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APQLLQ ?NOTE NO. 51 J. Holdsworth 
24 ApTil 1963 

THE lMAXIiMUM LIKELIHOOD ESTIMATOAPS O F  THE PARAblETEi3-S 

APPEARING IN A CURVE FITTING PROSLEM WHEN B O T 2  

O F  THE OBSERVED V.aIABLES A S 2  

SUBJECT .TO RANDOM ERRORS. 

A functional relationship of known generic form is assumed to 

exist between two variables x and y. The form of the dependence 

between x and y will, in general, depend upon certair, 2arameters 

al, . . . a * thus allowing us to write: M' 

y = € (xi al ,  ai,. . .aM) . 

We shall. assume that we have available a sequence of N observ- t' ions 

made upon both the x variate and xhe y variate. That is, we assume 

that the available data i s  a sequence of N ordered pairs (x. I' YJY * - 
(%, yN) where the number of data pairs N is assumed to exceed the 

number M of parameters necessary to specify the curvilinear relation 

between y and x. 

Now if  the pairs (xi, yi) could be observe< without e r ro r  then 

However, the observed values in both 

M such pairs would theoretically suffice to exactly determirx the 

parametric values a l ,  . . . a 

x and y a re  assumed to be contaminated by random noise, thus our 
LM' 

problem is to use our observed data in some maximally effective wzy 

so  that we may obtain good estimates of our parameters. 

iMore precisely we assume that the actual value of x which we 

observe at time i may be written: 

wheze is a zero mean stationary white gaussiz-: process wi:h know..r; 



variance o- ' so that the mean value of an x observation made at time 
i is p which would be the value actually observed in the absence of 

contam insting noi s e, 

1' 

X i  

Similarly we assume .that an observation of the y variate made 

of time i may be written as the SUM of a mean component dependent 

upon the time i plus an e r r o r  termTi which is assumed to bz a zero 

mean stationary uncorrelated gaussian noise process with known 

variance cr 2 2' Thus, we may write: 

. Now because of the distortion in our observations due to  the 

noise, Equation (1) will not actually hold fo r  all pairs of observed 

values x and y. 
equation relating the expected values of the observations y and x at a 
particular time i, thus we write: 

Thus, Equation (1) must be considered a constraining 

al, .... a ) . P = f (tJ.,*¶ M Y i  1 

Thus using Equations ( 3 )  and (4) we may write: 

Now because of the uncorrelated cature of our noise sources 

we find that our data {xi, yi). . . (xN, y,) actually constitute a set  of 

2 N independent observations whose likelihood function may be written: 

wh 

2 



Inspection of Equation (7) shows that the likelihood function 

depends u?on the parameters a l  , .. a , a which we wish to estimate as  M 
well as upon the N unknown nuisance parameters px:. . p, 
we have no interest. 

in which 
N 

This, however, is no problem --at least con- 
ceptually since the estimators $ 

which minimize the expressiong. 

si a re  those functions of the data 

That is, we may proceed as  
X.' 
1 

though we were interested in estimating the iM t N parameters a 1 , -  
* aM 

andpx ,... by solving the following system of M + N equations in 

M 4- N unknowns as functions of the observed data: 1 pLxN 

N 

f o r k =  l , . . . M  

- 0  - = o =  - 1 ax 
a FX 

1 - f (px , a l J . .  . a  ,t- a r  - (Xi - Px-) + 2 (Yi  
1 

(r i 2 1 
2 

0- i 1 

for i =  1, ... N (9 1 

Thus, the simultaneous solution of the system given in Equation 
(8) allows one theoretically at  least to solve for the maximum likelihood 

estimators of the parameters al , . . a as functions of the observed data M 
alone and not of the nuisance parameters p , . . . . Generally the 

x1 pXN - 

system (Equation 8) wi l l  be a rather complicated system of nonlinear 

algebraic o r  transcendental equations ; however , i f  digital computing 

facilities a r e  available the solutions may be numerically obtained by 

the Newton Raphsonmethod o r  by applying some other computational 
technique. 

COMPUTATION O F  THE PSYX?TOTIC COVARIANCE LVXTXiS O F  
THE PARAMETRIC ESTIMATORS 

If one is interested in obtaining the covariance rnaxris of the 

3 A A estimators al , .. . , a then for large samples or  long smoothing 5 m e s  M 



one may proceed in a manner very similar to that employed in Apollo 

Note No. 43; that is, we may apply a similar linearization technique. 

Since the technique involved is  essentially the same as  that employed in 

Apollo Note No. 43, the computation of the covariance matrix will be 

briefly sketched below. 

As in Apollo Note 

in the following form: t.’x* 
J 

a. = a. t A a .  
1 1 1 

No. 43, we shall write the estimators gi, 

In Equation (9)  we a r e  decomposing the estimators into the 

sun of two quantities one of which is tne true parametric value, the 

other te rm representing the random e r r o r  component of the estimator. 

Furthermore, we shall assume that we have a sufficient amount of 

data so that functions evaluated or  expanded about .3i, pxi depend upon 

the e r ro r  quantities only up to terms of i i r s t  order. Thus, we write: 

where the derivatives a re  evaluated at  the parametric values. 

Substituting Equation (10) into the system (2) and collectixq 

terms yields the following system of M + N equations which is now a 

linear system in the random e r ro r  quantities. 

f o r k =  1,2,  ... M (114 4 



and 

M 
1 a r  a f  t - 1 t ( 4  [ af  I2!Apx 

i3akaak 2 'pxi i i i "1 "2 8PX 2 
ai 

for i= 1,2, .  . . N (1W 

Now the system of equations given by (11) is  a system of iM + N 

equations in the M + N e r r o r  quantities Aal , .  . . A a  A p , . . . A  p, . 
N M'. x: 

However, as we have mentioned before the px. a re  nuisance parameters in 

which we have no interest. 
1 

That is ,  we desire the covariance matrix 

of the parametric estimators of interest --not the covariance matrix 

of all M t N estimators including those of the nuisance parameters. 

Fortunately the form of the system (11) allows us to reduce om- 

M by N system of equations in M by N unknowns to a linear system of 

To do this we use equations in the desired e r r o r  terms A a  

Equation 1 lb  to  write: 
M' . . . Aa 1' 

M 
- 1 1 af  

APx - 
i 

cf 1 
(12) 

Substituting Equation { 12) in (1 la)  we obtain the following 

system of M linear equations in the M random estimator e r r o r s  O a l , .  .Lahl. 

5 



M 

j= 1 
{f i= 1 ( - ~  1 

2 

' -i: i= 1 

1 

for k = 1,2,. . . M. 

Note that in Equation (13) we have essentially uncoupled the 

estimator equations from those involving the nuisance parameters. 

Again for manipulative convenience we employ matrix notation and 

write C A a = e (14) 

where Aa and e a r e  M dimensional column vectors and C is an LM f N 
matrix whose elements may be inferred by inspection of the system ( 1 3 ) .  

For non-singular C we may solve for the estimator e r r o r  vector 

and write: 

(15) 
-1 A a = C  e 

Taking the transpose of (15) and using the symmetry of the 

matrix C we have: 



Premultiplying Equation { 16) by Equation (1 5 )  yields 

(17) 
T -1 Aa Aa = C (e e*) C-l 

Finally as in Apollo Note No. 4 3 ,  the covariance matrix of 
the estimators is given by taking the expected value ol’ both sides of 

the matrix relation (17) or: 

Since C is a known matrix, then from (18) we see that i t  only 

remains to  compute the matr ix  E 

T First consider a diagonal term say e of e e . Then: kk 

= 
1 

2 2 
“2 - t- 
(3- 1 

a f  1 
Tj 1 

2 2 

“2 

Then taking the expected value of both sides of E cpation (19) and 

recalling that E i, qi 

correlated we have: 

a r e  white noise processes which a re  not c ross -  

N 
1 2 

2 2 
i= 1 

0- 1 1 

7 



Similarly for an off diagonal from say e where k f j w e  have:: k. 
J 

M 

i= 1 

s i  1 1 

2 2 
0- 
- +  - 2 

0- 1 KXi1 
e =  k. 

J .  

a f  
alJ- x i 

5 .i e) 1 

1 t a a. 
i= 1 

2 
0- 1 

2 

15 -2 
<r 

2 

(21) 

so that the white nature of the noise processes allows us to write: 

N 

E ( e  k j  e ) = I ( z  - 
i= 1 

2 

2 
0- 2 

1 

- 
0- 

2 

i 2  
N 

i= E 1 

"1 

2 
It- 2 

0- 1 

"2 

t 
2 . 

Thus, finally Equations (21) and (22) give the expressions f o r  the 

elements of the matr ix  E [ e eT]  as an explicit.function of the noise 

variances and other known quantities. Hence, since the coefficient matrix 
-1 C. is deterministic and known then C 

(20) and (22) allow the explicit determination of the asymptotic covariance 

may be computed and Equations (18), 

8 



matrix of the relevant parameters in the curvilinear relation 

It is perhaps worthwhile noting that the parametric estimators 

a r e  not necessarily the same as  those obtained using a traditional least  

squares  procedure, which is often done in the case where only one 

observed variate is corrupted by noise. However, i f  the noise variances 

a re  equal and the functional dependence upon the p a r m e t e r s  linear, 

then our estimators a re  least  squares estimators. 

It might also be worthwhile to point out that there is nozhing 

sacrosanct about least  squsres estimators and that from a certain point of 

view the appropriateness of least squares estimation hinges upon the 

fact that under certain conditions they turn out to be maximum likelihood 

estimators or  else very closely related to them. 

9 



OLLO NOTE NO. 52 R, Hartel  S, Gus 

THEUSEOFANEARTHTRACKERFOREARTHCONTROLLED 
~ A V I ~ ~ T I O ~  AND GUIDANCE OF THE CM VEHICLE 

I N  SEVERE ABORT SITUATIONS 

Star-field video transmission has been considered as a method 
of locating the G M  Vehicle and directing its guidance back to earth. 

Another method of guidance would be the use of an Earth Tracker. 

In particular, it is suggested that the earth sensor be a 
silicon P - N  junction device which makes use of lateral  photocurrents 

flowing parallel to the P - N  junction rather than the conventionally 

used transverse currents. 

A uniform spot of light focused on the center of the cell pro- 

Displacement in the x o r  y axis creates duces zero voltage output. 

a voltage at the x or  y terminals proportional to the degree of 

displacement. 

The device is considered an infrared detector since its peak 

sensitivaty occurs at 0.8~. 
falls in the visible portion of the spectrum. 

equivalent power of 4 x 10-l' watts for a five cycle bandwidth with 

a 5p second time constant. 

About 30 percent of its response, however, 

According to manufacturers' specifications, it has a noise 

If a zoom type of lens is utilized with varying focal lengths, 

the field of view can be enlarged to acquire the earth. 

has been achieved, narrowed fields of view will allow more accurate 

lock on, 

Once acquisition 

THE TARGET 
2 The earth receives from the sun 0.13 watts/cm , which is 

absorbed and scattered in the atmosphere. 

that only 40 percent is reflected and re-radiated into space. 

The earth 's  albedo indicates 

Of this 



atts cmm2, . only 30% fall in the visible and near infeared 

portions of the spectrum in which the silicon detector operates. 

Thus, the source radiates e 0156 watts ern-'. Treated as a flat 
circle, radiating into a hemisphere, the energy received in the 
vicinity of the moon is 

T~ A~ E =  -I 

21rR' 

where 

I = .0156 watts cm" 

TA = Transmission of Translunar Space = 1.0 

AE = Area of Earth facing the moon = 1.2 x 10l8 cm 2 

R = Mean Earth-Moon distance = 3.75 x lo1' cm 

2 .*. E = 2.1 x 10-6 watts/cm 

If the lens is a 2" diameter, 2 I focal length F/1 system, 
2 then the collector a rea  is about 20 cm and 4.2 x watts a r e  

collected onto the detector. 

locate an object of 2 O  diameter with minimum search. 

The field of view is 45O, which should 

Since the NEP is approximately 4 x 10-l' watts, the area is 

approximately l c m 2  and we will assume a modulating frequency 

of 1600 cycles/second. Since a mechanical chopper is not desirable, 

the electrical output could be commutated and then AC amplified. 

2 



The system = cel lNEP x 

z. System NEP = 40 x 4 x 10-l' = 1.6 x 10'8watts 

4 * 2  lo-; = 2 , 6  x 10 3 . Thus, the S/N of the fu l l  earth is 

If the earth is in phase, the intensity is reduced as a function 
1.6 x 10- 

of phase angle. Assuming the earth to be a Lambertian diffuse 

reflector, rather than a back scatterer like the moon, we can assume 

a regular function and plot S/N as  a function of the earth's phase. 

Referring to Figure l., Oo represents the position of new 
0 earth, 90 is equivalent to first quarter, and 180° to fu l l  earth. 

The largest  errors in reading the center of earth position, 

would occur when the earth i s  in a narrow crescent phase. 

after "new earth, '' the energy from the crescent is sufficient to 

give a S/N of over 100 (See Figure'l.). The location of earth's 

center, however, would be in e r ro r  by almost an earth's radius. 

Fortunately, this is about lo. We can safely say, therefore, that 

the .maximum e r r o r  achieved in this arrangement is slightly less 

than lo or 17 milliradians. 

One day 

3 
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EMERGENCY RE-ENTRY WITH ZERO-LIFT 

This note is a reprint of the first  part of a paper by Eugene F. 

Styer of Boeing Airplane Company (Proceedings of the Third Annual W e s t  

Coast Meeting of the American Astronautical Society), and represents 

the best summary found by Bissett-Berman of this problem. 

As shown,there is a 0.7O= f. .35O spread between tolerable 

deceleration and tolerable range dispersion. 

+, 0. lo will  give a .99% safe zero lift re-entry, 

Therefore, a 1 cr e r r o r  of 



The ballistic re-entry vehic le  is ex.minud for u s e  i n  Ear th  return miss ions  
o r i d n a t i n g  from a high geocentr ic  orbit, the Moon or another  planet. The 
acce lera t ion  to le rance  l i m i t  and the minimum angle for d i rec t  entry a r e  
d i s c u s s e d  for var ious v a l u e s  of the  b a l l i s t i c  coefficient. Multiple-pass 
entry is shown to widen t h e  entry corridor at t h e  e x p e n s e  of  t ime i n  orbit, 
?he u s e  of  a s i d e  firing rocket is proposed for '*steering" within the entry 
corridor. Aerodynamic hea t in l ;  entry loads. and Van Allen radiat ion a r e  
considered for their  e f fec t  on vehiclc  desi$. Preliminary des ign  es t i -  
mates a r e  given for the w e i g h t s  of a range of b a l l i s t i c  entry bodies  de-  
s igned  for d i rec t  entry. These vehicles  a r e  pos tu la ted  to return from a 
s p a c e  station with one, 10 and .SO astronauts. Se lec ted  comparisons a r e  
made of  the weights  of  vehic les  required to return 10 men to Ear th  by di- 
rect, propuls ion braking, and multiple pass techniques. 

lntroducti on 

A great deal of attention has been directed at the very complex problem of 
the return to Earth of a man placed into a near orbit. In this country, the 
Mercury ballistic re-entry prograz is in  the flight-test stage, and the Dyna- 
Soar glide re-entry program is well  advanced in concept and design. 

The implementation of deep space systcmh wil l  require an extension of o u r  
re-entry technology to provide io; a:: missions-nilitary, scientific and con- 

A salient characteristic of return from high Earth orbits, the Moon, 
and other planets, is that this return is accomplished at or near the Earth's 
escape velocity-a 40 per cent ;nc:easc in  velocity over the  near orbit r e  

' mercial. 

* 

. .  

. 

entry case. The Van Allen belts, solar, and cosmic radiations, meteorites, 
snd the hard vacuum of space pr-sent added environmental hazsrds to men and 
materials. 

Some ways of accomplishing supcrorbital re-entr. are di-tgrnmmed .:. !-.;. 
I. The kinetic energy of the returning vehicle ~ L I T .  .)c -i>:.ix:cd b> ..Ti;!Os- 

pheric braking in one or several passes, or by r k ~  :.pp;icatioa af propulsion 
braking. These methods apply wi th  equal .,..:iJity to ballistic and iiiting 
vehicles. 

Much valid attention has bccn drilwn to t i c  use of lifting vehicles for re- 
entry due to their inherent ability to Cy  to anC land at a specific spot.' There 
are a number of space missions, however, \\here the lower g:-oss weight and 
simplicity of a ballistic vehiclc wI l l  recommend its use. 

Strong consideration will be given to the ballistic vehicle for early oper- 
ations because of limited boosrcr capability and also because of the signiii- 
cantly more complex structural and flight control problems connected with 

8 .- 

'Structures Technology Department, Boeing Airplane Company, Aero-Space Di- 
vision, Seat t le ,  Wash, 

389 



DIRECT PROPULSION BAZXING 

MULllPlE PASS 

Fig. 1. Methods of re-entry. 

glide reentry. Even when re-entry from space bccomes a more establislwd 
fact, t he  simplicity, small size, lower wcight, and resultant economic ad- 
vantage of t h c  ballistic or very low L/D vehicle will dictate i ts  use for ccr- 
tain applications. A schematic representation of such a vehicle is shown in 
Fig. 2. 

The present paper indicates design conditions, rc-entry weights, and 
some of the operational factors of manned ballistic vehicles. Preliminary dc- 
signs and weights are developed for vehicles having capacities of one, 10, 
and SO mcn cntcring at scvcral valucs of the ballistic coefficicnt, W/CD.4. 
These vchicles are compared on the basis that no allowance is made i n  VC- 

hicle layout for. equipment or expendables other than that essential to safc 
entry and touchdown, This series of vehicles is visualized as“shuttle buses” 
rather than scl f-contained uni ts  for long duration space missions. 

. 

Entry Corridor Criteria 

Entry limits can be stated in  terms of entry angle at a given altitudc, 
where the entry angle (measured positive downward) is the angle between thc 

ENVIROhh‘LXIAL COFilXOl. 
PROPELUhl TANKS. AhD 

t U  IDAhCE ERXOR 
CORRECllOFi RO€KU- 

\ 

SECONDARY POMR 

n 

HG 
AN 

.y PRESSURE SHELL *“C 

47 ShlEiD 
D IMPACl BAG 

MAhEUVER ROCKUS 

REFRACTORY &?A1 SHEU 

Fig, 2. Entry vehicle. 



Vehicle Sixc and Shaoc for Return at Escape Velocity 391 

flight path and local horizontal. Limitations to direct cntry are set by vehicle 
“s4p from thc atmosphcrc, accclcration tolcrnncc of thc crcw, and structural 
heating. The minimum cntry annglc y E  lor direct cntry is shown on Fig. 3 as a 
fun&on of entry velocity and ballistic cocliicicnt. Trajectory data are based 
03 the 1959 ARDC Model Atmosphere,* sphcrical nonrotating Earth, and were 
obtained by IBM 70.3 solutions of the entry trajectory equations? Re-entry is 
defined a s  starting a t  an altitude of 400,000 ft. The limiting entry or “skip” 
angles shown on Fig. 3 are those for w h i c h  thc vehicle will enter and pass 
through the atmosphere, “climb” back to 400,000 ft and then proceed to 
touchdown. 

c- 

1 

0 
1 i o  la 

WC,A - POUPIOS PLR SPUARE FOOl 

FiG 3. Minimum angle for direct entry. 

The maximum entry angle is dictated by tolcrable acceleration when the 
vehicle design can withstand the accompanying extrcmc heating rates. Figure 4 
illustrates the tolerance l i m i t s  of magnitullc and t i m c  of exposure to various 6 
levels where the acceleration vector is oricntcd as s h o ~ n . ~  A tolerance l i m i t  
is very difficult to  establish due to thc largc diifcrenccs in individual reaction 
to acceleration. The data shown i s  for hcalthy, youn~ males who could be ex- 
pected to see, think, and exercise at  lesst fiiigcr control within the limit 
shown. It  is pertinent here to note that thc reqairencnts placed on the pilots 
for manipulation of controls and equipment 3oni:orIcg during entry are directly 
related to the acceptable acceleratim level. Relatively passive descent in  a 
baIlistic.capsu1e can be accomplished i n  a more scvcce acceleration environ- 
ment than the flying in of a lifting vehicle. T!ic upper curve of Fig. 4 w a s  se- 
lected a s  representative of the accel eration-ti me hi story above which irrepara- 
ble damage would be done to humans.’ 

Yultiple-pass entry involves initial atmospheric contact at shallower 
angles chap those shown in Fig. 3. The shallower the angle, the more passes 



TIM - SfCONOS 

Fig, 4. Acceleration tolerance. 

to evcntual impact, i f  the vehicle is left to  drag down passively. Should the 
multiple pass vchiclc be designed for the maximum angle (accelcration) condi- 
tions noted above; its entry corridor is widened relativc to dircct entry. The 
opcrational- factors of guidance accuracy, time of flight, radiation exposurc 
and landing-site predictability would havc to be considered in making a sclec- 
tion of the mode of entry which is best for a particular mission. 

Tra jcctory Considcrcrions 

For thc imrpobch of t h i s  paper, i t  is assumed that the incrtial guidance 
system in thc vchiclc ha> a possible accumulated error of kO.5 deg from thc 
desired entry angle j u s t  prior to entry, and that the system reference can hc 
updatcd w h * n  nearing the Earth to allow prediction of the entry angle to 
within 0.05 de;: (50.025 deb’). 

Redircclion of thc ;chicle’s velocity vector to an angle within the dcsirci! 
corridor is accomplishcd w i t h  a single rocket which can be fired i n  any dircc- 
tion, by rotLting the vehicle. nuc to the 0.Gj dcg uncertainty in angle, the. 
entry body m u s t  not be steered within 0.025 de: of the corridor l imi ts .  Opcr- 
ation of the vehicle in this manner will  allow the pi!ot to select an area on thc 
Earth compatible with his entry corridor l i m i t s  and position information dis- 
played from h i s  guidance. system. 

Figurc 5 illustrates the effect of entry angle on the entry time which be 
comes important for ablation and heat s ink  structural systems whose weight 
increases with entry time. For direct entry, the trajectory is extremely scnsi- 
tive near minimun: yE. For example, a change i n  entry angle of 0.02 d c ~  
will change entry time by a factor of 5 ,  and increase total heat by about 50 
per cent for a representative vehicle. 

No attempt will  be made in this paper to present a complete landing-dis- 
persion analysis, but Fig. 6 illustrates the dispersion in  miles for the noted 

’ 
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Fig. 5. Entry time. 

terminal guidance errors. The dispersion sensitivity i s  seen to increase 
greatly toward the skip limit. 

The time of flight, heating, and rangc dispersion sensitivity near the theo- 
retical skip limit suggest an operational proccduic whereby a design skip 
angle would be defined about 0.05 deg steeper t h a n  the theoretical skip angle. 
As an example, Fig. 3 shows a theoretical skip angle of 5.15 deg for V E =  
35,000 Wsec and IY/G 4 = 70; the proposed design skip angle would be 5.2 
deg. 

Figure 7 illustrates the entry corridor for ballistic vehicles entering at 35,000 
ft/sec. Shown are the 20-g human dLmage limit, the acceleration tolerance 
limit, and the design skip limit which define the corridor within which direct 
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Fig 6. Landing dispersion. 
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Fig. 7. Entry corridor. 

entry vehicles can operate. The operational direct entry corridor is seen to be 
about 0.7 deg wide. 

An entry corridor of 0.7 deg might seem to present a formidable navigation 
job; however, recent papers6*’ indicate that extensions of present-day tcch- 

. niques will not only pcrmit such entry but offer the possibility of navigation 
within the corridor, as mentioned a b v c .  For example, a one-mile CEP for a 
5000-mi-range ballistic vehicle requircs angular flight path control to tO.014 
dcg. 

Also shown on Fig. 7 are the entry angles which define the boundary bc- 
tween three and four passes around the Earth before ‘anding. For a W/C, 4 = 
70, a xanncd vchiclc designed to  operate between the acceleration toIerancc 
l imi t  and thc focr p a b ~  l i m i t  has an operational corridor of 1.2 deg. 

Structural! heating can dciinc corridor l i m i t s  when the peak heating rate, 
total heat, or particuiar hesting his tory are critical factors due to ;eight, ma- 
terial svail ahi i i ty ,  or prt)cissing rsb:ri ctions. 

F igue  8 indicatca tiic ; inits  to ;..n;e control, measured fron start of entry, 
f0r.a specific ballibtic vshicle making tirsct entry. This figure shows that 
the range may be vs:icu from a minilnarii of 900 mi at the maximum entry anglc 
to 2040 mi  for m i n i m u m  y E .  The 7;aximurn dispersions associated with thebc 
two ranges arc 20 anti 700 mi, respectively, for a guidance error of 0.05 dcg, 
and 4.5 and 125 mi for an erior of 0.01 dcg. 

Two typicsl sets  of velocity, altitude and deceleration plots are shown as 
a function of entry time i n  Figs. 9 and 10. Figure 9 is foryE = j.,3deg, thede- 
sign skip l i m i t ,  and Fig. 10 is for yE = 5.9 deg, the acceleration tolerancc 
limit. The shallow en;ry takes about 500 sec and has the characteristic two 
deceleration peaks and tendency to “climb” back out of the atmosphere. The 
steep entry, on the other hand, takes about 250 sec, has a single (higher) 
deceleration peak and a steadily decreasing altitude-tine history. Shown for 
reference on Figs. 9 and 10 is the allowable g verstis time curve taken from 
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Fig. 4. As indicated on Fig. 10, l i m i t  accclcration occurs at a value less 
than the pcak. 

I t  should bc noted that the standard 1959 ARDC Model Atmosphere is used 
throughout this paper. At  the present time an imperfect picture of daily, 
seasocal and random atmospheric variation exists. Actual re-entry operations 
will have to consider these variations both from t h e  standpoint of their closer 
prediction and by allowance in vehicle dcsi2n. 

