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Additional guidance laws, compatible with the present LM descent 
quadratic guidance laws, a re  presented which w i l l  great ly  reduce the 
t ra jectory dispersions tha t  restilt f r o m  off-nominal conditions of the  
LM descent, such as navigation error. 
w i t h  descent engine thrust  variation i n  tho FTP (fixed th ro t t l e  posit ion) 
mode is practically eliminated. The laws presented are designed .to guide 
the vehicle back to the desired nominal conditions once the off-nominal 
conditions are detected, such as navigation-tiltitude e r r a r  8 s  detected 
by the  landing radar. 

The quadratic guidance l g w s  compute the TGO (time-to-go), t o  an a h  

Also, the fue l  penalty asscciated 

point and guide the vehicle t o  achieve the t  aim point a t  ' E O  equal zero. 
The guidance laws presented herein perform the additional function of 
controllh-g the a l t i t ude - tbe  prof i le  and the range-range rate prof i le  to 
a specified nomine1 prof i le  f o r  'EO greater than zero. 
rate control requires a a i f fe ren t  guidance l a w  in the fixed th ro t t l e  
regime than in the thmt t leable  regime. 
m g e  rate control in the throt t leable  regime are  termed lldelta-guidancell 
because ai additional expl ic i t  term is added t o  the quadratic acceleration 
command. The range ra te  control in the fixed th ro t t l e  regime is  referred 
t o  as 1lvelocity control t h ro t t l e  logic" and involves an empirical c o n t r d  
scheme. Each of these functions i s  independent of the others in t i t  any 
one o r  a l l  of them could be used i n  the LM descent guidance to produce 
the -respective desired results, 

The range-range 

The a l t i t ude  control and the 

These functions were evalwted using error cases chosen t o  give large 
Relative to the same nominal quadratic guidance t ra jectory . dispersions. 

and ermr conditions, the additional guidmce functions resulted i n  the 
.f ollowing improvemmts : 

1. Depending on how it was implemented, de l ta  guidance in the 
vect ical  axis reduced a l t i t ude  dispersions as much as 25 percent st a €GO 

(i'ange-to-go) of 20,000 ft anC as much as 80 percent a t  an E O  of 2000 ft. 

2. W i t h  dolta guidance In the  horizontal axis, the desired 
approach veiocity near the  manual takeover point (EO = 2000 f t )  can be 
maintzined f o r  a throttle down time w e l l  past  high gate. 
a l a t e r  nominal t h ro t t l e  down time with a result ing fue l  saving. 

corresponding to 70 ft/sec of charecterist ic velocity. 

This would allow 

3. Velocity control t h ro t t l e  logic can result i n  a f u e l  saving 
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1NTRL)DUCTION 

The LM descent guidance u t i l i ze s  a quadratic acceleration guidance 
l a w  which guides the vehicle to achieve specific aim point conditions a t  
a E O  02 zero. The descent guidance must accommodate a non-linear descent 
wlgine thrust  control characterist ic which requires t h a t  the engine be set 
a t  a FTP near maximum thrust during the i n i t i a l  pa r t  of the powered 
descent. Later, when the commanded thrust fa l l s  below the t h r o t t l e  
recovery point (nominally 57 percent of mpximum thrust) ,  the thrust 
changes abruptly ( thro t t les  down) to the commanded value and follows the  
conmand as long as it remains below the 63 percent level. 
are  designdd fo? nominal conditions of leve l  terrain,  no navigation o r  IllU 
errors, and a nominal thrust  p rof i le  i n  the FTP region. 
t ra jec tor ies  have the following types of deviations: 

Trajectories 

Off-nominal 

a. Altitude deviations caused by nzvigation-IMU errors and deviations 
in terrain aLtitude and slope. 

b. Deviations in forward velocity associated with low engine thrust 
in FTP and late th ro t t l e  recovery. 

c. Deviations in f u a l  used associated with variations in the  th ro t t l e  
recovery time and FTP thrust. 

