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RTCC REQUIREMENTS FOR MISSION G: TRAJECTORY COMPUTERS

FOR TLI AND MCC PROCESSORS

By Brody 0. McCaffety, Bernard F. Morrey, and William E. Moore

SUMMARY AND INTRODUCTION

This note is the last of a series documenting the Generalized Iterator
as used in the RTCC translunar injection and midcourse correction processors
for Miszion G. 'The mathematical formulation of the iterator itself is com-
pletely genernl and is documented in reference l; the program setups giving
the various missior options provided by the processors have been documented
in references 2 and 3. This note gives the trajectory computers of the
translunar injection and midcourse correction processors.

The term "Generalized Iterator" as used here refers to the whole
program - supervisor, trajectory computer, and iterator. The iterator is
a general formulation that applies to any problem involving the solution
of a minimum or maximum value of a given function. The technique has -
other RTCC applications in addition to its use in the TLI and MCC proces-
sors. The supervisor sets the dependent and independent variables in such
a way as to solve a desired problem. The trajectory computer indicates
the sequence of events or computations needed to generate the desired
trajectory. This note gives the functional and detailed informastion about
the trajectory computer, the subroutines used in constructing a trajectory,
their function, and their algorithms.

There are basically five types of trajlectories genersted by the TLI
and MCC processors:

1. Elliptical tra)ectories generated out of earth orbit (i.e., E-type
ellipses and hybrid ellipses).

2. X,¥, 2z, and t return-to-nominal trajectories generated during
translunar coast.

3. Free-return trajectories generated from EPO or translunar
coast.

4. Free-return, BAP reoptimized trajectories generated during trans-
lunar coast.

5. Nonfree-return, BAP reoptimized trajectories generated during
translunar coast.

Flow chart 1 shows these possibilities.

£



The calculation of each type involves the use of analyticsl and
integrated computations. Conic, or analytical, trajectories are used
in first guess routines to generate initial conditions and in optimizations
to shorten computation time. Integrated calculations are necessary to
provide precision target conditions. An explanation of hcw these compu-
tation modes are used together is contained in references 2 and 3.

The Trajectory Computers

Separate trajectory computers are used in providing first guesses
for the midcourse correction, for the conic, and for the precision trajec-
tory computations.

The MCC first guess trajectory computer essentially solves Lambert's
problem. Subroutine TIMC computes the first guess trajectory for the
MCC. The flow diagram is shown in flow chart 2.

A functional flow diagram of the analytic trajectory computer for
ccnic mission calculations is set forth in flow chart 3. This merely
shows the general flow indicating the sequence of state vector calculations,
the entry of the appropriate independent variebles, the calculation of the
dependent variables, and the sequence of the mass history calculations.

The precision propagation oi an arc is done using the Herrick-Beta
techniquz documented in the appendix of reference 4. Flow chart 4 shows
the functional flow of the precision trajectory computer.

Variables, Stopping Conditions

Independent and dependent variables for the different trajectory
computers are shown in tables I and II.

Although the stopping conditions- for the computers are indicated
implicitly in the flow diagrams, it is worth mentioning them at this time.
Integrated trajectories returning to the nominal x, y, and z of the LOI
node stop at the time of the node; the nonfree-return BAP options also
integrate the same arc and stop on the time of tie node obtained from the
conic optimization. However, the precision transearth trajectory used in
the lunar flyby stops on a flight-path angle of reentry as a function of
return velocity instead of a time as is sometimes the case with other pro-
cessors. Finally, during the iteration process, befc+e the height of LOI
is completely correct, the position and velocity vectors at the start of
LPO are scaled as shown in subroutine SCALE. These vectors are used to
compute the rest of the trajectory, thus retaining the integrity of those
independent variables based on the desired height of the orbit; e.g.,

ATlo’ ATlls'



Lunar orbits.- The initial lunaer orbit may be either an ellipse or z
circle. Since, after a certain number of revolutions, the spacecraft will
be maneuvered into a circular orbit anyway, the program will simulate the
ellipse by a circular arc. There are slight differences in the methods of

calculation which pertain to the simulation of lunar orbit insertion and
of the elliptic orbit itself. These differences do not relate to
whether the orbit is integrated or not.

The trajectory computer furnishes the input velocity magnitude at
the pericynthion of the ellipse to subroutine BURN; for the circular
orbit BURN computes a circular velocity at the current distance.
Since in either case BURN reduces the flight-path angle to zero, the
ellipse always has its pericynthion at lunar orbit insertion.

Since the state is always related to a circular orbit after lunar
orbit insertion, the only other difference is an adjustment of the time lo
account for the discrepancy in orbital period between the ellipse and the
circle used to represent it. This time is the accumulated time difference
during the required revolutions before the spacecruit is maneuvered into

a circular orbit at the time the IM separates; it will be provided as an
input to the program.

ABBREVIATIONS
LAEG lunar analytical ephemeris generator
BAP best adaptive path
EOI earth orbit insertion
EMP earth-moon plane
EPO earth parking orbit
LM lunar landing mission
LOI lunar orbit insertion .
LOPC lunar orbit plane change prior to lunar module ascent
LPO lunar parking orbit
McCC midcourse correction ’
RTCC Real-Time Computer Complex
TEL transearth injection

TLI ° translunar injection



SUBROUTINES

The subroutines and computation modules used in the trajectory
computers are listed in table III. The subroutines involved include

1. BURN - simulates impulsive th~usting for application of a

delta velocity magnitude, delta azimuth, and delta flight-path angle
in the topocentric reference frame. '

2. CTBODY - used for propagation of a conic state for a specified
time interval.

3. DGAMMA - determines the universal conic variable from periapsis
to the nearest specified flight-path angle. .

L. EBETA - determines the interval in the universal conic varisble
from a given state to periapsis.

5. ELEMT -~ calculates a set of orbital elements from a given state
vector, time, and central body constant,

6. EPHM - obtains earth and moon states relative to each otyer,
solar position, and a precession-nutation-libration direction cosine
matrix from the magnetic tape ephemeris.

7. FCOMP - evaluates the universal conic functions for a specified
value of the universal conic variable.

8. LIBRAT - performs librations upon an input state vector and does
a reference transformation.

9. LOPC - computes the size and effect of the lunar orbit plane
change (CSM2).

10. PATCH - accomplishes patching of the geocentric and selenocentric
vehicle states at the sphere of action of the moon.

11. RBETA ~ determines the value of the universal conic variable to
propagate from a given state to a specified radial magnitude.

12. RNTS™ - determines the reentry and landing conditions, delta
time of reentry, and obtains the longitude of landing.



13. RTASC - determines right ascension of the Greenwich meridian.

1L, RVIO - transforms a given set of coordinates in Cartesian or
spherical form to the other form.

15. SCALE - transforms the actual state vector after LOI to a circular
state at a given height.

16. TLIBRN - simulates the translunar injection thrusting maneuver
by evaluating precomputed polynomisls.

17. TIMC - in control when first guesses for delta azimuth, delte

velocity, and delta flight-path angle are determined for translunar abort
or midcourse maneuvers.,

18. XBETA - propagates & given state through a specified universal
conic B to a desired state. The B is the stopping condition for XBETA.

The remaining text of this internal note will be devoted to a detailed
description of the input, output, and the mathematics needed for each of
the subroutines listed above. All lunar orbit computations will be computed
using the lunar radius at the landing site and not the mean radius of
the moon.