Aerodynamic Heating 

A number of structural schemes arc possiblc fo: solving the aerodynamic 
heating problem of a ballistic body decelerating from escape velocity. IA 
general, these can be classed as  heat rate s y s t e m  and total heat systems. 

! --- ---- 7 

0 
TIME - SECOXJS 

Fig. 9. Design skip limit trajectory. 
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Fig, 10. Acceleration tolerance trajectory. 

In the former, a structural material is necdcd to withstand the surface :adiation 
equilibrium temperature associated with the highest heating rate. Thc 20-4 
trajectory would subject th6 r e e n t r y  body to  thc most severe heating rates. 
The- high temperature outer s k i n  would have to be backed up with insulation 
(and internal cooling) to provide a workable interior environmcnt. 

The total heat system would use a heat-sink matcrial s u c h  a s  beryllium, o r  
ablation materials such as polyethylene or Teflon, to protect the vehicle. For 
heat-sink materials, the shield is designcd so that the integrated heating dol., 

not subject the materfal to excessive surface temperatures. In an ablatio:) 
system, mateGal is consumed in absorbing the integrated heat load. In bo;!i 
cases the dchign condition occurs for t he  long-time trajectory, which is at :IIC 
design skip l i m i t  for dircct entry. It should be noted that a very high tcmpcr- 
ature ablation manrcrisl, such a s  quartz, rcjccts much heat by reradiation a n i  
the appropriate design condition may not bc the long-tinx trajectory. 

Figure 1 1  showb the variation of.drar coefficient, average hcat transicr, . I IC  

total hcat as ;I function of the nose angle $. Total heating is seen tohv 
minimizcd for a 4 of about 20 dcg anll all vchicles considered in  this pii)u 
wcrc  designcCI at t h i s  point. llcating-rate estimates are bascd on the mcthoLf\ 
of Fay and RidJcli’ with 5 ~ 1 1 - i ~  modi f i ~ a t i o n s . ~  The aerodynamic hcatin; 
shown hcrc is convcctivc hcating only. Gab-cap radiation for the shapes C(G- 

sidcred is unimportant at the high altitudes where manned vehicle &cclcrat;u:: 
takes place. 

The major heating problem for the ba!:istic shape is the  hcat shield. 
conical c ~ p s u l e  wall is also subjected to hexing. This region is much ks:. 
severely heated than the heat shield and can bc protected by thermal radiatio:: 
equilibriuz cooling. 

Ionizing Radiation Considerations 

It is desirable at t h i s  time to consider the structural requirements for pro- 
tecting the occupants from Van Ailen radiation. Much further definition of {Ill’ 
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type and distribution of this radiation is needed, but preliminary design esti- 
mates can be made. 

As is well known, the basic data which defined the existence and some- 
what the composition of the radiatior, belts were radiation counter measure- 
ments taken by Earth satellites." The radiation presented by 
Dr. Van Allen were derived from data takeil by a counter shielded with an 
average value of 1 gr/cm2. This amowi of shielding corresponds to the range 
of 30 Mcv protons. Dr. Van Allen proposcs an inner belt spectra" which in- 
cludes a proton flux of 20,000 particlcs/trn2-sec having an energy greater 
than 40 MeV. The outer belt is assumed to bc chicfly clcctrons whose biologi- 
cal significance is I O W . ~  

Based on the Work of Van Allcn and ;C-crs, a diffcrcntizl energy spectra 
of protons w3s  prepared for the inner belt and shiclding requirements esti- 
mated.l2.l3 The maximum dose ratc measured by an imshielded small detector 
was estimated as 70 rad/hr, which when convcrted by the R B E  (Relative 
Biological Effect) compatible with the radiation spectra leads to a freespace 
dose rate of about 440 rem/hr.I3 Shielding requirements included a con- 
sideration of Bremsstrahlung energy due to el ectro:i flux. These estimates 
formed the basis of shielding requirements used for the vehicles in this paper. 

The above considerations lead to a free-space dosagc of I72 rem for a di- 
rect entry in the geomagnetic equatorial plane. Shielding, i n  addition to vc 
hicle structure, needed to reduce whole body dosage to about 12 rem for a di- 
rect entry was estimated a s  0.2 in. of polyethylene. .4 thickness of 0.5 in. of 
polyethylene would reduce the dosage to 6 rcm. For comparison, the A E C  ac- 
ce2table emergency exposure is 25 rem, and a proposed one-day maximum ex- 
posure i s  50 rem." 

Inclination of the entry orbit plane with respect to the geomagnetic equator 
can effect a substantial reduction in total <Osage. Figure 12 illustrates this 
in terms of small detector (free air) dosage for an entry which makes one 
elliptical pass through the inner Van A l l e n  belt. . 
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DEFINITION O F  T ( t )  AND USE FOR DSIF LUNAR ORBIT 
' DETERNLINATION 

- 
The Function 3 ( t )  

For a n  elliptical orbit we have the usual expressions (see any 

books on celestial mechanics), 

Perigee = R = a ( 1  - e) 

Apogee = Ra = a ( 1  f e )  

P 

P 
V 2  a Energy= E =  - -  P = 2 - -k = - -- 

2 Ra 

V 
2a 2 R 

P 

Orbit Per iod= T =  - w 2n wherew n =-& 
n 

Combining these we have the alternate forms: 

w =  -q- 
R n 
P 

with 

1 If e 
a p 1 - e  R = R  (- 

1 1 - e  
% =  V p ( l + e  

(3) 

Then'letting ( t  ) denote the f i rs t  time the vehicle reaches perigee, we have 
for the correct expression: 

P 



for n = 0, 2, 4, 6,e 0 * 

- - lT R ( t  t n;J-)= Rp 
P n 

for n = 1, 3, 5, * * * 

1 - e  

ri - 
R ( t  + n r ) = R a =  

E(t  +nu-)= ri PJ = 
n P 

a n P 

- 
Now define €$(t) as: 

i 

3 + ~& [ sin wn(t - tJ + 2 sin 2o,(t - tr) 
e 

with R and V as given by (2). A l s o  from (5) we have : 
P P 

1 - e  n P tP) 1 . - s i n o  (t - t ) f e sin 2wn (t - - 
R1 (t) = 

Then evaluating ( 5 )  and (6) using (4), we get 

For n =  0,2,  3, * * 0 ,  

2 



Whi le  for n = 1, 3, 5, 7, 0 0 )  

Thus 

‘ 1  
~ 

El and 8, a r e  correct a t  any apogee or  perigee (9) 
I J 

To investigate the accuracy of the approximation at  in between values of 

(t) we look a t  the momentum vector (wl  x El). 
of (5) and (6) and making usual trigometric reductions, we find, 

Taking the cross  product 

r 7 

I 2 
(13- cos 2wn( t  - t )) l f ~ ( c o s 3 w n ( t - t  ) -  c o s w  n ( t - t  ) ) - -  2 e e 

P E l x E l = E  x v  2 P P  1 - e  

Thus (E, x El) is not the constant (E x v ) i t  should be, and i s  correct  
P P  

only a t  apogee and perigee. However, since the area of the orbit ellipse is, 
lr t +- 

( p .  an 

A r e a =  I R x S  1 dt 

t 
P 

3 



We hav 

rea of Ap2roximation = {Area Correct)( 

2 ( A r e a  Correct)(l  + e’ ) 

For  the LEM ascent orbit, Ram 1100 n. m. with 

R d 1000 n.m. so 
P 

- . 0 5  100 s:=-- 
2000 20 

3 - R  a 

P 

Hence for such orbits 

I Area Approximation = (Area Correct)( 1 f - ) 80 0 

and so is  a very good approximation bn the average as well as  being 

exact in both position and velocity a t  every perigee and apogee so may 

be used for arbitrari ly long prediction times. 

Determination of g , ( t )  a t  Long Range From Doppler Measurements 

(13) 

. (14) 

Since E (t) is very close toR(t) ,  we may study the e r ro r s  in  the ’ 1 
coefficients of (t) since the percent e r r o r s  relative to (t) wil l  be 

very close to the percent e r r o r s  i n  the coefficients of the true function 

E (t). A l s o  we will assume the spacecraft is so far from the earth that 
the parallax effects caused by mction of the earth station a r e  not useful. 

The notation is summarized in Figure 1. 

1 1 
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Vehicle 
Tracking Station 

.Moon 

Earth 

Figure 1, 

For the e r r o r  study we  assume the station is at the center of the. 

earth and that is constant and very large. Thus, 

So, for the e r r o r  study let 

r = R  0 lD 

where the DSIF knows TD exactly. 

Using ( 6 )  and (2) in  (16) we have: 

Now make the following definitions: 

5 



A - 
A l  - 

A2 = A 

A d ,  = 

A d2 = 

e 

u t  - t a n  

'V 'D 
P 

With these definitions, i t  is then a matter of straight trigonometry to 

show that (17) may be written as: 

r = A 1  cos (W t - d,)  + A2 C O S  (20,t - d2) n 

It is now more convenient to work with normal i to the orbit plane where: N 

- 
andTv a r e  orthogonal, the set 

P P 
lR and since by definition of perigee 

- - - 
'R * 1V 9 'N are mutually orthogonal. Therefore, we have that 
P P 
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e can now solve (18) and (2) for the orbit parameters, 

A2 

A 1  
e =  - 

,Y3(1  - e) 
2/3  R =  

P w n 

* 2 +  *l ) 
3 t = (. 

P 

.., . ,  . 
/ "  

Q2 - 2dl 
A l  sin ( ) =  

P 

Thus, in  terms of the rneasurables w' A A2, d and d,, we find that, n' 

1/3 A 1  - A 2  
1 tJ 

n 
R -  p -7 

* 2 +  *l 
3 t =  

P 
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To describe the motion of a vehicle in an  elliptical orbit we 

need six numbers, 

to i t s  normal (i ) *  

two for the orbit shape (R 

the orbit plane (i. e. 

along the orbit (t ). 

the Doppler only, we a r e  missing the second direction cosine of T~ and so ean- 

not locate the orbit plane. 

infinite distance from Doppler only, the (TR 1 ) value does not locate 
1 , (whereas, i f  we had Y, , then-h * lD would be enough). Thus 

from Doppler only a t  infinite distance we can know everything except the 

direction cosine of T 

The f i rs t  two locate the orbit plane by reference 

The next four describe the motion in the orbit plane: N 
e ) ;  one for the orientation of the orbit in  - p: 

lR 
0 

P 
lD); and one for the time location of the vehicle 

Of these six descriptors, we then see from (23),  that w i t t  
P 

Also since we cannot locate the orbit plane at  - 
D - - 

RP P 

lD' 

to some known vector lying in  the plane normal to 

This 
N - 

Thus, w e  do not know the rotation of the orbit plane about T,. 
may also be shown by using Euler angles of Figure 2. 

0 rbi  t Plane ' Orbit Plane 

Figure 2. 
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From the figure 

- - 
lN l D =  cos e 

- - 
e ID = cos (d sin 6 . 

P 
lR 

Thus with Doppler data we get 6 and d but 4, the rotation of orbit plane 

about TD, is unknown. 

distance w e  know all about the motion in  the plane but are missing one 

To summarize then, with Doppler only a t  inGnite 

. piece of information about the orbit plane orientation and this is the 

direction cosine of with a known vector i n  the plane normal to TD. N 
The smoothing and e r r o r  study for lunar orbit determination 

can now be car r ied  out using the form of (19) and this wi l l  be done in  a 

later note. 
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0 NOTE NO, 55 Re Harte 
29 April 1963 

THE USE OF TELEVISION IN LANDING 
AN UNMANNED LE 

I . .  

A television link between LEM and CM/SM is deemed necessary .. . 
because of the landing s i te  suitability surveillance problem. 

television system can also be used to find a suitable landing site which 

could be a particular mountain peak, crater ,  o r  as  a n  ultimate test, 

an -beaconed LEM. 

The 

The television system may serve as an invaluable aid in terminal 

navigation and guidance. 

As seen from Apollo Note No. 42, the 1c landing inaccuracy 

might vary between 2000 feet for the perfectly aligned IMU (at SM/CM 

separation) and 20,000 feet for  a lo IMU misalignment. If a television 
camera must cover the 3cr case, then the above two numbers might 

require a picture width of between 12,000 and 120,000 feet. 

It would appear that the problem of bettering the IMU alignment 

might be neglected if the television system could yield enough information 

in  the 12,000 to 120,000 feet picture to permit terminal maneuvers. 

The questions that must be answered, therefore, are: 

1. 

2. 

3. 

4. 

Can a single, stationary television pickup tube see an LEM 

distinctly if the entire screen must encompass up to 

120,000' (60,000' to-either side of the optical axis in a 
horizontal plane at'right angles to the optical axis). 

What is the best frame rate choice. 

How much degrading of resolution will result from angular 

displacement of off-axis points in closing toward the lunar 

surface e 

Are image intensification techniques necessary or  useful. 



The assumptions to be used are: 

1. 
2. 

Operation is in either sunshine o r  earthshine, 

Resolution necessary to distinguish a 20 foot LEM is 

approximately 5 feet. 
. I . .  

3. The transmitting distance never exceeds 150 miles, using 
1. . 

omnidirectional antennas. 

Line of sight is depressed approximately 15O below 

horizontal. 

The angular rotation rate of the line of sight will  be zero 

at the intersection of an extension of the LEM velocity 

vector and the moon. 

of-track from this point. 

where V S G  and a 14 f t /sec 

4, 

5. 

It will be maximum about 45O out- 

This critical rate Omax - - 2R 
- V 

.. 

To determine the usefulness of television in the described 

situation, we must first determine the ambient light levels in  which 

they will operate. 

In sunlight, the lunar surfzce receives 0.13 watts cm'2. With 

an albedo of almost 0,1, this represents a reflected energy level of 

1.3  x watts c m  . About 25% of this falls in the visible wave 

band (0.35~ to 0 .70~) .  This assumes a panchromatic reflectivity 

which is reasonable over a restricted bandwidth. 

- 2  . 

Thus, since there a r e  900cm 2 feete2 and approximately 

100 lumens watt-' in the visible band, the ambient light level under 

direct sunlight should be at least 250 foot candles. 

The ambient light levels under a full earth a r e  considerably 

smaller. They can be derived from the formula . 

Isc PeAe Pm K A i  

2rR2 
- 

'a - 

2 



where 

-2 Isc = The Solar Constant in watts ft, outside of the earth 's  

atmosphere 120 watts/ft. 
S 

= Albedo of the earth 0.4 
pe 1 ' .  

2 A, = Area of the-earth facing the moon = 1.5 x lOI5 ft, 

= Albedo of the lunar surface 5 0.1 Pm 
K = Conversion factor - watts ft."2 of visible radiation 

to foot candles 100 

R = Earth to moon distance = 1.3 x 109 feet 

AX = Amount of radiation in the visible portion of spectrum 

.'. I, z 0.024 foot candles 

This value represents full earth light and is reduced as the 

phase of the earth approaches "new earth," 

Special image orthicon tubes are available which will  operate 

in light conditions as low as 

much to be desired at the low light levels in the way of resolution, 

perhaps 200 horizontal lines per  tube. 

foot candles. They leave, however, 

There a r e  now, under study, special tubes with as many as 

1300 to 1500 lines per inch, with useful tube diameters of 2 inches. 

These tubes are operated at scan rates from 1 to 20 frames per 

second. A typical tube has resolution values as follows: 

,014 foot candles 750 lines/inch 

a 0075 foot candles 650 lines/inch 

., 0035 foot candles 580. lines/inch 

.0018 foot candles 300 lines/inch 

Thus, even a t  a first quarter phase .earth, with only 012 foot 
1 candles of light we can obtain 750 lines inch' at 2 inches = 1500 lines. 

3 



These tubes,. in general require higher cathode voltages than 

the standard tubes. They possess either S-10 photocathode surfaces 

with sensitivities of 60pA per lumen and S-20 surfaces with a s  much 

as 100pA per lumen , sensitivity. , .  

cand-les, we can hope to achieve a total of 2000 lines of video 

resolution. 

Assuming that the..ambient light level is at least  .025 foot 

If we use a very fas t  collector lens with a small aperture, w e  

For example, Burke and James can achieve wide fields of view. 

Catalogue lens No. 12641-A (quartz optics) at $ 3 5 0 ,  is a 25mm focal 

length lens with a diameter of 30mm. Thus, it is a f / O ,  87 system 

which presents a field of view of 90° to the 50mm face plate of the 
television tube. Each line, then, represents 7.8 x radians of 
angular coverage. 

Fo r  a given slant range, it is now possible to determine the 

horizontal extent of lunar surface included in the frame and the ground 

resolution. 
Since the off-axis points move across  the screen at  a certain 

angular rate , the resolution will be degraded accordingly. Maximum 

angular rate occurs at 4 5 O  on either side of the optic axis; and, there- 

fore, falls a t  the very edges of the video frame. If we choose a conven- 

ient frame rate,  i. e , ,  10 frames per second, we can determine the 

angular movement per frame in radians; and when this value is divided 

by the angular coverage of a single line (7.8 x loe4 radians), an induced 

error coefficient is determined. 

ground resolution determines the maximum value of ground resolution, 

This value when multiplied by the 

Table 1, indicates these calculated values. 

Figure 1. plots ground resolution vs. slant range for various 

positions on the television tube face plate. 
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Ground resolution is a geometrical concept, and a s  has been 

pointed out in 

data often exceeds geometrically determined values by a considerable 

degree, expecially straight contours. Thus, if five foot ground reso- 

lution is the stated accuracy needed to determine the presence of an 

unbeaconed LEM, it is very conceivable that the human eye will identify 

it when geometric values a r e  a s  high as  15 feet o r  even 20 feet of 

resolution. 

pol10 Note No, 34, human recognition of meaningful 

, a .  

f. . 

At a slant range of 20, 000 feet o r  3.'8 miles, 20 feet/line 
resolution occurs at the center of the screen and 40,000 feet of ground 

are displayed. 
At the edge of the screen, 20 feetlline resolution is not achieved 

until the slant range is less  than one mile (4000 feet). At that range, 

only 8000 feet of ground a r e  displayed. 

We have assumed a frame rate of ten per second. The trans- 

mitting bandwidth can be determined from the relationship 

Fmax =' 1 / 2  kmn2f ~ ) ( ~ ]  
where 

Fmax = 'Bandw.idth 

k = An efficiency factor for video transmission which 

approaches 0.'7 

m = Ratio of horizontal to vertical resolutions, here, 

assumed to be 1.0 

n = Number of resolution elements per frame = 2000 

f = Frame rate  = lO/second 

= Display tube width over height = 1.0 w 
'R 
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other resolution efficiency factor 5 I, 0 

e 
.e Fmax 14 megacycles 

These calculations 'indicate that while we cannot hope to image 

as much as 120,000 feet to'&clude all possible cases of 3cr deviations, 

we can still give considerable coverage. 

Light levels are sufficient so that no further intensification 

of the image is required. Resolution values for slant ranges of several  

miles are probably adequate to determine the location of an unbeaconed 

LEM television; therefore, it would appear to be a very useful tool 

for terminal guidance of the surfacing craft. 



QTE NO. 56 G. F. Floyd 
1 May 1963 

EFFECT O F  SMALL BOOSTS ON ACCURACY 
OF EARTH ORBIT DETERMINATION 

. While the Apo\lo- s-pacecraft is in  its first earth parking orbit, 

it is necessary to apply small boosts (about 5 ft/sec), every 18 minutes 
or  so in order to prevent excessive pressures from buildixig up in  the 

S - n B  booster. During this time, the close in  ground tracking network 

is trying to determine the earth orbit exactly in  order to calculate the 

exact boost needed for the translunar trajectory. 

to determine the effect of these small boosts on the accuracy of this 

orbit determination. 

The problem i s  then 

In actual practice these boosts will be applied in essentially 

known direction and thus a priori knowledge can, of course, be used 

to good advantage in the orbit determination problem. 

manner by which such information is used is outlined in Note No. 57, 
but i n  this note we will  neglect this additional information and show that 

even without it, the ground system should have no real  difficulty in  

keeping track of the new orbit parameters that result with each small  

boost. 

The general 

The tracking during earth orbit wil l  be done by the ground based 

stations. With reference to the Bell Telephone Laboratories report of 

December 15, 1962, "Apollo, Report on Communications and Tracking 

System Plan+ng, I t  there are 11. Mercury remote stations plus two ships 

and the Antigua station for the Atlantic iMissile Range,for a total of 14 

stations. These stations are, or will  be, equipped with FPS-16 radars. 

of two different range capabilities. From Figure 6. 3 of this report, we 

have that the spacecraft will be visible over 30°* 7. 5 min of travel for 

the extended range version and about 3 O o d  5 min for the standard version. 

Therefore, we w i l l  assume 5 min of tracking while the vehicle is in view 

of a station with the slant range varying between about 900 and 200 n. mi. 

On the basis of tests made by General Electric, the FPS-16 appears 

capable of the following tracking performance: 



zimuth Angle: 

Elevation Angle: 

Angle Servo Bandwidth: 

Range: 

The following, analysis fir s t  deveiops general smoothing equations 

for the circular orbit case and then uses the above performance numbers 
to estimate errors .  

% 0, 1 mil random 

0. I mil bias -k 0, 3 mil random 

2. 5 cps 
50' Bias k 10-30 ft random, 

A summary of these results is that with the smoothing time 

available at each station (4  minutes o r  more), the velocity of the space- 

craft can be determined to better than 0. 3 f t /sec and position to better 

than 50 ft. 

boosts wil l  cause any particular trouble. 

Consequently i t  does not appear that the necessary venting 

For  the analysis we use the notation of Apollo Note No. 31 and 

write: 
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- R(t) = Ro f (t) 4- To g (t) 

and therefore we may express E (t - T )  in  terms of (t) as 

.. . 
where f ( 7 )  and g ( T )  a r e  found from f (t) and g (t) by replacing t by ( - 7 ) .  

W e  consider the vector equations: 

T - 
RS(t) = 1 h(T) Wm(t  - T )  d r  

where E (t) and 
R 

(t) are our smoothed values of range and velocity and 
S S - 

(t) is the measured value of vector range W(t). W e  note here  that i f  m - 
Rt( t )  is the distance from the 

r ( t )  is the measured range of 
- earth center to a tracking station and 

the spacecraft from the tracking station 

where E (t) is also changing in  inertial coordinates due to the spin of t 
the earth. 

Now standard procedure for choosing h (7) and w ( 7 )  is to say that - 
if a 
without noise on the measured values we want no error .  

( 3 )  and ( 4) this leads to the equations 

(t) = R(t )  then the smoothed values should be correct. That is, m 
Using (2) in  
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ence the constraints 

lT h(r) f (7 )  dT zz 1 a n d 1 7  h ( r )  g(r) d r  = 0 

w(7) f(7) A; 4 .. 0 . a n d l T  W(T) g(T) dT = 1 
. .  

To now determine the best functions h(T) and W(T)  we wish to minimize 

the mean square output of the filters to a noise input. 

the W ( T )  filter we have, 

Thus considering 

/ T  

and considering each component separately we may drop the vector 

notation and calculate the mean square value as 

T 
= lim 1; d t  1 w(x) N(t  - x) d x  w(y) N(t-y) d y  

Letting w(x) be identically zero outside the interval o to T and inverting 
orders  of integration -. 

The term in brackets is  simply the autocorrelation of the input range noise 

and will be denoted by bNN(.7) so that (10) becomes 

4 



W e  now take the case of input noise which has essentially a flat spectrum over 

the frequencies of interest in  our smoothing since a t  each stationwe wil l  smooth 

over the visible time of 5 minutes (smoothing bandwidths of less  than 1/300 cps). 

For such w ( T ) ,  bNN(7) i.s .essentially an  impdse  and calling @ the flat 

low frequency power density of the noise we have upon changing limits 

back, 

I * .  
0 

where 

2 and so has the units of f t W e  also may clarify our definition of 
@ in another way by saying that i f  the input noise has a bandwidth of (b) 

cycles per second, then the mean square value of the position noise 

- sec. 

0 

2 
4 2 N (in f t  1 is related to 4io by 

so 

0 2b 

. The expression for the mean square position noise output of the filter 

h ( r )  is just like (12) and is 

/v T 
R = iP h'(T.1 d r  
S 0 
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Thus the optimization problem for both h ( r )  and W ( T )  is the same and 

consists of minimizing the integral of the square of the functions under 

the constraints (7)- 
therefore the procedure will simply be sketched out for completeness. 

The solution to this problem is well known and 

Assume w ( T )  is the optimal function and that V ( T )  i s  a per- 
0 

missible variation fupction I .  then for any choice of a small constant e , 
(either plus o r  minus), W e  know that 

T 2 
W ’ ( 7 )  d 7  </ [W 0 ( 7 )  + e V(T)]  dT 

0 

‘6’ V2(,) dT t 2 e  lT W ~ V ( T )  d 7  + e 
T = b  w 0 

Since ( e )  may be plus or minus, it then follows that for all permissible 

V(T)  we must have that 

- 
w,(T) V ( T )  d r  = 0 

The restrictions on V ( T )  follow immediately from the constraints (7) 
and a r e  that both w ( T )  and [w (7) t e v(T)] must satisfy the constraints 

0 0 
so 

and 

/T fT lo WO(T)  f ( T )  6 7  + e v )  f ( s )  d r  

Thus, the constraints on the permissible variation function a re  simply 

that: . 

V ( T )  g(7)  dT = 0 6’ V(T)  f ( 7 )  d-r = 

6 



To satisfy (17) under the constraints (18) we see that one solution is 

W,(T) = A f ( 7 )  f B g ( 7 )  (19) 

where A and B a r e  constants, since with this choice, (17) will be 

satisfied for all v (7) which satisfy (18): In a similar way we find, 

where the constants A, B4' C, D a re  found from (7). Thus we have, 

g ( r )  f ( T )  d r  = 1 

c f T g f d T  4- D I' g2(,) d r  = 0 
JO '0 

Ai,T f ( T )  d r  t B i , 'g fd- r  = 0 

A l T g f d T  + B I' g d ~ = 1  

7 



e can also evaluate the integral of the squares easily from (19), (20) 

and(?) a s  

f ( T )  + g(T) 

i 
.. . 