The technique of projecting the guidance aim point beyond the desired 
a h c o n d i t i o n s  as presented i n  reference 1 is being incorporated i n  the 
descent guidance, This technique reduces the vehicle pi tch sensi t ivi ty  
and trajectory a l t i tude  dispersions that r e su l t  fmffi terrain a l t i t ude  
deviation, but the trajectory a l t i tude  dispersions result ing from te r ra in  ' 
slope and navigation-IMU er rors  a re  eggravat: 3 (also shom i n  reference 1) 
The del ta  guidance equations described herein control the t ra jectory closer 
to nominal. by generating additional acceleration command terms and a veloc- 
i t y  control t h ro t t l e  logic which would standardize the t h r o t t l e  recovery 
t h e .  These additional guidance laws guide the vehicle b c k  t o  the qom- 
h a 1  t ra jectory from the off-nomine1 conditions t i a t  can be detected; i.e., 
they do not correct f o r  down and crossrange navigation errors, because 
the LM guidance c o q u t e r  is  unaware of such errors. 

The results presented are considered preliminary in t h e t t h e y  a re  j u s t  
a few examples of s3me of the t e s t s  conducted. 
being prepared to. thoroughly evaluate the techniques presented herein and 
to provide answers t o  questions l e f t  unanswered i n  t h i s  report, such as 
fue l  saving, sensit ivity,  etc. 

A test plan is presently 
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DISCUSSION 

Cubic Guidance 

The quadratic guidance constrains the descent trajectory a t  the a h  
points Fn positifin, velocity, and acceleration in three axes. The next 
derivative, jerk, is a l so  constrained i n  tuc axes (forward and l a t e r a l )  
by computing "GO so t ha t  the  desired final forward je rk  is achieved, and 
by rotating the  guidance coordinate frame t o  achieve zero final lateral 
jerk. Now w i t h  'EO and the coordinate frame defined, there is  no degree 
of freedom l e f t  t o  constrain the vertical .axis any further,  unless t he  
order of the acceleration command is  increased to  cubic o r  other changes 
made; Le., with de l ta  guidance. 
radar-terrain sensit ivity.  
do a better job than cubic and car, do so with a selectable rtidar-terrain 
sensit ivity.  

However, cubic guidance increases the 
This report  w i l l  show that del ta  guidance can 

Delta Guidance 

Adiiitional constmints  on the trajectory can be obtained not only by 
increasing the  order of the c o m d  acceleration, but also by changing 
its form to 

ACCEL CMD = QUAD ACCSL CMD + DELTA 

where de l ta  can now be considered as ei ther  a velocity o r  position corn- 
mand function. 
vas 

For example, Mr. McSwaincs o r ig i r a l  concept of del ta  ( A  ) 

A = K, (hc - h) t K2 (cc - i) 
where hc = -K RZG = position comaand 3 . 

hc = -K VZG = velocity command 3 and 
VZG = forward (z) component of velocity in  guidance 

RZG = forward (Z) componert of position in guidance 

coordinates 

coordinates . 
This rate damped a l t i tude  control system would be useful f o r  the  

final approach phaLe, if the nominal h vs RZG trajectory were l inear.  
The derivation of del ta  guidance tha t  follows w i l l  maintain the  above 
form, but commanded range, Re, and commanded velocity, Vc, w i l l  contain 
expl ic i t  equations based on a quadratic nomine1 trajectory, 
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Relating again t o  cubic guidance which cons t r ahs  the f inal  ve r t i ca l  
jerk, del ta  guidance am achieve the same constraint  by a Kl = 0 above, 
and an equation f o r  V, that would specify w h a t  the ver t ica l  velocity should 
be for trajectory conditions given a t  any time-to-go, 
trol system would then force the actual  velocity (V) to V,, a t  which point 
the quadratic guidance would proceed on with a zero d e l h  and meet the 
f i n a l  ver t ica l  jerk, 
K2 can be selected to either t ighten the control of the trajectory o r  -ta 
relax it to reduce radar-terrain sensitivi$y. 

This velocity con- 

The advantage of t h i s  over cubic is t h a t  the g a h  

Delta (A ) Guidance Logic 

Definitions: 

i =  I o r  3 f o r  axes ( A )  o r  (3); i.e., x or z 

n 

D = denotes desired a h  point conditions 

aim point number, 1 f o r  high gate, 2 f o r  low gate 

G - denotes guidance axis coordinates 

JDG (i,n) and S E  (i,n) are six new desired quantit ies of f i n a l  
j e rk  and snap. 

Jn; (3 , l )  and (3,2) already ex is t  i n  the LM guidance. Jerk, 
of course, is the rate of change of acceleration a t  
"GO = ZERO and snap is the next higher derivative. 

