almost all the 
times present in the taxi market at the same time. In New York, 
for instance, most of the passengers hail the taxi on the street 
(90%) while in Stockholm: 55% call the taxi by phone, 20% by 
going to a taxi rank and only 25% hail the taxi on the street [21]. 

The fact that in Lisbon taxis may operate in the three markets 
simplifies significantly the regulation of the market. In parallel, 
the taxi drivers’ profession is also regulated by the national 
transport regulator (Mobility and Transport Institute – IMT). 
The taxis can be driven by licensed drivers, which have do take 
a course and pay a levy. IMT has surveyed recently taxis, and 
inspected the shifts of taxi drivers. The results showed that from 
the 3,500 taxis registered in Lisbon, only 3,100 taxis, in average, 
are active daily. The survey did also identify five main types of 
taxis drivers’ shifts, which mainly depend on the ownership of 
the taxi (owned by the driver or by a taxi company). The 
resulting types of shifts of the taxi drivers in the city can be seen 
in Table 1. 

Taxi fares are also strictly regulated by specific legislation, 
which set the price of the trip by three different components: a 
fixed starting fee, a distance related fee and a time related fee, 
linked to the delay time produced by congestion, set for time 
that is travelled for speeds under 30km/h. 

In order to simulate the behaviour of the taxi market within the 
city of Lisbon, we gathered a large set of data required for the 
simulation. This data encompasses the estimation of the taxi 
travel demand in the city, including: 

 the origin and destination of the taxi trips as well as their 
starting time; 

 the road network; 
 a calibrated traffic assignment model to obtain travel times 

in the road network; 
 the taxi ranks location; and  
 a zoning system, which was used to compute taxi 

concentrations along the city and help taxi drivers to decide 
where to go at any time during the day. 

Table 1.Taxi driver shift considered in the simulation 

Shift 1st driver shift 2nd driver shift 

Type 1 
6 am to 7 pm (idle from 12 

pm to 1 pm) 
 

Type 2 
8 am until 9 pm (idle from 2 

pm to 3 pm) 
 

Type 3 
1pm to 2 am (idle from 7 pm 

to 8 pm) 
 

Type 4 
7 am until 6:30 pm (idle 

from 1 pm to 2 pm) 
6:40 pm to 5:40 am (idle 
from 0:40 am to 1:10 am) 

Type 5 
9 am until 8:30 pm (idle 

from 3 pm to 4 pm) 
20:40 pm to 9 am (idle from 

2:40 am to 3:10 pm) 
 

The simulation procedure uses as input the results of a synthetic 
travel simulation model, which was developed under the 
SCUSSE research project [25]. This model is based on a 
mobility survey of the LMA performed in 1994, with 
approximately 60,000 trips and 23,000 persons surveyed, and an 
activity database of 2009 that was used to update the travel 
patterns observed in the initial survey. This is a rule based 
model, which uses the reported travels by respondents and their 
connections along the day, to disaggregate a total population of 
trips of the LMA based on the 2009 activity generation (trip 
generation coefficients for different activities along the day) and 
transport network, generating specific origin and destination 
points, transport mode used and starting time of each trip. 

The synthetic travel model generated 21,075 taxi trips during a 
week day inside the city of Lisbon. The distribution of these taxi 
trips along the day is presented in Figure 5, where we may 
observe a higher concentration of trips during the morning peak 
and some periods during the lunch break and the afternoon. 

 
Figure 5. Distribution of taxi trips throughout a working day 

We have to acknowledge, that the number of estimated taxi trips 
is considerably lower than the real demand, which should 
include trips from Lisbon to other municipalities (additional 
3,435 according to the model), and non residents of the LMA as 
tourists and other visitors (e.g. professionals from other parts of 
the country), not represented in the survey sample. Furthermore, 
normally transport modes with lower shares tend to be 
misrepresented in a survey due to random sampling procedures. 

0

500

1000

1500

2000

2500

6
‐7

7
‐8

8
‐9

9
‐1
0

1
0
‐1
1

1
1
‐1
2

1
2
‐1
3

1
3
‐1
4

1
4
‐1
5

1
5
‐1
6

1
6
‐1
7

1
7
‐1
8

1
8
‐1
9

1
9
‐2
0

2
0
‐2
1

2
1
‐2
2

2
2
‐2
3

2
3
‐0

0
‐1

1
‐2

2
‐3

3
‐4

4
‐5

5
‐6

Ta
xi

 T
ri

p
s

139



All these facts may affect considerably the real representation of 
taxi trips in the municipality of Lisbon. Yet, the purpose of the 
paper is not to fully represent reality, but to show the proof of 
concept in using this simulation procedure to model an 
intermediate alternative transport mode. A full representation of 
demand is going to be used in the next stages of the research, 
namely through a survey of the taxi drivers and their businesses. 

