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SUMMARY

A method for computing the three inertial components of a previously
unknown lunar landing site is presented. The computation of the landing
site vector can be simply computed onboard the CSM while it is in orbit
about the moon prior to LEM separation for descent. The computation requires
that two unit vectors, separated by a few minutes in time, be measured with
an optical instrument to the landing site and with respect to the IMU. The
method is also extended to include the computation of the expected errors
in the landing site position. These errors are dependent on the expected
CM errors in position and velocity as well as on the error in the sighting
instrument. An example is presented to illustrate the computation.

INTRODUCTION

For the Apollo lunar landing mission the landing site coordinates
are expected to be selected well in advance in order to insure adherence
to the many operational constraints imposed on the mission. However, the
operational flexibility exists in the onboard guidance computer program
to allow the navigator, while in lunar orbit, to select a new landing site
or to update the preselected site. Due to the large uncertainties that
exist in the current estimates of the lunar radius, it is anticipated that
an updece of the landing site altitude alone would substantially increase
mission success.

This note will present a method for determining the landing site vector
in inertial coordinates, during the orbit phase of the Apollo I'nar Landing
Mission, using the onboard optics as they are presently planned.

This note wiil also include as part of the method the derivation of a .
set of equations from which the expected errors of the landing site vector
may be calculated. These errors may be computed either on the earth, or
onboard in the event that the expected errors are found to be a necessary
input for the LEM descent guidance scheme. An example case is presented
for illustration.

Determination of the Landing Site Vector

At a time, to’ prior to the lunar landing, and while the CSM and LEM

are both in orbit about the moon, the navigator sights the optical instru-
ment on a distinguishable feature which is located on the lunar surface in
the general area where the landing is to occur. When the mark button is
pressed, a unit vector, , from the spacecraft to the landing site is
obtained. This unit vector is determined to within the sighting accuracy
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by the two angles ,o{.aa.nd So , which are measured by the sighting
instrument with respect to the Inertial Measurement Unit (IMU); see figure

A
1. The unit vector, C, , 1s given by,

A A Y + S smwaL +lé6/t.VJ
(po—;(c,osowSO(.o Jcoso o o (1)

The unit vectors 2 , f B k , are along the selenocentric (inertial)
coordinate axes. As presented here, it is assumed that the IMU is aligned
along (‘\ , j ’ R , 80 that ol and § refer to right ascension and declination.
There is no loss of generality in making this assumption.

The navigator continues tc track the landing site through a period
of a few minutes. At time tl’ the navigator again presses the mark button,

determining in the same manner the unit vector,

A A A A_-
e, = 4 cos§, eosx, +§ Cos 8, S, + KSvS, (2)

Since the moon is rotating very slowly, the following relation holds

to a good approximation,

A A .
L = Y, +ff= L *+ee (3)
as can be seen from figure (1).

In order to determine the landing site vector, ! , it is necessary
that the magnitude of the vector @por @\ be known. There is no way of
dcitermini'\ng the magnitudes €, °T a by m-;a.swement. However, knowing

@, and @, , and the position vectors L, and ¥, , €, or @, may be
calculated. This may be shown as follows: From equation (3),

A A
C=YC-Y, =L FfF (1)
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A
Take the dot product of (L) with /’, ,

A A A
c-e=p(fL)-F )
Take the dot product of (4) with (0:\ ’

Q’."go: (’o’(ﬁ’.ft)[)l (6)

A A
multiply (5) by -— ﬂﬂ and add the result tc (6),

e p=(pp) e f= p - (A ]

or by simplification,

6= g(,é‘, 'f;\ ces #) (7)

s z;d

. A A

where, Qos‘d =ﬂ-/0/
3 A 4.2
sig = /= (f-F)

With (% determined by (7), the landing site vector may be determined by
combining (7) and (3)

_ c DA >
T S Y
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In summary, all that is required to compute the landing site vector
4_4 are the spacecraft position vectors at to and tl and the measured
quantities af, , So , 0¢, , and 5, .

Determination of the Estimation
Errors in the landing Site Vector

Let the actual position of the landing site be given by,

L+ @ (9)

where _"_‘ o*a.nd f.:ra.re the actual position vectors of the spacecraft and
the landing site with respect to the spacecraft at time to' Now let
equation (3) represent the similar relation between the estimated landing
site position, «é , the estimated position vector, [ o’ and the estimated
vector, fo , from spacecraft to landing site.