R, V, and A are  position, velocity, and acceleration; i.e., 
RDG (1,2) is the desired coqonont of R along the  X - a x i s  a t  
low gate, and RG (1) is the LcrC knowledge of X a t  the time- 
to-go tc the aim point, 

Given tha t  t i e  totiSl command acceleration &vec to r  13 

- dG = (Quadratic) c (1 1 
The objective of delta is to control t o  the nominal trajectory; and 

therefore, the control f'unction de l ta  is given the f o m  of a r a t e  damped 
position control system, o r  a rate command system (i.e., K1 = 0). 



Wn - Natural frequency 

= Damping coefficient 

The relationship shown of the gains Kl and Kz i s  an approxh~ t ion .  

Appendix I contains an exact derivation of del ta  but the added complexity 
is probably just i f ied.  

The tE3k now is t o  define tne desired t ra jectory conditions in terms 
of (RDES) and (VDES). 

From the equation f o r  final je rk  f o r  quadratic guidance of refer- 
ence 2 (-C2 on page 61), the velocity tha t  should ex is t  a t  any TGO so 
that  the specified desired f i n a l  je rk  would exist ,  can be shown t o  be 

- VDES(i) = & (RDG(i,n) - €G(i)) - 3 W ( i , n )  (3) 

m ( i , n )  T G O ~  
6 + D ( i , n )  TC~O - 

A velocity control system consisting of j u s t  the K2 pzr t  of de l ta  
could be used which then constrains the f inal  jerk in the same manner 
that  cubic guid-uice would, except that the added advantzge here is  the 
sensi t ivi ty  control with the coefficient K2. 

Constraining f i na l  jerk w i l l  tend to  reduce trajectory dispersions 
close t o  the terminus of the trajectory,  but w i l l  not help much a t  large 
the-to-go. 
position a t  a l l  E O .  

The K1 par t  of de l ta  is used t o  control t o  the nominal 

If a l l  of the coefficients (AD, JD,  and SD) of t.he quadratic accel- 
eration f o r  a nomhal  trajectory a re  specified, then the nominal position 
at any given TGO w i l l  be 

RDES(i) = RDC(i,n) - VDG(i,n) E O  t (4)  
(i,n) %02/2-~ (i,n) %03/6 

t Sm(i,n) TCO~/& 
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To limit a t t i tude  excursions introduced by de l ta  i n  driving t o  a 
nominal trajectory,  a l i m i t  on the de l ta  control acceleration would be 
desirable. 

A (i) '[K1 (RDES(i) - RG(i)) t K2 (MES(i) - VG(i))]limit 

Delta guidance was mainly devised f o r  zontrol of  a l t i t ude  o r  X-axis 
trajectory dispersions, but it a lso  has application to the forward 2- 
axis (delta f o r  lateral axis would not be desirable, f o r  quadratic guid- 
ance operetes sa t i s fac tor i ly  there). 
horizontal delta;  i.e., K1 must be a nega5ive numbero (K1 and K2 are 
posit ive f o r  ve r t i ca l  delta,)  K2 is  immaterial f o r  horizontal de l ta  f o r  
VDES w i l l ,  by definit ion,  always equal VG; brtcause TGO i s  computed so 
that final je rk  i s  constrained. The TCO calcula$ion, constrained i n  the 
forward axis, is  also the cause of the requirement f o r  Kl to be negative 
f o r  horizontal delta. 
involved and w i l l  not be made here, The proof l i e s  i n  the f a c t  t h a t  f o r  
a given range deviation from the nominal range-range r a t e  prof i le ,  TGO 
w i l l  readjust  i t s e l f  and RDES, so t h a t  the range e r ror  w i l l  take on a 
dSfferent sign from that of the i n i t i a l  deviation. 

There is  an important fac tor  f o r  

The mathematical proof of t h i s  statement i s  rather  

The following conditions were applied to de l ta  guidance i n  the simu- 
la t ion  from which the r e su l t s  of t h i s  report  were obtained, 

a, Vertical  de l ta  guidance s tar ted a t  the nominal t h e  of radar 
acquisition and used K1 = -0025, K2 = 0.7, 

b. Horizontal  del ta  s tar ted after t h r o t t l e  recovery and used 
K1 = -.OO25, K2 = -0.1. 

c. 

d. 

