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APOLLO NOTE NO. 51 J. Holdsworth
24 April 1963

THE MAXIMUM LIKELIHOOD ESTIMATORS OF THE PARAMETERS
APPEARING IN A CURVE FITTING PROBLEM WHEN BOTH

OF THE OBSERVED VARIABLES ARZ
SUBJECT TO RANDOM ERRORS,

A functional relationship of known generic form is assumed to
exist between two variables x and y. The form of the dependence
between x and y will, in general, depend upon certain parameters
215 ey thus allowing us to write: V

(1)

y = f (Xi a, ai,...aM) .

We shall assume- that we have available a sequence of N observations
made upoﬁ both the x variate and the y variate. That is, we assume
that the available data is a sequence of N or;dered pairs (;.;1, yl), .

(xN, yN) where the number of data pairs N is assumed to exceed the
number M of parameters necessary to specify the curvilinear relation

between y and x.

Now if the pairs (xi, yi) could be observed without error then
M. such pairs would theoretically suffice to exactly determine the
parametric values ayseeedy e However, the observed values in both
x and y are assumed to be contaminated by random noise, thus our
problem is to use our observed data in some maximally effective way

so that we may obtain good estimates of our parameters.

More precisely we assume that the actual value of x which we.

observe at time i may be written:

_Xi = p.xi + £ i (2)

where § ; is a zero mean stationary white gaussiz.: process with known



variance crlz, so. that the mean value of an x observation made at time
ids p_ which would be the value actually observed in the absence of

1
contaminating noise.

Similarly we assume that an observation of the y variate made
of time i may be written as the sum of a mean component dependent
upon the time i plus an error termmny which is assumed to be a zero
mean stationary uncorrelated gaussian noise process with known

. 2 .
variance o3 . Thus, we may write:

Y= @ +'qi (3)

Vi

- Now because of the distortion in ouf observations due to the
noise, Equation (1} will not actually hold for all pairs of observed
values x and y. Thus, Equation (1) must be considered a constraining
equation relating the expected values of the observations v and x at a
particular tirhe i, thus we write: |

v =f(p.x., é.l,....aM) . 4)

Y3 i
Thus using Equations (3) and (4) we may write:

Y

1=f(pxi, ap, cees ay)t oy (5)

Now because of the uncorrelated nature of our noise sources
we find that our data (Xi’ yi). .o (XN, yN) actually constitute a set of

2 N independent observations whose likelihood function may be written:

. 1 -
L% ¥y, srreslly » 2950002y ,)= exp - (6)
AT R *N M (ZTr)N O‘lNO‘ZN

where N N 2

1 ; ' 2 1 \

L = (x; = p )"+ (Y-f(p yay.-a, )

2 oy” TH 20—25, i x LM

T2 5
i=1 . i=1



Inspection of Equation (7) shows that the likelihood function

depends upon the parameters CITEREE which we wish to estimate as

M
well as upon the N unknown nuisance.parameters LR in which
, 1 N
we have no interest. This, however, is no problem --at least con-

ceptually since the estimators Q.X , ’a\,i are those functions of the data

i
which minimize the expressionX.. That is, we may proceed as
though we were interested in estimating the M + N parameters Blseeeyy
and P . by solving the following system of M + N equations in

M+ N unknowrll\g as functions of the observed data:

N
0L _ } o f
aa_k.o. Z(yi f(p.xi,al,...aM)] oy
i=1 )
fork=1,...M (8)
0L 1 1 18 f
=0 = (x. - p_ )t (y.-f(p, 2@y, e0ey Jm— =0
ap.x. 0_2. i X 0__2 i %, 1 Miap.x.
i 1 2 i
fori=1,...N (9)

Thus, the simultaneous solution of the system given in Equation
(8) allows one theoretically at least to solve for the maximum likelihood
estimators of the para.méters CIERRE aM as functions of the observed data

alone and not of the nuisance parameters CEERRY Generally the
' 1 N

system (Equation 8) will be a rather complicated system of nonlinear

algebraic or transcendental equations; however, if digital computing

facilities are available the solutions may be numerically obtained by

the Newton Raphsonmethod or by applying some other computational

technique.
COMPUTATION OF THE ASYMPTOTIC COVARIANCE MATRIX OF
THE PARAMETRIC ESTIMATORS

If one is interested in obtaining the covariance matrix of the-

. ~ - . .
estimators a,,... ,'a\M then for large samples or long smoothing times



one may proceed in a manner very'simﬂ'ar to that employed in Apollo
Note No. 43; that is, we may apply a similar linearization technique.
Since'the technique involved is essentially the same as that employed in
Apollo Note No. 43, the computation of the covariance matrix will be

briefly sketched below.

As in Apollo Note No. 43, we shall write the estimators /a\i,

‘&, in the following form:

J
~
a.
i

a.+ ADa,
i i

{9)

~
A
p'x . lNL}(.-!- p'x.

J j j

In Equation (9) we are decomposing the estimators into the
sun of two quantities one of which is the true parametric value, the -
other term representing the random error component of the estimator.
Furthermore, we shall assume that we have a sufficient amount of
data so that functions evaluated or éxpanded about 'ﬁi, ’;IX. depend upon

the error quantities only up to terms of first order. Th&s,» we write:

9%

A Pad g -
f(p.xi, al,...,aM) = f (pxi, al,...aM)’ +’ ———8“}{ Apxi
i
M
5 f '
+ Z '—a—a—k- Aak (10)
k=1

where the derivatives are evaluated at the parametric values.

Substituting Equation (10) into the system (8) and collecting
terms yields the following system of M + N equations which is now a

linear system in the random error quantities.

M, N N N
9f,y of 8Ly as 31
55, pa (1)) Ayt 5a, omy, o Fx T 52, i
=1 * i=1 3 ) i=1 o o=l x
fork=1,2,...M (11a)

4



M
1 of of 1 1 of 2\
e Aa + + JaN
2 op 3 k 2 2 (ap ) P
) x Ly %k 1 2 ¥ ) 1
_ 1 1 9 f
= =z 5t =7 s
(o 3y . g5 Xx.
1 2 i
fori=1,2,...N (11b)

Now the system of equations given by (11) is a system of M + N

equations in the M + N error quantities Aal, . AaM{ A }‘Lx'_.’ INVAN p.xN.

However, as we have mentioned before the B, are nuisancé parameters in

which we have no interest. That is, we desire:sl the covariance matrix

of- the parametric estimators of interest --not the covariance matrix

of all M + N estimators including those of the nuisance parameters.
Fortunately the form of the system (11) allows us to reduce our

M by N system of equations in M by N unknowns to a linear system of

equations in the desired error terms Aal, AT To do this we use

: M’
Equation 11b to write:

: M
_ _ 1 i 1 of o1 af - of
Apy = I 1 79f 12 il ra (B vy % g 2%
i + o o b o5 X. k
2 2 {op ) 1 2 i 2 i,z
o3 o x. =
"1 2 i .
(12)
Substitﬁting Equation (12) in (l1la) we obtain the following
system of M linear equations in the M random estimator errors Day, . L2,
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fork=1,2,...M. (13)

Note that in Equation (13) we have essentially uncoupled the
estimator equations from those involving the nuisance parameters.
Again for manipulative convenience we employ matrix notation and
write C Aa=e - (14)
where Aa and e are M dimensional column vectors and C is an M + N
matrix whose elements may be inferred by inspection of the system (13).
For non-singular C we may solve for the estimator error vector

and write:
Aa= C"1 e (15)

Taking the transpose of (15) and using the symmetry of the

‘matrix C we have:

aal = el ¢l (16)



Premultiplying Equation (16) by Equation (15) yields

Aa AaT =

cle Nc!

(17)
Finally as in Apollo Note No., 43, the covariance matrix of
the estimators is given by taking the expected value of both sides of
the matrix relation (17) or:
Cov ( Aa AaT) = C-1 E (e eT) CI-1 (18)
Since C is a known matrix, then from (18) we see that it only
remains to compute the matrix E| e e |,
First consider a diagonal term say ek of e eT. Then:
M -—
e —S_‘(-“m o ot |\ &
ke =1/ Noay 2 2 Oy, ) i % e 1
i=1 2 3 f 1 14— (25
z * 0 oy 2 al"'x }
o] “xi 2 _

(19)
Then taking the expected value of both sides of E quation (19) and

correlated we have:

recalling that § ;» M; @are white noise processes which are not cross-
N

2
[ e,
E (e ) = 2 ol - -

af - 2
2 2 2
- k ) 81 by
i=1 + i
2 ou
lop X,
1 -1
N 2
o5
+ r
. o 2 22
=1 e 1 [0 (20)
2 o :
o X.
2 i



Similarly for an off diagonal from say e where k 1+ j we have:

j
M af
. - Z(m_ ! 5t ) 5 £
kJ ; 92y o 2 2 Oy it ap‘xl 2
i=1 2, |af ] 1 [of
+
o 2 ap'x P 2 al""x
1 i 2
91
e .
M of,. >§‘1 8p.x
+ : (1) 1 a f 1
9 &, . M7
d j o 2 2 %, o2 2
i=1 2 of 1 [of
z Y13 I+ —= 13
O'i P’X O7 p’x.
i 2 , 1
(21)
so that the white nature of the noise processes allows us to write:
Sy .
_ () I st \[ 2%) 1 5f
E (epe;) = 53, Em 53, " - 3
. k2 2 T j 2 2 TP
i=1 2 af o o2 of *
‘ 77 ) z T3
o I“J'x. g lJ‘x.
1 i 1 i
N o 2 2
=) B
i=1 ) 1 of ’
b+ —-
0% Oy
2 i

Thus, finally Equatibns (21) and (22) give the ek'preésions for the
elements of the matrix E [ e eT] as an explicit function of the noise
variances and other known quantities. Hence, since the coefficient matrix
C 1is deterministic and known then C“l may be computed and Equations (18),

(20) and (22) allow the explicit determination of the asymptotic covariance



matrix of the relevant parameters in the curvilinear relation

=1 (px,al,...aM). (23)

Yy

It is perhaps worthwhile noting that the parametric estimators
are not necessarily the same as those obtained using a traditional least
squares procedure, which is often done in the case where only one
observed variate is corrupted by noise. However, if the noise variances
are equal and the functional dependence upon the parameters linear,

then our estimators are least squares estimators.

It might also be worthwhile to point out that there is nothing
sacrosanct about least squares estimators and that from a certain point of
view the apprdpriateness of least squares estimation hinges upon the
fact that under certain conditions they turn out to be maximum likelihood

estimators or else very closely related to them.



APQOLLO NOTE NO. 52 R. Harte/ S. Cushner
- ' 24 April 1963

THE USE OF AN EARTH TRACKER FOR EARTH CONTROLLED
NAVIGATION AND GUIDANCE OF THE CM VEHICLE
IN SEVERE ABORT SITUATIONS

Star-field videotransmission has been considered as a method
of locating the CM Vehicle and directing its guidance back to earth.
| Another method of guidance would be the use of an Earth Tracker.

In particular, it is.suggested that the earth sensor be a
silicdn P-N junction dévice which makes use of lateral photocurrents
flowing parallel to the P-N junction rather than the conventionally
" used transverse currents. ‘

A uniform spot of light focused on the center of the cell pro-
duces zero voltage output. Displacement in the x or y axis creates
a voltage at the x or y terminals proportional to the degree of
displacement.

. The device is considered an infrared detector since its peak
sensitivity occurs at 0. 8p. About 30 percent of its response, however,
falls in the visible portion of the spectrum.

According to manufacturers' specifications, it has a noise

-10 watts for a five cycle bandwidth with

equivalent power of 4 x 10
a 5p second time constant.

If a zoom type of lens is utilized with varying focal lengths,
the field of view can be enlarged to acquire the earth. Once acquisition
has been achieved, narrowed fields of view will allow more accurate

lock on.

THE TARGET

The earth receives from the sun 0.13 watts/cm?

, which is
absorbed and scattered in the atmosphere. The earth's albedo indicates

that only 40 percent is reflected and re-radiated into space. Of this



. 052 watts cm~%, .only 30% fall in the visible and near infrared
portions of the spectrum in which the silicon detector operates.
Thus, the source radiates .0156 watts cm~%. Treated as a flat
circle, radiating into a hemisphere, the energy received in the

vicinity of the moon is

E - 1 TA AE

i w

2R
where

I = .0156 watts cm™%
' TA = Transmission of Translunar Spacé = 1.0
Agp = Area of Earth facing the moon .= 1l.2x 1018 cm?
R = Mean Earth-Moon distance = 3.75 x 100 cm

S E = 2.1x10°6 Wél.tts/cm2

If the lens is a 2' diameter, 2" focal length F/1 sysfem,
then the collector area is about 20 cm? and 4.2 x 10-5watts are
collected onto the detector. The field of view is 45°, which should

locate an object of 2° diameter with minimum search.

0-10

Since the NEP is approximately 4 x 1 watts, the area is

% and we will assume a modulating frequency

approximately lcm
of 1600 cycles/second. Since a mechanical chopper is not desirable,

the electrical output could be commutated and then AC amplified.



The system NEP = cell NEP x VA AF

S, System NEP = 40x 4x107° = 1.6 x 10”8 watts

: -5
Thus, the S/N of the full earth is f': X ig = 2.6 x10°.
.6 x10-8

If the earth is in phase, the intensity is reduced as a function
of phase angle. Assuming the earth to be a Lambertian diffuse
reflector, rather than a back scatterer like the moon, we can assume
‘a regular function and plot S/N as a function of the earth's phase.

Referring to Figure 1., 0° represents the position of new
earth, 90° is equivalent to first quarter, and 180° to full earth.

The largest errors in reading the center of earth position,
would occur when the earth is in a narrow crescent phase. One day
after ""new earth, '" the energy from the crescent is sufficient to
| give a S/N of over 100 (See Figurel.). The location of earth's
center, however, would be in error by almost an earth's radius.
Fortunately, this is about 1°. We can safely say, therefore, that
the maximum error achieved in this arrangement is slightly less

than 1° or 17 milliradians.
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APOLLO NOTE NO, 53 G. F. Floyd
25 April 1963

EMERGENCY RE-ENTRY WITH ZERO-LIFT

This note is a reprint of the first pért of a paper by Eugene F,
Styer of Boeing Airplane Company (Proceedings of the Third Annual West
Coast Meeting of the American Astronautical Society), and represents
the best summary found by Bissett-Berman of this problem.

As shown,there is a 0,7%°= £ ,35° spread between tolerable
deceleration and tolerable range dispersion, Therefore, a 1 ¢ error of

t 0.1° will give a . 99% safe zero lift re-entry.

[



o

A PARAMETRI'C EXAMINATION OF RE-ENTRY VERICLE SIZE AND
» SHAPE FOR RETURN AT ESCAPE VELOCITY

Eugenc F. Styec*®

3 The ballistic re-entry vehicle is examined for use in Earth return missi,éns
. originating frpm a high geocentric orbit, the Moon or another planet. The
acceleration tolerance limit and the minimum angle for direct eatry are
discussed for various values of the ballistic coefficient. Multiple-pass
entry is shown to widen the entry corridor at the expense of time in orbit.
The use of a side firing rocket is proposed for ““steering’ within the entry
corridor. Aerodynamic heating, entry loads, and Van Allen radiation are
considered for their effect on vehicle design. Preliminary design esti- -
mates are given for the weights of a range of ballistic entry bodies de-
signed for direct entry. These vehicles are postulated to retum from a
space station with one, 10 and 50 astronauts. Selected comparisons are
~ made of the weights of vehicles required to retum 10 men to Earth by di-
rect, propulsion braking, and multiple pass techniques.

Introduction

A great deal of attention has been directed at the very complex problem of
the return to Earth of a man placed into a near orbit. In this country, the
Mercury ballistic re-entry program is in the flight-test stage, and the Dyna-

Soar glide re-entry program is well advanced in concept and design.

The implementation of deep space systems will require an extension of our
re-entry technology to provide for all missions—military, scieatific and com-
mercial. A salient characteristic of return from high Earth orbits, the Moon,
and other planets, is that this return is accomplished at or near the Earth’s
escape velocity——a 40 per cent increase in velocity over the near orbit re-
eatry case. The Van Allen belts, solar, and cosmic radiations, meteorites,
and the hard vacuum of space prosent added environmental hazards to men and
materials.

Some ways of accomplishing supcrorbital re-entrv are diagrammed ... Fig.
1. The kinetic energy of the returning vehicle can be lissivated by wtmos-
pheric braking in one or several passes, or by the uppiication of propulsion
braking. These methods apply with cqual ~ulidity to ballistic and iifting
vehicles.

Much valid attention has been drawn to tac use of lifting vehicles for re-
entry due to their inherent ability to [ly to and land at a specific spot.* There
are a number of space missions, however, where the lower gross weight and
simplicity of a ballistic vehicle will recommend its use.

Strong consideration will be given to the ballistic vehicle for early oper-
ations because of limited booster capability and also because of the signifi-
cantly more complex structural and flight control problems connected with

*Structures Technology Department, Boeing Airplane Company, Aero-Space Di-
vision, Seattle, Wash, ’

. 389



390 Eugene F. Siyer

-0

DIRECT PROPULSION BRAKING

_MULTIPLE PASS

Fig. 1. Methods of re-entry.

glide re-entry. Even when re-entry from spacc becomes a more established
fact, the simplicity, small size, lower wecight, and resultant economic ad-
vantage of the ballistic or very low L/D vehicle will dictate its use for cer-
tain applications. A schematic representation of such a vehicle is shown in
Fig. 2.

The present paper indicates design conditions, re-entry weights, and
some of the opcrational factors of manned ballistic vehicles. Preliminary de-
signs and weights are developed for vehicles having capacities of one, 10,
and 50 men entering at several values of the ballistic coefficient, W/Cp A,
These vehicles are compared on the basis that no allowance is made in ve-
hicle layout for. equipment or expendables other than that essential to sale
entry and touchdown. This series of vehicles is visualized as “‘shuttle buses”
rather than self-contained units for long duration space missions.

Entry Corridor Criteria

Entry limits can be stated in terms of .entry angle at a given altitude,
where the entry angle (measured positive downward) is the angle between the

: INSULATION
ENVIRONMENTAL CONTROL, \/
PROPELLANT TANKS, AND ' puLor
SECONDARY POMR ~— | : \V

; - - PRESSURE SHELL

PARACHUTE, GUIDANCE
EQUIPMENT, AND
MANEUVER ROCKETS

-

GUIDANCE ERROR ,
CORRECTION ROCKET =—o-!

HEAT SHIELD

AND IMPACT BAG . ’
L,/"'ﬁ:————_nzmcmkv METAL SHELL

Fig. 2. Entry vehicle,
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flight path and local horizontal. Limitations to direct entry are set by vehicle
“gkip” from the atmosphere, acceleration tolcrance of the crew, and structural
heating. The minimum catry angle yg for dizect entry is shown on Fig. 3 as a
function of entry velocity and ballistic cocfiicient. Trajectory data are based
on the 1959 ARDC Model Atmosphere,? spherical noarotating Earth, and were
obtained by IBM 704 solutions of the entry trajectory equations.® Re-entry is
defined as starting at an altitude of 400,000 ft. The limiting entry or *“skip’’
angles shown on Fig. 3 are those for which the vehicle will enter and pass
through the atmosphere, “climb’ back to 400,000 ft and then proceed to
touchdown. : '

on | : 35, 000 ps
{ ¥ DEFINED AT 400,000 FEET
i l — 32,000 fps

]

5 |
oy N .
b1 ' . e 30, 000 {ps
g 8 /
: ] /
- | 28,000 tps
b~ i /
g / ENTRY VELOCITY (V)
< / .
z 2l
g
A
9 Lt R RRT IS N T B SR I RA T
1 10 1% 100

WICyA - POUNDS PER SQUARE FOOT

I;'ig. 3. Minimum angle for direct entry,

The maximum entry angle is dictated by tolcrable acceleration when the
vehicle design can withstand the accompanying extreme heating rates. - Figure 4
illustrates the tolerance limits of magnitude and time of exposure to various g
levels where the acceleration vector is orieated as shown.* A tolerance limit
is very difficult to establish due to the large differences in individual reaction
to acceleration. The data shown is for healthy, young males who could be ex-
pected to see, think, and exercise at least finger control within the limit
shown. Itis pertinent here to note that the requirements placed on the pilots
for manipulation of controls and equipment monitoring during entry are directly
related to the acceptable acceleration level. Relatively passive descent in a
ballistic.capsule can be accomplished in a more severe acceleration environ-
ment than the flying in of a lifting vehicle. The upper curve of Fig. 4 was se-
lected as representative of the acceleration-time history above which irrepara-
ble damage would be done to humans.

Multiple-pass entry involves initial atmospheric coatact at shallower
angles than those shown in Fig. 3. The shallower the angle, the more passes
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Fig 4. Acceleration tolerance,

to eventual impact, if the vehicle is left to drag down passively. Should the
multiple pass vehicle be designed for the maximum angle (acceleration) condi-
‘tions noted above, its cntry corridor is widened relative to direct entry. The
operational_factors of guidance accuracy, time of flight, radiation exposure
and landing-site predictability would have to be considered in making a sclec-
tion of the mode of entry which is best for a particular mission.

Trojectory Considerctions

For the purposcs of this paper, it is assumed that the inertial guidance
system in the vehicle has a possible accumulated error of +0.5 deg from the.
desired entry angle just prior to eatry, and that the system reference can he
updated . when nearing the Earth to allow prediction of the entry angle to
within 0.05 deg (£0.025 deg).

Redirection of the vehicle’s velocity vector to an angle within the desired
corridor is accomplished with a single rocket which can be fired in any direc-
tion, by rotating the vehicle. Due to the 0.05 dcg uncertainty in angle, the.
entry body must not be steered within 0.025 Jeg of the corridor limits. Oper-
ation of the vchicle in this manner will allow the pilot to select an area on the
Earth compatible with his entry corridor limits and position information dis-
played from his guidance system.

Figure 5 illustrates the effect of entry angle on the entry time which be-
comes important for ablation and heat sink structural systems whose weight
increases with entry time. For direct entry, the trajectory is extremely scnsi-
tive near minimum yz. For example, a change in entry angle of 0.02 deg
will change entry time by a factor of 5, and increase total heat by about 50
per cent for a representative vehicle.

No attempt will be made in this paper to present a complete landing-dis-
persion analysis, but Fig. 6 illustrates the dispersion in miles for the noted
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terminal guidance errors. The dispersion sensitivity is seen to increase -

greatly toward the skip limit.
~ The time of flight, heating, and range dispersion sensitivity near the theo-
retical skip limit suggest an operational procedure whereby a design skip
angle would be defined about 0.05 deg stecper than the theoretical skip angle.
As an example, Fig. 3 shows a theoreticul skip angle of §5.15 deg for Vg =
35,000 ft/sec and W/Cp4 = 70; the proposcd design skip angle would be 5.2
deg.
Figure 7 illustrates the entry corridor for ballistic vehicles entering at 35,000
ft/sec. Shown are the 20-¢ human damage limit, the acceleration tolerance
limit, and the design skip limit which define the corridor within which direct
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entry vehicles can operate. The opcratxonal direct entry comdor 1s secen to be
about 0.7 deg widec.

An entry corridor of 0.7 deg might seem to present a formidable navigation
job; however, recent papers®+” indicate that extensions of present-day tech-
niques will not only permit such entry but offer the possibility of navigation
within the corridor, as mentioned above. For example, a one-mile CEP fora
5000-mi-range ballistic vehicle requires angular flight path control to +0.014
deg. b

Also shown on Fig. 7 are the entry angles which define the boundary be- ;
tween three and four passes around the Earth before 'anding, For a W/Cp4 =
70, a manncd vehicle designed to operate between the acceleration tolerance L
limit and the four pass limit has an operational corridor of 1.2 deg. ‘ '

Structura! heating can define corridor limits when the peak heating rate,
total heat, or particular heating history are critical factors duc to weight, ma- S
terial availabiiity, or processing restrictions. : o

Figure 8 indicates the limits to r.nge control, measured from start of enury, ‘
for-a specific ballistic vehicle making u direct entry. This figure shows that
the range may be varied from a minimum of 900 mi at the maximum entry angle :
to 2040 mi for minimum yg. The maximum dispersions associated with these i
two ranges are 20 and 700 mi, respectively, for a guidance error of 0.05 deg,
and 4.5 and 125 mi for an error of 0.01-deg. .

Two typical sets of velocity, altitude and deceleration plots are shown as !
a function of entry time in Figs. 9 and 10. Figure 9 is foryz = 5.2deg, thede-
sign skip limit, and Fig. 10 is for yg = 5.9 deg, the acceleration tolerance
limit. The shallow eniry takes about 500 sec and has the characteristic two
deceleration peaks and tendency to “climb’* back out of the atmosphere. The
steep entry, on the other hand, takes about 250 sec, has a single (higher) :
deceleration peak and a steadxly decreasing altitude-time history, Shown for ‘
refetence on Figs. 9 and 10 is the allowable g versus time curve taken from

L e A A g Seae

e

- h W

iw

- orh e BN 4 A A SNl

wamat e A Chmoett 2 s b -



g e

Vehicle Size and Shape for Return at Escape Velocity 395

X0 ~
; }
lﬂ;
& RANGE| WIC,A < 10
VE « 35,000 tgs
e g |
= i uo-o
= G CENTRY ARGLE <5.2
= © (DESIGN SKIP LIMID
g 1 1 !
= P‘ -e® o wof
g E ENTRY ANGLE - 5.9°
= B (ACCELERATION TOLERANCE)
g !
0 : - =S
[} 100 b1 3] 300 &0 500-

TIME ~ SECONDS
Fig. 8. Entry range.

Fig. 4. As indicated on Fig. 10, limit acceleration occurs at a value less
than the peak. ‘ :

It should be noted that the standard 1959 ARDC Model Atmosphere is used
throughout this paper. At the present time an imperfect picture of daily,
seasonal and random atmospheric variation exists. Actual re-entry operations
will have to consider these variations both from the standpoint of their closer
prediction and by allowance in vehicle desizn.

Aerodynamic Heating

A number of structural schemes are possiblc for solving the aerodynamic
heating problem of a ballistic body decelerating from escape velocity. In
general, these can be classed as heat rate systems and total heat systems.
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In the former, a structural material is necded to withstand the surface radiation
equilibrium temperature associated with the highest heating rate. The 20-
trajcctory would subject thée re-entry body to the most severe heating rates,
The- high tempcrature outer skin would have to be backed up with insulation
(and internal cooling) to provide a workable interior environment.

The total heat system would use a heat-sink material such as beryllium, or
ablation materials such as polyethylene or Teflon, to protect the vehicle. For
heat-sink materials, the shield is designed so that the integrated heating does
not subject the materral to excessive surface temperatures. In an ablation
system, material is consumed in absorbing the integrated heat load. In bath
cases the design condition occurs for the long-time trajectory, which is at the
design skip limit for direct entry. Tt should be noted that a very high temper-
ature ablation material, such as quartz, rejects much heat by reradiation ani
the ‘appropriate design condition may not be the long-time trajectory.

Figure 11 shows the variation of drag coefficient, average heat transier, and
total heat as a function of the nose angle &. Total heating is scen whe
minimized for a ¢ of about 20 deg and all vehicles considered in this paper
were designed at this point. leating-rate estimates are based on the methods
of Fay and Riddell® with some modifications.® The aecrodynamic heating
shown here is convective heating only. Gas-cap radiation for the shapes con-

sidered is unimportant at the high altitudes where manned vehicle deceleration

takes place. _
The major heating problem for the ballistic shape is the heat shield. The
conical capsule wall is also subjected to heating. This region is much iess

“severely heated than the heat shield and can be protected by thermal radiatios

equilibrium cooling.

fonizing Radiation Considerations

It is desirable at this time to consider the structural requirements for pro-
tecting the occupants from Van Allen radiation. Much further definition of the
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type and distribution of this radiation is needed, but preliminary design esti-
mates can be made.

As is well known, the basic data which defined the existence and some-
what the composition of the radiation belts were radiation counter measure-
ments taken by Earth satellites.’® The radiation contours!®*!* presented by

Van Allen were derived from data taken by a counter shielded with an

average value of 1 gr/cm?. This amount of shiclding corresponds to the range
of 30 Mev protons. Dr. Van Allen proposes an inner belt spectra!* which in-
cludes a proton flux ‘of 20,000 particles/cin?-sec having an energy greater
than 40 Mev. The outer belt is assumed to be chicfly clectrons whose biologi-
cal significance is low. B ‘

Based on the work of Van Allen and cthers, a di fferential encrgy spectra
of protons was prepared for. the inner belt and shielding requirements esti-
mated.??¢?® The maximum dose ratc'measured by an unshielded small detector
was estimated as 70 rad/hr, which when converted by the RBE (Relative
Biological Effect) compatible with the radiation spectra leads to a free-space
dose rate of about 440 rem/hr.!® Shiclding requirements included a con-
sideration of Bremsstrahlung energy due to electron flux. These estimates
formed the basis of shielding requirements used for the vchicles in this paper.

The above considerations lead to a free-space dosage of 172 rem for a di-
rect entry in the geomagnetic equatorial plane. Shielding, in addition to ve-
hicle structure, needed to reduce whole body dosage to about 12 rem for a di-
rect entry was estimated as 0.2 in. of polyethylene. A thickness of 0.5 in. of
polyethylene would reduce the dosage to 6 rem. For comparison, the AEC ac-
ceptable emergency exposure is 25 rem, and a proposed one-day maximum ex-
posure is 50 rem.

Inclination of the entry orbit plane with respect to the geomagnetic equator
-can effect a substantial reduction in total dosage. Figure 12 illustrates this
in. terms of small detector (free air) dosage for an entry which makes one
" elliptical pass through the inner Van Allen belt. -

- s onen

e —y s g ot iy (v e g o



o oAy o ol s

398 ' Eugene F. Styer

wo —_
N !
i ; - LEAST FAVORABLE vic A} =70
\ | - Vg < 35,000 £.P, 8,
50? g i .- .‘7 ‘e -5, 00 ~
; (] D ENTRY AFTER
40 " ) L__, ] ONE PASS R
«
% \ MOST FAVORABLE
Z 30 | TRAJECTORY
=
2 LEAST FAVORABLE TRAJECTORY
o 2004 — FOUATORIAL o
Hi
1004, DIRECT MOST FAVORABLE TRAJECTORY
ENTRY
P
N
[ ") 0 0

ORBIT INCLINATION TO MAGNETIC EQUATOR - DEGREES
Fig. 12, Van Allen radiation.

REFERENCES

1. Hildebrand, R, B., ‘‘Manned Re-Entry at Super-Satellite Speeds,’” TAS Preprint
60-83, ,une, 1960,

2. Minzner, R, A., Champion, K. S. W., and Pond, H. L., *“The ARDC Mode! Atmos-
phere,”” AFCRC-TR~59-267, Aug., 1959,
) 3. Jacobsen, W, E., ‘‘Determination of Re-Entry Trajectories for Vehicle Structure
Evaluation,® Structural Analysis Research Memorandum No. 9, Boeing Airplane Com-

4pany, Jan., ‘1960,

4, Bondurant, Stuart et al, ‘““Human Tolerance to Some of the Accelerations
Antlcipated in Space Flight,” WADC TR 58~156, Apr., 1958.

5. “*Space Handbook: Astronautics and Its Applications,”” House Document No.
86, 86th Congress, 1st Session, 1959, .

6. Chapman, Decan R., **An Analysis of the Corridor and Guidance Requirements
for Supercircular Entry into Planetary Atmospheres,”” NASA TR No. R-55, 1959,

" 7. Freeman, George W., ‘“Limit Cycle Efficiency of On-Off Reaction Control
Systems,’* 1AS National Specialists Mecting on Guidance of Aerospace Vehicles,
Boston, Mass., May, 1960, . .

8. Fay, J. A. and Riddell, F. R., “Theory of Stu;nation Point Heat Transfer in
Dissociated Air,"" J. Aero. Sci., Feb,, 1958,

9, **Handbook ' for Acrodynamic tleat Transfer Computation, Vol. I,,”” Document
No. D2-5107, Boeing Airplane Company, Jan., 1960,

.10, Van Allen, James A., and Frank, Louis A., ‘‘Radiation Around the Earth to a
Radial Distance of 107,400 KM,'* Nature, Vol. 183, Na, 4659, Feb, 14, 1959, p. 430.

11. Van Allen, James A. and Frunk, Louis A.,‘‘Radiation Measurements to 658,300
KM with Pioncer IV,** Nature, Vol 184, No. 4682, July 25, 1959, p. 219,

12. Noyes, J. C. and Brown, W.. D., ‘‘Shielding Requirements for Radiation Belt
Particles,”” Report No. D1-82-0048, Geo-Astrophysics Laboratory, Boeing Scientific
Research Laboratories, Jan,, 1960,

13, Dye, D. L. and Noyes, J. C., “*Biological Shielding for Radiation Belt Parti-
cles,”’ paper to be published in J. Astronaut. Sci.

14, Del Duca, M. G., Babinsky, A, D., and Miraldi, F. D., “Integrated Themmo-
Dynamic Systems for Manned Space Stations,’’ IAS Manned Space Station Symposium,
Los Angeles, Apr. 20, 1960, '

ey o e 2



APOLLO NOTE NO. 54 G. F. Floyd
29 April 1963

DEFINITION OF -Rl(t) AND USE FOR DSIF LUNAR ORBIT
* DETERMINATION

The Function ﬁl(t)

For an elliptical orbit we have the usual expressions (see any

books on celestial mechanics),
Perigee = Rp: a(l - e€)

Apogee = Ra= a(l+ e)

' b sz B VaL2 B (1)
Energy: E-= ---2-5.- = 2 - - R = > - R
P a
Orbit Period= T = —gl where w =- /&
con n a.3

Combining these we have the alternate forms:

vZ R R R
n R 2a i a

' (2)
3
. /(1 -e)
w.n._ ‘ .._.._.___....____3

with

R (1+‘e)

Ra p l-e

(3)

_ 1 -e
Vo= Vo (g52)

Then'letting (té) denote the first time the vehicle reaches perigee, we have

for the correct expression:



.&)E..)z—R
P n P
- '
Y=V
R(tp+ nwn)

-5,
P a ,
Rt +n-")= V_
o) w a

Now define T{l(t) as:

forn=20,2,4,6,° - * *

1+e)
p ‘'1l-¢€

forn=1,3,5">°"°"°
(l-e .

P l+e)

X e B
R =

v

[ cos @ (t - tp) - % (1+ cos an (t - tp)_)]

. e .
[ sin wn(t - tp) + - sin an(t - tp) ]

with RP and Vp as given by (2).

Also from (5) we have :

- R-_pwn
RI (t) = l1-e

Y‘Vp
+ 14+ e

{ cos @ (t - tp) + e cos an (t - tp) J

-sinw_(t -t )+ e sin 2w (t-—t)]
n P n P

Then evaluating (5) and (6) using (4), we get

For n= 0,>Z, 3,° -,

(4

(5)

(6)



R
R Ty P hi = R =R Iy
Rl(tp+ n“’n) = (1+ 3 (1+1) RP R (tp+ n“n)
— (7
= Sow VE = = T
R1 (tp+n6;)=1+e- (l-!-e)‘-:Vp:R(tp-!-n 75;)
While forn=1,3,5,7,° ° =,
R, (t_=n — )—Rp (-1-< (1+1=-R (AXe )oK = R(t_+ a2 )
1% 7 T e T 1-e 2 - p 'l-e '™ Ta” P w
" w V‘E‘ = l-e F _ = ™
Thus
R-l and ﬁl are correct at any apogee or perigee (9)

To investigate the accuracy of the approximation at in between values of
(t) we look at the momentum vector (ﬁl X ﬁl). Taking the cross product

of (5) and (6) and making usual trigometric reductions, we find,

e : e
_ : l+=(cos3w (t-t )= cosw (t-t ))- = (l+cos2w (t-t_))
R,xR. =R xV 2 o P 2 P 2 n P (10)
1 PP 1 - e '

Thus (R_l x R_l) is not the constant (R—p X Vp) it should be, and is correct
only at apogee and perigee. However, since the area of the orbit ellipse is,
ot
p n

M

Area= | |RxK| a (11)



We have from (10) and {11),

l- e

~(Area Correct){l +%~ e

Area of Approximation= (Area Correct)( —

- For the LEM ascent orbit, Rax 1100 n, m, with

' RPQ/’ 1000 n, m, so

_Ra-R 100 1 o
C* R F¥R_ ~ 2000 20 -
a P :
'Hence for such orbits

Area Approximation = (Area Correct)(l + —8‘(1)—5)

and so is 2 very good approximation on the average as well as being

exact in both position and velocity at every perigee and apogee so may

 be used for arbitrarily long prediction times,

Determination of ﬁl(t) at Long Range From Doppler Measurements

(12)

(13)

- (14)

Since El(t) is very close to R(t), we may study the errors in the °

coefficients of R-l-(t) since the percent errors relative to R-l(‘t) will be

very close to the percent errors in the coefficients of the true function

R (t}). Also we will assume the spacecraft is so far from the earth that

the parallax effects caused by mdion of the earth station are not useful.

The notation is summarized in Figure 1.



» Vehicle
Tracking Station =

v/

Y

Earth

Figure 1.

For the error study we assume the station is at the center of the.

earth and that D' is constant and very large. Thus,

?:Tj -i-R.1

T = El (15)
lrg 1D

So, for the error study let

‘=R -1 (16)

where the DSIF knows TD exactly.

 Using (6) and (2) in (16) we have:

= (TRP . TD) ‘\/_E‘..L%{__:_e)_.( - sinwn(t - tP) + e sin an(t - tp) )

P

‘ m | . ,
4 (TV . TD)_‘ /W (cos_wn(t - tp) + e cos an (t - tp) ). (17)
P : .

Now make the following definitions:
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e
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Uv
[3°]
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|
S8
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@
VN

1
R {1+
p( e) P
A
AZ- eA1 ‘
' - (18)
1 (T « 1) V1i-e
-1 R D’ )
4.2 w t =-tan P
1 np —l- 'T
v D
. P
T - T Vl-ez
-1 R D
d.= 2w t + tan P
2 n 'T .—1-
v D .
p .

With these definitions, it is then a matter of straight trigonometry to

show that (17) may be written as:

F= A cos (ot - $))+ A, cos (20t - g,) (19)

now more convenient to work with normal TN to the orbit plane where:

It is
- A — —_—
IN = lR x lv (20)
' : P p
and since by definition of perigee TR and T are orthogonal, the set
. P p '
TR R TV R TN are mutually orthdgonal. Therefore, we have that
P P ' o
— - 2 - 2 - - 2
Iy +Tp" =1~ Ty - (Ty - Tp) (21)



We can now solve (18) and (2) for the orbit parameters,

e, = (—25—1) (22)

Thus, in terms of the measurables dn’ Al’ AZ’ q‘l and qSZ, we find that,

(23)

et
o)
1
W
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Pund
w
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To describe the motion of a vehicle in an elliptical orbit we
need six numBers. The first two locate the orbit plane by reference
to its normal (TN). The next four describe the motion in the orbit plane:
two for the orbit shape (Rp, e); one for the orientation of the orbit in

the orbit‘pla.ne (i. e. TR . TD); and one for the time location of the vehicle

along the orbit (tp). Of these six descriptors, we then see from (23), that with
the Doppler only, we are missing the second direction cosine of TN' and so can-
not locate the orbit plane. Also since we cannot locate the orbit plane at
infinite distance from Doppler only, .the (-I-R . TD) value does not locate

TR , (whereas, if we had T then-l:R 'TD P would be enough)., Thus

N s
: P

from Doppler only at infinite distance we can know e‘verything except the

direction cosine of TN to some known vector lying in the plane normal to

T,. Thus, we do not know the rotation of the orbit plane about 1. This

may also be shown by using Euler angles of Figure 2,

Orbit Plane

Figure 2,



From the figure

1 . k-f = cos O
' (24)

. T = cos ¢ sin O .

