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Based on ephemeris data between 1964 and 1969, free flights from
earth to moon are investigated by representative examples as to the
relationships between injection conditions and periselenum conditions.
Emphasis is placed on injection conditions that are compatible with due
east launch from Atlantic Missile Range by means of Saturn class vehicles.
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SYMBOLS AND DEFINITIONS

Symbol Definition
Cx Twice the total energy per uni£ mass, so called the

"VIS VIVA" by some. Specifically, Gz = V2 - 2 =2

where V and R are referenced to some central b03§ whose
mass is denoted by M. The notations Casg, C3 , and Csgy
indicate that the central body is the earth, moon, ang
sun, respectively.

e The eccentricity of the instantaneous two-body solution.
Subscripts may be used as discussed for Cs.

iM Instantaneous inclination of the lunar travel plane
relative to the true earth equator of date,

Oy "The longitude of the mean ascending node of the moon's
orbit measured in the ecliptic from the mean equinegx of
date'"; see [3] for more details.

(p, B, Q) Geocentric spherical coordinates of a body where

p is the radial distance,

® is declination (the angle measured in the meridian
containing the body from the earth's equator to the
body, positive being north and negative south),

O is right ascension (the angle measured in the

equatorial plane from vernal equinox to the meridian
containing the body, positive eastward).

r Radial distance

g Geocentric latitude
A Greenwich referenced longitude, positive eastward.
(V*, V) Velocity magnitude measured in a space=-fixed and

rotating system, respectively.

(T, 7 Path angle referenced to the local horizontal plane,
space-fixed and rotating, respectively.

(£, o) Local azimuth angle, space-fixed and rotating, respectively.

vii



Symbo1l Definition

h Altitude
i Inclination of a body's instantaneous plane of motion.
Oy Right ascension of the ascending node of a body's

instantaneous plane of motion,

SUBSCRIPTS
‘ o, €, o Denote the central body as the earth, moon, or sun,
respectively.
N Denotes conditions of the ascending node,
M Denotes conditions of the moon.
S Denotes ''selenographic' conditions; see [3] for details.

UNUSUAL TERMS

1. FLIGHT TIME or TRIP TIME denotes the time from injection to
arrival at periselenum.

2. BALLISTIC TRANSIT implies that travel from a geocentric parking
orbit to periselenum is made with no powered plane changes. Launch
time variations are used to position the parking orbit, and coast time
and burning time variations are used to establish the injection into the
transit plane. The final stage is controlled during burning by a tech-
nique designated by Jet Propulsion Laboratory as '"Control from the
Horizon."

3. DUAL TIME SOLUTIONS refers to the two trajectories that are
possible for arriving at the moon at a specified time, subject to the
following constraints:

a. Launch from Patrick Air Force Base at a due east azimuth.
b. Utilize a circular parking orbit.
c. Specify the TRIP TIME.

d. Require BALLISTIC TRANSIT.
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Figure 1 illustrates the geometry of the DUAL TIME SOLUTIONS but
some pertinent details are not evident from the figure. Consider the
infinity of parking orbit planes subject to the above constraints (all
planes passing through earth's center and passing tangent to the injec-
tion latitude circle). Upon placing the moon, considered as a point,
at some position in the volume swept out by this infinity of plane, one
sees that, in general, two of these planes pass through the moon. Along
the extremities (circular cones) of the volume swept out there is only
one plane which passes through a given point. Thus, in general, one
suspects that two trajectories are available for earth to moon transit,
subject to the discussed constraints.

Let us wow examine the situation to see if one can actually establish
the two suspected trajectories. Since arrival time and trip time are to
be identical for the two solutions, injection must occur at the same time.
The time interval from liftoff to parking orbit is the same in any two
cases. The burning time required to achieve injection from the parking
orbit is essentially the same in the two cases due to the fixed distance
to the mcon (same arrival time), and the fixed central travel angle
(same trip time). These considerations allow the injection time equality,

= + At + At = + + + At
Teng = Toy Y 2%,p0 T %%, T %%0,1 7 Tr, F AfL,e0 T A, T 20,1

to be reduced to

+At. =T, +At
Ty, TAtg, T T, T Aty

where TL is liftoff time, At is time from liftoff to parking orbit,

L,PO
At is coast time in parking orbit, and AmPO I is the time interval from
parking orbit to injection, ?