Subroutine BURN

Function.- Subroutine BURN simulates impulsive thrugting of the
vehicle. The ideal velocity equation is used to determine propellant
consumption. This subroutine is used for the midcourse, LOI and TEI burns.

Nomenclature.-
Input (I), o
Symbols output (0) Definition
v 0] circular velocity
c
Av. 0 characteristic delta velocity
R
Av change in scalar velocity during burn
v I velocity at pericynthion of the desired
pe ellipse (if ellipse is required)
Ay I change in flight-path angle during

burn



TRy

L4

Symbols Input (I),

output (0)
A I
I I

Sp

mf/m0 0
Mo I
u I
R I
R I
Yo I
él, f{z I
Rf 0
R, 0

Method.- The vector R

that the position does not change

Definition

change in azimuth during burn
specific impulse
ratio of mass after burn to mass before

co’ stant used to convert pounds force
tu pounds mass

gravitational constant of current
reference body

initial position vector
initial velocity vector

initial flight-path angle

intermediate velocity vectors
final position vector

final velocity vector

£ is the same as R; that is, the routine assures

during the maneuver. Compute

r =y[RE
v =\R-R

If a circular state after the burn is specified, put

v =
c

Av

Ay

=

It
1
<
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If an elliptical state is specified, put

Av =v_ -

psle]
AY=—YO L]
In the other more general option v, Ay, and Ay are all inputs. Compute
X d=R QR
h:,ﬁxél
* * 2 - t.)
Rl =R cos Ay + v R -— sin Ay
2R o. .
. _R(R Rl)'zﬂ . R x R
Ro ————— s8in 5 + R cos Ay - = sin Ay
r

r2

» _o AV
Rf = R2 (1 + - ) .
which is the velocity vector part of the state Sf after the burn.

‘ 2 .
2 2 av® + by (v + Av)(sin2 A% 4 B cos A; —2hd $in 8y 5in? %ﬂ)
’ rov

(AvR)

" which furnishes the characteristic velocity.

Finally, the mass ratio is

]
mf (AVR)2
m = exp T .
o Sp e
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Subroutine CTBODY

Function.~ Subroutine CTBODY determines the propagated state at a
specitied time, At, from a given epoch state. This is the classical problenm
of Kepler and must Ve solved iteratively due to the transcendental
relationship between time and the anomalies.

llomenclr 1 ~e. -

Input (I),
Symbols output (0) Definition
K I central body indicator
r I position vector magnitude
v, I velocity vector magnitude
u I gravity constant
] 0] square of universal vaviable
divided by semimajor axis
Fl’ Fz’ . . _
0 . >tions of the universal variable .
F3» By
a semimajor axis
Ro I initial position vector
éo I initial velocity vector
t~ I initial time
Rf 0 finel position vector
ﬁf 0 final velocity vector
ro radius of moon
J 2/3 J,, second harmonic of moon's gravity

be I final time



vethod.- Determine the intervel of propagation

at=t, -1t .

If |at|< 10713, the final state is just the initial state, and the

operation is complete; if not

1_2_ %
a ro u
= R - ﬁ .
[o] (o] [o]

A first guess of the universal variable for the Newton-Raphson iteration

is made as
1 fpe Do
o

8 (1)

o= -

o

Subroutine FCOMP is entered to obtain Fl, F2, F., and Fh’ and the time

equation is evaluated

B
t=82F + 2 BF. + r F B
S
Do
v = — 0 2. e .
Y - 613 + 8 F2 + rorh
Increment B.
B =8+ (0t - t) ;E . (2)

The time equation is again evaluated with the new value of #, and the
llewton-Raphson iteration, equation (2), continues until the covergence

tolerance of 1 x 10712 is met:

t - At
At

< 10-12, (3)
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Exit with an error message if no convergence is obtained arter, ssy, 10
(See flow chart on nexc page.)

iterations.

As the iterations proceed, B will move in the same direction until
it is very close to the answer.
in equation (3) being too tight, the signs of successive vualues of At - t
If two successive iterations should have different signs
before equation (3) is satisfied, B is replaced by the average of the two
values associated with these iterations, and the process is repeated until
the relative difference between two values being averaged is less than

are compared.

10 1%,

With the universal vari:™le

is built.

Check to see if the ascending node is to be precessed or not.

e

R

f

To protect against the tolerance of 19

=12

determined, the state at the final time

B2F
=1 - 2
r
O
s 3
(3
= {, - !
M
JuBF
rr
(]
2
B F2
=1 -
r
= fRo + gRO

= - + LN 3
fRo gRO

It

not, R, R are output. Otherwise (using time tf) rotate K, k& to seleno-

graphic coordinates GO, éo' Let the components of GC and éo be x, ¥, z

and x, y, 2, respectively.

e e

1y R e gy B et 2

Wiy £ e

e e o T oy RO

o

MRS

N L T R B,
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r — ) - 1a0t?
So= S,
]
|uu'_mm| S0 =5,
1 _ \-2 2
T
TRIG- 0, 11 = 0
tt-0,r~o
p=(ae YE) x .2
o
T
1
1
CALL FCOMP(ﬂ, - F )
o Fyxr (n-iz ,
g = e + roF , + m F3*W

ST 11

+F IR’R) =
Z\T' FX=F,

B=p+8canxYE

yis
B

(', p) Tu maxpl. g)

ASCENDING
NODE TO BE

YES

NO

PROCLSSLD
APPLY
\/ NODAL

REGRESSION

P AND R
D n

‘ RETURN )

REPLACE
R B
9 0

A



'y

Compute

. .
n, = 2x - 2xX

n, = éy - z&

If n < 1¢7!2, return without precessing the node. Otherwise compute

n
cos L
n

=

Let the components of H be hl’ h2, h3. Then

]
=

cos i

sin i ="hi +hy .

3
AR = - erz,/;, cos i (%) (-l-)’} At

and

Compute

I
4
b
3
=
o
i._l
x
=
o
!
wn
[y}
[e]
142]
furs
P
ISl
e’
w
R
[~
ct+

e e T T T R TSP § sty
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cos ! cos AR - sin § sin AR

N =|sin & cos Al + cos & sin AR

0
-
~cos i (sin Q cos AR + cos § sin 4AQ)
M =| cos i (cos © cos AQ - sin Q sin AQ)
sin i
o ol
<5 z |G x G|
G = 2r—=2zdy 4 °—°
n n
G = zd - 2V N+ 0 [¢) M
n n

Using the same time tf, rotate G, G back into selenocentric coordinates

R, R .
p’ D
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Subroutine DGAMMA

Function.- Subroutine function DGAMMA determines the value of the
universal variable necessary to obtain a state at a desired flight-path
angle, given the initial position magnitude and the reciprocal of the
semimajor axis.

Nomenclature.-
Input (I),
Symbol output (0) Definition
r 1 maeni bude of position vector at
2 periapsis
1/a I reciprocal of scmimajor axis
Y I flight-path angle
H 0 hyperbolic eccentric anomaly
E 0 elliptic eccentric anomaly
B 0 universal variable
e 0 eccentricity

Method.- Since the given state is at periapsis,

r0
e =1 - —
a
. 2r r2
c =ql|l—& - &
a,
aZ

If §-< 0, the orbit is hyperbolic:

: 2
H = In % Lan Y +Jl + (C L.;n I.)

g =u\[al .