JT w:(T) d r  = ’  lT w ~ ( T )  b f ( T )  f B g(7) d 7  = B 
0 

and therefore f rom (12), (14, (15) and (26)  we have using conventional 

dispersion notation, 

where B and C a r e  given by (22) and (24). 

Returning to the results of Note No.31 we saw that for either 

short smoothing times o r  low eccentricities that we can write with only 

a small signal e r ror ,  

- f ( 7 )  COS W 7 
0 

where we have replaced (t) by (-T). 

to remove signal e r ro r s  these simple functions should give very close 

noise estimates. 

Even i f  we use higher order te rms  

Evaluating K, B, and C with (29) we find 

[COS 2 w 0 T +  z W  0 2 T 2  - i ]  8614 K =  
0 

A = D =  1 [ 1 - cos 2woT] 
K 
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2woT + sin 2woT 1 
B =  

4 woK 

2woT - sin 2woT 1 C =  

Now evaluating (31),  (32); ‘and (33) for  small (w0T) we find, 
.. . 

so that for small  smoothing times, use of (34) in  (27) and (28) yields 

finally, for small  w T: 
0 

for small woT. 

(32) 

(33) 

(35) 

Returning now to the numbers for the FPS-16, i f  we assume that 

they represent maximum er rors ,  then the RMS values will  be less. 

let the 1 cr angle tracking e r r o r  be 0 .2  mils and consider the maximum 

range case of 900 n. mi. so the RMS position e r r o r  is 0.2 /1000 x 900 x 6080 = 
1000 ft along each of the axes normal to the range’line and.less than 50 f t  

along so the scaler  range erFor i s  unimportant. 

spectral density is then given by (14) a s  

Thus, 

The position noise 

- 
N2 lo6 = 2 x 10 5 2  f t  /sec. 

7@7723- @ =  - = 
0 b 

Letting the smoothing time, T, be the minimum observation time of 
5 mi.nutes o r  300 seconds, w e  get from (35) 

9 



5 '  4 X 2 X 1 0  
300 QR = 

= 0.3 f t lsee 

= 52 ft. 

.. . 
. .  

Since the actual ground system wil l  use the data from all the 

14 stations and also the a priori  knowledge of the planned on boost 

direction, the system wil l  actually do better than this by several factors 

of 2, 
and 20 f t  are quite possible, so thathaving to make these boosts should 
cause no appreciable 10s s in  parking orbit parameter determination 
accuracy. 

Thus, we would guess that final e r r o r s  of more like 1/10 ft/sec 

(37) 
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OPTIMU OOTHING WITH IMPERFECTLY EXECUTED 
COMMANDS 

During the return to earth, the DSIF first  tracks for a while to 

estimate the re-entry angle that wi l l  result i f  the vehicle coasts all the 

way, then periodically commands changes which the spacecraft imper- 

fectly executes, and then the DSIF tracks again to see  what happened. 

With such a process, the question ar ises  as to the best estimate of the 

re-entry angle using all the data. 

orbit parameter 

boost, let: 

Since w e  are' trying to estimate some 

(a),which we know is constant unless we  execute a 

a a  

k 4 = Best estimates of a and a using al l  data. 

= True value of the parameter during smoothing cycles n' n+l 
(n) and ( n +  1). 

(1) 
n' n+ 1 n nS 1 

n t .  1 

bn 

= Best estimate of a 

= Commanded and executed changes a t  end of nth cycle. 

using all  data measured n t  1 21 

after the executed change.. - 

SO 

= a n +  bn a n t  1 

To maximize the likelihood we will  want zero expected e r ro r s  i n  the 

estimators and minimum variance so wi l l  want the expected values of 
all estimators to be the true values. 

average, the executed change wi l l  equal the commanded. So 
We wil l  assume that on the 

n' 6 = c  n 

W e  wil l  denote the different variances involved as:  



2 h 2  
n t  1 0- 

and our a priori knowledge A 

and we wil l  choose * ant 

we have available an, cn, aht h To form'a 

of the variances 0- 0- IT 

expected e r r o r  zero with a minimum value for cr 

to make the n t l J  2 2 2 

2 e '  n '  new' 

n t  1' 
\ 

Thus let, 

Taking expected values and requiring that these be correct we have, 

hence 

p 2 =  1 - p a n d p l =  p .  

Thus for zero mean error,  2 must be of the form: nf 1 

The r e fo r e, 
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n = p (an .. an) + 
I .  

Squaring and averaging with 

notation of (4) : 

p (Cn - b 1 + ( 1  - P ) b n + l  A ,  - a  n+ 1 1 n 

zero correlation assumed, we get using the 

2 2  
+ p 2 u 2 + ( 1 - p )  a new " n t  1 =  P u n  e 

2 2 2  

2 2 2  2 2 
= p (a:+ u e + anew) - 2p anew + anew 

2 
U 2 new 

+ a  e t u 2  new ) [  p -  u 2 t u e + u  2 2 
2 

new 
= ( an  

n 

we want, 2 
n+ 1 Thus to minimize a 

and 

2 
new 

P =  3 -J -J 

0- 

L. L. L. 

a n + ue ' unew 

this choice yields, 

2 2 2 ' )  
(an i- ae )(anew 

+ 2 2  2 l 2  (an -I- u e ) + a n e w  

Thus we have the simple result that the variance of the best estimate is 

the 'lparallel" combination of two variances. The first  is the sum.of the 

variance of the old smoothing data plus the variance i n  the execution and 

the second is the variance based solely on new data. Thus the resulting 

variance is smaller than either and approaches the smaller when one is 

larger  than the other. 
3 



In the Lunar Logistics Vehicle (LLV) mission, the LEX M U  
is not available for initial ,alignment by the crew of the CM. I f  the IMU 
is used it would either need' be aligned by some technique, or  degraded 

. M U  performance would result. A possible solution might exist in 

command guidance from the CM using a one mil  radar. 

surely relieve the IMU of its navigational tasks during the midcourse 

portion of i ts  descent. 

This would 

The questions to be &ken up here are: 

What characterizes the terminal descent; and, is an IMU 
necessary during the terminal descent? 

Of the many possible LLV missions, one of the most taxing is 
the landing near a small, pre-assigned point (such as an un-beaconed 

LEM). Two pieces of equipment which appear absolutely necessary 

a r e  a T. V. link and a doppler altimeter. The terminal phase can be 

considered to s ta r t  when the T. V. link recognizes the target landing 

sight. Surely before this no form of terminal navigation can better 

the midcourse trajectory ( with the possible exception of 

derived altitude and altitude rate updating). 

altimeter 

The terminal portion of the descent trajectory has been studied. 

before and, for the normal LEM, consists of a constant acceleration, 

gun-barrel path. 

case of no e r rors .  

The f i rs t  is equal to the lunar attraction and in a downward direction. 

The second is equal to a constant and is in the direction of the velocity 

vector which, in turn, is along the line-of-sight to the target landing 

point. The constant acceleration is chosen by relating the velocity, V, 
to the range, R. 

This near-optimum path is easily defined for the 

Two non-orthogonal thrust components a r e  present. 



argin is present in 

\ 

LANDING 
58TE 

Figure 1. 
Landing Maneuver With No Er ro r s  

Needless to say, this is an easy maneuver i f  no e r r o r s  exist 

since the thrust acceleration is constant. 

found in R or  V, then I a I is varied according to Equation (1). 

If a subsequent e r r o r  is 

It is 

important to note that the conditions of the midcourse trajectory 

would be such as to make 1 a 1 as  high as  possible, still maintaining 

a margin of safety. This in turn makes the time of.flight remaining 
as short  a s  possible. -. 

2R - -  V 
t i = - -  a V 

For any given range, R, the flight time is minimized by maxi- 

mizing both the velocity and the acceleration. The boost velocity, Vb* 
is defined as the time integral of the thrust divided by the instantaneous' 

mass, 
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Thus for the situation shown in Figure 1,  it is always best to 

minimize the time-of-flight for any given initial conditions. 

When the initid velocity, v, does not "point" at the desired 

target,the question a r i s e s a s  to what is the best thing to do about it. A 

gravity turn trajectory is a perfectly good example of such a trajectory 

which is a l s o  near optimah%. In the following analysis it will be assumed 

that the initial angle between the line-of-flight, v/V, and the line-of- 

sight is reasonably small  and is due to midcourse navigational errors .  

One possible guidance scheme would be to t reat  'the horizontal 

(x) and vertical (y) components separately but in a fashion similar to 

Equation (1). That is, ax and a could be chosen such that 
Y 

- 2  * 2  
X - Y  

X 2x ' .aY - 2 Y  
a = -- 

then with no further changes in a and a 
will yield the space trajectory: 

the following short analysis 
X Y' 

02 0 .  

x = 2 x x  

Which upon integration gives: 

0 
.A 

. .  
dx 
d t  x -  

This may be rewritten: 

d x  d t  - -  
X 1/2- -q 
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hich may be integrated again to give: 

From Equation (4a) a similar equation to (4f) may be written 

in y; thus, 
t 
2 t- 

t 
2 t -  - 

0 

Now it can be seen that y/x is a measure of the tangent of the 

line-of-sight. 

+/yo = x/x (i. e., i f  a is along 

value (remember that yo and & a re  negative). Fo r  initially 

pitched above the line-of-sight, the trajectory will end up going 

straight down (arc  tan -$ = 90°). And far more serious, if 

pitched below E, at any time, the guidance rule would have the LEM 
skim in along the lunar surface. 

perfect guidance and no e r r o r s  the time of flight for this scheme is 

given by Equation (2). 

of P t w o  times exist. 

J h  Equation (4g), it  can be. seen that i f ,  and only if, 

) then y/x can remain at  a constant 
0 0 O .  

0 

is. 

This is quite undesirable. With 

However, with an initial e r r o r  in the direction 

Similarly to Equation (2): 

xO tf = - 
X X 

0 

These a r e  the times that ? must change from a to zero,  and separately 

that must change from a to zero, Since the line-of-flight angle-is 
X 

Y 
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0 close to the lunar surface (14 or  so) a small e r r o r  in will cause a 

greater percentage change in t than in tf Thus although tf will  
X X 

f 
Y 

remain quite close to t 

larger,  and in any case, the longer of the two determines the actual 
time of flight. 

according to Equation (3):- .- 

(from Equation (2)), tr might get quite a bit f 
Y 

Any urinecessary time of flight burns unnecessary fuel 

Thus a summary of the complaints against the above guidance 

scheme are: 

1. 

2. 

The trajectory is curved (badly so near the end of flight). 

The guidance scheme must change at either x = 0 and/or 

y =  0. 

3. A lengthy flight time, which burns fuel, may occur for 

an initial pitched-up condition. 

A related scheme which overcomes many of the problems is 
discussed in Apollo Note NG. 19. 

picked as before, however, the vertical acceleration is chosen such 

that a suitable positive y and downward j r  exist when x and k reach 

zero. 

(when x and k - 0): 

Here the horizontal acceleration is 

From Apollo Note No. 19, the terminal values of y and + a r e  

Then since some $ remains when x and & have gone to zero, the 

remaining acceleration and velocity will be constrained to the vertical  

(except for any remaining errors) .  

scheme. 

This is thus a considerably safer 

The guidznce rules for  this scheme, to reiterate Apollo Note 

No. 19, can be broken into the following temporal pieces: 
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1. Pre-terminal: Undefined except that the desire would 

be to achieve descent initial conditions for the terminal phase, 

would assume that this would be close to an optimum boost trajectory. 
One 

2. 

such that atotAl places the LEM in a favorable vertical descent 

(t and y) when x and k go to zero. 

3. Initial Vertical Descent: Align the LEM body axis with 

Initial Terminal Descent: Pick ax such that k0 = d G  ; 

pick a 
path ’ 

Y 
See Apollo Note No. 19. 

the vertical, and at the same time reduce any remaining k er rors .  

Do this at a greatly reduced thrus t  (minimum thrust) until the point 

on an altitude vs. altitude rate profile is reached where maximum 

thrust ( x 0.9) will bring the LEM to 7 . 5  ft/sec. downward velocity 

.nt :. safe minimum altitude (100 to 200 f t ) .  

4. High Thrust Vertical Descent: At high thrust, control 

y and 9 and keep the vehicle basically vertical. 

5. Constant Velocity Descent: Make the vehicle vertical 

for landing while maintaining thrust equal to the lunar attraction. 

This s e t  of guidance rules appears to offer two basic improve- 

ments over Equation (4). 

vertical and second, the time of flight will  always be shorter because 

of the reasoning previously presented after Equation(4h). Although, * 

for this scheme a is constant in space co-ordinates during the 

initial terminal phase, the trajectory is not necessarily straight. 

This means that optical sensors will  see  a rotating line-of-sight 

to the target. 
First ,  it requires the optical sensor to be continually servoed with 

respect to body axes. Second, field of view and gimbal limitations 

may result f rom structural constraints. Third, the expected landing 

point (by the computer) is not obviously delineated in an optical 

sensor 

drive the angular rate to the predicted landing point to zero. 

Firs t ,  the terminal descent wil l  always be 

T 

A rotating line-of-sight presents a number of problems. 

unless the optical sensor is servoed by computer commands to 

A set of guidance schemes, worthy of consideration, a r e  those 

b 



which cause the velocity vector to be aligned with the line-of-sight, 

Defining (s- as the line-of-sight angle (with respect to any space reference), 

it might thus be desirable to drive & to zero which would return the 

trajectory to that shown in Figure 1. 

drive the LEM to a trajectory which is: 

Any such-scheme would then 

Straigdt, making visual observations (T. V. ) easy 

and gimbal angles predictable and small, 
._ . 1. 

2. Continuous-until flare-out o r  hover. 

3. Economical in'that the target is reached in the 

shortest time consistent with a safe design limit 

on the acceleration. 

4. Constant Thrust, in magnitude and direction. 

A time proven way of driving the line-of-sight rate, b-, to 

zero is proportional navigation. 

of the direction of v, then 

Defining \ as the rate of change 

. 
y = x &  (7) 

is proportional navigation where X is a constant, usually between 

2 and 6 .  
navigation can be gained by slightly redrawing Figure 1 to show an 

initial pointing e r ror .  

taken as an arbitrary angular reference. 

An idea of the actual motion of the LEM using proportional 

This is done in Figure 2, with the lunar surface 

In the following figure, e is the angle between 

The rotation rate of the line-of-sight is equal to the component 

and the line- 

of-sight. 

of velocity perpendicular to the L. 0. S. divided by the range. 

0 - =  V sin R e = d q  sin e 

and for small angles 

0 - =  e (9 1. 
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fi3 
. . .  - 

Q W  .. . 

V2 - 
A,  = - 7 

2 R  

LUNAR 5 
TARGET QOI'NT 

OF ZERO 

RATE. 
ANGV L.AR 

Figure 2. 

Landing Maneuver With  An Initial E r ro r ,  e ,  Under 

Proportional Navigation Control 
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Equation (7) may be rewritten: 

c = ( a : e ) = b - - i  = x b -  

Thus, combining Equation (9) and (10) g' ives: 
, . .  

. or 

&*(I-1) v q x  e = o  

which may be integrated if  the integration time is very short with 

- respect to the flight time; that is, i f  R can be considered constant. 

Thus, approximately 

e = @ &  - ( x - ~ ) v ' ~ ~ V / R  t (for t e-= t f 
0 

The following is an example calculation which shows that the velocity 

vector may easily be brought in alignment with the line-of-sight. 

The T. V. link should surely be able to recognize the target 

at five miles range. 

location of the target relative to the LEM should be correct to 

0.001 x 100 = 0. 1 mile. 

Given a one mil  radar in the CM/SM, the 

A 1000 foot e r r o r  will be assumed. Thus, 

the initial conditions are  assumed to be: 

Ro = 5 miles = 30, 000 ft. 

= 12 ftlsec. 3 Vo = I T  = 850 ft/sec. aV 

tf = the time of flight = - = 71 seconds 
V a 

= , 0 3 3  radians 1000 e -  
0 - 30,000 

9 



Now by taking five second increments, Equation (12) may be 

solved iteratively giving the following graph. 

Y) L 
.4 

$ u ) ’  9; 

Figure 3. 
A Sample Proportional Navigation Trajectory 

10 



The terminal portion of the "gun-barrel" trajectory should 

possibly follow the same reasoning as Apollo Note No. 19. 
two controllables exist, thrust magnitude and direction, then various 

phases must exist within which no more than two e r r o r s  at  a time are 

reduced. 

component a 
goes to zero. R could b4 200 feet o r  so. When some particular range, 

before Rf, is reached the LEM could change its progrhm to one which 

made: 

Since only 

During the gun-barrel phase described above, the acceleration 

is chosen such that some safe Rf exist when k (and thus V) V 
f 

1. x = 0 at x = 0 (fixes 2 )  

remain constant (fixes attitude) aT 2. 

In practice 

attitude from a 34 degree nose-up position. 

pitch this approximate 40 degrees is  rolighly two seconds, and during 

this time the altitude rate should be brought equal to zero. The next 

phase should bring & to zero at x = 0 while maintaining a 
Y 

at a roughly predetermined value of y). 

the LEM to coast- towards the target a t  a constant attitude and altitude 

this would cause the LEM to approach a near vertical 

The time required to 

= g (or t = 0 

This situation should allow 

which i s  high enough to not raise a dust cloud and yet is low enough 

to both obtain excellent ground resolution and T. V. estimates of the 

ground rates (i. e., k and 5 ). 

altimeter designers greater latitude. 

zecessary to roll the vehicle to reduce j, and i to acceptable limits. 

When 5 = x = 0 (or at least a suitable site has been chosen), then the 

thrust should be brought to a minimum while aligning the vehicle with the 

vertical. 

be se t  equal to gravity, while again maintaining vertical LEM align- 

ment. Touchdown should follow. 

Hopefully this will allow the radar 

In any case i t  should not be 

When an acceptable negative j ,  is  reached the thrust should 

An example of'a terminal trajectory is shown in Figure 4.The 

total time between the termination of the gun-barrel descent and touch- 

down is 28 seconds (which mzy be too large or  small), .and the cor re-  

spondingly required boost is 159 ft/sec. 11 
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/ 

Figure 4. 

An Example Terminal Trajectory Starting With A 

Gun- Bar re1 Des cent 

The remainder of this -note will  be devoted to ths necessity of 

an M U  in the lunar logistics LEM. 

gyros and accelerometers mounted on a stzble $atformi it, thus, has 

the capacity to: 

The Ii'V-U is a set  of integrating 

1. Act as an inertial attitude reference. 

2. Provide inertial components of position, velocity, 

and acceleration. 

3. Break. 

12 



The question of whether an IMU should o r  should not exist on the lunar 

logistics vehicle can best be answered by finding the guidance require- 

ments and providing only those sensors which a re  absolutely necessary. 

This should provide the most reliable non-redundant s e t  of equipment, 

During the initial portion of the terminal descent it seems apparent 

that radar command guidance (good to 1 mil) is inherently more accurate 

than inertial guidance as 'seen from Apollo Note No. 42. 
attitude reference is necessary during this phase in order to point the 

thrust axis and to point a T. V. camera. 

critical since sine e r ro r s  correspond to a small  fuel cost. 

An inertial 

The thrust direction is not 

However, 

the T. V. camera should probably be pointed to within a degree. 

that the target is f i rs t  seen at ten miles range, then the figure below 

gives the angular e r ro r  in the expected line-ofsight as a function of 

the one sigma e r r o r  in position. 

Assuming 

50 

4 O  

in the 3 O  

2 O  

1 o-errcr 

expected 
line-of- 
sight 

0 
1000 2000 3000 4000 5000 ft. 0 

1 o- er ror  in position of LEM upon 
T. V. 'location of the target at a 
range of 10 miles. 

Figure 5. 
Angular E r ro r  in T. V. Axis 

Once the T. V. camera sights the target, the camera would 

The line-of-sight must be driven to place cross-hairs on the target. 

then be used t u  remove guidance errors.  

(y and ;) and the ability to hold the T. V. cross-hairs close to the 

target, i. e., measure a; then the following equations follow from 

Figure 2: 

Given a doppler altimeter 

13 



R = y/ sin CT (139 

where 0- is intended to be the in-plane component of the line-of-sight 
as measured from an axis ,on the lunar surface. 

solved for R and k i f  and only if 0- may be measured. 

These equations may be 

The question 

thus arises as  to  how well  ci- must be measured'in order that a safe 

and conservative landing may be made. 

the line-of-sight that sets the thrust, an e r r o r  in that acceleration 

will occur due to an e r ro r  in CT 

Given a guidance rule along 

Thus, i f  the acceleration along 
* 2  the line-of-sight, a is se t  equal to R /2R, then V' 

and since 
2 _yb- cos 0- cos 0- 

sin3 o- sin o- 

2 
=- = cos 0- t b- 
2R 2 Y  

then 

I 3 3 cos 0- 2 cos 0- 2 - - =  
sin4 0- sin2 cT 

a aV - J- cos 0- 
2 2~ sin o- a r  

3 sin CY- 

c0s2 11 
J 

The e r r o r  in a 

is given by Equations (16) and (17): 

when the line-of-sight rate has been driven to zero V 

I AO- a "V 
AaV a o -  

V aV 
= - c o t r  A T  - =  a 

0 - = o  14 



For a flight path of a- = 14O this is about 7- 0% per degree of A ci-. The 

.. k 2  R =  ( 1 - n )  - 
2R 

equation of motion of the descending LEM along the line-of-sight is: 

where n is the 7% or  so per  degree of e r r o r  in cr. This can be integrated 

from which 

For  negative values of n, 

(actually as R reaches some Rf). 
grow as R diminishes, finally reaching a value limited by the thrust  

of the LEM. 
will prevail and the stopping distance, Rf, wil l  be exceeded. 

necessary to design a safe margin and thus an example se t  of calculations 

will be used to show the effect of an e r r o r  in 0- (causing the e r ro r ,  n) 

will approach zero as  R reaches zero 

F o r  positive values of n, R will 

From this critical range on in, the limit acceleration 
. It is 

on the stopping range, Ri. 

Given, for example: 

Ro = 5 n.mi. (3. 04 x 10 ft) 

(planned upon) = 12 ft/sec 

4 

2 

.. 2 = 110% of 12 ft/sec ultimate 
= 1 3 . 2  f t /sec 2 

.*. ko = 7 /2  (12) 3.04 x l o4  = 854 ft /sec 

Then from Eqcation (21) the range, R1, at  which the ultimate 

is reached can be calculated as  a function of n where 2 of 13.2 f t /sec 

n = .070 ACT . 
exactly n times the required acceleration to bring the LEM to res t  

at R from the target. Given that this limit acceleration is applied 

until R is brought to zero, then the design point, Rf, will be exceeded 

by a miss  of n R 

0 At this range, R1, the e r r o r  in acceleration is 

f .  

15 
The example is plotted in Figure 6. 1' 



10,000 

. *av n ( e r r o r  in a v -  - 7' 
I 1 I 1 

R 1 (ft) 

1,000 

100 

10 

Init ial  Conditions : 

1000 

100 

Miss 

0 Acr (degrees)  where  0-= 14 
-. 

Figure  6. 

Rf 

Sarnple T e r m i n a l  T ra j ec to ry  Showing The M i s s  Along 
R F o r  A Given E r r o r  LI o-. 
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the foregoing example, as  shown in Figure 6 ,  it can be 

inferred that CT should be known to within a degree, and a one-half degree 

limit would not be out-of-line with safety considerations, 

Thus, up to the point of the flare-out, the instrumentation 

requirements of the lunar logistics vehicle have been shown to be: 

1. A doppler altimeter 

2. A T.V. link 
3. 
4. 

A stable platform good to about one-half of one degree 

A set of body-mounted rate gyros and accelerometers 

It, as yet, has not been shown that an IMU is a good choice as a replace- 

ment of (3) and (4) above. 

thrusting portion of the synchronous descent and of the very terminal 

flare-out and hover stages may well suggest an MU. 

However, further analysis of the initial 

17 



OTE NO. 59 a Engel 
y 1963 

PHYSICAL CONSTANTS 

Earth 
3 Radius 6.3781 x 10 km 

P 3.99.689 x lo5  km3/sec2 

Period 23.93447 hours 

w 7.291 16 x rad/sec 

Axis inclination to ecliptic 23O 26.5' . 

The precession of the Earth's a x i s  is small enough 

to be neglected here. 

Moon 

Radius 1.7373 x km 

P 4.896 km3/sec2 

Period (sidereal) 

Period (apparent Earth) 

27 days 7 hours 43 minutes 11.5 sec. 

29 days 12 hours 44 minutes 3 sec. 

' 0  4.236 x rad/sec 

The Moon's axis of rotation, the normal to the ecliptic, 

and the axis of Earth-Moon rotation line in a plane, as indicated in 

Figure 1. 

with a period of 18 years, 7 months. 

This plane rotates westward about the normal to the ecliptic 

The mean distance from the Earth to the Moon is 

385,000 km. 

axis of the orbit rotates eastward with a period of 8.85 years. 

The eccentricity of its orbit is 0.0549, and the major 

The physical "constants ' I  given here differ according 

to the source selected, but a r e  suitable for e r r o r  studies. 



Normal to 
cliptic 

Figure 1, 
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POLL0 NOTE NO. 60 Be Saitzberg 

ERROR ANALYSIS FOR DETERMINING IN-PLANE ORBIT 

PARAMETERS USING aSIF DOPPLER MEASUREMENTS 

DURING DESCENT INTO SYNCHRONOUS ORBIT 

INTRODUCTION 

This note investigates the accuracy with which the DSIF can 

predict: 

1. 