Although Ty, and T; o are not the same, they are fixed under the constraints,
" namely, that they result in two parking planes that contain the moon at
arrival time. Finally then,

ONS = - = - At
CONSTANT T, " TL, = B¢, - At

must hold if the two solution trajectories exist. Since Ote and Atg
must be utilized to place injection such that the central travel anglé
constraint is satisfied, it would be mere chance that the (TL - TL2)
equality were satisfied simultaneously. It should be noted, ﬁowever,
that theoretically one solution could be determined for arrival at the
specified time. Another could be established whose arrival time would
be in error by a fractional part of the period of the parking orbit.
With reference to these two solutions we define and use the term ''DUAL
TIME SOLUTIONS."
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4, ARRIVAL CONIC denotes the instantaneous two-body solution at
arrival time with the moon as attracting body. The inclination and
location of the conic is of primary interest in this report when
referenced to the selenographic coordinate system, This system is
discussed in [3].

5. B.T and B+R are operational scalars that are very useful in
achieving various orientations of the arrival conic. A detailed dis-
cussion of these scalars is given in [7], but a*brief generalized
discussion is presented here.

The incoming asymptote of the selenocentric arrival conic is
approximately parallel to the earth-moon line at arrival time. Denote
a unit vector in the direction of the incoming asymptote as S. The
unit vector T is constructed to lie in the EARTH-MOON travel plane
normal to S and_positive toward the trailing edge of the moon. R is
also normal_to S and is given by_§ x T. We see then that the plane
defined by R and T is normal to S. A vector B, which is a function
of the characteristics of the selenocentric arrival conic, lies in_the
R_T plane and is called the "impact parameter.' The magnitude of B,
| I, is related to close approach distance, Rcp, through the equation

8] = Ry, (2lal + Ry,

where |a| is the magnitude of the semimajor axis of the arrival conic.
One can see_then that by specifying the desired projections of B onto

R and T, BT and B-R, it is possible to survey the arrival conic orien-
tation about S for a given IB| or close approach distance.

Xi
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EARTH-MOON TRANSIT STUDIES BASED ON EPHEMERIS DATA
AND USING BEST AVAILABLE COMPUTER PROGRAM
PART I: PERISELENUM CONDITIONS AS FUNCTION
OF INJECTION CONDITIONS

By Byrd Tucker

SUMMARY

The objective of this report is to provide accurately determined
bounds for the effects of various parameters on departure velocity,
periselenum arrival velocity, and the selenocentric arrival conic
orientations. The various topics usually arise as questions closely
akin to those set forth in the following. Answers to the questions
presented are included and are the result of this study.

1. How much do departure velocity requirements change due to
variations of the arrival earth-moon ephemeris and trip
time variations in the 66 hour to 90 hour range? For
arriving at the moon when it is at any position, the
departure velocity requirements change is bounded by:

a. 35(m/s) for fiights of 66 hours
b. 22(m/s) for flights of 78 hours
c. 20(m/s) for flights of 90 hours.

The overall bound for all arrival ephemeris variations and all
trip times in the 66 to 90 hour range is 55(m/s). These bounds are
determined by projecting all injection conditions (which occurred at
slightly varied altitudes) to a mean radius of 6770(km).

2., How much do departure velocity requirements change with different
trajectory approach paths such as direct, retrograde, or polar approaches?
The complete range of possible approach paths can only change the departure
velocity by about 4(m/s).

3. What effect does varying the selenocentric arrival altitude
have on departure conditions? Essentially NONE! The injection conditions,




position vector and velocity vector, are essentially invariant for
arrival altitude changes in the 50(km) to 500(km) altitude range
(approach path being frozen).

4., How does arrival velocity vary due to changes in arrival
altitude?