- s 2 w R ) e m e W Ry Agas




 Ravi T

If §-> 0, the orbit is elliptic:

sin E = E~EE£;1
e

Lot a

Ir X = 0, the orbit is parabolic:
a,

8 = (sin y/cosy) V2ro.

oL o

Remarks.- On an ellipse, the eccentric anomaly is double-valued with
respect to the flight-path angle. As is apparent from the equation for E,
the algorithm always gives the solution nearer periapsis.

14

RFD N . TR0

N This formulation does not provide for optimizing the same trajectory
¥ arc from a hyperbolic energy through parabolic to an elliptical energy.

For the elliptic case, y may be such that |sin EI > 1. In this
instance, y cannol, be achieved, and there is au crror.

1S
e

-«

2
;é
i

o
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Subroutine EBETA

Function.- Determines the universal variable necessary to obtain the

state at periapsis.

Nomenclature.-
Input (1), s
Symbol output(O) Definition
1/a. 0 reciprocal of the semimajor axis
RO I initial position vector
ﬁo I initial velocity vector
ro magnitude of initial position vector
v magnitude of initial velocity vector
B 0 universal variables
u I graritational constant
K clliptical cccentric anomaly
H hyperbolic eccentric ancmaly
e ec~entricity

Method.- 'The universal variable and the stule at perispsis ure

determined by

. - 2
1l/a = 2/ro v, /u |

If a > O, orbit is elliptic:

[
=
1

|
|

e cos E

e sin E = DO/Jua

R B R

e TR

ik,

B B N S AP I

P

B o+ M AT ey

EA

o i



o

S

T pdigdl,

L7

E = tan"!(e sin E/e cos E)

B = - E/a .
If 1/a = O, the orbit is parabolic:
o2
A
If a < O, the orbit is hyperbolic:
e cosh Il =1 - ro/a
e sinh H = Do/ ¢u|a|
H = in e cosh I + ¢ sinh U ]
|(e cosh H)2 - (e sinh H)2|

B = ~ H/Ial .

This formulation does not provide for optimizing the same trajectory
arc from a hyperbolic energy through parabolic to an elliptic energy.

Subroutine EPHM

Function.- Ephermis subroutines locate, transmit into core, and
interpolate data from an ephemeris tape. From this data, earth and moon
states relative to each other, solar position, and a precession-nutation-
libration direction cosine matrix are obtained.

Remarks.~ The ephemeris subroutiner used in the RTCC will be system
subroutines.

Subrouline ELEMT

Function.= Calculates a set of orbitael elements from a given state
vector, time, and central body constant.

Nomenclature .~

Input (I),
Symbol output (0) Definition
R I position vecotr

R I velocity vector

s ey e S R T — ——
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Symbol iﬁi;ﬁt<%é; Definition
r I magnitude of position vector
v 1 magnitude of velocity vector
t I initial time
H 0 anguiar momentum vector per unit mass
u I gravity constant
a 0 semimajor axis
e 0 eccentricity
At 0 time to periapsis
i 0 inclination of conic
mp 0 argument of periapsis
Q 0 right ascension of the ascending
node
n 0 mean motion
P I period
n 0 true anomaly

Method.- Given R, V, t, u the following items are calculated:

- (- )

— . m— Yy v o m —
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[H|2 - ulR|
2nava
P=——,
n
A1l cquntions bul, Lhe ones for noand P oapply for all conies: the

cquation for ndoo nol apply Lo crrecular orbits and the equation rfor ©
does not apply to parabolas and hyperbolas.
Subroutine FCOMP

Function.- Subroutine FCOMP determines the functions of the universal
variable necessary to express two-body state quantities given an epoch

state. The functions are well defined by circrlar and hyperbolic functions

except as the universal variable approaches zero. To avoid numerical
difficulty, a series expansion must be used. To avoid discontinuities,
the same expansion is always used. FCOMP is used by XBETA and CTBODY
to evaluate the functions of the universal constant.

Homeneluture (-

Input (1),
Symbol output (0) Definition
Fi 0 functiong of the universal variable
o I parameter needed to obtain F
Method. -
- o0

F %}E: ai
J (ol + W - gt J=1,2.

=0

This formulation for the series is used to compute Fl and F2. F3 and Fh

s m s e e m L 4 e e e P e T rr— p— v - por— vy
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are computed by the formulas:

Fh=aF2+l.

The number n of the term to be used in the series is determined as.

follows:

Ifr |a| <

16
32
64
128

256

U PR W R

h_equals

¥y

2l
25
30

38

e,
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§ The series are summed backward;
m=2n+1
% (0) (o)
. 0 _ 0/ _
: Fl F2 0
F (k) _ (aF (k-1) + 1) 1 — for k=1, **+, -
: 1 1 (m - 2k + 2){n - 2k +1)
£
F (k) = (QFZ(k—l) + 1)' 1 for k=1, s+, n.
; 2 (m - 2k + 1)(m - 2k)

Finally (
; , _ o () _ o ()
: Fl-Fl andF2--F2 .
¥
Coefficients of the form -1 can be precomputed once for all and
n(m - 1)

can be stored with the program.

If a < -br?, the computation mey be shortened as follows:
0 = DMOD (vV=a, 2m)

;:-—92.

Use a in the series instead of o, obtaining F, (o). Finally

Fola) = F3('a') o/vV=o
F,(a) = F2(E) 02/(-a)
I«“l('u_) 03+ o0 - VI
p‘J(u) e om o e e
) —ax( Vo)

Subroutine LOPC

Function.- Determines the size and effect of the lunar orbit plane
change maneuver (CSM2).

: r———— T —— ey —
T R i O A U 4 o S A B e et e o Ak g 5 -



e ol

gt

»oe

e

- WO S
22
Nomenclature.-
Input (I),
Symbol output (0) Definition

m I nunber of revolutions from first
pass over lunar landing site (LL3)
to (CsM2 + 1/4)

n I number of revolutions rom (SN2 +
1/4) to second pass over LS.

P I period of orbit

So I state vector at lunar landing

to I time at lunar landing

At I time from start of lunar orbdit to

L . ~

first pass over LLS

Atl time from first pass cver LLS to
CcsM2

Sl state before CSM2

At time from first pass over LLS to

2

second pass over LLS

82 predicted state at second pass over
LLS

tL time of second pass over LLS if no
CcsM2

S3 0 state after CSM2

t3 0 time of CSM2

Tﬁ 0 mass ratio of CSM2 maneuver

m”

R2 position vector at second pass over

LLS in selenographic coordinates
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Symbol

e

I‘

Method.- Compute

Then compute

25
Input (I),
output (0) Definition
velcoity vector at second pass
over LLS in selenogrsphic coora.
I

sclenographic components of wni
vector pointing to the 2

- 1
Atl = (m - h) .

i

Use CTBODY regressed to propagate So from t, to (to + Atl) obtaining §, .

at time t2

Use CTBODY regressed to propagate So from to to tL obtaining &

Call BURN to get S

3

toltransform 82 to selenographic -coordinates

t, =t + At

o o = to + (m + n)P.

MmN = oy -

Ny

[ = S n-be ¥

.

n -

haye N
—-

oY = -sin™! ._g__g._

R, * R,

and E;_ » using S,, Ay and Isp (where the last two

are the only nonzero parameters).

Subroutine LIBRAT

Function.- Subroutine L;BRAT obtains an appropriate transformation
matrix and transforms an input state vector in moon reference.

