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A method for  computing the three ine r t i a l  components of a previously 
unknown lunar landing s i t e  i s  presented. The computation of the landing 
s i t e  vector can be simply computed onboard the CSM while it is  i n  orbit 
about the moon prior t o  LEM separation for descent. The computation requires 
that  two unit vectors, separated by a few minutes in  time, be measured with 
an optical instrument t o  the landing s i t e  and with respect t o  the IMU. The 
method is also extended t o  include the computation of the expected errors 
in the landing s i t e  position. These errors m e  dependent on the expected 
CSM errors i n  position and velocity as well as on the error i n  the sighting 
instrument, An exmnple is presented t o  i l lus t ra te  the computation. 

INTRODUCTION 

For the Apollo lunar landing lrlission the landing s i t e  coordinates 
are expected to  be selected well in advance in order t o  insure adherence 
t o  the many operational constraints imposed or, the mission. However, the 
operational f lexibi l i ty  exists in  the onboard guidance computer program 
t o  alluw the navigator, while in  lunar orbit, t o  select a new landing s i t e  
or t o  update the preselected s i te .  Due t o  the large uncertainties that  
exist  in the current estimates of the lunar  radius, it is anticipated that 
an updPte of the landing s i t e  a l t i t ~ d e  alone would substantially increase 
mission success. 

This note will present a method for  determining the landing site vector 
i n  ine r t i a l  coordinates, during the orbit  phase of the Apollo 1%-nar Landing 
Mission, using the onboard optics as they are presently planned. 

This note w i l l  also include as part of the method the derivation of a 
se t  of equations from which the expected errors of the landing s i t e  vector 
may be calculated. These errors may be computed either on the earth, or 
onboard i n  the event that the expected errors are found t o  be a necessary 
input for the LE24 descent guidance scheme. An example case is presented 
for illustration. 

Determinstion of the Landing Site  Vector 

A t  a time, t , prior t o  the lunar landing, and while the CSM and L W  
0 

are both 'n orbit about the moon, the navigator sights the opticel instru- 
ment on a d i s t i m s h a b l e  feature which is located on the lunar surface in  
the general area where landing is t o  occur. When the mark button is 
pressed, a unit vector, , from the spacecraf't t o  the landing s i t e  is  
obtained. !Ph2s uni t  i s  determined to  within the sighting accuracy 



by the two angles, O(.and go , which are measured by the sighting 
instrument with respect to the Inertial Measurement Unit (IW); see figure 

1. The unit vector, t , is given by, 

4 4 4  
The unit vectors 1 , j , 6 , are along the selenocentric (inertial) 
coordinate axes. As presented here, it is assumed that the IMU is aligned 

A h  
along c Y j , K , so that d and refer to right ascension and declination. 

There is no loss of generality in making this assumption. 

The navigator continues to track the landing site through a period 

of a few minutes. At time tl, the navigator again presses the mark button, 

determining in the same manner the unit vector, 

Since the moon is rotating very slowly, the follmiag relation holds 

to a good approximation, 

as can be seen from figure (1). 

I it is necessary In order to determine the landing site vector, , , 
that the magnitude of the vector f0 or be k n m .  There is no way of - v 

determining the magnitudes e, or e, by measurement. However, knowing 
A A 
Po and e, , and the position vectors r, and r, , e, or el may be 
calculated. This may be s h m  as follows: From equation (3) ,  



Take the dot product of (4)  with pl* , 

A 
Take the dot product of (4) with , Po 

4 A 

multiply ( 5 )  by -- '/? and add the result tc  (6), 

or by simplification, 

where, 

With determined by (7) ,  the landing s i t e  vector may be determined by 

c m b i w  (7) and ( 3 )  



In summal-y, all that is required to compute the landing site vector 

1- are the spacecraft position vectors at to and tl and the measured 
q~qtities do , Sb , PL, , m d  &, 

Determination of the Estimation 
Ekrors in the Isnding Site Vector 

Let the actual position of the landing site be given by, 

* * 
where 1, and 4, are the actual position vectors of the spacecraft and - - 
the landing site with respect to the spacecraft at time to. Nuw let 

equation (3) represent the similar relation between the estimated landing 

site position, 4 , the estimated position vector, G, and the estimated 
vector, f,, f'rom spacecraft to Landing site. 

That is, 

where 
- 

The error in the estimate of 4 is now found by subtracting (9) from (lo), 



The covariance matrix of estimation errors i n  the landing s i t e  vector 

may be found by taking the expected value of (11) times i t s  transpose. 

The term E(~s&~?is  the covariance matrix, Ec , of estimation errors 

i n  spacecraft position a t  to. Define, 

Then (12) becmes, 

It is shown i n  Appendix A t h a t  equation (15) reduces to, 



where Ep is the covariance matrix of estimation errors in spacecraft 
I 

position at time tl. The other quantities in (16) are: 

where d is in the standard deviation of the sighting instrument. 