That is,

L=r,+ 6o (10)

A
where f_o - €° eo
The error in the estimate of é is now found by subtracting (9) from (10),
/.‘.."g*: ro“—ro*""g_o—ﬁo*
or 54:;r0+5ﬁ (11)
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The covariance matrix of estimgtion errors in the landing site vector

may be found by taking the expected value of (1l) times its transpose.

£ = E£(s4£527)

= E(55557)+E(5L %, )+ ECRS v
+E(sr,$e)

s 7
The term EE(QE£;é£5£}is the covariance matrix, tfi; s of estimation errors
in spacecraft position at to. Define,

S = (e

(13)

. _ Sr7
:E:-(;); “fé?<?§1?’ - ,) (1k)
Then (12) becomes,

-
é.:E€+Zﬁ+Z&Q+ Z@Q (15)

It is shown in Appendix A that equation (15) reduces to,

£ = Ep +tM[D-E]+[2T-& M7
+M[&+Ey—D-D7]
+ VRNV 16)
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where f); is the covariance matrix of estimation errors in spacecraft
position at time t,. The other quantities in (16) are:

M = //%7[1 Sd

(17)
2-£)*
lmﬁ—lr' M. Im
- ) _— Y E'. — c- B -8
So Jd );7;, 'Jd:“J (18)
Y z 2z (19)
== l7fﬁ7€;l:l, secfS, , | sec c{aj7 9
where 0 is in the standard deviation of the sighting instrument.
7
Gt %2 Ery (20)

7
where f,'- \/ is the cross correlation between velocity and position

estimation errors at time to. The matrices Sﬂ and ,ﬂ 7 2z are submatrices

of the six by six transition matrix for Keplerian wotion; for example,
see reference 1.

The matrix Er; may be computed from

Ep = [nE + b J8 + [0 Byt £ AE]0.

(21)

where Et%, is the covariance matrix of estimation errors in spacecraft
velocity at time to'
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In summary, all that is required to compute the estimation errors
in the landing site vector is the covariance matrix of estimation errors
at t_; the measured quantities &, 50 , a(, , g. ; and the standard
deviation @ of the sighting instrument.

A Numerical Example
The equations to compute the landing site vector and its errors were
programmed on a digital computer. Inputs to the program were taken from
the results of a completely independent program. The following quantities

were given to the program:

Ephemeris Time (ET) = 1969 yr, 260 day, 77 hrs, 10 mins, 12.2 secs

t, = 0.703125 hrs from ET

t, = 0.765525 hrs from ET

At t, ¥, = (-934.952, 370.206, 183.861) n.mi.
o, = 21.3439°
S, = 14.4697°

At t., X, = (-837.079, 527.752, 252.152) n.mi.

«€, = -85.3062°

) ] = -40.1314°

With these quantities given, the inertial components of the landmark were
found from equation (8) to be,

L = (-5.02893, 2.50418, .936535) X 100 ¢4,
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In order to compute the estimation errors in the landing site vector,
additional statistical quantities were also input as follows:

Er = |1.96819 840991  -.0841973 X 1o5ft2
© 4.55638  -.LoLTL1T
(s1M) 5. 475946
Ev_ =] .751570 .0559336 .212788 2
© 1491713 -.32550h [ =,
1 (sM) 8.1734k2 sec

The root-mean-square position and velocity errors computed from the traces
of Ero and Evo are found to be,

RMSPOS(tO) = 1095 ft
RMSVEL(to) = 3.23 ft/sec
. 580603 2.06510 -. k17946 o fte
Er v = .349543 3.88734 -6.429013 X 10° =—
©o 1.748310 -6.83694 17.69110 sec

The sighting accuracy of the instrument was chosen to be

S = .001 rad

Using these inputs, the landing site covariance matrix was found from
equation (16) to be,

4, 59429 2.88L405 -1.90845 5
B = 5. 75483 -1.48731] x 1078t
| (sym) 6.28671

The root-mean-square landing site error is computed from the trace of EL

and is found to be,

RMSLS = 1290.0 ft
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If EL is transformed into the s2lenographic polar coordinate system as in
reference 2, the root-mean-square errors in latitude, longitude, and vertical

directions are given by,

RMSIAT = 854.6 ft
RMSLON = 800.2 ft
RMSVERT = Shl.k ft

In reference 3 it is seen that the predicted uncertainties of known lunar
landmarks vary from 220 meters to 910 meters in the horizontal and from
730 meters to 300 meters in the vertical. The uncertainties in the
vertical are possibly even larger. Based on results from the Ranger series,
the Jet Propulsion Lab has recently decreased its estimate of the lunar
radius from 1738.0 KM to 1735 KM.