2. 
the altitude of the LEM at perilune,and 

the angle of the position vector a t  periline relative 
to the earth-moon line 

The e r r o r  analysis considers the case of synchronous descent from 

100 n.mi. circular orbit. Since descent into synchronous orbit is 

initiated approximately 90° from perilune, we have examined the 

accuracy with which the orbit can be determined (and hence the 

accuracy with which perilune altitude and angle can be predicted) 

based on doppler data taken during the first 30° after initiation of 

descent into synchronous orbit. 

ANALYSIS 

From Apollo Note No. 3 2  the doppler velocity measured at the 

DSIF, assuming the earth at infinity, is given by: 

X f d =  R = [ i  s i n ( o t +  ) t r b  c o s ( ~ t + ) J c o s ~  ( 1 )  

where + = angle from earth-moon line to perilune 

f3 = angle between orbit plane normal and normal to earth- 

moon line 

In this e r ror  analysis we will assume the orbit plane known, say 

f3 = 0, so that Equation ( 1 )  can be written as: (A second angle is required 
to completely define the orbit plane, but k is independent of this angle 

for the zero parallax case considered here  and would have to be 

determined by other means-See Apollo Note No. 37). 



Using the co-ordinate system chosen in Apollo Note No. 32, we 
have: 

2 
(3) 

a ( l  - e )  

1 - e sin Q 
r =  

r (1 t e)  

1 - e sin 0 P 

Differentiating the logarithm of Equation (4) with respect to time gives: 

r =  where r = perigee altitude (4 ) 

0 e cos 0 

1 - e  s i n 8  
- > 

r 
- -  

or . 
r2 b e cos 0 r =  

r (1 - e  sin 0 )  

but 

H = r 2 8  

so that 
H e  cos Q r =  

r ( 1  - e  sin 0 )  

Using Equation (7) and (8) in Equation.(2), we  have: 
” 

(9 3 sin ( Q  t L)) + cos (Q + L)) ‘k = - . [  r 

Simplifying Equation (9),we have: 

e cos Q 
1 - e s i n Q  

e cos 0 sin (Q t +) - e sin Q cos (Q t +) 

cos (Q + #)I ( io)  

H 
r ( 1  - e  sin 8) 

R =  

which reduces to: J 

2 



e 

R =  e s i n + t c o s ( Q t \ f i )  

The orbit is now characterized in te rms  of the parameters 

r \fi, and e. We will  estimate the e r ro r s  in the determination of 
these parameters from k measurements (i. e. ,  DSIF doppler data) 

during a 30 portion of the synchronous descent orbit. 

e r r o r  approximation gives: 

P’ 

0 The small 

. . 
A + t -  a R  A e  a h  

a +  
A r  t - a R  

a r  A R =  - 
P a e  

where the partial derivatives are: 

v 2  
a k -  A [ e c o s +  - s i n ( Q t + ) ]  

In order to simplify computation, we will obtain an approximation 

for the parameter e r ro r s  by mezsuring R at 3 points on the trajectory. 

1cn this e r ro r  analysis the angle a t  perilune (+) for the synchronous 

descent is  displaced from the earth-moon line in order for the analysis 

to be meaningful, This occurs becquse i f  + = 0 the DSIF doppier 

measurement is proportional to jr only (i. e. , no k information is 

3 



contained in R 
parame'ter e r r o r s  a r e  not independent. 

that it is necessary for perilune to be displaced from the earth-moon 

line in order to determine the orbit parameters from doppler data. 

computing w the orbit by processing the doppler data to establish the 

maximum likeli'hood estimators of the orbit parameters, the position 

of perilune relative to the earth-moon line can be completely arbi t rary 

because the likelihood estimators are  based on a best f i t  using time as 

and the resulting simultaneous equations for the 

However, this does not imply 

In 

the independent variable, whereas 0 is the independent variable in this 

simplified e r r o r  analysis. With time as the independent variable, it 

is not necessary to have k information to estimate the orbit parameters 

from doppler data. 

E r r o r  Computation 

Denote the doppler velocity measured at three distinct 8 values 

(0 ,  Q2, Q3) by ( A  kl,  Ahz ,  Ak, )  and write: 

where the partial derivatives a re  evaluated at  nominal values of the 

parameters and at the 8 values corresponding to the subscripts. 

The solution of Equations (171, (18), and (19) for the parameter 

e r r o r s  A r. A+, h e  e has been carried out numerically for the 

100 n. mi. synchronous trajectory with perilune at 50,000 it. 

variance of A r  A $ Ae, and the correlation coefficient of A r  , A  \cI 
have been computed. 

Po 
The 

P' I P 
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utations have been cassie out for the case depicted 

ample points 
error analysis 

assumed for 

- J I  x 

Nominal parameter value 
6 r = 1.75653 x 10 meters 

P 

JI = 30° 

e = .086718 
Sample points 

Q 1  = -30° 

5 
. Figure 1.  



The computed root-mean-square e r ro r s  for the case shown in 

igure 1 are: 

rr = 2360 o-k (meters) (20) 
P 

= 6 .03  x a- k (radians) (21) =4J 

r = 4.66 x 10" 0-i e 

where the units of 0-- are meters/sec.  R 

The DSXF accuracy assumed for one minute of smoothing is 
O C ~  = .02 meters/sec.  This gives: 

0- = 47 meters r 
P 

-3  o- = 1.2 x radians = 6.9 x 10 degrees 
4J 

-4 
CY- = 9.3x 10 e 

The correlation between A r  and A that is their covariance, 
P 4' 

divided by wr . cr for this case was computed to be: 
9 0- 

rp9' P 

Approximate e r r o r  calculations were also carr ied out assuming 

that the vehicle was tracked over 60° of i ts  orbit starting approximately 
6 



from the time it is emerged from the back-side of the moon to when it 

i s  approximately 30 from the earth-moon line. The approximate 
errors (not significantly different from those of the previous results 
for trqcking over 30° of the orbit) are shown below. 

0 

= 2200 CT. R P 
r* 

cr+ = 2.95 x 10 - 3  u-R 

( 2 9 )  
-2 

“R O- = 1 . 1 3  x 10 e 

p = 0.555 (30) 

Again taking 0-* - .02 meters/sec for one minute of smoothing, R -  
we have: 

CT = 44 meters r 
P 

-5 = 5.9 x 10 rhclians = 3 . 4  x degrees 7J 

-4 
CT = 2.26 x 10 e 

7 



oregoing results of this e r r o r  analysis are summarized 

in the following table, 

Table 1. 

0- r 
P 

“Jr 

0- 
e 

P r  -+ 
P 

smoothing) 

30° 

47 meters 

6.9 x 
degrees 

9 .3  

0.111 

meters 
see. 

- * 02 

60° 

44 meters  

3 . 4  
degrees 

2.3 

0. ‘555 

m .02 - 
$ 

i : 
1 
t 

ters  
ec. 

I 
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Le Lustick 
1963 

DETERMINATION OF SELENOCENTRIC ORBIT 

PARAMETERS WITH THE DSIF 

PURPOSE 

The purpose of this note is to estimate the accuracy that the 

DSIF can establish the selenocentric orbit parameters. 

this note examines the hyperbolic orbit relative to the moon (in the 

lunar sphere of influence) and the accuracy to which the DSIF can 

determine perilune conditions. 

In particular, 

GEOMETRY. CONSIDERED 



E 

The DSIF observes an ]K which is the projection of the velocity 
components relztive to the moon (v and vr) on the line connecting the t 
earth and the moon. 

a R = v X COS (a - 0 - +) t vt COS (0  --p+) 

In terms of e, +, and r 
below (See Apollo Note No. 60). 

k can be expressec! by the equation 
P' 

The partial derivatives of k with respect to the parameters a r e  

presented below: 

a R  R 
a r  
- =  - -  

2 r  
P P 

ASSUMPTIONS 

1. 

the moon. 

2. 

The DSIF is located an infinite distance away from 

The e r ro r  in the determination of R with the DSIF 

is . 0 2  m/sec.  This number is consistent with 1 minute of smoothing. 

3. The plane of the orbit is equatorial and i t  is assumed 

that no e r ro r s  in the knowledge of the orbit plane exist. 

4. The angle Q is used as the independent variable instead 

of time. 

2 



5, The nominal trajectory conditions used in the e r r o r  

analysis a x e  presented below: 

4 = 30° 

e = eccentricity = 1.38 

6 ‘  r = perilune radius = 1.92332 x 10 meters  
P 

12 m - 
s e c  

= gravitational constant of the moon = 4.899 x 10 2 

ERRORS IN PARAMETERS 

The e r ro r s  in the parameters, r 4, and e were arrived at 

by observing R at three points on the trajectory and solving for the 

changes in the parameters indicated. 

are presented below. 

P’ 

The e r ro r  equations used 

The statistical averages presented below were obtained: 

0- - standard deviation in perilune radius - meters r 
P 

- standard deviation in location of perilune 
. “Jr 
0- - standard deviation in eccentricity e 

- correlation coefficient between estimated- P r  - ,) ; P, -e ’ P+-e 
P P parameters 

3 



- where: 

x and y have zero mean. 

RESULTS 

Results were obtained for observation intervals of 30 and 60 
The f i rs t  observation was taken at  conditions when the degrees. 

vehicle first entered the lunar sphere of influence and it equally 

spaced values of 0 thereafter. 

Table 1. 

Observation 

30° 
Quantity 

0- r 
P 

3 

0- e 

1080 meters 

, 0 3 3  degrees 
11 10 meters 

5.35 

.99389 

. ,98032 P r  -e 
P 

"i 330 meters 

.00675 degrees 
227 meters  

2.4 

.97779 

,94897 

* 95474 .87893 
PqJ-e 

CONCLUSIlfih-NS 

If the orbit piane is known, the DSIF capability of determining 

the in-piane orbit parameters is excellent. 

k at three points and a 60° observatior, interval the location of perilune 

and the altitude at perilune can be determineG ..vitli approximate e r r o r s  of 

1/4 of a kilometer ( I crvalues). 

Using the smoothed value of 

4 



there is no maximum value of f if the x. can be arbitrarily large. 

i =  1, 2, * * .  n cannot 3 f  ' -  
Indeed, the partial derivatives 

simultaneously vanish except in-the trivial case (Y 0, i = 1, * * ' n. 

The interesting case occurs when all the x. a re  bounded: a . e x .  Cb.. 

The above argument on the simultaneous vanishing of the partial 

derivatives indicates that there is no maximum in the open (i. e. , * 

1 

- Q i '  
1 

i 

1 1- 1- 1 

- 
the interior) region of the domain of the x.. 

a maximum, we conclude it must occur on the boundary of the domain 

Since f must now have 
1 

of &e X. where the derivatives do not exist. 

In a heuristic way, we extend this argument to the solution 

1 

of (3)  and thus argue that for  fixed t, the optimal controls u. (t) must 

assume their extreme values: [ui(t)[ = 1. Since this is t r u e  for 

arbitrary t, . u. (t) must have the form of step functions: 

1 

1 

except possibly at  a finite number of discontinuities. 

Synthesis of Optimal Controls 

Following Pontryagin, we refer to the selection of the u. (t) as  optimal 
1 

control synthesis, and proceed a s  follows: 

For  fixed time, call it T, and arbitrary admissible (not neces- 

sari ly optimal) controls u. (T),  we f i r s t  a s se r t  that the locus of acces- 
1 

sible terminal points in phase space, call them f f  (TI, form a convex 

set, call it By a convex set we mean a se t  of points with the (T). 

property that the line joining any two points of the set  cantains only 

points of the set. Lines, triangles, circles,  spheres, ellipsoids a r e  

5 



OTE NO, 6 2  L, Lustick/W. Engel 

MS-EARTH INJECTIG 

The e r r o r  in  reentry dive angle and the miss along the flight path 

This was done b y  finding a nominal trajectory with a flight time 

at  reentry have been computed. 

of approximately 70 hours from perilune to reentry and a reentry dive 

angle of approximately 6 , and then calculating the dive angles and r e -  

entry points for trajectories in  which the initial conditions were perturbed. 

The differences divided by the perturbations a r e  approximations to the 

partial derivatives of reentry dive angle and miss  with respect to the 

perturbed quantities. 

0 

In this analysis, the CM is assumed to be acted upon by only one 

body a t  a time. .While in the lunar sphere of influence (LSOI) i t  is acted 

upon only by the Moon's gravitational field. 

acted upon only by the Earth's gravitational field. 

' 

Outside of the LSOI i t  is 

The planes of the CM trajectory and Earth-Moon rotation a r e  

assumed coincident. Only perturbations in  this plane are considered. 

The coordinates employed a r e  shown in Figure 1. 

axes move with the Moon. They a r e  fixed in  direction, and the y axis 

is directed along the Earth-Moon line a t  the instant that the CM on i t s  

The x and y 

nominal trajectory pierces the LSOI. 

to the Moon is a conic section in these coordinates. 

The counterclockwise angle from the y axis to perilune i s  3 and 

the clockwise angle from perilune to the point of piercing the LSOI is d. 
The velocity of the CM with respect to the Moon at  the instant of piercing 

the LSOI makes a n  angle y with the radius from the Moon, and an  angle 

IT - CY with the y axis,, 
Earth and Moon and the line joining the Earth and CM a t  intersection with 

the LSOI is be 
LSOI is in the -x direction. 

The motion of the CM with respect 

h 

h The clockwise angle between the line joining the 

The velocity of the Moon at the time of CM piercing the 

The perilune speed is 



Figure 1. 
. .  2 ... 
. .. 



and its 

and 

The speed with respect to the Moon on piercing the LSOI is 

1t -E)  Q, = r =L 
P 

Its component perpendicular to the radius from the Moon is 

component along the radius from the Moon is 

A 2  
T L  . 

A '  The angles y and 8 are given by 
A 
V 

A . '  
V 

T L  tany  = - 
. rL  

I\ 

A I \  
sin (a - 8 + d) tan fl= rL 

r~~ - r~ 

-a a T'< i3 , < -  2 

m in which rEM is the distance from the Earth to the Moon, 

is the speed of the Moon with respect to the Earth, directed counterclock- 

wise, the radial and %angential components of the CM velocity with respect 

to the Earth a t  the LSOI are 

Now, if v 

3 
. .  . 



A A  sin (a+ p) + v 

i n  which a=a+s-4- . \ ,  A 

The distance from Earth at the point of piercing the LSOI is 
h h  

sin (n - 8 + d) RL A = =L 
sin 4 

.. 

The angular momentum and energy of the Earth-centered orbit 

are 
HE- "-3 T L  h L 

and 

A eE = 
A 2  

2EE HE 
2 . 'E 

Then the Earth orbit eccentricity and perigee distance a r e  

i 
and 

A 
Rp = 

For perigee radius less  than the.reentry radius, RFn the dive 

angle a t  reentry is given by 

4 .  
. _  ... . _. 



A -‘1 
+,,= sin 

.. , . 

distance about the Earth from exit from the LSOI 
B 

1 -  
pE RL 
A 
eE 

and the angd i i r  distance from reentry 
A 
+FP@ 

e- A 2  
HE 

. . . . . . ..,*.- -”: * * 

‘ - C ’ E R F  
A 
eE 

A +,,= sin 

t A - 
2 ’  A 

to perigee, if reentry occurs, is 

A 

+ z  I 
The angle between exit from the LSOI and reentry is 

In order to compute the time from injection into the trans-earth 

orbit until piercing the LSOI, the energy and angular momentum of the 

CM i n  the LSOI must be known. These a r e  

and 

1 ’(6 t 1) Hri=t*m p m 
A 

The time from perilune to piercing the LSOI is 

in  which 
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The time 

m 
P 

from piercing the LSOI until reentry is 

PE + 
@E 

- 1  sin 

,l+ 

A 
2EE RL 

)LE 
'A  
eE 

A 
HE tan a, 

in which the angles indicated on the right hand side a r e  between - r / 2  and 

nI2. 
The total time of flight is 

A h  A 
t~ = t p ~  + t~~ 

I\ A In order to find the nominal orbit, a number of values of d and e m 
were selected, and the perigee radius and time of flight determined. 

See Figure 2. On the basis of these computations, a second run w a s  made 

and perigee, reentry angle and time of flight plotted a s  in Figures 3 and 4. 

based on these results, a third run was made, yielding in  one case a dive 

angle of 6.09O and a time of flight of 70.415 hours. 

close enough to the desired 6 O  and 70 hours to be used as the basis for an  
J 

e r r o r  analysis. 

This was deemed 

Using the indicated trajectory a s  a basis the perilune conditions 

were perturbed, the new reentry conditions calculated, and the difference 

between the perturbed and unperturbed reentry conditions divided by the 

amount of the perturbation to indicate the sensitivity. 
. .  ... 

6 '  



Ob 

lo5  

lo4 

*. . .. 
Figure 2. 7 



8 



l o 2  
- 4  - 2  0 2 

B (deg) 
Figure 4. 

4 6 .  ... . 8  
. .* 

9 



The quantities perturbed were radius at injectio .at injection, 

and the radial and tangential components of velocity at injection. 

d . = 3  1 + 
h 

v = Avr - vt r. 
1 

A v = v t Avt 
t- P 1 

On the basis of these new injection conditions, the o'rbit within the 

LSOI was computed, using 

H = v  r m t. i 
1 

2 'm 

i r 
1 1 

r =  
P 

2 H m 

51 5F 
r -7<  ? +  

A - vpA4) 
c o s ? =  - 

sgn q = sgn (Av e m 1 r 

Here q is the angle between perilune and injection. 

v =  
P 

1 0 .  



The conditions a t  piercing the LSOI are computed from the same 

rmulas used in the unperturbed case, but with the perturbed values, 

must be remembered, however, that the coordinate system used for 

the orbit outside the LSOI was based on the location of the Moon at the 

time the nominal orbit pierced the LSOI, and that di w a s  measured 
relative to this coordi,nate system. Since the time to piercing the LSOI is 

different in the perturbed. orbit the position o f  the Earth-Moon line at 
the time of piercing the LSbI is also different, a s  indicated in  Figure 1, 
and some angle corrections a r e  necessary. Thus 

r 2  i 

P 

r. e - I  
r ( r-) - + l + e m  1 + em 2 1 m 

P 
x.= - 1+- 
1 

i n  which 

1 + (em - 1) 7 ri ] /e - m  
P 

1 

The time from perilune to piercing the LSOI is calculated from 
A the same formula a t  t using the perturbed values. Then pi’ 

t iL=  tPL - Pi 

c y =  Q i + q  + n - e - y - WEM (tiL - tiL, 
A 

rT  sin (a!+ y) 
u tan p = - rL cos (a+ y) =EM 

vRL= - VL cos (LY t p) - vm sin p 

vTL=.- VL sin (cy t p) t vm cos p 



sin (cy t y )  

sin p 
- L 

The dive angle a t  reentry, the angular motion about the Earth, 
and the time from piercing the LSOT to reentry are computed as  in the 

nominal case. 
The miss must be 'computed taking into account the difference .in 

Earth coordinates system's,in the perturbed and unperturbed cases, so 

The results a r e  indicated in  Figures 5 and 6 for various pertur- 

ba tions. 
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Figure 5. 
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Figure 6. 
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OLLO NOTE NO, 63 G, F. Floyd 

DSIF C A P ~ B ~ L ~ T ~  0 NS-EARTH TRAJECTORY 

As shown in Note No. 26, the sensitive directions for re-entry 
dive angle and miss along (range miss) a r e  so close while in  the earth 's  

sphere of influence that independent control of the two orbit parameters 

is irnpraciical. Luckily, however, the results of Note No. 62 show that 

this high correlation also exists back a t  lunar injection. At lunar injec- 

tion we have for the coefficients along the most sensitive direction, 

= 220 km per degree 
mi I 

A6f 

while after w e  enter the earth sphere of influence, we have, from page 4 

of Note No. 26: 

= 210 km/degree 
I 

=i-- 
and the sensitivity ratios a r e  of the same sign, 

are so nearly the same that midcourse corrections to correct the effect 

of injection e r ro r s  or  re-entry angle wi l l  automatically correct the range 

miss. 

that from Note No. 53 we see that the range dispersion with a zero-lift 

re-entry wi l l  be several hundred miles a t  re-entry angle dispersion of 

0. lo. 
smaller than this value. This result is, of course, fortunate since we 

Therefore, the ratios 
' 

Further justification of this conclusion is furnished by the fact 

Therefore, there i s  no gain in holding the re-entry miss  much 

can't control the two separately anyhow. 

Also as shown in Note No. 26, the sensitivity of the out of plane 

miss  (track miss) is very much lower than that of the re-entry angle. 

Therefore, if we can measure and control the re-entry angle to 0. 1 
we wil l  be able to control the track miss to better than a fraction of a 
nautical mile. Consequently, the following analysis of the DSIF capability 

on the return trajectory wi l l  be devoted entirely to the variance in the 

re-entry dive angle. 

0 

, 



ulas for the variance in  the estimated value of 

h data observed over the range interval R2 to R1 are derived 

0, 5 and the results of a computer evaluation of these formulas 
5s given as Q(RZs R1) of Figure 1 and Figure 2, 
related to the plotted function Q (RL,'RRZ) is, 

The variance in  ( 6 F  

T(RZ) - T ( R +  

tcorr elation 

where 
A N =  number of samples = 

and T(R) is the time-to-go a t  range R, which is plotted in Figure 3. 

when there is a n  intervening imperfectly executed change is. derived 

in  Note No. 57, and this method w a s  used in  calculating the performance 

during a typical midcourse correction system for earth return. 

In order to determine the limitations of the DSIF, the assumption 

was-made that the CM was under completely manual control with no auto- 

pilot and no integrating accelerometers. 

derived commands is then accomplished by pointing the spacecraft a t  the 

ordered star, spinning it to get spin stabilization (see Note No. 38), and 

applying the boosts for a commanded time interval. 

control, the major e r ro r  that results would be that of the assumed lO%engine 
thrust level uncertainty since the e r ro r s  due to poor directional control 

arising from unbalanced torques (c. g. shifts or  locked over nozzles), were 

shown in Note 38 to be less  than 12O and with the boost ordered in  the most 

sensitive direction (Note 22), these directional e r r o r s  would result in  per- 

centage e r ro r  of less  than 2% which i s  negligible compared with the 10% magni- 

tude error.  that would result without a longitudinal integrating accelerometer. 

The assumption of very poor execution of the commands puts a 

The optimum method of combining old and new measurements 

The execution of the ground 

With such crude 

real premium on navigation accuracy and short smoothing time in order 

to keep the midcourse correction fuel requirements within the fuel pad 

limits. The reason for this is shown ir, Figure 4 which is a plot of the 
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re-entry angle sensitivity coefficient in degrees per meter /sec a s  a 

function of range from the earth. At injection the coefficient is 4, 5 / 
m/sec and i t  very rapidly falls to 3. Oo/m/sec as the spacecraft goes 

through the lunar sphere of influence. 

0 

Thus even if  the injection e r ro r  

could be completely corrected when the vehicle reached the earth 
sphere of influence, the correction required would be 1. 5 times the 

injection e r ro r  and with a 10% autopilot the injection e r r o r  w i l l  be 
1 io x 3000 = 300 f t /sec so the midcourse AV required w i l l  be a t  least 

450 ft/sec. 

No attempt has been made yet to optimize the midcourse cor- 

rection schedule other than just intuitive guesses at one which will  give 

. satisfactory performance. The results with such a "guessed at' ' program 

are shown in Table 1. 

Table 1. 

DSIF 1w 
Time Till Uncertainty 
Re-entry in Re-entry Correction Boost Re- entry 

(hr s) Angle No. f t lsec Angle (degrees) 

Re s ul ta nt 
Commanded Er ro r  i n  

72 DNA Injection 3000 " 450 

50 1. 1 1 550 45 

36 1. 1 2 69 4. 6 
24 . 7  3 10 . 8  

16 03 4 2.5 .3. 
8 .09 5 
2 .02 " 

i .  5 
.. 

.09 
- 

As the table shows, the capabilities of the DSIF a r e  so good that even with 

very poor execution of commands, resulting in very large initial e r rors ,  

large e r r o r s  in the execution of each command ( so  that old smoothing data 

is not useful, see  Note 57), the DSIF still can get the spacecraft within 

the 0. lo tolerance a t  eight hours to go (spacecraft a t  15 earth radii). 
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It wi l l  be noted that five corrections a r e  required, This is not due to 
SIF uncertainties but simply because of the large execution e r r o r  that 

was  assumed. 

450°, it would take four perfectly computed corrections to bring the 

result to e 04 whereas with present DSIF accuracy, tracking e r r o r s  

stretch this to only 5; 
about twice the injection e r ro r  a s  compared with 450 ft/sec i f  there w e r e  
DSIF errors .  

ith a 10% execution error ,  and a n  initial e r ro r  of 

The total midcourse boost needed i s  6 3 3  ft o r  

Ih summary, it appears that with DSIF orbit prediction accuracy, 

it should be possible to make a safe zero lift re-entry with manual exe- 

‘eution of the commanded maneuvers. Also it-should be’emphasized that 

if there were a single longitudinal integrating accelerometer, the exe- 

cution e r r o r  would be reduced by a factor of 5 to the 2% associated with 

spin stabilization. 

Table 1 would look much better and reach the . lo goal a t  more than 12 
hours out. 

In this case the re-entry angle error*reduction of 
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POLL0 NOTE NO, 64 B, Saltzberg 
14 May 1963 

ILITY OF THE DSIF FOR DETERMINING IN-PLANE 

ORBIT PARAMETERS DURING ASCENT 
- 

INTRODUCTION 

This note is similar to Apollo Note No. 60 which presented an 

e r r o r  analysis for determining the in-plane orbit parameters during 

descent. 

of the trajectory, assuming that DSIF doppler measurements a re  made 

In this note, the e r ro r s  a re  calculated for the ascent part  

0 
. during approximately 30 of the ascent trajectory. 

This approximate analysis considers the e r r o r  in apolune position 

and the resulting rendezvous miss distance due to the timing e r r o r  as 

well as the apolune altitude and angle error .  Fo r  this e r r o r  analysis 

the rendezvous miss  distance is defined as the separation between the 

ascending LEM and the CM when the ascending LEM reaches apolune. 