Nomenclature.-

Symbhol

R

R

Input (I

uuspnl.( (()7; Definition
I and O position vector
I and-0 velocity vector
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Input (I),
Symbols output (0) Definition
t I time of state vector
K I indicator
. ME moon with respect to earth

Method.- Six options exist for converting state vectors to different
coordinate systems:

K = 1-Barth-moon plane to selenographic

K = 2-Selencographic to earth-moon plane

~
1]

3-Earth-moon plane to selenocentric

~
il

4-Selenocentric to earth-moon plane

=~
0

5-Selenocentric to selenographic

K

6-Selenographic to selenocentric

When the earth-moon plane is involved, a matrix is used to convert either
to or from this coordinate system. The formation of this matrix is as
follows:

Given the position and velocity V..., of the moon with respect to the
P =2 ME

earth at each given time,

oo e
" Rz

e

Rye * Ryg

———————_

IRME X RML‘I

28 4
|

SRR ST &
o A R s e b P Sl . i :
\ . . . B e v B . N ‘ B
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> > . > >
Set A= (i, §, k) noting that i, J, k are taken as column vectors. Let

AT denote the transpose of A. Then if the selenocentric coordinates in
the equatorial system are R, R, we can say

R' = A'R  ana &' = ATR
and
R=AR"  and R = ARL.

When converting from the selenocentric coordinate system to the
selenographic (moon-fixed) coordinate system, the libration matrix is
used.

Given the precession-nutation-libration matrix, B, at each given
time, and the selenocentric coordinates, R, R, transform to the seleno-
graphic coordinates R", R" by the following:

R" = BR and R" = BR
and

-* rl‘.
R = BTR" and R = B R",
A combination of the two preceding techniques can be used to

transform vectors from moon orbit plane to selenographic and the
reverse.

Subroutine PATCH

Function.- This subroutine finds a point at which the spacecraft is at
a given ratio between the earth and the moon and changes reference bodies
at that point.

Nomenclature.-
Input (I),
Symbols output (0) Definition
K 1 end O position vector
R I and O velocity vector
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Input (I), L
Symbols output (0) Definition
t I and O time of vector
r magnitude of position vector
N reference body subscript:
i = 1, primary body
i = 2, secondary body
QO I direction of patch in time
ERROR 0 error return
u I gravitational constant
a I acceleration with respect to
body i
R I universal variable
KREF I primary reference indicator
R21 position of the secondary body
with respect to the primary body
rsy maegnitude of R21

Method.- In the following, if KREF = 1 (earth reference input),
we refer to the earth as the "primary body" and to the moon as the
"secondary body". If KREF = 2 (moon reference input), the moon is
"primary" and the earth is "secondary".

Subscripts 1 and 2 indicate primary and secondary bodies respectively.
Define

Ratio =

Ll

fg_= distance of spacecraft from secondary bodyv
ry distance of spacecraft from primary body

Then for a given two-body orbit, Ratio is a function of the orbital
paramelerss . Lhe untversnl vartiable B, and moon caclh ephenerin data,

The procedure is Lo calculate a second order ''aylor's expansion giving

P T P S S L b e e B e % ; rTE—— o
cte et PRI N . - « . HRE AN .
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Ratio in terms of the first and second partial derivatives,

d Ratio . d2 Ratio
g @4 T
ag?

an initial value of B8, a corresponding initial value of Ratio, and ax
increment AR to B. Setting Ratio (B + AB) equal to the desired value
of Ratio we solve the quadratic for AB. If the discriminant is less

than zero we set d2 Ratio/de = 0 and solve the linear equation instead.
Starting with a guessed value of B, we propagate the initial state

(by XBETA) to a final state at the patch with respect to the primary
reference body. The position of the secondary body with respect to the
primary is obtained from EPHM. A reference change is made, and r, and

2
d2 are calculated.
ARatio = R - Ratio (L)
1 . . .
0.275 if the moon is the primary body
where R =
0.275 1if the earth is the primary body
2
dRatio . __ 1 [, _T2% (5)
as r Vi 2 r 2
21 1
h = o R =
where di Ri Rl i=1,2
2 o
d? Ratio _ rlz\ Vot YRy <A, 4, 4y
d 2 B
¥ NFo Hy Ty T
a.2
9% roor, v . r, . 2 dlz r,

- r
“1 rga /vl 1 r 2 H, r 3 (6)

s iag
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where v,2 = R, + R,, i=1, 2,and A= - 1 ai + (1 2) R, *
1 i i 2 » 3 e 3 M
1 21
Ratio
A8 = A .
d Ratio . {d Ratio) )@ Ratio)? (3% Ratio)
—_— + 1) ————————

a g2

Replace B by B + AB and repeat the process until ARatio < 1 ~ 10‘1%.
The last state and time with respect to the secondary body is the output
state and time.

The initial first guesses for the earth and moon as primary bodies sre
the value of B needed to propagate to 50 and 15 e.r., respectively.

Upon further reference to the routine using a given primary body,
the last value of distance in that particular primary body is used to
derive a first guess for B. This implies that two distances are saved,
one for each primary body.

Remarks.- Error returns or indicators - the last variable in the
calling sequence is an error indicator which is a logical variable and
will return a value of .TRUE. when an error has occurred in the routine.
There are three ways that the error indicator can be set up to .TRUE.:

1. If the patch iterative procedure fails to converge within 10
iterations.

2. 1If the ephemeris data table has not been initialized or the time
calculated withing the routine is outside the range of the ephemeris data.

3. If the magnitude of the input position vector is greater than
40 e.r. when the earth is the primary body or 10 e.r. when the moon
is the primary body and the conic defined by the input state vector is
such that the radius of periepsis is greater than 40 e.r. when the
earth is the primary body or 10 e.r. when the moon is the primary body.

Subroutine RBETA

Funebion, - BENTA delermines Lhe unfveranl variahile necennary o
nuhain o shabe yector nb o denired radinl magnitude, given an fnitial
state.

R SR OO 0 it T e e n-'.-(,w;' o
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Nomenclature.-
Input (I),
Symbol output (0) Definition
- _ Ro I initial position state vector
ﬁo I initial velocity state vector
r, I magnitude of initial position vector
v, I magnitude of initisl velicoity vsaltor
Q I direction indicator
B 0 universal variable
E elliptic eccentric anomaly
H hyperbolic eccentric anomaly
ERROR 0 indicator of error recturn
u gravity constant of reference body
r 1 desired radius magnitude
a semimajor axis
e eccentricity

Method.- Subroutine RBETA is restricted to cases where the desired

radius magnitude is greater than the

initial magnitude. If an orbit is

circular, the subroutine gives o return with the error indicator set

.TRUE. since any B would suffice if the desired distance is the radiuc

of the circle, and no B exists if the desired radius is not the circular

therefore an indicator Q is provided

radius. In general, the solution for a desired radius is double-~valued;

to select the desired solution. If

Q = +1, the solution will be ahead of the initial position with respect to
the direction of motion; if Q = =1, the solution will be behind the

initial position.

Detertmine Lhe dab joacatuct, of )
LR}

eccenteloeivy,

A
vl 1, semimn o anin, il
(]
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4
N

1.2 .o
- ¢ a r 8
0
-
- 1‘02 D2
. e = 1 - 2] 4 L.
0 noa

If 1/a < O, the orbit is hyperbolic.