Thus with Doppler data we get 8 and ¢ but y, the rotation of orbit plane

about TD’ is unknown. To summarize then, with Doppler only at infinite

distance we know all about the motion in the plane but are missing one

" piece of information about the orbit plane orientation and this'is the

direétion cosine of TN with a known vector in the plane normal to TD'
The smoothing and error study for lunar orbit determination

can now be carried out using the form of (19) and this will be done in a

later note.
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THE USE OF TELEVISION.IN LANDING
AN UNMANNED LEM

A television link ‘b:et_ween LEM and CM/SM is deemed necessary
because of the ianding sité‘ suitability surveillance problem. The
~ television system can also be used to find a suitable landing site which
could be a particular mountain peak, crater, or as an ultimate test,
an unbeaconed LEM. ‘ - |

The television system may serve as an invaluable aid in terminal )
navigation and guidance. ' _

As seen from Apollo Note No. 42, the lo landing inaccuracy
might vary between 2000 feet for the perfectly aligned IMU (at SM/CM
separation) and 20, 000 feet for a 1° IMU misalignment., If a television
camera must cover the 30 case, then the above two numbers might
requi_re a picture width of between 12, 000 and 120, 000 feet.

It would appear that the problem of bettering the IMU alignment
might be neglected if the television system could yield enough information
in the 12, 000 to 120, 000 feet picture to permit terminal maneuvers.

The questions that must be answered, therefore; are:

1. Can a single, stationary television pickup tube see an LEM
distinctly if the entire screen must encompass up to
120, 000 (60, 000! to.either side of the optical axis in a
horizontal plane at right angles to the optical axis).

2. What is the best frame rate choice.

3. How much degrading of resolution will result from angular
displacement of off-axis points in closing toward the luﬁar
surface.

4., Are image intensification techniques necessary or useful.



The assumptions to be used are:

1. Operationis in either sunshine or earthshine.
2. Resolution necessary to distihguish a 20 foot LEM is
‘ approximately 5 feet.
3. The tranlsxirii.tt.'.ing distance never exceeds 150 miles, using
omnidirectional antennas. o |
4. Line of sight is depressed approximately 15° below
horizontal. ' | .
5. The angular rotation rate of the line of sight will be zero
at the intersection of an extension of the LEM velocity
‘vector and the moon. It will be maximum about 45° oﬂ&:.t-

of-track from this point. This critical rate wmax = IR
where V £Y2aR and a ¥ 14 ft/sec

. _ a
oo Ymax = \/7R.

To determine the usefulness of television in the described
situation, we must first deterrhine the ambient light levels in which
they will operate. )

In sunlight, the lunar surface receives 0.13 watts cm~2. With
an albedo of almost 0.1, this represents a reflected energy level of
1.3 x 1072 watts cm'z. ‘About 25% of this falls in the visible wave
band (0. 354 to 0.70un). This assumes a panchromatic reflectivity
which is reasonablé over a restricted bandwidth,

Thus, since there are 900 cmZfeet™? and approximately

1 in the visible band, the ambient light level under

100 lumens watt™
direct sunlight should be at least 250 foot candles.
The ambient light levels under a full earth are considerably

smaller. They can be derived from the formula °

I A, p KA

_ "sc Pe
a 2wR24




where

Igc = The Solar Constant in watts ft.“z outside of the earth's

atmosphere = 120 watts/ft. &

P = Albedo of the earth £ 0.4

A, = Areaof theie.arth facing the moon ' = 1.5 x10%° g, ¢

@, = Albedo of the lunar surface g 0.1

K = Conve.rsion factor - watts ft. ~2 of visible radiation
to foot candles = 100

R = Earth to moon distance = 1.3 x 109 feet

A\ = Amount of radiation in the visible portion of spectrum

S I, £ 0.024 foot candles

This value represents full earth light and is reduced as the
phase ‘of the earth approaches ''new earth, "

Special image orthicon tubes are available which will operate
in light conditions as low as 10'9 foot candles. They leave, however,
much to be desired at the low light levels in the way of resolution,
perhaps 200 horizontal lines per tube.

There are now, under study, special tubes with as many as
1300 to 1500 lines per inch, with useful tube diameters of 2 inches.

. These tubes are operated at scan rates from 1 to 20 frames per

second. A typical tube has resolution values as follows:

.014 foot candles 750 lines/inch
. 0075 foot candles 650 lines/inch
. 0035 foot candles 500 lines/inch
. 0018 foot candles 300 lines/inch

Thus, even at a first quarter phase .earth, with only .012 foot

candles of Alight we can obtain 750 lines inch'l, at 2 inches = 1500 lines.



These tubes,. in general , require higher cathode voltages than
the standard tubes. They possess either S-10 photocathode surfaces
" with sensitivities of 601 A per lumen and S-20 surfaces with as much
as 100p A per lumen sensitivity.

Assuming that the ambient light level is at léast . 025 foot
candles, we can hope to achieve a total of 2000 lines of video
resolution.

k If we use a very fast collector lens with a small aperture, we
can achieve wide fields of view. For example, Burke and James
Catalogue lens No. 12641-A (quartz optics) at $ 350, is a 25mm focal
length lens with a diameter of 30mm. Thus, itis a £/0.87 system )
which presents a field of view of 90° to the 50mm face plate of the
television tube. ¥ach line, then, represents 7.8 x 104 radians of
angular coverage.

For a given slant range, it is now possible to determine the
horizontal extent of lunar surface included in the frame and the ground
resolution.

Since the off-axis points move across the screen at a certain
angular rate, the resolution will be degraded accordingly.‘ Maximum
angular rate occurs at 45° on either side of the optic axis; and, there-
fore, falls at the very edges of the video frame. If we choose a conven-
ient frame rate, i.e., 10 frames per second, we can determine the
ahgular movement per fra,me in_radians; and when this value is divided
by the angularﬁovera‘ge of a single line (7.8 x 1074 radians), an induced
error coefficient is determined. This value when multiplied by the
ground resolution determines the maximum value of ground resolution.

Table 1. indicates these calculated values.

Figure 1. plots ground resolution vs. slant range for various

positions on the television tube face plate.,
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Ground resolution is a geometrical concept, and as has been
pointed out in Apollo Note No, 34, human recognition of meaningful
data often exceeds geometrically determined values by a considerable
degree, expecially straight contours. Thus, if five foot ground reso-
lution is the stated accuracy needed to determine the presence of an-
unbeaconed LEM, it is very conceivable that the human eye will identify
it when geometric values are as high as 15 feet or even 20 feet of
resolution. '

At a slant range of 20, 000 feet or 3.8 miles, 20 feet/line
resolution occurs at the center of the screen and 40, 000 feet of ground
are displayed.

At the edge of the screen, 20 feet/line resolution is not achieved

“until the slant range is less than one mile (4000 feet). At that range,
only 8000 feet of gromd are displayed. '

We have assumed a frame rate of ten per second. The trans-

mitting bandwidth can be determined from the relationship

max = 1/2 kmnzf(v-é)(-K%)

by
1

where

Frax = Bandwidth

k = An efficiency factor for video transmission which

approacheé 0.7

m = Ratio of horizontal to vertical resolutions, here,

assumed to be 1.0
n = Number of resolution elements per frame = 2000

f ' = Frame rate = 10/second

Display tube width over height = 1,0

m
I



K .
-K-;-E = Another resolution efficiency factor £ 1.0

oo Fhax '5 14 megacycles
These calculations'indicate that while we canpbt hope to image
as much as 120, 000 feet to include all possible cases of 3¢ deviations,
we can still give considerable co;vera.ge. ,
Light levels are. sufficient so that no further intensification
of the image is required. Resolution values for slant ranges of several
miles are probably adequate to determine the location of an unbeaconed
LEM televisidn; therefore, it would appear to be a very useful tool

for terminal guidance of the surfacing craft.



APOLLO NOTE NO, 56 G. F. Floyd
1 May 1963

EFFECT OF SMALL BOOSTS ON ACCURACY
OF EARTH ORBIT DETERMINATION

v . While the Apollo spacecraft is in its first earth parking orbit,
it is neces sary to apply small boosts (about 5 ft/sec), every 18 minutes
or so in order to prevent excessive pressures from building up in the
S-I¥ B booster. During this time, the close in ground tracking network
is trying to determine the earth orbit exactly in order to calculate the
exact boost needed for the translunar trajectory. The problem is then
to determine the effect of these small boosts on the accuracy of this
orbit determination,

‘In actual practice these boosts will be applied in essentially
known direction and thus a priori knowledge can, of course, be used
to good advantage in the orbit determination problem. The general
manner by which such information is used is outlined in Note No. 57,
but in this note we will neglect this additional information and show that
even without it, the ground system should have no real difficulty in
keeping track of the new orbit parameters that result with each small
“boost. .

The tracking éuring earth orbit will be done by the ground based
stations., With reference to the Bell Telephone Laboratories report of
December 15, 1962, "Apollo, Report on Communications and Tracking
System Planning, ' there are ll_rMercury remote stations plus two ships
and thé Antigua station for the Atlantic Missile Range,for a total of 14
stations. These stations are, or will be, equipped with FPS-16 radars.
of twc; different range capabilities, From Figure 6. 3 of this report, we
‘have that the spacecraft will be visible over 30°= 7.5 min of travel for
the extended range version and about 30°~ 5 min for the standard version,
Therefore, we will assume 5 min of tracking while the vehicle is in view
of a station with the slant range varying between about 900 and 200 n, mi.
On the basis of tests made by General Electric, the FPS-16 appears

capable of the following tracking performance:



Azimuth Angle: t 0.1 mil random

Elevation Angle: 0.1 mil bias t 0, 3 mil random
Angle Servo Bandwidth: 2.5 cps . ,

Range: 50' Bias t 10-30 ft random,

The following apalysis first develops general smoothing equations
for the circular orbit case and then uses the above performance numbers
to estimate errors. - |

A summary of these results is that with the smoothing time
available at each station (4 minutes or more), the velocity of the space-
‘craft can be determined to better than 0. 3 ft/sec and position to better
" than 50 ft. Consequently it does not appear that the necessary venting
boosts will cause any particular trouble,

~ For the analysis we use the notation of Apollo Note No, 31 and

write:



CR(t) = R f(t) + V°, g (t) . (1)
and therefore we may express R (t - ) in terms of R (t) as
R{t-7) =R{@)fér) + V(tlg (v) (2)

where f(r) and g(7) are ..fo.und from £ (t) and g (t) by replacing t by (-7).

We consider the vector equations:

T

-Rs(t) =j; h(T) —P:m(t-'r) dr (3)
T

vs(t) =‘£ w(‘r)-im (t-7)d~ (4)

where _Rs(t) and '\75 (t) are our smoothed values of range and velocity and

_Rm (t) i-s the measured value of vector range R(t). We note here that if

ﬁt(t) is the distance from the earth center to a tracking station and

T (t) is the measured range of the spacecraft from the tracking station

'Rm(t) = 'f{t (t) + T(t) (5)

where .P:t (t) is also changing in inertial coordinates due to the spin of
the earth. 7

Now standard procedure for choosing h(r) and w (7) is to say that
if -P:m (‘t)'-”- R (t) then the smoothed values should be correct. That is,
without noise on the measured values we want no error. Using (2) in
(3) and (4) this leads to the equations

- T ‘ T
R{(t) = ﬁ(t)f hr) f(+)dr + —V(t)f h(r) g{r) d~
o o

(6)

T ~T
V() = R(t)] w(T) f(r) dv + —V(t)f w(t) g{r) d~
) o



hence the constraints

T T
f h(r) f{r}dr =1 andf hir) g{+)d+ =0
o o- :
(7)
T .. T
f w(r) flr)dr =0 andf w(r) g{r)dr =1
O - .. (o]
To now-determine the best functions h(7r) and w(v) we wish to minimize
.the mean square output of the filters to a noise input. Thus considering
the w(v) filter we have,
— T wa—
Vs'(t) =f w({t) N({(t-7)dT (8)
o
and considering each component separately we may drop the vector
notation and calculate the mean square value as
~ : A
V2= lim 'Z{Tf v %) dt
A -A ®
(9)
1 A T T . ,
= lim 55— dt wix) Nt - x) dx w(y) N(t-y) dy
2A :
-A (o] - o
Letting w(x) be identically zero outside the interval o to T and inverting
orders of integration
~ 2 o o) : 1 A _
v = f w(x) dx [ “wiy)dy | lim = f N(t-x) N(t-y) dyj (10)
s 2A
_ o fo'o) A— -A

The term in brackets is simply the autocorrelation of the input range noise
and will be denoted by éNN(.-r) so that (10) becomes



~ > oo @
Vs' =[ w{x) dxf w{y) bNN(x-y) dy (11)
@ =

We now take the case of input noise which has essentially a flat spectrum over
the frequencies ofinterestin our smoothfng sinceat each stationwe will smooth
over the visible time qf$ minutes (smoothing bandwidths of less than 1/300 cps).
For such w (1), éNN('r) is Aessentia;lly an impulse and calling ﬁo the flat
low frequency power density of the noise we have upon changing limits
‘back,

T
.’W\/’,2= Q/ wz('r) dvr (12)
s o
o
where
A @ '
3 4 [ brnglT) 7 (13)
w®

and so has the units of ftz - sec. We also may clarify our definition of
éo in another way by saying that if the input noise has a bandwidth of (b)

cycles per second, then the mean square value of the position noise
ol .

N? (in ftz) is related to 2 by

~ 1 +2vb
N™ = >— f : ® dw=2% Db
2w 3 o o

2wb
so
~ »
s & N° :
o 2b (14)
The expression for the mean square position noise output of the filter
h(r) is just like (12) and is
~ T Cos )
RZ%- o f W) dr (15)
s ° Jo :



Thus the optimization problem for both h{r) and w(~) is the same and
consists of minimizing the integral of the square of the functions under
the constraints (7). The solution to this problem is well known and
therefore the procedure will simply be sketched out for completeness.
Assume wo(-r) is the qptimal function and that v(r) is a per- |
missible variation function then for -any choice of a small constant e ,

(either plus or minus), We know that

T 2 T 2
‘L w, {(7) dr gL [wo('r)»-i- e v('r)] dr

(16)
T 2 , T 2 T 2
=j W ('r)+2e] w vit)dr t+ e .l' vi(t)d~r
o) : o ° 0.
Since (e) may be plus or minus, it then follows that for all permissible
v(T) we must have that 4
T —
f wo(-r) vit)dr =0 (17)
o

The restrictions on v(T) follow immediately from the constraints (7)
and are that both wo(-r) and [wo('r) + e v(-r)] must satisfy the constraints

SO

T T . .
j; wo('r)f('r) df-’-]o (wo+ ev) f(T)dT

and
T | T
f WO(T) glt)dr = f (wo-l-ev) glr)dr
o : ]

Thus, the constraints on the permissible variation function are éimply
that:

T T
f vit) f{r)dr = f vit) g{r)dT =0 (18) .
o

o



To satisfy (17) under the constraints (18) we see that one solution is
wo(’r) = Af(r)+ B g(+) (19)

where A and B are constants, since with this choice, (17) will be

satisfied for all v (v) which satisfy (18). In a similar way we find,
h (v) = Cfly)+.D glr) ' (20)

\avhere the constants A, B, C, D are found from (7), Thus we have,

T 2 T
Cf f(v)dr + _D[ glr) flr)dr =1
(o) ' (&)

T T,
Cf gfd+ + D f gi(v)ydr =0
o ()

T , T
Af f(vr)dr + B f gfdr =0
o o
T T,
A j gfdr + B j' g dv =1
. (o) o
Solving we find,
, 2
T T T -
K QU £2(r) d-r) U g(v) d-r) - [ glr) £(r) dr (21)
(e} o (o}
- ‘
c=x [ dfmar (22)
O -
1 [T ! |
A =D = - ' f g{r) f(r) d=r (23)
o
T
B = —11{’/; fz(’r) dr (24)




We can also evaluate the integral of the squares easily from (19), (20)
and (7) as

T 5 . T .
j h (t)yd~+r = f h (7) ltC f(7) +Dg(1')} dr = C (25)
s © s © :
f W (v}d+ =~ f wo('r) {A f(r) + Bg('r)] dr = B (26)
o ° ;
and therefore from (12), (14), (15) and (26) we have using conventional
dispersion notation,
— :
vZi=5,=92 B (27)
s A\ o
~
2 2
- - & : 28
R, =85 ., © - (28)
where B and C are given by (22) and (24).
Returning to the results of Note No,31 we saw that for either
short smoothing times or low eccentricities that we can write with only
a small sighal error,
- f{r) = cos @ T
. (29)
glr)= -—— sin (mo-r)
o
where we have replaced (t) by (-7). Even if we use higher order terms
to remove signal errors these simple functions should give very close
noise estimates. Evaluating K, B, and C with (29) we find
1 - ‘ 242 }
= T + T . 30
K g—;—z [cosZwo +2mo 1 (30)
o
A=D-= ——1—7——- {1 -cos-Zon] {31)
4wo K



Bz —— [Zon + sin 2w T ] (32)
4w K °
(o]
C= —-——%———— [ Zon - sin Zon :[ (33)
4’ K , ~

‘Now evaluating (31), (32), 'and (33) for small (on) we find,

B~-1-2—3; fo"T— ; A=D::4-—€)—2—-. (34)
T T

so that for small smoothing times, use of (34) in (27) and (28) yields
finally, for small w_T: '

12 &
v & 7 3o
T .
for small on. (35)
. 4 @o
R A -

Returning now to the numbers for the FPS-16, if we assume that
they represent maximum errors, then the RMS values will be less. Thus,
let the 1o angle tracking error be 0,2 mils and consider the maximum
range case of 900 n, mi, so the RMS position error is 0.2/1000 x 900 x 6080 =
1000 ft along each of the axes normal to the range line and less than 50 ft
élong so the scaler range ef,z'o; is unimportant. The position noise
s’pectra'l density is then given by (14) as .

N% 108

o~ P PAE))

5

= 2 x 10° ft%/sec. (36)

Letting the smoothing time, T, be the minimum observation time of

5 minutes or 300 seconds, we get from (35)



5
12 x 2 x 10 0.3 ft/sec

Oy =
v (300)>
. (37)
v 5 ’
_ 4x2x10°

R~ — 300

Since the actual gl.';)imd system will use the data from all the
14 stations’and also the a priori knowledge of the planned on boost
direction, the system will actually do better than this by several factors
of 2. Thus, we would guess that final errors of more like 1/10 ft/sec
and 20 ft are quite possible, so thathaving to make these boosts should

cause no appreciable loss in parking orbit parameter determination

accuracy.

10



APOLLO NOTE NO. 57 G.F. Floyd
3 May 1963

OPTIMUM SMOOTHING WITH IMPERFECTLY EXECUTED
: COMMANDS

During the return to earth, the DSIF first tracks for a while to
estimate the re-entry angle that will result if the vehicle coasts all the
way, then periodically com;nands changes which the spacecraft imper-
fectly executes, and then the DSIF tracks again to see what happened.
With such a process, the question arises as to the best estimate of the
re-entry angle using all the data, Since we are trying to estimate some
orbit parameter  (a),which we know is constant unless we execute a
boost, let: '

a,a = True value of the parameter during smoothing cycles
{n) and (n + 1).

o 2n+1l Best estimates of a and a . 1 using all data,

P> P>
n

(1)

]

[] . . '
nt+ 1 Best estimate of a . using all data measured

after the executed change..

Commanded and executed changes at end of nth cycle,

(g}
o’
{

So

]
|

n+t+ 1 ah‘+ bn (2)

To maximize the likelihood we will want zero expected errors in the
estimators and minimum variance so will want the expected values of
all estimators to be the true values, We will assume that on the

average, the executed change will equal the commanded, So

5 =c. “ (3

We will denote the different variances involved as:
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~(bn~ - e Te
A 2 A 2
‘an - an) = %n
_ (4)
(/e\x -a )2 =_A_ 0_2
n+ 1 n n+t1
(3'~ - a )2 = az
n+ 1 n new
A . A A .
To form a , we have availablea , c , &' and our a priori knowledge
n+ 1 Y n’ n’ n+1l
of the variances o, o, o , and we will choose a to make the
, e n new 2 n+ 1
expected error zero with a minimum value for o nt 1t
Thus let,
A _ A A,
T e L T S (3)
Taking expected values and requiring that these be correct we have,
ar1 2t = e tect e, (an+.cn,) (6)
So that,
ptp,=p tp,=1 (7

hence

pPy= 1-p andp1= p.

Thus for zero mean error, gn-H must be of the form:

A — A A - A [

a 1= °P (an+'cn)+(1 p) R (8)
Therefore,
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A A, |
p (an+ €a " ?n " bn)+ (1- p)(axﬁ- 1" %n+ 1) 9
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Squaring and averaging with zero correlation assumed, we get using the

notation of {4):

2 2 2 2 2 2 2

Tat1= P Tt P o v {l-p) o
2, 2 2 2 2 2
=p (o too, + Unew) - 2p Unew+ Gr;ew (.10)
2 .
2 2 2,, 2
2 7 Hew (Un + e Ho new)
={c_ +0 4o ) p - ‘ + :
new 2 2 2
o_+to_+o (¢ "+ o0 )+o
‘n e ew n e new
Thus to minimize o we want,
n+ 1
02
p = > new 5 > (11)
Un + zre + O'new
and this choice yields,
S, 2 2., 2
(o "4+ 0 No )
.GZ - n e new (12)

2 2 2
(Un '+ %e Y+ Ao new)

Thus we have the simple result that the variance of the best estimate is
the "parallel" combination of two variances. The first is the sum of the
variance of the old smoothing data plus the variance in the execution and
the second is the variance based solely on new data., Thus the resulting
variance is smaller than either and approachés the smaller when one is

larger than the other,



APOLLO NOTE NO. 98 C. H. Dale
29 April 1963

LEM TERMINAL LANDING AND THE NECESSITY OF
AN INE‘RTIAL PLATFORM

In the Lunar Logistics Vehicle (LLV) mission, the LEM IMU
is not available for initial alignment by the crew of the CM. If the IMU
is used it would either need be aligned by some technique, or degradéd
~IMU performance would result. A possible solution might exist in
command guidance from the CM using a one mil radar. This would
surely relieve the IMU of its navigational tasks during the midcourse
portion of its descent. The questions to be taken up here are:

-What characterizes the terminal descent; and, is .an IMU

necessary during the terminal descent?

‘Of the many possible LLV missions, one of the most taxing is
the landing near a small, pre-assigned point (such as an un-beaconed
LEM){ Two pieces of equipment which appear absolutely necessary
are a T.V. link and a doppler altimeter. The terminal phase can be
considered to start when the T. V. link recognizes the target landing
-sight. Surely before this no form of terminal navigation can better
the midcourse trajectory ( with the possible exception of altimeter

‘derived altitude and altitude rate updating).

The terminal portion of the descent trajectory has been studied.
before and, for the normal LEM, consists of a constant acceleration,
gﬁn-barrel path. This near-o6ptimum path is easily defined for the
case of no errors. Two non-orthogonal thrust components are present.
The first is equal to the lunar attraction and in a downward direction.
The second is equal to a constant and is in the direction of the velocity
vector which, in turn, is ba.long the line-of-sight to the target landing
point, The constant acceleration is chosen by relating the velocii:y, vV,

to the range, R.

V = Z2aR (1)



-A safety margin is present in both R and a. This type of terminal

trajectory is shown in Figure 1.

TERMINAL
FLARE -OUT |

LUNAR SURFACE

LANDING
SATE

Figure 1.
Landing Maneuver With No Errors

Ne»edléss to say, this is an easy maneuver if no errors exist
since the thrﬁst acceleration is constant. If a subsequent error is
" found in R or V, then |5| is varied according to Equation (1). Itis
important to note that the conditions of the midcourse trajectory
-would be such as to make' a I as high as possible, still maintaining
a mai‘gin of safety. This in turn makes the time of flight remaining

as short as possible.

v 2R
a (2)

For any given range, R, the flight time is minimized by maxi-
mizing both the velocity and the acceleration. The boost velocity, ‘-fb,
is defined as the time integral of the thrust divided by the instantaneous

mass,



. £ . ‘

v, = @E+g)dt = Tt +gt.= Vot (3)

“0

Thus for the situation shown in Figure 1, it is always best to
minimize the time-of-flight for any given initial conditions.

When the initial velocity, V, does not 'point' at the desired
target,the question arises as to‘vézhat is the best thing to do about it. A
gravity turn trajectory is a perfectly good .example of such a trajectory
which is also near optimura. In the following analysis it will be assumed
that the initial angle between the line-of-flight, V/V, and the line-of-

sight is reasonably small and is due to midcourse navigational errors.

One possible guidance scheme would be to treat the horizontal
(x) and vertical (y) components separately but in a fashion similar to

Ei;uation (1) That is, a and ay could be chosen such that

.2 .2
X
T T 0 %y T A )

then with no further changes in a_ and ay, the following short analysis

will yield the spaée trajectory:

¥ 2% x (42)
e dkx dx dx
* T dqx dt T dx ¥ (4b)
v *2 - d;{ s . - ° - d;(
S x = 2 4= X X >x= 2 x 4c (4¢)

Which upon integration gives:

/> . x
x = ¢;x wherec; = +—— (44)

This may be rewritten:

dx dt

&x = <L (4e)
xll2 €1 ©



which may be integrated again to gives

c, @
or
. 2
t+e, e, . x t
L 1,72 . 1 o
x ze, = %\ %tz (45}

From Equation (42) a similar equation to (4f) may be written

in y,; thus,

vt 2L, 2
Yy _ *o Yo+ 2 _ Yo %o 4
x = Y . Y 2 (g)
o x t X Yy
\x, + == o 7o

Now it can be seen that y/x is a measure of the tangent of the
line-of-sight. In Equation (4g), it can be seen that if, and only if,
Srlyo = x/xo (i.e., if ‘V-o is aiong ﬁo) then y/x can remain at a constant
value (remember that S’o and ;{o are negative). For V initially
pitched above the line-of-sight, the trajectory will end up going
straight down (arc tan —i— = 90°). ~ And far more serious, if V is.
pitched below R, at ariy time, the guidance rule would have the LEM
skim in along the lunar surface. This is quite undesirable. With
perfect guidance and no errors the time of flight for this scheme is
given by Equation {2). However, with an initial error in the direction

of V two times exist. Similarly to Equation (2):

2 X,
tf = -
x xo
(4h)
2y '
t ¢ = °
Y Xo

These are the times that X must change from a to zero, and separately

that S,' must change from ay to zero. Since the line-of-flight angle.is



close to the lunar surface (14o or so) a small error in V will cause a

greater percentage change in tf than in tf « Thus although tf will
y X x :
remain quite close to te (from Equation (2)), te might get quite a bit

' Yy
larger, and in any case, the longer of the two determines the actual
time of flight, Any unnécessary time of flight burns unnecessary fuel
according to Equation (3). .
Thus a summary of the complaints against the above guidance

scheme are:

1. The trajectory is curved (badly so near the end of flight).

2. "The guidance scheme must change at either x = 0 and/or
y=0.

3. A lengthy flight time, which burns fuel, may occur for

an initial pitched-~up condition.

A related scheme which overcomes many of the problems is
discussed in Apolloc Note No. 19. Hexe the horizontal acceleration is
picked as before, however, the vertical accelerétion is chosen such
that a suitable positive y and downward ¥ exist when x and x reach
zero. From Apollo Note No. 19, the terminal values of y and y are

(when x and x > 0):

2 x R
vi =l || 3 8] t% (5)
x
o
. Yo + irf -2 i{o
Ygo T 2 A % + Yo (6)
v %o

Then since some y remains when x and x have gone to zero, the
remaining acceleration and velocity will be constrained to the vertical
(except for any remaining errors). This is thus a considerably safer

scheme.

The guidance rules for this scheme, to reiterate Apollo Note

No. 19, can be broken into the following temporal pieces:



1. Pre-terminal: Undefined except that the desire would
be to achieve descent initial conditions for the terminal phase. One

would assume that this would be close to an optimum boost trajectory.

2. Initial Termmal Descent: Pick a such that X, = \/ 2 a x ;
pick a_ such that 24 0tal places the LEM in a favorable vertical descent

path " (¥ and y) when x and % go to zero. See Apollo Note No. 19.

3. Initial Vertical Descent: Align the LEM body axis with
the vertical, and at the same time reduce any remaining x errors.
Do this at a greatly reduced thrust (minimum thrust) until the point
on an altitude vs. altitude rate proﬁle is reached where maximum
thrust ( x 0. 9) will bring the LEM to 7. 5 ft/sec. downward velocity

at 3 safe minimum altitude (100 to 200 ft).

4. High Thrust Vertical Descent: At high thrust, control

y and ¥ and keep the vehicle basically vertical.

5. Constant Velocity Descent: Make the vehicle vertical

for landing while maintaining thrust equal to the lunar attraction.

This set of guidance rules appears to offer two basic imprové—
ments over Equation (4). First, the terminal descent will always be
vertical and second, the time of flight will always be shorter because
of the reasoning previously presented after Equation(4h). Although, -
for this scheme a,

T
initial terminal phase, the trajectory is not necessarily straight.

is constant in space co-ordinates during the

This means that optical sensors will see a rotating line-of-sight

to the target. A rotating line-of-sight presents a number of problems.
First, it requires the optical sensor to be continually servoed with
respect to body'a.xes. Second, field of view and gimbal limitations
may result from structural constraints. Third, the expected landing
point (by the computer) is not obviously delineated in an optical .
sensor unless the optical sensor is servoed by computer commands to

drive the angular rate to the predicted landing point to zero.

A set of guidance schemes, worthy of consideration, are those



which cause the velocity vector to be aligned with the line-of-sight.
Defining o as the line-of-sight angle (with respect to any space reference},
it might thus be desirable to drive o to zero which would return the
trajectory to that shown in Figure 1. Any such scheme would then

drive the LEM to a trajVectory which is:.

1. S.traig};t,'rﬁaking‘ visual observations (T. V. ) easy
and gimbal angles predictable and small.

2. Continuous until flare-out or hover.

3. Economical in that the target is reached in the

shortest time consistent with a safe design limit

on the acceleration.

4. Constant Thrust, in magnitude-and direction.

A time proven way of driving the line-of-sight rate, o-, to
zero is proportional navigation. Defining y as the rate of change
of the direction of V, then

Y = A& A7)
is proportional navigation where \ is a constant, usuaily between
2 and 6. An idea of the actual motion of the LEM using proportional
navigation can be gained by slightly redrawing Figure 1 to show an
initial pointing error. This is done in Figure 2, with the lunar surface

taken as an arbitrary angular reference.

In the following figure, e is the angle between V and the line-
of-sight. The rotation rate of the line-of-sight is equal to the component

of velocity perpendicular to the L. O.S. divided by the range.
o = —Y—E%I}——e— =7\/2 a,v/R sin e (8)

and for small angles

o A=\/2aV/R- e (9)
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Figure 2.
Landing Maneuver With An Initial Error, e, Under

Proportional Navigation Control



Equation (7) may be rewritten:

Y = (o-e)=& -é =2 ¢& (10)

Thus, combining Equation (9) and (10) gives:

\/.Zav./R e -¢ =')q_: /Za.V/R e

or

.'é-l-()\-l)v\/?_aV/R e =0 (11)

. which may be integrated if the integration time is very short with
-respect to the flight time; that is, if R can be considered constant.

Thus, approximately.

e=eo.&-()"'-1) ZaV/R t

(fort w< tf) (12)
The following is an example calculation which shows that the velocity

vector may easily be brought in alignment with the line-of-sight.

The T. V. link should surely be able to recognize the target
at five miles range. Given a one mil radar in the CM/SM, the
location of the target relative to the LEM should be correct to
0.001 x 100 = 0. 1 mile. A 1000 foot error will be assumed. Thus,

the initial conditions are assumed to be:

R

o = 5miles= 30, 000 ft.
ay = 12 ft/secf > v, =\/2 ay R = 850 ft/sec.
t. = the time of flight = v - 71 seconds
; a
Vv
€ = 1000 = .033 radians

o ~ 730,000
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Now by taking five second increments, Eguation (12) may be

solved iteratively giving the following graph.
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Figure 3.

A Sample Proportional Navigation Trajectory
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The terminal portion of the "'gun~-barrel” trajeétory should-
possibly follow the same reasoning as Apollo Note No. 19. Since only
two controllables exist, thrust rmagnitude and direction, then various
phases must exist within which no more than two errors at a time are
reduced. During the gun-barrel phaée deﬁscribed» above,the acceleration
component ay is chosen such that some safe Rf exist when R (and thus V)
goes to zero. Rf could i?é 200 feet or so. Whgan some particular range,

before R,

£ is reached the LEM could change its program to one which

made:

1. x = Oatx=0 (fixes ¥)
2. a., remain constant ({ixes attitude)

T

In practice this would cause the LEM to approach a near vertiéal
attitude from a 34 degree nose-up nosition. The time réquired to
pitch this app'roxima.te 40 cdegrees is roughly two seconds, and during
this time the altitude rate should be brought equal to zero. The next
phase should bring ¥ to zero at x = 0 while maintaining ay =glory=0
at a roughly predetermined value of y). This situation should allow
the LEM to coast towards the target at a constant attitude and altitude
which ié high enough to not raise a dust cloud and yet is low enough

to both obtain excellent ground resolution and T.V. estimates of the
ground rates (i.e., X and z). Hopefully this will allow the radar

" altimeter designers greater latitude. In any case it should not be
recessary to roll the vehicle to reduce X and Z to acceptable limits.
When X =x= 0 (or at least a suitable site has been chosen), then the
thxusf should be brought to a minimum while aligning the vehicle with the
verticai. When an acéeptable negative ¥ is reached the thrust should
be set equal to gravity, while again maintaining vertical LEM align-

ment. Touchdown should follow.

An example of a terminal trajectory is shown in Figure 4.The
total time between the termination of the gun-barrel descent and touch-
down is 28 seconds (which may be too large or small), .and the corre-

spondingly required boost is 159 ft/sec.

11
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Figure 4,
An Example Terminal Trajectory Starting With A

Gun-~Barrel Descent

The remainder of this note will be devoted to the necessity of
an IMU in the lunar logistics LEM. The IMU is a set of integrating
gyros and accelerometers mounted on a stable platform; it, thus, has
the capacity to:

1. Act as an inertial attitude reference.

2. Provide inertial components of position, velocity,

and acceleration.
3. Break.

12



The question of whether an IMU should or should not exist on the lunar
logistics vehicle can best be answered by ﬁnding the guidance require-~
ments and providing only those sensors which are absolutely necessary.
This should provide the most reliable non-redundant set of equipment.
During the initial portion of the terminal descent it seems apparent
that radar command guidance (good to 1 mil) is inherently more accurate
than inertial guidance as seen from Apollo Note No. 42. An inertial
attitude reference is necessary during this phase in order to point the
thrust axis and to point a T. V. camera. The thrust direction is not
critical since sine errors correspond to a small fuel cost. However,
the T.V. camera should probably be pbinted to within a degree. As §uming
that the target is first seen at ten miles range, then the figure below
.gives the angular error in the expected line-of-sight as a function of

the one sigma error in position.
50

4° - //
1 o~error /
in the ) 30 : :
expected , '
line-of- 20 " /
sight

o /

0

0 1000 2000 3000 4000 5000 ft.

1 o= error in position of LEM upon
T. V. ‘location of the target at a
range of 10 miles.

. Figure 5.

Angular Error in T. V. Axis

‘Once the T.V. camera sights the target, the camera would
be driven to place cross-hairs on the ﬁa_rget. The line-of-sight must
then be used to remove guidance error.s. Given a doppler altimeter
(y and S() and the ability to hold the T. V. cross-hairs close to the
target, i.e., measure EJ", then the following equations follow from
"Figure 2:
13



R = y/ sino (13)

R

H

where o~ is intended to be the in-plane component of the line-of-sight

as measured from an axi§ 6n the lunar surface. These equations may be
solved for R and R if and only if - may be measured. The question
thus arises as to hdw well o~ must be measured’in order that a safe

.and conservative landing may be made. Given a guidance rule along

the line-of-sight that sets the thrust, an error in that acceleration

will occur due to an error in o~ . Thus, if the acceleiatioh along

the line-of-sight, a.,, is set equal to RZ/ZR, then

V)

82y 5 (R%/2R) (15)

g o 3 o

and since

R_Z X'Z . yo c:4os2 o~ _*+ COS O
ay TIR T %y cos o + o~ - ) (16)
: sin” o- sin”™ o
then
92y yZ cos o P yo-{ 3 cos o~ 2 cos o
= - o~ -
8 o 2y . 2 2 . 4 . 2
sin” o sin” o sin” o
. 2
-1 2 cos o :
+y{sin0' T ) (17)-
‘ sin” o~

The error in a., when the line-of-sight rate has been driven to zero

A2
is given by Equations (16) and (17):

0a
v !
v 5 A9 |

—
v o dv

= -cot'o-‘ Ao (18)

(y - R & cos o)/sin o (14)
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For a flight path of o~ = 14° this is about 7.0% per degree of Ao~. The

equatlon of motion of the descending LEM along the line- of~s1ght is:

o 2

® @ R
where n is the 7% or so per degree of error in o-. This can be integrated
to give 1-h g
R= CcRrR? : (20)
from which
2
CZ (1-n) Ro {1 -n)
R = = I (21)
2 R 2R _1-nlgn
o

For negative values of n, R will approach zero as R reaches zero
(actually as R reaches some Rf). For positive values of n, R will

grow as R diminishes, finally reaching a value limited by the thrust

of the LEM. From this critical range on in, the limit acceleration

will prevail and the stopping distance, R, will be exceeded. Itis
necessary to design a safe margin and thus an example set of calculations
will be used to show the effect of an error in o~ {(causing the error, n)

on the stopping range, R
Given, for example:

R, = 5mn.mi. (3.04x 10" 1)

R (planned upon) = 12 ft/sec2

_ | 2 _ .2 2
R jtimate = 110% of 12 ft/sec” = 13.2 ft/sec

'Ro - V2 (12) 3. 04 x 10% = 854 ft/sec

Then ffom Eéuation (21} the range, Rl’ at which the ultimate
of 13,2 f‘c/sec2 is reached can be calculated as a function of n where
n=.070A o°®. At this range,‘ Rl’ the error in acceleration is
exactiy n times the required acceleration to bring the LEM to rest

at Rf from the targe?. Given that this limit acceleration is applied
until R is brought to zero, then the design point, Rf, will be exceeded

by a miss of n Rl. The example is plotted in Figure 6.