Delta guidance stopped when -RZG < 2000 ft .  

Acceleration lhit was s e t  a t  i l  ft/sec2, 

Velocity Control Thrott le Logic 

The reduction of variation of the  t h m t t l e  recovery point and asso- 
ciated fue l  penalt ies is the objective of t h i s  logic.  
achieved by commanding a lower (than FTP) thro t t leab le  thrust  level,  when 
a higher than desir9d acceleration is detected. 
level i s  made when the desired empirical conditions are achieved. 

of MSC was t h a t  of precomputing the quad&-atic th rus t  command vs TGO pro- 
f i l e  that would exis t  f o r  a three-sigma low F,W engine and t o  s b ~ e  t h i s  

This can be 

A return to the  FTP 

The or iginal  control concept as related to the  authors by H. E. Smith 
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in the guidance computer. An engine with 6 higher th rus t  l eve l  i n  FTP 
inuld then produce a thrust  command which a t  FTP ignit ion would be the 
same, but would get  lower i n  time. 
stored prof i le  f o r  the switching logic, the engine would be pulsed down 
u n t i l  the thrus t  command bu i l t  up to o r  beyond the stored profile.  
tends t o  produce a standard f i n a l  t h ro t t l e  recovery point. 

With associated deadband and the 

This 

There a re  two other a l ternat ives  f o r  the  stored prof i le  used by t h i s  
t h r o t t l e  logic--VZG versus RZG o r  VZG versus TG3. The main action taking 
place during the  FTP phase is  tha t  of reducing the forward Z component of 
velocity i n  guidance coordinates (VZC) to 'the point whe;e the remainder 
of the descent can be performed with a throt t leable  thrus t  level,  
t h ro t t l e  recovery conditions can then be standardized by controlling the 
2 components of range and range r a t e  t o  the stored prot i le .  
can be shown because of the way In which I l l 0  is computed, that con.1-rollhg 
t o  VZG vs E O  would produce ident ical  results;  i.e., whenever VZG vs Ru; 
i s  sat isf ied,  VU; vs TGO w i l l  also be sat isf ied.  The !EO prof i le  should 
be easier  to empirically curve f i t ,  as shown i n  figure 1. 
thrust c o : m d  vs  !EO might be the eas ies t  t o  f i t  i n  t ha t  it i s  essen- 
t i a l l y  l i nea r  from TGO = 250 t o  600. 
f i l e  was not used f o r  the results presented due t o  t h i s  paremeterrs 
sens i t iv i ty  tC, er rors  i n  all three coordinate axes. 

The 

Also, it 

Note thd t  

Control t o  a thrus t  commanded pro- 

The reason f o r  considering t h i s  logic  f o r  'he Z-axis only is tha t  
there m y  be some undesirable e f fec ts  on the th rus t  command prof i le  from 
Lhe X-axis when radar updates start. 
studied further. The results presented herein w i l l  be f o r  the VZG - TGO 
prof i le  only. 

Bo,h of these prof i les  w i l l  be 

TEST PLAN 

Tests conduckd during the developmental stage of de l ta  guidance and 

"he t ra jec tor ies  used i n  t h i s  report  vary widely from 

velocity control t!:rottle logic  w i l l  be presented. A t e s t  plan t o  thor- 
oughly evaluate these concepts w i l l  l a t e r  be conducted using a more standard 
set of condLtionu. 
the old s e t  of high gate targets  (using projection technique), one-phase 
targeti!:g, d l d  the l t i tes t  modified two-phase. The in ten t  of the t e s t s  
presented is to show a few examples of the a 'bi l i ty  cf these Icontrol t o  
nominal traj ectory'l concepts of (1 ) reducing a l t i t u d e  dispersions w i t h  
ver t ica l  dell;a, (2) maintaining desired forward velocity i n  the area.of  
manual takeover with horizontal delta,  and (3) standardizing the t h r o t t l e  
recovery point with velocity control t h ro t t l e  logic. 
on the a l l - d i g i t a l  LM descent program of reference 3. 