1(, _lo).

e a

coshH=-];(l—-£)-
e a

t In (cosh H +4Jcosh? H -1 )
o o

PR

cosh H =
o

kb AT A ens Be ity

Wi A

% H =
o)

f where the sign is chosen to be the sign of Do.

1n (cosh H +cosh? H - 1) .

- QH.

H =

6 =H
o

B =q |o] /Tai .

If 1/a > O, the orbit is elliptic.

r
- 1 o
. cos B - =}l - —]}-
. o e a
'
: ’ ol r
i cos E==\1-~-~].
e 8
3

e o’k
(R}
VoL

ll: o -
0 con ¥
)

L e — e e i . e AT vy DO i . Ldam
[ — R R D RSP S e e o e e e R L e e

i




where the sign is chosen to be the sign of Do'

1 AL - cos?E

cos E

E = tan~

6 = E0 - QE.

g =q |o] va .

If 1/u = 0, orbit is pu.obolic.

D, D 2
B = — 4 _0,4.2(]‘_1.) .

/ﬁ— " o

Remarks.- If any of the radicands involving r is less than zero,
the distance r is impossible, and the calculation is suspended with
error indicator set .TRUE.

oubroutine RNTSIM

Function.- This subroutine determines the reentry and landing
conditions of delte time from reentry to landing and longitude of landing.

Nomenclature.~
? Input (1),
Symbol output (0) Definition
i A 0 computed longitude of landing
Ay
AL I lougitude of landing
+.£ AX 0 error in longitude of landing
? R I position vector at reentry
* R I velocity vector at reentry
' | mapgntbade of postLion veclor al reenbry
v 1 magnitude of velocity vector at reentry
t I time of reentry
RR I reeatry range, n. mi.
wy 7
g——T"" RSN AL L N i I
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Input (I), . e
Symbol output (0) Definition
At I time from reentry to landing
¢L 0 latitude at landing
ap 0 right ascension at landing
oy 0 greenwich ri-ht ascension at time
of landing
Y I flight-path angle at reentry
@ 0 central angle between reentry and
landing
Method.- Given R, R, and RR
P = R L __ 2 tan Y.
v cosy r

0 = RR/3443.933585,

[€p]
|
R |

cos 6 + P sin 0.

where S is the position at landing.

1 SZ
¢L = tan .
*45;2 + 8 2
x y
by
a, = tan-! .- -
o)
Call RTACS at time t + At to get « Then

Go

=
>
1

ap = Qg < Ape

Reduce A)X by any excess multiples of 2m. If the result is > -, sutirast
2ny if the result is < -w, add 2n. Thus, finall: -7 < AX < m.
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To allow partial derivatives to be obtained correctly despite the
discontinuities inherént in this scheme, the following procedure is
applied when computing the trajectories involved in partial derivities
calculations. After each nominal trajectory computation, the value of
AX is retaiued. During the perturbed trajectory computations, this
value, called AAO, is compared with the current value of A\, Ir

(ax - AAO)< ~-w, then AA is replaced by AA + 2m; if (Ax - AA0)>Tr, AX is

replaced by LA - 2.

Subroutine RTASC

Function.- Subroutine RTASC determines right ascension of the

Greenwich meridian.

Nomenc¢lature.,~

Symbols
X

Y

Input (T)
output (O

I

I

De "inition
epoch year
Year of base time in universsal tirme

day of base time in universel time

hours of base time in universal time

right ascension of Greemwich at base
time

Method.- The following steps will be used in the initinlization to

determine the right ascension.

1. Compute mumber of leap years between 1950 and X, not counting

X. n = integral part of 5;:—%2&2

2. Compute the beginning of the Begselian year

dBY = 0.923329 + 0.2h219h7 (x - 1950) - 3.08 x 10-8(x - 1950)< - n

AN e
PRI
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3. Compule the dally precessional rate at the epoch year.

m= 6.1190T x 1077 + 3.70 x 10712 (x - 1950)

L. Compute the precession from Jan 0.0 to the beginning of the
Besselian year.

A= mdBY

5. Compute the number of days from Jan 1.0, 1950, Jan 0.0 of
the epoch year. '

a* = 365 (x - 1950) + n - 1

6. Compute the right ascension of Greenwich with respect to the mean
equinox at Jan 0.0 of the epoch.

Vg = 1.7294449276386 - 0.0041554274551 (x — 1950) + 0.0172027914513 n

+ 5.0640897 x 10715 g2

7. Compute the number of days, d', from Jan 0.0 of the epoch year
to base time.

d'=d4 ifx=y

a' =d - 365 ify is not a lecap year and x # y
d - 366 if y is a leap year } '

8. Compute the Greenwich hour angle at base time with respect to
the mean equinox fixed at Jan 0.0 of the epoch year.

Yo = (wE + 0.017202179543 d' + 0.2625161452801) mod 2w

9. Correct to mean equinox fixed at the beginning of the Besselian
year.

Vg = ¥po * 4

The general computation after initialization is as follows:

1. Input h - hours from base time (universal time)

?.  Compube Lhe fnlegral mmbey of days and Lhe hours remnining
in Lhe rractional parlh of a day.
h
d = Integral part of (55)
h' =h - 244
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3. Compute the right ascension of Greenwich at base time
Y = ("'B = 0.017202179543 d + 0.2625161452801 h') med 2n
Remarks.- The constant term is the right ascension of Greenwich

- at Jan 0.0, 1950. The coefficient of (x - 1950) is the difference beiween
a full revolution and 365 times the daily rate.

: . Subroutine RVIO

Function.- Transform a given set of coordinates in Cartesian or

spherical form to the other form.

g Nomenclature.-—
; Symbol ﬁﬁ;ﬁt(g; Definition
R T and O position vector
R T and O velocity vector
r I and O position magnitude
v I and O velocity magnitude
x T and O X component of position vector
\ Yy I and O y component of position vector
z I and O i z component of position vector
. x Iand O x component of position vector
& I and O & component. of position vector
) z Iand O 2 component of position vector
0 I and O latitude
$ I and O right ascension angle
1 oand O Flighl- path angle
] I end O azimuth angle

P T T
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Spherical to Cartesian Transformation

b
1

r cos ¢ cos O

e
1

r cos ¢ sin 6

z =Y sin ¢

cos ¢ cos © - gin @ ~ 8in ¢ cos 0 v sin Y
& =lcos ¢ sin cos § + sin ¢ sin 0 v cos Yy sin ¢
z sin ¢ 0 cos ¢ vV COs y cos ¢
Cartesian to Spherical Transformation
r =Vx2 + yZ + 22
= ain=1 2
¢ sin ”
= -1 X
6 = tan X
v =\[;[2 + 3‘;2 + g2
= gin-l R - R
Y rv
b, v - yx
y = tan~! tan ~1 A - "
Z - y . .
r - 2V ir - 2 R * R
Subroutine SCALE
Function.~ Subroutine SCALE transforms the actnal state vector
afler LT Lo the atale of a olrvnlay sabil al o plven heltpght .
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Nomenclature.=-
Input (1),
Symbols output (0) Definition
. RO I position vector after ILOI
- r I magnitude of position vector aftex
o
0 LOI
® ﬁo I velocity vector after LOT
. v I magnitude of velocity vector sfter
: o)
: LOT
é Rf 0 scaled position vector at the
. beginning of the lunar circular
N orbit
1 : :
3 Rf 0 scaled velocity vector at the
§ beginning of the lunar circular
% orbit
? h I height of scaled lunar circular
: orbit
é u I gravitational constant of the
moon
H ro I radius of the moon at the landing
site
4 Method. -
h+r
R,=R {—2),
f o r
o
B =ef—P
f h + r

X T R E RN YW + 3 ”x = - = *
Tiie f',,""‘ e SRR T,
SaT Tava¥ oy . P L,
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Remarks .-

Function.-

Nomenclature.-
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Symbol

S

t

At
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ERROR

Subroutine TLIBRN

Function.- Subroutine TLIBRN simulates the translunar injection
thrusting maneuver by use of a precomputed polynomial.