15
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Figure 6.
Sample Terminal Trajectory Showing The Miss Along

R For A Given Error In c.
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From the foregoing example, as shown in Figure 6, it can be

inferred that o~ should be known to within a degree, and a one-half degree

limit would not be out-of-line with safety considerations.

Thus, up to the point of the flare-out, the instrumentation

requirements of the lunar logistics vehicle have been shown to be:

1.

2.
3.
4.

A doppler altimeter

A T.V. link
A stable platform good to about one-half of one degree

A set of body-mounted rate gyros and accelerometers

It, as yet, has not been shown that an IMU is a good choice as a repléce-
ment of (3) and (4) above. However, further a._nalysis‘ of the initial

thrusting portion of the synchronous descent and of the very terminal

flare-out and hover stages may well suggest an IMU.
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Earth
Radius
n
Period
w

APOLLO NOTE NO. 59 H. L. Engel
6 May 1963

PHYSICAL CONSTANTS

6.3781 x 103 km

3.99689 x 10° km>/sec?
23, 93447 hours

7.29116 x 107° rad/sec

Axis inclination to ecliptic =~ 23° 26.5" -

to be neglected here.

The precession of the Earth's axis is small enoﬁgh

Moon
Radius 1.7373 x 10° km
j 4.896 km>/sec?
‘Period (sidereal) 27 days 7 hours 43 minutes 11.5 sec.
Period (apparent Earth) 29 days 12 hours 44 minutes 3 sec.
W 4.236 x 1077 rad/sec

The Moon's axis of rotation, the normal to the ecliptic,

and the axis of Earth-Moon rotation line in a plane, as indicated in .

Figure 1. This plane rotates westward about the normal to the ecliptic

with a period of 18 years, 7 months.

The mean distance from the Earth to the Moon is

385,000 km. The eccentricity of its orbit is 0. 0549, and the major

axis of the orbit rotates eastward with a period of 8. 85 years.

The physical "constants' given here differ acéording

to the source selected, but are suitable for error studies.
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'APOLLO NOTE NO. 60 B. Saltzberg
6 May 1963

ERROR ANALYSIS FOR DETERMINING IN-PLANE ORBIT
PARAMETERS USING DSIF DOPPLER MEASUREMENTS
DURING DESCENT INTO SYNCHRONOUS ORBIT

INTRODU CTION

This note investigates the accuracy with which the DSIF can

predict:
i. the altitude of the LEM at perilune,and
2. the angle of the position vector at periline relative

to the earth-moon line

The error analysis considers the case of synchronous descent from
100 n. mi. circular orbit. Since descent into synchronous orbit is
initiated approximately 90° from perilune, we have examined the
accuracy with which the orbit can be determined (and hence the
accuracy with which peril*_.uie altitude and angle can be predicted)
based on doppler data taken during the first 30° after initiation of

descent into synchronous orbit.

"ANALYSIS

From Apollo Note No. 32 the doppler velocity measured at the
DSIF, assuming the earth at infinity, is given by:

Ny = R = [ésin(9+¢)+r9 cos(9+q;)]cosf3~ (1)
where | = angle from earth-moon line to perilune
B = angle between orbit plane normal and normal to earth-

moon line
In this error analysis we will assume the orbitkplane known, say
B = 0, so that Equation (1) can be written as: (A second angle is required
to completely define the orbit plane, but R is independent of this angle
for the zero parallax case considered here and would have to be

determined by other means-See Apollo Note No. 37).



R = ‘rsin(9+q;)+r'0 cos { 0 + ) (2)

Using the co-ordinate system chosen in Apollo Note No. 32, we

have:
' 2
" 2all-e) (3)
1 -esin® '
r (1 +e) .
r = P : | where r_ = perigee altitude (4)
1 -esin® P

Differentiating the logarithm of Equation (4) with respect to time gives:

_;:_ - e cos @ g (5)
1l ~-esin@
or -
. - _ecos *] r2 0 (6)
r (1 -e sin 0)
but
. 2
-H = r° @0 (7)
so that
. - He cos 0 (8)

r(l-e sin 0)

Using Equation (7) and (8) in Equation.(2), we have:

R = e cos 0

i

sin (0 + §) + cos (8 + ) (9)
.1 -~ esin® :

Simplifying Equation (9),we have:

R = H {ecosGsin(9+¢)-esin9cos(9+¢)
r (1 -e sin 0)
+ cos (9+¢)] (10)

which reduces to:



R = T_(%Ta-) [ ‘e'siﬁ‘-qj + cos (@ + q;)] {11}
P

but H = \/p. rp (1+e) , 80

. 15
R = ——bE ,[esin¢+cos(9+q;)] (12)

‘\/rp(l +e

The orbit is now characterized in terms of the parameters
rp, Y, and e. We will estimate the errors in the determination of
these parameters from R measurements (i.e., DSIF doppler data)
during a 30° portion of the synchronous descent orbit. The small

error approximation gives:

AR= —39}&— Ar_+ —a—&-A ¢+-—g——§-’- Ae (13)
P o ¢
where the partial de.rivatives are:
3R _ R :
or_ =~ 2T (14)
P p
s & Y2

= @ — B [ecoqu - sin (9+\M] (15)

‘\/rp (L+e)

:

3R 2, R
22 - g siny - R (16)

€ R /rp(l+e) ;(1+e)

In order to simplify computation, we will obtain an approximation

for the parameter errors by measuring R at 3 points on the trajectory.
In this error analysis the angle at 'perilune () for the synchronous
descent is displaced from the earth-moon line in order for the analysis
~ to be meaningful. This occurs because if s = .0 the DSIF doppler

measurement is proportional to ¥ only (i.e., no x information is



contained in R } and the resulting simultaneous equations for the
parameter errors are not independent. However, this does not imply
that it is necessary for perilune to be displa.céd from thé earth-moon
line in order to determine the orbit parameters from doppler data. In
cormputing the orbit by processing the doppler data to establish the
maximum likelihood estimators of the orbit parameters, the position
of perilune relative to the earth-moon line can be completely arbitrary
because the likelihood estimators are based on a best fit using time as
the independent variable, whereas 0 is the independent variable in this
simplified error analysis. With time as the independent variable, it
is not neceésary to have x information to estimate the orbit parameters

from doppler data.

Error Computation

"~ Denote the doppler velocity measured at three distinct @ values
9, 29 3) by (ARI’ AR Af{ )} and write:

oR | oR R _
AR1= — Arp + 5 T Ay o+ 5 e Ae (17)
P 1 1
. IR 9R \ OR
AR, = |55—|ar, + —5-———/;A¢+ =—| e (18)
) 2 2
) R R 3R
AR3= 5t vAI‘p + —5—-4‘—-— Alll+ 3 o Ae (19)
' P 3 3

-where the partial derivatives are evaluated at nominal values of the
parametors and at the 0 values correspondmg to the subscripts.
The solution of Equations (17), (18), and (19) for the parameter
errors A r.p, Ay, Ae, has been carried out numerically for the
100 n.mi. synchronous trajectory with perilune at 50,000 it. The
variance of Arp, Ad, Ae, and thg correlation coefficient of Arp , Ay

have been computed.



The computations have been carried out for the case depicted

in Figure 1.

d 1 . . :
’Z>R Sample points assumed for
error analysis

Nominal parameter value
rp = 1.75653 x 106 meters

o

y =30

. 086718
- Sample points

o]
91 = -30

€

Earth-Moon Line

' Figure 1.



The computed root-mean-square errors for the case shown in

Figure 1 are:

o "= 2360 o (meters) (20)
P
B | -3 . .
o’\p = 6.03x10 ~ o R (radians) (21)
o = 4.66x10% o (22)
e R

where the units of OR are meters/sec.

The DSIF accuracy assumed for one minute of smoothing is

O =02 meters/sec. This gives:
oL = 47 meters {23)
p
-4 . -3
o-\p = 1.2x10 " radians = 6.9 x 10 ~ degrees - (24)
-4 .
o, = 9.3 x 10 (25)

The correlation between Arp and qu, that is their covariance,

o-. ,, divided by o- . o—, for this case was computed to be:
r b T g
p P
i °r ¢
S p = —P - 0,111 (26)
o o
r
p '\P

Approximate error calculations were also carried out assuming

that the vehicle was tracked over 60° of its orbit starting approximately



from the time it is emerged from the back-side of the moon to when it
is approximately 30° from the earth-moon line. The approximate
_ errors (not significantly different from those of the previous results

for tracking over 30° of the .orbit) are shown below.

o, = 2200 Y (27)
P

o, = 2.95x 1073 o (28) -
\ R

o = 1.13x10°% o (29)
e : R

p = (.555 (30)

Again taking R T 02 meters/sec for one minute of smoothing,

we have:

o, = 44 meters (31)

P
T -3
oy, = 5.9 x 10 “radians = 3.4 x 10~ degrees (32)
o = 2.26x107% (33)



The foregoing results of this error analysis are summarized

in the following table.

Table 1.
Observation
: Interval o .
RMS 30 60
Error
o 47 meters 44 meters
P
%y 6.9 x 107 3.4 x1073
degrees degrees
Oe 9.3 x 107 2.3x 1074
Pr -y 0.111 0.555
P
o~ (1 minute .0z meters 02 _meters
R of sec. sec.
smoothing)




APOLLO NOTE NO. 61 L. Lustick
- 7 May 1963

DETERMINATION OF SELENOCENTRIC ORBIT
PARAMETERS WITH THE DSIF

PURPOSE

The purpose of this note is to estimate the accuracy that the
DSIF can establish the selenocentric orbit parameters. In particular,
this note examines the hyperbolic orbit relative to the moon (in the
lunar sphere of influence) and the accuracy to which the DSIF can

determine perilune conditions.

GEOMETRY. CONSIDERED




EXPRESSION FOR R

The DSIF observes an R which is the projection of the velocity
components relative to the moon (vt and vr)von the line connecting the

earth and the moon.

R = vrcos.(rr'-g-'q;)«kvtcos (9--‘2’—+¢)

In terms of e, , and rp, R can be expressed by the equation
below (See Apollo Note No. 60).

R '—‘wfr——E'T—— [esin\p+sin-(9+\p)l
1+e rp g

The partial derivatives of R with respect to the parameters are

presented below:

(= 0]

=\, [“os'wws"“‘“]

R R | £ n o
e ) +.\/ l+e i sin v

ASSUMPTIONS:

Q

1. The DSIF is located an infinite distance away from
the moon.
2. The error in the determination of R with the DSIF
is .02 m/sec. This number is consistent with 1 minute of smoothing.
3. The plane of the orbit is. equatorial and it is assumed
that no errors in the knowledge of the orbit ‘plane exist,
4. The angle 0 is used as the independent variable instead

of time.



5. The nominal trajectory conditions used in the error

‘analysis are presented below:

g = 30°
e = eccentricity = 1.38
rp = perilune radius = 1.92332 % 106 meters
12 m3
B, = 8ravitational constant of the moon = 4.899 x 10 >
' : sec

ERRORS IN PARAMETERS

The errors in the parameters, rp, y, and e were arrived at
by observing R at three points on the trajectory and solving for the
changes in the parameters indicated. The error equations used

are presented below.

oR
ar
P

3 R

\,Ae+
P

.'1

ARz (gi‘}/_\\w(

AT
p

[+5]

1

} g e or
2 ‘ 2 P2
- aR§ 9 R 5 R
ARz = (aq; ,A4‘+(a ZAe Hlor |AF
3 P 3

The statistical averages presented below were obtained:

o, - -standard deviation in perilune radius - meters
.o~ - standard deviation in location of perilune
o, - standard deviation in eccentricity

Pr =y Proe’ Py-e correlation coefficient between estimated
P P parameters




where:

Pxy = -O-_-’E-%._—-— x and y have zero mean.
Xy
RESULTS

Results were obtained for observation intervals of 30 and 60
degrees. The first observation was taken at conditions when the
vehicle first entered the lunar sphere of influence and it equally

spaced values of 0 thereafter. .

Table 1.
Observation |
' Interval 300 600
Quantity :
o, 1080 meters 330 meters
P
0:!} . 033 degrees . 00675 degrees
1110 meters 227 meters
o, o 5.35 x 1074 2.4x10°4
|
g ’ ’
pr—¢ ; .99389 .97779
P .
Pr o .. 98032 . .94897
pr_e . 95474 : . 87893
CONCLUSIONS

If the orbit plane is known, the DSIF capability of determining
the in-plane orbit paiameter‘s is excellent. Using the smoothed value of
R at three points and a 60° observation interval the location of perilune
and the altitude at perilune can be determinec with approximate errors of

1/4 of a kilometer ( 1 o~ values).



there is no maximum value of f if the x, can be arbitrarily large.

: ‘ of ¢ .
Indeed, the partial derivatives — = @;,» 1% 1, 2, *** n cannot

i

simultan_e-ously vanish except in the trivial case @ £20,i=1,°"*, n,
The interesting case occurs when all the x, are bounded: a; < xifbi'
The above argument on the simultaneous vanishing of the partial
(ierivatives,indicates that there is no maximum in the open (i.e.,
the interior) region of the domain of the 3 Since‘ f must now have
a maximum, we conclude it must occur on the boundary of the domain
éf the x; where the derivatives do not exist.

In a heuristic way, we extend this argument to the solution
of (3) and thus argue that‘for fixed t, thev optimal controls ui(t) must
assume their extreme values: iui(t)l = 1. Since this is true for

arbitrary t, g (t) must have the form of step functions:

lui | = 1 (j)'

except possibly at a finite number of discontinuities.

Synthesis of Optimal Controls
Following Pontryagin, we re‘fer‘ to the selection of the u, (t) as optimal
control synthesis, and proceed as follows:

For fixed time, call it T, and arbitrary admissible.(not neces-
sarily optimal) controls uy (T), we fir\;;t assert that the locus of acces-
sible terminal points in phase space, call them gf (T), form a convex
set, call it _Q_ {T). By a convex s¢t we mean a set of points with the
property that the line joining any two points of the set contains only

points of the set. Lines, triangles, circles, spheres, ellipsoids are

5



APOLLO NOTE NO, 62 L. Lustick/H, Engel
10 May 1963

TRANS-EARTH INJECTION ERRORS

The error in reentry dive angle and the miss along the flight path
at reentry have been computed.

This was done ioy f_inding a nominal trajectory with a flight time
of approximatély 70 hours from périlune to reentry and a reentry dive
angle of approximately 6°, and then calculating the dive angles and re-
entry points for trajectories in which the initial conditions were perturbed.
The differences divided by the perturbations are approximations to the
partial derivéﬁives of reentry dive angle and miss with respect to the
perturbed quantities, .

In this analysis, the CM is é.ssumed to be acted upon by only one
body at a time, .While in the lunar sphere of influence (LSOI) it is acted
upon only by the Moon's gravitational field. Outside of the LSOI it is
acted upon only by the Earth's gravitational field.

The planes of the CM trajectory and Earth-Moon rotation are
assumed coincident, Only pefturbations in this plane are considered,

The coordinates emplbye‘d are shown in Figure 1. The xand y
axes move with the Moon, They are fixed in direction, and the y axis
is directed along the Earth-Moon line at the instant that the CM on its
nominal trajectory pierces the LSOL The motion of the CM with respect
to the Moon is a conic section in these coordinates.

" The counterclockwise angle from the y axis to perilune is 9 and
the clockwise angle from perilune to the point of piercing the LSOI is 6
The velocity of the CM with respect to the Moon at the instant of piercing
the LSOI makes an angle ,\\( with the radius from the Moon, and an angle
T - gz with the y axis. The clockwise angle betweeﬁ the line joining the
Earth and Moon and the line joining the Earth and CM at intersection with
the I.SOI is é? The velocity of the Moon at the time of CM piercing the
LSOI is in the -x direction, . '

The perilune speed is



Figure 1,



2p_+ t+8_ 2
0: A ( 2 -1+;R)
L Tr L

and its component along the radius from the Moon is

A A 2
V. . = v

2
rL 7. L TL

The angles Q and ﬁ are given by

A
v
_tan*’x}::ATLb, OSst
.YrL
and s1n (w - 9+ QS) . T
tana.- A g » ’2"‘\< g \<'Z
rEM—rLcos (17-9-!-‘)

in which TEM is the distance from the Earth to the Moon. Now, if Vi

is the speed of the Moon with respect to the Earth, directed counterclock-
wise, the radial and tangential componehts of the CM velocity with respeét
fo the Earth at the LSOI are -



@

A A A A A
VRL= - vy, cOs (e +B) - v, sinp

<>

A A
TL = -QL sin (9:-!- B) + V., €°S g

in which

’c\z=2‘+1r-6-.-*/y‘\

.

The distance from Earth at the point of piercing the LSOI is

A ) Ty, sin_('n' -3-}-9)

R
L sinﬁ

The angular momeritum and energy of the Earth-centered orbit

are A
Hp = QTL ﬁL

and A A A e
_ 1 2 2 E
bt [ b2] - 2

A A2
Y PO -
E 2
Me
. A .
a’nd’ A HEZ
RP=

A
p.E(l + eE)

For perigee radius less than the reentry radius, RF’ the dive

angle at reentry is given by

A 2
2 R 2E_ R
A PE TR EF

¢



The angular distance about the Earth from exit from the LSOI

to perigee is QLP’

Ao
, Hp
- —p \
=1 E L )
Ypp= sin ; t g 0 Ypp § 7
[
~ E

and the éngﬁié{r_ distance from reentry to perigee, if reentry occurs, is

A
Yo
.FP . ...,“.ﬁh"“'—"""" ‘ A 2
1- -———K——HE :
A . =1 0l D L
\pFP: sin A = + > 0 £ q;FPs T
e
E

In order to compute the time from injection into the trans-earth
orbit until piercing the LSOQOI,  the energy and angular momentum of the

CM in the LSOI must be known. These are

A 2H A
Em= n (em-- 1)
r
P
and- A
. A A
Hm— B rp (em+ 1)

The time from perilune to piercing the LSOI is

A o ’
ApL= 1 H coty - m loge [G + /\2_1]
VA
2E . 2B _ '



The time from piercing the LSOI until reentr'y is

A— \lﬁz + 20 R, + 2B R 2
LF""E E E L “E L
kg LV ,
2B R
4—2 _ gin~! .AE - Hg tan 8,
e
Y %
2BE_R
L E °F
FE . =1 8 D)
- sin
A A
-2E E

in which the angles indicated on the fight hand side are between -w/2 and
w/2. ‘ )
. The total time of flight is

In order to find the nominal orbit, a number of values ofg and /e\zm
were selected, and the perigee radius and time of flight determined.
See Figure 2. On the basis of these computations, a second run was made
and perigee, reentry angle and time of flight plotted as in Figures 3 and 4.
Based on these results, a third run was made, yielding in one case a dive
angle of 6. 09° and a time of flight of 70, 415 hours. This was deemed
close enough to the desired 6° and 70 hours to be used as the basis for an
error analysis. ¥

Using the indicated trajectory as a basis the perilune conditions
were perturbed, the new reentry conditions calculated, and the difference
between the perturbed and unperturbed reentry cionditions divided by the

amount of the perturbation to indicate the sensitivity.

¢
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The quantities perturbed were radius at injection, ¢ at injection,

and the radial and tangential components of velocity at injection.

On the basis of these new injection conditions, the orbit within the

LSOI was computed, using

m t. 1
1
_ 1 2 2 P
Em_-z [vt. * V. ]- T,
1 1 1
2E H 2
e = 1+ _._n_l__?nl__
m
p'm
H 2
m
rp— .
Bk (lte )

™ ™
‘—2'5 n <3

e
m

r
cos M= 1 {(l+e ) ;B -1 s A
' e sgn M= sgn (Avr- vaqS)

Here 7 is the angle between perilune and injection.

ko, e 1)

by
P p

10 .



A The conditions at piercing the LSOI are computed from the same
formulas used in the unperturbed case, but with the perturbed values,

It must be remembered, however, that the coordinate system used for
the orbit outside the LSOI was based on the location of the Moon at the
time the nominal orbit pierced the LSOI, and that qSi was measured
relative to this coordinate system. Since the time to piercing the LSOI is
different in the perturbed. orbit the position of the Earth-Moon line at

the time of piercing the LS'O_I is also different, as indicated in Figure 1,

and some angle corrections are necessary. Thus

Z. T, e -1 T, 2
=~ l+qgrg T *1Tve (r’A
. m . p m P
sgn (A v Q Ad) '1/.2
gn I‘- ' M ' 2
= P - m - -

boi T 2E_ i % VeE, logg (u; + {/y" - 1)
in which

T,
u, = [1 + (em 1) rp ] \/em

The time from perilune to piercing the LSOI is calculated from

the same formula at tpi’ using the perturbed values, Then

: A
o= ¢i+n+w-e-y-wEM(tiL-tiL)

Ty sin (@ + v)

tanﬁ:

Tpa - Fp, €O {a+ v)
VRL:: - v, cos (e + B) -_Vm sin
VTL=-.- VI.‘ -sin (x4 B) + Vi, €08 B

A1



ry sin (a +vy)

RL = - sin $

The dive angle at reentry, the angular motion about the Earth,
and the time from piercing the LSOI to reentry are computed as in the
nominal case,

The miss must be computed taking into account the difference-in

Earth coordinates systems,inthe perturbed and unperturbed cases, so
: N A A A
M= {q’LF "B - Wpp - B repy (G - b)) -egltp-tp) ) Ry

The results are indicated in Figures 5 and 6 for various pertur-
bations. '
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APOLLO NOTE NO, 63 G. F. Floyd
10 May 1963

DSIF CAPABILITY ON TRANS-EARTH TR_AJECTORY

As shown in Note No, 26, the sensitive directions for re-entry
dive angle and miss along (range miss) are so close while in the earth's
sphere of influence that independent control of the two orbit parameters
is impractical, Luckily, however, the results of Note No, 62 show that
this high correlation also exists back at lunar injection., At lunar injec~

tion we have for the coefficients along the most sensitive direction,

ANI“
Ad

= 220 km per degree (1)
f

while after we enter the earth sphere of inﬂuénce, we have, from page 4
of Note No, 26:

AMyy

Ka—f— = 210 km/degreg (2)
.and the sensitivity ratios ai‘e of the same sigh, Therefore, the ratios
are so nearly the same that midcourse corrections to correct the effect
of injection errors or re-entry angle will automatically correct the range
miss, Further justification of this conclusioﬁ is furnished by thé fact
that from Note No. 53 we see that the range dispersion with a zero-lift
re-entry will be several hundred miles at re-entry.angle dispersion of
0,1°, Therefore, there is no gain in holding the re-entry miss much
smaller than this value. This resultis, of course, fortunate since we
can't control the two separately anyhow, A

Also as shown in Note No, 26, the sensitivity of the out of plane

miss (track miss) is very much lower than that of the re-entry angle,
Therefore, if we can measure and control the re~entry angle to 0, 1°

we will be able to control the track miss to better than a fraction of a
nautical mile, Consequently, the following analysis of the DSIF capability
-on the return trajectory will be devolted entifely to the variance in the

re-entry dive angle,



The basic formulas for the variance in the estimated value of
(Gf)‘from n data observed over the range interval RZ to‘R1 are derived
in Note No. 5 and the results of a computer evaluation of these formulas
is given as ¢(RZ, R,) of Figure 1 and Figure 2. The variance in (80
re}ated to the plotted function ¢ (RI‘ RZ) is,

o? (R) (R, - R)) ¢ (R, R))
N

«Zwﬁ=

where T(RZ) - T(RI)

correlation

N

2 number of samples =

and T(R) is the time-to-go at range R, which is plotted in Figure 3.

The optimum method of combining old and new measurements

when there is an intervening imperfectly executed change is derived
“in Note No. 57, and this method was used in calculating the performance
during a typical midcourse correction system for earth return.

In order to determine the limitations of the DSIF, the assumption
was made that the CM was under completely manual control with no auto-
pilot and no integrating accelerometers., The execution of the ground
derived commands is then accomplished by pointing the spacecraft at the
ordered star, spinning it to get spin stabilization (see Note No. 38), and
applying the boosts for a commanded time interval, With such crude
contrvol, the major error that results would be that of the assumed 10% engine
thrust level uncertainty since the errors due to poor directional control
arising from unbalanced torques ‘(c. g. shifts or locked over nozzles), were
shown in Note 38 to be less than 12° and with the boost o;dei’ed in the most
sensitive direction (Note 22), these directional errors would result in per-
centage error of less than 2% which is negligible compared witﬁ the 10% magni'-

' tude error that would result without a longitudinal integrating accelerometer,

The assumption of very poor execution of the commands puts a

real premium on navigation accuracy and short smoothing time in order
. to keep the midcourse correction fuel requirements within the fuel pad

limits. The reason for this is shown in Figure 4 which is a plot of the
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re-entry angle sensitivity coefficient in degrees per meter/sec as a
function of range from the earth. At injection the coefficient is 4. _50/
m/sec and it very rapidly falls to 3. 0°/m/sec as the spacecraft goes
through the lunar sphere of influence. Thus even if the injection error
could be complétely corrected when the vehicle reached the earth
sphere of inﬂuence, the corr'ection required would be 1. 5 times the
injection error and with a 10% autopilot the injection error will be
-%-0 x 3000 = 300 ft/sec so the midcourse AV required will be at least

450 ft/sec.

'Novattempt has been made yet to optimize the midcourse cor-

rection schedule other than just intuitive guesses at one which will give
. satisfactory performance. The results with such a ''guessed at'' program

are shown in Table 1.

Table 1.
DSIF lo . v Resultant
Time Till Uncertainty Commanded Error in
Re-entry in Re-entry Correction Boost Re-~entry
(hrs) Angle No. ft/sec Angle (degrees)
72 DNA Injection 3000 "450
50 1.1 1 550 45
36 1.1 2 69 4.6
24 .7 3 10 .8
16 .3 4 2.5 . 3.
8 .09 5 1.5 .09

2 002 ." hd a

As the table shows, the capabilities of the DSIF are so good that even with
very poor execution of commands, resulting in very large initial errors,
large errors in the execution of each command (so that old smoothing data
" is not useful, see Note 57), the DSIF still can get the spacecraft within

the 0. 1° tolerance at eight hours to go (spacecraft at 15 earth radii).



It will be noted that five corrections are required. This is not due to
DSIF uncertainties but simply because of the large execution error that
was assumed., With a 10% execution error, and an initial error of

4500, it would také four perfectly computed corrections to bring the

. result to . 04 whereas with present DSIF accuracy, tracking errors
stretch this to only 5. The total midcourse boost needed is 633 ft or
about twice the injection error as compared with 450 ft/sec if there were
" DSIF errors. .

In summary, it appears that with DSIF orbit prediction accuracy,
it should be possible to make a safe zero lift re-entry with manual exe-
"cution of the commanded maneuvers. Also it should be'emphasized that
if there were a single longifﬁdinal integrating accelerometer, the exe-
cution error would be reduced by a factor of 5 to the 2% associated with
spin stabilization, ‘in this case fhe re-entry angle error reduction of
Table 1 would look much better and reach the .1° goal at more than 12

hours out,



APOLLO NOTE NO. 64 B. Saltzberg
14 May 1963

CAPABILITY OF THE DSIF FOR DETERMINING IN-PLANE
ORBIT PARAMETERS DURING ASCENT

INTRODUCTION

This note is sir@ila} to Apollo Note No. 60 which presented an
error analysis for determining the in-plane orbit parameters during
descent. In this note; the errors are calculated for the ascent part
of the trajectory, assuming that DSIF doppler measurements are made

during approximately 30° of the ascent trajectory.

This approximate analysis conéiders the error in apolune position
and the resulting rendezvous miss distance due to the timing error as
well as the apolune altitude and angle error. For this error analysi’s
the rendezvous miss distance is defined as the separation between the
ascending LEM and the CM when the ascending LEM reaches apolune.
The nominal orbits assumed in this analysis are: .

1. the CM in circular orbit at 100 n.mi. altitude, and

2. the ascending LEM in the same orbit plane with

perilune at zero altitude and apolune at 100 n. m1
altitude, such that the LEM and CM meet at the first
approach to apogee.

The nominal values used in the analysis are:

T = 1.9226 km
a
rp = 1.7373 x 103 km
_ .19 _
e = 37599 " . 05063
y = 30°

The parameter errors will be estimated by measuring R at three ’

points on the trajectory as in Apollo Note No. 60. Using the co-ordinate



system of Apollo Note No. 60, the sample points for the approximate

analysis were chosen as:

o]
91 = —-165.
o
92 = -180 .
- o o
93 = -195

With a nominal § = 30° (see Figure 1 of Apollo Note No. 60),
then the last data point (0, = -195°) is approximately 15° ahead of
where the ascending LEM would be occluded by the Moon.

ERROR EQUATIONS

‘ The in-plane orbit parameters T y, e, are related to the
doppler, fd' as follows:
' . 12

A\,= R= —FH [esin y + cos (9+q;)]

d” \/ra (1 - e)

)

Just as in Apollo Noté No. 60, the small error approximation is used:

. 3R 9 R 9 R
AR= 5T Ara-!— an A\l)'!‘ -_—a-—e—Ae

a .

‘where the partial derivatives are:

R _ R
ar ~ ~ 2t
. - 1p
9 R _ i e cos Y - sin (8 + )
SVl |
. 1

(2)

(3)

(4)

(5)



The system of equations whose inverse has been computed for the

parameter errors is:

. (a8 R 9 R 3 R '
ARI =957 Ara-i- -—a-—:l-;-) Ay +(3e Ae (6)
a .
1 1 1
- _[8R R [ 8 R
ARZ" T Ar + EI'D Ab+l57 Ae (7)
2 2 2
[aR] | & R 3 R :
AR3— 5T A~1‘a+ W A ll‘ + 3 e Ae (8)
3 3 3

'The approximate uncertainty in the time from perilune to apolune due

to an error in ra is:

T_ = time from perilune to apolune

p-a :
222 (9)
T =T
p-a 1
B 2
ATp-—a 3 Aa
—_— = 5 (10)
T = 2 a
p-a
' but {(r. +1r)
a = > (11)

Assuming no error in rp, we have:

Ara
Aa = -——2--—— (12)



AT, , 3

T
p-a

The miss along the orbit path due only to the above timing

error at apolune is approximately:

AS

"
<
>
e

t a p-a 4
but _
_ (1 -¢)
Va. - a(l + e)

so, using Equation (9)

VaT—a >1-e-
_a p-a _ _
a l+e

and Equation (14) becomes:

_ 3w l-e
AS, = —3 T3 &%,

For the case e = ,05063

ASt = 2.2 Ara

Thus, the total miss distance, AS, due to an error in r,

approximately:

V. T
= ...%P_..?.'. Ara

: 2 2 2 '
AS _\/(Ast) + (ar)) V. 2% +1 ar, =2.44r1,

The standard deviation and the correlation between the errors

in T, Y, and e, assuming one minute of doppler smoothing, are

(13)

(14)

(15)

(16)

(17)

(18)

(19)



~summarized in the following table. Again, these numbers are based
on sampling at 3 points over a 30° sector of the orbit, assuming an
effective one minute of smoothing at each of the three sample points

'as described in the Introduction. ( See Figure 1).

t - TABLE 1.

o . 26 meters

a
o-q‘ 2.04 x 10_5 radians
o . 8x 107

e .
P. . -

r -y . 949
pra"e ) . 959
pq‘_e ~e 80
R .02 meters/sec.

(1 minute of smoothing)

The variance in the miss distance (o-s) at apolune due to

errors inr_, y, and Tp-a is approximately (assuming pra_q’ = -1 and
a “p-a
2 2 2
oy = o;a + (o-st- T, o-ql)

where (from Equation (18))

oW = 2.2 O
St Ta
thus,
0. = 62 meters



Earth-Moon
Line

Figure 1.

‘This error analysis has assumed that the phase, O; at each of
the Sample points is known, and the resulting small error in determining
the position of the LEM at apolune (~ 62 meters), suggests that the error
in the phase parameter may be the principal source of error in deriving
apolune position from DSIF'doppler data. Therefore, a more general
anal_ysis, taking into account errors in the phase parameter, is being

conducted.



APOLLO NOTE NO. 65 L. Laustick
: oo 15 May 1963

]
+

" DETERMINATION OF THE CO-ORDINATES OF AN LEM
ON THE MOON FROM DSIF MEASUREMENTS
FROM ONE STATION

PURPOSE

The purpose of this note is to indicate the capability of the

DSIF to determine the location of an LEM on the lunar surface,

Celestial Geometry

The celestial geometry of earth-moon space is defined in
Apollo Note No. 59. The figure below is reproduced from this note

and defines the geometry pertinent to the analysis of this report.

Normal to -

Ecliptic
X 1, _Axis Earth Axis
Axis.of of
Earth-Moon Moon

23926, 51

Figure 1.



Expression for the Doppler

‘Neglecting the eccentricity of the lunar orbit, the expression

for the doppler, D, is derived below.

D=(R+rm-rE)' [mexR+wmx-rm-mEer} (1)
[R. + T, rE]
mag.
where:
D = Doppler - meters/sec.

R = vector from the center of the moon to the center
of the earth

rp = vector location of tracking statio.n on the earth

r = vector location of LEM on the lunar sgrface

O R angular velocity vector of moon about the earth

W, angular velocity of the moon about its own spin axis
W = angular velocity of the earth about its spin axis

After suitable simplification the expression for the doppler can

be written as shown in Equation (2) below:
Tm * [R x (wm-me) * g ¥ (wE j wm)]+ R>- [rE x (wE -mm)]

[R-l- T rE]

D= (2)

mag.
Since the moon approximately keeps the same face toward the earth, it is

reasonable to assume for this error ahalysis that R x (wm -me) is negligible..

In addition QE>>> © hence the simplified expression shown in

Equation (3) is a reasonable representation of the doppler.

T [rEx‘*’EJ * R- [rEx‘*"E]

[R tr - rE]
mag.

n

"D (3)




since [R-i— rm—rE] ’—J’[R]
mag. . mag.

~ For purposé of error analysis the partial derivativés of the
doppler with respect to the co~ordinates of the location of the LEM
on the lunar surface are of interest. (The partial derivatives with

respect to the components of the vector ’rm).

24 a, a3
D= b1 b2 b3 + K
<y ¢, 3

where:

a are the components of the T vector
b. are the components of the re vector

c. are the components of QE vector

i. = 1,2,3

K

i

value of fhe, scalar R* (rpXowp)

Since aps 25, and ay are functions of the parameters to be

) . N
estimated, A the latitude and O the longitude of the location of the

LEM, the partial derivatives with respect to these parameters can be

written as follows.

(4)



mag.

where

"da

™




Co-ordinates of Pertinent Vectors

The co-ordinate system used is the i, j, k system associated
with the celestial sphere. The k axis is normal to the plane of the
earth's orbit and the moon center is assumed to lie along the i axis.

For purposes of error an;alysis, the moon is assumed stationary and non-

rotating and to lie in the plane of the ecliptic along the i axis’

Location of Tracking Station

i [IE coskcosOcosa'-i-rE

sin N\ sin oz]
j [rE cos \ sin G]

k [- rE cos A ¢cos O sina + r.. sin \ cos a]-

E

tilt of earth axis (.23O 26.5'") toward the moon

o =

in the i - k plane
A = latitude of station (measured from the earth equator)
0 = longitude (measﬁred in the earth's equatorial plane

from the i - k plane)

Location of Earth Spin Vector

i [wE sin « |
i [o]
K [wE cos a]

Location of Nominal Psint on Lunar Surface

. A A
i [—r COS \ coOs 9}
m .



j [r cos{ 51n9]
m

e [x, stk ]

Error Analysis

The error analysis was conducted by measumng the doppler

from the same station at two different times. The error in the doppler

A
measurement can be related to the error in Q, and @ through the

following equations.
oD A
D) a8

apy= (22} a4 4
: 9 A 00

1 1

N L, 890/,
Solving for A A and A% and statistically averaging, the standard
deviation in A s and@\ are presented in the equation below.
/ E )2 dri
- PAS A
*,%D 20 > ) 1
rmO"/): =
(BD) (GD)
A A
AN 90/,
(SD) (BD)
A N
RN N 00 /1,
. o {SD 2+(8Dr
Da/leA |, a1,
I'm 6‘/6 = -
8D) (aD\
a% ) a@%




9D

_ Tm TEYE

Qo 1@

s A
=) sin A cos @ {cosksin@cosa]
mags )

' AT . .
+ gin A 8in © [cos a (cos N\ cos © cos o+ s8in A sin «)
- 8in a (~ cos \ cos'® sin a + sin \ cos oz)]

+ cos N [- sin « cos \ sin 9]

T '1‘ w
._—7% = _Lnﬁ_E__}::- cos™x sin/9\ [cos \ 8in O cos a-]
e mag. -
- cos/)ticoslg\[cos a {(cos \ cos 9 cos ar;i- sin A\ sin a)
- 8in a (- cos \ cos 0 sin a + sin \ cos a)}
2 2
(a%'+<aﬁ)
PAY
o Rmag. 99 /] 8@ 2
o) ~
BN 1 29 1
(aﬁ) (aﬁ)
~ ~
oA 2 9 0. 2




VR -2
Rmag. I\ 1 a% 2

)
R T _
(aib ) ( ) ﬁ')
X ”~ e
ox I RO
( a’ﬁ') ( 5D )
~ ry
oX |, 80 1,
3D 9D ‘m TE“E
where — = = =
i I N 0 A mag.
83D _ 8D *m 'E%E
86 09 Rma.g.
RESULTS

The following conditions were used to evaluate the results.

Station Location

\ ='+33 , 0.= =45
(4]

N

1]

+

w

[eV)
-

Nominal Conditions on Lunar Surface

N = 0°
? = -30°

QOther Constants

op = 1.29116 x 107> rad/sec.
In = 6.378 % 106~meters
r = 1.738 x 106 meters:

R = 385x 106 meters



The results consistent with the above parameters and 3 hours

of smoothing at each mean-station location are tabulated below:

6 ‘ ,

rm— o-/x = ‘2. 804 % 10 ch = 4.1 km
r oa= 1.1395% 108 o 1. 64 km
m e .

D =

.



APOLLO NOTE NO. 66 C. H. Dale
S 20 May 1963
LLV LANDING ON A TILTED OR MOUNTAINOUS
LUNAR SURFACE

In Apollo Note No. 58 the assumption of a flat-surfaced moon
led to the sufficient requi‘rements of a T.V., platform, and broad-
beamed doppler altimeter.It is pointed out in this note that an unknown
tilted surface presents the same guidance problem as an error in the
platform alignment. The possibility of correcting this problem with a
- slant range radar is shown to be dependent upon the angular disérimination

of the range returns.

Given an LEM (or LLYV) in the terminal portion of the descent,

the following parameters would be measured:

1. With the doppler altimeter the range and range-rate

. to the lunar surface may be measured (y and ’y).

2. With the platform the direction of the supposedly known
normal to the lunar surface may be measured. y and

¥ are assumed to be along this direction.

3. With the T. V., the angle, o-, between the lunar surface
and the line-of-sight may be measured (with the help
“of the platform). o~ may also be measured with the
help of a drift meter or T. V. link.

With an unknown slope, «, in the lunar surface, the following

figure pictures the situation.