The nominal orbits assumed in  this analysis are: 

1. the CM in circular orbit at 100 n.mi. altitude, and 

2. the ascending LEM in the same orbit plane with 

perililne at zero altitude and apolune at 100 n.mi. 

altitude, such that the LEM and CM meet at the first 
approach to apogee. 

The nominal values used in the analysis are: 

r = 1.9226 km a 

= ,05063 .19 
e = 3.6599 

9 = 30° 

The parameter e r ro r s  wil l  be estimated by measuring R at  three . 

points on the trajectory as in Apollo Note No. 60. Using the co;ordinafe 



system of Apollo Note 

analysis were chosen as: 

0, 60, the sample points for the approximate 

= -165O % 

= -195O Q3 
.. 

With a nominal Q = 30° (see Figure 1 of Apollo Note No. 60),  

then the last data point (0, = -195O) is approximately 15O ahead of 
where the ascending LEM would be occluded by the Moon. 

ERROR EQUATIONS 

The in-plane orbit parameters r Q, e, a r e  related to the a' 
doppler, fd, as follows: 

Just as in Apollo Note No. 60, the small e r r o r  approximation is used: 

e 

A + +  - a R  A e  A r a +  - a R  
a +  a e  

a R  A R =  - 
a 'a 

'where the partial derivatives are: 

2 



stem of equations whose inverse has been computed for the 

parameter e r r o r s  is: 

The approximate uncertainty in the time from perilune to apolune due 

to amerror  in r is: a 

' 1  Tp-a= time from perilune to apolune 

but 
( r a + r  1 

2 a =  

Assuming no e r r o r  in r we have: 
P' 

Ara 
2 A a  = 

3 '  



and 
P - 3 a - - -  T 4 a '  

P-a 

The miss along the orbit path due only to the above timing 

e r r o r  at apolune is approximately: 

3 vaTp-a 
ASt = VaATp-a = ';jy a Ara 

.but 

va 

so, using Equation (9) 

va Tp-a 
a 

and Equation (14) becomes: 

For the case e = ,05063 
. 

ASt = 2.2 Ara 

Thus, the total miss distance, AS, due to an e r r o r  in ra is 

approximately : 

The standard deviation and the correlation between the e r r o r s  

in r t / ~ #  and e#  assuming one minute of doppler smoothing, a r e  a' 
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rnarized in the following table, gain, fiese n m b e r s  a re  based 
0 on sampling at 3 points over a 30 sector of the orbit, assuming an 

~f fec t ive  one inute of smoothing at each of the three sample points 

as described in the Introduction. ( See Figure l), 

. 02  meters/sec.  
(1 minute of smoothing) 

The variance in the miss distance (o- ) at apolune due to S 
e r r o r s  in r +,-and T is approximately (assuming p = -1 and 

a’ P-a r- -4J 
= 1) pr -T a p-a 

2 2 2 
rS = rr -f- (wS - ra o-+) 

a t 
where (from Equation (18)) 

a 

0- = 2.20- 
St ra  

thus 
rS = 62 meters 
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Line 

Figure 1. 

This e r r o r  analysis has assumed that the phase, 0, at each of 
the sample points is known, and the resulting small e r r o r  in determining 

the position of the LEM at apolune ( ~ 6 2  meters), suggests that the e r ro r  

in the phase parameter may be the principal source of e r r o r  in deriving 

apolune position from ASIF'doppler data. Therefore, a more general 

analysis, taking into account e r ro r s  in the phase parameter, is being 

conducted. 
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L, Lustick 

4 

* DETERMINATION OF THE CO-ORDINATES O F  LEM 

ON THE MOON FROM E I F  MEASUREMENTS 

FROM ONE STATION 

PURPOSE 

The purpose of this note is to indicate the capability of the 

E I F  to determine the location of an LEM on the lunar surface. 

Celestial Geometrv 

The celestial geometry of earth-moon space is defined in 

Apollo Note No. 59. 
and defines the geometry pertinent to the analysis of this report. 

The figure below is reproduced from this note 

__^_ I_ 

Normal to 
Ecliptic 

- 

. Earth Axis 
Axis.of 

Earth-Moon 

Figure 1. 



Expression. for the Doppler 

Neglecting the eccentricity of the lunar orbit, the expression 

for the doppler, D, is derived below. 

where: . .  
D = Doppler - meters/sec. 

R = vector from the center of the moon to the center 

of the earth 

r = vector location of tracking station on the earth 

r = vector location of LEM on the lunar surface 

E 

m 

angular velocity vector of moon about the earth 

angular velocity of the moon about its own spin axis 

angular velocity of the earth about its spin.axis 

WmE= 

w = 

.- 
WE - 
m 

After suitable simplification the expression for the doppler can 

be written as shown in Equation.(2) below: 

Since the moon approximately keeps the same face toward the earth, i t  is 

reasonable to assume for this e r ror  analysis that R x (wm-amE) is negligible. 

In addition ~ ~ > z z a ~ ~  

Equation (3) is a reasonable representation of the doppler. 

hence the simplified expression shown in 



since [ R i- rm - rE] g [ R ]  mag, mag. 

r m 1 [ rExWE J c R. [ r E x u E  
D E  

R- mag. 

For purpose of error analysis the partial derivatives of the 

doppler with respect to  the co-ordinates of the location of the LEM 
on the lunar surface a re  of interest. (The partial derivatives with 

respect to  the components of the vector r ). m 

D =  

where: 

al =2 “3 

b l  bZ b3 

2 c3 c1 C 

t K  

a. a r e  the components of the r vector 

bi a r e  the components of the r vector 

1 m 

E 
c a r e  the components of w vector i E 

K = value of the. scalar R * (rE x wE) 

Since al  , a and a a r e  functions of the parameters to be 

estimated, X the latitude and 0 the longitude of the location of the 

LEM, the partial derivatives with respect: to these parameters can be 

written as follows. 

A 2’ 3 ,  

3 



a a3 

a ?  
t -  

a a2 - -  

I 

where 
* 

- - b2 b3 

2 c3  C 

b l  b3 

cll c3  
- , -  

2 

3 

3 

2 
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Co -ordinate s of Pertinent Vectors 

The co-ordinate system used is the i, j ,  k system associated 

with the celestial sphere. 

earth's orbit and the moon center is assumed to lie along the i axis. 

For  purposes of erro? analysis, the moon is assumed stationary and non- 

rotating and to lie in the plane of the ecliptic along the i axis; 

Location of Tracking Station 

The k axis is normal to the plane of the 

3 cos X cos 0 cos CY t rE sin A sin cy [ IE  

3 j [rE cos x sin 0 

1 k [- rE cos X cos 0 sin CY 4- r sin X cos CY E 

CY = tilt of earth axis ( 2 3 O  26. 5') toward the moon 
in the i - k plane 

X = latitude of station (measured from the earth equator) 

0 = longitude (measured in the earth's equatorial plane 

from the i - k plane) 

Location of Earth SDin Vector 

i [ W E  s i n a l  

1 k [ w E  cos CY 

Location of Nominal "oint on Lmar  Surface 

i [ - rm cos 
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A j [im c o s 2  s i n 0  

k [ r  m sin* ] 
E r r o r  Analvsis 

The e r r o r  analysis was conducted by measuring the doppler 
from the sarne s ta t ionat  two different times. 
measurement can be related to the e r ro r  in?, and 0 through the 

following equations. 

The e r r o r  in the doppler 
A 

A+ 

2 

/"r A Solving for A X and A 8 and statistically averaging, the standard 

deviation'in X , and 0 a r e  presented in  the equation below. P A 

r o - A =  m X  

r 0 - b ~  m 0  
V - 

rD = standard deviation in the doppler measurement. 
6 



COB @(COB h C O  c * .  

1 c 
- sin (Y (- cos X cos.0 sin a t sin A cos a) 

> 

t cos C - sin a cos A sin o c 

cos (Y (cos X cos 0 cos (Y t sin X sin a) 

- sin cy ( -  cos X cos 0 sin (Y t sin X cos :I} 
R 
r w  

mag. 
E E  ' m q  I = 

8 
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where 

R 

($9 2 
r r w  a~ a t 3  m E E  

a ?  8 2  mag. 
---.-I--..- R 

r r w  
R 

a i 3  m E E  a D  
a5i a3 mag. 
- -  - -  

RESULTS 

The following conditions were used to evaluate the results. 

Station Location 

x = t 3 3 O  , Q1= -45O 

X = + 3 3 O  , G2= +45O 

Nominal Conditions on Lunar Surface 
A h = oo 
A 0 = -30° 

Other Constants 

- 7.29116 x loe5  rad/sec. 

= 6,378 x 10 meters 

r = 1.738 x 10 meters 

R = 385 x 10 meters  

(")E - 
6 -  

6 
*E 

m 
6 8 



The results consistent with the above parameters and 3 hours 
of smoothing at each mean-station location a r e  tabulated below: 

= 4.1 km r -O-A - 2.804~ 10 0- 

r or,$= 1.1395 * 6  x 10 ojD = 1.64 k m  

6 
m k -  D 

m 
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POLL0 NOTE e 
6 3  

L,LV LANDING ON A TILTED OR MOUNTAINOUS 
LUNAR SURFACE 

In Apollo Note'No.' 58 the assumption of a flat-surfaced moon 

led to the sufficient requirements of a T. V., platform, and broad- 

beamed doppler altimeter.It is pointed out in this note that an unknown 

tilted surface presents the same guidance problem as an e r r o r  in the 

platform alignment. 

slant range radar is shown to be dependent upon the angular discrimination 

of the range returns. 

The possibility of correcting this problem with a 

Given an LEM (or LLV) in the terminal portion of the descent, 

the following parameters would be measured: 

1. With the doppler altimeter the range and range-rate 

to the lunar surface may be measured (y and y). 

2. With the platform the direction of the supposedly known 
normal to the lunar surface may be measured. y and 

9 a r e  assumed to be along this direction. 

3. With the T. V., the angle, 0-, between the lunar surface 

and the line-of-sight may be measured (with the help 

' of the platform). b- may also be measured with the 

help of a drift meter  o r  T. V. link. 

With an unknown slope, cy, in the lunar surface, the following 

figure pictures the situation. 



e law of sines: 

cos cfl - A R  
sin a 

- -  Y sin 0- 

sin b 8 0  - (0-+ a)] 
which may be solved for-the e r ror  in  range, AR, caused by an er ror ,  

a, in  the assumed slope of the lunar surface. 

A R  sin a cos 0- - -  
sin ( c r t  a) R -  

This is 

Since the acceleration along E is proportional to the measured range, 

then a one degree e r ro r ,  a, will cause a 7% e r r o r  in  acceleration. 

From Apollo Note No. 58, it can be seen that the effect of cy is 

identical to an equivalent e r r o r  in 0; 

surface near the landing site should be known to within about one-half 

of one degree. 

to determine E is practical only under the assumption of a well surveyed 

Thus, the plane of the lunar 

It would thus appear that the system using an altimeter 

and flat landing site. 

sys tem. 

Mountainous landing sites would overtax such a 

A possible fix may consist of returning to the earlier concept 

of a monopulse, gimbaled, slant-range radar. With such a device 

2 



range could be measured extremely accurately with a beacon, 

radar and T, VI a r e  colinear (and possibly welded together on the same 

gimbals) there exists the possibility that R can be measured to wherever 

the T. V. is pointing. 

it is difficult to estimate the angular resolution capability of such a 
radar. In order to offer any improvement over the doppler altimeter, 
the angular resolution of the slant-range radar must be better than one- 

half of one degree. (From Equation (18) of Apollo Note No. 58). 

If the 

With poorly controlled target characteristics, 

which equals about 7% per degree of e r r o r  in cs-for a 14 degree flight 

path. It is understood that the presently conceived monopulse radar  

will have a 4 degree beam. Phased monopulse hopefully will be able 

to achieve better than one-half of one degree resolution. 
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POLL0 NOTE NO1 67 H. Engel/ J, Holdsworth 
22 May 1963 

LCULATION OF COVARIAiCE MATRICES, I 

In this note, one means for determining the covariance mat r ix  

re ic r red  to in Apollo Note No. 43 is explored for orbits in the lunar 

. sphere of influence. 

It is assumed that the observations of Doppler velocity are 
measured in a fixed direction - which is contrary to  the actual situation. 

This as sumption, however, permits a simpler formulation of the problem, 

although it permits the computation of only five orbit parameters. 

sixth parameter, orientation of the orbit plane about the line-of-sight, 

The 

can not be determined in this case. 

The distance from the Moon to the vehicle is r, 

+ e =Os -OP) 
in which all  parameters a r e  referred to the Moon, - 0 
angle from perilune, 8 is zero initially and increaeea as time increases, 

is the initial P 

The Doppler velocity measured at the DSIF assuming a non- 

rotating Earth at infinity is given by: 

in which + and p a r e  defined as in Apollo Note No. 62. Then, 

2 E  sin (0 - ep) E = '7/ 

and the eccentric anomaly for an elliptical orbit i s  given by 



and 

QP) 
e + cos [Q - 
1 f e cos (0 - 

cos E = . 

Op) 

by: 

For the elliptic orbits, then, the time from perilune is: 

For hyperbolic orbits , the corresponding 

sin (Q - Op) . (e2-1) l/2 

sinh F = 
%) 1 + e cos (Q - 

and the time from perilune is: 

quantity F is given 

1 t =q+ [ Ei. 2E i3  [ e s i n h F - F  . 

In this analysis the parameters selected for  the covariance 

matr ix  were p, 4, Q E, e and b, where b is an unknown constant 

Doppler bias. (Note that according to JPL, as reported in Apollo 

Note No. 17,  no significant Doppler bias has been detected). This 

has proved not to be a very good set  of parameters since for small 

eccentricities the uncertainties in both 8 and + a r e  large,  although 

these uncertainties a r e  highly correlated and future position ciin be 

well deter,mined. The high correlation of 8 and + makes the matr ix  

to be inverted nearly singular and results in  computation difficulties. 

P’ 

P 

, P 

2 



so, for p close to zero, since p enters R only as cos p, the variance 

in the estimate of p becomes very large. 

followed was this:. 

Nonetheless, the procedure 

Evalute the necessary partial derivatives: 

r -I 

a E  -= - cos (0 - a 0  ep' P 

f r 0 cos (0 - Op + + ) - sin (0 - Bp + +  ) 
P 

E 
r - -  a R  eos p [ cos  (0 - ep+ + ) & - sin (0 - Qp + +)  - a~ - 

2 . .  
- = cos p ( 0  - 0 .++) r + sin (0 - Op ++  -1 

2 E r  j 
8 R  
a e  2 P e ( 1 - e )  

3 



Then, the elements of the covariance matrix are determined 

as suxns over N observation instants equally spaced in time, 

c1 1 

c22 

c33 

c44 

N L  c55 - - - 
k= 1 

8 kp (k) 8 k (k) 
CIZ = CZ1 = - l f  a +  ? . 1 

N 
k= 1 

4-- 



N 
8 R (k) 8 rk (k) 

P a e  
P 

‘13 = ‘31 - N 
k= 1 

and, in general, 

1 8 k p ( k )  8 k  (k) 

a c u  
j 

N . a ai C.. 
13 

k= 1 
- th in which cy. and cy. a re  the i- and j parameters. 

1 J 

After the matr ix  Cij is evaluated, its inverse is found, 

and each element value divided by N to obtain the matr ix  
r 7 .  

r : l P i j  1 in which (r R 6 is the standard deviation in the Doppler 

measurements. 

The program is presently beir?g debugged. Results will be 

presented in another Apollo Note. 
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APOLLO NOTE NO. 68  €3. Engel ’ 

22 May 1963 

TRACKING ERROR CALCULATION 

The standard deviation in the dive angle at re-entry has been 

calculated as a function of the standard deviation of the Doppler velocity 

measuzements and of the conditions of observation within the Earth’s 

sphere of influence. 

Earth. 

The DSIF was assumed to be at the center of the 

The results a r e  indicated in Figure 1. 

f Given the re-entry radius R the desired final dive angle 6 f’ 
and the orbit energy, the angular momentum is found to be: 

H = Rfcos  6f d% 4 2E 

Then, letting 

and 
2E 
2 c = -  

. .H 

the tangent of the dive angle at any point is found to be: 

2 t a n 6 =  - l + b R t c R  

Following the notation of Apollo Note KO. 5, 

a = 1 

and 

a2 = E. 



0 50 100 150 200 250 
3 Rl Distance From Earth (10 km) 

Figure 1. 
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Then, 

H tan 6f a r  a k .  - -= 
a al T - R tan 6 

and 3 

{Rf cos 6 f )  

H R tan 6 

a R  R .  - -  - - =  8f  

H tan6 aE a a2 

Now, the Doppler measurements a re  made at equal intervals 

of time, but in this analysis they were assumed to be made at equal 

intervals of R. As long as k does not vary greatly over the interval 

of the measurements, the only effect of this approach i s  to change 

slightly the value of standard deviation in final dive angle obtained. 

Replacing the summations by integrals, assuming a large number of 

measurements, 
F R2 

- - H tan 6f i' dR 
R tan 6 R2- R1 

1 
R2-R1 / [e) dR 

H- 
R2- R1 

3 



1 

R2 - R1 
- - 

'11 

- 
= '21 - 

tan 6f 

R2- R1 

R2 
H-2 

'22= R2 .. R1 [ 

dR 
R t a n 6  2 

tan 6 

R1 

2 R dR - 
tan 6 

Hm2 (Rf cos d f )  4 

f 
R2 - R1 i' 

2 
( R ~  cos 6 f )  tan tif 

R2 - R1 
-kl 

R2 

R, 

dR 

R tan6 2 

dR 
2 R tan 6 

where 

I. d R  bR-2 
R tan 6 

- 4  



J 

I 
I 

dR 
tan 6 

b - - 2 log - 
J 

dR 
tan 6 
- 

2 c R 4- b -T/b' + 4 c 

2 c R t b t  b + 4 c  r log 

Let 
2 2 = cll  c22 - c12 4-2 c1 c2 C12 - c1 CZ2 - c2 CI1 

The number of measurements N is given by: 

NAR = R2 - R1 

Letting (r be the variation of Doppler measurements, 
2 

R 

c22 - c2" cp* R = : -  
2 

N D 
0- 
% 

A R  c22 - c22 2 
cR 

- - R2-R1 D 

. .  
Finding D required double precision operations 02 an IBiM 7090. 
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M O L L 0  NOTE NO. 69 H, Epstein 
29 May 1963 

APPROXIMATE TECHNIQUE TO ARRIVE AT THE DSIF 

SMOOTHING ACCURACY FOR CIRCULAR OR NEARLY 
CIRCULAR, ORBITS--DISCUSSION 

OF NUMERICAL RESULTS 

This note discusses the numerical results which have been 
obtained to date on the DSIF smoothing accuracy for circular orbits 

about the Moon. The following basic assumptions were made in the 

analysis performed. 
Apollo Note. 

The analysis itself will be the subject oi a future 

1. The moon is considered as a stationary point mass with its 

mass precisely known. 

2. The earth is at an infinite distance from the center sf the 

moon--the zero parallax condition. 

that the DSIF radar is  considered as being located a t  the 

center of the earth. 

This includes the premise 

3. 

4. 

The effect of bodies other than the moon on the lunar orbit 

a r e  negligible. A restricted two-body solution is employed. 

The DSIF radar has no bias e r r o r  in its range rate measure-  

ment. 

second for a one-minute sample. 

The (1 0-) accuracy of the DSIF is .015 meters  per 

5. Low eccentricity elliptical orbits a r e  taken as 722resented 

by a circular orbit with the same period. 

(7570 seconds) assumed corresponds to a 100 nakzical mile 

altitude circular orbit. 

The orbital period 

6 .  

7. 

Linear analysis i s  adequate. 

An equatorial orbit is assumed with the angle between the 

axis of the earth-mooc orbit and the axis of the moon taken 

as 6.5 . 0 



8. The e r r o r  in DSTF station location is negligible. 

9. The sixth orbital parameter is determined by some other 

means (such as optical data or  a priori knowledge of initial 

injection conditions ) 

The numerical results a r e  most directly applicable for three 

situations during cruise portions of the orbit: one, the long term pre- 

diction accuracy problem for the CM; two, the comparatively short  

time prediction accuracy required for the LEM during synchronous 

descent (nominally 1/4 of an orbit period); and, three, the prediction 

accuracy of the LEM in its ascent to rendezvous. 

situations the nominal orbit is characterized by either a small eccen- 
tricity (LEM) or  zero eccentricity (CM). The numerical results con-. 

. tained within this note a r e  based on the exact results for a circular 

orbit. 

In each of these 

General Analytical Approach 

The approach taken to arrive at the smoothing e r r o r s  is similar 

to the approach outlined in Apollo Note No. 31.  However, since the 

situations of interest include prediction and smoothing over long periods 

of time, the power series for time is abandoned for a power series in 

te rms  of eccentricity to arr ive at  the exact analytical results for a 
circular orbit. 

be accordingly omitted from this note- -only numerical results and 

approach will be given. The set  of orbital parameters employed is 

essentially components of initial position (Ro) 
(VT) as indicated below. 

The details of the analysis a r e  quite lengthy and will 

and initial velocity 

Type of orbital parameters employed: 

1. Ro 

2. vo 
3. r* e 1" 

RO vO 

" 1- 4. lD 
4 

RO 



where 

go = Ro lGo 

To = v 1" 
O vo 

3 

(is the direction along the line between the D 
D rD = - 

earth and the moon). 

The analysis was performed along the following general lines. 

The er ror  coefficients in predic.ted position and velocity was obtained 

in an earth-based co-ordinate system. 

formed to an orbit plane co-ordinate system as  indicated below. 

These e r ro r s  were then t rans-  

/ / 

Figure 1. Orbit Plane Co-ordinate System. 

3 



For a circular orbit 1- = 1- and 1" = 1" Xt is worthwhile 
RO z vo Y" 

to recall that future position and future velocity can be related to present 
position and present velocity with the aid of scalar time varying functions 

{see Apollo Note No. 31, Equations (4) and (5) j .  ,The scalar functions and 
required partials were then derived for a low eccentricity orbit. 

relationships for a circular orbit can then readily be obtained by taking 

the limiting form of these expressions for a circular orbit. 

The 

The zero 

parallax doppler data then makes it possible to arrive at estimates for 

the first five parameters indicated in the l ist  of orbital parameters. 

Then, finally, these parameter estimates can be employed to arrive 

at the required accuracy in future position and velocity. 

To gain a greater insight into the nature of the accuracy obtain- 

able as a function of smoothing interval and prediction interval (and 

other. parameters of interest), it is desirable to treat  two special 

situations that enable reasonably simple analytical expressions to be 

obtained. For  the first situation, the imit vector from the earth to 

the center of the moon (l*) is normal to the direction of the initial 

velocity vector and will be known as Case I. 
occurs when le D 
vector. 

as the time origin (at no loss in generality) makes an additional 

simplification. The final simplification results from the assumption 

that an adequate number of samples a r e  taken so that the summations 

involved may be represented by integrals. 

analysis wi l l  indicate critical orientation situations from an accuracy 

standpoint. 

D 
The second situation 

is normal to the direction of the initial position 

The further selection of the center of the smoothing interval 

It is expected that this 

The form of the e r ro r  in future position and velocity com- 

ponents (for the DSIF e r ro r s )  is then given as: 

and 

4 



where: 
QiR = 

‘ O r  = 
V 

- 
OO - 

=s - 
t =  
P 

appropriate future position e r ro r  component (x, y, o r  z )  

appropriate future velocity e r r o r  component (x, y, o r  z )  

average angular frequency (radians per second) 

smoothing interval (seconds) 

prediction time from the center of the smoothing 
h t e rva l  (s e conds ) 

woTs = orbit angle smoothing interval (radians) 

w t = orbit angle prediction interval (radians) 
O P  

4, + = angles as defined in Figure 1 

m ’ = numbers of samples per orbital period taken 

PI, F2 = appropriate functions of parameters indicated 

These equations clearly indicate the scaling laws for prediction 
0- accuracy as a function of - . 

is determined by the ratio of the orbital period to the correlation 

time of the doppler noise. 

noise correlation time is about one minute. 

of m of about 126 for a 100 n. mi. altitude circular orbit. A present 

conservative estimate of one minute smoothed range rate accuracy 

(1 0-) of the DSIF is about .015 meters per second. 

The largest permissible value of rn E 

Present estimates by JPL of the doppler 

This leads to a value 

A plausibility analysis fo r  the nature of the e r r o r  is indicated 

below: 

3 ’= f so t g To = f Ro 1- 3. gVo 1” 
RO 

(3) 
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' e +  --PI = f R o t g  = i R  1-* t i  Vo 1. 
O Ro vO 

For a circular orbit with the co-ordinate system of Figure 1. 

The out-of-plane e r r o r s  a re  given by: 

A T  < 4 = ( AT i+) cos w ot t ( AT lX) sin w o t  (7) 
RO RO vO 

These equations indicate that the out-of-plane e r r o r s  a re  a 
periodic function of time (a pure sinusoid for circular orbits) and that 

the position and velocity e r r o r s  a re  in time quadrature. (When the 

positian e r ror  is a maximum in magnitude the velocity e r r o r  is a 
minimum and the converse also holding true}. 

centage accuracy of the maximum e r ro r s  in position and velocity a r e  

the same. 

In addition, the per- 

The in-plane e r ro r  can be written as: 

. -  - w b A g +  - AVO sinw t +  (&-I 1 coswot 
Ro y 0 

hR : 
Ro vO 

cos mot t (S e f )  cos w o  t T R *  'i" mO Z = A f  -P - 
(10) 

RO . Ro Ro e 

f ( A T  r) sin oo t 
vo 6 



3 +(hi  * 1 ) c o s W o t  vo Y 

All  of the terms involve6 I n  Equatiom 9, 10, 11, and 12 a r e  

purely sinusoidal with the excepLion of the e r ro r s  associated with 

Af, Ag, A;, and Ai. 
last four quantities contain factors which can increase linearly with 

time in addition to the purely sinusoidal components. 

co-ordinate system employed the linearly increasing terms a r e  modified 

by sinusoidal functions. 

with e r ro r s  in the period o r  average angular frequency of xhe orbit. 