The method of this subroutine is contained in reference k.

Subroutine TIMC

Input(I),

output (0)

I and O
I
I
I and O
I and O

I and O

I and O

I and O

I and 0

TR TR

Subroutine TIMC determines the first guesses for delis
azimuth, delta velocity, and delta flight-path angle for s translunar
state at abort or midcourse.

Definition
state vector
time of state vector S
nominal time of node
x component of position vector
¥y component of poéition vector
z component of position vector
desired radius at the node

longitude of node in earth-
moon plane system

velocity magnitude at node
flight-path angle at node

azimuth of node in earth-moon
system

amount of change in t, (for
nanfreo-reiurm)

adjunted Lime of node

flag indicating an error in TIMC

L
.i
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Method.- Compute the adjusted time of node: tn = tp + At. The

earth-moon plane (EMP) matrix is obtained once for all, by subroutine
LIBRAT at the time tm for use in transforming the EMP coordinates at the

node to the selenocentric system.

The next step sets the dependent variable limits, weights, and weight
cuts. Three dependent varisbles, x, y, Z, are defined as the components
of the position vector at abort or midcourse. They are designated Class 1
variables. The minimum and maximum required vslues of the position com--
ponents are found by adding and subtracting a small tolerance (107° e.r.)
to the abort position components.

Having described the dependent variables, the independent variables
arc set up oand given a first guess. The Tirst independent wvariable is
the EMP longitude of node. The first gueess for the longitude is
(3.1 - 0.025 At) radians. This guess places the node behind the moon in
the vicinity of the earth-moon line. The second inderepndent variable is
the velocity at the node, and the first guess is v0.18h + 0.553/r

- 0.0022 At e.r./hr. The third independent variable is the azimuth at the node,

and the first guess is - g-to obtain a retrograde lunar approach hyperbola.

By forcing the node to lie at the required EMP latitude and to
have the required height and flight-path angle, the above independent
variables determine the state at the node in the EMP. Subroutine CTBODY
is called, and the trajectory is propagated backward to the initial time,
t. The generalized iterator then finds the set of independent variables
necessary to¢ obtrin the dependent variables at sbort; that is, the sbort
position components. Once converged, the differences between the azimuth,
flight-path angle, and velocity before abort, and the values after sbort
necessary to obtain the above node conditions are determined. These
values become first guesses for the MCC maneuver.

Subroutine XBETA

Furction.- Determines the state vector relative to the initial
gtate for & desired value of the universal varieble.

e g et

g gL a e te
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Nomenclature.-
} Input (I),
Symbols output. (0) Definition
B I universal variable
K I central body indicator
Fi functions of the universal variable
U gravity constant
RO 1 initiél position vector
ﬁo I initial velocity vector
r. I magnitude of initial position vector
v, I magnitude of initial velocity vector
to I initial time
R 0 fixed position vector
R 0 fixed velocity vector
t 0 final time

Method.- From the initial state vector, the final state is
determined as a function of B.

- - 2
1/a 2/r0 vo/u

a = - p2/a
Cell subroutines AFCOMPand determine the functions of the universal

variable.

DO BF2

- V]
t =|8 F1 +
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GENERALIZED
ITERATOR RTCC
APPLICATIONS

|

OTHER TRANSLUNAR
APPLICATIONS COAST
TRANSLUNAR MIDCOURSE
INJECTION CORRECTION
PROCESSOR PROCESSOR
l ]
r i j x,T Y, Z, AND G TYPE MISSION
T = TVERD t TARGET {REOPTIMIZAT
MISSION RETURN ELLIPSE
FREE NON FREE
RETURN RETURN

Flowchart 1 .- Real time applications of the generalized iterator,
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PERFORM COORDINATE TRANSFORMATION
Snd = r“R'nd’ Bad? xnd' Vod’ Vnd* wnd)
EMP 'EMP

1

(S, t)nd selenocentric f [(S't)nd EMP

TRANSFORM FROM EMP TO SELENOCENTRIC COORDINATE SYSTEM
EMP MATRIX]

MOON
REFERENCE
TRAJECTORY
ONLY

NO

!
CALL PATCH

patch point = f(Snc!’ tnd)
earth refe!'ence

t..

CALCULATE INCLINATION OF
APPROACH HYP WITH EMP

(3,8

Page 1 of 2
Flow chart 2.~ Translunar midcourse first guess trajectory computer,
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CALL TWO BODY

S =f|(S )

patch’ tpatch' A‘tmcc
or

nd’ tnd' At mcc)

mec’ tmcc

(s

CALCULATE DEPENDENT VARIABLES
X, Y, 2)

mid coutse point

RETURN

Page 2 of 2

Flowchart 2.~ Translunar midcourse first guess trajectory computer - Concluded.,
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ENTER +5
< " MASS BEFORE MGE:
z » MCC = CURRENT
» nefore
3 MASS OF “PACECRAFT
5 SET I OF SPS
7 : sp .
: \
3 SE T MASS CALL BURN WITH (A, AY,
. IN EPO AND Avlye TO UBTAIN STATE
L L_OF §-IVB
. sp AFTER MCC, and Mf/Mo
' (<, 1, M) AFTER MGC

EARTH REF, _ ¢ [¢s. v, m) BEFORE MCC

P R VN

L MOON REF,
- EARTH REF,
) Moon Rer, @Y. 87, Avdye
. CALL CTBODY TO PROPAGATE ,
EPO STATE THROUGH AT T0 }

START OF TLI.BENTCR FCOMP
TO EVALUATE 8 FUNCTIONS .
) N A AVMCC = AVC = qlsp [logc (MI/MB)]

B) MASS AFTER MCC
Mf“— Mo (MIIMO)

ol a4 e

A ' C) FUEL FOR MCC WHERE M_ 1S MASS
i - BEFGE MCC
4 M=M -
CE CALL 1LY BURN WITIE STATE BCFORL °
4 TLI T0 CBTAIN THE STATE AFTER SL1 MASS BLE ORL LOY
L TLL. INPUT: Cy, B, @ lgp, AND THRUST. Myetore L0t = Mt ~ Mo 1L EXPENDABLES
B -3 A) TLI MASS RATIO: mffmo =2 EXP (—A\lc/glﬂb
. - B) MASS AF LR TLIIS AN OUTPUT
i - - IS
- THIS MCC No
- STATE VECTOR
IN EARTH

- . CALL ELEMT TO 03TAIN

ORBITAL ELEMENTS YES Al 'FSLH'S.CM &
3 : CAL “GLATE: CASE ONLY _
h =al+e)-1
< aqf
: VES

CALL PATCH TO OBTAIN . - .SLUNAR
SELENOCENTRIC STATE AFTER PATCH

_

' CALL CTBODY PROPAGATE vES / i
T0 L0, STOP ON TIME & ntmit Srop

¢ ENTER FCOMP TO EVALUATE
B FUNCTIONS AT LOI

CALL EBETA AND XBETA TO PROPAGATE
TO PERICYNTHION STATE. XBETA CALLS
FCOMP FOR EVALUATION OF B FUNCTIONS

CALCULATE:

th,$, A, i)EMP _
EALCULAT £ DEPENDENT

VARIABLES (v, b, ')pc

( rerumn ) %
- A\

2

fage 1 of &

; Flow chart 3.~ Fun-tal fle of analylical tragectery computer for come mission,
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L6