LV o/"\

M@;su\:eé R = 5/5“’\5‘

3 __90-0"
{,\f’ov’v\ . .
do() P\Q_Y’
Atimetor —
\__swegpeds {
l B /,;\_i’—‘&ﬁ’;a\ o f o~
7 astuwed  \uwav sur{nce P
) '!.a\rc:sa’t ~
rm plwk covwn @ stabliched wovuwl Vine-of-5'g e
4

' to the 2esumed  \uwxw swefnle



From the law of sines:

. CcOos o~
sin o~ AR

—-—

sin [180 - (ot a)] sin @

which may be solved for-the error in range, AR, caused by an error,

a, in the assumed slope of the lunar surface.

AR _ sinacos o
] =

sin (o + @)

This is plotted below:

AR
R

(nom:nzz I)‘

|
|

Since the acceleration along R is proportional to the measured range,
then a one degree error, @, will cause a 7% error in acceleration.
From Apollo Note No. 58, it can be seen that the effect of o is
identical to an equiva.leht error in o: Thus, the plane of the lunar
surface near the landing site should be known to within about one-half
of one degree. It would thus appear that the system using an altimeter
to determine R is practical only under the assumption of a well surveyed
and flat landing site. Mountainous landing sites would overtax such a
system.

A possible fix may consist of returning to the earlier concept

of a monopulse, gimbaled, slant-range radar. With such a device



range could be measured extremely accurately with a beacon. If the
radar and T. V. are colinear (and possibly welded together on the same
gimbals) there exists the possibility that R can be measured to wherever
the T. V. is pointing. With poorly controlled target characteristics,

it is difficult to estimate the angular resolution capability of such a
radar.  In order to offer any improvement over the doppler altimeter,
the angular resolution of the slant~range radar must be better than one-
half of one degree. (From Equation (18) of Apollo Note No. 58).

= =coto Ao

which equals about 7% per degree of error in o-for a 14 degree flight
path. It is understood that the presently conceived monopulse radar
will have a 4 degree beam. Phased monopulse hopefully will be able

to achieve better than one-half of one degree resolution.



APOLLO NOTE NO. 67 H. Engel/J. Holdsworth
22 May 1963

CALCULATION OF COVARIANCE MATRICES, I

In this note, one means for determining the covariance matrix
‘reierred to in Apollo Note No. 43 is explored for orbits in the lunar

- sphere of influence.

It is assumed that the observations of Doppler velocity are
measured in a fixed direction — which is contrary to the actual situation.
This assumption, however, permits a simpler formulation of the problem,
although it permits the computation of only five orbit parameters. The
sixth parameter, orientation of the orbit plane about the line-of-sight,

can not be determined in this case.

The distance from the Moon to 'thve vehicle is T,

A (D)

1+ecos (-0
( p)

r =

in which all parameters are referred to the Moon, - Qp is the initial

angle from perilune, @ is zero initially and increases as time increases.

The Doppler ve.locity measured at the DSIF assuming a non-

rotating Earth at infinity is given by:

R .=[i‘ cos (9-9p+¢)-ré sin(Q-QP-i-qJ)] cos B

in which ¢ and B are defined as in Apollo Note No. 62. Then,

T —e\/—‘;‘——E—:— sin (6 - 68_)
e -1 p

4E® (e® -1)° 72

: i
m 4 A5 [1+ecos(Q-QP)J

O
]

and the eccentric anomaly € for an elliptical orbit is given by



1 A
(l-ez) 2 sin (8 - Qp")
l+ecos(8~-9)

P

sin &

i

and
e + cos (0 - Qp)

COS&:. -
1+ecos(9-9p)

For the elliptic orbits, then, the time from perilune is:

oV () [E-eame]

For hyperbolic orbits, the corrésponding quantity F is given

P 1
’(ez-l) 2 in o - 0)
1+ecos(9-9p)

sinh F =

‘ e+ cos (6 -0)
cosh F 12

1+ ecos (B -6
LS

and the time from perilune is:

¢ =‘\/-ﬁ—(-2—%—}3 [e sinhF-F].

In this analysis the parameters selected for the covariance

matrix were B, ¢, 0 _, E, e and b, where b is an unknown constant

Doppler bias. (Notepthat‘ according to JPL, as reported in Apollo
Note No. 17, no significant Doppler bias has been detected). This
has proved not to be a very good set of parameters since for small
eccentricities the uncertainties in both QP and & are large, although
these uncertainties are highly correlated and future position can be
well determined. The high correlation of Qp and Y makes the matrix

[

to be inverted nearly singular and results in computation difficulties.



Also, for B close to zero, since B enters R only as cos 8, the variance
in the estimate of § becomes very large. Nonetheless, the procedure

followed was this:.

Evalute the necessary partial derivatives:

-g—-—%—: —[i‘cos(g.-gp-!-q;')~'erin(0-9p+¢)} sin B
§—i}-= - cos B |rsin{0-6_+y )-ré cos‘(Q-G )
oy P P 7
gg -= - e 2k cos (O —Q }
P e -1 P
. 2Er 8 e sin (0 - 0_)
5 (rd) _ T e sin Ay
90 - 2
P p (e -1)
oR . , ) a T
50" cosﬁLr51n(9 Gp+q)+cos(9 9p+4:)80
P L p
+rb_cos (6 -8 +¢)’~Sin(9-9 +4¢ ) 8(r0)
P P CIC
: . P
8 R _ T . rd
-a——]—:j = COSﬁ [COS (G "Qﬁ’*'q.i) —Z—E—:—- - Sin (Q - 9P+LP) -—E—}
5 R i v ]
= = cosPB |cos (0 -0 A4Y) ———s +sin(0-0_+¢) -
g e [ P e(l-ez) P ZErZ_J



Then, the elements of the covariance matrix are determined

as sums over N observation instants equally spaced in time.

N . 2
3 R (k)
_ 1 b
<= W) ( 56 )
' k=1
N 2
c _ "'LZ 3 R_(k)
22 T R EXV
k=1
N
c o z aR_ (k)2
33 T TN 50
k=1 P
) g (aR (k) 12
Ces = 2, \ToE
k:—fl
. %\{ dR_ (k) |2
C = e ‘
55 N L( Be )
k=1
Cee = 1
c - e - 1 S"‘ _,aRp(k) aRp(k)
12 % Y217 N EIR 5
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and, in general,

o R_(k 3 R_(k
. _ 1 P(), - p()
ij N .aai aaj

. . ‘ . .~th
in which a; and aj are the i- and parameters.

After the matrix Ci' is evaluated, its inverse is found,

.and each element value divided by N to obtain the matrix

! > 4. in which 8-y is the standard deviation in the Doppler
measurements,

The program is presently being debugged. Results will be

presented in another Apollo Note.



APOLLO NOTE NO. 68 H. Engel -
~ 22 May 1963

TRACKING ERROR CALCULATION

- The standard deviation in the dive angle at re-entry has been
calculated as a function of fhe‘ standard deviation of the Doppler velocity
measurements and of the conditions of observation within the Earth's
sphere of influence. The DSIF was assumed to be at the center of the

Earth., The results are indicated in Figure 1.

Given the re-entry radius R, the desired final dive angle 6f

and the orbit energy, the angular momentum is found to be:

_ 2.
H = Rfcoséf ‘R'f jx—ZE

Then, letting

b =—Z—-%-
H

and
2E

c = —=
H
the tangent of the dive angle at any point is found to be: "

tand = -1+ bR + cR2

Followiﬁg the notation of Apollo Note No. 5,

- _ & . _H
x = R_- =3 tan &
ap = &

and
a = E.
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Then,

of _ a R _ Htand
9a; 9%  pians

and 2
of 5R R . (Rpcosdy)
9a, 9k H tan H R tan 6

Now, the Doppler measurements are made at equal intervals

- of fime, but in this analysis they were assumed to be made at equal

intervals of R. As long as R does not vary greatly over the interval

of the measurements, the only effect of this approach is to change

slightly the value of standard deviation in final dive angle obtained.

Replacing the summations by integrals, assuming a large number of

measurements,
R
. 2 .
‘ 1 of
C, = s——s— dR
1 RZ_-Rl f { 8a )
™~ ARl
. Rz :
) H tan Sf dR
RZ- Rl Rtan &
1
R,
1 9 f
C, = ( ) dR
2 RZ- Rl aaz
Ry
-1 Ry (R, cos 8,) -1
_ H RdR f S f
RZ- Rl_ tand ‘ R»2 - R1



2
1 af \¢
C = e dR
1T KR | (aal}
1
R,
N H™ tan Sf dR
R~ R,y R® tan &
R,
. RZ 2 RZ
c ce - tan 6f aRr. i Rfcos 5{) ta.n5f, dR
12 21 RZ- Rl tan & RZ - Rl. RZ tan§
R, 1
R, o , R
. - H-Z RZ dR 2H _(Rf cos 6f) dR.
- T22 RZ - Rl tan-6 R.2 - Rl tan &
1 Ry
-2 4 RZ
. H (Rf cos 6£) aR
Ry, =Ry R? tan &
Ry
where
drR -] bR-2
R tan & - R E——
R,.\/b2 +4c¢c |
: —
RdR. _ _tand | _ b dR
tan o - c 5 ‘72¢ tan &



2

™
I

f dR _ __% log .tanzé . _R;__ . (g
R” tan & R ¢

, dR
+C}f tan &

j dR _ 1 2c¢R+b-Vb%+4c
tan o - . A/
Vb2+4c ‘ 2cR+b+ (R

2 X 2, .
R' dR‘ ..5.._ - b logtan5 + _b___‘t__z_i
tan & c 2 2
Zc ) 2¢c
Let .
D = C.,C,,-C2 +2¢C, C,C.,-C%¢c, -c2
11 ~22 ~1 Y2 Y12 1 22 2

The number of measurements N is given by:

NAR =R

2 - Ry

Letting o n be the variation of Doppler,measurements,

| 2
o2 . R C2m%
5, N D
2
_ AR Ca2 "% 2
= R,-K; ) R

dr
“tan &

Finding D required double precision operations on an IBM 7090.



APOLLO NOTE NO. 69 H. Epstein
29 May 1963

AN APPROXIMATE TECHNIQUE TO ARRIVE AT THE DSIF
SMOOTHING ACCURACY FOR CIRCULAR OR NEARLY
CIRCULAR ORBITS--DISCUSSION
OF NUMERICAL RESULTS

This note discusses the numerical results which have been
obtained to date on the DSIF smoothing accuracy for circular orbits
about the Moon. The following basic assumptions were made in the

analysis performed. The analysis itself will be the subject oi a future
Apollo Note.

1. The moon is considered as a stationary poiht mass with its

mass precisely known.

2. The earth is at an infinite distance from the center of the
moon-~the zero parallax condition. This includes the premise
that the DSIF radar is considered as being located at the

center of the earth.

3. The effect of bo&ies other than the moon on the lunar orbit

are negligible. A restricted two-body solution is employed.

4. The DSIF radar has no bias error in its range rate measure-
ment. The (1 o) accuracy of the DSIF is .015 meters per

second for a one-minute sample.

5. Low eccentricity elliptical orbits are taken as r2presented
by a circular orbit with the same period. The orbital period
(7570 seconds) assumed corresponds to a 100 nautical mile

altitude circular orbit.
6. Linear analysis is adequate.

7. An equatorial orbit is assumed with the angle between the
axis of the earth-moon orbit and the axis of the moon taken

as 6.5°.



8. The error in DSIF station location is néglfgible.

9. The sixth orbital parameter is determined by some other
means (such as .optical data or a priori knowledge of initial

injection conditions).

The numerical results are most directly applicable for three
situations dﬁring cruise portions of the orbit: one, the long term pre- |
diction accuracy problem'f&r the CM; two, the comparatively short
time prediction accuracy required for the LEM during synchronous
descent (nohﬁnally 1/4 of an orbit period); and, three, the prediction
accuracy of the LEM in its ascent to rendezvous. In each of these
situations the nominal orbit is characterized by either a small eccen-
tricity (LEM) or zero eccentricity (CM). The numerical results con-:
. tained within this note are based on the exact results for a circular

orbit.,

General Analytical Approach

The approach taken to arrive at the smoothing errors is similar
to the approach outlined in Apollo Note No. 31. However, since the
situations of interest include prediction and smoothing over long periods
of time, the power series for time is abandoned for a power series in
terms of eccentricity to arri\}e at the exact analytical results for a
circular orbit., The details of the analysis are quite lengthy and will
be accordingly omitted from this note--only numerical results and
approach will be given. The set of orbital parameters employed is
essentially components of initial position (T{;) and initial véiocity

(—V:) as indicated below.

Type of orbital parameters employe&:

1. Ro

2. Vv,

3, 1. - 1
RO VO

4. 1y - 1g



5.

where

o

o<‘ .

)

1. - I
D v,
ID . (IR x 1V )
(o] o
= R_ I
o
(o)
= V l.f
o "V,
= —g— (is the direction along the line between the

earth and the moon).

The analysis was performed along the following general lines.

The error coefficients in predicted position and velocity was obtained

in an earth-based co-ordinate system. These errors were then trans-

formed to an orbit plane co-ordinate system as indicated below.

Figﬁre 1. Orbit Plane Co-ordinate System.



For a circular orbit 1—; = 1: and 1::, =1. Itis worthwhile
to recall that future position anc;l future veloc?ty .can be related to present
position and present velocity with the aid of scalar time varying functions
(see Apollo Note No. 31, Equations (4) and (5)). The scalar functions and
required partials were then derived for a low eccentricity orbit. The
re'lationship_s for a circular orbit can then readily be obtained by taking
the limiting form of these éxpressions for a circular orbit. The zero
parallax doppler data then makes it possible to arrive at estimates for
the first five parameters indicated in the list of orbital parameters.
Then, finally, these parameter estimates can be employed to arrive
at the required accuracy in future position and velocity.

To gain a greatex; insight into the nature of the accuracy obtain-
able as a function of smoothing interval and prédiction interval (and
other parameters of interest), it is desirable to treat two special
situations that enable reasonably simple analytical expressions to be
obtéined. For the first situation, the unit vector from the earth to
the center of the_moén (15) is normal to the direction of the initial
velocity vector and will be known as Case I. The second situation
occurs when 1-5 is normal to the direction of the initial position
vector. The further selection of the center of the smoothing interval
as the time origin (at no loss in generality) makes an additional
simplification. The final simplification resﬁlts from the assumption
that an adequate number of samples are taken so that the summations
involved may be represented by integrals. It is expected that this
ané.lysis will indicate critical orientation situations from an' accuracy
standpoint. The form of the error in future position and velocity com-

ponents (for‘the DSIF errors) is then given as:

. c—’ ’ .
R T _5:’\/__'1‘11—_ Fl (8, ¥, Yo Ts’wo tp) m
and .
o = < F (bY,0 Tiw t) ()
2 ] ;- o Sawo P

Yom



where:

R = a.ppvr0p1"iate future position error éomponent (x,y, or z)
o = appropriate future velécity error component (x,y, or z)
w, = average angular frequency (radians per secgﬁd)

Ts = ‘smooth.ix'lg interval (seconds)

t .= prediction time from the center of the smoothing

P interval (seconds)

on;s = orbit angle smoothing intérval (radians)
wotp = orbit angle prediction interval (’ra.dians)'

b, b= anglés as defined in Figure 1

m = numbers of samples per orbital period taken

Fl’ FZ = appropriate functions of parameters indicated
These equations clearly indicate the scaling laws for prediction

a;ccuracy as a function Of\/_%{—' The largest permissible value of m

is determined by the ratio of the orbital period to the correlation

time of the doppler noise. Present estimates by JPL of the doppler

noise correlation time is about one minute. This leads to a value

of m of about 126 for a 100 n.mi. altitude circular orbit. A present

conservative estimate of one minute smoothed range rate accuracy

(1 o) of the DSIF is about ,015 meters per second.

A plausibility analysis for the nature of the error is indicated

below:

R = fR’+gVo=fRolRo+gVo 1VO (3)



—

v iR +gV =iR 1, +gV i (4)

L]

For a circular orbit with the co-ordinate system of Figure 1.

AR = (AR- 1) I+ (AR'ly) 1y t{BR- 1) T (5)
AV = AV 1) (6)

The out~of-plane errors are given by:

.A_-ﬁ"r; ———T m— —— —p
" = (A lR . lx) COs w ot+ (AlV . lx) s1nw°t (7)
o o o
v . o |
T =-( A lRo- lx) sinw t+ (Alvo- lx) cosw t (8)

These equations indicate that the out-of—plane errors are a

periodic function of time (a pure sinusoid for circular orbits) and that

the position and velocity errors are in time quadrature. (When the

position error is a maximum in magnitude the velocity error is a

minimum and the converse also holding true). In addition, the per-

centage accuracy of the maximum errors in position and velocity are

the same.

The in-plane error can be written as:

P

R:1 AV .
_____R__._lf__'._: w,dgt .Vo sinwot+(ﬂR'l)cbswot
o , o o Y
(N
+ (AIVO' 1y) sin ‘f’not
AR- T AR -
Ro = Af +.. Ro cos w°t+ (A Ro. lz)_cos “’ét .
(10)

+ (AIVO lz)vsm wt



AV - 1 . AVO , o .
-——-————XV = Ag+—-v—~ coswo.t-(AlR'ly)szmmOt
o o (o)
(11)
+ (AT, = T7) cos ot
( Vo Y) wO
NI : AR
z_ Af o . — —, .
= - sinw t-{Al, "1 )sinw ¢t
Vo “_)o Ro o Ro y o
(12)
+ ET - T jcos w _t
( vo Y) (&) o

All of the terms involved in Equations 9, 10, 11, and 12 are
purely sinusoidal with the exception of the ¢rrors associated with
Af, Ag, A%, and Ag. Even though it is not proved in this note, these
last four quantities contain factors which can increase linearly with
time in addition to the purely sinusoidal components. Actually for the
co-ordinate system employed the linearly increasing terms are modified
by sinusoidal functions. These later errors can be directly associated
with errors in the period or average angular frequency of the orbit.
Where these errors are dominant, the position and velocity errors
are consistent with a viewpoint of time uncertainty. This results in
essentially an azimuthal error in position and a range rate (referred
to center of the moon) error in velocity. Furthermore, Af and Ag
errors will be essentially in phase and Af and Ag will be essential in
phase with each other and in quadrature with Af and Ag. This means
that when this .type error is dominant, ‘where ARY and A VZ are maximum,
that ARZ and AVY will be minimwm and the converse will again hold. On
the other hand, when timing errors are relatively unimportant, the

y and z .cor‘nponents of position or velocity errors will tend to be important



‘together and the position and velocity errors will be essentially in
quadrature.

One last general comment is required per’taining to the
asymptotic solution for large brbital'periodé of smoothing. The r.m.s.
smoothing accuracy contains terms which vary inversely with the square
root of time and time to the three halves ("%) power. The -—;:—power- can
be associated with errors in orbital period. This result is quite similar
Cin nature to the smoothing results for a straight line. Preliminary calcu-
lations indicate that for smoothing periods greater than about one or two
orbital periods this approximation yields good numerical accuracy. This
will be further discussed in the following section.

Some preliminary estimates for very short smoothing interval
indicate that the covariance matrix will contain terms which will vary
inversely with the —-1—21— power of the smoothing interval for a five parameter
set of orbit parameters. This can be considered as the fifth power arising
from five parameter and the —%—-— power associated with the number of -
smoothing sampleés available. The numerical values for the covariance
matrixes calculation will be included as an Appendix to this note at a

later date to facilitate computation of other derived quantities as required.

Discussion of Numerical Results

Tables 1 through 6 indicate the numerical values obtained to
this point. The (a) portion pertains to numerical results for the initial
velocity pérpendicular. to the Earth-Moon line (Case I), and the (b)
portion to the results for the initiAal position perpendicular t_dthe Earth-
Moon line (Case II). The last column of Tables 1 through 4 (optical error)
indicates the ephemeris error associated with an optical (or a priori)
error of 100 meters (1 o) in the determination of the sixth orbital
parameter. In Tables 5 and 6, the optical (or apriori) error is indicated
by a bracketed quantity to facilitate comparison of the requirements for
this error source. In general, if a criterion were established that per-
centage errors in future range and future velocity were equally important
then the results for Case II are more favorable or about the séme as
those for Case I. For smoothing intervals greater than about one

orbital period, no pronounced differences occur (see Tables 3 and 4).



The numerical values of accuracy obtained are good to the point that
DSIF station location errors (about 100 meters) and other approximations
would need to be taken into account to arrive at the precise value of
accuracy obtainable. Tables 1 and 2 and most particularly Tables 5 and
6 indicate the marked decrease in accuracy as shorter smoothing times
are employed. The difference in accuracy for predominate error terms
between 1/4 orbit period and 1 orbit period smoothing is about a factor
of 1000. This demonstrates the severe penalty associated with the de-
termination of many orbital parameters where only short smoothing
intervals are available. For ex'ample,ATable 5 (a) indicates an out-
of-plane position error of about 30, 000 meters for 1/4 orbit period
smoothing and zero prediction time (from the center of the smoothing
kiAnterval) while Table 3 indicates a corresponding value of about 20 meters
for 1 orbit period smoothing. Similar comparisons can be made with
other error terms.

An examihatiqn of the errors even at zero prediction time,in-
plane errors indicate that the errors are probably most sensitive to
the accuracy of determination of orbital period, which is somewhat
surpﬁsing. The indicator is taken in terms of the quadrature relation-
éhip between the in-plane components. Recalling that for a circular
orbit, the determination of the orbital period for a known and constant
mass détermines the energy, radius, and speed parameters of the
orbit. It, therefore, must cautiously be stated that the orbital period
or an equivalent quantity is bprobably thé single most important contributor
to errors for circular or near circular orbits. A much stronger dependence
is noted for long prediction time. »

It further appears that as more exact solutions are found, the
necessity for a priori or additional sources for parameter information
will be required to achieve high accuracy in time intervals sub-
stantially less than 1/4 of an orbital period. Additional sources could
involve optical data from the spacecraft or range data from the DSIF.
The situation wherein range as ell as range rate data is available
has not been analyzed to the point. If it is required that the DSIF

-compute six orbital parameters without a priori information or



additional information sources and that the correlation time of the
primary noise source of the DSIF is one minute, it would take a
minimum of about six minutes to obtain six independent measurements

to establish the six parameters.

CONCLUSIONS
1. Very accurate data. pertaining to the CM ephemeris can be made
available from the DSIF for all times after the CM has completed a few’

orbits about the moon during its cruise portion about the moon.

2. It is to be expected that for available smoothing periods of
about 10 minutes or less, it will be necessary to make use of apriori
information or additional sources of information to arrive at suitable
ephemeris accuracy. A possible additional source.could be in the form
of position data from the DSIF in addition to the range rate data as well
as the use of several DSIF stations. Optical or other data from the
spacecraft could also be employed. An example of the use of apriori
information can be given for the LEM on descent. The location of the
LEM prior to the boost into synchronous orbit is known by the CM
ephemeris. K;lowlédge of the boost to be performed might be expected
to yield adequate estimates for at least some of the initial conditions.

A somewhat analogous situation occurs for the LEM ascent to rendezvous.

3. For the zero parallax situation, no information on out-of-plane
errors can be made when the vector from earth-to-center of moon, the
initial position vector, and the initial velocity error are co-planar by
linear analysis technique's. Parallax is then required to estimate the
out-of-plane error by the DSIF alone. The maximum degree of parallax
is abaut 1/2 of a degree from the earth. This would increase the out-
of-plane error by about orne order of magnitude from the calculated
values. The satellite reléy technique may also be profitably employed

to assist in the determination of the orbital parameter.

4. The requirement that the LEM be visible during its descent

to the lunar surface insures that the pessimistic results of Case I

10



(initial velocity perpendicular to the earth-moon line) for short smooth-
ing times will not be a situation of interest. A modest decrease in the
Case II performance seems more rational, ' A somewhat similar situation

occurs during the LEM ascent to rendezvous.

5. The results for a circular orbit may be considered as a con-
servative,if not pessimistic result, when extended to the LEM ephemeris

accuracy with its nominal éccentricity of almost . 1.

11



Table 1. Prediction Accuracy Based on 1/4 Orbit Period of Observation.
Epf'igl:ted __ Prediction Interval (Orbit Periods) Optical
Component 0 l 1 | 2 5 10 Error
o (meters) 28,900 28,900 28,900 | 28,900 28,900 (0)

b4
o (meters) 0 34,500 69,000 . |172,500 345,000 (11.32)

Y : ' . g
oy (meters) | 1,630 1,630 1,630 1,630 1,630 (0)

. e
o, (m/sec.) | ,0506 . 0506 . 0506 . 0506 . 0506 (.08247)

o .
o, (m/sec.) | .1705 . 1705 .. 1705 . 1705 . 1705 (0)
Yy '
o, (m/sec.) 0 28.67 57.33 -143.3 286.7 (. 00940)
z (1) :
o, (m/sec.) 1.,00381 .00381 © {.00381 . 00381 . 00381
z(II) : ‘
§
() Initial Velocity Perpendicular to Earth-Moon Line
g;igi:ted Prediction Interval (Orbit Periods) Optical
Component 0 1 2 § 5 10 Error
oy (meters) | 2,114 2.114 2.114 ! 2.114 2.114 (99.36)

b4 .

U—R (meters) 0 2,664 5,328 g 13, 320 26,640 (11.32)
i ,

y{1) ! . g

o7, (meters) 18. 56 18. 56 18.56 | 18.56- 18,56
R T
y(1I) - i
o (meters) | 42.1 42.1 42.1 | 42.1 42.1 (0)
z
o, (m/sec.) | 1.297 1.297 1.297 ¢ 1.297 1. 297 (0)
X

o, (m/sec.) | .1509 .1509 {1509 | .1509 . 1509 (0)
Y g ; ’

o (m/sec.) 0 2,211 -§ 4.422 : 11.06 22.11

V - - kS
z{I) i
: ] :

o, (m/sec.) i .055 . 0554 i .0554 | .0554 . 0554 (.0094)

z{II) i

i

(b)

Initial Position Perpendicular to Earth-Moon Line
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Table 2. Prediction Accuracy Based on 1/2 Orbit Period of Observation.

z(13)

|

|
:

|

H

Predicted Prediction Interval (Orbit Periods) :
Error . Optical
Component 0 1 2 5 10 Error
o (meters) 396 396 396 396 396 (0)
p 4
- o (meters) 0 694. 3 1389 - 3472 6943 (11.32)
v ‘ A .
o-Rz(meters) 1 18.8 , 18.8 18.8 18. 8 18.8 (0)
o7, (m/sec.) | .04735 . 04735 | .04735 . 04735 .04735 | (.0825)
X ] i
o, (m/sec.) | .01655 .01655 . 01655 .01655 .01655 (0)
Y .
o, (m/sec.) 0 .5765 1. 153 2.883 5. 765 (. 0094)
z(1) : .
o;, (m/sec.} | .00297 . 00297 . 00297 . 00297 . 00297
z(II)
(a) Initial Velocity Perpendiéular to Earth-Moon Line
?;iiif"ed Prediction Interval (Orbit Periods) Optical
Component 0 1 2 5 10 Error
oy (meters) | 873 .873 . 873 . 873 . 873 (99. 36)
X
oy (meters) 0 100. 4 1200.8 502 1004 (11.32)
A%
o3, (meters) 7.66 7.66 7.66 : 7.66 7.66 (0)
R _ :
y(II) : , ’
oy (meters) | 8.10 8.10 8.10 , 8.10 . 8.10
Z ’ : : i ‘
! i
o, (m/sec.) |.0792 .0792 . 0792 .0792 . 0792 (0)
X .
o, (m/sec.) 101087 .01087 .01087 | .01087 .01087 (0)
v :
o, (m/sec.) 0 . 0833 . 167 .417 . 833 (. 0094)
z(I) i :
o, (m/sec.) .01118 .01118 101118 | .01118 .01118

(b) Initial Position Perpendicular.to Earth-Moon Line




z(1I)

|

i
i

Table 3. Prediction Accuracy Based on Orbit Period of Observation.
g;i‘g;‘:ted Prediction Interval (Orbit Periods) Optical
Component 0 1 2 5 10 Error
R (meters) | 17.5 17.5 17.5 17.5 17.5 (0)

X
o (meters) 0 8. 88 17.76 44.4 88.8 (11.32)
B Y . » i .
R (meters) | 1.76 1. 76 1. 76 1.76 1.76 (0)
z L) . . -
o, (m/sec.) |.0374 .0374 .0374 .0374 .0374 (. 0825).
Vo ' .
o, (m/sec.) |.0017 .0017 .0017 .0017 . 0017 (0)
Y 1
o, (m/sec.j i o 00735 .0147 . 0368 .0735 (.0094)
z(1) : ' ’
o- (m/sec.) 1,0019 .0019 .0019 .0019 .0019
v . R
z(II)
(a) Initial Velocity Perpendicular to Earth-Moon Line
Predicted Prediction Interval (Orbit Periods) Optical -
Component 0 1 | 2 5 10 Error
oy (meters) . 576 .576 .576 .576 576 (99. 36)
X
O”R (meters) 0 9.94 .19, 88 49,70 99.4 (11.32)
y(I) _
R (meters) 5.06 5.06 5.06 5.06 5.06 (0)
y(I) - ‘
°R (meters) 2.29 2,29 2.29 2.29 2.29
.
o, (m/sec.) | .0193 .0193 .0193 .0193 .0193 (0)
X i
o, (m/sec.) |-00195 .00195 .00195 | .00195 . 00195 . (0)
Yy . § 4
o, (m/sec.) ; O . 00825 .01650 g . 04125 . 0825 (. 0094)
“z(I) : : :
oo » |
o, (m/sec.) . 00596 . 00596 ;1. 00596 ! .00596 . 00596

(b) Initial Position Perpendicular to Earth~-Moon Line
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Table 4. Prediction Accuracy Based on 2 Orbit Periods of Observation,

Predicted

Prediction Interval (Orbit Periods)

Error gptical
Component 0 1 2 5 10 rror
o (meters) | 14.3 14, 3 14. 3 14.3 14.3 (0)
- .
op (meters) 0 2.96 5.92 " 14.8 29.6 (11.32)
Yy . : :
‘o (meters) | 1,89 .1.89 1. 89 1.89 1.89 (0)
Z : ’
o, (m/sec.) | ,0264 . 0264 .0264 . 0264 . 0264 (.0825)
P, ' : "
&v (m/sec.) | .0015 .0015 .0015 .0015 L0015 0
Y
v, (m/sec.) 0 . 00248 . 00496 .0124 . 0248 (. 0094)
S z(1) .
| o (m/sec.) ! 0014 .0014 .0014 .0014 .0014
v -
z(II)
(2)  Initial Velocity Perpendicular to Earth-Moon Line
h g;igirded - Prediction Interval (Orbit Periods) Opiical
Component 0 1 2 5 10 Error
°R (meters) .407 .407 .407 . 407 - . 407 (99. 36)
o3 (meters) 0 2.876 - 5.751 14.38 28. 76 (11.32)
(1) .
on (meters) | 3,575 3.575 3.575 3.575 3.575 (0)
y(II) - ;
o (meters) 1.697 ‘1,697 1.697 . 1.697 1.697
z :
o (m/sec.) |.01186 .01186 .01186 | .01186 .01186 (0)
V.
X .
o, (m/sec.) |.00137 .00137 .00137 . 00137 . 00137 (0)
y ¢
o: (m/sec.) | O .00239 .00477 | .01193 . 02387 (. 0094)
VZ(I) . B
o, (m/sec.) |.00421 . 00421 . 00421 . 00421 . 00421
z(1I) :

(b)  Initial Position Perpendicular to Earth-Moon Line




Table 5. Prediction Accuracy Based on 1/4 Orbit Period of Observation.

Z

Predicted Prediction Interval (Orbit Periods)
Error : .
Component: 0 .25 .5
R (meters) 28,900  (0)* 60.97  (99.4) 28,900 (0)
. .
oy, (meters) 0 (11.3) 3664  (0) 17,270 (11.3)
Y. , '
o (meters) [ 1,630  (0) 4570  (11.3) 5696 (0)
. _ . _ ,
o- (m/sec.)|.0506 (.0825) 23.99  (0) . 0506 {. 0825)
« _ "
o, (m/sec.)|.1705 (0) 5.480 (. 0094) 3. 207 0y
Y
o, (m/sec.)t 00381 (.0094) 1.521  (0) 14,33 (. 0094)
Z
(a) Initial Velocity Pérpendicular to Earth-Moon Line
Predicted Prediction Interval (Orbit Periods)
Error
Component 0 .25 .5
R (meters)| 2.11 . (99.4) 1563 (0) - 2.11 (99. 4)
< .
o (meters) | 18,56  (11.3) 287  (0) 1339 (11.3)
Y
’ °R (meters) | 42.1 (0) 121 (11. 3) 605 (0)
Z
X
o, (m/sec.}| .151  (0) .301  (.0094) .385 (0)
y a
o, (m/sec.)} . 0554 {» 0094) .0124 (0) 1.114 (. 0094)

#( ) indicates effect of optical error.

(b)

Initial Position Perpendicular to Earth-Moon Line
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Table 6. Prediction Accuracy Based on 1/2 Orbit Period of Observation,

Predicted Prediction Interval (Orbit Periods)
Error .
Component 0 .25 .5
R (meters) 396 (0)* 57.1 (99. 4) 396 (0)
p'Y s’
ok (meters) o (11.32) | .73.8 (0) 348 (11.32)
y . ;
oy (meters) | 18.8  (0) 63.3 (11.32) 130 (0)
z
oz (m/sec.)[r.0474  (.0825) .328. 0 .0474 (. 0825)
< g’
o, (m/sec.) | .0166 (0) . 0980 (. 0094) .0772 (0)
y o '
o;, (m/sec.)}.0030  (.0094) | .0307 (0) .2884 (. 0094)
e
(a) Initial Velocity Perpendicular to Earth-Moon Line
Predicted Prediction Interval (Orbit. Periods)
Error _
Component 0 .25 .5
R (meters)| .873 (99. 4) 95.43 (0) .873 (99.4)
X
R (meters) 7.66 - (11.3) 13.39 (0) 59.6 (11.3)
Y
o (meters)| 8.10  (0) 23,4 (11.3) 28.8 (0)
Z : ’
o, (m/sec.)|.0792  {0) .000724 (. 0825) . 0792 {0)
« .
o7 (m/sec.)}.0109  (0) .01748 (. 0094) .0195 (0)
y ;
o, (m/sec.}|.0112: (.0094) . 00674 (0) . 0478 (. 0094)
<

%( ) indicates effect of optical error.

(b)

Initial Position Perpendicular to Earth-Moon Line




APPENDIX
COVARIANCE MATRIX

A by-product of the calculation of future position and velocity
errors is the covariance matrix for the derived parameters. This
matrix can be employed to arrive at the variance in other derived.

quantities,(i. e., periapsis distance, eccentricity, and energy).

Using the notation that:

b = Za.a, - (13)
. i 11 .
‘ai‘ = is the ith original derived parameter
@, = is the ith amplitude co-efficient
for unbiased estimators b = a; =0 and
0‘2 S P a « D..
T2 i 3 H
b = - (14)
n {Det)
where: -
D‘*’j = appropriate co-factor

(Det) = determinant of the original matrix

Aside from notation, this result is derived in Apollo Note No. 43
(see Equation (21)). Numerical values are listed below for smoothing
intervals of 1/4, 1/2, 1, and 2 orbital periods for two special conditions.
For the first situation the earth-to~-moon line is perpendicular to initial
velocity diréction (Table 7) and for the second situation the earth-to-
moon line is perpendicular to the initial position direction (Té.ble 8).
The five parameters that may be derived by the DSIF for the zero
parallax case imply a fifth order matrix. For these two special situations,
the fifth order matrix can be decomposed to a second and third order
matrix. The notation employed here will be consistent with the notation

to be employed in a future Apollc note dealing with the analysis performed.



An example of the use of these tables will be given below.

It can reédily be shown that:

. 1
- - Voo [ Dy, Dppy 2Dy, V2
E T Tcos & n (Det) = W .
b ol ’
R o [ D,,,D,,, 2D, |Y
o = o Di1+ Paz s 12 |12
H ~ cosd n (Det)
D 4D 4p,, 1Y
- = o 11+ T2+ T2 2
e V,cos s n (Det)
' | 1
- = o [ Dy ] /2
Rp ey gos ' n (Det)

For the earth-moon line perpendicular to the initial position

(15)

(16)

(17)

(18)

‘vector, a smoothing interval of 1/4 orbit, o~ = . 020 meters/sec., and

¢ = 0, then,

O'Rp ~ 56 meters

o, ~ 2.4 x 1074

This result can be compared in a later note to the approximate

approach taken in Apollo Note No. 60.
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APOLLO NOTE NO. 70 H. Dale
27 May 1963

THE LEM AS A RECOVERY VEHICLE

One of the questions within Task No. 2 of this contract is
concerned with the ability to align the LEM IMU, It is assumed
that the LEM is attached to the CM. A real possibility is that the
LLV is neither attached nor near the CM.

Consider a rescue mission requiring the landing of a second,
but unmanned, LEM. Since the total LEM life support period will
not exceed 48 hours, a rescue vehicle can not start from the earth,
travel the nominal 70-hour course, and be of much use. Since
lunar orbit missions will exist prior to the first lunar landing mis-
sion, it is conceivable that a slightly modified LEM might be stored
in lunar orbit to be used in the event of a rescue requirement,
Amongst the various special problems is that of IMU alignment. (or
its equivalent) in the special purpose' LEM. Along with this is the
problem of getting the rescuing LEM into a geometrically workable
position with respect to the CM and the downed LEM.

' Two reasonable techniques appear capable of getting the LEM
down safely to the moon. Both require a line-of-sight between the
rescuing LEM and the CM during the descent. The first consists

of using the IMU for the initial and mid-course descent phases, and
the T.V, link to the CM for the final descent phase. From Apollo
Note No. 42 it can be seen that IMU alignment on the order of a mil
~or so would be required. The second technique would replace the
highly accurately aligned IMU with a CM based radar. A one mil
radar would thus be used to get the LEM down to the position where
the T.V. link Vcoul_d take ovér. Un_fortur;atély, both systems use an
IMU. Apollo Note No. 58 shows that a platform, correct to about
one-half of one degree, is necessary for T.V. lock-on and altitude-

to~range conversion. Apollo Notes No. 14 and 27 present a good case



for the IMU during lunar descent. Thus the relevant questions are
how well can one align the distant IMU, and would it be better to
rely on radar_guidancé?

No answer appears possible to the first question without an
. automatic star tracker if one-mil accuracy is to be obtained. If
greater than about a‘degree error may be permitted, a lunar horizon
scamner and earth or sun disk tracker may be used. The presently
planned LEM utilizes manned star tracking with the stellar telescope
mounted rigidly to the IMU. It would thus seem that automatic star
tracking is a proper choice for such a vehicle. |

The kquéstion of using radar guidance can best be answered
after looking into the orbit phase problem. Since it would place
undue restrictions on the lunar landing mission to do otherwise,
one may assume that any particular phase relationship exists
between the orbiting LEM and the CM at the outset of a rescue
attempt. Since T.V. information will be used in the terminal land-
ing of the rescuing LLEM, the phase angle must be. small near touch-
down. Without expending fuel for orbital transfér, the only way in
which initial phase angles may be made to disappear is to have the
semi-major axis of the LLEM significantly different from that of the
CM. For various circular altitudes of the rescuing LEM and for a
100 n. mi. CM, the following chart is a plot of the time between
coincidences of the two vehicles.