Where these e r r o r s  a re  dominant, the position and velocity e r ro r s  

are consistent with a viewpoint oi time uncertainty. 

essentially an azimuthal e r r o r  in position 2nd a range rate (referred 

to center of the moon) e r r o r  in velocity. 

e r r o r s  will be essentially in phase and Af and Ag will be essential in 

phase with each other and in  qdadrature wixh Af and A i .  This means 

that when this type e r ro r  is domiriant, where AR and A V a re  maximum, 

that AR and AV will be minimum and the converse will again hold. On 

the other hand, when timing e r ro r s  a re  relatively unimportant, the 

y and z components of position or  velocity e r ro r s  will tend to be important 

Even though i t  is not proved in this note, these 

Actually for the 

These later e r ro r s  can be directly associated 

This results in  

F-rthermore, Af and A i  

Y Z 

Z Y 
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together and the position and velocity e r r o r s  will be essentially in 

quadrature 

One last general comment is required pertaining to the 

asymptotic solution for large orbital periods of smoothing. 

smoothing accuracy contains terms which vary inversely with the square 

root of time and time to the three halves (T)  power. 

be associated with e r ro r s  'in orbital period. 

The r. m. s. 

3 3 
2 The -power can 

This result is quite similar 

in nature to the smoothing results for a straight line. 

lations indicate that for smoothing periods greater than about one o r  two 

orbital periods this approximation yields good numerical accuracy. 

will be further discussed in the following section. 

Preliminary calcu- 

This 

Some preliminary estimates for very short  smoothing interval 

indicate that the covariance matrix wi l l  contain terms which will vary 

inversely with the - l1 power of the smoothing interval for a five parameter 

s e t  of orbit parameters. 

from five parameter and the - power associated with the number of 

smoothing samples available. 

matrixes calculation will  be included as an Appendix to this note at a 

later date to facilitate computation of other derived quantities as required. 

Discussion of Numerical Results 

2 
This can be considered as the fifth power arising 

2 
The numerical values for the covariance 

Tables 1 through 6 indicate the numerical values obtained to 

this point. 

velocity perpendicular. to the Earth-Moon line (Case I), and the (b) 
portion to the results for the initial position perpendicular to  the Earth- 

Moon line (Case 11). The las t  column of Tables 1 through 4 (optical e r r o r )  

indicates the ephemeris e r r o r  associated with an optical (or a priori) 

e r r o r  of 100 meters  (1 o-) in the determination of the sixth orbital 

parameter. 

by a bracketed quantity to facilitate comparison of the requirements for 

this e r r o r  source, In general, i f  a criterion were established that per-  

centage e r ro r s  ?n future range ar,d future velocity were equally important 

thenthe results for Case 11 a r e  more favorable o r  about the same as  

those for Cgse I. 
orbital period, no pronounced differences occur (see Tables 3 and 4). 

The (a) portion pertains to numerical results for the initial 

In Tables 5 and 6, the optical (or apr ior i )  e r r o r  is indicated 

For smoothingintervals greater than about one 

8 



The numerical values of accuracy obtained a re  good to the point that 

DSIF station location e r ro r s  (about 100 meters)  and other approximations 

would need to be taken into account to arr ive at  the precise value of 

accuracy obtainable. 

6 indicate the marked decrease in accuracy as shorter smoothing times 

are employed. 

between 1/4 orbit period and 1 orbit period 

of 1000. 

termination of many orbital parameters where only short smoothing 

intervals a r e  available. For example, Table 5 (a) indicates an out- 
of-plane position e r r o r  of about 3 0 , 0 0 0  meters  for 1/4 orbit period 

smoothing and zero prediction t h e  (from the center of the smoothing 

interval) while Table 3 indicates a corresponding value of about 20 meters  

for 1 orbit period smoothing. 

other e r r o r  terms.  

Tables 1 and 2 and most particularly Tables 5 and 

The difference in accuracy for predominate e r ro r  terms 

smoothing is about a factor 

This demonstrates the severe penalty associated with the de- 

Similar comparisons can be made with 

An examination of the e r ro r s  even at zero prediction time,in- 

that the e r ro r s  a re  probably most sensitive to plane e r ro r s  indicate 

the accuracy of determination of orbital period, which is  somewhat 
surprising. 

ship between the in-plane components. 

orbit, the determination of the orbital period for a known and constant 

mass  determines the energy, radius, and speed parameters of the 

orbit. It, therefore, must cautiously be stated that the orbital period 

o r  an equivalent quantity is probably the single most important contributor 

to e r r o r s  for circular o r  near circular orbits. 

is noted for long prediction time. 

The indicator is taken in terms of the quadrature relation- 

Recalling that fo r  a circular 

A much stronger dependence 

It further appears that as  more exact solutions a re  found, the 
necessity fo r  a pr ior i  o r  additional sources r'Gr parameter information 

will be required to achieve high accuracy in time intervals sub- 

stantially less  than 1/4 of an orbital period. 

involve optical data from 'the spacecrait o r  range data from the DSIF. 

The situation wherein range as .... eli  as range rate data is available 

has not been analyzed to the poin:. 

compute six orbital parameters without a priori  information o r  

Additional .sources could 

If it is required that the DSIF 

9 



additional information sources and that the correlation time of the 

primary noise source of the DSIF is one minute, i t  would take a 

minimum of about six minutes to obtain six independent measurements 

to establish the six parameters. 

CONCLUSIONS 

1. Very accurate data.pertaining to the CM ephemeris can be made 

available from the DSIF for all times after the CiM has completed a few 

orbits about the moon during its cruise portion about the moon. 

2. 

about 10 minutes o r  less ,  it will be necessary to make use of apr ior i  

information o r  additional sources of information to a r r ive  at suitable 

ephemeris accuracy. A possible additional source could be in the form 

of position data from the DSIF in addition to the range rate  data as well 

as the use of several  DSIF stations. 

spacecraft could also be employed. 

information can be given for the LEM on descent. 

LEM prior to the boost into synchronous orbit is known by the CM 

ephemkris. 

to yield adequate estimates for at least some of the initial conditions. 

A somewhat analogous situation occurs for the LEM ascent to rendezvous. 

It is to be expected that for  available smoothing periods of 

. 

Optical o r  other data from the 

An example of the use of apr ior i  

The location of the 

Knowledge of the boost to be performed might be expected 

3. For the zero parallax situation, no information on out-of-plane 

e r r o r s  can be made when the vector from earth-to-center of moon, the 

initial position vector, and the initial velocity e r ro r  a r e  co-planar by 

linear analysis techniques. Parallax is then required to estimate the 

out-of-plane e r r o r  by the DSIF alone. The maximum degree of parallax 

is about 1/2 02 a degree from the earth. 

of-plane e r r o r  by about one order of magnitude from the calculated 

values. 
tu assist in the determination of the orbital parameter. 

This would increase the out- 

The satellite relay technique may also be profitably employed 

4. 

to the lunar surface insures that the pessimistic results of Case I 

The requirement that the LEM be visible during its descent 

10 



(initial velocity perpendicular to  the earth-moon line) for short smooth- 

ing times will not be a situation of interest, 

Case 11 performance seems more rational. ' A somewhat similar situation 

occurs during the LEM ascent to rendezvous. 

A modest decrease in the 

5. 
servative,if not pessimistic result, when extended to the LEM ephemeris 

accuracy with its nominal eccentricity of almost . 1. 

The results for a circular orbit may be considered as a con- 
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Table 1, Prediction Accuracy Based on 1/4 Orbit Period of Observation. 

Predicted 
Er ro r  
Component 

Prediction Interval (Orbit Periods 

0 1 ! 2 
Optical 
E r r o r  

(0) 

(11.32) 

(0) 

10 
28,900 

345,000 

1,630 

.0506 

.1705 

286.7 

.00381 

5 
28,900 

172,500 

1,630 

28,900 I 28,900 
I 

28,900 

69,000 . 

1,630 

CT (meters) 

wR (meters) 
Y -  

o- (meters) 

uv (m/sec.) 

Rx 

RZ 

X 

O I 34'.500 
1,630 1,630 

.0506 .0506 

. 1705 

57.33 

.00381 

.0506 

. 1705 

.143.3 

.00381 

(. 08247) 

(0) 

(. 00940) 

,1705 1 .1705 

0 28.67 

,00381 .00381 

(a) Initial Velocity Perpendicular to Earth-Moon Line 

I Predicted 
Er ro r  
Component 

Prediction Interval (Orbit Period Optic a1 
E r r o r  

2. 114 

2 i 5  ! 

2. 114 1 2.114 

5,328 1 13,320 

18.56 18.56 

i 

I 
! 

42.1 i 42.1 

-__c..- __I- 

1 

2.114 

2,'664 

18.56 

42. 1 

1.297 

e 1509 

2.211 ' 

.0554 

0 

2. 114 

0 

18.56 

42. 1 

1.297 

. 1509 

0 

.055 

cr (meters) 
RX 

26,640 I (11.32) 

18.56 

42. 1 1 (0) 

1.297 1 (0) 

1 

o- (meters) R 
Y (1) 

0- (meters) 
RY(U) 
0- (meters) 

RZ 

1.297 : 1.297 

.'1509 i . 1509 
i 

CY-- (m/sec.)  

o- (m/sec,)  

cV (m/sec.)  

Y 

vz (1) 

z (W 

. 1509 

4.422 

.0554 

11.06 

.0554 

22.11 

(. 0094 .0554 
I 
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Table 2, Prediction Accuracy Based on 1/2 Orbit Period of Observation. 

[ Predicted 
1 Erro r  
i Component 
i 0- (meters) 
1 -Rx 
I 

: o- (meters) 
i;: 
0- (meters) 
RZ 

p- (m/sec.) 
' vx 

0 
396 

0 

18. 8 

.04735 

.01655 

0 

.00297 

Prediction Interval (Orbit Periods 

694.3 1389. 3472 

, 18.8 18.8 18.8 

00473'5 .04'735 . .04735 

,01655 .01655 

.5765 2.883 

.00297 
i 

.00297 1 .00297 
I 

(a) Initial Velocity Perpendicular to Earth-Moon Line 

1 Component 1 0 1 

10 

396 

6943 

18. 8 

* 04735 

. 0 1655 
5.765 

.00297 

0- (meters) .873 .873 
Rx 

cr (meters) 0 100.4 

Y (1) i R 

I ok:metersl 

7.66 

8. 10 

7.66 

8. 10 

. .873 I .873 I .873 

502 1 100.4 200.8 

1 7.66 

I 
I 
i 7.66 ; 7.66 

(99.36) 

(1 1. 32) 

(b) Initial Position Perpendicular. to Earth-Moon Line 
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curacy Based on Orbit Period of Observation. 

n Interval 1 hbit  Periods tical 
E r r o r  

I 

10 
17,s 

88.8 

1.76 

.0374 

.0017 

.0735 

.0019 

2 
17. 5 
- 

17.76 . 

1. 76 

... 
,0374 

.0017 

,0147 

,0019 

17*5 

8.88 

u (meters) 
RX 

17. 5 

44.4 

1.76 

.0374 

.0017 

.0368 

.0019 

mR (meters) 1 0 . 

Y I 
a- (meters) I 1.76 1 1.76 

L .  Rz 

cV (mlsec.) .0017 
Y I 

00735 

.0019 

(a) Initial Velocity Perpendicular to Earth-Moon Line 

Optical . 

E r r o r  
Predicted 
Er ro r  
Component 

Prediction Interval (Orbit Periods) 
10 . 576 
99.4 

5.06 

2.29 

5 
,576 

1 

.576 

9.94 

5.06 

2,29 

' ,576 (99.36) 

(11.32) 

(0) 

o- (meters) 
RX 

I 49*70 19.88 l o  cr (meters) R Y (1) 
5.06 5.06 

i 
I 

2.29 1 2.29 cr (meters) 
RZ 

-- 
.0193 ' ,0193 I .0193 

I i 

.0193 

,00195 

,00825 

.00596 

o-v (m/sec.) .0193 
X I 

,00195 

, 0 1650 

,00596 

.00195 

.04125 

.00596 

.00195 

.0825 

.00596 

(b) Initial Position Perpendicular to Earth-Moon Line 
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acy Based on 2 Orbit ~ b s e r v a t i o n ~  

Predicted 

l o  u (meters) 
RY 

cr (meters) 
RZ 

I *02€14 
ov (mlsec.)  
X 

kV (m/sec.) .0015 
Y I 

rediction Interval 1 

1 

14.3 

2.96 

* 1. g9 

.0264 

.0015 

,00248. 

.0014 

2 
14. 3 

5.92 . 

1.89 

, 0264 

.0015 

,00496 

. 00 14 

kbit Periods 

14,3 

14.8 

1.89 

.0264 

. 0015 

.0124 

,0014 

10 

14. 3 

29.6 

1.89 

.0264 

. 0015 

.0248 

.OO 14 

(a) Initial Velocity Perpendicular to Earth-Moon Line 

Predicted l 

I 

. Prediction Interval (Orbit Periods) 

1 
.407 

2.876 ’ 

3.575 

1.697 

.01186 

.00137 

.00239 

.00421 

-. 

.01186 i .01186 1 -01186 

.00137 .00137 .00137 

.0042 1 .00421 ,00421 

I I 

Optical 

(0 1 

(1 1.32) 

(0 1 

(. 0825) 

0 

(. 0094) 

Optical 
E r r o r  

(99.36) 

(11.32) 

(b) Initial Position Perpendicular to Earth-.Moon Line 15 



ccuracy Based on 1 /  Orbit Period of Observatio?, 

Predicted 

o- (meters) 1,630 (0) I Rz 
(0) I 5696 

4570 (11.3) 

. .  

5.480 (. 0094) 

- (4 Initial Velocity Perpendicular to Earth-Moon Line 

Predict e d 
E r r o r  
Component 
CT (meters) 
Rx 

I 
rv. (m/sec.) 
X 

Prediction Interval (Orbit Periods) 

18.56 (11.3) 

42. 1 (0) 121 (11.3) (0) 

.00176 (* 08247) 

. 3 0 1  (.0094) 

*[ ) indicates effect of optical error .  

04 Initial Position Perpendicular to  Earth-Moon Line 



able 6,  ccuracy Based on 1 /  Orbit Period of O b s e r ~ a t i o n ~  

396 ( 0 )  

348 (11.32) 

130 (0 )  

w (meters) 
RY 

0 (11.32) 

18.8 (0) 

73.8 (0) 

63. 3 (1 1.32) w (meters) 
RZ 

0474 (* 0825) r- (m/sec.) 
X 

.0980 (. 0094) w- (m/sec.) 
Y 

0772 ( 0 )  

0; (m/sec.) (0) 
z 

.2884 (. 0094) 

(4 Initial Velocity Perpendicular to Earth-Moon Line 

17 

Predicted 
3 r ro r  
Zomponent 

c (meters) 
RX 

Prediction Interval (Orbit Periods) 

0 .25 . 5  
,873 (99.4) 

7.66 - (11.3) 

8. 10 (0) 

95.43 (0) 

13.39 ( 0 )  

23.4 (11.3) 

873 (99.4) 

o- (meters) 

0- (meters) 

R 
Y 

RZ 

59.6 (1 1.3) 

28.8 (0) 

.0?92 (0) .000724 (. 0825) .0792 (0) 

e 0195 (0) 

.0478 (. 0094 

wv (m/sec.)  
X 

(m/sec.)  
Y 

wv (m/sec.) 
z 

.01748 (. 0094) ,0109 (0) 

e 0 11 21 (. 0094) .00674 (0) 

*( ) indicates effect of optical e r ror .  
(b) Initial Position Perpendicular to Earth-Moon Line 



APPENDIX 

COVARIAiVCE MATRIX 

A by-product of the calculation of future position and velocity 

e r r o r s  is the covariance matrix for the derived parameters. 
matrix can be employed to arr ive at  the variance in other derived 

quantities,( i. e. , periapsis distance, eccentricity, and energy). 

This 

Using the notation that: 

b = aiai 

'a. 

ai 
fo r  unbiased estimatars b = a. = 0 and 

-I 1 

= is the ith original derived parameter 

= 
1 

is the ith amplitude co-efficient 
- - 

L 
(3- c E ai LY. Dij 

J J I 

i b2 = 

where: . 

D, . = appropriate co-factor 

(Det) = determinant of the original matrix 
-J 

Aside from notation, this result is derived in Apollo Note No. 43 
(see Equation (21)). , Numerixal values a r e  listed below for  smoothing 

intervals of 1 / 4 ,  1 /2 ,  1, and 2 o r b i d  periods for two special conditions. 

For  :he f i rs t  situation the earth-to-moon line is perpendicular to initial 

velocity direction (Table 7) and f o r  the stcond situation the earth-to- 

moon line is perpendicular to the initiai position direction (Table 8). 

The five parameters that may be dcrived by the DSIF for the zero  

parallax case imply a fifth order matrix;. For these two special situations, 

the fifth order matr ix  can be decomposed to a second and third order 

matrix. The notation employed here wlil  be coi-sistent with the notation 

to be employed in a future Apollcj note &zlir.ig witk the analysis performed. 

18 



the use of these tables ill be given below, 

eadily be shown that: 

D l l  t D22 t 
n (Det) CH = 'ZGrT [ 

lii, *% t z4D12 
r =  e voces n (Det) 

(r 
1 

0 cos (6 
0 

b'R - 
P 

For the earth-moon line perpendicular to the initial position 

vector, a smoothing interval of 1/4 orbit, cr = . 020 meters/sec. ,  and 

6 = b, then, 

a- - 56 meters R 
P 

This result can be compared in a later note to the approximate 

approach taken in Apollo Note No. 60. 
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OLLO NOTE W, Dale 

THE LEM AS A RECOVERY VEHICLE 

One of the questions within Task No. 2 of this contract is 

concerned with the ability to align the LEM IMU. I t  is assumed 

that the LEM is attached io the CM. 

LLV is neither attached nor near the CM. 

A rea l  possibility is that the 

Consider a rescue mission requiring the landing of a second, 

but unmanned, LEM. Since the total LEM life support period will 

not exceed 48 hours, a rescue vehicle can not s ta r t  f rom the earth, 

travel the nominal 70-hour course, and be of much use. 

lunar orbit missions will exist prior to the f i rs t  lunar landing mis- 

sion, it is conceivable that a slightly modified LEM might be stored 

in lunar orbit to be used in the event of a rescue requirement. 

Amongst the various special problems is that of IMU alignment (or  

its equivalent) in the special purpose LEM. 

problem of getting the rescuing LEM into a geometrically workable 

position with respect to the GM and the downed LEM. 

Since 

Along with this is the 

Two reasonable techniques appear capable of getting the LEN 

down safely to the moon. 

rescuing LEM and the CM during the descent. 

of using the IMU for the initial and mid-course descent phases, and 

the T.V. link to the CM for the final descent phase, 

Note No.’ 42 it can be seen that IiMU alignment on the order of a mil 

o r  so  would be required. 

highly accurately aligned IMU with a CM based radar. 

radar would thus be used to get the LEM down to the position where 

the T.V. link could take over. Unfortunately, both systems use an 

IMU. Apollo Note No. 58 shows that a platform, correct  to about 

one-half of one degree, is necessary for T.V. lock-on and altitude- 

to-range conversion. 

Both require a line-of-sight between the 
The first consists 

From Apollo 

The second technique would replace the 

A one mil 

Apollo Notes No. 14 and 27 present a good case 



U during lunar descent. Thus the relevant questions are 

how well can one align 

rely on radar  guidance. 

U, and would i t  be better to 

No answer appears possible to the f i r s t  question without an 

automatic star tracker if one-mil accuracy is to be obtained. If 

greater than about aIdegree e r r o r  may be permitted, a lunar horizon 

scanner and earth o r  sui~,disk tracker may be used. The presently 

planned LEM utilizes manned s tar  tracking with the stellar telescope 

mounted rigidly to the IMU. 

tracking is a proper choice for such a vehicle. 

It would thus seem that automatic star 

The question of using radar  guidance can best be answered 

after looking into the orbit phase problem. Since it would place 

undue restrictions on the lunar landing mission to do otherwise, 

one may assume that any particular phase relationship exists 

between the orbiting LEM and the CM at the outset of a rescue 

attempt. 

ing of the rescuing LEM, the phase angle must be small near touch- 

down. Without expending fuel for orbital transfer, the only way in 

which initial phase angles may be made to disappear is to have the 

semi-major axis of the LEM significantly different from that of the 

CM. For  various circular altitudes of the rescuing LEM and for a 
100 n. mi. CM, the following chart  is a plot of the time between 

coincidences of the two vehicles. 

Since T.V. information will be used in the terminal' land- 

. 

Since little or  no fuel penalty is paid fo r  an increased LEM 

orbit altitude, (Apollo Note No. 2), it would thus seem that a 400 

mile LEM orbit  would be suitable, 

In the event of a required faster rescue, the control of the 

rescuing LEM must come from a source other than the CM. 

It is conceivable that the DSIF o r  the downed LEM might initiate the 

rescuing descent. The final terminal descent and landing could then 

not be controlled by the CM since a favorable line-of-sight might not 

exist. If the rescuing LEM were equipped with a slant range radar  

and the downed LEM's transponder were working, the final descent 

2 



period 
between 

zero 
phase 

(CM and 

LEM) 
hours 

might follow (Apollo Note No, 19)e 
It would thus appear that a rescuing LEM mission is quite 

possible, It would also appear that circular orbits, different in 

radius f rom the CM's  orbit, should be used. 

be made for the addition of automatic star tracking equipment for 

IMU alignment. The IMU is a reasonable equipment choice even 

in the event of radar guidance. And finally, a slant-range radar 

(gimbaled o r  not) would be necessary for extremely quick rescue. 

Good arguments can 

30 

25 

20 

15 

5 100 n. mi. circular 
CM orbit . 

0 --- I I___- L 
0 50 100 150 200 250 300 350 400 

lo  I- 

Rescuing LEM orbit altitude (n. mi. ) 
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POLL0 NOTE NO, 71 

SELECTION OF THE OPTIMUM 
ABORT TRAJECTORY 

SUMMARY 
In this note the problem of how best  to select an  abort tra- 

jectory is considered. A Simplified model is used to explore the 

merit of always choosing the minimum time return subject to the 

constraints imposed by the spacecraft status. 

and suggests only a method of approach--it will be supplemented by 

subsequent notes. 

The note is incomplete 

DEVELOPMENT 
When a change occurs in the status of the spacecraft which, 

without compensatory action, increases the probability of damage to 

the crew to more  than some maximum proscribed value, the decision 

is made to abandon the normal mission objectives. 

mission objectives discarded, i t  becomes logical to choose as the 

aborted mission objective the maximization of the probability of safe 

return of the crew. 

With the normal 

The problem now becomes one of choosing from the spectrum 

of return trajectories which a re  available to the spacecraft by virtue 

of its current status, that which bes t  accomplishes this objective. 

The spacecraft status factors which directly influence the 

choice of return trajectory will include: 

Present  Position 

Present Velocity 
Total Velocity Change Capability 

a. with reconfiguration 
b. without reconfiguration 

r 

Capabilities 
On-Board Navigation Capability 

Ground Support Navigation Capability 

Attitude and Thrust Control capability 

Crew Action Capability 
(Present and Projected) 

.L Re -entry Capability (Structural Integrity) 



Crew Health 

roblems xternal Environment, Present and Projected 
Life Support System Status 

The return trajectories can be characterized by a number of 

requirements and a number of attributes. 

Namely: 

AV Required, Total 

Placement and Number of Control Actions Required 

Precision of Confrol Actions Required 

Time to Earth Surface Recovery 

Time to Atmosphere 

Time in Van Allen Belt 

Time in  Solar View 

There appears to be no firm reason to believe that the space- 

craft status factors will be in general independent, i. e., that some 

event of significant probability will  not affect more than one of the 

status factors. 

Thus the general problem of matching capabilities to require- 

ments in such fashion as to best solve the problems with the return 

trajectory attributes is not one of trivial difficulty. Nor is i t  clear 

without more complete formulation that we could recognize the best 

trajectory selection if we made it. 

What seems to be required is a standard rationale for accomplish- 

ing this selection, if i t  is possible to establish one, and with this in mind, 
we consider a much simpler model than the actual one in the hope of 

gleaning some general principle which may be applicable to and may 

simplify the r ea l  physical situation. 

Consider a spacecraft as  an aggregate of m capabilities which 

Suppose further that a r e  essential to the performance of the mission. 

some degree of redundancy is provided in  each capability so that a 

failure ib one does not in general immediately reduce the capability 

2 



ut merely reduces the probability that the capability will  be retained 

over some arbitrary period of time 

e will further suppose that the probability of the crew's safe 

return is given by some function of the probabilities associated with 

retention of all the capabilities over the mission duration. 

we choose the simple relation: 

Specifically 

Ps = (1 - P  ) : (1 - P  ) . * . ( l - P *  ) 
F1 F2 m 

where PF is the probability of complete loss of the ith capability. 

Thus, Ps is unity if all P 

bility is completely lost. 

i 
's are  zero and goes to zero if any capa- 

*i 

bilities 

For further simplicity we wil l  assume that the individual capa- 

have been designed to have the s a m e  P 's so that: F 

We digress a moment to consider the P '6. If each element of F 
the redundant set  which make up a given capability is an aggregate of 
many sub-elements which have a mean time between failures of tf 

independent of the time t, then the probability of r of these sub-elements 

failing in an interval t is: 

so that the probability of no failures in the interval is: 

-7 PA ( t )  = e 

and thus the probability 

pletely 

-7 P$= 1 - e  

of at  least one failure is: 

However by virtue of the redundancy, the probability of com- 

losing the ith capability is: 

3 



After some arithmetic: 

A t  
t 

-T 
( , I  - e-r)n ~e - - = - m n  

-7 n 1 - e  -7 
A ps 

pB I -  (1-e ) 

~ ( 1 - T )  A t  n - 7 % 
t - - m n  n 1 - 7  7 

Gives the fractional change in safe return probability with fractional 
changes in time-to-go. 