The simulated trips are randomly assigned to one of the network 
nodes within 200 meters away of the origin or destination 
points. The shared taxi passengers are then picked up and 
dropped off, in these nodes, for simplicity purposes. 

The model was implemented in a road network model of the 
Lisbon municipality formed by the first four levels of the road 
hierarchy, comprising urban motorways, ring-roads, major 
arterials and the main local distribution network. This network 
contains 11,242 links and 7,106 nodes. 

For determining the travel times of all links and intersections of 
the road network along the day, we used a calibrated micro-
simulation traffic assignment model (AIMSUN - TSS) for the 
morning peak hour (8 to 9 o´clock). This model was calibrated 
using a Mobility Survey from 2004 used to develop the Lisbon 
Mobility Plan, and a zoning system of 66 TAZs. 

The travel times for each link and intersection during the 
different hours of the day were estimated using the existing 
percentages of trips generated during the day. In Figure 6 we 
may see the percentage of private car trips which affect the 
travel time in the network. 

The travel time of each time interval is then computed using the 
following equation: 

ݎݐܿܽܨ ݀ܽܮ ൌ
ݏ݅ݎݐ ݁݃ܽݐ݊݁ܿݎ݁ܲ

ଽି଼ݏ݅ݎݐ ݁݃ܽݐ݊݁ܿݎ݁ܲ
 

Where the load factor of time interval i results from dividing the 
estimated percentage of trips in time interval i and the 
percentage of trips between 8 and 9 am. Thus the travel time 
(TT) of each link is given by: 

ܶ ܶ ൌ ܶ ܶ · ቈ1  2 ·
ݎݐܿܽܨ ݀ܽܮ · ݈ܽ ݀

ݕݐ݅ܿܽܽܿ
 

Where ܶ ܶ is the travel time of link j in the travel time interval 
i; ܶ ܶ the free flow travel time of link j; ݈ܽ ݀ the traffic load of 
link j; and ܿܽݕݐ݅ܿܽ the capacity of link j. This value delay 
function is available in the Highway Capacity Manual [26], 
being used with the parameter α = 2 and β = 3. 

 
Figure 6. Distribution of the percentage of average private 

car trips throughout a working day 

The travel time lost in each intersection of the road network was 
computed using a similar approach. The ݎݐܿܽܨ ݀ܽܮ is once 
again used as a correction factor from a base value of the 
reference interval between 8 and 9 am. The value for node j and 
time interval i is given by the equation: 

ܰ ܶ ൌ ܰ ܶ · 
1

1  ݁ଶ.ସଽହି.ଷ଼·ௗ ி௧
൨ 

Without an available source of a generic delay function in an 
intersection related with the traffic volume, this equation was 
obtained by the calibration of an inverse logistic curve that was 
initially used to measure accessibility [27]. The general equation 
is given by: 

ݕ ൌ 11  ݁ି·௫ 

Where a and b are parameters that require calibration for the 
specific application. A calibration of this equation was done 
taken into account that values of the Load Factor do not present 
significant reductions on the intersection impedance (0.70 load 
factor leads to a corrections factor of 0.90), and that low 
congestion situations lead to a significant reduction of the time 
lost in an urban intersection (0.05 load factor leads to a 
corrections factor of 0.1). 

The model also includes the location of all the taxi ranks in the 
city of Lisbon (82 taxi ranks), where the taxis can be idle or wait 
for a passenger call. All the agents and objects of the simulation 
were aggregated into a zoning system formed by 115 different 
zones. This zoning system was obtained using a zoning 
optimisation procedure for the city of Lisbon, using the 2004 
Mobility Survey data [28]. This spatial discretisation 
considerably reduces the complexity of the model by collecting 
information of all taxis available and occupied within each area 
of the city, and simultaneously, retrieving information to the 
taxis about the most willing spots to find passenger. 

6. TESTING A SHARED TAXI SYSTEM 
The simulation model experiment developed for this paper 
consists on a performance comparison of the current regular taxi 
system in the city of Lisbon, and the new shared taxi system 
discussed in this paper. The experiment considers a static taxi 
demand to the new market configuration that might occur from 
introducing shared taxis allowing measuring the expected 
reduction of waiting time and fare paid by the customers. In the 
present paper we do not consider demand elasticity to price or 
waiting time. 

This static formulation represents a first step on the assessment 
of the potential impact of the implementation of the service, 
focusing on a users’ perspective which may lead to future 
induced demand. Thus, this assessment compares output 
operation indicators for the current taxi fleet with a mixed fleet 
of conventional and shared taxis. 

Furthermore, the willingness of passenger to dial for a taxi 
service was not altered from the reference scenario, which in 
reality could be altered if the passengers expect a better service 
from the shared system when compared to the fee paid to dial 
for a taxi service. 