Since little or no fuel penalty is paid for an increased LEM
orbit altitude, ’(Apollo Note No. 2), it would thus seem that a 400
mile LEM orbit would be suitable.

In the event of a required faster rescue, the control of the
rescuing LEM must come from a source other than the CM.
It is conceivable that the DSIF or the downed LEM might initiate the
rescuing descent. The final terminal descent and landing could then
not be controlled by the CM since a favorable line-of- sight might not
exist. If the reécuing LEM were equipped with a slant range radar

and the downed LEM's transponder were working, the final descent

>



might follow (Apollo Note No. 19).

"It would thus appear that a rescuing LEM mission is quite
possible. It would also appear that circular orbits, different in
radius from the CM's orbit, should be used. Good arguments can
be made for the addition of automatic star tracking equipment for
IMU alignment. The IMU is a reasonable equipmen;c choice even
in the event of radar guidance. And finally, a slant-range radar

(gimbaled or not) VWould be necessary for extremely quick rescue.

30
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APOLLO NOTE NO. 71 R. Roche
29 May 1963

SELECTION OF THE OPTIMUM
ABORT TRAJECTORY

SUMMARY
In this note the problem of how best to select an abort tra-

jectory is considered. A simplified model is used to explore the
merit of always choosing the minimum time return subject to the -
constraints imposed by the spacecraft status. The note is inconiplete
and suggests only a method of approach--it will be supplemented by

subsequent notes.

DEVELOPMENT ‘

When a change occurs in the status of the spacecraft which,
without compensatory action, increases the probability of damage to —
the crew to more than some maximum proscribed value, the decision
is made to abandon the normal mission -objectives. With the normal
mission objectives discarded, it becomes logical to choose as the
aborted mission objective the maximization of the probability of safe
return of the crew.

The problem now becomes one of choosing from the spectrum
of return trajectories which are available to the spaceci‘aft by virtue
of its current status, that which best accomplishes this objective.

The spacecraft status factors which directly influencé the

choice of return trajectory will include:

( Present Position
Present Velocity

Total Velocity Change Capability
a. with reconfiguration
b. without reconfiguration
Capabilities < On-Board Navigation Capability
' Ground Support Navigation Capability
Attitude and Thrust Control Capability
(Present and Projected)

Crew Action Capability

" Re-entry C‘apability (Structural Infegrity) .



" Crew Health

Problems External Environment, Present and Projected -
Life Support System Status

The return trajectories can be characterized by a number of

requirements and a number of attributes.

Namely:
. AV Required, Total _
Requirements Placement and Number of Control Actions Required
Precision of Control Actions Required
Time to Earth Surface Reconery
Time to Atmosphere
Attributes

Time in Van Allen Belt

Time in Solar View

There appears to be no firm reason to believe that the space-
craft status factors will be in general independent, i.e., that some
event of significant probability will not affect more than one of the

status factors.

Thus the general problem of matching capabilities to require~

ments in such fashion as to best solve the problems with the return
trajectory attributes is not one of trivial difficulty. Nor is it clear
without more complete formulation that we could recognize the best

trajectory selection if we made it.

What seems to be required is a standard rationale for accomplish~
ing this selection, if it is possible to establish one, and with this in mind,
we consider a much simpler model than the actual one in the hope of
gleaning some general pfinciple which may be applicable to and may -

simplify the real physical situation.

Consider a spacecraft as an aggregate of m capabilities which
are essential to the performance of the mission. Suppose further that
.some degree of redundancy is provided in each capability so that a

failure in one does not in general immediately reduce the capability

N



but merely reduces the probability that the capability will be retained
over some arbitrary period of time At. ‘ ‘
We will further suppose that the probability of the crew's safe
return is given by some function of the probabilities associated with
retention of all the capabilities over the mission duration. Specifically

we choose the simple relation:

P = (1-P.)+(l~P_ )...(1-P. )
8 IE‘1 FZ F
where P is the probability of complete loss of the ith capability.

Fi

Thus, Ps is unity if all P__-'s are zero and goes to zero if any capa~

F
i

bility is completely lost.
For further simplicity we will assume. that the individual capa-

bilities have been designed to have the same P 's so that:

F
P, = (1-p )"

s F

We digress a moment to consider the PF's. If each element of
the redundant set which make up a given capability is an aggregate of
many sub-elements which have a mean time between failures of te
independent of the time t, then the probability of r of these sub-elements

failing in an interval t is:

- ('r)r - : _ ot
Pr(t)'-_—'—r. e ;T = —--tf

so that the probability of no failures in the interval is:
P:) (ty=e" "
and thus the probability of at least one failure is:

. --T
PF- l1-e

However by virtue of the redundancy, the probability of com~
pletely losing the ith capability is:
- n

Pr.= Prh=(1-¢e""
1



Thus using this expression for PF the probability of a safe return will
be:
m
. wep n
P, =(1-(1-¢") )

After some arithmetic:

A Ps

_ (1 - e'-"')n Te At
P Tman -T\n -T t
8 1- (1-e ) l1-e
n
® - mn T T{(1l-7) At
n t
1 -7 T
AP L T (1-7) At
P - m n. t
8. 1 -7

Gives the fractional change in safe return probability with fractional

changes in time-to-go.

If one element in a redundant set fails at time t' the new proba-
bility, P_, will be:

_ _ m-1 . } T n-1
('1 ) {1 " ) }
so that

~aP,_ = (1-P)™ - ( 1-p )™ {1 - (1-e"T) n'l}

~rn-1"
= (1-P )m. {1 - 1 -‘(l-e ) }
P | I- (1-e"T)"

ors:



APS _ 1 1-.(1-e—T)
P . _ n
s Jn 1 - (1-e¢°7)
¥ 1. 1~'rn-1
1 '-.Tn
n-1 n
- T -
1 --'r'n
A'Ps - :rn . (T-l _ 1) = o 1 -7
ps 1-':-n 1 -Tn T

Thus the failure of a critical system element can be compensated for

by a reduction in time-to-go provided that:

n _ . n
n T t
l-7 : l-7
or:
At . 1 i
t ~ mn-T ’

where, reasonably, m n v 1.

This rather simple and incomplete analysis tends to indicate
that in choosing va.bort return trajectories time may be of the essence
becéuse of its over-all effect on the probability of safe return as affected
by time rate of change of component failure probébilities. |

This suggests that a possible rationale for.optima.l course
selection may be one of minimizing the time-to-go, subject to the extreme
value constraints imposed by the status factors such as A Vmax' time
in radiation zones, and maneuvering capability, etc. A method for
treating problems of this class has been developed by Pontryagin and
his colleagues and may have application in this spéciﬁc problem.

This will be the subject of a future note.



APOLLO NOTE NO. 73 B. Saltzberg
3 June 1963
~ .
SOME ADDITIONAL ERROR CALCULATIONS FOR DETERMINING
THREE IN-PLANE ORBIT PARAMETERS FROM DSIF
! DOPPLER MEASUREMENTS

. In order to compare the approximate techniques of Apollo
Notes _32,' 60, 61, and 64 for determining three in-plane orbit para-
meters with the more rigorous technique for deriving the accuracy
of the orbit parameters obtainable with smoothed DSIF doppler data
presented in Apollo Note No. 69, the following additional error calcu-
lations have been made.

Table 1 preéents the variance and covariance values for data
smoothed over the same 90° pbrtion of the orbit selected in Apollo
Note No. 69. In this case the results of the approximate error
analysis are in substantial agreement with the results of the more
complete analysis carried out in Apollo Note No. 69.

The first column of Table 2 represents the results of an error
analysis for a case similar to that of Table 1, with the single excep-
tion that the three orbit parameters e;timated are rp, Y, and 0 instead
of rp, Y, and e.

The second column of Table 2 represents the errors for the
same orbit conditions as assumed in the first column except that
data smoothing is conducted over 30° of the orbit rather than 90°,

A comparison of the errors in Tables 2 and 3 indicates the high
sensitivity of the errors to the length of the smoothing interval
(when it is assumed that the initial phase rather than eccentr'icity '

is derived from doppler data).* The data shows that increasing

* ‘When r_, Y, and e are derived from the doppler data as in
Apollo Note No. 60, the errors are much less sensitive to increases

~in the length of the smoothing interval after 30° of smoothing.



the smoothing interval by a factor of 3 (30° to 900) increases the
accuracy of determining perigee, rp, by a factor of 20, and the

angular position accuracy of the earth-moon line relative to perigee

by a factor of 35.
The coordinate system chosen for the error analysis is shown

below,

&—perilune

Earth-Moon
Line



APOLLO NOTE NO. 74 ‘C. H. Dale
11 June 1963

TECHNIQUES FOR REMOTELY ALIGNING THE LLV
IMU FROM THE ATTACHED CM ‘

This note discusses four techniques for aligning the IMU in
the unmanned, but attached, Lunar Logistics Vehicle from the CM/SM.

In ~ordér of increasing utility, they appear to be:

1. Utilizing the CM/LEM structure as a common base.
2. Provide a light path between the CM IMU and the LEM m™MU.
3. Match accelerometers on the CM IMU and LEM IMU.

_ 4. tar track with the T. V.

. Structural Alignment

If reasonably perfect' selsyns measure the attitude of the CM
with respect to its IMU and the attitude of the LEM with respect to its
IMU, then the two IMU's may be aligned to within the flexural deflection
of the CM/LLYV taken as a solid structﬁre. ‘Estimates of the structural
misalignment and flexure of the LEM/CM combination are difficult to
come by yet it would not be absurd to assume that the lower bound is one-
half of one degree. This is better than is usually attainable in aircraft
- gun and rocket launcher boresightings. An upper bound of one or two
degrees seems reasonable also. i

The real problem is not how stiff a structure can be made, but
rather how stiff an optimally light structure will be.  If, for instance,
the mating structure between the CM and LEM can be held flét to within
.2 inches and if the opening is big enough for a man (for the LEM case),
then a misalignment of about 5 mils could be éxpected from this source
alone.

It seems apparent "chat structural alignment is a useful tool .
as ‘an initial rough technique, but as shpwn in Apollo Note No. 42,
further alignment is necessary if the LLV is to inertially navigate to

within T. V. range of the lunar touchdown point.



Optical Light~Path Alignment

If a light beam can be directed from one IMU to the other, and
back, then extremély good alignment may be accomplished. The major
problem with such a technique is inherent in the fact that the light beam
must go-directly from one navigational base to the other; no structurally
attached mirrors can be used to avoid objects that might interfere with a
direct ’line -of-sight. Holes and windows must exist in any in-between
structure. ' ‘

 In order to prove simply that the inherent accuracy of this sytem
is high without trying to evolve an optimum system, a sample design
is shown and analyzéd. This design is shown as Figure 1. The

systém is based upon a light and set of mirrors rigidly attached to
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Figure 1. An Example Optical Aligning System.

the navigational base of the CM and a set of 3 mi\rrbrs rigidly attached

to the navigational base of the LLV. Denoting a triad by pitch, yaw
and roll axes,as shown in the figure, the pitch and yaw components

may be zeroed first by superposing an outgoing and reflected image.



After this is accomplished, the roll axis may be zeroed through the
‘use of an off-set return light path. It is interesting to note that if

all three axes are to be aligned reasoriably simultaneously, then such
an off-set path must exist. If the initial alignment of one degree is to
be used for initial acquisition, then about a ten inch wide path must
exist between the CM navigational Base and the LLV navigational base.
This is not necessarily an easy thing to provide. However, if a ten
inch path exists, and if 1/100 inch resolution exists, then one mil

roll alig.nmenf follows from the figure. Pitch and yaw will far surpass
roll aiignrhents unless the craft is rotated through 90° and again aligned

to improve the roll alignment.

Accelerometer Matching Alignment

.Both the CM IMU and the LLV IMU have a set of accelerometers.
‘The differences in the readings of the two sets of accelerometers can
only be due to accelerometer errors and/or a difference in the spatial
orientation of the two IMU's. Under the as sumption of a thfust
acceleration, a (the oniy kind measured by an accelerometer in free
fall), the LLV will measure ¢ in its co-ordinate éystem while the
CM will measure 4. If enough time elapses such that noise errors
are reduced to insignificance then the difference, b, bétween c and
d will be aue to bias errors in the accelerometers., The transformation,
T, between ¢ and d is thus not length preserving and part of its rotational
characteristic can be caused by b. Three maneuvers, Ei At where
i= 1,2,3, that are non-coplanar will allow the determination of T

“since

a’iv='T Ei i=1,2,3 -
is actually a set of nine equations in the nine unknown components
of T. '
However, knowing T does not allow an exact solution for the
angular difference between the two platforms, since part of the

!
N



rotation between ¢ and d is due to platform misalignment and part is
due to b, the difference in the accelerometer biases between the two
IMU's. A

With a single maneuver the above equation can not be solved
unless the assumption is made that b is zero. However, since in the
LLV alignment period no maneuvers are required, it would be-a good
idea to minimize the fuel speﬁt on accelerating for IMU alignment. If
one maneuver were made and a computer lengthened ¢ or d so as to
make | © l = l'& l then T is a pure rotation. The expected error in
the relative alignment of the platforms will be due to T and will be on
the order of:

a’bias

ey = Py

where 3pias is the expected bias error-in the accelerometers and a
is the average thrust acceleration.

' It turns out that the main service module engine must be used
to acquire reasonable alignment. The expected Bias acceleration of
the IMU accelerometers is 0.5 cm/sec. 2. With CM, SM, and LLV
attached and in lunar orbit their combined weight is on the order of
50, 000 pounds. If two auxiliary control jets on the LLV could be used
along with two jets on the CM, a total thrust of about 400 pounds’
could be applied‘ resulting in an acceleration of 8 cm/sec. 2. This

in turn results in an alignment error of about 60 mils. With the
main 20, 000 pound engine the alignment error might be reduced to
about 1.5 mils. This engine, however, burns about 65 pounds of fuel
per second. Since times of not too much less than a second are re-
quired for turning the engine on and off, this may prove to be a
costly technique for IMU alignment. It should be noted however that
no additional equipment is necessary and no penalty is placed ﬁpori

‘the exact location of the IMU's relative to one another.



Television Star Tracking

The men in the CM uses a telescope on the navigational base
to star track and thus align their IMU. Since a T.V. link exists .
between the LLV and the CM and sihce the T. V. camera could easily
be mounted on the navigational base of the LLV's IMU, then it would
seem that it might be appropriate to align both IMU's by star tracking.
It is true that a lens, differing in focal length from other requirements,
- must be used, but a lens turret is not an uncommon concept.

‘Assuming 1000 lines on a 2 inch T. V. tube, and a 5 inch lens,
resolution on the order of one quarter mil is achievable. From
Apollo Note No. 36, it would appear that only first or second order
magnitude sfars might be picked up by such a system. However, this
is satisfactory since initial orientation would depend upon structural
alignment. This system, with the exception of a possibly needed

extra lens, will require no added components.



APOLILO NOTE NO. 75 H. Dale
17 June 1963

THE FUEL COST OF VARIOUS TWO BOOST ASCENTS

The nolminal ascent consists of boosting off the lunar surface
to a safe perigee altitude of 8 nautical miles. ’Réndezvous occurs after
a central angle from perigee of 160? This trajectory is near
the optimal Hohmann yet allows some out-of-plane correction capability
with two boosts. '

Assuming no out-of-plane problem, this Note attempts to
calculate the additional boost required to make higher energy, safe

transfers. The cut-off perigee velocity is always hor'izoz'ltal.

Defining:
’ 1) = lunar gravitational constant = 173. 094
x IOIth3/sec2
R = lunar radius = 5. 702676x 106ft
Rp = -perigee = 5.75131 x 1071t
-Rcm = 80 némi. command mod. radius = 6.18907
' x 1071t

€ = eccentficity
0 = subtended angle from perigee
V,Vp = wvelocity, perigee velocity
a = semi-major axis

‘then for the nominal ascent

, a(l-eZ)A Rp(1l+te)

Rom ® T¥ecose = T¥ecoso (1)

defines the eccentricity of the trajectolry which starts at R_ and
meets the CM/SM at Rcm after traversing 8 = 160°. The required

perigee velocity is

. “— ‘J. . _ . .
vp, :\’K.I; A(1 +e) = 5588.85 ft/sec (2)



The horizontal velocity at R = Rém (6 = 1600) is
VR, | -,
vy W:; = 5193.54 ft/sec (3)

i

The CM/SM velocity is

v, =\,§__‘ = 5288.44 ft/sec (4)
i cm -

Thus the change in horizontal speed must be
AVh =V - Vh = 94,90 ft/sec (5)
The change in vertical speed (R) must be, at rendezvous:
. 2|1/2

AR = i{ = Vv 1'-_‘7_ = 69.20 ft/sec (6)

where V is the LEM's total veiocity before retroing for rendezvous..

R R
cm p

Thus from equation (5) and (6) the total rendezvous correction is

2 - o 1/2
AVT = (AVh'} + (R) = 116.30 ft/sec (8)
The total boost required is then
v = V_+ AV_ = 5705.15 ft/sec. (9)

req. p T

"~ This neglects the boost required to fight lunar gravity during ascent,
vbut for all the cases to be studied that will be a constant since all
cases will have at leastAcircular velocity at perigee cut-off. Now
since this is the nominal trajectory, all other trajectories may be

expressed as an increase or decrease in velocity from this base. 2



Since all trajectories to be considered have horizontal velocity at
‘ascent cut-off {8 naut. miles altitude), their apogee altitude is enough
to determine the cut-off velocity. Thus as a function of the radius of

apogee -

= ( L }
\' = (10)
K ¥R
p Rp a p

The total velocity upon reaching the CM/SM in its 80 nautical mile

orbit is
]
1 ' 1
Vo= “(ﬁ-. ) m) (i)
A\ cm a P/

Equations (3) fhrough (9) may be used to compute the total boost
required for ascent and rendezvous as a function of the apogee alti-
- tude of the ascent trajectory. The results are shown in the following

figure.
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APOLLO NOTE NO. 76 L. Horowitz
18 June 1963

NOTES ON L. S. PONTRYAGIN'S THEORY
OF OPTIMAL PROCESSES

Introduction: Soviet Academician L. S. Pontryagin has proposed an

elegant solution to the ‘follo'win'g problem: from a given set of 'control
functions' (variable thrust, limited fuel supply, etc.), call them u, (t)v,j
‘how can the "optimum" u, (t) be selected such that the time required to
transfer a vehicle between two given points is minimized?*

In practical situations, the ui(t) are all bounded {since the
transfer could otherwise generally be accomplished in arbitrarily
small time). Initial and final points éo and _g.f are given in the '"'phase
space'' defined by the problem; i.e., the space spanned by the gen-
eralized position and velocity coordinates. The motion of a representa-

tive point in this phase space i3 then given by the equations of motion

| X, = fi (Xl’ ceeees X, U5, eeen, ur); i=1, 2, ..., n. (1)
Pontryagin's technique involves iinearizing the general equationsy of
motion, writing the solution to the resulting simultaneous system of
linear, first order differential equations subject to the given initial
and boundary conditions, and then selecting the optimal control func-
“tions U (t) by exploiting the convek properties of the loci of optimal
trajectories corresponding to optimal control functions.

Pontryagin's paper considers this problem in :ully abstract
mathematical formulation; in ad‘dition to presenting the completely
general abstract solution to the problem, he also provides generalized
existence and uniqueness proofs for the solutions obtained.

This paperattempts to motivate Pontryagin's method in a

heuristic fashion, and concludes with simple exaLrnples of the technique

* Theory of Time Optimal Processes in Linear Systems, presented by
R. V., Gamkrelicze, Bulletin of the Acacemy of Sciences of the USSR
Vol 2, 1958 - pps 449 - 474, B




as applied to elementary linear control problems. No attempt is made
to provide rigorous mathematical justification of the development; for
" this the reader is referred to the original work previously cited.

Formulation of the Problem: We consider a computer whose inputs

are position and velocity; we wish to determine optimal control func-
tions u. (t). The equations of motion are given by (1). We assume
the control functions u, (t) are bounded and piecewise smooth; without

ioss of generality, the a. (t) may be taken as normalized: lu (t)l< 1,

: ‘s .y . . . ' - 9. -
tz to. Initial position and velocity are given: Xi(toy) 107 xi(to)

.°. This corresponds to an initial point in '"'phase space'': _§_(to) =

x
_{1,_0, whereé: (xl, coee s X 5{1, . o e Xn)'- A final condition
is also specified: § (tf) = .éf for some tee We wish to select the

control functions u. (t) (lui(t)!_<_1) s0 as to minimize tf. Form the

total differential of (1):
. N T af -
A = Y Z ﬂ“k U+ (2)

To effect a linearization of the problem, we assume that the indicated

. of. of.
partial derivatives of (2) are all constant: 3_;} = ai-j ; _a_u_;_ =bik'

Integrating (2), the equation of motion can then be written as a simul-

taneous system of first order, linear differential equations:

]
5
»

-+
ep
c
+
o
e

X 2+...+-Prur_ ; (3)

with the appropriate initial and final conditions specified. The prob-
lem at hand thus reduces to selecting optimal control functions ui(t)
dui(t)f <1} so that with motion governed by (3), the transfer time

between éo and .§.f is minimized.



We note several extensions compatible with (3):

(i) If the equations of motion involve higher order deriva-
tives of the x5 (Q, a reduction to a larger system involving only first
order derivatives can be z;eadily effected by introducing new variables.

Example: X = ax; +bx1 + cu. Let xlA = x5,

Then the larger system, now of first order, is simply

X = X

1 2

x2=ax2+bx1+cu

- (ii) If a particular control function happens to require that
its time integral be bounded, a new system of higher order is readily

obtained by differentiation. t

Example: ;'cl = ax + b f uy (r)yd +.
. ‘ (S } .
Differentiating this equation, we have X = ax; + bu1 (t).

The order of this equation can now be reduced to one by
i ~

using the technique of (i).

Analogous extensions can be formulated for similar linear

systems.

General Solution of (3): If we knew the control functions ui(t), the

general solution to (3) could be obtained as follows: |
E=AE+31H1+...'+Erur (3)

Introduce a new dependent variable y = (y1 A Yn) so that

Y; F Gi¥5 X5 = pij Yj’ the pij to be determined. Then

! , (4)

APy + Plbiu  + -+ P b _u

p-w

where P is the matrix of the pij"’ If we assume that A is non-



singular (Pontryagin shows that the problem is otherwise over-

specified: ‘page 8 of his paper), we can select P so that P'IAP is

a diagonal matrix, call it _A =<7\ij}. Then (4) becomes

y = X.y.+Zd.. u.; i=1, « » « » , n with solution
i 171777
r t
At . N7 )
Yy = el [(yi)o + Z fdije 1 uj(-r)d'r.]
j=1 o

Then

n n r t
_ Nt -\t
IR IDUCIECRNEDY fdike 4 (r) dr, (5)
j=1 k=1 o

j= 1
which can be solved for the Xi(t)' Following Pontryagin, we simplify

the ensuing discussion by writing

t
x(t) = Z 8, (t) { +f _4:“- (21‘11*"' +Erur)d7], (6)
o

wh'ere"_sél (t) ; sose, én(t) generate the fundamental system of solutions

to the corresponding homogeneous vector equation_;_c = Ax, a,ndi1 (t),
e, :p_n (t) are the respactive ''duals'' of the -éi (t}; wviz., the fundamental
sy.stem of solutions to the corresponding "adjoint" equation :pj = -A' \lJJ ,
A' the ady.nnt (viz, the conjugate transpose) transformation of A, We

observe tha.t'ng .( ) \’J (t) = 6: J smce{ } { } solve
i=1 j=1

adjoint systems (we have, without loss of generality, taken the q.’> F_J

to be normalized). A more detailed account of this procedure for

solving linear differential systems is included in Appendix II.

Functional Form of the Optimal Controls

We observe that for a linear function f of n independent variables

4



simple examples of convex sets. For any two points (vectors) x4

and x , in a convex set containing the origin, and any A> 0, 1 >0

2
with A + p = 1, we have x = )‘3‘_1"*' BX, is on the line joining % and

X,
=2 ‘252 |

A= Ax) tex,

' x

21 ’
vE2
Ay
Figure 1.

If uy and u, are the admissible controls corresponding to % and
X5 then x is accessible by using the control Kul + Hu, since by (6),

x(T) = Mx; (T) +px,(T) = N > 8, (T) (xo"‘ +f 5"‘(7) ul(-r)‘d'-r] +
v ¢4

¢
T
] §écz (T) {:xoa +f ha(-r') u, (r)d T] = %;‘éa (T)‘[Xoa £
e

T
f hY () [)\ul () + u, (T)] dTi.
o .

Note that !Xul + puzl < N iuli + luzlf XN+ p= 1>,’ 50 thaf Xul + Bu,
- is an admissible control. Thus, iff1 (T) and %, (T) are two optimal
“terminal points, we see that the chord on (T) joining them contains
only points of Q » guaranteeing the convexity of the region. This
argu’rnvent extends inductively to the case of multiple controls.
-Notg: that if u('f) is an optimal control with corresponding

optimal trajectory x (T), then u (t) is also optimal for allt, 0<t< T.

6



For if we could get to a point_:_c(Tl), T1<T, in a time T1 - € (e>0)‘
by us.ing a different control, ~call it v(t), then'we could get to x (T)

in time T - e by u‘sing v {t) for Oft<T1 - g, and then u (t) for

Figure 2.

Since this contradicts the optimal character of u (T), we conclude
that u(t) is indeéd optimal for all t, 0 =< tf T.

Having established the convex character on(T) (the set of
all points accessible from _§_o in time T, using admissible controls),
we next note that the normal, call it _7_{, to the boundary on(T) at

x(T) forms an angle =.I with the incremental vector »6_)_{ (T}, where

x (T) + 6x (T) is an optimal terminal point adjacent to x(T):

[«»)
1y
N

g f
o Qury
/

Figure 3.



A-8x<0

This is an immediate consequence of the definition of convex sets.
We note two features of this representation:

(i) Since the boundary of Q(T), call it d _Q(T), contains
only optima:l terminal points (i. e., only endpoints of optimal tra-
jéctories corresponding to optimal controls), then the control
corresponding to x(T) + 5_}_{ (T) (call this control u(t) + & u(t))
must itself be optimal.

(ii) For a monotonically increasing sequence of times Tk

(T,<T

! 2< .....<Tn , k=1, 2, ¢+++, n), the corresponding

FAN .
convex sets Q (Tk) = Q x form a nested sequence in the sense of

proper.set inclusion: Q 1 - Q ZC ceaes Qn .

(8

With these preliminaries established, the crucial matter of

determining optimal controls ui(t) can vow be handled. From (6), we

know that for any optimal control u{t) {assume there is just one control

for the moment), the corresponding trajectory is

n t

x(t) = Z 8, (t) [xoo‘ +Jer ¥ b ou(r) d’r} .

a=1 o

1

(6)

For a:x admissible perturbation x + & x with corresponding

S

optimal conirc: +. + du, we have

[ autauemn

el
x() +6x() = ) 40
a=1

t
xo"‘ +j W% blu(r) +6ufr))dT
e}

8

J

..

(9)



Subtracting (6) from (9), we obtain

n t.
6x (t) =. Z_gﬁ_a(t)f_\{:a- b éu ('r)'d T, (10)
a=1 o

the equation for the perturbation 6§ x(t) in terms of the correspond-
iﬁg perturbed control §u. For fixed T, take the dot product of (10)

with the unit normal 2‘! tQQ(T) at x (T):

n T
A 8x(T) = Z‘A- 8, (T)f ¢¥(r) - bu(r)dr
a=1 ‘ o
n T-
= Z fca'_'_a(-r) -._’r_J_ Su(v)d T, where ca=‘z_‘\'_<éa (T).
=1 o

By (8), \__/\ 6 x (T) < 0; an inequality holding for every fixed T and

-every admissible perturbation & u(t).of u(t)e We conclude

T

[caf(v).gsu(?)ano (11)

o
and hence that for positive Values of <, _}_}a (t)* b, 5 u(t) must be non-
positive, while for negafive_values of <, _Li_f_a(t)- b, duf(t) must be non-
negative. Since u(t) + 6u(t) is an admissible control ((i), page 8 of
this Note), we have {u(t) + & u(t)g = 1. But by (7), -lu(t)l = 1 (save
possibly at a finite number of discontinuities; following Pontryagin

after Lebesgue, we say ],u(t) {= 1 almost everywhere); further,

u(t) + 6u(t)§ = 1 almost everywhere. We conclude

u(t) = sign Y (0)- b, oftST;, (12)




where the "sign' function is defined by

Signx = 0, x =0

@, a
Here, y(t) = Z c, ¥ (t) = Z‘ZS (t) - & () 4 (t).
a a .

We now show that ca(t) = A éa is a constant of the entire.
trajectory, so that the boundary conditions suffice to completely
determine the constant <, and hence the control functions u, (t).

First note that i (t)- X = constant, since

—gt—"[g(t)-_‘yt)} - —‘jj-t-{gz_m- (Ax + _lzu)]

1
1
G
oS
"
-+
e
>
Ik
o+
-&
S
o
[}
1
|'6
S
lo
o]
1
(]

so that { - f is identically constant. But y = 5—' _4_1_ Z’Q_{ 8,9,
v @

where ¢ U%.is just the tensor identity element {by the normalization of
—a = . '
—(éa and %), so that A % is identically constant over the entire tra-

jectory.

10



Hence, (12) is precisely the relation sought after, and the

optimal selection of the control functions ui(’c) is completed.

Conclusions: Functions assuming only the values + 1 are called

"relay functions' in the literature. Pontryagin shows that the relay
function solutions obtained im his analysis are unique, and that a
physically meaningful problem always possesses unique control func-
tions optimizing the transfer trajectory. Pontryagin's uniqueness
proof is based on the fact thdt the class of all relay functions forms
a Hilbert Space (a linear vector space with a "distance function™
defined on the space; it has the property that every (infinite) con-
vergent sequence -of elements in the space always converges to an
element which again belongs to that space), and hence that all (infinite)
bounded monotonic sequences of accessible loci Qk always converge
to limits belonging to the same space.

We note also that the arguments.of Appendix‘\II are readily
generalized'to the case of time;varying elements éij of the matrix A,
so that linear equations (3) with time-varying coefficients can also be
solved in this manner, -

Unfortunately, most of the Apollo optimizing problems are
fundamentally non-linear and hence not directly amenable to Pontryagin's
‘solution. Several devices are available however: many non-linear equa-
tions may be converted to linear equations by inspired changes of variables;
sometimes techniques are available for converting non-linear equations

to infinite systems of linear equations (e.g., Carleman's Method,

" Adaptive Control Processes by R. Bellman, p. 45). If further study
along these lines proves fruitful, the next note will extend this technique

to the more general case of non-linear optimization,

11



APPENDIX 1

POSI TI‘ON SERVO OPTIMIZATION

Tdﬁapply Pontryagin's theory to a specific problem, we consider

the ''position servo'' problem:

x = '—a}El - ex + Mu(t) (I-1)

xl(Q) = x

L] -— . o
xy ‘0) = x
lu(t)l = 1
Xl(tf) = 0
' for some tf.
xl(tf) = 0

We wish to select u(t) so as to minimize tf.

To convert (I-1) to suitable form, introduce the new variable

x, = }'cl . Then the problem to be optimized is:
; - I-2
X x, (1-2)
X, = -ax, - cx + Mu (t)

12



For a realistic servo problem, we suppose a=0 and az- 4c =0,

To write (I-2) as a vector equation, we have

" *1
. .}.E = ;{ = %
1 2
. ;{1
x Fli
2
0 1 Y
A = v
-c -a
[0 .
b = M
- 1
Then,
x = Ax + bu (1-3)
as in (3), with the indicated boundary conditions x(0) = X _’f(tf) = 0

for some tf; we wish to select u(t) ( lu(t)l = 1) so as to minimize tf.

The corresponding homogeneous matrix equation is

& = AO (1-4)
with solution a.+.\? a2 - 4c ¢
2

e 0

o =
a-V a2 - 4c (1-5)
> t
6 e

up to arbitrary multiplicative constants.
To obtain ¥, use (II-6) and obtain

13



t
e 2 o .
: 3 1-6)
g - | ;o
-a +V az- 4c ¢
0 e a

again up to arbitrary muiti'pliéative constants. Next, form the vector
Y(t) = X -féa :{{a (whel_'e 2_( is to be determined by boundary conditions;
it is the outward normal to the convex set about 50):‘ Then by the
Qrthogonality of é-a and iaz, we have

~at

,.
b i(t): cleT sin ‘.Vllc - aZ t + cz] (I-7)

since Va =~ 4c is purely imaginary. The constants ¢, and ¢, are

1 2

determined by the boundary conditions (I-2), so that the required

control u(t) is given by (12):

-at

u(t) = sign {cle 2 sin( Vac - 2%t + ¢

5 ] . (I-8)

R. E. Kopp (Optimization Teéhniques, edited by G. Leitmann,

Academic Press 1903, p. 275) also obtains this result in a slightly
different manner by instead considering the Hamiltonian of the system
(Pontryagin shows that these two approaches are entirely equivalent,

p- 14 of his paper). Kopp plots the "switching sequence™ in the 14



""'shase plane! (;;1 vs. xl):

X = x,
_/"g“’
/-
/
/
/
/ *1
/
/
/
~ 1. //
Figure I-1

A typical trajéctory from —g-o to the origin is shown in Figure I-1;

we note that the optimal trajectory from éo must approach the origin
along the switching boundary shown in the figure (since it is the only
trajectory passing thi'ough the "equilibrium point" 0). Finally, we see
that the control function u(t) "switches' whenever thé)trajectory from

-§-o crosses the switching boundary, as noted in Kopp's paper.

15



APPENDIX II

SOLUTION OF LINEAR. HOMOGENEOUS
- DIFFERENTIAL SYSTEMS

To solve
_}‘_g = Ax + _lzlul-(t) + esese +_13rur(t), | (11-1)
where % b.1
i
*2 , be
'x =| . s A = {a.. N b, = .2
. ij —i .
X b
n i
and  x(0) = x; 3 x(0) = x,

consider first the linear homogeneous system with constant co-

efficients ag:t

x = Ax (11-2)

By a fundamental matrix for (II-2), call it ®(t), we mean an nxn

matrix whose columns are linearly independent solutions of (II-2).

In this case (a.ij(constant), the fundamental matrix is simply

o(t) = At (I1-3)

At At

(t+anh e""AeA‘tA implies thatac—lt— e = Ae

since e

making eAt a solution of (II-2). Then @(0) = I (the identity matrix)

- e1:(TrA)

implies that det 2(t) , Where Tr A is the trace of A

16



n
(TrA = Z CN ), so that ®(t) is indeed a fundamental matrix for
i=1
1
(11-2).

The solution of iII- 2) with x(0) = X, is then

x(t) = x(0e®t = x(0) 21 . (11-4)
With @ the fundamental matrix for (II-2), we observe that %E- (@.1)
= -l 42 . 51 -0y
dt

or, taking the complex conjugate transpose (denoted by *)

. -1
]
Comparing this with (II-2), we conclude that @ is a fundamental

matrix for the system

X = -A x . (II-5)

T

Since A is generally real, A = A (T denotes transposition) for

physical appiications. (II-5) is called the adjoint to (II-2).

We can now show that it suffices to obtain ¥from the relation

s Yo =57, (I1-6)

1 see also: Coddington and Levinson Theory of Ordinary Differential
Equations (1955) pps 67 - 78)

17



where éi (t) is the ”ith"' column of @ and _t{_{J (t) the "'j th,, row of

¥, For we have that

R G R R R SR A S

=A_éa'_k1_l-1+_éa' i‘l
~
= f, AT g,
= ¢ . ATyl + 31y = 0 by (@-s).
—C -

‘Hence éa(t)' _llil(t) = c¢onstant; we lose no generality in normalizing
this to the Kronecker delta 6; . A physical example of this process

is given in Appendix I.

It is now a straightforward matter to verify by direct substitution

that the solution of (II-1) satisfying the indicated initial conditions is
n t ,
_ S o a .t
x(t) = Z 'éa(t) [xo +f Y- (P-l 4

+....+_§rur)‘dr}. (I1-7)
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APOLLO NOTE NO. 77 J. Holdsworth
19 June 1963 .
CALCULATION OF COVARIANCE MATRICES
FOR MULT;PLE UNCORRELATED DATA SOURCES

The purpose of this note is to extend the methods developed
in Apollo Notes Nos. 3 and 43 to the case where multiple data
inputs are available. The previous notes have covered the case
where only one form of data, such as range rate from Doppler
measurements, was available. The present note will extend
these procedures to the case where range, range rate, and angular
data are all available. In the subsequent analysis we shall assume
that there is no autocorrelation in any of the three data inputs
and that the different types of data are not cross correlated.

As before we shall assume that there are certain parameters
a., i=1,+* 6, which we wish to estimate on the basis of our ob-~ .
served data. We shall also assume that we have available range,
range rate, and angular data which we shall denote by R,R and 6
respectively and that R, R and 0 may be written as invertible
functions of the parameters of interest a,.

If our measurements could be made with complete accuracy
then any six observations would theoretically suffice to allow us
to determine the paramefers in question. However, the measured
data is corrupted by randorn noise hence we.must usé our data
~to obtain estimators é\i of the orbit parameters a, - In reality
‘we are more interested in this note in obtaining an expression for
the éccuracy or asymptotic accuracy with wnich the parameters
can be estimated raﬁher than the computation of the estimators
from the observed data. V

As in Apollo Notes Nos. 3 and 43 we assume that we may

write the following expressions:



R_=R(a,t) + ng(t)
Rm= ‘.I.{c(.ai, t) + nf-{(t) (1
8 = Bc(ai, t) + ne(t)

In equations (1) the quantit’ies subscripted m are the measured -
quantities, the quantities subscripted c¢ refer to the correct functional
values if the data were not contaminated by noise and nR(t), nln{(t),
.ne(:) indicates the additive random noise.

As mentioned before we shall assume that the noise processes
nR(t),- nR(t) and ne(t) are independent, i.e. not cross correlated, ,
zero mean stationary white gaussian processes with variances TR
O'RZ and o-ez, respectiv‘ely. From equccion {1) we see that if we have
N observations on R, R and 8 that we may write the following expression

for the likelihood function of the dé.ta.

_ 1 :
L= GTE N N, N exp - (2)
ki3 O'R O'R O"e
where:
a‘C——_—I—m R (k) -R (a ")32
"L, 2% /. LTm |
R k=1 :
. 2
+ 1 {R (k)—R(a,k)}
20‘1‘5{ k=1 :
1 - T &
+— [ o (k) -6 (k) ] (3
- _



As before the maximum likelihcod estimators a, of the parameters
a; are those functions of the data which-make the data most probable or
maximize the value of the likelihccad function, They are obtained by

solving the equations

8L

-——-—aai-zo i= 1,' "6 (4)

for the parameters a; as functions of the observed data Rm’ li’.m

-

and 6 .
m

Performing the indicated differentiations and substituting into

eqﬁation (4) we obtain:

. . R _ . - . R
2 .. [R'c(ai’ k) - Rm(k) ] oa. * L2 / [Rc(ai’ k) -Rm(k)} da.