O (ARRIVAL VELOCITY)
O (ARRIVAL ALTITUDE)

-1 (m/s/n.m.) =~ = .54(m/s/km)

5. How much does arrival velocity change for various combinations
of arrival time (earth-moon positions) and trip times?

a. The effect of all combinations of arrival times and trip
times in the 66 to 90 hour range is bounded by 200(m/s).

b. For trip time frozen at 66 hours, the varying earth-moon
ephemeris effect is bounded by 105(m/s), at 78 hours the
bound is 70(m/s), and at 90 hours the bound is 55(m/s).

6. The arrival velocity magnitude varies by about 10(m/s) for
the various approach paths when arrival altitude and flight
time are held constant,

In the following, inclination refers to the inclination of the
arrival conic relative to the moon's equator. All the following results
are for flights making no powered plane changes and having 66 hour trip
time.

7. There are inclinations in the neighborhood of 0° and 180° that
cannot be established for any arbitrary arrival time.

8. For retrograde flights (those arriving counter to or against
the moon's motion, i.e., those having inclinations greater than 90°)
the unattainable inclination area around 180° is bounded by about 7°.

9. Generally speaking, when the moon is at its maximum or minimum
declination, the unattainable inclination area around 180° shrinks to
less than 1°. When the moon is near zero declination, the unattainable
area peaks at about 7°.

The basic trajectory data for this study were generated using
a space flight program that was obtained from Jet Propulsion Laboratory.
To our knowledge, this program is as accurate as any available to NASA
installations,




SECTION I, INTRODUCTION

The establishment of optimum or near optimum techniques for perform-
ing various lunar missions is a current, pressing problem. Upon the
introduction of optimization concepts for performing such missions, the
effects of various parameters that have been considered insignificant
outside the realm of optimization must be evaluated. Further, care must
be exercised that simplifying assumptions and numerical inaccuracies are
tolerable. Working in accordance with these views, it has been impossible
to use some apparently relevant results from different works because
insufficient information was available as to -their accuracy.

The objective of this publication is to establish bounds for a few
of the parameters of the problem, and to furnish some information for
"Trade-off'" considerations to serve as basis for choosing one technique
rather than another. '

SECTION II. CONSTRAINTS AND IMPLEMENTS OF THE STUDY

The trajectory simulations were performed on an IBM 7090 Space Flight
Program which was obtained from the Jet Propulsion Laboratory. The pro-
gram includes the effects of the oblate earth, sun, triaxial moon, and
Jupiter. A comprehensive discussion of the program is presented in
Reference 1¥. The various geophysical, astronomical, and operational
constants required by the program are discussed in [1] and [4]. The
constants used in this study are those currently in use at Jet Propulsion
Laboratory, according to [1] and [4].

The numerical errors incurred by the computational procedures are
well controlled. Reference 5 indicates that such error in periselenum
arrival position is not more than 100 meters. Information, again from
[5], on periselenum arrival velocity is vague, but indications are that
the numerical error is in the seventh digit.

This study is concerned with the flight phase from a geocentric
circular parking orbit to arrival at periselenum.

SECTION III. COMMENTS ON SOME CHARACTERISTICS OF THE MOON'S MOTION

References 2 and 3 present a great deal of information about the
moon's motion. Reference 2 presents, primarily, graphical information.
Reference 3 gives explanatory discussions and the derivation of some
equations of interest.

*References will be denoted by '"Reference numbers'" or bracketed [ ]
numbers in the text and refer to specific entries in the table of
references in this report.



Extracting from Reference 2, the following information is restated
here since it has direct influence upon some phases of this study:

1.
to equal

2,
perigees
<T1 = To
Ty

3.
distance

4.
value, 1i.

5.

The geocentric radial distance to the moon at its . .
a, Apogees varies by about .4 earth radius or 2550 (km)
b. Perigees varies by about 2 earth radii or 12750 (km).

The conversion to kilometers is made assuming an earth radius
6370 (km).

The times at which absolute perigees or ''local-minimum-distance"

occur from a sequence, (T{), such that as i =1, 2. . . n,
270 =T, 8, Ty =T+ PO, T =T+ 8O, L L.,
Mo
(7)
@)

The graphs of lunar declination (8,) and geocentric radial
0%) versus date indicate that the 8( and Pe plots are . . .

a. out-of-phase by about 180° in November 1964
b. out-of-phase by about 90° in October 1966
c. approximately in-phase in March 1969.