7 
where fr I/ is the cross correlation between velocity and position 

0 0 
estimation errors at time to. The matrices , and f lL  are subatrices 
of the six by six transition matrix for Keplerian mtion; for example, 

see reference 1. 

The matrix Er may be computed fran 
I 

where E% is the covariance matrix of estimation errors in spacecraft 
velocity at time to. 



In summary, all that is required to compute the estimation errors 

in the landing site vectcr is the covariance matrix of estimation errors 

at to; the measured quantities d o ,  so , d, , s, ; and the standard 

deviation 6 of the sighting instrument. 

A ~umerical Example 

The equations to compute the landing site vector and its errors were 

programed on a digital computer. Inputs to the program were taken from 

the results of a completely independent program. The follouing quantities 

were given to the program: 

Ephemeris Time (ET) = 1969 yr, 260 day, 77 hrs, 10 mins, 12.2 sees 

t = 0.703125 hrs from ET 
0 

With these quantities given, the inertial components of the ladmark were 

found from equation (8) to be, 

6 4 = (-5.02893, 2.50418, .936535) x 10 ft. 



In order to compute the estimation errors in the landing site vector, 

additional statistical quantities were also input as follows: 

.0559336 .212788 pt2 
1.491713 - .325594 I - 8.173442 sec 

2 

The root-mean-square position and velocity errors computed from the traces 

of Er and hro a r e  found to be, 
0 

580603 2 . 06510 - .417946 I 2 
Erv o o = [ . 349543 3 88734 -6.429013 X lo2 2 L  

1.748310 -6.83694 17.69110 sec 

The sighting accuracy of the instrument was chosen to be 

6 = .OOl rad 

Using these inputs, the landing site covariance matrix was found fran 

equation (16) to be, 
* 

The root-mean-square landing site error is computed from the trace of EL 

and is found to be, 



If E i s  transformed into the s2lenographic polar coordinate system as i n  
L 

reference 2, the root-mearbsquare errors i n  lat i tude,  longitude, and \ ,er t ical  

directions are  given by, 

In reference 3 it i s  seen tht the predicted uncertainties of knuwn lunar 

landmarks vary from 220 meters t o  910 meters i n  the horizontal a d  from 

730 meters t o  do0 meters i n  the vert ical .  The uncertainties i n  the 

ver t ical  are possibly even larger. Based on resu l t s  fromthe Ranger series, 

the Jet Proylsion Lab has recently decreased i t s  e s t i ~ t e  OF the lunar  

radius from 1738.0 KM t o  1735 KM. 

The resul ts  of t h i s  exsmple show that  these uncertainties can be 

significantly improved during the Apollo Lunar Landing Mission. 

CONCLUDING Rl3MlEXS 

The analytic description of a method for determining an unknuwn lunar 

landing s i t e  vector during the lunar orbi t  phase of the Apollo mission 

is  pretiented. The method requires the measurement using an onboard optical  

inst~vment of two u n i t  vectors t o  the landicg s i t e  w5th respecJ t o  the IMU. 

The method includes the computation of the landing s i t e  errors, which are 

dependent upon the CSM position and velocity errors, as well as the error 

i n  the sighting instrument. An example was presented t o  i l l u s t r a t e  the 

computation. The resul ts  of this e x m l e  shuw tha t  by the use of onboard 

sightings on the landing s i t e ,  the errors i n  the components of the landing 

s i t e  vector are  determined t o  be substantially smaller than predicted 

uncertainties for  lunar landmarks. 
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The Covariance Matrix ~f Estimation 
Ekrors in the Tsnding Site Vector 

Consider the equation (15) for the covariance matrix of estimaticn 

errors in the landing site vector, 

where % "6 z"'' are given by (13) and (14). In order to evaluate 

tPo and Zfir. it is expedient to flnd an expression fcr e , that is - 
easily differentiated. Using (71, 

using 



The expression for e, becomes, - 

where 

Flow the first order deviations to  eo become, - 

How define the vectars, 

And ( ~ 4 )  may be written, 

where 



N w  consider equation (14), us ing (~7) and as = g&, - a& , 

The first term of (Al0) vanishes if It assumed that the measurement mars 

cad trajectory errors are uncorreleted, 

as shown in reference 1, the second term in (~10) kcomes, 



where Ek r is the cross correlation between velocity and position estimation 
0 0 

errors. 

Equation (~10) finally becomes, 

Now consider equation (13), using (AT) 

The third and fourth terms vanish by invoking the assumption that measurement 

and instrument errors are uncorrelated, that is, 

Define the matrix 

which can be shown using reference 2 to be 



using $2 = fib- s& equation ( ~ 5 )  becomes, 

A l l  of the terms in the last equation have been previously defined, so 

finally equation (13)  becomes 

Using the definition (20) far the matrix D, along with equations (Alb) and 

(~18) the equation (~15) becomes 



Figure la.- The geanetry that defines the relations betwe landiy 
site vector, ; the nasured unit vectors 2 and p, ; 
and the spacecraft position vectors at to and tl. 



Figure 1 (b).- The geometry that defines a wit vector . i 