R K= 1 g =) .
. . 30, . ,

+ 5 [ec(ai, k) - em(k)} 9a. 0 fori=1,° * *6 {5)
R K= :

Ll

Now the functional forms R-c’ Rc’ GC are assumed known, as are the
observed data points Rm(k), f{m(k), em(k), thus equation (5) is actually
a system of 6 equations in the a; which may be soived as a function of the
known data, The solutions éi of this system of equations in terms of the
observed data are the maximum likelihood estimators of the orbital
parameters ai,

Now as we have done in the previous notes we shall assume that
the smoothing time or number of samples N is sufficiently large so that
the following 'expressions may be written for the maximum likelihood

estimators:

{5,\. = a,+ Aa. (6)
i i i




where the Aai are sufficiently small so that only first order terms in these
random perturbations need be retained in various series expansions,
This assumption is always valid for sufficiently large sample sizes and
is exactly true whenever the dependence of the functions fC on the a,
parameters is linear,

Utilizing the above assumptions we may ﬁ/rite the following approxi-

‘mate expressions.

6. sr
A _ T c A
Rc(ai, k) = Rc(ai, k) + . Z -—g-a—;— (ai, k) a.i
' i=1
hd A - aéc .
RC (ai, k) = Rc(ai, k) + _ 3‘3—'-1— .(ai, k) Aal (7)

: i=1
A _ N, 88
ec(ai,-k) = ec(ai, k) + i .5‘51— (ai, k) Aai
1= 1

OR R R R
c A c A _ c 00 A _ 08
B3, i 53, i Fa(ep K =57 (a; k)’si;; 25 k’"‘a'a'i(ar k)

Substituting equation (7) into equation (5) and performing some
routine algebra yields the following system of equations which is linear

in the random perturbation quantities Aa..

6 , OR_ 8R_ | 8R_aR_
2 0a. (k) da. (k) £ 2 da. (k) Jda. (k)
= k="11°R t J R, 1 J
| 8e_ 80 _
P g Kgg () da,
N i j :



1 9R, y oR
= ~Z 7 (k)(Rm(k) - Rc(k)) + g———(k) R_(k) -R (k)}

k=1LR 1 "R
P aec(k) 0 (k) e(k)\' fori=1,2,% * ° 8
i o.ez 8_5'—1— m' - c I or 1= 1, ¢, 6 ()

In eciuation (8) it is perhaps worth mentioning that R (k) R (k),
0 (k) refer to the nominal value of these quant1t1es at the tlme of the kth
observatlon while R, (k), R (k), ¢} (k) refer to the observed data
obtained from the kth observatlon. ‘

Again if we define the estimator error vector Aa by the column

matrix

B EE

Aa = (9)

BBk

1
2
3
4
5
6

then using matrix notation we may write the following vector equation:
CAar= e, (10)

In equation (10) Cisa 6 x 6 matrix whose i, jth element is given

by:
o~ [, 8R_ BR_ | dR_ BR_- | %8 28
1" 2 —Z 3, Mpa e e W+ 55 ““) S = ()

k=1 LR ? J 'R / o

(11)



Similarly e is a column vector whose ith component is given by:

,  OR, 1 R, . .
ei = . ;;2—' %a-i—- (k) (Rm(k) - Rc(k)) + ;_.I;—Z gg;(k) (Rm(k) "Rc(k))
1 98
+—5 g (KNO__(K) - 0_(K))
% i _
fori= 1, z,'- SIS (12)

Now, if the joint distribution of the parametric estimators is
non-singular; i, e., if the total probability mass of the estimator dis-
tribution does not lie in some subspace of dimension 5 or lower, then

equation (10) may be formally solved to yield:
-1
La=C " e (13)

Taking the transpose of both sides of equation (13) and noting that Cij =

Cji’ we obtain:

paT = To? (14)
Equations (13) and (14) are vector equations, Multiplication of

- (13) on the right by equation (14) yields the matrix equation -
T | 4
Aa Aa"=C. " ee C (15)

Equation (15) is a matrix rather than a vector equation, i, e.,
the quantities on both sides of equation (15) are 6 x 6 matrices, Moreover,
the elements of these matrices are random s,oithat in similar observations
over the same smoothing interval we would expect a random variation

in the elements,



Since we have assumed large smoothing times the estimators
Qi of the parameters a;, may be assumed to be unbiased,i. e,

E’a\i: a, (16)

or e‘quivalen'tly
EAa, = 0 (17)

- a fact which is always asymptotiéally true for maximum likelihood
estimators,

Since the estimators are unbiased the covariance matrix of the
estimator errors is obtained by taking the expected value of both sides
of equation (15) with respect to the joint distribution of the noise processes,
Thus, we may‘write:

! (18)

Cov 4., QJ.) -E[maat] =clEEeC
where E denotes the expected value 6perator.

Since the matrix C is known and assumed non singuiar, it follows
from equation (18) that we have an expression for our desired covariance

matrix once we have computed
E(e eT) (19)
\ . . .th ces ; . T. .
The element in the i, j position of the matrix ee” 1is simply

ei‘ej, where the expression for e, and e is given by equation (12).

.However, comparison with equation (1) shows that we may write:

[ ;. °R_ . af{C 1 88
e, = —r k) ng(kK)+ — 5—=(k) ng (K} + —5 = (k) ny(k) (20)
£=1l°r i crf'{ i P i



Now a term on the main diagonal of e eT is of the form ei2 where
e, is given by equation {20). Since nR(k), nI'{(k), ne(k) were assumed to
be independent zero mean stationary gaussian random processes then

we have the following expressions:

E[‘nR(k) ng 1)] = 6,00
E[nﬁ (k) ng (1)] = MU'RZ (21)

E[ne(k) ng (1)] = 5k2 Tq
and

E[ n (K) nk(l)] 0= E[nR(k) neu)] = E [nﬁ(k) neu)]

"for all k and £, where 5k1 is the Kronecker delta function.
Using eqf.ations (20) and (21) we see that a main diagonal term

of the matrix E| e el is given by:

N
. . 2 : 2 : 2
Ee =E e = il ISR Sl I SR O TXC I I U
ii i \ Toa; ;2 a, | .2 Ba, 2

k= 1 & 1 R R )

fori=1,2,* * *6. Thus, we have an expression for the diagonal elements

of E[e eT] .

Now consider an off diagonal element E[ e, ej ] where i# j.

Then again from equations (20) and (21) we may write:

1 dR (k) OR (k)
E[e.. ] = E[e. e.] = < < (23)
ij i’ - 2 aai da.
. 1 QRC(k) BRC.(k) . 1 aec(k) Bec(k)
L2 da, da, 2 0Oa., Oda,.
TR i J oy i j



Now from equations (22) and (23) we may explicitly calculate the
elements of the matrix E[ e eT] . Also since the elements of the
matrix C are known then C~! is known also which gives us our desired
covariance matrix by substitution into equation (18).
| However, comparison of the defining equations for the elements
of the matrices C and E[ e eT] - i.e,, equations (11),(22) and (23) -

reveal the interesting fact that
E { e eT] = C, (24)

Thus equation (24) allows us to write the following expression for the
covariance matrix of the errors in the estimators of the orbital parameters.

A

Cov (Qi, aj) = C (25)

CONCLUSION

In this note it will be noticed that there was no systematic bias
error assumed in any of the three data inputs. In reality there is reason to
suspect that there may be a non-negligible systematic bias error in the
range and angle data, The extension of this analysis to cover that situa-
tion is straightforward and is more of a notational nuisance than a con-
ceptual difficulty. The interested reader should be able to make the
necessary amendments by using the analysis in either Notes 43 or 3 as
a guide, ' - ’

A more serious shortcoming of this note is that using the JPL
mg.asuring procedure the range and the range rate data are very strongly
cross correlated, As other data collection schemes are under consider-
ation which would probably tend to reducé this cross correlation, it is
hoped that the results obtained in this note may be of usev in some cases
of genuine physical interest. ‘ _

Since the cross correlation of the data inputs does not unduly

encumber the necessary mathematics as long as the individual error



processes may be assumed to be white or uncorrelated, another note
will appear shortly extending the current results to the case where

appreciable cross correlation exists between the data inputs.
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APOLLO NOTE NO. 78 H. Engel
: 20 June 1963

DSIF DETERMINATION OF LEM ALTITUDE RATE

In an abort situation in which the LEM takes off with a minimum
amount of equipmént functioning it is important to control the vertical
velocity at cut-off. This note examines the ability of the DSIF to pro-
vide this information. , )

The present LEM landing site is 20_ 40'N 3°40'E. The down-
range distance to burnout is about 106 km in the westerly direction,
so at burnout the LEM is at about 2°40'N 0°E.

The physical libration of the Moon is about + 0. 02° in latitude
and + 0. 04° is longitude. The corresponding optical librations are
+7.6%and + 6.7°. :

The Earth subtends a half angle of about 1. 5°,

The observed Doppler velocity, omitting the DSIF velocity, is:

].) S v.o-v

T r

where 0 is the angle between the line joining the center of the Moon
and the LEM; and the line-of-sight, v is the component of velocity
tangent to the Moon and v_. is the component of velocity normal to the

Moon. The error in D is:
‘O
E(D)—VTE(Q)+9E(VT)-E(VI_)

or .
E(vr)=vTE(G)+9E(vT) - E (D)

Now, in the worst possible situation 8 = 9. 10 (=7. 60 + 1. 50)
p - .

and the error in @ is approximately

E (0) = —11-.— x Error in downrange distance

=L 5w

T



so at burnout at 8 n.m. altitude

E(v)=1700 —ELE) 91 g, 5@
1752 x 10 57.3 T '

For 10 second smoothing o (D) is about 4 cmm/sec., and E (D)
is negligible. Assume that E (L) is 5% of the downrange distance

and E (v_r) is 5% of circular velocity, then

3
106 x 10", 9-1 1400 |(0.05) m/sec.

1752 x 10°  57.3

1700

E (vr)

5.15 + 13.5 m/sec.

18.7 m/sec.

With a circular speed at 8 n. m. altitude, a vertical velocity
error of 34.3 m/sec. is needed to cause impact with the Moon, so
it appears that the DSIF can be of use in LEM aborts to assure a safe

traj ecf:ory.



Nominal Values

Table 1 {Errors in rp, Y, and e)

r = 1.75653 x 106 meters

¢ = 30

O

e = ,086718

| .OZ‘meters/sec (1 minute of smoothing) .

O, =
R
Observation Sample Points
Interval 91‘ = 15°
RMS 90° ¢ , = -30°
Error 93 - _750
‘ G;' 46 meters
P
oq‘ 1.25 x 10'5 radians
% 2.7x 107
P - .06
r, ¢ 5
P - .45
rp e
Py.-e -, 070




Table 2 {(Errors in rp . Y, and 0)

Nominal Values

r. = 1,75653 x 106 meters

P
¢ = 30°
e = ,086718 _
U'R = .02 meters/sec (1 minute of smoothing)
Observation Sample Points Sample Points
Interval 9. = 15° 0 = _30°
90° o 30° ! o
RMS- 62 = -30 : ~92 = -45
Error N 9 - _75° 93- = -60°
o;p 76 meters 1520 meters
-2 . -3 .
a;p 1.8 x 10 ™ radians 6.1 x 10 ~ radians
-4 . -3 .
s 1.8 x 10 " radians 6.2 x 10 ~ radians-
P v, - . 850 9996
p r, -0 -+ 837 -.9995
Py_e : -. 998 -+ 9999




APOILLO NOTE NO. 79 C. H. Dale
26 June 1963

AN APPROACH TO ESTIMATING THE ALLOWABLE INJECTION
ERRORS FOR THE DSIF AIDED LEM
ASCENT AND RENDEZVOUS

- The purpose of this note is to show a single technique for using
the DSIF in a reasonably short ascent and rendezvous mission under
abort assumptions. The technique is evaluated in one way to show
that a maximum of 100 feet per second (2%) error may be allowed in
the LEM ascent boost without exceeding the 10% fuel pad.

The basic abort trajectory is shown in Figure 1. The nominal

. path of the LEM is shown under the assumption of no errors.

80 n. mi. CM/SM
Circular

Orbit . - '\/
",

2}

P

~ Not EartH
T Visible

l

Earth
Visible

7//J

Rendezvous Region

Figure 1. Nominal Abort Trajectory

At point (1), the nominal abort dscent would place the LEM into a

Hohmann transfer with perilune 8 miles off the lunar surface.



Since a perilune burnout (5586 ft/sec) is roughly in the center of the
Moon, as viewed from the Earth, this would allow about a half hour

of DSIF tracking before the LEM disappevars behind the Moon. The
launch time is designed to place the CM/SM and LEM together at
apolune (2). A horizontal injection boost of 97.0 ft/sec. will co-orbit
the nominal LEM at (2) with the CM/SM. Even if the CM/SM is nowhere
in sight at (2), it is planned to add the horizontal 97 ft/sec. This
nominally places the two crafts in synchronism. When the LEM again
enters into view, it can be tracked for an additional hour or so until
it reaches point (3). At about this time the DSIF should have a good
idea of the LEM position and velocity. The errors in the boost at (2)
should surely be less than 2 ft/sec., based upon star-oriented thrust-
ing with 1% accelerometers used for cut-off. A boost at (3) can thus
be computed (to within 2 ft/sec., DSIF willing) which will bring the
two crafts into coincidence in the region (4); docking thus being Earth
visible.

This nominally Hohmann transfer is about a percent more
efficient than the planned upon 160° ascent (See Apollo Note No. 75).
The questions are thus: How much error may be stood at perilune?
How large a set of corrective impulses (3) and (4) must be used to
make up that error. ’

Given the actual magnitude of the velocity at ascent engine cut-
off, Vl,and the radius of cut-off, rp, then the semi-major axis of the

transfer ellipse, ay is:

1
a = (1)
1 2
2 M
ry e
The eccentricity for the lowest allowable safe orbit is:
e, = 1- Lunar Radius (2)

)



The angular momentum of the transfer ellipse is:

' 2
h, = . ‘\/p a, (lﬁ-e1 )

from which the initial flight path angle, B,, may be defined

[z

h,

(Yl a (1+e)) 2

sinz 61 =

Now the error in the vertical velocity can be defined

_ dR .
AR = -—d—E— = 'V1 cos [31

1

This error is plotted as a function of the error in the magnitude of

the perilune velocity in Figure 2.
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Thus any error less than that shown in Figure 2 will not hit the

Moon during a full orbit. The object of the remainder of this note

is to calculate the boost required at (3) and (4) for any error such as.
that shown in Figure 2. . ' ‘

As an example,assume that a horizontal decrement of 100 ft/sec.
existed at (1). ‘This would place the LEM in an exactly circular orbit
of 8 n.mi. altitude instead of the planned upon Hohmann transfer. Now
at point (2) of Figure 1, the LEM is 72 miles below the CM/SM orbit.
Since the timing was planned such that the CM/SM and LEM would
reach point (2) coincidentally, a phase-lag will exist due to the error
at (1). This phase-lag will be due to the difference between the semi-
periods of the expected Hohmann transfer and the actual circular orbit
at 8 n.mi. altitude. This places the LEM about 170. 8 seconds in
front of the CM/SM.

Now assuming no other sensors, the LEM would apply a 97.0 ft/sec.
horizontal boost at point (2). This boost should not be in error by
more than the two percent corresponding to the 100 ft/sec. errér. at
point (1). This can be considered insignificant. The new orbit after
the boost at point (2) will have a semi-major axis: - '

2, ‘= 1 = 5.96407 x 10° £t (6)

2 vt
r

—
+

This will place the LEM at a new radius at point (3). This radius will

coincide with the semi-minor axis of the new orbit.

b, =\F (Za-7,) = 596027 x 10° 1. (7)

which is 42.41 n.mi. off the lunar surface. The eccentricity of this

_orbit is:
b, é
e, = 1 | = .03577 (8)
a, : ,



The time between perilune at (2) and point (3) is given by:

3 g
ty (LEM) - t, (LEM) = 2\/ (aﬁ) '[E - e sin E]

(9)

(az)3 V 3m
LIS N [ + ez] = 5256.5 sec.

]

i 2

While the time required for the CM/SM to travel 3/4 of an orbit is
5514.9 sec., thus at point (3), the LEM is leading the CM/SM by:

At = 5514.9 - 5256.5 + 179.8 = 438. 2 seconds,

Since the DSIF has tracked the LEM for all this time, it is assumed

to know its position and velocity at point (3), *
- 2p o op |
V3 = ‘\/ bz 2y = 5390. 71 (10)

The horizontal component of velocity at point (3) is:
V211
b

- = 5387.29 ft/sec. (11)

from which the flight path angle is:
Vh3
cos ﬁs = -—v—;— => sin (33 = ,03577 (12) |

giving the vertical component

V. = V,sinp=- 192.83 ft/sec. (13)

V3 3



The commanded boost at point (3) should now place the LEM in
an orbit which will reach the circular CM/SM orbit in the region of
(4) of Figure 1 at the same time that the CM/SM reaches that same
point. One way of doing this is to make point (3) a perilune point of
the transfer ellipse. If the 192. 83 ft/sec. vertical velocity is removed
and the speed increased by 175. 29 ft/sec., then the perilune velocity
of the transfer ellipse would be 5566 ft/sec. This would just allow
coincidence. The required boost to inject at (4) is 327.3 ft/sec, The

total boost required would be:

v, = 5586
v, = 97
vV, = 260.6
v, = 327.3
V.= 6271

This is almost exactly 10% larger than the nominal 5705 ft/seé.,
calculated in Apollo Note No. 75. It would thus seem that this technique
can cope with-errors less than 100 ft/sec. , although this example only
treated an error in the horizontal direction. Figure 3 is a recapitulation

of this example trajectory.
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APOLLO NOTE NO, 80 J. Holdsworth
15 July 1963
CORRECTION TO CALCULATION OF %

COVARIANCE MATRICES 1

The purpose of this note is to correct an error in Apollo Note
No, 67. |

In Apollo Note No, 67 the analysis was performed as though the
polar angie 0 did not depend upon the orbital parameters whose values
were to be estimated from the Doppler data, This is not so, however,
because of the relationship between the time from perilune and the
mean anomaly which appears on Page 2 of Apollo Note No, 67.

In the present note the same orbit parameters will be used as
in Apollo Note No, 67 with the exception that instead of considering
the energy E we shall employ the semi-major axis, a, of the elliptical
trajectory, Thus, the parameters to be .estimated are: \, B, e, 90, a,
where N is the angle between moon perilune and the earth moon lines,
and B is an angle measuring the rotation of the orbital plane about a
line in the earth moon plane which is normal to the earth moon line,
The quantities e, 90 and a are the eccentricity, initial value of the
polar angle from perilune and semi-major axis of the vehicle trajectory
respectively, ’ )

If we assume that the earth and the moon are infinitely distant,
then all line-of~sight vectors from the earth to the vehicle are parallel

and we may write the following expression for the observed doppler:

R :[—ré'sin(é—%)\)+;'cos(9+)\)]cos(3 (1)

If the polar angle 6 is measured from perilune, we have:

2
- a{l-e) (2)
l+_ecose v

In addition to the relations (1) and (2), we have the following
relationship which implicitly defines the polar angle 8§ as a function

of the parameters a, e, and 60.



3,
- a - . _ - .
b= 2 [(oesint) - (gyresingy) ] (3)

In (3), tis the total time, u is the lunar gravitational constant and { and

;o are the eccentric anomalies at times t and zero respectively, The

quantities { and Z_,o are given as functions of 8, e and 90 by the following

equations:
cos { = e+ cos-O cos ¢ = e+ cos B¢
" l+ecosb ° o 1+ e cos Bg
| (4)
sin ¢ _ Vl-ezsine sint = Vl-ez sin 6o
- 1+ ecos® ’ o~ 1+ e cos 0o
thus, Equations (3) and (4) do implicitly define the poiar angle O as
a function of the parameters and time, e.g.,
0 = 0(a,e, 60, t). {(5)

To compute the covariance matrix of the estimator errors

we need the following quantities:

8R &R OR 8R 9R
»Tp 5O, ' Te’ Ba

:

- Since X\ and B are independent of the in-plane parameters, the first two

quantities may be computed immediately from (1) to yield:

-g-%— -[é‘écosA(B-Hx.)-i-.rsin(e +X)] cos B (6)
and
g_%.= [ré sin(6+)\!-; cos (9{-)\)] sin (7

Also, since R depends only implicitly upon 6 via 0 and

Equations (3) and (4) then we may write, after el1m1nat1ng r, 6 and T,



8R _° dR 80
96_ =~ 96 8 (8
0 (o]

Furthermore since:

ro = /-—-—-1‘1——-2—- (1+e‘co,s ) (9)

' a{l-e)

r = ey /—=2——  sine (10)
a(l-e")

and

we may write the following expression for R :

1'1=/-————‘-1-—-———2—- -(1+ ecos9)sin(0+\)+ e sinp cos (0 1) cos B. (11)
a(l-ev) ‘

Thus, from Equation (11), we obtain:

"-—gg = "\/—-—————-——u > cos (0 + \) cos B (12)
’ a(l-e ) . s

By implicitly differentiating Equations (3) and (4) we obtain the

. . 906 :
following expression for EYNe

2
290  _ 1 -ecos(
) Go - 1 -ecos Zj,o (13)
Thus, combining Equations (8), (12), and (13), we have:
. 2
'g_g“' - u 5 11 -_eeizsst—é cos (6 + \)cos B (14)
o a(l-e) o

From Equations (11) and (3) and (4), we see that R depends upon
the parameters e and a both explicitly and implicitly through the angle
0, thus we may expec.t the calculation of ‘g‘% and-—g———éR— to be more
difficult, The expressions for the complete partial derivatives of R

with respect to e and a are given by the following equations, the first



terms of which are to be regarded as formal partials of R with respect
to e and a from Equation (11) --ignoring the dependence of R upon e
and a through 8, The second terms properly account for the implicit

dependence of R upon e and a through 8, The equations are:

00 e (15)

=8 (16)

Since g 5 is given by (12), then (15) and (16) may be evaluated

when we have the quantities:
5R R 90 8
- \%e £’ 8af’ de * 9da’
- where the subscript f denotes the formal partial obtained from (11)

by ignorning 6.

From (11), we have:

‘g_?.)f _%..,/....3__1__2_. [—(1+ecose)sin(9+)\)'
. a” (1.-~¢e")

+ e sin 0 cos (8.4 \) ] cos B

i{ _ u ' . _
(_?)f.. ﬁ/m [-(e-icose) sin (6 + \)

+ sin 6 cos (0+)\)] cos B’

"

(17)

3]

(18)

To obtain -g—%— and 58—% we must differentiate (3) implicitly.

That is, consider:

3/
. 12

Vu

F(eo, e, a, t,0)=1t - {((,-rsing)-(go—esingo)]=O (19)

4



Equations {19) and (4) define & implicitly as a function of 60,
e, a, and time t. The quantities 5—65 and aa 2 are then obtained
from the standard technique for the differentiation of implicit functions

as described, e.g., in Sokolnikoff's Advanced Calculus(.l) That is,

we may write:

96 _ _OF OF and 20 __ OF aF (20)

2e - T 9e 56 oa da LX)
which allows the computation of the required derivatives even though
(3) may not be analytically inverted to yield an explicit expression
for 6 as a function of 9 _, e, a, and t,

o
From (3) and (4):-
3 ' 2
aF _ =-a /2
58 - - - ~ 1-ecosf X (21)
v l-e V n )
9 F 3 ak [
a
5“3 (£ -esing)- (L —rsiné-)] (22)
a 2 vV u o o
. 3é
OF _  a (l1-e cos L) ( 1-cos 8 cos )
de - 1y
v ou (I-ez)-zsine
(23)

(1l -ecos )(l;cose cos L)
- : o o S +sinf - sint

V2
(l-ez) sin 90

(o]

(1) 1 5. and E. S. Sokolnikoff, Advanced Calculus, p. 89.




Thus Equations (20) through (23) allow us to complete the

calculation of our required derivatives and yield exact expressions
for 9 R and o R )
de 9a °
The remainder of the calculation of the covariance matrix of the

estimator errors proceeds exactly as described in Apollo Note No, 67,

-

the elements of the inverse of the covariance matrix being given by:

N . .
. = Ly R PR 24
i,j. TN Da, 9 a,
»J k=1 i ]

where:
a1=x,,a2= B, az = 60,‘ ?4= e, ag= a,

To obtain the covariance matrix of thezestimator errors, the

matrix Ci . is inverted and multiplied by 01‘\1 where 0_2 is the
i . .
‘noise variance of the doppler data and N is proportional to the smooth-

ing time or the number of independent pieces of doppler data,



APOLLO NOTE NO. 81 . C. P. Siska
15 July 1963

MAXIMUM ALLOWABLE INJECTION ERRORS FOR A PARTICULAR
DSIF AIDED RENDEZVOUS SCHEME

INTRODUCTION

This note examines the problem of LEM rendezvous with the CM
under the condition that large injection velocity errors may exist at the
end of the first boost phase. |

It is assumed that the DSIF can attain precise orbital datd on
the LEM and consequently assist the LEM in providing the proper steer-
ing information to cancel the effects of initial injection errors.

With this in mind, the question arises as to how large a first
boost velocity error can be made and still be cancelled within a designed
10% velocity pad. This note examines this question for a particular

rendezvous scheme.

RENDEZVOUS SCHEMES

For comparison purposes, the nominal rendezvous scheme is

defined as one using a Hohmann transfer with perilune and apolune at
8 and 80 n. m. altitude as shown in Figure 1 (a). Trying to establish
a Hohmann ellipse, immediately restricts the maximum injection boost
error to around 100 ft/sec., in order to avoid grazing the lunar surface
(without additional boost). Consequently, the first boost will be designed
to yield an '"off design'' orbit which is larger than the Hohmann., The
lprogrammed rendezvous scheme is shown in Figure 1 (b), and uses
three programmed boosts, the second boost correcting to a Hohmann
orbit.

. When first boost velocity errors exist, the correctionscheme
will be as pictured in Figure 1 (c). The DSIF will be able to track the
first orbit for almost half a revolution (in two segments), and then pro-

“vide thrust information for the LEM to initiate the Hohmann transfer at
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the end of the first revolution. * At the Hohmann apolune, boost
three initiates a waiting orbit, so that at the end of exactly N3 revolutions,
the LEM and CM positions coincide and boost four then provides circular
orbit velocity. |

In the analysis that follows it is assumed boost errors are negligible
after the first boost and, therefore, are cancelled out in the final.-dock-

ing procedure. However, if more than one waiting orbit (N, > 1) is designed

3
into the procedure, then the DSIF can assist in refining the waiting orbit
before boost four is applied.

It is noted that since boost two is applied after one full revolution,

the programmed ''off-design' boost one velocity vector must be horizontal
in order to prevent unfavorable bias for upward or downward velocity
errors. For example, if boost two occurs after a half revolution, the
design boost one velocity can be pitched upward, thereby allowing greater

injection exrrors before the lunar grazing condition occurs.

REQUIRED PERIODS OF WAITING ORBITS

For sake of mathematical simplicity, the following linearvi_zed
relations will be used in the analysis. . ‘

From the energy equation and Kepler's law of periods, we obtain:

a |Rem R Veum™V
X ~ 1-2 = |- 2 - (1)
cM CM cM
a 2
A~ 1- = (2)
Rem 3

and after combining Equations (1) and (2),

b3

If more than one revolution is required for adequate DSIF track-
ing, the second boost will remain the same but the design lead angle

for the CM must be changed appropriately.



P -P RCM-R VCM-V (3)

Pem Rem

where the subscript CM refers to orbital quantities associated with

the circular orbit of the Command Module.

The mean relative rate of phase angle change can be written:

PCM-P
MT @t TeoMm TP (4)
Zor the rendezvous scheme under consideration‘, the required
period for orbit three (waiting orbit) in order to make contact with the

CM is,

L4 L . ! 1 -
N3n3P3—110-‘q1P1-—-2-n2P2, N3-1,2,... (5)
where:
Ng = design phase angle difference between tne LEM and
CM at the end of boost one.
N3 = Number of waiting orbits.

Since the subscript 2 refers to the Hohmann orbit, it will hence-
forth be replaced by subscript H, so that upon combining Equations (4)
and (5), '

Pem™F3 1 1% [ Pom P Pem Py
° N 2 | P - B (6)

cM 3 cM oM
PomFs3

We now have to impose a restriction on the magnitude of':- B
' - T CM

in order to prevent perilunes which lie too near the lunar surface and
thus, allow some margin for boost three errors. For convenience, we

will restrict orbit three to lie outside the Hohmann, so that:

(PCM'Ps < (PCM"PH | ;
= =P @
\ Tem \ Fem



P, .-P

The maximum value of CM in Equation (6) will occur
: B , P
cM
. Pem™P |
for the case of minimum —a—|- Designing the initial lead angle
T CM

Mo with these values assures that Equation (7) will always be satisfied.

Thus, the design lead angle is:

Mo ] PemPu ) . [ Pem™F1
= (Nt 3] [ | (8)
cMm | cM | min.

Note that the lead angle is designed for maximum P, (the
Iargest orbif:), which occurs when the velocity error is co-linear fo,
and increases the magnitude of the programmed boost one velocity.

Combining Equations (6) and (8), yields:
P P P -P

P P

em B3l [Pem P ] em Py cm™ P
= R = S
3 : CM min. CM

Pem | PeMm

EXCESS VELOCITY REQUIREMENTS

The excess velocity requirement is defined as the total velocity
used to accomplish the rendezvous, (see Figure 1 (c})), minus the velocity
used for the nominal rendezvous with the Hohmann transfer, Figure 1 (a).

A schematic illustration of Equation {9), shown in Figure 2, enables
us to discuss some facets involved in the rendezvous scheme.

First of all, the curve defined by Equation {9} is a simple'straight
line whose slope is determined by the magnitude N3. Point A on the curve
involves a transfer in which the phase angle difference between the LEM
~and CM after orbit one is, by design, dissipated in exactly N3 + %—
Hohmann revolutions. On the other hand, the point B transfer eliminates
the difference remaining after orbit one in one-half a Hohmann revolution.

It is evident that waiting orbits between points A and B lie

between the Hohmann orbit and the circular orbit of the CM. In these

(9)
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result in no excess
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Figure 2. Schematic Relation Involving Required
Waiting Orbits and Orbits Resulting
From Boost One Errors



cases the sum of velocities generated in boosts three and four is exactly
equi{/alent to the velocity generated in boosting from Hohmann apoiune
velocity to circular orbit velocity. Consequently, no excess boost
velocity is required for this part of the rendezvous. Between points

‘B and C, the waiting orbits lie outside the CM circular orbit and the
CM)' ‘Therefore, if 5V3’4

the excess velocity requirements for boosts three plus four, we have

excess velocity here is 2 (V3-V defines

the conditions,

8V, ;= 0if -—--—-—-ISM Zo (10)
, cM
P. -P
. cm~Fs
6§V, , = 2 (V, - V. )if <0
3,4 3° VeMm Pt

According to Equation (3), therefore, & V3’ 4 will increase as
boost one errors move one from point B to point C.

On the other hand, the excess velocity requirement associated
with boosts one and two is the difference between the sum of the velocities
generated by boosts one and two, and the Hohmann perilurie velocity
VHP' 1,2 With the aid ofrthe following

diagram, one can express this in more concrete terms as:

Call this excess velocity § V

Boost
Two

Boost

N\ Constant

\ Error
i Contour
!
/
~ .
5v1’2,= v, + VZI-VHP (11)
V2 (Vi + v+ AV: cos a)2 + (AV, sin }z)z (12)
1 - Vet YT AN Y1



Vg = (v+AV, cos a)z + (AV1 sin ce)z (13)
where:
AV, = boost one velocity error

'VqP%-v = programmed boost one veloc1ty for the ”off de31gn"
i orbit --(See Figure 1(b)).

In the foregoing chagram 1t is apparent that as vy decreases
(or equivalently the period P ) the value of & vy .2 decreases. Thus,
in Figure 2, as one moves from point A to point C on the curve, the

value 6 V decreases monotonically.

1,2
Summarizing the above discussion, as one moves from point
A to B, the total excess velocity required is simply § Vl: 2 and thus
keeps decreasing in magnitude, In moving from B to C, the total excess
velocity is the sum of § Vl, 2 and & V3’4‘with the former decreasing
and the latter increasing. Since we are interested in determining the
maximum excess velocity requirement, it is a question of comparing
the values at points A and C only for a given AV or, in. other words,
comparing the two velocity error directions a = 0 i
¥ 6 Vio denotes the total excess velocity, we therefore have

from Equatlons (10) through (13)

6Vtot (e=0)= 2 (v+ AVl) (14)
Vtot(a =m) = 2 (V3 - VCM)‘ + 2k (y -AVl) (15)
max
where:; 0 ; v S.AVl
k=
1 ; v> AV

1



Using Equations (3) and (9), one can rewrite Equation (15) to read:

- Vo -V I |
5V, (@=m)=2 -( Cl\.\’ﬁ HA)+ Vl Vet 2K (v =AV])  (16)
cM N Veum ! ~
0 ;v SAVl
with K = :
1 ;5 v> AVI

For a given AV-l, the quantity v in the pre;eding equations will
affect the location of the straight line curve in Figure 2, moving it from
left to right and vice versa. The permissibie combinations of v and AV,
must never permit the condition to exist in which orbit one intersects the

lunar surface. This problem is examined in the next section.

LUNAR GRAZING LIMITATIONS ON FIRST BOCST VELOCITY
The grazing limitation on the first boost velocity components can

be obtained from the following energy and momentum relations,

2 2 1 2
N Ve ] REE T T YR, Ry o

(RM-l— hl) Vl’I‘ = Ry VRM (18)
Combining 'Equa.t‘ions (17) and (18) yields the limiting hyperbola

in the hodograph plane,

2 2
v %
1T _ IN _ 1.0 (20)
) 2
a b
where: h
2 1 1
2 :,(__&.._..,h ) (1+..2. __) (21)
Ry ¥ by Ry

2k _
( 1 ) (22)



The condition that non-intersecting orbits prevail implies that,
for any given v, the maximum value of AV maust equal the segment

oi the normal to the hyperbola bounded by the hyperbola and the V

1T
axis. This is shown graphically in the following diagram.
ViN
\ Constant AV,
\ Contour
\
& ] Vit
/
S
Liméng\\
Hyperbola
, aZ . V'l,\I
Since the slope of the normal is — —5 =~ , the value of the
subnormal is: b vllT
. bZ :
- $ - PUERE
(VHP tv)y-V T az V'lT (23)
which can be written:
2
e e | Vo F v) (24)
* ( az + b2 ) ( HP

Combining Equations (24 and (20), the vertical component of AVl
becomes:
2 2
.2

!
{\VHP + v - b (25)

- L2 L2 2
IN 2 ‘\a2+b2}.

Finally, forming AVl from the cornponents in Equations (23)

)
3

[a R}
™~
O

1, we have:

10



2 2
2 b 2 .
1 { Y HP

.or in terms of the boost one burnout altitude. after introducing Equations
(21) and (22},

AR = 2P (H%}

|2 .
S Vo tv| - —E Y
1 Rv )] [1+n 2 ( Hp V| Rvt By
LRy |
Since the area of interest is when 7 << 1.0, and also
M ' .
VV. << 1.0, Equation (27) can be linearized, (by the use of the energy
HP

equation for V to yield:

HP) 1

AV h, f[h_ -4h
1
v =\/RM1 e 28)
CRy, Y ‘Cr,,

where:
hCM = CM circular orbit altitude
h1 = Dboost oﬁe burnout altitude
v = 4 [w— = circular orbit velocity at lunar surface
CR.. R
M M

Equation (2-8) gives us the maximum value of AVl for preventing

intersecting orbits with the lunar surface with boost one.

‘NUMERICAL RESULTS

The solution for the maximum permissible AV, within the allow-
able 109 velocity pad can be obtained graphically usiné Equations (14),
(16), and (28). |

From Apollo Note No. 75, Figure 1, the difference between the

velocity potential for the 10% pad and the Hohmann transfer is § Veor™ 620 ft/sec.
t [%

Also, from the same note we nave:

11



b o= 173.1x 102 £3/sec?

RM = 5.7x 106 ft. = 938 n.mi.

R..= 6.19x 106 ft. = 1018 n.mi

V CM L - * L d

VCM = 5288 ft/seé. (circular orbit velocity at 80 n.mi. altitude)

In addition there are the following values,

VCRM =" /—REI;I = 5510 ft/sec. (circular orbit velocity at lunar surface)
h, = 8 n.mi. (boost one burnout altitude)

h'CM= 80 n.mi. (circular orbit altitude of CM)

Vem Via

Vem

=.0177, from Equation (1)

Using the above values, the aforementioned equations are shown
graphically in Figure 3. ’

The « = 0 case, where AVl is directed alo.ng the periluﬁe vélocity,
VHP+ v, r.eaches the allowable excess velocity limit first as v increases,

and therefore, determines the critical value of AV Thus, the programmed

1’
"off design'' orbit one should have a perilune velocity approximately 120 ft/sec.
greater than perilune velocity for a Hohmann, and this allows a maximum

boost one velocity error AV, = 190 ft/sec.

Note that for a Hohmann transfer, (v = 0}, the allowable AVl is
approximately 115 ft/sec., and the maximum excess velocity for this
rendezvous occurs for the a = v case at a value & Vtot = 2 x 132.5==265 ft/sec.

For the values v = 120 and AV, = 190, Equation (3) indicates that

= = .123, which from Equation (4) yields a phase angle

12
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change of -44, 3° for this case; that is, the CM gains a maximum of
44.3° on the LEM durlng orbit one. °
Also from Equation (3), we find that the relative Hohmann period

( Pem™Pu
\ Peum .
obtain, n_ (N = 1) =-15.5° and n_ (N; = 2) = 3.6° Consequéntly, at the
end of boost one, the LEM is leading the CM by 15, 5° if one waiting

" orbit is planned and is trailing by 3. 6° if two waiting orbits are planned

= . 0531, and thus from Equation (8), the following lead angles "

for the rendezvous. )

The maximum rendezvous time from boost one burnout for ~
one waiting orbit is Pl max T % PH’ which upon using the above values
yields a value 2. 543 PCM' Since PCM= 2,04 hrs., tlps time is 5.2 hours.

SUMMARY

By programming a boost one perilune velocity 120 ft/sec., greater
than Hohmann perilune velocity, the allowable boost one velocity error
can be increased from 115 ft/sec. to 190 ft/sec. In this case the maximum
excess velocity required to cancel the errors during rendezvous increases
from 265 ft/sec. to 620 ft /sec. |

The maximum rendezvous time from boost one burnout with one
waitiﬁg orbit planned is 5. 2 hours for the boost one vélocity error of

190 ft/sec.
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in which P, is the radius of the Earth and w_ is the Earth's angular
rate.

The latitude and longitude of the sub-lunar point on Earth at
the instant of the first observation are L and { respectively. The
inclination between the plane of the orbit of the Moon about the Earth
and the Earth's equator is B, as shown in Figure 1. It must be specified
whether the angle vy in that figure is greater or less than w/2. Then

sin L

siny = B

. R A /1 - sinz'y ifys w/2
cos y=
.2,
-\l -sin® yify=w/2

sin (§ -£) = tan L cot B

cos (6 1) = 2L

sinb =-sin B sin ( —;—5- -vy)
f sir';‘B\\ = =-sinf cos vy
' . . 2
cosb = +/1 ~-sin" b

18
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¥

Kl'l = ¢os L.cos £
KIZ = cos L sin £
' K13 = sin L
K, = cosb cos (b6 +v)
K,, = cosbsin (6 +v)
K23 = sinb
.K31 = Ky Kp3 - Ky3 Ky
Kip = Kj3Kp-K Ky
K33 = K Kpp =Ky Ky
X, = KXy
%, - xx,

The rotation matrix L rotates vector components from the

‘Z system to the x'y' z' system.