In March 1969, the declination of the moon takes on its maximum
e., about 28.7°.

The ephemeris of the moon's motion relative to the earth is,

for all practical purposes, periodic; the period is approximately 18.5

years,




IV. BOUNDS FOR THE EFFECT OF THE VARYING EARTH-MOON EPHEMERIS
ON DEPARTURE AND ARRIVAL VELOCITIES FOR VARIOUS TRIP TIMES

1. PROCEDURE

It is desirable to know just what differences are the result
of performing a lunar mission at one time rather than another. The
present objective is to set forth the differences which occur in departure
and arrival velocities,

The cyclic nature of the moon's motion in about each eighteen
and one-half years exhibits the following characteristics:

p = geocentric radial distance ~ takes on essentially all
possible values each seven or eight months.

® = declination =~ goes through a relative maximum to minimum
cycle each month but takes on an absolute maximum and
minimum in about eighteen and one-half years.

& - right ascension - takes on all possible values once each
month.

A sampling of the earth-moon ephemeris is desired that will
result in the indicated bounds on departure and arrival velocities.
This sampling was taken to be the ten cases whose characteristics are
set forth in Table 1. The sampling ranges over about 99.47% of all
possible values for p, radial distance to the moon, but only the values
of 8, declination of the moon, from about #24° to +28.7°. All possible
phase combinations of p and & are covered by the sampling. v

As one might expect, the sampling taken is adequate to determine
bounds for departure and arrival velocities. The lack of coverage in the
® range is of no consequence.

Actual trajectory surveys were made for arrival at the moon in
the neighborhood of our ephemeris sampling. The TRIP TIME and ARRIVAL
CONIC were specified for each trajectory. This was accomplished by
specifying the desired trip time, B-T, and B'R (Reference 7) quantities,
and searching for the combination of launch time, coasting time, and
final stage burning time that resulted in the desired quantities.
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2. RESULTS
A, Effects of Various Arrival Patterns on Velocities

How much do the velocity requirements change with a change
in the orientation of the arrival conic? This question arises quite
frequently in terms of the feasibility of retrograde (opposite in
direction to moon's motion), direct (with the moon's motion), or polar
orbits.

Four trajectories are sufficient as basis for answering
this question, each trajectory having a specified approach path. Figure
2 presents a selenocentric (moon-centered) plot of the arrival portion
of two of these basic trajectories. The xy plane is coincident with the
true equatorial plane of date, the x-axis being in the direction of the
true equinox of date. This system shall be referred to as the '"Seleno-
centric True Ephemeris System of Date."

Table 2 lists pertinent departure and arrival conditions.

TABLE 2

DEPARTURE- AND ARRIVAL CONDITIONS FOR VARIOUS ARRIVAL
CONIC ORIENTATIONS IN NOVEMBER 1964

Geocentric Departure Conditions

East Inertial]Path
Radius|Latitude|Longitude||Velocity|Angle ]Azimuth Arrival Path
r (km) |Z' (deg) A (deg)|[V* (m/s)|T (deg)|= (deg) Identification

6792.4] 15.98 333.81 ||10788.4 | 6.85 |113.65 |[Retro - Orbital: I

6792.1}] 16.22 333.26 |j10784.5 | 6.84 |113.49 |pirect - Orbital: II
6792.0| 15.28 335.34 ||10786.8 | 6.84 |114.10 |[Polar - Over: III
6792.5] 16.95 331.60 ||10786.4 | 6.85 |112.98 |[Polar - Under: v

Selenographic* Periselenum Arrival Conditions 66hr Trip Time

Space- Spéce- Inclination

) &ixed Rotating|Fixed |[To Earth's JArrival
Radius |Latitude| Longitude Ve;déity Azimuth |Azimuth] Equator Path
rs(km) [Fg (deg)] Ay (deg)||VF (m/s)|oz(deg) |Z (deg)| ig (deg) 1D
1922.7 | -3.42 190.12 2569.3 276.29 |261.28 156.73 I
1897.21 7.01 87.78 2575.8 91.99 |113.06 23.26 II
1910.1| 53.63 147.55 2572.3 191,27 §193.62 101,72 III
909.3 |-48.03 131.09 2572.8 98.96 I 33.16 78.33 v