Tests were conducted 
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Off-Nominal Conditions 

Two off-ngminal conditions were used: (1) FTP thrust  low,onavigation 
and IMU errors  t ha t  produce vei,icle low, and te r ra in  slope of 1 
produces apparent vehicle high (TLVL-lO), and (2) vice versa (THVHtlO). 
The actual FTP thrust prof i les  were: 

TL = 9450 t 0.42568 t 

that 

TN = 9712.5 t 0.56757 t 

TH = 9807 t 0.59595 t 

where t = time from FTP ignition. 

The navigation-IMU errors were those described in  reference 1; Le. ,  
the errors were combined i n  such a manner as t o  produce an a l t i t uge  error  
of i3000 f t  a t  300 sec a f t e r  FTP ignition, and a velocity e r ror  (h)of 
20 ft /sec a t  high gate (480 sec a f t e r  ignition). 
(3-Sigma) are  based on an error  probability analysis conducted some years 
ago--there may be a lower sigma number (i.e., higher probability) asso- 
ciated with these conditions today, 

These error  conditions 

Tests Conducted 

1. One-phase trajectory shaped to old high gate-low gate f i n a l  approach 
with: 

a. 

b. 

2. 011 

Vertical  del ta  guidance 

Complex del ta  of AppndiXl. 

high gste  trajectory (reference 4 )  except hieAA gate projected 
50 sec and low gate projected 10 sec. 
and I'LVLtlo. 

Three runs each of nominal, THVH-I', 

a. J u s t  quadratic guidance 

b. Cubic guidance i n  ver t ica l  axis only. 

3. 
ignition. 

Same as 2, only landing site shifted 4O,OOO f t  closer t o  vehicle at 

a. Just quadratic guidance 
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b. Vertical  deltla guidance 

(1) K1 = 0, K2 = 0.1 

(2) K, = 0.0025, K2 = 0.1 - After high ghte cnly 

(3) I1 H - After throt,tle recovery 

It I - After nominal radar acquisit ion 
p b h t  0 

( 4 )  

4 .  Modified two-phase i;jTe ,trajectory with low f i n a l  approach ~ p e e d s  
(ZG = 65 @I ZG = ..2000) a n d  nominal t h ro t t l e  recovery a t  930 = 80 see 
from high gate (not; qui ts  l a t e s t  reference t ra jectoiy because of negative 
jerk in final approach). TLVL?-lS 

. .  

a. Vertical  de l ta  gu idaxe  

b. Vertical  and horizontal de l ta  guidmce 

5 0  
ver t ica l  and horizontal de l ta  g u l '  iaance. 

A one-phase trajectoiBy using velo5i;y control t h ro t t l e  logic: acd 

a. TL 
.D. TN 

c o  TH 
d, T€MI-1° 
e. TLVL+IO 
f. TL with landing E i t d  s h i f t c J  20,000 f t  closer +A vehicle a t  

The VZG, versus 930 prcfi.I.2 f o r  the t h r o t t l e  logic -as obtained by 

ignition. 

forming the following fmction:  0 

3 D E  F VZGc = AT" T BT + C t F t + ~3 

T = E O  

A smaller number of t c m s  f o r  generatkg t,he prof i le  would probably 
be satisfactory,  
mum velocity a t  any time thct was obtained from a ser ies  of runs containing 
162 cbmbinations of error  sources; i.e., thrust  deviation, navigation 
errors, IblU errors,  terrain slope, s tc .  The t h r o t t l e  logic  coitsisfed of 
an engine pulse down to a constant th rus t  c3mmand of 63 percent when the 
a c t a 1  velocity (VZG) was less than VU;, by 20 ft/sec. For the ve r t i ca l  
(or radia.1) acceleration control durilig t h i s  pulse down mode, the engina 
was assumed to still  be a t  the FTP thrus t  l eve l  ( t h i s  prevents pi tch tran- 
s ients  during engine pulses). 
equal to o r  greater than V Z C .  

The velocity command prof i le  used represented the maxi- 

The FTP mode was reectered whm VZG was 



DISCUSSION OF FCES'ULTS 

Vertical Delta Guidance 

Tra.iectom Shaping.. - The one-phase concept of LaiI descent targeting 
consists actually of two phases with different  aim conditions f o r  each 
phase, with the exceptior, that the position conditions a re  ident ical  and 
located near the landing site. One problem of t h i s  concept is t h a t  of 
obtab.ing a desired skp ing  of the f i n a l  approach trajectory. 
of figure 2 demonstrates two items: 
guidance of providing a f i n a l  approach f o r  one-phase ident ical  to tha t  of 
the old high gate-low gate targeting, and (2) a comparison between the 
min del t s  guidmce of t h i s  report (euqation 5) and the complex de l ta  
guidance of Appendix I (equation 13). 
verged well t o  the desired f i n a l  spprcsch, which leads t o  the conclusion 
tha t  the del ta  equation (5)(with its limited acceleration increment; :.e., 
a t t i tude traosient)  is  satisfactory. 