For this simulation experiment the total taxi fleet of Lisbon was 
considered to be 2,000 taxis instead of the real 3,100 taxis that 
operate daily in Lisbon, this is due to the demand 
underestimation on the available data discussed above, which 
would considerably bias the performed analysis. The use of 
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approximately 2/3 of the fleet derives from an experienced guess 
from the authors based on the knowledge obtained from the 
mobility survey, however this lacks from empirical verification. 
We will consider in this test that all the current taxi fleet 
connected to a central taxi dispatcher company would switch 
automatically to the shared taxi market (approx. 48%). 

Different total taxi fleet sizes were tested in order to ensure the 
consistency of the results, and assess the impact of the shared 
system configuration under a more saturated taxi market. 

The taxi discount scheme tested in the experiment was the 
following: 

 Riding a shared taxi alone has a 15% discount; 
 Sharing a taxi with another client has a 40% discount to 

each client; 
 Sharing a taxi with two other clients has a 55% discount to 

each client; 

The fare paid by each client results from the sum of the different 
stretches of the trip with different occupancy rates of the taxi, 
which present different discounts. The simulation will measure 
the discount obtained for each client of a shared taxi relative to 
the reference price of riding alone, thus allowing estimating the 
client’s savings introduced by the new system. 

Figure 7 presents a screenshot of an area of the city during the 
simulation, where we may observe the taxis (represented as 
larger circles) and the clients’ states (represented as small 
circles). 

 
Figure 7. Screenshot of the Agent-Based simulation method 
working in the Anylogic simulation environment of Lisbon 

In order to compare the resulting outputs of the model, we 
developed a set of indicators to measure the performance of the 
system compared to the base scenario of a fleet without shared 
taxis. 

The obtained indicators for the base scenario, with a fleet of 
2,000 taxis, were able to reproduce considerably well the main 
aggregate indicators of the system performance from the supply 
side as the average taxi revenue (79.76 euros per day against the 
measured 79.57 euros per day), and the average number of 
travelled km (14.24 against the 15.98 services obtained from 
real data). 

The obtained results are presented in Table 2, showing that the 
shared system may lead to a significant reduction in the average 
passengers’ waiting time and also the average taxi system fare, 
which present savings for shared riders close to 20 percent. 
Furthermore, the taxis may also benefit from an increase in 

operational efficiency, measured by the average revenue per 
travelled km, showing that the taxis enhance the estimated value 
for this indicator, although not observing a monotonous trend as 
in the other indicators. 

Table 2.Performance indicators of the shared taxi system for 
different fleet sizes 

Fleet 
size 

(48% 
shared)

Av. pass. 
waiting 

time (min)

Av. taxi 
fare [€]

Av. savings 
of shared 
riders (%) 

Av. total 
travel time 

[min] 

Av. revenue 
per taxi km

[€/km] 

1400 
12.94 

(-28.68%) 
7.43 

(-5.47%)
-19.02% 

26.6 
(-15.93%) 

0.46 
(5.78%) 

1600 
12.17 

(-19.57%) 
7.45 

(-4.82%)
-17.92% 

25.55 
(-8.25%) 

0.44 
(4.82%) 

1800 
11.95 

(-15.42%) 
7.37 

(-5.78%)
-15.56% 

24.95 
(-6.15%) 

0.42 
(7.38%) 

2000 
11.72 

(-10.00%) 
7.45 

(-4.60%)
-15.01% 

24.66 
(-2.76%) 

0.38 
(1.94%) 

 

The results show that the shared configuration may lead to 
considerable changes in the system performance from a users’ 
perspective. This change, considering a static demand to the fare 
and waiting time reduction, leads to a reduction of the taxi 
system revenue derived from the offered discount. The average 
reduction in revenues for taxi drivers is approximately 10% for 
the chosen taxi fleets, which has to be compensated by a similar 
demand increase if the shared system is to produce a win-win 
situation for the clients and the taxi drivers. 

7. CONCLUSIONS AND FUTURE WORK 
This paper sets an innovative simulation procedure to assess the 
market potential of an advanced dynamic shared taxi service. 
This model was developed using agent-based simulation taking 
the advantage of modelling taxis and clients as agents who take 
decisions which are specific to their interests. At the same time 
an entity that manages the assignment between these two types 
of agents was identified and programmed to act in both the 
interest of the passenger and taxi in order to improve the level of 
service offered by taxis while still improving this business 
overall profit. 

This new procedure was implemented in a large scale example: 
the municipality of Lisbon that counts about 3,500 taxi vehicles, 
from which 3,100 operate daily. This example allowed 
comparing different taxi fleet compositions, varying from the 
current fleet, where all taxis serve just one trip, to new scenarios 
where different taxi percentages acting in a sharing mode are 
introduced replacing the traditional ones. 

Further developments of this research will include a thorough 
characterisation of the taxi market behaviour and also the 
assessment of the impact on the demand for taxi travel and 
operator revenue introduced by offering the shared taxi system. 
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