If one element in a redundant set fails at time t ’  the new proba- 

bility, P will be: 
S’ 

1 -T n-1 = ( 1  “PF) m-1 (I - (1-e psz 

-7 n-1 

-7 

1 - (1-e ) 

i- (1-e 
’= (1-P fm .F 

or: 

4 



n n -1 7 1 - 7  APs - -  3- 

pS 1 - 7  1 -7 
(T  - I ) =  - - - 

n n I- 

Thus the failure of a critical system element can be compensated for  

by a reduction in time-to-go provided that: 

A t  ( 1 - r ) m n  - 
n n 

1 -T 1-1 

7 (1-7) 5 - -  T - 
n 7 n t 

or: 
A t  1 . .  - = z -  
t -  m n I -  t 

where, reasonably, m n T =sr 1. 

This ra ther  simple and incomplete analysis tends to indicate 

that in choosing abort return trajectories time may be of the essence 

because of i t s  over-all effect on the probability of safe return as affected 

by time rate of change of component failure probabilities. 

This suggests that a possible rationale for optimal course 

selection may be one of minimizing the time-to-go, subject to the extreme 

value constraints imposed by the status factors such as  A Vmax, time 

in radiation zones, and maneuvering capability, etc. A method for 

treating problems of this class has been developed by Pontryagin and 

his colleagues and may have application in this specific problem. 

This will be the subject of a future note. 
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POLL0 NOTE NO, 73 B. Saltzberg 
3 June 1963 

I 
DDITI ONAL ERROR CALCULATIONS FOR ~ ~ T E ~ I ~ N G  

-.--.----, 

THREE IN-PLANE ORBIT PARAMETERS FROM DSIF 

DOPPLER MEASUREMENTS I 

I n  order to compare the approximate techniques of Apollo 

Notes 32, 60, 61, and b4 for determining three in-plane orbit para- 

meters with the more rigorous technique for deriving the accuracy 

of the orbit parameters obtainable with smoothed DSIF doppler data 

presented in Apollo Note No. 69, the following additional e r ro r  calcu- 

lations have been made. 

Table 1 presents the variance and covariance values for data 

smoothed over the same 90° portion of the orbit selected in Apollo 

Note No. 69. In this case the results of the approximate error 
analysis a r e  in substantial agreement with the results of the more 

complete analysis carried out in Apollo Note No. 69. 
The f i r s t  column of Table 2 represents the results of an e r r o r  

analysis for a case similar to that of Table 1, with the single excep- 

tion that the three orbit parameters estimated a re  r 
of r 4, and e. 

4, and 0 instead 
P’ 

The second column of Table 2 represents the e r r o r s  fo r  the 

of the orbit rather than 90’. 

PI 

same orbit conditions a s  assumed in the f i r s t  column except that 

data smoothing is conducted over 30 

A comparison of the e r ro r s  in Tables 2 and 3 indicates the high 

0 

sensitivity of the e r rors  to the length of the smoothing interval 

(when i t  is assumed that the initial phase rather than eccentricity 

is derived from doppler data). 
8 The data shows that increasing 

___ 

* When r 4, and e a r e  derived from the doppler data as  in 

Apollo Note No. 60, the e r ro r s  a re  much less  sensitive to increases 
PI 

in the length of the smoothing interval after 30° of smoothing. 



-moon line relative to perige 

below. 

Line 
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OLLO NOTE NO, 74 C. H. Dale 
I1 June 1963 

TECHNIQUES FOR REMOTELY ALIGNING THE LLV 

M U  FROM THE ATTACHED CM . .  

This note discusses four techniques for aligning the IMU in 

the unmanned, but attached, Lunar Logistics Vehicle from the CM/SM. 

In order of increasing utility, they appear to be: 

1. 
2. Provide a light path between the CM IMU and the LEM IMU. 

3. Match accelerometers on the CM IMU and LEM M U .  
4. Star track with the T. V. 

Utilizing the CM/LEM structure as a common base. 

Structural Alignment 

If reasonably perfect selsyns measure the attitude of the CM 

with respect to i ts  IMU and the attitude of the LEM with respect to i ts  

IMU, then the two I M U ' s  may be aligned to within the flexural deflection 

of the CM/LLV taken as a solid structure. kst imates  of the structural 

misalignment and flexure of the LEM/CM combination a r e  difficult to 

come by yet it would not be absurd to assume that the lower bound is one- 

half of one degree. 

gun and rocket launcher boresightings. 

degrees seems reasonable also. 

This is better than is usually attainable in aircraft  

An upper bound of one or two 

The real problem is not how stiff a structure can be made, but 

If, for instance, rather how stiff an optimally light structure will  be. 

the mating structure between the CM and LEM can be held flat to within 

.2 inches and if  the opening is big enough for a man (for the LEM case), 

then a misalignment of about 5 mils could be expected from this source 

alone. 

It seems apparent that structural alignment is a useful tool 

as an initial rough technique, but as shown in Apollo Note No. 42,  

further alignment is necessary if  the LLV is to 

within T. V. range of the lunar touchdown point. 

inertially navigate to 



If a light beam can be directed from one IMU to the other, and 

back, then extremely good alignment may be accomplished. The major 

problem with such a technique is inherent in the fact that the light beam 

must go directly from one navigational base to the other; no structurally 

attached mi r ro r s  can be used to avoid objects that might interfere with a 

direct line -of-sight. Holes and windows must exist in  any in-between 

structure. 
In order  to prove simply that the inherent accuracy of this sytem 

is high without trying to evolve an optimum system, a sample design 

is shown and analyzed. 

system is based upon a light and set  of mir 'rors rigidly attached to 

This design is shown as Figure 1. The 

Figure 1. An Example Optical Aligning System. 

1 
the navigational base of the CM and a set  of 3 rn?rrors rigidly attached 

to the navigational base of the LLV. 

and roll axes,as shown in the figure, the pitch and yaw components 

may be zeroed f i rs t  by superposing an outgoing and reflected image. 

Denoting a triad by pitch, yaw 

2 



t e r  this is accomplished, the roll axis may be zeroed through the 

use of an off-set return light path. 

all three axes are to be aligned reasonably simultaneously, then such 

an off-set path must exist. If the initial alignment of one degree is to 

be used for initial acquisition, then about a ten inch wide path must 

exist between the CM navigational base and the LLV navigational base. 

This is not necessarily a n  easy thing to provide. 

inch path exists, and if 1/100 inch resolution exists, then one mil  

roll alignment follows from the figure. 

roll alignments unless the craft is rotated through 90 

It is interesting to note that i f  

However, if a ten 

Pitch and yaw will far surpass 
0 and again aligned 

to improve the roll  alignment. 

Accelerometer Matchine Alienment 

Both the CM IMU and the LLV IMU have a set of accelerometers. 

The differences in the readings of the two sets of accelerometers can 

only be due to accelerometer e r rors  and/or a difference in the spatial 

orientation of the two M U ' S .  
acceleration, a (the only kind measured by an accelerometer in f ree  

fall), the LLV will  measure 7 in its co-ordinate system while the 

CM will measure a. 
are reduced to insignificance then the difference, b , between 

d will be due to bias e r ro r s  in the accelerometers. The transformation, 

T, between c and 3 is thus not length preserving and part of its rotational 

characteristic can be caused by E. 
i = 
since 

Under the assumption of a thrust - 

If enough time elapses such that noise e r r o r s  - 
and - 

- 
Three maneuvers, a i  A t  where 

1,2,3,  that are non-coplanar will allow the determination of T 

- 
di = T Ti i = 1 ,2 ,3  f 

is actually a se t  of nine equations in the nine unknown components 

of T. 
However, knowing T does not allow an exact solution for the 

angular difference between the two platforms, since part  of the 
f 

\ 2 
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rotation between c and 'si is due to platform misalignment and part  is 

due to rs the difference in the accelerometer biases between the two 

IMU'S. I 
--jr 

With a single maneuver the above equation can not be solved 

unless the assumption is made that 'i5 is zero. However, since in the 

LLV alignment period no maneuvers are required, it would be a good 

idea to minimize the fuel spennton accelerating for IMU alignment. If 
one maneuver were made and a computer lengthened c or  'si so as to 

make I c I = 13 I then T is a pure rotation. 

the relative alignment of the platforms will be due to 

the order of: 

The expected e r r o r  in  

and will be on 

abias e y " -  - a 

where abias is the expected bias e r ro r  in the accelerometers and a 
is the average thrust acceleration. 

It turns out that the main service module engine must be useL 

to acquire reasonable alignment. The expected bias acceleration of 

the IMU accelerometers is 0. 5 cm/sec. . With CM, SM, and LLV 

attached and in lunar orbit their combined weight is on the order of 

50,000 pounds. 

along with two jets on the CM, a total thrust of about 400 pounds 

could be applied resulting in an acceleration of 8 cm/sec. . 
in turn results in an alignment e r ror  of about 60 mils. 

main 20,000 pound engine the alignment e r r o r  might be reduced to 

about 1.5 mils. 

2 

If two auxiliary control jets on the LLV could be used 

2 This 

With the 

This engine, however, burns about 65 pounds of fuel 

per second. 

quired fo r  turning the engine on and off, this may prove to be a 
costly technique for IMU alignment. 

Since times of not too much less  than a second are  r e -  

It should be noted however that 

no additional equipment is necessary and no penalty is placed upon 

the exact location of the IMU's relative to one another. 
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uses a telescope on the navigational base 

to s ta r  track and thus align their M U .  Since a T. V. link exists 

between the L L V  and the CM and since the T. V. camera could easily 

be mounted on the navigational base of the LLV's M U ,  then it would 

seem that it might be appropriate to align both M U ' S  by s tar  tracking. 

It is true that a lens, differing in focal length from other requirements, 

must be used, but a lens turret  is not an uncommon concept. 

. 

Assuming 1000 lines on a 2 inch T. V. tube, and a 5 inch lens, 

From resolution on the order of one quarter mil is achievable. 

Apollo Note No. 3 6 ,  it  would appear that only first  o r  second order 

magnitude stars might be picked up by such a system. 
is satisfactory since initial orientation would depend upon structural 

alignment. This system, with the exception of a possibly needed 

extra lens, will require no added components. 

However, this 
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TE NO. 75 He Dale 

THE F U E L  COST O F  VARIOUS TWO BOOST ASCENTS 

The nominal ascent consists of boosting off the lunar surface 

to a safe perigee altitude of 8 nautical miles. Rendezvous occurs after 

a central angle from perigee of 168; This trajectory is near  
the optimal Hohmann yet allows some out-of-plane correction capability 

with two boosts. 

Assuming no out-of-plane problem, this Note attempts to 

calculate the additional boost required to make higher energy, safe 
transfers. The cut-off perigee velocity is always horizontal. 

Defining: 

v = lunar gravitational constant = 173. 094 
12 3 2 x 10 f t  / sec  

6 = lunar radius = 5.70267 x 10 f t  
6 m 

P 
cm 

R 

R = perigee = 5.75131 x 10 ft  

R = 80 n. mi. command mod. radius = 6.18907 
6 x 10 ft 

e = eccentricity 

e = subtended angle f rom perigee 
V,V = velocity, perigee velocity 

a = semi-major axis 
P 

then for the nominal ascent 

defines the eccentricity of the trajectory which s tar ts  at R 

meets the CM/SM at Rcm after traversing 9 = 160°. The required 

perigee velocity is 

and 
P 

r 1 

V q& (1 + e )  = 5588.85 f t /sec 
P P 



orizontal velocity at R = R ( e  = 160°) i s  
C M  

- = 5193.54 ft /sec 
c m  h -  

The CM/SM velocity is 

vo f& = 5288.44 ft/sec 
c m  

Thus the change in horizontal speed must be 

The change in vertical speed (R) must be, at rendezvous: 

where V is the LEM’s total velocity before retroing for rendezvous. vpm= 5194.00 f t /sec (7) 
cm 

Thus from equation (5) and (6) the total rendezvous correction is 

A v T  = [[AV’) + (k)2] = 116.30 f t lsec (8) 

The total boost required is then 

= V + AVT = 5705.15 ft/sec. (9) vreq. P 

This neglects the boost required to fight lunar gravity during ascent, 

but for all the cases to be studied that will  be a constant since all 

cases  will have at least circular velocity a t  perigee cut-off. Now 

since this is the nominal trajectory, all other trajectories may be 

2 expressed as an increase o r  decrease in velocity from this base. 



Since all trajectories to be considered have horizontal velocity at 

ascent cut-off (8 naut, miles altitude), their apogee altitude is enough 

to determine the cut-off velocity. Thus as a function of the radius of 

apogee 

V 
P 

The total velocity upon reaching the CMISM in its 80 nautical mile 

orbit is 

V 
cm 

Equations (3) through (9) may be used to compute the total boost 

required for ascent and rendezvous as a function of the apogee alti- 

tude of the ascent trajectory. The results a r e  shown in the following 

figure. 

3 
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APOLLO NOTE NO, 76 L. Horowitz 
18 June 1963 

NOTES ON L. S. PONTRYAGIN'S THEORY 

O F  OPTIMAL PROCESSES 

Introduction: Soviet Academician L. S. Pontryagin has proposed an 

elegant solution to the following problem: from a given set of "control 
functionsf1 (variable thrust, limited fuel supply, etc. ), call them u .  (t)D 

how can the "optimum" u .  (t) be selected such &that the time required to 

transfer a vehicle between two given points is minimized?' 

1 

J. 
1 

In practical situations, the u .  (t) a r e  all bounded (since the 
1 

transfer could otherwise generally be accomplished in arbitrari ly 

small  time). Initial and final points 5 and 5 a re  given in the "phase 

space" defined by the problem; i. e., the space spanned by the gen- 

eralized position and velocity coordinates. 

tive point in this phase space i a  then given by the equations of motion 

-0 -f 

The motion of a representa- 

k. = fi (x1, . . . . . , xn, u l ,  . . . , ur); i = 1, 2, . . . , n. ( I )  1 

Pontryagin's technique involves iinearizing the general equations of 

motion, writing the solution to the resulting simultaneous system of 

linear, f i rs t  order  differential equations subject to the given initial 

and boundary cozditions, and then selecting the optimal control func- 

' tions u .  (t) by exploiting the convex properties of the loci of optimal 
1 

trajectories corresponding to optimal control functions. 

Pontryagin's paper considers this problem in iL ly  abstract 

mathematical formulation; 

general abstract  solution to the problem, he also provides generalized 

existence and uniqueness proofs fo r  the solutions obtained. 

in addition to presenting the completely 

This papsi-attempts to motivate Pclztryagin's method in a 

heuristic fashiox, and concludes with simple examples of the techaique 

Theory cf Tirne Optimal Processes  ir, LiEzar Systems, presenter2 by 
J. 3- 

R. 7ur. Carnkrelicze, Builetin of the Acacemy of Sciences of the USSR 
vo1 2, 1958 - pps 449 - 474. 



as applied to elementary linear control problems: 

to provide rigorous mathematical justification of the development; for 

No attempt is  made 

this the reader is referred to the original work previously cited. 

Formulation of the Problem: 

are position and velocity; we wish to determine optimal control func- 

We consider a computer whose inputs 

tions ui(t). 
the control functions u .  (t) .are bounded and piecewise smooth; without 

loss of generality, the u .  (t) may be taken as normalized: I u i ( t ) [ 5  1, 

The equations of motion a re  given by (1). W e  assume 

1 

1 

t >  to. - 1 0  i *  

i o  

Initial position and velocity a re  given: x . ( t  ) = x - k i  (to) = 

0 0  
X This corresponds to an initial point in "phase space": - 5 (to) = 

where - 6 = (x,, . . . , xn; k,, . . . , "). A final condition f, - 0' 
is also specified: 5 (t,) = & for  some t 

control functions u .  (t) ( 1 u. (t)l< 1) so as  to minimize t 

total differential of (1): 

We wish to select the - - f' 

Form the 
1 1 1- f '  

To effect a linearization of the problem, we assume that the indicated 

i -  a f i  a i  
3-Y i j  '5 partial derivatives of (2) a r e  all constant: = a  - - b i k e  

J 
Integrating ( 2 ) ,  the equation of motion can then be written as a simul- 

taneous system of f i r s t  order , linear differential equations: 

r- I 

with the appropriate initial and final conditions specified. 

l em at  hand thus reduces to selecting optimal control f a c t i o n s  u 

(bi (t)/ 5 1) so that with motion governed by ( 3 ) ,  the transfer time 

The prob- 

(t) i 

2 between 5 a n d i f  is minimized. 
-0 



W e  note several extensions compatible with (3):  

(I) If the equations of motion involve -higher order deriva- 

tive.s of the x .  (t), a reduction to a larger system involving only first 
-1 

order derivatives can be readily effected by introducing new variables. 
.. . 

x2 Example: x1 = .axl f bxl f cu. Let il = 

Then the larger system, now of first order, is  simply 

\ k 2  = axz t bxl f c u  

(ii) If a particular control function happens to require that 

its time integral be bounded, a new 

obtained by differentiation. 

t b  Example: - - axl 

system of higher order is  readily 

t 

Differentiating this equation, we have 2 

The order  of this equation can now be reduced to one by 

using the technique of (i). 

= a> f bu l  (t). 1 1 

\ 

Analogous extensions can be formulated fo r  similar linear 

s ys terns. 

General Solution of ( 3 ) :  If  we knew the control functions ui(t), the 

general solution to (3)  could be obtained a s  follows: 

x = A x  f b u t * * * .  f i r  uy ( 3) - - -1 1 
Introduce a new dependent variable y = (y, a .... 
Y i  - 1 ij . 

yn) so  that - 
qi jx j ,  x. = p i j y j ,  the p. to be determined. Then 

- = F- A P Y  - t P - l _ 4 u 1  + * . - . t P - ' b  - r  u r s  ( 4) 
1 

If we assume that A is non- i j "  where F is the matrix of the p 

3 



singular (Pontryagin shows that the problem is otherwise over- 

specified; 'page 8 of his paper), we can select P so that P"' A P  is 

a diagonal matrix, call it ={A. .}. Then (4) becomes 
13 

r t 

1 
n n r t Then 

- A i  t 1 q i j x j  = 1 q i j  (xj)o ' 1 I d i k e  %(T)  d T ,  (5)  
j.,= 1 j = l  k = l  0 

which can be solved for the xi(t) .  

the ensuing discussion by writing 

Following Pontryagin, we simplify 

1 

where ' i l  (t) , 

to the corresponding homogeneous vector equation x = Ax, and+ - (t) ,  

... , +n (t) a r e  the respective "duals" of the C i  (t); viz., the fundamental 

, - b n ( t )  generate the fundamental system of solutions 
1 - - 

- - 
system of solutions to the corresponding "adjoint" equation 

A' the adjoint (v i z ,  the conjugate transpose) transformation 

observe that  - d i ( t )  '0 2 (t) = 6 . ~j 
-1 

l.= j =  1 
adjoint systems (we have, without loss of generality, taken the d i  , y J 

of A. We 

solve 

to be normalized). A more detailed account of this procedure for 

solving linear differential systems is included in Appendix 11. 

Functional Fo rm of the Optimal Controls 

W e  observe that for a linear function f of n independent variables 

4 



simple examples of convex sets, For  any two points (vectors) 

and x -2  - 
with X + p = 1, we have x = 12 

-2' 

in a convex set  containing the origin, and any A b 0, p 5 0 

t px2 is on the line joining x and 
I -1 

x -  

h x  -1 + 

Figure 1. 
If u and u are the admissible controls corresponding to x and 1 2 -1 

x -2 ' then - x is accessible by using the control Xul t pu2  since by(6), 

Xu1 ('7) t fl u2 (7) 

0 

2 Note that lXul t pu21 ( A  lull t t . ~  u2 < X  -t fl = 2 ,  that Xu i- p u  1 1 -  1 

is  an admissible control. (T) a r e  two optimal 

terminal points, we see that she chord of R (T) joining them contains 

only 

argument extends inductively to the case of multiple controls. 

Thus, if x1 (T) and x - -2 

points of n, guaranteeiog the convexity of the region. This - 

Note that if u(T)  is an optimal control with corresponding 

optimal trajectory x (T), then u (t) is also optimal for  all t, 0 C t < T. 

6 

- - -  



For i f  we could get to a point x ( T l ) '  T .=T, in a time T1 - e (e -0 )  
e l 

by using a different control, call i t  v(t) ,  then'we could get to x (T) 

in time T - e by using v (t) for 0 c= t <TI - e, and then u (t) for 

- 
- 

T 
Figure 2. 

Since this contradicts the optimal character of u (T) ,  we conclude 

that u( t )  is indeed optimal for all t, 0 .= t e  T. - -  
Having established the convex character ofR(T)  (the set  of 

in time T, using admissible controls), all points accessible from 6 
we next note that the normal, call i t  5, to the boundary of Q(T) a t  

x ( T )  forms an angle =.IT with the incremental vector 6 x (T), where 

x (T) i- b x  (T) is an optimal terminal point adjacent to x ( T ) :  

-0 

- 
- - 2  

- - 

CI--- 
/ 

t 

7r e > -  
- 2  

Figure 3. 
7 



This is an immediate consequence of :he definitior, of convex sets. 

W e  note two features of this representation: 

(i) Since the boundary of R (T),  call i t  i3 r! &(T), contains 

only optimal terminal points (i. e. a only endpoints of optimal tra- 

jectories corresponiing to optimzl coctrols), then the control 

corresponding to d x(T) t 6 - x (T) (call this control u( t )  t 6 u( t ) )  

must itself be optimal., 

k (ii) F o r  a monotonically increasing 'sequence of times T 

convex sets Q ( T ~ )  f 0 k. form a neste2 sequence ia the sense of 

proper set  inclusion: n '  
? CI ? c *.... C R  1-1  2 

With these prelirnicaries estzblished, the crucial matter of 

determining optima? controls u. (z)  cac cow be handled, From ( 6 ) ,  we 

know that fo r  any optimal c o n t ~ o i  u ( t )  (assume there i s  just one control 

1 

for the moment), the correspondicg trajectory is 

a =  1 - 
F o r  a:& admissible perkrbatiori x +- 6 x with corresponding - - 

optimal conxrol L -i- 6 u, we have - 



Subtracting (6) f rom ( 9 ) ,  we obtain 

n t. 

6z(t) = x d a ( t ) / $ c c *  - -  b 6~ ( T I  d 

a =  1 0 

the equation for  the perturbation 6 x (t) in terms of the correspond- - 
ing perturbed control 6 u. 

with the unit normal 3 to  R (T)  at x (T): 

F o r  fixed T, take the dot product of (10) 

- - 

= f ( c  +"(T) b 6 u ( T ) d  T ,  wherec  (T). cc- - a! -a! 
.'a = 1 0 

By ( 8 ) ,  3. 6 2  (T) "'; 0; 

every admissible perturbation 6 u(t) of u(t) .  

an ineqGality holding for every fixed T and 

We conclude 

and hence that f o r  positive values of c (t) * b , 6 u (t) must be non- 

positive, while for negative values of ca + (t). - b , 6 u(t)  must be non- 

negative. 

this Note), we have lu{t) f 6 u(t)l -= - 1. But by (7), l u ( t ) /  = 1 (save 

possibly at a finite number of discontinuities; followizg Pontryagin 

L y -  - 
Ly 

Since u (t) t 6 u (t) is i?ll admissible control ( (i), page 8 of 

after Lebesgus, we say = 1 almost evcrywkere); further, 

]u(t)  t 6 u(t) '  1 almost everywhere. We conclude I =  

I u ( t )  = sign + (t) * b ,  O.=t c= T I , - - - -  



where the "sign" function is defined by 

W e  now show that c ( t )  = x* 6" is a constant of the entire - -  CY -- 
trajectory, s o  that the bouadary conditions suffice to completely 

determine the constant c 2nd hence the control functions u. (t). 
L?! 1 

* -  First note that + ( t ) *  x = constant, since - c 

so that - -  9 0 k is identically constant. But - + = C c , f =  - -e- 4 +a ' 
o! cr 

where 6 +CY. is just the tensor identity element (by r;he normalization of 
-a - 

4 and $@), so that % *  Bu is identically constznt over the entire tra- --ct e - -  
jec tory. 

10 



Hence, (12) i s  precisely the relation sought after, and the 

optimal selection of the control functions u .  (t) is completed. 
1 

Conclusions: Functions assuming only the values + I a r e  called 

"relay functions'' in the literature. 

functior, solutions obtained in his analysis are unique, and that a 
physically meaningful problem always possesses unique control func- 

tions optimizing the transfer trajectory. 

proof is based on the fact that the class of all relay functions forms 

a Hilbert Space (a linear vector space with a "distance function" 

defined on the space; i t  has the property that every (infinite) con- 

vergent sequence of elements in the space always converges to an 

element which again belongs to  that space), and hence that all (infinite) 

bounded monotonic sequences of accessible loci R, always converge 

to limits belonging to the same space. 

- 
Pontryagin shows that the relay 

Pontryagin's uniqueness 

We note also that the arguments of Appendix\II are readily 

generalized to the case of time-varying elements a of the matrix A, 

so that linear equations (3 )  with time-varying coefficients can also be 

solved in this manner. 

i j  

Unfortunately, most of the Apollo optimizing problems a re  

fundamentally non-linear and hence not directly amenable to Pontryagin's 

solution. Several devices are available however: many non-linear equa- 

tions may be converted to linear equations by inspired changes of variables; 

sometimes techniques a re  available for converting non-linear equations 

to infinite systems of linear equations (e. g., Carleman's Method, 

Adaptive Control Processes by R. Bellman, p. 45). If further study 

along these lines proves fruitful, the next note will extend this technique 

to the more general case of non-linear optimization. 