The data 
(1) fhe ab i l i t y  with ve r t i ca l  de l ta  

Both del ta  guidance systems con- 

Altitude Dispersions. - The a l t i tude  dispersions during the final 
approach a t  tuo locations and characterist ic veloci t ies  are tabulated i n  
Tables I and 11. 
betxeen the high and lo;! off-nominal conditions, is  shown f o r  quadratic 
guidance by i t s e l f  as Case F. 
does lover these dispersions slightly. 

The net dispersion, which is *.e difference i n  a l t i tude  

Tie more constrzining cubic guidance (Case G )  

The noninal trcijectories of Tables I and I1 are  basically the old high 
gate trajectory of reference 4, except the aim points a re  projected (50 sec 
for  high gate and 20 sec f o r  low gate). The th ro t t l e  recovery point on the 
t ra jector ies  of Table I was too soon; a d  therefore, the A V  was over the 
budget. 
the vehicle a t  ignition f o r  the t ra jector ies  of Table 11. 
th ro t t le  recovery poin t  increases the dispersions BS can.be seen by com- 
paring Cases F and A. 

To correct this ,  the  landing s i t e  vas shifted 40,000 f t  closer to 
The l a t e r  

When del ta  guidance is flown w5th K1 = 0 (Case B), the e f fec t  is  the 
same as with cubic gedance--teminal jerk constrained. 
f o r  Case 3 were lower than the cubic guidance, Case G, even though the 
dispersions for  Case A were larger  than Case F. 
mice can therefore do a be t te r  job than cubic guidance. 

The dispersions 

This p a r t i a l  de l ta  &-id- 

The pragressively be t te r  conditions going f r o m  Cases A t o  E on Table I1 
show tha t  it is best  t o  have the f u l l  ver t ica l  del ta  guidance (K1 and K2), 
and s tar t ing as soon a9 possible; i.e., a t  nominal radar acquisition. The 
dispersions of Case E are 25 percent anl 80 percent lower at 20,000 and 
2,000 f t  range than Case A. Compr-lcg ,-lses A and E shows a s l igh t  A V  
saving on the nominal fo r  de l ta  gdrdanc,e. 
guidance and THVH-IO is insignificar,: jecause this would be RSS'd x i th  
other A V  dispersions f o r  the fue l  budget. 

The extra 20 ft/sec f o r  delta 
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Horizontal Delta Guidance 

One of the best  wcys of saving f u e l  f o r  a IM descent is to shorten 
the t h e  betweeii t h ro t t l e  recovery and landing, 
t ha t  when low FT? thllist l eve ls  are encountered, and if th ro t t l e  recovery 
hasn't occurred well before high gate, the forward velocity during the 
f i n a l  approach can be fer off nominal (Le., high). 
to show how much l a t e r  t h ro t t l e  recovery can occur if  horizontal del'& is 
used, but merely to demonstrate f o r  one par t icular  case where th ro t t l e  
recovery was well past  high gate that horizontal de l ta  guidance maintained 
the desired f0riarC.l. velocity of 65 f t /sec*at  a range-to-go of 2000 ft. 

The problem, though, i s  

The object now i s  not 

The nominal forward velocity-range prof i le  i s  shorn on f igure 3. 
n o n ~ m l  th ro t t l e  recovery is about 80 sec pr ior  to high gate, and ';he 
forward velocity is about 65 ft /sec a t  a range of  2000 ft.  
TLVL+10 condition, t h ro t t l e  recovery occws a t  10,000 f t  mnge--well past  
the nominal high gate point a t  26,000 f t  renge. Using j u s t  ver t ica l  del ta  
guidance (same results expected if  no de l ta  used), f igure 3 shows the 
5igher fordard velocity prof i le  with approximtely 85 ft/sec a t  a range of 
2000 ft .  
t h ro t t l e  recovery, the forward velocity i s  back to the nominal 65 ft/sec 
a t a  range of  2000 ft .  