The relative angular positions

of these two co~ordinate systems are shown in Figure 2.

cosf sin ¢ O 1 0 0 cos § singf O
«L =|=sin { cos 0’ 0 cos n sinq -sin§ cos ¢ O
_ 0 0 1 J LLO =-sinm cosnd [ O 0 1.

20
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APOLLO NOTE NO. 82 H. Engel
16 July 1963

CALCULATION OF COVARIANCE MATRICES III

This note presents a means for finding the'cova}'i‘ance matrix
when Doppler observations of a vehicle in an elliptic or circular orbit
about a moving Moon are made from a DSIF or MSFN facility on the
surface of the Earth. The orbit of the Moon is assumed circular, but
an elliptical orbit could be used with just slightly more computation.

‘The parameters choéen. to describe the vehicle orbit are its
position and veldcity with respect to the Moon at the time of the first
observation. This choice of parameters has the advantage that it is
possible to obtain expressions for the partial derivatives used in calcu-
lating the inverse of the covariance matrix that do not blow up when the
orbit eccentricity approaches or equals zero.

The vector from the Moqn to the vehicle is ¥, the vector from
the Earth to the Moon is -X-m’ and the vector from the center of the
Earth to the observing station is _}_{'d. The vector from the observing

station to the vehicle is s,

s = X +r-X

The observed quantity is the rate of change of distance between

the observing station and the vehicle, i.e., s. Now,

s = X +;A-Y

™m d
and _ ‘
. ( s ) -
8 = S
S
Then,
a5 _ m a7 %%4
da., da 9a
J J J J
_ a7
- da




and

s _ 1 | 5,88 .- ,69s _. 3s
da, s 9a. 9a, da
J J j j

I SO - X ) =~ 9s !_ &8 — 0s-

= % | %" %a, TS5 Fa s % C

J J J

95, 05,
Terms of the form E -éa—l- '5—3'.&— are used in computing the
: : j k
matrix from which the covariance matrix is found.
It is convenient to use different co-ordinate systems in computing

S—

Xm, r, and Xd' By co-ordinate rotations Xm and Xd are expressed in

the same co-ordinates as ¥ so a's/aaj can be evaluated.

In the work. that follows, the various quantities that must be

employed are presented in the sequence in which they are used in actual

computations.

The x'y'z' co-ordinate sy stem is right-handed, ,non-rotéting and
Moon-—entered. x'is directed along the initial position vector (xo'., 0, 0)
_ of the vehicle, vehicle motion is in the x'y' - plane, and y' is directed
50 that .Sr:) is positive. The orbit parameters are the components of

1’5('
[0} o

r and r_in the x'y'z' co-ordinate system; these are x' , y', z
o : o’ 7o’

0 .
iré, and Izc;, and are called a, through ag respectively.

Note well that one can not employ the fact that a,, as and a, are
zero, until after derivatives are taken; otherwise incorrect results are
obtained. For this reason two different expressions for a quantity may
be found, one perhaps including as, ag, and ag, and used for differentiation,
and a second expression without as, as, and 3.6 and used for computation.

The quantities used for computation are enclosed in boxes.




The initial radius T_ is given by:

g ' Ny My
r, = a1§+a2y+a3z

in which the caret denotes a unit vector.
. .2 2 2 2
ro = aL1 + a2 + a3

. (o] . i
Zro 55 = 2a161j+2a262j+2a363j

in which 5i 3 is the Kronecker delta

0ifi#j
8. . =
1hJ 1ifi#j
o T3
:-_. Al Al Al
To=ay X +a5y +a62
2 _ = =
r = r_ T
o o o
2r ¥ =2T .oT
oo "0 "o
ToT
. o "o
I -
o T
o

]




o 4
9 (r ") ot or
o o" o . o _ 0
%2, .- o Pa T %3 T a (ala4 Tazagt a’38“6)
«:s..—u:J' J J
ai'o . :
T, Fa " 513 a, + 52j ag + 63. ag + 84. a, t 553 a, + 56ja3 P
ai'o_ }
1T T oy

The angular momentum H is given by:

A A WA
H = (az‘a.é - a3a5) x! 4+ (~=.13a4 - alaé) y'+ (a,la.5 - a2a4) z'

2 _ 2 2 2
H” = (a.za6 - a3a5) + (a.3a.4 - alaé) + (3’13'5 - a2a4)
: . 9 (a,a, - a,a.)
O H _ 2°6 375
2H 5 2 2 (334 - 233;) 52, .

) (a3a4 - alaé)

CEW
4

+ 2 (a3a4 - alaé)

9 (aLla.5 - a,a

)
o 2%4
t 2 (225 -2, a,) 8a




The orbit energy E is given by:

- . 2 2 2 2
2E —-Hl-+a4+a‘5+a6A

[
' m
o
+
)
+
o

2E

AE _ o
285 =2 M o0 42, 5,428, 6,, + 23 B,
%3 g j .
9E
7a; 615 ‘ﬁzal T8 2yt 8553,

If the orbit eccentricity is e, then,

HZ

w1l +ecos )

and

H‘
1

e . -
-—H'—--H sin ©

where 0 is the ceﬁtral angle between the vehicle and perilune. Then

2
e cos @ = H -
BT
2.
e cos O = H -1
T
o
Ha .
e cos 0 = 2 -1
o M




e sin @ = HY
i
. _Hi'o
e sin 90 =, m
Ha
. 4
e sin QQ Sl
Then,

2 2 . 2
e = (e cos 90) + (e sin Qo)

Also,
2
e.?.: 1+ 2EH
2
v
s0
- 2
l-ez=-2E(—Ii)
' M
and

1

2,72 H

1-e = fZE |—=

Eiada

pe 2 G2 OE , o 0H

da. 2 da. ga
B J J

pe® _ [ H 276k , 2E B8H

da. B ga H 8aj




I the. éécéntricity is not zero, then 00 can be found from:

e sin O
o
o

0 = ta,n‘l (___..__._.._
e cos B
[

and if the eccentricity is zero, .Go can be arbitrarily chosen as zero.
90 is always between -w and =. In both cases sin Go and cos Qo are

ev_aluated from 90.

Now, 2 )
oL - )
9 (e cos 90) _ (p,ro
da. T 0a,
J -
-1
S U RS U - G R
TR o aaj da
__H |, 8H __H or
B r da T da
ks j o
9 (e cos 90) ~ ag , 0H _ . -
aaj TR : da 1j 75
and | | H.ro
9 (e sin 90)’ 9
da. = da
J
or
_ 1 o . oH
T H =2 T Ba



] (e{s.in _90)- _ ag RN a, 5 H
da. - - A ! da. + v aa,
i - B j j

The. sine and cosine of the initial eccentric anomaly fo are

‘given by:
2,72
(1 ~e”) sin 90

l1+ecos®
o

sin £0=

and

. ' _ et cos 8,
cos go" 1+ ecos 90

e + cos @
o

cOs E =
(o]

1 sin&
C = tan | —2
° cos &
o

& o is always between -7 and w. - The mean anomaly at the initial

condition is:

=go~esin Eo

O




and the mean motion, n, is

-2E V-2E

so the time, to,' from perilune to the initial point, T = 0, is

t = My/n
also,
n  _ 3n JE
da. 2E  9a.
J )
. 1Y)
Then, : (1-¢%) " (e sin 0 ) -
es;n o~ 1+ecosOo

1/,

2 .
» d(e sin& ) 5 (1-e%) “/ da. 9(e sin 0 )/8a,
o - iy o 3
¢ - 1
e sin 5 aaLj (l-eZ)_/‘2 e sin ©
o o
3 (e-cos 8 )/ oa,
o 1
l1+ecos B .
o
9 (e sin &) -e Sinéo 2 sinE 0 (esin® ) e sing (e cos @
. o _ de o} o’ o o)
Baj 2 (I_Iez) aaj sin Qo ) aj 1+ e cos Go an.
| 2
9 (e sin Eo)_ -e 51n(fo an (1_62) 8 (e sin 90)_ e singo 3 (e cos 90) ‘
8aj 2(1_'_32) Baj 1+§ cos O aaj l+e cos 6 0 2




apd E e2 + e cos Oo
€ cos = 1+ecos@o

9 (e cos E ) (1+ecos9 )(ae /aa +8[ecosO ]/aa) -{e +ecosO )a (e cos® )/aa

Ba (1+e cos 90)

9 (e cos 50) 1 5 eZ (l_ez) 9 (ecos Qo)

0a. = T¥ecos 0 9da. + aaj

j o 3 (1+e cos Go)2

Also, since
2 2 . 2
e = (e cos Oo) + (e sin Qo)

it follows that

e de =e cos 0 d(ecos 8 )+ esin® d (e sinb )
o o o o
so
5e 0 (e cos 90) . 9 (e sin Go)
52, . ©°° go L EW T sin 9o oa.
J ' J J
Since

'& - -1 esingo,
o - ‘an ecosao

it follows that 9 (e sin g ) 9 (e cos& }
85 ecosg -esmé — 5a.
o _ 1 J :
0 3 1 + tan® £, (e cosgo)2

10



SO

. 850 cos £, 9 (e sin 50) e d (e cos 50)
da, o da, o} ga,
J J
Since
Mo = éo - e sin 60
it follows that:
3Mo = 350 e cos é ° ‘E - sin de
da. ~ Oda. o Jda FER
J J L J
5 ) 5 i sin 50 5 eZ
= (l-e cos ¢, da 2 e Ba.j
M ' i 2
e ° ° = (1-e cos f) {e 850 - Sln(fo g e
da, o \ da, 2 9 a.
J J J

At any time T after the initial observation, the time from

perilune is

t=to+T

and the mean anomaly is

M = nt

The corresponding eccentric anomaly must be computed by

solution of the equation

M= &-esiné

11



and the values of sin E and cos Z

1

found from_f .

Then the trigonometric functions of the central angle are

; > i/7 ' ’
sin 6 = {1-e7) sin &
1 -ecos 5,
and
cos 8 = -S50°° E-e
i-ecos &
Now, .
22
tan 5 _ sinf& _ {(1-¢“) sin 3
T cosE& e + cos. g
so
8 & _1l-e cos & 53 sin & Bez
[a) - 2 if- o - o
aaj (1-e%) /7 c : 3o (1-e2} oaJ
Then from
o e
M = C-esiné
it follows that
oM - (1 -e cos& } 8 & - §}_;“-€ 8.32
ga. ! TGa e Sa.
J J J
_ (1l-e cosf‘}z 62 zinf { l-e cos& . 1\ oez
- 2. & Sa. Ze 2 | Da
(1-¢%; "2 73 1-e / J
.2 o . . S 2
e oM _ fl-e cosZ; e 086 in& 8‘62 _ cin & (l-ecosZ ) de
ga. 2, +f Ga. Z da. 2 da.
(1-¢°; 72 %5 °%5 2 (1-e%) j

12



Now T is not varied when the orbit parameters are sot - to
should be held constant in taking partial derivatives with respect to the

- orbit parameters.

t-t = (M-Mo)/n

and
8(t-t) 8 [(M-M_)/n]
(o] G B
= - =0
da. Gga. :
J J
so ‘
1 2 (M—Mo) - M'-\/20. en 0
n da, 2 da.
J n J
1 .B(M -MO) ) M-NL 3n BE o
n da. ‘ 2z 2 ga,
J n J
or
AT ="
e aMo +e 3 M o 0x . 8M
Da. ) 9a. =~ Ga.
Jj J
Setting the two expressions for e 58; equal to one another,

we find

A l/ o
5 Ny M
50 (1-2) 2 3(M-M) . { 5 M
€5z, T 2 0 © Fz. T {® 5
i (l-e cosg) S S




~ Setting &£,0, and M equal to ;’;o’ 9., and M_ we find

1L

9 (g-go) _ (l-ez) 3 (M—Mo) e 8E+sin£ (l-e cos & +1) ae'z
8aj» (1-e cos 5)2 2E aaj 2 1__{_32 Baj
2- 1/7 sin & l-e cos & ' 2
-t ? o( o+1) de
(l~e cos 5_0)2 2 1--e2 aa'j
: oM
+ (1-e2)]f2 e a'a o 1 - 1 >
j {il-e cos f) (1-e cos éo)
y PR
_ (l-ez) 2e 3 (‘V‘-Mo) 8E | sin £ ( l-e cos & . 1) Béz
(i-e cos & )2 2 Oaj 2e I-ez ’ Baj
1/2‘ =
2 sin& { l-e cos & 2
_ (1-e7) e o ° . de
(1-e cos & )2 22 ‘ l-e2 aaj
o]

R |
1/, (vaM \ -2 cos &£ +ecoszé +Zcos$-ec052§
2 o _ o o)
+ (1-e7) e le ; '

aaj i {1l-e cos& )Zv(l—e cos-{io)2

14



f 3(M-Mo) OE sin & l-e cos’vﬁ i1 de
ZE da, ' 2 o oa.
3 l-e J
{1l-e ;:osg)Z
| in g l-e cos 50 .1 e
6(0-9() 1/2 o 2 Da,
2 < l-e 73
B3, - (e N~ z
j (l-e cos éo)

(cos &~ cos £) {Z-e | cos €+ cos EO]) v

+ e e
(1-e cosgf)z (1-e coséc’)2 aaj
.
Now since
T = ‘ HZ - l
. g (1+ e cos o, j
and
r= -—E—L—q?-— sin ©
it follows that
dr _ r OH .T de . 06
da. 2 H Ja. = Tite cos 0 cos © da. sin 0 {e aa.)
J J J J
and’
8r _ g sin 0 + cos 8 e 89’1!- £ 8
ga. H g Sa. H 9da.
J 3 J J J




Now

sin (6 - 0.)) sin@cos § - sin® cos O
o o o o

]

cos 9 cos Qo 4 sin € sin Qo

cos (6 - Go)

and the components of T in the x'y'z' co-ordinate system are:

- i

x* 1 rcos (0 - 90)-}2,

Xt=f y' i= r sin (0 - Qo} gf
z} 0 ' gj ]

)

and the components of r in the same co-ordinates are

- T “
31 -2 31 - % 3 -
ks — sin {® QO) + & cos (@ 90)
It =l 3t - — - L% g4 -
X' =ty = = cos 8] GO) - T sin (6 Qp)
z! 0
- J

The ¥ ¥ Z co-ordinaie system is Earth-centered, non- rotating
and right-handed with Z normal to the plane of the Moon's motion about
the Earth and directed at an acute angle to the Earth's angular velocity
is in the direction of the Earth-Moon line at the time of the

-~
vector. x
initial observation. Then the position and the velocity of the Moon with

respect to the Earth are given by:

r'\i o cosw T
i m “m m
~ —~ .
X =y ={p_sinw_T
r~
Z 0
m_J L .




and

2 -\ - ~ M
X =D Y
m m ‘m
o ~ ,
X = Y. = w ¥
m m m n
Z 0
m
(. b - -t

in which w_ is the angular rate of the Moon about the Earth and P is
the Earth-Moon distance.

The xyz co-ordinate system is Earth-centered, right-handed
and non-rotating. The z axis is in the direction of the Earth angular
rotation vector and the x axis is in the plane of the prime meridian
at the instant of the first observation. If X\ is the observing station
latitude (measured positive North) and « is the observing station

longitude (measured positive East), then

~Xd 7] ,’pe'.cos)s.cos (weT+af)a
XdA= Y4 = P, coshsin(weT-i-oz)
L Zq P sin \ B
and
~ M — -
*4 -we‘yd»
}'(d: Vg [T | “e*a
'zd 0
- . L »

17



in which Pe is the radius of the Earth and w, is the Earth's angular

rate.

‘ The latitude and longitude of the sub-lunar point on Earth at
the instant of the first observation are L and £ respectivvely. The
inclination between the plane of the orbit of the Moon about the Earth
and the Earth's equator is 3, as shown in Figure 1. It must be specified

whether the angle vy in that figure is greater or less than w/2. Then

sin L

siny= —5p

ey ~a-=’_'"—'-'-"-" + \ ’1 - Sinzy if 'Y s 1T/2
Cos y=
1 A
- - sin” yify= 7/2

sin (# -£) = tan L cot §

cos

cos (b -4) = o T

. . . L
sin b =-31nﬁs1r_x(—2—--y)-.
Lin b = -sinfB cos vy

cos b = +‘\/1 - sin‘2 b

18



tan b

]

sin v

tan B

cos(; - v)
cosy = <55

= Siny

cosv = ——i
cos ¢ =cos (b ~2) cos'f - sin (d - ) sin ¢
sind = sin (b - L) cos £ + cos (% - 1) sin{g
cos (b+ v)=cos b cosy - sind sinv
sin (6 + v) =sin b cos v + sinv cos $

The rotation matrix K rotates vector components from the
Xyz systerg,j;g\t\he-’;‘c”?"i' system.

"

- = ~
K1 K Kis3
K={ K, Ky Ky
L K3 Kj; K33



K” = cos L.cos {
K12 = cos L sin ¢
K13 = sin L,
K, = cosb ,Cos (b+v):
KZZ = cos b sin (% + v)
K23 = sin b
K31 = KpKp3 - K3,
Kip = K3 Ky -Kp K3
Kiz = KKy - X%y
X, = KXy
%, - xk,

The rotation matrix L rotates vector components from the
X % Z system to the x' y' z' system. The relative angular positions

of these two co-ordinate systems are shown in Figure 2.

— -y

cosl sing 0 | B 0 0 cos £ sinE. O
«L =|-sin {cos {0 0 cosn éinn - -sin £ cos £ ;0
0 0 1 | 0 -sinq cos n_J 0 0 1]



*

Figure 1.
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»

Then the vectors s and s are

" ~ -N
x+LE_ -%)

»
"
«
0n -
I

and

o
m—
]
\<.
n -

(

Ne
n -
L

n I e
il
o
——,
]
x.
o
+
<
m -
-
o
+
N
o

"Denoting the partials of Xs' and Xs' with respect to a.J. by
R'. and R',
J J

Cox' | | 8 (6-5,) | or ]
Pm— - I L ——————————— - ——
da, y oa. + cos (0 go) oa,

J J
"9 (8 -6
_8__}_'_'_ = ' : o or
Ri=loa | 7| ¥ ~Tam tein(878) -
J J J
P a.x'-a,y' .
gz 5., 247 8¢ : -
aj 3j H Joag
o -t s el

22



and

= e e
ok . '
-5-5‘3- - { }lsm {9 - 90) +{ }2 cos (9 - Qa)
. 9(0-0) ,
o ley |l /L 8B . H e8r . ! o o
Ry = da. | {r FER 1_2 da. tr 2a. cos (6 go)
j i i i 4
V ‘ a(g-g ) .
+{--§- °+ar} sin (0-0 )
r da. da. To
, J JJ2
LN ] L |
az| asx - a4 e q
FEW 83; = 8¢ Las '
Finally,

98 _ 1 , T 2, [', 5 ,]T,
’a'a;"é‘{xs RE+ | X -5 X | R

and

98 ('I‘p) 98 (Tp)
da. da.
5 3 J

NC, .

1]
T 1=

in which TP (p = 1,..,N) are the times of the N measurements, Tp
being zero at the initial measurement.

The covariance matrix of the parameters is simply

) [co{r a. a.} — [NC. ] -
i%j Vi,

in which o~ is the mean square Gaussian error in the measurements.



"

Figure 2.
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APOLLO NOTE NO. 83 H. Engel
18 July 1963

USE OF RANGE AND RANGE RATE DATA

Range Onlz

From Apollo Note No. 43, if the measured quantities, f(t) , have
a fixed bias, b, and a zero mean stationary Gaussian noise, n(t), impressed,
then

fm(t) = fc(t) + b + n(t)
and

cov (a;, 3,) = % (ney ! i,5=1,...,17

. . 2. . . .
in which o=~ is the variance of the Gaussian noise,

fc,(t)» = fc (t, al,...,aM,b).
N of_ (t) B8f (t)
c 'k c Yk ..
Nc'i,j = Z e e i,j=1,...,6
) =1 1 .J
, N afc (tk)
NCqj = NG9= ), Tms — ITLees®
k=1 J
and
NC,{’?: N

Now, if the quantity measured is the range from the DSIF or
MSFN station to the vehicle orbiting the Moon, then from Apollo Note
No. 82,

s = X -X. +T
, m :



s 88 _ 7. 85

as., da

J J

_ = ., 0T

= 8 da.

J

or
% p s _ 1 - . BT
da. =~ 9da. s da. °

J J J.

Now, expressions for s, s, ‘and -éa—ai are available from Apollo
Note No. 82, so it is simple (in theory) to dltermine the covariance
matrix of orbit parameters and radar range bias using this note and

-Apollo Note No. 82.

Range and Range Rate

From Apollo Notes No. 43 and 82, the likelihood function of the
data is:

L= NN, exp (- L)

2 Ny N
(2 T ) o—R O—R 2

in which Nl is the number of range measurements, 1\]’2 the number
of range rate measurements, and
i' : I\‘LL..I R_(k)-R_(a.,k)-Db 2
20-% k1 | T c i
R

2

N2 :

. 1 - .

+ 26—;“ Z ‘[Rm(ll)- RC (ai,l)]
1=1




To obtain the covariance of the most likely ai's and b, set aZ/aai
and 0 I/ab equal to zero, and, assuming N1 and N2 are sufficiently great,
obtain a set of seven equations linear in the random perturbation quantities
Ba, and ob. ‘ 4

This leads to:

. N N ° .
c 1 . 1 aRc(k) 3Rc(k) . 1 2 3RC(1) aRc(l)‘i . .
i’j-‘- 0_2 Z 3ai aa-. 0_.2 Z da. da. 313 J= 1,00 ¢,
R k=1 J R 1=1 t J
L N er )
C., .= C. .= ——"ux c
7'3 J17 2 da,
R =1 J
N
1
C7,7 - C_Z
R
and
-1 ..
°°V(ai’aj)='c ij=1,...,7



APOLLO NOTE NO. 84 L. Horowitz
17 July 1963

NOTES ON L. S. PONTRYAGIN'S THEORY
OF OPTIMAL PROCESSES (II)

INTRODUCTION

The previous note on this topic (Apollo Note No. 76) sketched
Soviet Academician.L.. S. Pontryagin's method of optimal control
synthesis for linear problems. It was shown that optimal controls for
this case were step functions assuming'their extreme values almost
everywhere. _The linear position servo problem was then solved to
illustrate the technique, and restriction to the linear case emphasized
‘as the factor limiting general applicability of this method,

Further work by Soviet Academician L. I. Rozonoer has general-
ized this method to the case of non-linear payoff functions by an extension
of the Pontryagin theory.* Rozonoer shows that there exists a function
H of the state and control variable of the system with the property that its
absolute extrema completely characterize optimal selection of the control
functions. This paper sketches Rozonoer's results heuristically and
shows it a straightforward matter to apply this formulation to non-linear
problems. Illustrative examples are given. Finally, it is shown that
although formal relations defining optimal controls for non-linear problems
can now be written directly, a two=point boundary value simultaneous non=
linear differential system has to be solved in general. Thus, it appears
that a computer will have to be utilized to generate optimal controls for

non-linear cases.

Pontryagin Maximum Principle: Following Apollo Note No. 76, we con-

sider the transfer of a vehicle between two points with boundary conditions
specified. Bounded control functions u, (t) are available to mechanize the
transfer—we wish to select the "optimum!'' controls ui(t) providing the

most "economical’ transfer ‘(the criterion for optimality may be economy

t .
t

T L. 1. szono_ei', Pontryagin Maximum Principle in the Theory of
Optimum Systems, Avtomat. 1 Telemekh., 20, (1959) —




of fuel, time, bhazard, etc., or even a "weighted'™ combination thereof),
The equations of motion are

X, = fi(xl’ . ',.x

1

n; ul’ £y, ur);‘ i=1, 2,-.' * *y Iy (1)

-

where the x, are generalized coordinates in the phase space of the problem.

We take the bounded control functions u. (t) as normalized:

lﬁi(t)| =1, t=t.

Initial conditions are given:
I
xi(to) = xg

° « O
X (t) = x5

A final condition is also given:

ot
x; () = x4

o f
X (tg) = =7

for some tf.. We wish to select the ui(t) “ui(t)[ = 1) so as to minimize
tee (This assumes we are interested only in time economy; only a minor
modification is needed to minimize (maximize) some other state variable
or linear combination thereof). "
To illustrate the Pontryagin Maximum Principle, consider first
the case of Equation (1), linear in the state variables:
x =A_}§+_’t_>_1u1+""+_’t_)_rur (2)
as in Equation (3}, of Apollo Note No. 76. We have already shown that

for this linear case, optimal controls are given by
: : ' 2



‘u(t) = sign(_qi (t)-_t_:_i) . (3)
as in Apollo Note No. 76(12). Here,

gt = ) e 90,
a
where _\_[ia (t) generate the fundamental.sy'stem of solutions to the corres-

~ ponding homogeneous adjoint equation

b= -4y (4)

(A' is the adjoint (conjugate trahspose) of A and c, areconstants
defined by the boundary conditions).

Following Rozonoer, we can now produce a new function H of
the state variables X, and the control variables | u, which assumes
absolute extrema when and only when optimal ui(t) have been selected.
Then, once we know how to write this function H (it will be shown that
this is a simple and straightforward matter), we need only locate the

zeros of _83_% to determine the optimal controls. Generalization to
the non-linear case will complete the problem.

We first note that Y (t) * _5_:_ (t) # constant as shown on page 10
of Apollo Note No. 76. Further,

Y= LR g (0%
: a

by definition (page 10, Apollo Note No, 76) where ¢ tl:a is the tensor
identity element (by the normalization of ¢ and L[J ) and WL(t) is the
outward normal to the convex set Q(t), as 1llustrated in Figure 3, page
7, of Apollo Note No. 76. It is clear on physical grounds that the angle
between the outward normal " (t) and the velocity vector._;_:. (t) never

1

Ky
exceeds .



‘% (t)* ¢ (t) = constant == 0 |, (5)

'We now define the function H by

H=g () x0] ; *(6)

by (5), it is a non-negative constant when optimal controls are used
(since we are then on the boundary 8Q of )} ((t) as shown in Figure 3

of Apollo Note No. 76). We can now show that the function H does indeed
posséss the advertised property; viz., that it assumes an absolute
extremum when optimal controls ui(t) are used., For by using (2) in (6)

(assuming only one control ui(t) for the moment), we have
H = §(t) Ax(t) + §(t) - bu(t) = 0 . (7

By (3), we have already shown that opfimal controls require u (t).
= sign (b §(t). Hence, $(t) - bu(t) = ¢ (t) * bsign (b (1) =0,
so that H does in fact assume an absolute extremum when the optimal
u(t) is chosen. This argument extends inductively to the case of multiple
controls, - so that optimal control synthesis precisely corresponds to
ma‘xiArnizing H. '
Before proceeding to the non-linear case, we first see how H
" is formed for the general linear case. Taking the optimization problem

(1) with boundary conditions specified, we introduce new variables P; by

. o af, |
. p; (t) = -'21 p;(t) P (8)
J:

(These P; (t) are just the variables of the adjoint equation (4), since with

. — - a fi . .
the matrix A takgn as A—{aij> where a,ij = -5___xj ; {assumed constant
S . 9f,
for the linear case). then A' = \aji' = 5 J _; just the transpose of A for
Xz .
. . 3

the case of real coefficients). Denote the variable to be optimized {the
""payoff function', as it is sometimes called) by S. Introdgcing new

4



variables if necessary, S can always be written as a linear combination
of the state variables x,:

n

8 = Z c; x(T) | . (9)

i=1

Here, T is the time required for execution of the .transfer; it may or
'may not be specified (if T itself is to be optimized, simply introduce

o+l = 1; thenS=xn+1.

See page 3 of Apollo Note No. 76 for further illustrations). Since (8)

the new state variable x by the relation x

n+1

is a first order differential system in the P;» we are free to impose

a boundary condition-——the obvious one is

Pi(T)= -C; i=1:"'»h ’ (10)

where the ¢ ; are given by (9). The function H is then just

n
Ho= ) pylo) k(0 ), (11)
i=1

precisély as in (6), where ;{i T E ST AT R ur)

" asin (1), Differentiating (11) with respect to p yields

¥, = 9H . (12)

1 .
i

@

Further, differentiating (11) with respect to X, yields

. ]
, = - == by (8) (13)
P; D y (
_ i
with the Boundary conditions X {0) = x; and P; (T) = - c: i=1,

2, * ¢ *, n. Note that (12) and {(13) are precisely Hamilton's equations

for the generalized coordinates Xy and P;-

¢
1



Application of the Maximum Principle

To apply this prihciple to a specific problem, we take the case

governed by equations of motion linear in the control variables ui(t) :
x, = fi (xl,.-'- ., xn) + Z 'bik uk(t);ir-‘ 1, <« », n, (14)

Boundary conditions are: xi(O) = x; , ;ci (0) = x
control functions to be bounded by 1:
u; 0] = 1.
By (11), the H-function for this system.is
B n r
H = Z Pi~fi + Z Z bik Py Yy (15)
i=1 i=1 k=1

Then by the Maximum Principle, optimal controls are achieved by
maximizing (minimizing) H, which simply means choosing the u, 80
that

n
u, (t) = sign Z by, py )], (16)

i=1

precisely as argued on page 4 of this note. Kopp points out that if
}: bik P; (t) happens to vanish identically, then the payoff function
i=1

S = Z c; x; is insensitive to the particular control variable uk(t).

i
Note that the payoff function S = Z c; x; appears in the problem

tﬁrough boundary values selected for the adjoint variables p i (t):

P; (T) = -c; i= 1,9+ 9° ¢, n, whereT is thev time required for

the transfer. '

1

= Optimization Techniques, edited by G. Leitman, Academic Press,
1962, p. 274. 6




Generalization to the Non-Linear Case

The proof of the Maximum Principle given in this note rests on
the development of optimal controls u i (t) given by (16):
n .

uk(t) = sign Z ‘bik pi(t) . (16)

. This relation was in turn obtained from the convex properties
of the loci of aéces sible terminal points in phase space, allvas argued
in Apollo Note No. 76. Fundamental in this argument was the lineari-
zation of the equations of motion (3) of Apollo Note No. 76, since this
established the convexity of these loci (page 6 of Apollo Note No. 76)
and hence (16) of this note.

The basis for this linearization was the truncation of the Taylor

Serzes for f

n n n 6Zf
i
Af_i (xl' e e Z x + > Z Z -5-x_k_5x1_Axk_'Ax1
e e e e, (17)

where we assume that over sufficiently small intervals of time, the
higher order increments Ax, Ax, + « + ¢ ¢ can be neglected in proving
that the Maximum Principle (16) still obtains over each small increment
At.”‘< Hence, H assumes an extremum at each point of the trajectory and
hence holds the extremum everywhere, Thus, a necessary condition for
optimization of the payoff function S is alwayé that the H-function attain

" an extremum with respect to the control vector u = (u1 s ® %0, ur),
provided only that the equations of motion are linear in the control func-
tions u.. ‘No linearity in the state variables X is assumed; only the exist-

ence of the mixed partial derivatives of (17).

* For a more thorough discussion of this result, see Leitman (loc. cit.,
p. 260) and Boltyanskii, Theory of Optimal Processes, Izvest., Akad. Nauk
S.5.5.R. Ser. Mat. 24, 3= 43 [1980). 7




Conclusions

Optimal controls u, (t) optimizing (1) together with indicated
boundary conditions have been shown to be fully characterized by
absolute extrema of the H-function (11}, This criterion is usable .
provided only that the equations of motion are linear in the controls
(as in (14)) and that the mixed partials of fi with respect to the state
variables exist. Once the H-function is formed (as in (15)), the u,
are selected so as to maximize H. This is the Pontryagin Maximum
Principle.

The next Apollo Note on this topic shows how optimum thrust
control is obtained for a variable-mass vehicle being transferred
between two points in phase space in a three dimensional central
gravitational field in such a way as to minimize fuel expenditure.
Other problems under consideration include:

(i) Optimum transfer through hazardous regions

(Van Allen belts) ,

(i) Optimum thrust regulation to obtain desired reentry

dive angle |

(iii) Optimum transfer with fixed probability of safe return.



APOLLO NOTE NO. 85 J. Holdsworth
» 22 July 1963

THE EQUIVALENCE OF DATA PROCESSING SCHEMES
IN A LINEARIZED ERROR ANALYSIS

The purpbsé of this note is to demonstrate rigorously the sta-
tistical equi?al‘ence of certain pairs of data processing schemes under
- the assumption of a linear propagation of random errors in the estimators
of certain orbital parameters.

First, vs;e consider that we are observing a time series I.{m(t)

which may be represented as:
R (1) = R (a},...2;,t) + n(t) (1)

where n{t) is a white stationary zero mean gaussian process with
yariance o—nz. We assume that we know the functional dependence of
Rc (a.l. X t) on the orbi.t parameters a;. Then, on the basis of N1
pieces of data Rm(l), ces Rm(Nl)’ where NIE 6, we compute the:

maximum likelihood estimates 2.,... éé of the parameters CITRRRE Y

1’

Apollo Note No. 43 gives a method for computing the covariance
matrix of the errors in the estimators of the parametei's as a function
of the noise variance o—n2 and the number of independent observations
Nl' It will be recalled that the analysis in that note was based upon
the assumption that the number of pieces of data N, was sufficiently
large so that the following linearization was valid:

A A
Rc(al, .o

. 6 9R
_: V2% A
aé,t)-Rc (al,...aé,t) +i=1 aai (al,.. aé,t) Aai (2)

where

A : .
Let Aa denote the column estimator error vector whose components

are: Qi - ai,for i=1,2,...6. It was shown in Apollo Note No. 43 that



the covariance matrix of the estimator errors is given by:

Cov (a4 (N)) = o c™F () (3)

where the i, jth element of the matrix C is glven by:
Ny .

BR 8R
Ci j(Nl) = Z (a.l,..a.6 tk) aa (al,..aé ’ﬁ() (4)
' k=1 34 J

Furthermore, if the parameters were estimated on the basis

of N1 + N2 observations we would have

A 2 -1
Cov (al (Nj+N,)) = o2° C (N, +N,,) (5)
where: N;+N, »
8R 8RC
C1,j (N1+N2) = da., (al""aé’tk) da, (al"'aé’tk)
k=1 i J '
Nl . L ]
BRC BRC
= Z 5a (B1re2g ) g (B eeagty)
k=1 ! J
N, OR_ oR_ .
-+ Z al (als’°'la'6’ k) aJ (ao"'aét k) ()
k:N’1+1



In Equations (3) -(6), we have made the dependence of the covariance
matrices upon the smoothing times notationally explicit by writing
Cov (Aé (Nl)). . etc. '

Now assume that N1 observatzons are made flrst and that an
estlmator vector /a\. (N ) is computed from the observations R (tl). oo
R m
maximum likelihood estimate of a.. Then it follows from what has been

where the 1th component of the estimator vector a A (Nl) is the

said that the covariance matrix of the estimator vector a (Nl) is given
* by the expression in (3).
Next assume that the same parameters are to be estimated from

(t Nl +1) eeee, R (tN +NZ} w1thout the knowledge

of R (tl). oo Rm (t N ). Denote the resulting estimator vector based
A |

NZ ‘observations R

uponR ...R

m (tN1+ 1) (N1+N ) by 2

large so that the linearization in (2) holds, we may write:

4 (NZ). Then if N, is sufficiently

A, 2 -1
Cov (Aé (N,) = o2 ¢t () (7
where: lei-Nz . .
_ R R
S 5 W)= ) g5, &) Ba W @)
k=N,+1 : J

It is important to note that the estimator vector 4 (NZ) was com-
puted without assuming that the computed value of the estimator vector
a. (Nl) was known and conversely. What we wish to show is that know-
ing only the computed estimator vectors 4 (N ) and 4 (N ) allows us
to form a new estimator vector of the parameters such that the
resultant accuracy is the same as if we were able to make the total

number, N +N ofobservatlons R (t ).-- R (tN ), R (N +1)..-

2’ 1

R (t ) fll‘St and then estimate the paramete rs.’
N, +N,

To show this, we assume that we have computed a (N ) and

y (NZ) as described above. Knowing the estimator vectors z/x\ (Nl) and



&~

2), we define the new estimator vector@ (Nl, Nz) by:

¥ (N}, N,) = Cov (al (N, +N,)) [COV (x2 (N})) 2 (N,) + Cov (A; (NZ))au\;z) ] .
- {9)

Note that the new estlmator £ (N NZ) is obtained from linear operations

on the vectors 4 (N ) and 4 (NZ) and that & (Nl’ NZ) depends upon the

observed data only through the estimator vectors 2 (Nl) and 4 (Nz) The

proof of our assertion will consist of showing that: -

”~ A
Cov (A% (N, N,)) = Cov (A% (N + N,)) (10)

If we let a denote the column vector whose ith component
is a,, then subtracting a from both sides of (9) yields the following

expression for the estimator error vector ey (Nl’ NZ)'

A% (N}, N,)= Cov (A2 (N +N,)) [COV"l (afing)) ol v+ 'COV‘I(A’A(NZ)AQ(NZ)]

(11)
The covariance matrix of the estimator errors A% (Nl, NZ) is
given by:
"/ - ~ ~ 'I‘
Cov (MY (N}, N,)) = E [Aa (N, N,) (0% (N}, N,) ] (12)

where T denotes matrix transpdsition and E is the expected \}alue
operator which is integration over the bbservation space with respect

to the joint distribution of the components of Aa (Nl) and Aa (NZ) Using
the symmetry of the matrix Cov (Aa. (N + Nz)we may explicitly write:

Cov{n¥ (N,, NZ)) = Cov (Aé(NlJrNZ)) [Cov-l(Ala\.(Ni)) + ccv'I(AQ(NZ))]COV(AQ(N1+1\IZ))

(13)

where in (13) we have used the fact that the maximum likelihood error



vectors AQ(NI), AA(NZ) are independently distributed with asymptotically

multivariate normal distribution with zeroc means so that terms of the

form:
E {COV'I(AQ (N, )A%N) 2 An,) T cov! (AQ.V(NZ))} =0

thus. yielding (13).

However, from Equations (4), (6), and (8), we see that:
Cov™! [AQ. (N1+N2)] = Cov™! [Aé (N,) ]+ Cov™1 [AQ (NZ)]

so that
Cov (A% (NI,NZ)) = Cov (AQ (N + Nz))

. which proves our assertion.