The results of thlis example show that these uncertainties can be
significantly improved during the Apollo Lunar Landing Mission.

CONCLUDING REMAEKS

The analytic description of a method for determining an unknown lunar
landing site vector during the lunar orbit phase of the Apollo mission
is presented. The method requires the measurement using an onboard optical
instrument of two unit vectors to the landirg site with respéc’ to the IMU.
The method includes the computation of the landing site errors, which are
dependent upon the CSM position and velocity errors, as well as the error
in the sighting instrument. An example was presented to illustrate the
computation. The results of this example show that by the use of onboard
sightings on the landing site, the errors in the components of the landing
site vector are determined to be substantially smaller than predicted
uncertainties for lunar landmarks.
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APPENDIX A

The Covariance Matrix of Estimation
Errors in the Landing Site Vector

Consider the equation (15) for the covariance matrix of estimaticn
errors in the landing site vector,

-
E.=Ep+2p* 50t 2y (a1)
where zfo and Z X/ are given by (13) and (14). In order to evaluate

Z Fo and Z Al it is expedient to find an expression fcr g o that is
easily differentiated. Using (T),

go‘:- e"%o: [g.(é’~écos¢)]é

SwviH
A A

using C05¢ :ﬂ' 7 Ao 5/;V2¢ = /-(/:'(;’:)

2
J)

€o é\o~[ ao‘(€0'é\\)?;]1—["(Ea'é)7-'g

G- -G AT e
or by defining,
r. EETII-G6T]
A A ,2
/-6 )

(a2)
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The expression for @  becomes,

€ = M¢<
(A3)

Now the first order deviations to Co become,

—

Jfo IM<s + MSe

(ak)
where ) ¢ = J“"’.l - Jr"

But M = M(So)do) S')dl) (a5)

IM
s, INM = Js. §5.+ 32 S, +§L4-55+‘3£—4§'d, (A6)

{

Now define the vectors,

; = '?_£.4c. 5 7_';2 = ’ZL‘/’ C
- A3, Sy T
vy A,

And (AlL) may be written,

Jﬁ’: /Vé:@ +MdS<

(AT)

where A/ r -’ ) —z )n3,7.§4.J (a8)



(A-3)

and, Sg = 5040
(A9)
Now consider equation (14), using (AT) and dec = 5:!.",-— J—ro ’
: _ T
2o E(sp,dr.')

= NV E(SBSLT)+ME(SESE)
-ME (‘;—'—; Sr. T) (A10)

The first term of (A10) vanishes if it assumed that the measurement errors

and trajectory errors are uncorreleted,

E(SgS8r.)=0
Since, 5!', — ’QI 5012 (Sro)
(SY.,)-— Sg.l sozz_) SZO

as shown in reference 1, the second term in (A10) becomes,

(a12)

E(SeSE)= BLEGL.SET)+ B, £y, Srl)

= Ty E;z + Wz EVO,:
(A13)
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where Evdro is the cross correlation between velocity and position estimation

errors.

Equation (Al0) finally becomes,

Zfo*’o = M\}Pn Ey +4-, Eq,iz] - ME‘Z

(A1k)
Now consider equation (13), using (AT)
Sq = E(35e.5¢67)
= f[(wsBemse)(sgW™sseTM7)]
So = NE(SESEINT+ ME(SeS)MT
+tMEGeSEINT + NE(sE5T)MT -

The third and fourth terms vanish by invoking the assumption that measurement

and instrument errors are uncorrelated, that is,

E(5<S87)=E(sL57)-E(r L) =0

/?'-‘—5(5-.55?7 (A6}

which can be shown using reference 2 to be

Y- ks D/ﬂG(/,xcz.S;, / Jeczé})

> J (A17)
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Using Sc = 5.—'-‘/"' S!'o equation (Al5) becomes,

2= M{EGrS5)+E(5L51)
- E(52,527)-E(SE,ST)f M7 +NRN

All of the terms in the last equation have been previously defined, so
finally equation (13) becomes

So=M{E, 18- (& 4+ L, )
‘(5@54*%5%4)}MT+A/?/VT

(a18)

Using the definition (20) for the matrix D, along with equations (Alk) and
(A18) the equation (A1l5) becomes

£, = £y +M[D-E ]+[2T-E ] M7

*M[E,;- 7"[,; —p—_DyM7+ A//PA/T

(a19)
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Figure la.- The geometry that defines the relations betwe la.nding
site vector, £ ; the measured unit vectors 3 and &

and the space:raft position vectors at to an tl.
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Figure 1 (b).- The geometry that defines a unit vector ( .