NO /ts THIS
A FREE

RETURN

CALL PATCH IO OBTAIN FREE RETURN: PROPAGATE STATC AT PLRICYNTHION
TO GEQCENTRIC STATE AT THE MOON'S SPHERE OF ACTION e

CALL EBETA AND XBETA TO PROPAGATE THE GEOCENTRIC STATE AFTER PATCH
TO THE STATE AT PERIGEE. XBETA CALLS FCOMP TO EVALUAIE g FUNCTIONS

FROM PERIGEE TO REENTRY CALCULATE: ®-R AND 1-a

CALL XBETA WITH STATE AT PLINGLLE ARD 8 1O OBTAIN STA T
AT RELNTRY. XBETA CALLS FCOMP 10 LVALUATL £ 1 UNCTIONS

CALCULATE:
FREE RETURN REENTRY ALTITUDE
h =p -R
r [ [
FREE RETURN INCLINATION
¢ = TAN-L (\] Wz hyz / h,

CALL DGAMMA WITHY AT REENTRY TO OBTAIN CONIC 8 J —
E——

™

ARLC
RECNTRY
PARANETERS TO
BE COMPUTED

RETURN

IS THIS
A FRCE RETURN
ONLY

YLS’ E

IS
LOLAT
PERICYNTHION

N YES

]

MOVE STATE AT
PERICYNTHION INTO
STATE REFORE LOI1

CALL DCAMMA WITI? Y AT LOI TO
OBTAIN CONIC SFROM PERICYNTHION
TO LOt

CALCULATE:
ReR AND 1,

1

CALL XBLTA WITH BAND PLRICYNTHION
STATE TO OBTAIN THE STATLC BEFORE LO
ENTER FCOMP Tu EVALUATE 8 FUNCTIONS

L ~

3 Page 2 of 6
Flowchart 3.~ Funtlonal flow of analytical trajectory computer for conic mission - Continued,
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cut

edtigts

fo

o

b7

CALCULATE:

IN THE REFERENCE
hx = YLZL -lLYL
=72 R X 2
|ly = ZLXL )(L L
» -
hl = XLYL -YLXL

A) ALTITUDE AT START LUt IILO] =Ry, -RM

B) CALL LIBRAT: WITH K= 4, OBTAIN THE
STATE IN THE EMP REFERENCE
C) COMPUTE THE ANGULAR MOMENTUM VECTOR

D) OBTAIN LATITUDE AND LONGITYDE OF THE
STAYE BEFORE LOI IN EMP REFERENCE

80" AN (zLNsz F\'ZL)
A - Tant (YL/XL) +w

£) COMPUTE THE INCLINATION iN EMP
= TAN“@hzx +I\2y /nz)

t

ALCULAT C: TRANSLUNAR FLIGHT TIME
7™ Ystart vor o tu

ORBIT

CALL BUKN: GIVEN(AY, v, Agdy o AND

STATE BLFORE LOI TO OBTAIN THE CIRCULARIZED
STATE IMMEDIATCLY AFTER LOI

ELLIPT uﬁv £S

CALCULATEA v

BRAKL INTO LLLIPTICAL

10

ORBIT
Av = vhyp- V[IL of ellipse
CALL BURN: GIVEN AV, -y, Awle

IAND STATC BLFORe LOI TO OBTAIN THE
CLLIPTICIZED STAT € IMMEDIAT LLY

FTIR LOI

REPLACE t BY t+ AlE
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A) LOI MASS RATIO: WHERE M_ 1S MASS BEFORE
MANEUVER, WHERE M, 1S MASS AFTER
M,/ 4, = XP | -{avoaty)|

8) MASS OF SC BEFORE LM SEPARATION
Msc = Myotore Lot 1/ 1) -Moe circuLARIZATION

~M_UNAR ORBIT EXPENDABLES

C) ALTITUDE AT START OF LPO: hLO = R0 - RM

!

A) CALL SCALE TO CONVERT ACTUAL VELOCITY AND
POSITION VECTORS TO SPLCIFIED PARKING ORBIT
VALUES STATE AT START OF LPO IS OBTAINED BY
SCALING STATE AFTER LOJ

B) TIME OF SIMULATED LM LUNAR LANDING:

Tie ™ VimmEDIATELY AFTER LOI2TEIRST PASS
OVER LLS

|

CALL CT BODY (REGRESSED) WiTH STATE AT START OF
LPO AND TIME OF LUNAR LANDING TO OBTAIN CSM STATE
AT LANDING, ENTER FCOMP TO EVALUATE 8 FUNCTIONS,

!

CALL LIBRAT, WITH K = 5, AND USE THE PNL
MATRIX TO ROTATE THE CSM POSITION VELCTOR AT
FIRST PASS OVER THE LUNAR LANDING SITE FROM
SELENOCENTRIC INTO THE SELENOGRAPHIC, Rs‘

THE SELENOGRAPHIC LATITUDE AND I.ONGITUDE
OF THE CSM AT LM LANDING TIME :

¢ _=TANL (szx 2y2 ) R
5 K% 5 5 L=T
A = TAN (vs / xs) IRl

CALL ELEMT COMPUTE PERIOD

|

CALL LOPC COMPUTE TIME OF CSM2 PLAKE CHANGE

|
&
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Flow chart 3.~ Functional flow of andlytical trajectory computer for conic mission - Continued.
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.t -

ES
E CALCULATE MASS AFTER CSM,, AND LM
“©- RENDEZVOUS
3 M= (M) - M0 =AM, MMy,
h [ +am,
P WHERE
3 My g = MASS OF LM
3

AMI = MASS OF ASTRONAUTS AND THEIR
EQUIPMENT BEFORE LANDING

AM2 = MASS OF ASTRONAUTS AND
EQUIPMENT AFTER RETURN TO
CSM

M, = MASS BEFORE LM SEPARATION

it
ot

. S,

ein ! 4

e
(TR TN

w ey

CALL CT BODY (REGRESSED) PROPAGATE TO STATE
BEFORE TEl, ENTER FCOMP TO EVALUATE FUNCTIONS,

trei = Lor*®tLpo

MASS BLFORE TEI =M ;. csm, MLo-EXPENDABLE

P P s
bds wiuls’ das s dodlodted b A o

I R 1

CALL BURN WITH (Av, AV, AY)TEI
: AND TTEI TO COMPUTE STATE

AFTER TEI

MASS AFTER TEl = (mf/mo)

Miefore TEI

{

CALL PATCH WITH STATE AFTER
TE} TO OBTAIN STATE AFTER TE-
PATCH

. !

- CALL EBETA AND XBETA TO
OBTAIN PERIGEE STATE VECTOR,
. XBETA CALLS FCOMP TO EVALUATE
B FUNCTIONS

TEl

COMPUTE:
INCLINATION OF RETURN

= TAN-1 ('\}hx2 + hyz/ hz)

¥
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CALL. DGAMMA WITH Y AT
REENTRY TO OBTAIN CONIC B FROM
PERIGEE TO REENTRY

CALCULATE: ReRAND 1/a

!