*A detailed discussion of Selenographic coordinates is given in {3].
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From the data presented in Table 2, one can conclude that -

1. The changes in departure velocity magnitude due to
various arrival paths are bounded by about 4 (m/s).

2. By applying the partials relationship given on page 9 to
the Vg*and r, data of Table 2, one finds that the arrival
velocity magnitude varies by about 10(m/s) for all varia-
tions in arrival conic orientations on trajectories having
constant flight time and arrival altitude.

B. VELOCITY VARIATIONS DUE TO VARYING THE ARRIVAL ALTITUDE

The basic trajectory data needed here is presented in Table 3.
Three trajectories were determined to arrive at essentially the same
time, along the same arrival path (RETROGRADE - ORBITAL), and all having
the same trip time, 66 hours. However, in each case arrival is at a
different periselenum altitude.

TABLE 3

DEPARTURE AND ARRIVAL CONDITIONS FOR ARRIVING AT VARIOUS
PERISELENUM ALTITUDES VIA A FIXED ARRIVAL PATH IN OCTOBER, 1966

Geocentric Departure Conditions

East Inertial Path
Radius Latitude | Longitude| Velocity Angle Azimuth Trajectory
r (km) | @' (deg) A (deg)| V (m/s) I' (deg) | = (deg) D
6780.5 -6.06 14.28 10767.0 . 6.72 117.70 ALT - 1
6780.5 -6.07 14,29 10767.0 6.72 117.70 ALT - 2
6780.4 -6,07 14.30 10767.1 6.72 117.69 ALT - 3
Selenographic* Periselenum Arrival Conditions, 660T Trip Time

Radius Altitude | Latitude | Longitude Velocity Azimuth Trajec-
ry (km) hS (km) ¢; (deg) A (deg) v, (m/s) o, (deg) | tory ID
1865.8 127.8 9.25 177.25 2578.9 281.35 ALT - 1
1965.3 227.3 9.06 178.18 2527.1 281.49 ALT - 2
2069.7 331.7 8.87 179.12 2471.9 281.63 ALT - 3

The data of Table 3 emphasizes the fact that all arrival altitudes
in the desired range of values require the same departure velocity vector.
In fact the complete specification of departure position and velocity
vectors is essentially invariant for all values of arrival altitude that

come under present consideration, ranging from about 50 (km) to about
500 (km). :

*The Selenographic coordinate system is moon-centered and rotates

such that one axis is always in the general direction of the earth; see
{3] for details.
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C. DEPARTURE AND ARRIVAL VELOCITY BEHAVIOR FOR CHANGES IN ARRIVAL
EARTH-MOON EPHEMERIS AND TRIP TIME

The trajectory data of this section was generated subject to
the following constraints:

a. Launch from Patrick AFB at a due east azimuth.

b. A parking orbit is utilized.

(@]

BALLISTIC TRANSIT is used.

d. The arrival path is always retrograde to the moon's motion
and essentially in the plane of earth-moon motion, so-called
the RETROGRADE ORBITAL approach.

The velocity behavior is to be examined for variations in trip
time and the earth-moon ephemeris at arrival (arrival time).

1. DEPARTURE VELOCITY

First, let us recall the results already establishea concern=-
ing departure velocity behavior:

1.

The complete range of all possible arrival conic orienta-
tions causes the departure velocity to change by about
4 (m/s), Table 2.

The RETROGRADE ORBITAL approach region is the most
expensive, i.e., these approaches require greater
departure velocity than the other approach regions,
Table 2.

Departure velocity is essentially independent of the
periselenum arrival altitude in the altitude range
of interest, from about 50 (km) to about 500 (km).