The 

With the 

And with horizontal del*& guidance, which &tarts acting a t  

Velocity Control Thrott le Logic 

The data f o r  the 
and del ta  guidance is 
ef fec t  on the 3-signa 

one-phase trajectory t h a t  used the throttle logic  
shown on Table 111. 
low th rus t  engine bscause the engine was not pulsed 

The th ro t t l e  logic produced no' 

down mti l  the f ina l  t h ro t t l e  recovery which occurred exactly a t  high gate. 
The ab i l i t y  of the th ro t t l e  logic  t o  standardize the th ro t t l e  recovery 
point is demonstrated with the thrust  nominal and 3-sigma high runs where 
the time variation of t h ro t t l e  recovery was only 8 sec, and the A V  only 
2 ft/sec deviation between the  three runs. The worst A V  deviation from 
nominal (TN) was 9 ft/sec f o r  the  "LVL+-l0 condition. 

The number of engine pulses pr ior  to the final t h m t t l e  recovery 
point is tabulsted and the thrust-time prof i les  are shown on f igure 4.  
The msxinum number of ten pre-throttle recovery engine pulses miaht be 
undesirable. 
of pulses, but chmging the deadband switching c r i t e r i a  from a constant 
20 ft/sec should decrease the number of pulses. 
pulses might be decreased and the accuracy of th ro t t l e  recovery mahteined 
if the switching l e v e l  (deadband) were a function of E O .  

No attempt a t  t h i s  point has been made to reduce the number 

Also, tahe number of  

The exact value of this th ro t t l e  logic i n  terms of A V  cannot be 
stated, but an estimate can be made by relat ing the resu l t s  of Table 111 
ta the tes t  case E of Table 11. If the AV budget were based on the worst 
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condition (according to Table 111) of TLVL+l0 (6466 f o r  Case E), the  
saving would be the AV difference of t ha t  case and the noxirial (6539) 
f o r  Case E; Le., 73 ft/sec. 
of A V  WS'd i n  the f u e l  budget f o r  high deviations from nomhal, and 
also, the fue l  saving of l a t e r  t h ro t t l e  recovery times that might be 
possible with horizontal del ta  guidance. 

Othez considerations though are the amount 

An indication of how the  th ro t t l e  logic  might behave in the presence 
of LGC known off-nominal conditions a t  PDI is intended with Case 6 of 
Table 111. 
which is approximately equivalent .t;o a PDI igni t ion four seconds too early, 
At M'P ignit ion f o r  this run, the thmtt lk  logic  immediately prevented the 
engine f r o m  going to FTP, u n t i l  the correct range-rmge r a t e  vas obtained, 
The f i n a l  t h ro t t l e  recovery point was within 10 sec of the desired time, 

The landing s i t e  was shifted 20,000 f t  away from the  vehicle, 

Tu0 l a s t  items can be seen on Table 111. The forward velocity was 
held t o  within 0.1 ft /sec of the desired a t  a range of 2000 f t  due to the  
horizontal del ta  guidacce. 
ver t ica l  del ta  guidance--these off-nominal tes t  conditions on the  one-phase 
t r a j e c t o q  without de l ta  guidmce resulted i n  unsuccessful m s .  

The a l t i tude  dispersions were low due t o  

COXCLUSI ONS 

Delta guidaxe, which computes sn additional term t h a t  is added to 
the  quatlratic acceleration comm?, is  considered (for the following con- 
clusions) to operate frorc the nominzl radar acquisition t o  a range of . 
2000 f t  w i t h  an acceleration c o m d  euthority limit of 21 ft/sec2. 

1. Delta guidance when used i n  the ver t ica l  (X) axis f o r  LM powered 
descent can reduce the a l t i tude  disperuiom by 25 percent a t  a range to 
Lie landing s i t e  of 20,000 f t ,  and b,y 80 percent a t  a r a g e  of 2000 ft. 

2. Delta guidance when used i n  the horizontal (2) axis has the  a b i l i t y  
to  save budgeted fuel by maintaining LIe desired forvard f i n a l  approach 
speeds f o r  late t n i u t t l e  recovery times. 