Intuitiver we may say that a priori distributional knowledge
-obtained from prior observations has a modifying effect on our later
data so that the effective sample size is increased. It is worthwhile
to note that if the noise is auto-correlated, then quantities such as the
expression given by (14) will not in general vanish and our assertion
will no longer be true. ’

Next we consider the following situation. We assume that °
observations are made as before over a given interval of time --
say E.{m (tl), ces I.R.m(tN). On the basis of these observations we wish
to estimate the values of the components of the position and velocity
vectors at some initial time t = 0, Let these quantities be denoted by
x, (0)  wherei=1,...6. |

The. value of the quantities xi(t) at an arbitrary time t depends
upon the quantities xi(O). .,,.xi(O) and conversely. Thus there exist
relations of the form:
x,(t) = £, (x,(0), .. .x6(0).it) i=1,...6
and '

xi(D) =g; (xl(t), coa xi(t)) _

(14)

(15)

(16)

(17)



-

Having originally estimated the quantities x5 {0} from our
observations we may use (17) to prechct values for the x. (t) based
upon the estimators % (0). - x (O) Because of errors in the estimator
state vector x (0}, there will also be errors in the predicted quantities

Ql(t). ... %,(t): Since:

i of;
A%,(t) = Z 70 ax_(0) (18)
& .
Then:
) of. of. ;
A% (1) Ax (t)- Z Z ax;(oy " ’31(0) ax(0) 2%, 0. (19)
: 1=1 k=1 ki . A

From (19) we see that the predicted covariance matrix for the

quantities 'in(t) may be written
Cov (A% (t) )= J Cov (AQ (0}) 3T (20)
‘where J is the Jacobian matrix whose i, jth element is ﬁl—(m .

On the other hand, instead of first estimating x, (O) from the
data and then predicting ahead to the X. (t) on the basis of the estimators
4 (0), we could have estimated the x, (t) quant1t1es directly from the data.
Let these direct estimates be denoted by x (t) We wish to show that
under the assumptions of a linear propagation of errors that the-

two methods are equivalgant, i. e., that
Cov (& 4 (t)) = Cov (A% (1)) (21)

To do this we recall that the i, jth element of the'inverse of the
matrix Cov (A:Q (t) is given by'
N 5%, (t) CEAG) (22)

n

On the other hand, from Equation (20), the' inverse of Cov (A% (t)) may

be written:



-1 -1
Hagm)=3T) covt (ad) s (23)

Since the inverse of the Jacobian matrix is the matrix whose
2g. -1
i, jth element is 'é—x_l'ﬁ)' and since the i, jth element of Cov (Ax (0)) is

1 p 81}‘c(tk) M‘{c (tk)
2 Z 9 x.(0) 3 x.(0)
T k=1 ! ]

then it follows that the i, jth element of Cov (A_’i’ (t) ) may be written:

BR_(t) OR_(t) og

Z Z Z 5 ® RO TR0 mm e

4=1 m=1 n=1

However, for fixed k, we note that

6 o, OR(t)  OR_(t)
ox;(t) 8x,(0) = 9 x; (t)

1

and . ‘ - (‘2’5)
6Z agm aRc(tn) 3Rc (tn)

ox,(t) ax_(0) = "—rraxj t

m=1
thus: é . = E’ . and
1, ) 1, ) .
Cov (A% (1)) = Cov (A% (1)) (26)

which completes the proof of equivalence.



APOLLO NOTE NO. 86 L. Horowitz
22 July 1963

OPTIMAL CONTROL THROUGH HAZARDOUS REGION ‘
IN A 3-DIMENSIONAL GRAVITATIONAL FIELD

INTRODUCTION

The Pontryagin Maximum Principle was sketched in iApollo
Note No. 84 where the problem of optimum transfer of a vehicle
between two points in phase space was considered. It was shown
that under very general conditions there exists a point function H
on the state variables X and the control variables u. with the
property that its absolute extrema completely characterize the
desired optimal control functions u, (t)e

This paper considers an American Rocket Society presenta-
tion (August 7-9, 1961) dealing with the Maximum Principle as it
appiies to the optimal control of a variable-mass vehicle moving in
a central gravitational field.® 1t is shown that application of the
maximum principle to the optimal selection of control functions yields
a simultaneous system of non-linear two-point boundary value differ-
ential equations whose solution defines the desired optimal controls.

An intefesting feature of this technique is that the "payoff
function' to be opﬁmized appears as an eclectic combination of the
state variables with "weighting constants'™ chosen to best define the
optimization criteria. We assume a maximum time T is specified
for the tra.nsfer, as dictated by the maximum tolerable time in a

hazardous radiation region.

SOLUTION OF THE PROBLEM .
The following application of the Pontryagin Maximum Principle
is essentially that of the American Rocket Society Conference (D. Lukes)

_presentation previously cited. Applications of the Pontryagin Maximum

* ARS Guidance; Control and Naviga’tion Conference, Stanford, California
August 7 - 9, 1961: Pontryagin Maximum Principle presented by D, Lukes




Principle are given in terms of references to Apollo Note Nos., 76
and 84,

Symbols used:

Xyr Xgy Xgt rectangular coordinates
*2 7 %1
Xy = X4
Xe = Xg
Xqt mass
Uy, Uy, U components of thrust
u,: ‘mass flow rate
c: constant exhaust velocity
G: ‘gravitational constant

| L2 2 2
x| - Vi xd v
T: time to effect transfer

Equations of motion (84 - 1):

Xy = X,

X3 T X4

*5 = Xg

;{ _ cu1u4 ) le_

2 X XA
cu2u4 G»x3

We
¥~
b

-
fal
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Payoff function:

We wish to satisfy the end conditions xi(T) = x'Ii' s i=1, 2, **», 6
T
and also minimize the net fuel expenditure f Uy (r)d 7. Thus D. Lukes
' o 0

suggests that the payoff function to be minimized is

| 6 - ) T
S = xg(T) = }: %xi(xi-xl;) R f u (r)dr (1)
' i=1 ' 0

where Ki are non-negative arbitrary weighting constants. Thus, we

introduce the additional equation of motion
6 |
X, = Z .8 X, - X T) %, + a_u (2)
8 i i 71 i 7 4
i=1

Adjoint variables:

) 8 By
Introduce P; (t): I;i = e Z pj 5 by (84-8),
) T 1.

where pi(T) = 0, i=1, 2‘, s e 0 73 PS(T) = -1,



Pontryagin H~-Function (84-11)

8
Z P ;:i (3)

H =
i=1
cu x
It S 7 |
= 7[EE‘C(P7+)‘7)]+
T
[Pl Shyp by o-ox ]xz * [P3"‘3 (x5 - xg )]"4
T GP*X
+[Ps"‘5 (xs'xs)] X6 - 3
lIx 1]
X = xp x5, xg)
P = P, - M, (x -xT) -AN, (x, - x,) -A (x -x,)
= 2 " N2 VF2 TFL o (Pg m Ny Wy T X 1Pe TR K - %y
and we define
el =2 - = .
" APPLICATION OF THE MAXIMUM PRINCIPLE
We wish to minimize S = Xg (T). By the Pontryagin Maximum
Principle (84-7), H must be maximized with respect to u. By examina-
tion of (3), we clearly require u to be parallel to P and select uy = B
*7
when HP“ '--—c—- (p7 + 7\7) >0, = 0 otherwise. Thus, the optimum

%*
controls (call them u, ) are:



x _ [pp - My x, - XzT)i

N
s [Py - Mg x4 - x4 )|
N [ .
o Lne gt
? =]
(2 lRl - 3 e e >
u, =
0, otherwise
Denote uz by B‘(t).

Optimization equations:

We calculate the adjoint equations from (84-13):

. 8 H

'and obtain the desired simultaneous system:



X2

cB(t)[pZ - Xz (Xz - sz)] G xl“

7 NP II=I]®

cB(t) [py - 2y oy - xI)] G x,

xq IP]] B

*6

eB (1) [pg - Mg g - xg)] )
x| P

- B ()

M ’_"2 + ‘ﬂ;n? ([Pz - Ay xy - x, )l"

, T
R I | S TS )}

G
Myxg F TP ([P4 - Ny Gy - x])]
)\4 Xy - L'p3 - 7\3 (x3 - x3)]

~

.G T
My xg * T=IP? ([Ps - he bxg 5 24 )] -

N %y - [ps = M5 (x5 - xg)]

cB® el
o

%7

3(P ° X)x,

=1

.3(?" X) x5

TR

3(P - X) x

|
|

1=l ©

d



As pointed out by D, Lukes, equation (2) can be dropped from
the system once u bhas been determined, so the remaining problem is

to solve the preceding non-linear simultaneous system with the boundary

-conditions

% (0) = x;

P; (T)= 0
for i= 1, 2, » ¢, 7.
" ,
. The required controls uy (t) are then given by (4).

CONCLUSIONS

For optimal transfer through hazardous radiation regions, (4)
- provides optimal control for a variable mass vehicle traveling in a

3-dimensional gravitational field. The constants M ; 2ppearing in the
.payoff function (1) may be chosen to provide the best balance between
minimum fuel consumption and maximum 'terminal point'’ precision,

where by terminal condition we mean the specified end condition in

phase space. ,



APOLLO NOTE NO. 87 26 July 1963

"RENDEZVOUS AIDS

1. RENDEZVOUS ERRORS WITH IMU AND :
OPTICAL SYSTEM G. F. Floyd
In. this section we assume that everything is working ‘normally
except the LEM radar. That is, the IMU, AGC and on-board optical
system are functioning normally but there is no way to measure relative
CSM/LEM range or range rate. 4 -
According to MIT Report E1212, IMU Error Data for Apollo
Trajectories, p. 63, the 1 o~ uncertainty in LEM velocity at the end

of the lunar take-off trajectory will be 2.31 ft/sec. It is then reason-
able to assume that on the basis.of the long time available for CSM
orbit determination, the error in CSM velocity at any time will be the
order of 1 ft/sec. Therefore, at the end of the lunar take-off, if we
assume that the LEM AGC is programmed to keep track of both LEM
and CSM posifions and velocities, the uncertainty in LEM/CSM relative
range would be about | o4 WJ‘/

70 =

Vie. 3 + (1.0)2 % 3 stfsec.

This error will propagate on essentially a 1:1 basis during the
180° coast towards rendezvous, so as the LEM entered the terminal
rendezvous stage, the inertially generated error in relative vector
range rate (closing vector velocity) will still be about 3 ft/sec. At
‘this time the closing velocity will be the order of 150 ft/sec., and

the error in the inerﬁally computed relative range may be several miles,
leading to an error in the inertially predicted direction of the line-of-
sight of pérhai)s 10° and the predicted line-of-sight is about 20° away
from the relative velocity vector (see Grumman LMO-SOO-‘ZZ, Figure 1,
P. 6). Then the inertially predicted (1 o°) range rate error would be

150 (cos 20° - cos 30°) 22 150 (.94 - .86) = 150 (. 08) = 12 ft/sec.



However, with the use of the optical sight, the astronaut can
accurately determine the real line-of-sight direction and with this .
information, the AGC can resolve the compufed T vector along the
actual line-of-sight. In this case the error in the scalar ¥ will involve
only the error in the magnitude 'of:f and this has a 1 o~ of 3 ft/sec.

Thus, with the inertial system and computation of CSM/LEM
relative position, and the use of the angle pointing data in the computer,
we would expect 1 o~ errors in ¥ during terminal phase of 3 ft/sec.,
hence 3 o~ errors of 9 ft/sec. In addition, the inertial range data will
be wrong by several miles and so not of much help.

The conclusion is then that the inertiai, optical r and r data

will not be satisfactory for docking and some as sistance is needed.

2. WAYS OF USING DSIF IN TERMINAL :

RENDEZVOUS NAVIGATION H. Engel

There are many ways in which the ground stations might be used
to assist in the terminal phase of lunar rendezvous ir; the absence of a
radar on board either of the two vehicles.

The parametefs characterizing these techniques are the number
of ground. stations employed, the utilization of boost T/M data from the
vehicleé, the use of’ angular information from the vehicles and the use
of ring-around. The angular information referred to is the direction
relative to inertial space of the line-of-sight between the vehicles, de-
termined optically using either the IMU or celestial ‘'objects for a
reference system.

The discussion here is limited to the terminal portion of lunar
rendezvous. In this terminal portion, the range between the two vehicles
is assumed to be less than two nautical miles and the principal quantities. -
of interest are the relative range and relativeyrange rate.

Four second smoothing gives range and range rate of one vehicle
from the observing station with standard deviations of 30mand0. 1 m/sec.,
respectively. _

As only the terminal phase of rendezvous is considered here,
the CM/SM is assumed visible and the LEM capable of maintaining the

line-of-sight angular rate zero without g'round assistance.
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The simplest systém'uses only one ground station and a pre-
scribed terminal rendezvous maneuver. ‘It requires that the LEM
place itself in line with the CM/SM and the Earth, either closer or
farther from the Earth than the CM/SM, and by boosting normal
to the line-of-sight preserve this configuration. In this situation,
the ground station can determine the relative range and range rate
in a very short time. Assuming that the CM/SM orbit is known, the
relative range rate can be determined to 0.1 m/sec. in 4 seconds
and the relative range to 10 m in half a minute. If the CM/SM
- orbit is not known accurately, then using transponders on both
vehicles simultaneously, the relative range rate can be determined
to 0. 15 m/sec. in 4 seconds and the relative range to 14 m in half

a minute. The propellant cost of this maneuver must still be cal-

culated, but it certainly would seem to be within the 10% pad.

|~

If boosts are performed only in accordance with instructions
from Earth or if the LEM transmits its estimates of the magnitude
of such boosts, then the ground s;cation(s) can use past observations
together with estimates of the boost performed to obtain new values
for relative range and relative range rate. This case has not y.et

been analyzed.

1 A ’ _ Using only ground station range and range rate rendezvous
can be accomplished, but only with a great increase in the time
required. In this mode it is necessary to-observe the vehicle(s)
for a significant fraction of an orbit following any boost to obtain

relative velocity of 0.1 m/sec. Just how long these observations

must be performed has not been determined.

[




If the LEM is required to drive the line-of-sight rate to
zero, using the IMU or a celestial reference system, and transmits
the direction of the line-éf-sight to the ground, then the value of the
ground assistance in terminal rendezvous is strongly. depeﬁdent on
the angle between the line-of-sight between the vehicles and the line-
of-sight from the Earth to the CM/SM. If this angle is 0 or w, the
situation is the same as the first case described. If this angle is
a@proximately w/2, the relative range and range rate estimates are

degraded by a factor of the order of 50 even when using three observing

4000 n.pmi. apart simultaneously

(50= [Earth-Moon Distance] / [Station Separation] )
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If the lin.e-of-sight direction is transmitted to the ground,
and if boosts are performed in accordance with instructions or
telemetered to the ground, the ground can use this and past observation
data to determine relative range and range rate to better accuracy than |

with boost telemetry alone.

Using ring-around with one DSIF station, the relative range
and range rate should be determined to better than 60 m and 0.2 m/sec.
in 4 seconds;, the errors decreasing inversely as the square root of

the observation time.



3. - RELATIVE RANGE AND RANGE RATE ERRORS
USING THREE OBSERVING DSIF STATIONS H. Engel

For this analysis an optimum configuration of vehicle and observing
. station is assumed, as shown in the accompanying figure.

Letting Si be the distance from station i to a vehicle,,

3
2 2
Si =) (xj - xji)
j=1
3
s, 65, = Z (x; - ;) (6, - )
. =1
3 3
Z (:'cj -xji) ij = Si 685. + Z (xj- xji) 6xji
j=1 j=1

Be cause of the symmetry of the chosen configuration, it is only
necessary to consider errors in the location of one station and errors in

measurement of one range and one range rate.
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6x in the position of station 1,

Considering errors & Xqqs 5x21, 3]

'06x1 -x216x2+x3.6x =()5x11-x21 5x.,. + x, 6x

3 21 3 7731

Xy, SXI'XZ’ZSXZ_"- x5 8x,4 = 0

6x +x3‘6x =0

-X, . 6x - x 3 ,

13 771 723 72

o) ot i - oo S — S N

Using the facts that X535 = Xp3 and %15 F " X3, We find from the

second and third equations that

6'x1 = 0,
X
3
bx, = +— x4

From the first equation, then,

Xyp (X3 x5y = x5, 6x,,)
6X3 =7 Xq (X95-%5,)
3 X327%5
and then,
- Xy 6%5y - x5 6%y
bxp = %,, - %, 1)
22 " %21

is primarily dependent

6x, is obviously far larger than 6x3, and 6x,
on 5x31. Substituting in values,
-4 x 108 —
6X2 =~ 5 6x31
4 6 8 x 10 '

_—x 107 +

a VT

1 2, .
6x, = - — (10 .)6x31=:-$7.75x

2 S 31



For the second vehicle, the same equations may be written, éubf
stituiing 6xj + Gyj for 6xj and xj +ij for xj. Subtracting one set of these
equations from the other, the errors in vectofi range between the two
vehicles, resulting from an error in station position can be found.

5Y1 = O

Yy 8¢y F Y, 8%y Fys %y

5y, =
2 *227%21

v o T2z V2 | o DRa¥stEg V) (g 03500 %,5%))
Y3 T Xy, Y2

(x5 = ¥,) %3 (%55 =%51)

The error in Y, is proportional to the component of station position

error in the direction of y. Calling Xl the magnitude of the position error
of station 1,
X v 3

X2 ~*21 1.2

x 1077 X,y

5;}215

and is very small compared to y even for station position errors of 100 m.

Then,
5 *22 by, - X3 ¥, 6%3
37 % 2 %y (xpp =¥
x y y
= == %, - : 83 = - % Z-X 831
X3 *22 T *21 22 ~ *21
_ 3 -7
l&y3l<I—2—--x10 Xy

Thus station position errors are of no importance in determining



the relative position of the two vehicles.

Now consider the case of an error in the measurement of Sl,
Oﬁxl =%y 6):2 + x‘3 8x3 = S1 651 R Xy 551,

- X5 le - xZ2 GXZ + X-3 5x3 =0

X3 5x1 - X54 5x2 + Xq 5x3 =0

These equations .lead to

5x1 = 0
*3

The largest error is 8x,. Substituting values,

2°

Ly 8 :

= L x10% 53, =57.7 6S
- 1 S,

If the error in S, is 30 m, the error inx, is 173 m. In this case,

1 2
the position errors for the second vehicle are independent, so for like

errors in the measurement of S for the two vehicles the error in range

‘between them will be of the order of 150 m. Thus, a single set of range



observations from three ground stations cannot determine the relative
position of the two vehicles with sufficient accuracy for the terminal

phase of lunar rendezvous.

For velocity errors we proceed as follows.

3

S.S. = Z\: (x. - x..) k.

1 1 J Jl J
=i

3 . 3
6Si Si + Si 5Si = Z (ij - 6xji) xj + Z (xj - xji) <'5x.i
=1 j=1 |

Now, considering only an error in Sl’

12 5x1 - X5, 6x2 + x3 0k

“X3 6x1 - X, 0%, + x ‘6x =0

it follows that

65{1 = O
x -
3
6%, = 65
2 3 22 1

10



The largest error is 6k, ' By substitution

6x2j= 57.76$l.

HSSI is 0.1 m/sec, then 55:2

which is far more than the allowable rendezvous impact vélociiy of 0.3 m/sec.

is 5:77m/sec. or about 20ft/sec.(l o)

(1 ft/sec). Hence, it does not appear that with a single set of range and
range rate measurements from three ground stations the ground can direct
the terminal phase of rendezvous. .

- Compared with the results of Section 1, we note that the on-board
inertial with optical tracking calculated ¥ to about 3 ft/sec. or better than

the above value by a factor of 6,

4. ITEMS FOR FURTHER STUDY H. Engel

-

The computation procedure described in Apollo Note No. 82 has
been programmed and is currently being debugged. With this program
it is possible to determine the covariance matrix of orbit parameters for
various times of observation following any boost, assuming no a priori
data, and using only range rate from one observing station. This will
show whether under these conditions the IMCC can provide data for
'LEM midcourse corrections. '
" In accordance with the discussion in Apollo Note No. 83, this
- program with minor modifications can make the same determinations
on the basis of range or independent range and range rate from one
station.
Further, accordingly, the Apollo Note No. 77, minor changes
in the program will permit the same computations to be performed on
the basis of data from more than one grouﬂd station.
Still further, Apollo Note No. 77 indicates how minor changes
in the program can be made to permit the inclusion of a priori date
~such as LEM position prior to takeoff and telemetered or voice-communi-
cated boost data. Such data can also include nominal or telemetered mid-

course boosts or boosts near rendezvous.

11



The analysis necessary to adapt the program to using angle
measurements has not yet been performed.
~ The computations to be performed, using the 'standard' ascent
trajectory, are as follows: ~
1. Using range rate from one ground station, with no a )
priori information, determines orbit parameter accuracy as a function

of total time LEM is visible..

E

2. TUsing range and range rate from one ground station, with
no a priori information, determine orbit parameter accuracy as a

function of total time LEM is visible.

3. Using range rate (and perhaps range) from two and three
ground stations, with no a priori information, determine orbit parameter -

accuracy as a function of total time LEM is visible.

4. Repeat l, 2, and 3 as necessary including a priori values
of position velocity and covariance of these quantities at the end of boost.
This will greatly improve the accuracy with which the position and velocity

can be determined by the ground at a later time.

5. - Repeat 4 including a priori (or telemeterevd) values of mid-
course corrections and boost at the apolune of the Hohmann ascent
trajectory to determine how well ground can corhpute position and

velocity as LEM again becomes visible:

Solid Line = LEM visible

Dashed Line = LEM not
visible

Dots = Boosts

12



6. Continue 5 with small telemetered boosts to determine

”

¢ how well the ground can assist in the terminal (docking) stage of rendez-
vous., | |
In addition to these computations an analysis will be performed
to determine how long actual orbit calculations will take; that is,‘ answers

will be sought to the questions:

1. How long can the LEM be observed with the requirement
that the observations be reduced and the trajectory data transmitted
to the LEM before it is.occultated by the Moon?

2. Can observations be reduced rapidly enough for the ground

to-be useful in aiding the terminal phase of rendezvous?

It appears that the Kalman-Schmidt method should be used in
orbit determination in order to keep the processing time down. This

is being investigated.

5. SOME '"RING-AROUND" TECHNIQUES FOR
DETERMINATION OF THE SCALAR RANGE
AND RANGE RATE H. Epstein

This portion is devoted to two basic techniques to quickly
establish scalar range and range rate. Ring-around systems involving
the DSIF and the use of other radar equipment available in the LEM are
considered here.

The frequencies of interest for the CM transponder has been
extracted from the unified S-band equipment specification for the CM.

The normal mode is indicated below.

Normal Mode

Non=-Coherent Mode Crystal Frequency = _2__%_%%__5_ = 19,0208333 mc.
Coherent Mode Frequency Received 221

fr_om DSIF

i

2106. 2 mc. (2287.5 x 575-)

Transponder Trans-
mitted Frequency

i}

2282.5 mc.

13



We will assume that the requirement exists for simultaneous
communications between the DSIF and both spacecraft. We will further
consider that essentially two transmitters (and possibly antenna systems)
exist at each DSIF station. With the present frequency allocation, we
will also assume that the CM/SM transponder will transmit at 2287.5 muc.
for both modes and the LEM in both modes at 2282.5 mc. The corre-
sponding.DSIF frequencies are taken as approximately 2106.2 mc. and

2101. 6 mc., respectively.

A. Ring-Around Systems For Scalar Range and Range Rate
Between CM and LEM During Terminal Position of Rendezvous

Two basic types of ring-around systems are considered for this
application. The first, in terms of measurements and computations made
on earth and the second, by computations in the LEM. 'The basic geometry

is-indicated below. It should be indicated that this technique requires only

one DSIF station to be employed.

LEM

' CM
DSIF RZ’ R2 .

14



Prior measurements on the CM can be assumed sufficiently

accurate that precise values for R‘Z and R.2 are known.

- Case I. Earth Computation of R and R

LetR3= R1+R2+R
ansl.fié: 1;\1+1;\2+i1
th‘enR:‘R3-R1-R2
wdR = R -R -R,

One irnpleméntation for this technique would involve an additional
transponder in either the LEM or the CM. The operation would be as
follows. '

- Considering that the additional transponder is placed in the LEM -
the DSIF would interrogate the LEM and measure Ry and 1.?.1. At the
same time the DSIF is interrogating the CM, which, in turn, would
radiate a signal to the LEM or LEM and DSIF, The signal transmitted
by the LEM as received from the CM (with the same ratio transponder)
would be 2485 mc. This would require additional frequency allocation.

A different ratio transponder could be used with a frequency range near
the present DSIF if desired. The diplexing situation with the LEM trans-
mitting at 2282. 5 mc. and receiving at 2287. 5 mc. would represent a
serious r-f filtering problem. To circumvent this difficulty; a time-
sharing mode would probably be necessary. An additional antenna
receiving system' to operate specailly with the CM received signal

might conceivably possess adequate isolation from the directional
antenna employed for the LEM transmitter if the present omni-antenna
system is not suitable.

From a purely technique standpoint, the most desirable technique
would involve essentially a special frequency allocation for the ring-

around system. This would necessitate a new transponder in each the:

15



- LEM and CM. It might be practical to utilize the same antenna system

with this technique with a somewhat more complex multiplexing network
than presently eniployed.
" One other alternate technique should be mentioned. For this

mode the DSIF would transmit only to the LEM. The signals from
the LEM would be received by the DSIF directly and, in adgiitior{, by
the CM. An a&ditiona% transponder in the CM could then retransmit
this signal to the DSIF via its directional antenna at a frequency perhaps
witlﬁn the DSIF allowable transmission band (if required), suitable
different from the transmission frequency to the LEM. If the same
i‘eceiving antennas at the DSIF stations and the transmission antennas
on the CM are required suitably broad-band antenna feeds would be
required.

Other alternates could be indicated but these examples should
provide suitable scope for the techniques involved. .

In summary, the technique to be considered would be primarily
determined by the following factors.

1. The allowable frequency allocation.

2. The additional equipment that can be placed on
the CM, LEM, and at the DSIF stations.

Case II.  Computation of R and R by the LEM aided by the DSIF

The basic concept involved here can best be explained with the
aid of the pulsed waveforms as indicated below. To begin with the
DSIF is considered to simultaneously transmit both the CM and LEM.

| | 11

(a) Signal Transmitted by the DSIF

[« R1~>l

(b) Direct Signdl from DSIF to LEm

|« R,+R

> | (c) Signal Received by LEM Via CM
’ 16



In the LEM, one could measure R, = R, + R - R1

4 2

If the transmission time of the DSIF to the LEM is delayed by
R1 --R2 from the transmission of the DSIF to the CM then Ry = R, (the
desired range). Two techniques are suggested for this application:
one, the above mentioned delay technique (and a similar frequency
offset for R purposes) and, two, the transmission from the DSIF of
R,

should be well known, the delay and frequency offset would most appropri-

- R and R, - R, via a data link. Since the ephemeris of the CM

ately be placed on the transmission to the DSIF. If the transponder in the
CM is not modified, the diplexing problem mentioned earlier appears again.
In addition, range and range rate processing equipment would be required
in the LEM. |

The factors which would determine the design of equipment for
these purposes are as follows:

1. ‘Frequency éllocation.

2. Time synchronization problem.

3. The allowable additional equipment in the LEM,

CM, and at the DSIF stations.

B. Using LEM Lunar Landing Radar for R and R

The Lunar Landing Radar appears to possess interesting properties
for this appli.cation. ‘Basically, the optical system is presumed to place
the LEM on a collision path with respect to the CM. It will probably be
adequate to make occasional range, or range and range rate measurement
with a high accuracy system. Since the lunar landing radar has fixed |
antennas, it is necessary to interrupt the optical tracking to orient the
appropnate antenna to the CM. This difficulty could be circumvented
if the antenna system for the LEM rendezvous radar could be employed
~with some rather simple modifications. This would require integration
of some of the radar parameters for these equipments. The antenna
system actually is one of the radar elements least likely to fail and as
a consequence, this technique bears further consideration as perhapys

the most attractive of the approaches indicated.

17



C. Power Calculations

The signal-to-noise ratio (——%—) for a one-way transmission system
is given by:

| 2
Pp GGl [y
FRIB \4TrR :

S
N =
Standard values are given for the parameters to employ for scaling
purposes as follows,
where: -
P = transmitter éower = 250 mw
GpGp &, = - 6db

G,. = transmitting antenna gain

T
GR = Receiving antenna gain
a(z = total system losses

= free-space wavelength = 13.5 cm

1

receiver noise figure = 11 db

receiver bandwidth = 1 mc

woom >
n

= distance between transmitter and receiver

These values correspond to the most pessimistic situation for a
rangé and range rate system with a solid-state transmitter only. % as
a function of range is given in a following graph. ‘

A threshold signal occurs for a signal-to-noise ratio 0 db (quite
frequently -2 db is employed by some). The strong signal condition is
normally associated with signal—fo—noise ratios of about 15 db. The
corresponding ranges obtained for the sténdard system are about 12 KM
and 2.1 KM respectively. Actually substantially greater fanges are
obtained since the DSIF (or LEM) will have an effective bandwidth much
more narrow. For example, the DSIF ring-around system requires that
the phase-locked-loop properly op’er'ate. If we assume a 3000 cps
bandwidth for the phase-locked-loopand a 10 db carrier suppression, the

18



corresponding ranges attained are 70 KM with a —-—?\—I—- =0 db and 12 KM

with a % = 15 db. Since interest here lies with comparatively short
distances for the near locking phase, this performance level should
easily be adequate. For other applications at much greater ranges, the
power amplifier (20 watts) could be used which would increase these
ranges by about an order of magnitude. In addition, use of the CM
directional antenna for the CM to LEM link would increase ranges by more
than an order of magnitude. Another alternate would be ’to efnploy a
narrow band loop for the VCO (i. e., less than about 100 cps) for this
application. This again would present a highly attractive solution. Recall
that basically the minimum bandwidth in the phase-locked loop is limited
by the rate of change of doppler frequency that must be accommodated.

In summary, the range requirement for this application does

not appear to present a.serious problem area.
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6. SIMPLE RENDEZVOUS AID SENSOR G. F. Floyd

. The basic guidance scheme adopted by both Grumman and MIT
for the terminal rendezvous phase consists of angle optical tracking
and thrust application normal to the line-of-sight in order to drive the
~angular rate of the line-of-sight to zero, thus getting the LEM on-a
" collision course with the CSM. In addition, thrusts are applied along -
the 1ine-of-_sig1;1t in order to maintain a schedule of range rate versus
ré.nge. A typical schedule is given in Grumman Report, LMO-500-22,
1 April 1963, p.5, and is as below.

R ft/sec. R Percent
Range (n.m.) Bounds T (min) = ~—— Variation
| R - Allowed
40 350 - 250 11.6 - 16,2 16
35 .+ 325 - 225 10.8 - 15.8 19
30 300 - 200 10.3 - 15.2 19
20 200 - 120 10.3 - 16.8 24
10 120 - 70 8.4 - 14.5 26
4 70 - 30 '5.8 - 13.5 40
1 30 - 10 3.5 -10.3 51

The third column is simply the ratio of the range to the desired range
rate and,in all probability, holding this ratio constant at approximately
10 minutes would give satisfactory results.

Since the command service module will be equipped with
bright lights to aid the LEM in acquisition in angle tracking, this
immediately suggests.the use of an old idea originally studied in
connection with back-up IR missile launching systems. The equip-
‘ment involved would consist of a photocell mounted on the LEM

optical tracker and a simple analog-computer circuit. The received

21



optical power and its time derivative would be measured and their ratio
computed. Since there is no atmosphere, received power as a function
. of range would be of the form:
P = —K-Z-
- R

Hence, its time derivative would be:

P = -ZK:;R
R

leading to the ratio:

——:—-—-—I{. =T‘ (1)

Thus, this simple mechanization would yield the time to go and
_the LEM astronaut would control thrust along the line-of-sight to hold
this measureé time-to-go within acceptable limits. Again, we point
out that this is an old idea borrowed from military programs that has
been successfully used, and therefore the development program should
_be easy, the reliability should be good, and the total weight of the
equipment could probably be kept less than a few pounds.

Preliminary Error Study

The main source of error is the ability of the sensor to detect

changes in P.  Thus from (1), we have:

5T = E.B..BZ_I_D_. (2)
: P
where 6§ P = -—5-—(_;4—8—)— (3)
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and T is the observation time. Using (1) and (3) in (2), we have

2P6 (AP)

§T =
=]
-—T-- T
8T _ T & (AP)
T " 72r — P )

For preliminary calculations, we assume a 400 watt non-
directional source with 10% of the energy in the photocell bandwidth
or 40 watts of effective radiated power. The received power with an

effective collector area of (A) at a range R in a vacuum is

’ Pt A
P
» 4t R
Assuming a 3" lens, (A = 1/20 f{t. 2), and a range of 40 n.m. (24 x 10% ft. ),
we get: ‘
P = (40) (1/20) 3x 10‘12 watts

(12) (580 x 10°

The noise equivalent power of the photocell is about 10-15 watts so at

a S/N of 10 the detectable power change is

§(AP)# 10" 1% watts

Using the value of T = 14 min. from the table and an observation

time of 1/2 min., we get from (4)

_ -14,
ST _ 14 (107°7) - 5,

T 2) (1/2) (3 x 10~ %)

which is much less than the 16% variation in T permitted by the R

bounds.
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Finally from (4), we see that the percent uncertainty in T will
decrease with P, (T, v, 6§ {AP) stay‘ing fixed), hence with the square
of range so that by 20 n.m. the system would be good to 1% as com-
pared with the 24% variation allowed at this range.

The conclusion is then that such a device works as though it
would be useful, light and easy to develop, and therefore worthy of
.additional study. .

In this connection items of planned-on-study include:

1. Determination of satisfactory (T) limits for easy control

during the rendezvous.

2. Mechanization possibilities, For example, from
Equation (1), we note that a(—li- (In P) = —g—— = -'gl‘— so that a single

loaded diode network to approximate the log function, with a differenti-
ating circuit at the end may be sufficient to generate T.

3. Further error studies to establish the achievable accuracy

to be expected.
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1. FAR-SIDE RELAY L. Lustick/

C. Siska-

Additional trajectory calculations were made on the far-side
relay to see if boost conditions could be established which would allow
voice communication with the CM/LEM. It is desired to have voice
communication capabilities during the portion of the mission from
deboost into lunar orbit to rendezvous between LEM and CM (a period
of approximately 32 hours). Itis partiéularly. important to have voice
communication at the time of deboost of CM into lunar orbit.

The grouﬁd rules specified by Mr. Fordyce allowed boosts as

large as 1000 ft/sec. to be applied within the first seven hours follow-

ing translunar injection. The range between the relay and CM consistent .

with voice communication was given as 40, 000 nautical miles.

Method

Nominal translunar injectibn conditions Wefe established which
were approximately consistent with the arrival of the CM at perilune
"(1.00 n.m.) 72 hours after injection. The effect of perturbations in the
velocity vector, both at translunar injection and approximately 7 hours
after injection were examined. The locus of the position of the relay
relative to the CM/SM at the time when the CM/SM pierces the LSOI
was established. These Loci are shown in Figure 1. The elongated -
/,"fellipse is for a boost at translunar injection of 1000 ft/sec. The
l different points on the locus correspond to different boost directions
relative to the reference velocity vector as indicated in the uplﬁgr
left diagram in Figure 1. The other ellipse shown in Figure 1 corre-
sponds to applying a boost of 1000 ft/sec. approximately 7. 6 hours
after translunar injection,

In lunar space, each point on the locus is traveling roughly in
a 45 degree direction from lower left to upper right, and therefore, one
can quickly estimate which points will penetrate the lunar sphere. of

influence.
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Results

The traje'c‘tories of several points on the loci of Figure 1 were
examined briefly in lunar space and at first glance, it appears that the
positions around « =- 90%for the 7.6 hr, delayed boost are the most
promising to fulfill the mission requirements. | }

Figure 2 shows the trajectory for the @ = -90 boost in lunar
space and also the reference lunar vehicle trajectory. The, lunar
vehicle enters the LSOI at 60 hours after translunar injection and
arrives at perilune (for deboost into a circular orbit) approximately
12 hours later. Corresponding positions for the booster (Far-side
Relay) are indicated. The perilune visibility limit shown in Figure 2,
(i. e., the tangent to the lunar surface which passes through the
perilune position) indicates that perilune is always visible to the
booster position. Approximately thirty hours after lunar vehicle
deboost, the Far-side Relay has approached the 40,000 n.mi.
‘communications limit. - Thus, it appears that the Far-side Relay
Will be within the voice communications limit for both lunar deboost
and lunar.rendezvous. Although it appears occultation by the moon
occurs at 102 hours, this presents no problem since the trajectory
can be shifted with slight changes in boost direction around & = -90°.

Far-side Relay trajectories going the other ’way around the
moon (counter-clockwise), say for boosts slightly less than o = 90°,
may also fulfill the mission requirement, This alternative procedure

is yet to be investigated.

Conclusions

Assuming that a 1000 ft/sec. boost is available at approximately

7 hours after translunar injection, voice communications via the Far-
side Relay appears feasible for both the lunar deboost and lunar

‘rendezvous portions of the Apollo mission.
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Future Tasks

1. . Write a computer program based on the Egerov Model to
facilitate the trajectory calculations so that a more complete evalu-

ation of the far-side relay potential can be obtained.

2, Establish the nominal trajectory for the CM/SM more acéurately.
That is, what are translunar injection conditions that are consistent

with'a free return trajectory.

3. Investigate the effect of errors in the boost velocity on the

far-side relay trajectory.

4. Determine expected orientation errors in the reference system

at the time of boost and decide how the boost is to be executed.

5. Investigate the potential of the far-side relay as an aid to

navigation.
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APOLLO NOTZ NO. §8 H. Engel
31 July 1963
KALMAN-SCHEMIDT METHOD FOR
CRBIT DETERMINATION

ris note on the Ralman-Schmidt method for oxrbit determination

is intenced primarily for internal Bissett-Berman Corporation distribution

to acquaint those working on this project with the method. This note is
based primarily on JPL Technical Memorandum 312-291, "Dynamic
Filtexrinz, " by C. 3. Sclloway and on R. H. Battin's, 'A Statistical

-
~t

ation Procedure for Space Flight, ' appearing in the

(¢

Q

ious notes, it is —ossible to obtain a best

»

linear estimate of the parameters of an orsit by varying these parameters

Py

1 - B

until the esiimated orbit test fits the chserved data in the least-squares

sense. The straightficrward way of coing this recuires that all the data
be fitted in this manner, and since the prodlem is non-linear it is
n

recessary to sclve it by an itzration technicue. These iterations are

carey of JPL it was
cund that on the recent nus proce shot the iterations {based, to be
reduction of fiar more data than we will tave) required 20

w
to 25 minutes per iteration, and acccording to JPL three iterations are

important in that applicaiion. I was estimated ofi-hand that the required
ime could aave been reduced to ten minutes per iteration. Even ten
a

minutes per iteration is toco great for the LEM ascent problem.

The Xalman-Schmidr method, which improves the orbit parameters

= - -

as each new cobservaiicn Is otizined, promises to provide estimates of
c



METHOD

The Kalman-Schmidt method, as presented by Solloway and
Battin, employs a reference trajectory to permit linearization of the
equations to be solved; that is, there must be good a priori knowledge
of the trajectory.

Let X, be a column N-vector describing the deviation of the
actual trajectory from the reference trajectory at time tn. an
zlncludes three position componeats E-‘n, three velocity components
T and a number of components, @ corresponding to fixed but
unknown biases