Figure 3 illustrates the departure velocity behavior for
RETROGRADE ORBITAL approach paths (most expensive approach). One can
conclude from Figure 3 that -

&4,

The departure velocity spread for arriving at any earth-
moon ephemeris with trip times ranging from 66 hours
through 90 hours is about 55 (m/s). For frozen flight
times of (a) 66 hours the spread is about 35 (m/s),

(b) 78 hours it is about 21 (m/s), and (c) 90 hours it
is about 20 (m/s). ’
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Velocity at 400 km (m/s)

‘ Ballistic Transit Flights
Due East Launch from AMR
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FIG. 3. DEPARTURE VELOCITY
AT A GEOCENTRIC ALTITUDE OF 400 kM
THAT RESULTS IN
LOW ALTITUDE PERISELENUM ARRIVAL
FOR VARIOUS FLIGHT TIMES
AND EARTH-MOON POSITIONS AT ARR/IVAL

MIP~AERO-62-73 |




12

2, ARRIVAL VELOCITY

Figure 4 and Table 4 present the pertinent data for this
discussion: "

From the differences of Table 4, the effect on arrival
velocity due to varying arrival periselenum altitude is seen to be about
-1 (m/s) per nautical mile in altitude, i.e.,

O _(ARRIVAL VELOCITY) _ _ o
SUARRIVAL ALTTTDDE) ~ - ! (®@/s/n.m.) = - .54 (u/s/km)

Figure 4 illustrates the bounds on the effects due to
variations in trip time and positions of earth-moon ephemeris. Having
established the partial relationship just mentioned, the following
bounds for arrival velocity at any 50 (km) to 500 (km) arrival peri-
selenum altitude may be stated:

Arrival velocity varies by less than 200 (m/s) for any
combination of arrival earth-moon ephemeris and trip
times in the 66 hour to 90 hour range. For specific
trip times the bounds are (a) 105 (m/s) for 66 hour
trips, (b) 70 (m/s) for 78 hour trips, and (c) 55 (m/s)
for 90 hour trips.
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Space-fixed Periselenum Arrival Velocity (m/s)
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SECTION V. BOUNDS FOR THE ATTAINABLE ARRIVAL CONIC ORTENTATIONS

For this discussion, the arrival conic orientation is taken
relative to the moon's equator. More specifically, the orientation
shall be specified by the inclination relative to the moon's equator,
ig, and the selenographic longitude of the ascending node, QNs‘

The establishment of bounds for the achievable arrival conic
orientations subject to a given set of constraints is the principle
objective of this section. At the same time some interesting charac-
teristics of the arrival conic behavior will be mentioned.

1. PROCEDURE

The basic approach has been to survey the behavior of the
arrival conic orientation subject to the constraints listed at the
beginning of section IV-C, page 10, of this report. Two other arrival
constraints are imposed for these results:

1, Trip time is required to be 66 hours.
2. Arrival altitude is held in the 100 (km) to 200 (km) range.

Operationally the described procedure is accomplished by specify-
ing position and velocity vectors at the parking orbit initiation which
satisfy the launch constraints, and searching for the launch time, coast
time, and final stage burning time combination which results in the
desired arrival constraints. The arrival constraints are formulated
in terms_of B*T, B'R, and flight time, Tp., _The magnitude of the B
vector,]BI,controls arrival altitude and B*T and B*R combinations
result in various conic orientations for a given magnitude of the miss
vector, i.e., IBI.

It should be recalled that there are TWO SOLUTIONS IN TIME
(generally speaking) for arriving at the moon when it is in .the proximity
of some specified earth-moon position. During this phase of the study
it became apparent that the two solutions behaved somewhat differently;
hence, both branches of the "DUAL-TIME SOLUTION" are presented.

The three months represented in the EARTH-MOON EFHEMERIS
SAMPLING whose characteristic data are presented in Table 2 are used
as samplings for this phase of the study also.
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2. RESULTS

The behavior of the departure and arrival conditions, as a
survey of B.T and B.R combinations is made (for a given B magnitude),
is quite interesting. 'A tabulation-of these data is presented in Tables
5 and 6. The data of Table 5 result from retrograde approach flights
with polar approaches at the extremes of the survey. Table 6 data are
from direct approach flights, the survey being terminated short of the
polar extremes,.