3. The velocity control t h ro t t l e  logic h2s the ab i l i t y  to save budgeted 
fue l  b 
70 f t  7 sec o r  greater is possible. The th ro t t l e  logic   maintain.^, a stand- 
ard range-range rate prof i le  by comparing actual  conditions with stored 
conditions of e i ther  range r a t e  (VZG) - E O ,  range-range rate,  o r  range- 
!EO. The th ro t t l e  logic commands a low throt t leable  l eve l  of th rus t  when 
the actual control parameter exceeds a preset  l eve l  below tine desired 
condition--FTP is reentered when +he desired condition is  exceeded. 

standardizing the th ro t t l e  recovery point. A A V  saving of 



APPENDIX 

DERIVATION O F  AN EXACT VERTICAL DELTA GUIDANCE TC) PRODUCE S P E C I F I E D  

CONTFKIL RGSPONSE OF FFEQUENCY AND DAMPING 

(This form not recommended due t o  added complexity and lack of 
l imiting of bistem response; i.e., accelemtion increment) 

Given the total acceleration cormand of . 
AG = AG(QUAD) + A = m - m EO + SFG xo2/2 + A (1 1 

where the f i n a l  jerk and snap (JFG and ,533) are no longer constants 
if  A is applied. 
equaticns are val id  a t  each couiputztion interval: 

But still, the following veloci-Ly and position 

VG = VIX - ADG TGO + J F G  TG02/2 - SFG TG03/6 (2) 

RG = RDG - VDG TGO + ADG TG02/2 - JFC n;O3/6 + SFG n;04/?.4 (3) 

because f o r  the conputation of AG(QU1D) the 3 F G  and S F G  terns are 
computed to sa t i s fy  the above equations (see raference 2). 

The object of  delta guidance is t o  control to the  nomhal  position 
on the t ra jectory fGr the specifio,d TGO. This nominal position is: 

RDES = RIT, - VDG ' TGO + AX "GO2 - J E  n;03/6 + SI% TG04/24 (4 )  
where CrLK; and SDG are new constants of desired final je rk  and snap. 

The quantity which should be controlled t o  zero is: 

Q E FIDES - RG = -(JE - J F G )  TG03/6 + (SIX - SFG) TL04/& (5 1 

Reference 2 derives the following: 

J F G  = -18VDG/TG02 - 6VG/TG02 t 24(RDG - RC)/TGO3 t 6!E/TW 

SFG = -~~VIX#XO~ - ~ ~ v G / T G O ~  + 72(m - RG)/T&+ + 6m/TG02 

Q = JDG T G O ~ / ~  + SDG ~ ~ 0 4 / 2 4  - m TGO + RW; - RG + 

(6) 

(7) 

by substi tution of (6) and (7) into (5) 

AM; Tc02/2 (8) 



APPENDIX (continued) 

the next two derivztions of Q are needed t o  obtain a control law 

= JDG TG02/2 - SDG TG03/6 t VDC - VG - ADG (9) 
.. Q = J D G  TGO + SDG TG02/2 - AG f- ADG 

by substi tution of (l), ( 6 ) ,  and (7) into (10) 
.a 
Q = J D G  TGO + SDG TG02/2 f ~ ( V D G  + VG)/TGO 

- 12(m - RG)/TGO~ - A 
A regular position c o m d  rate &ped control l a w  can now be 
established as: 

v =  -K,Q - K.$ 
2 where K1 = Wn 

Wn = natural  frequency 

{ = damping coefficient 

Delta can now be solved from equations ( 8 ) ,  (9), (ll),  and (12) 

A = -(TGC - K2TG02 + K1TG03) JDG (13) 
2 6 

t ( E O 2  - K2W03 + KITGO') 
2 -- 

3 12 

t (6 + K2 - KITGO) VDG 
TGO 

i- (6 - K z )  VG 
TGO 

+ (K1 - 12) (RDG - Rcr) 
T G O ~  

t ( K ~ T G O ~  - K ~ T G O )  ADG 
2 



APPENDIX (Concluded) 

The further substitution of (6 ) ,  (7), and (13) into (1) gives 

AG = (first two tenus of A above) + K2(VDC - VG) - K 1  0 TGO VDC 

+ K1 (RDG - Rc) -k (1 - K2TG0 + K 1 r C 0 2 / 2 )  ADG. 
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