CALL XBETA WITH STATE AT
PERIGEE AND 8 TO OBTAIN STATE
AT REENTRY, XBETA CALLS FcomP
T0 EVALUATE 8 FUNCTICNS

CALL RNTSIM WITH STATE AT REENTRY
T0 DETERMINE THE ERROR IN A AT LANDING

CALCULATE:
TRANSEARTH FLIGHT TIME AND TOTAL
MISSION TIME

RETURN
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Flow chart 3, - Functional flow of analytical trajectory computer for conic mission - Concluded.
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IS THIS A
MIDCOURSE
CORRECTION

NO

YES &

CALL BETA-TIME INTEGRATOR

S, t, MASS)TLI ign = f[(S, t, MASS)mJm TLI ign’ AtEP(;I

CALL TLI CALIBRATED BURN
(S, t, MASS), 1y, = f[(s, b MASS)py | o0 c3,8,cﬂ
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. CASE ONLY
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IYES

CALL BETA-TIME INTEGRATOR

Sap’ tap - f[(s' tr M dend TLJ

Had i

¢

B SR i

e i:&;

i ¢ . A
e e o C e s, g
- I NLES N NRE RO (N GV N w‘etﬁt

CALL ELEMT
COMPUTE ORBITAL ELEMENTS

RETURN #
CALL BURN
c]

(S, t, MASS)end mee =f (S, t, MASS)start mee ¢ (Aw,Ay,Av)mc ;
(REFERENCE BODY INDICATOR)

-4
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NO IS THIS A \YES

TIME STOP
AT THE NODE

&

CALL BETA-TIME INTEGRATOR
PROPAGATE TO PERICYNTHION

f [(s't)end L1 MASSon Inj]
(S,t,MASS) =
e | [(S,t, MASS)

end mgc]

CALL BETA-TIME
ITERATOR

PROPAGATE TO; t_,

(s, t, MASS)nd= (S, t, MASS)

end mcc

{
>

1

CALCULATE
(®, A, h')nd

RETURN
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CALCULATE DEPENDENT VARIABLES

At ¢

(®,\h,D) end TLI to pc °

At end mcc to pc

|

pc’

ARE FREE RETURN\ g =
CONSTRAINTS TO BE -+
CALCULATED [ \Y/

lYES

CALL BETA-TIME INTEGRATOR
PROPAGATE TO ¥ AT REENTRY

(6L F-Y
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Flow chart 4. - Integrating trajectory computer - Continued,
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R
TLom
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IS
THIS
A
LUNAR
FLY BY

IS THIS A \
FREE RE TURN

YES

CALCULATE LANDING lP

(P, >\> = f(RR,

At )

pity to 1P’ Srnty

TRAJECTORY
ONLY

’. . e .
Foagm
T R T LA SRS T S S

(S, t, MASS)

CALL BETA-TIME INTEGRATOR
PROPAGATE TC Y, | o

Lot T [(s t, MASS)

end mce ¥ LGI

|

CALCULATE DEPENDENT |
VARIABLE,
Ch ¢, N

L0V ewp

Paye 5 of 6

Flow chart 4, ~ Integrating Wrajectory computer = Continued.,




v

3y e et W T e
; T T B

k2 4
Yy

» -

| e b o e i tntoits R

NO

56

DOES THIS
TRAJECTORY

YES

ELL'PTICAL

RETURN

CALL BUPN (S,t, MASS)_ o
— €
=[S0 001 gnr Gt A A9 o gupy]

URBIT

CALCULATE AV TO BREAK INTO
ELLIPTICAL ORBIT AV =
vhyp - Vpc OF ELLIPSE

l

CALL BUL .. £ VEN (AV, ~y, AWLOI

AND STATE BEFORE LOI OBTAIN THE
ELLIPTICIZIED STATL IMMEDIATELY

AFTER LOI
{

REPLACE. t BY t+ At

i

SCALE VECTOR TO OBTAIN DESIRED
HEIGHT OF CIRCULAR PARKING ORBIT

i

CALL BETA-TIME INTEGRATOR
PROPAGATE 0,5 hr in L,0,
(S,t, MASS 5=

= fES,t, MASS) . opr ©+5 m]

YES

(S, MASS)LL

CALL BETA-TIME INTEGRATOR
PROPAGATE T0 LANDING SITE

=1 |_\s, t MASS) 1 1 op AlLLs]

( RETURN )

!

CALCULATE DEPENDENT VARIABLES

@V s

( RETURN ’
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TABLE I.- INDEPENDENT VARIABLES FOR

THE TRAJECTORY COMPUTERS

TFI

Use
Analytic Analytic Integrating
Variable Regerence MCC trajectory trajectory
rame
1st guess computer computer
A\ v
pc
A EMP v
pC
u;pc EMP v
C /
3 v
/
Aepo 4 '
) v 4
o J v/
Ao v v
Myee v v
Mro1 v /
Yr01 4
Atlst pass LLS 4 v
lIlin lunar orbit /
Mgy 4
AV v

—
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TABLE I1I.- DEPENDENT VARIABLES FOR

THE TRAJECTORY COMPUTERS

e g AR

*

Use
o Ref'erence Analytic Analytic Integre” ing
Variable frame MCC [ trajectory trajel.ory
1lst guess computer ecomputer
x GC or SC 4
mept
GC or SC v
yﬁcpt
2 GC or SC v
mept
v v
MASSTLI
v/ v/
AtTL Coast
H GC " v
ap
H sC v v
pc
I EMP v v
pc
) EMP Y v
pc
H GG v/ v
fr-rtny
I EEP v v
fr
SG v v/
Hnd
EMP v v
¢nd
A EMP Y v
nd
H sG v

LPO




R
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TABLE II.- DEPENDENT VARIABLES FOL.. _

THE TRAJECTORY COMPUTERS - Concluded

Reference Use
Variable frame Analytic Analytic Integrating
) MCC trajectory trajectory
1st guess computer computer
‘Lis SG 4 v
A1s SG v/ v
MASSTEI v
v

At'I‘E Coast
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'PABLE III.-~ BASIC MODULES USED IN TRAJEUfg%I CUMPUTERS

MCC first guess
trajectory computer

trajectory computer

TLI/MCC analytic

TLI/MCC
integrated trajectory

EPHM (ephemeris)
RVIO (Cartesian to
spherical, etc.)
PATCH (both ways)
EBETA
RBETA
XBETA (BETA series sum-
mation)
EPIM

CTBODY (BETA series
summation)

DGAMMA
XBETA (BETA
series sum-
mation)
BURN-impulsive
PATCH (both ways)
EBETA
XBETA (BETA
series sum-
mation).

RBETA

EPHM (ephemeris)

CTBODY
LIBRAT
EPHM

TLI BURN (cal-
ibrated)

ELEMT (orbital)

CTBODY (BETA
series sum-
mation)

EBETA

RTASC

RVIO (Cartesian

to spherical,
etc.)

SCALE

Integrator

Forcing function

Runge Kutta
Predictor-corrector
Editor

EPHM

BETA series summation

Right ascension of
Greenwich

TLI BURN calibrated
LOI BURN calibrated
BURN impulsive

LIBRAT

ELEMT (orbitel)

RUIO (Cartesian to spher-
ical, etc.)

4 Ry A X S A ——P
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