One can observe from the ig data of Tables 5 and 6 that arrival
inclinatious from about 174° to 180° (Table 5) as well as from about
0° to 18° (Table 6) are not attainable for that particular class of
trajectories. Immediately questions begin coming to mind as to the
reasons for the existence of such "DEAD INCLINATION AREAS,'" a term that
shall be used to denote the unattainable areas, and the influence that
various parameters have on their existence and behavior. This report
does not deal exhaustively with these questions but does present some
helpful results. The results are empirical in nature and no attempt is
made to present any analytic evaluation of the problems.

A, The influence of the Varying Earth-Moon Ephemeris At
Arrival

Four distinct sets of trajectories have been run, and, in
view of the results to be presented, it is convenient to describe the
sets as follows:

a. FEach set consists of trajectories resulting in the
minimum attainable ig for both branches of the DUAL-
TIME SOLUTION as the arrival time is stepped through

a specified era.

b. In three of the four sets launch is from Patrick AFB at
a due east azimuth resulting in a BALLISTIC TRANSIT
plane inclined at about 28.3° to the earth's equator.
In the other set, a fictitious launch site is assumed
such that a due east launch results in a BALLISTIC
TRANSIT plane inclined at about 24.4° to the earth's
equator. This manipulation was done to produce two
sets having the BALLISTIC TRANSIT plane near coplanar
with the moon's travel plane.
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c. The four sets are characterized as follows:

Transit Plane Moon's Travel Plane|Arrival Time Set

Inclination, ig| Inclination, L$M Era Identification
24.4° 24.5° Nov-Dec, 1964 ]Travel-Plane Transit (~.1)
28.3° 28.7° Mar-Apr, 1969 |Travel-Plane Transit (-.4)
28.3° 27.3° Oct, 1966|0ut-of-Plane Transit (1.0)
28.3° 24,5° Nov-Dec, 1964|0Out-of-Plane Transit (3.8)

Figures 5 and 6 and Tables 7 through 10 present the data for the
TRAVEL~-PLANE TRANSIT CASES. Some results may be pointed out quite readily
from Figures 5 and 6:

1. The DUAL-TIME SOLUTION separates into a high minimum
inclination branch (peaks at about 13° to 14°) and a low
minimum inclination branch (peaks at about 7°). However,
one should observe that the high branch does on occasion
drop to a lower declination than the so-called low branch.

2. Inclinations of near zero are attainable when the & at
arrival is near maximum or minimum. For arrival &
around zero, the minimum inclinations are in the peak
regions; i.e., around 7° is the minimum that can be
obtained.

In Tables 7-14, the data designated as Ag)y represents the deviation
of right ascension of the ascending node of the vehicle's transit conic
(at injection) from the right ascension of the moon's travel plane at that
time, i.e.,,AO@N = Ogy - Opy. From this then one can conclude that:

3. The branch having low peaks is a near coplanar solution
whereas the branch having high peaks would be considered
an out-of-plane solution.

Figures 7 and 8 and Tables 11 through 14 present the results for
the two OUT-OF-PLANE TRANSIT CASES. Figures 7 and 8 and Tables 11 through
14 show that for these cases:

4. The DUAL-TIME SOLUTION does not separate (as in the
TRAVEL-PLANE TRANSIT CASES) into a high and low inclination
branch. Rather each branch has a high peak and a low peak,
the peaks being in the 7° and 14° neighborhood.
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In these cases as was pointed out for the two previous cases:

5. Inclinations near zero are attainable when the 6( at
arrival is near maximum or minimum. For arrival
in the neighborhood of zero, the minimum inclinations
are in the peak regions.
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B, THE INFLUENCE OF LAUNCH AZIMUTH VARIATIONS

Consider Figure 9 as basis for drawing the conclusion
that launch azimuth variations have a negligible influence upon the
minimum attainable inclinations. 1In a sense this variation had been
studied previously under the OUT-OF-PLANE TRANSIT CASES, in which it
was found that the day=to-day minima inclinations did not change
significantly (less than 1°),
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