11 



APPENDIX I 

POSITION SERVO OPTIMIZATION 

To apply Pontryagin's theory to a specific problem, we consider 

the "position servo" problem: 

(I- 1)  - .. - - a x l  - c x l  + Mu(t)  x1 

00 
k1(0) = x 1  

f '  for some t 
Xl( t f )  = 0 

Gl(tf)  = 0 

f '  W e  wish to select u ( t )  so  as to minimize t 

To convert (1-1) to suitable form, introduce the new variable 

x2 - - xl. Then the problem to be optimized is: 

- 
x1 - x2 

. 
2 X - - -ax2 - c x l  + Mu (t) 

12 



Far a realistic servo problem, we suppose a-0 and a' - 4 c  

To write (1-2) as a vector equation, we have 
0, 

Then, 

= Ax + bu - - X - (I- 3) 

as in  (3) ,  with the indicated boundary conditions x ( 0 )  = x 
for some t 

x( t f )  = 0 - -0' 

f' we wish to select u ( t )  ( Iu(t)I 2 1 ) so  as to minimize t - f ;  

The corresponding homogeneous matrix equation is 

with solution 

- - 
2 e 

0 
\ 

up to arbitrary multiplicative constants. 

\ 

0 

a -  l?cz-E- 2 t 
e 

S (I- 5) 

To obtain Q, use (11-6) a d  obtain 

1 3  



7 t 
-a - 

& e 

0 

0 

-a +- 2 t 
e 

again up to a rb i t ra ry  multiplicative ans t an t s .  Next, form the vector 

- +( t )  = --tu 4 - \z1“ (where - i s  to be determined by boundary conditions; 

it is the outward normal to the convex se t  about %)> Then by the 

orthogonality of 4 and $a, we have 
-CY 

-at 

- -  b *  +( t )= c Z e  7 sin [ ~ 2  t t c L ]  (I- 7) 

since is purely imaginary. The constants c1 and c2  a r e  

determined by the boundary conditions (1-2), so  that the required 
control u (t) is given by (12): 

R. E, Ko?p (Optimization Techniques, edited by G. Leitmann, 

Academic Press l V b Z ,  p. 275)  also obtains this result in a slightly 

different manner by instead considering the Hamiltonian of the system 

(Pontryagin shows that these two approaches a r e  entirely equivalent, 

p. 14 of his paper). Kopp 2lots the ”switching sequence” in the 14 



"phase plane" (k, v s .  xl): 

x = x2 1 

/ 

A typical trajectory from 5 

we note that the optimal trajectory from €, 

along the switching boundary shown in the figure (since it is the only 

to the origin is shown in Figure 1,l; 
-0 

must approach the origin 
-0 

trajectory passing through the "equilibrium point" 0). 

that the control function u( t )  

Finally, we see 

whenever the trajectory from 

crosses  the switching boundary, as  noted in Kopp's paper. 
- 0  

15 



PENDIX IT 

SOLUTION OF LINEAR HOMOGENEOUS 
DIFFERENTIAL SYSTEMS 

To solve 

;C = A X  t b u *(t) + . * * .  4- br ur (t), - - -1 1 
1 

bi where 

A =  {aij} , -1 b. =[ 

bn 

x =  

x(0) = X’ ; - x ( 0 )  = - 0  L : - -0 
and 

consider f i rs t  the linear homogeneous system with constant co- 

efficients a : ij 

. 
x = A x  - 

By a fundamental matrix for (11-2), call it @(t), we mean an n x n  

matrix whose columns a r e  linearly independent solutions of (11- 2). 

In this case (a .,constant), the fundamental matrix is simply 
iJ 

A t  @(t) = e t 

(11- 1) 

(11- 3) 

( t + A t ) A  - e e A t  since e - t A  implies that-& e z t  = A e  

making e A  a solution of (11-2). Then @(O) = I (the identity matrix) 

implies that det @(t) = e (Tr A), where T r A is  the trace of A 

16 



at @(t) is indeed a fundamental matrix for 

i 
1 

(11-2)* 

The solution of (11-2) with x (0 )  = x is then - -0 

d 1 With Q the fundamental matrix for (11-2), we observe that (@- ) 

= - @-. 1 __ d @  . gp‘l = -Q-’ lA 
d t. 

or, taking the complex conjugate transpose (denoted by ’’ ) 

* - l  
Comparing this with (11-2), we conclude that @ is a fundamental 

matrix for the system 

* k = - A  x . .  - (11- 5) 

Since A is generally real, A* = AT (T  denotes transposition) for 

physical appAicazions. (11-5) is called the adjoint to (11-L). 
I 

We can now show that i t  suffices to obtain @from the relation 

1 See also: 
Equations (1955) pps 67 - 78) 

Coddington and Levinson Theory of Ordinary Differential - 
17 



where - # (t) is the i '' column of 

% For we have that 

and - +j( t )  the ''j thfl row of 

T i  C i  = #  . A *  + q 5 -  
--a! --a! - 

= # . (A T i  9 + $ i ,  0 by (11-5). 
--a 

i 

this to the Kronecker delta 6, . 
is given in Appendix I. 

(t)* + (t) f Constant; we lose no generality in normalizing - 'Hence q5 
--a! 

i A physical example of this process 

It is now a straightforward matter to verify by direct substitution 

that the solution of (11-1) satisfying the indicated initial conditions is 

t * - = .  + b  u=) d r . 
-r 1 (11-7) 



APOLLO NOTE NO. 77 J. Holdsworth 
19 June 1963 

CALCULATION O F  COVARIANCE iMATRICES 

FOR MULTI;=LE UNCORRELATED DATA SOURCES 

The purpose of this note is to extend the methods developed 

in Apollo Notes Nos. 3 and 43 to the case wheye multiple data 

inputs a r e  available. 

where only one form of data, such a s  range rate from Doppler 

measurements, was available. The present note will extend 

these procedures to the case where range, range rate,  and angular 

data a re  all available. In the subsequent analysis we shall assume 

that there is no autocorrelation in any of the three data inputs 

and that the different types of data a r e  not cross correlated. 

The previous notes have covered the case 

As before we shall assume that there a re  certain parameters 

a 6 ,  which we wish to estimate on the basis of our ob- 

served data. W e  shall also assume that we have available range, 

range rate, and angular data which we shall denote 3y R ,  R and 0 

respectively and that R, R 2nd 8 n;ay be written as  invertible 

functions of the parameters of interest ai. 

i = I ,  i' 

If our measurements could be made with complete accuracy 

then any six observations would theoretically suffice to allow us 

to determine the. parameters in question. Eowever, the measured 

data is corrupted by random noise hence we.must use our data 
A to obtain estimators a. 

we a r e  more interested in this note in obtaicinz an expression for 

the accuracy or  asymptotic accuracy with w h i c n  the parameters 

of the orbit parzi-neters a 
1 i '  In reality 

can be estimated rather than t he  conputation of the estimators 

from the observed data. 

As in Apollo Notes Nos. 3 and 45 we  assume that we rnay 

write the following expressions: 



R = R,(ai, t) 4- nR(t) m 

6 = 8 (a t) f n,(t) m c i' 

In equations (1) the quantifies subscripted m a r e  the measured 
quantities, the quantities subscripted c refer to the correct functional 

values i f  the data were not contaminated by noise and n (t), n (t), 

n (c) indicates the additive random noise. 
R R 

. e  
As mentioned before we shall assume that the noise processes 

nR(t), nR(tf and n (t) are independent, i. e. not cross correlated, 

zero mean stationary white gaussian processes with variances 

uk and re , respectively, 

N observations on R, k and 0 that we may write the following expression 

2 e 
uR ' 2 2 From ec_uc,,ion (1) we see that'if we have 

for the likelihood function of the data, 

where: 

2 



As before the maximum likelihood estimators a. of the parameters 
1 

a. a r e  those functions of the data which make the data most probable o r  

maximize the value of the 1ikelihGci function, 

solving the equations 

1 
They a r e  obtained by 

g = o  a ai (4) 

for the parameters ai as functions of the observed data Rm, k and 9 
3 J  m* 

8 

Performing the indicated differentiations and substituting into 

equation (4) we obtain: 

* 
8 a r e  assumed known, a s  a r e  the c' Rc' c Now the functional forms R 

observed data poixts R,(k), k,(k), 8m(k), thus equation (5) is actually 

a system of 6 equations in the a.  which may be soik,-L a s  a function of the 
A 1  
I), known data. 

observed data a r e  the maximum likelihood estimators of the orbital 

parameters a., 

The solutions a. of this system of equazions in terms of the 
1 

1 
Now a s  w e  have 'done in  the previous nor;es we shall asscme that 

the smoothing time or number of sam$es N is sdiicientiy la rge  so that 

the following expressions may be writtezi for  the maximum likelihood 

estimators : 
A a = a i +  hi 
i 

3 



where the Aa. are sufficiently small so that only f i rs t  order terms in  these 

random perturbations need be retained in various ser ies  expansions. 

This assumption is always valid for  sufficiently large sample sizes and 

is exactly t rue whenever the dependence of the functions f on the ai 
parameters is linear. 

1 

C 

Utilizing the above assumptions we may w r i t e  the following approxi- 

mate expr e s sions . 

Substituting equation (7) into equation ( 5) and performing some 

routine algebra yields the following system of equations which is linear 

in  the random perturbation quantities Aai. 

4 



ae 
*2 1 aa. (k) (0. m .  (k) - 8 4 (k)’]’ for i = 1,2, * * 6 

1 ue 

In equation (8) i t  is perhaps worth mentioning that R (k), (k), 
0 (k) refer to the nominal value of these quantities a t  the time of the k th C C 

C . 
observation, while R,(k), Rm(k), 0 

obtained from the kth observation. 

(k) refer to the observed data m 

Again i f  we define the estimator e r r o r  vector A a  by the column 

matrix 

then using matrix notation we may write the following vector equation: 

. th In equation (10) C is a 6 x 6 matrix whose i, J element i s  given 

by: 

5 



th Similarly e is a column vector whose i component is given by: 

for i =  1,2; * 6 

Now, i f  the joint distridution of the parametric estimators is . 

non-singular; i. e. , i f  the total probability mass  of the estimator dis- 

tribution does not lie in some subspace of dimension 5 or lower, then 

equation (10) may be formally solved to yield: 

Taking the transpose of both sides of equation (13) and noting that C 
C.. w e  obtain: 

= 
i j  

JZJ 

(14) 
T -1  AaT= e C 

e 

Equations (13) and (14) a r e  vector equations. 

(13) on the right by equation (14) yields the matrix equation 

Multiplication of 

T -1 A a A a T =  C - l e  e C 

Equation (15) i s  a matrix rather than a vector equation, i. e. , 
the. quantities on both sides of equation (15) a r e  6 x 6 matrices. Moreover, 

the elements of these matrices a r e  random so that in similar observations 

over the same smoothing interval we would expect a random variation 

in  the elements. 

6 



Since we have assumed large smoothing times the estimators 

4. of the parameters a. may be assumed to be unbiased,i, e, 
1 1 

A E ai= a. 
1 

or equivalently 

EAai= 0 (17) 

- a fact which is always asymptotically t rue for maximum likelihood 

estimators. 

Since the estimators a r e  unbiased the covariance matrix of the 

estimator e r r o r s  is obtained by taking the expected value of both sides 

of equat2on (15) with respect to the joint distribution of the noise processes. 

Thus, we may write: 

-1 Cov hi, ij) = E[  Aa A a  T] = C E(e eT) C-’ 

where E denotes the expected value operator. 

Since the matrix C is known and assumed non singular, i t  follows 

from equation (18) that we have an expression for our desired covariance 

matrix once we have computed 

E ( e e T )  

T The element in the i, jth position of the matrix e e is simply 

e’e where the expression for e and e. is given by equation (12). . 
However, comparison with equation { 1) shows that w e  may write: 
i j’ i J 
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w a t e rm on the main diagonal of e eT is of the form e: where 

e. is given by equation (20)- 

be independent zero mean stationary gaussian random processes then 

Since nR(k), n&(k), ne(k) were assumed to  
1 

for all k and 1, where 6 kp is the Kronecker delta function. 

of the matrix El e eT ] is  given by: 
Using e uations (20) and (21) w e  see that a main diagonal te rm 

for i = 1,2, ' 6 .  Thus, we  have an expression for the diagonal elements 

Now consider an off diagonal element E[ ei ej  ] where if j. 
Then again from equations (20) and (21) w e  may write: 
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rom equations (22) ay explicitly calculate the 

elements of the matrix 

matrix C are known then 

covariance matr ix  by substitution into equation (18). 

T of the matrices C and E[ e e 

reveal the interesting fact t'hat 

nce the elements of the 

which gives us our desired 

However, comparison of the defining equations for the elements 

- i. e., equations (1 1), (22) and (23) - 

E [ e  e'] = c. 

Thus equation (24) allows us  to write the following expression for the 

covariance matrix of the e r r o r s  in the estimators of the orbital parameters. 

cov  (ti, 2.) = c- 1 
J 

(25 )  

CONCLUSION 

In this note it will  be noticed that there was no systematic bias 

e r r o r  assumed in  any of the three data inputs. 

suspect that there may be a non-negligible systematic bias e r ro r  in the 

range and angle data. 

In reality there is reason to 

The extension of this analysis to cover that situa- 

tion is straightforward and is more of a notational nuisance than a con- 

ceptual difficulty. 

necessary amendments by using the analysis in either Notes 43 o r  3 as 

a guide. 

The interested reader should be able to make the 

A more serious shortcoming of this note is that using the JPL 
measuring procedure the range and the range rate data a r e  very strongly 

cross correlated. As other data collection schemes are under consider- 

ation which would probably tend to reduce this cross  correlation, i t  is 

hoped that the results obtained in this note may be of use in  some cases 

of genuine pfiysical interest. 

Sihce the cross  correlztion of the data inputs does not unduly 

encumber the necessary mathematics as long as the individual e r r o r  
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lated, another note 

appreciable cross correla n the data inputs, 
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OTE NO. 78  

E I F  DETERMINATION O F  LEM ALTITUDE RATE 

In an abort situation in  which the LEM takes off with a minimum 

amount of equipment functioning it is important to control the vertical 

velocity at cut-off. This note examines the ability of the DSIF to pro- 

vide this information. 

The present LEM landing site is 2O 40'N 3°40'E. The down- 

range distance to burnout is about 106 km in the westerly direction, 

so at burnout the LEM is at about 2O40'N OOE.  

The physical libration of the Moon is about - t 0. 02O in latitude 

and - t 0.04O is longitude. 

- + 7.6O and - t 6.7O. 
The corresponding optical librations are 

The Earth subtends a half angle of about 1. 5O. 
The observed Doppler velocity, omitting the DSIF velocity, is: 

a D = v 0 - v  
7 r 

where 0 is the angle between the line joining the center of the Moon 

and the LEM; and the line-of-sight, v is the component of velocity 

tangent to the Moon and vr is the component of velocity normal to the 

Moon. The e r r o r  in D is: 

7 

E (D) vT E ( Q )  t 8 E (v,) - E (vr) 

or 
E (v,) = v E (Q)  t Q E (v,) - E (D) 

T 

Now, in the worst possible situation 0 = 9. lo (=Ti 6O t 1. 5O) 
and the e r r o r  in  8 is approximately 

E (Q) = - x Erro r  in downrange distance r 



so at  burnout at 8 n.m. altitude 

E b q  - E (D) E a )  + 9.1 
1752 x lo3 5 7 . 3  

E (vr) = 1700 

For 10 second smoothing u ( D )  is about 4 cm/sec , ,  and E (D) 
is negligible. 

and E (v ) is 5% of circular velocity, then 

Assume that E ( l. ) is 5% of the downrange distance 

t 

1700 (0 .05)  m/sec.  t -  1 106 x lo3  

1752 x lo3 5 7 . 3  

= 5. 15 t 13 .5  m/.sec. 

= 18.7 m/sec.  

With a circular speed at 8 n.m. altitude, a vertical velocity 

is needed to cause impact with the Moon, so e r r o r  of 3 4 . 3  m/sec.  

it appears that the DSIF can he of use in LEM aborts to assure  a safe 

trajectory. 
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ue 5 

6 r = 1.75653 x 10 meters 
P 
4 = 30° 

e = .086718 

dr. = ,O2 meters/sec (1 minute of smoothing) 
R 
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6 r = I. 75653 x IO meters P 
$ = 3Q0 

e = .(I86718 
* 

CJ-. = e 02 meters/sec (1  minute of smoothing) 
R .  

Sample Points 
= 15O 

90° €J2 = -30° 
= -75O 

63 

76 meters 

I:8 x 10" radians 

1.8 x radians 

. 850 

Sample Points 

1520 meters 

6 . 1  x radians 

6.2 x radians 

9996 

-- 9995 

- 0  999? 
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APOLLO NOTE NO, 79 C, H. Dale 
26 June 1963 

AN APPROACH TO ESTIMATING THE ALLOWABLE INJECTION 

ERRORS FOR THE DSIF AIDED LEM 

ASCENT AND RENDEZVOUS 

_- The purpose of this note is to show a single technique for using 

the DSIF in a reasonably short  ascent and rendezvous mission under 

abort assumptions. 

that a maximum of 100 feet per second (27’00) e r r o r  may be allowed in 

the LEM ascent boost without exceeding the 10% fuel pad. 

The basic abort trajectory is shown in Figure 1. 

path of the LEM is shown under the assumption of no e r rors .  

The technique is evaluated in one way to show 

The nominal 

80 n.mi. CM/SM 
Circular 
Orbit . . 

Earth 
Visible 

Rendezvous Region 

Figure 1. Nominal Abort Trajectory 

At point (l),  the nominal abort ascent would place the LEM into a 

Hohmann transfer with perilune 8 miles off the lunar surface. 



Since a perilune burnout (5586 ft /sec) is roughly in  the center of the 

oon, as viewed from the Earth, this would allow about a half hour 

The of DSIF tracking before the LEM disappears behind the Moon. 

launch time is designed to place the CM/SM and LEM together at 
apolune (2). 
the nominal LEM at (2) with the CM/SM. 

in sight at (2), it is planned to add the horizontal 97 ft/sec. 

nominally places the two crafts in synchronism. 

enters into view, i t  can be tracked for an additional hour or  so until 

it reaches point (3). 

idea of the LEM position and velocity. 

should surely be less than 2 ft/sec., based upon star-oriented thrust- 

ing with 1% accelerometers used for cut-off. 

be computed (to within 2 ft/sec., DSIF willing) which will bring the 
two crafts into coincidence in the region (4); docking thus being Earth 

visible. 

A horizontal injection boost of 97.0 ft/sec, will  co-orbit 

Even if the CM/SM is nowhere 

This 

When the LEM again 

At about this t ime the DSIF should have a good 

The e r ro r s  in  the boost a t  (2) 

A boost at (3) can thus 

This nominally Hohrnann transfer is about a percent more 

efficient than the planned upon 160° ascent (See Apollo Note No. 75). 

The questions a r e  thus: How much e r r o r  may be stood at perilune? 

How large a set  of corrective impulses (3) and (4) must be used to 
make up that error .  

Given the actual magnitude of the velocity at ascent engine cut- 

then the semi-major axis of the off, Vl,and the radius of cut-off, r 

transfer ellipse, a is: 
P’ 

1’ 

The eccentricity for the lowest allowable safe orbit is: 

Lunar Radius 
’= 1 -  

al el 
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The angular momentum of the transfer ellipse is: 

r 

from which the initial flight path angle, P I ,  may be defined 

sin 2 p1 = hl 

Now the e r r o r  in the vertical velocity can b e  defined 

dR AR = - I = v1 cos p1 
dt 1 

This e r ro r  is plotted as a function of the e r r o r  in the magnitude of 

the perilune velocity in Figure 2. 

(4) 
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Thus any e r r o r  less than that shown in Figure 2 will  not hit the 

oon during a full orbit. The object of the remainder of this note 

is to calculate the boost required at (3)  and (4) for any e r r o r  such as 

that shown in Figure 2. 
As an example,assume that a horizontal decrement of 100 ft/sec. 

existed at (1). 
of 8 n.mi. altitude instead of the planned upon Hohmann transfer. 

at point (2) of Figure 1, the LEM is 72 miles below the CM/SM orbit. 

Since the timing was planned such that the CM/SM and LEM would 

reach point (2) coincidentally, a phase-lag will exist due to the e r r o r  

at (1). This phase-lag will be due to the difference between the semi- 
periods of the expected Hohrnann transfer and the actual circular orbit 

at 8 n.mi. altitude. 

front of the CM/SM. 

This would place the LEM in an exactly circular orbit 

Now 

This places the LEM about 170. 8 seconds in 

Now assuming no other sensors, the LEM would apply a 97.0 ft/sec. 

horizontal boost a t  point (2). 

more than the two percent corresponding to the 100 ft/sec. e r ro r  at 

point (1). The new orbit after 

the boost at point (2) will have a semi-major axis: 

This boost should not be in e r ro r  by 

This can be considered insignificant. 

6 = 5.96407 x 10 ft .  1 - 
2 v2 a2 - - - -  

This will  place the LEM at a new radius at point (3).  This radius will 

coincide with the semi-minor axis of the new orbit. 

6 - -drl (2 a - r l )  = 5.96027 x 10 ft. 
b2 (7) 

which is 42.4.1 n. mi. off the lunar surface. 

orbit is: 

The eccentricity of this 

4 



The time between perilune at (2) and point (3) is given by: 

t3 (LEN) - t2 (LEM) = 

- - . [q t e 2 ]  = 5256.5 sec. 

While the time required for the CM/SM to travel 3 / 4  of an  orbit is 
5514.9 sec., thus at point (3), the LEM is leading the CM/SM by: 

At = 5514.9 - 5256.5  t 179.8 = 438 .2  seconds, 

Since the DSIF has tracked the LEM for all this time, it is assumed 

to know its position and velocity at point (3), 
4 

The horizontal component of velocity at point (3) is: 

= 5387.29 ft/sec. - v2 r l  - 
b2 

from which the flight path angle is: 

cos p = - -> sin p3 = .03577 
3 v2 

d 

giving the vertical component 

= V3 sin p = - 192. 83 ft/sec, 
vv3 
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The commanded boost a t  point (3) should now place the LEM in 

an orbit which will reach the circular CM/SM orbit in the region of 

(4 )  of Figure 1 at the same time that the CM/SM reaches that same 

point. One way of doing this is to make point (3) a perilune point of 

the transfer ellipse. 

and the speed increased by 175.29 ft/sec. , then the perilune velocity 

of the transfer ellipse would be 5566 ft/sec. This would just allow 

coincidence. 

total boost required would be: 

If the 192. 83 ft/sec. vertical velocity is removed 

The required boost to inject at (4) is 327. 3 ft/sec. The 

v2 = 97 

V3 = 260.6 

V4 = 327.3 

Vtot= 6271. 

This is almost exactly 10% larger than the nominal 5705 ft/sec., 

calculated in Apollo Note No. 75. 

can cope with e r r o r s  less than 100 ft/sec., although this example only 

treated an e r r o r  in the horizontal direction. 

of this example trajectory. 

It would thus seem that this technique 

Figure 3 is a recapitulation 

6 
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POLL0 NOTE NO, 80 J, Holdsworth 

CORRECT10 TO CALCU 

COVARIANCE MATRICES I 

The purpose of this note is to correct an e r r o r  in  Apollo Note 

No. 67. 
In Apollo Note No. 67 the analysis was performed a s  though the 

polar angle 0 did not depend upon the orbital parameters whose values 

were to be estimated from the Doppler data. This is not so, however, 

because of the relationship between the time from perilune and the 

mean anomaly which appears on Page 2 of Apollo Note No. 67. 
In the present note the same orbit parameters will be used as 

in  Apollo Note No. 67 with the exception that instead of considering 

the energy E w e  shall employ the semi-major axis, a, of the elliptical 
trajectory. Thus, the parameters to be ,estimated are:  A, p, e, eo, a, 
where X is the angle between moon perilune and the earth moon lines, 

and p is a n  angle measuring the rotation of the orbital plane about a 
line in the earth moon plane which is normal to the earth moon line. 

The quantities e, 0 and a are the eccentricity, initial value of the 

polar angle from perilune and semi-major axis of the vehicle trajectory 
0 

res pe c tivel y . 
If we assume that the earth and the moon a r e  infinitely distant, 

then all line-of-sight vectors from the earth to the vehicle a r e  parallel 

and we may write the following expression for the observed doppler: 

i~ = [ - r ;.sin (0 + A )  t cos (0  + x ) ]  cos p 

If the polar angle 6 is measured from perilune, we have: 

In addition to the relations (1) and (2), w e  have the following 

relationship which implicitly defines the polar angle 8 as a function 

of the parameters a, e, and 9 
0. 



In (3), t is the total time, u is the lunar gravitational constant and C and 
are the eccentric anomalies at times t and zero respectively. The 

GO 
quantities 5 and < 
equations : 

a r e  given as functions of 0, e and eo by the following 
0 

e +  COS e 
1 + e c o s 8  0 

e f cos O0 
1 .f e cos 8, cos 5 = cos 5 = 

d7Z7 sineo 
1 -E e cos eo ' -sin 0 , sin Go = sin 5 = 1 t e cos 8 

thus, Equations (3) and (4) do implicitly define the polar angle 0 as 

a function of the parameters and time, e. g., 

8 = 8 ( a, e, eo, t). 

To compute the covariance matrix of the estimator e r ro r s  

we need the following quantities: 

Since )a: and p a r e  independent of the in-plane parameters, the first two 

quantities may be computed immediately from (1) to yield: 

0 

Bx a R  = -[ r ; ) c o s ( B t X ) f E s i n ( e + A ) ]  c o s p  

and . 
a R  - [ r ; i s i n ( e + X I - E  c o s ( e + ~ ) ]  s i n p  ap- . 
Also, since R depends only implicitly upon eo via 0 and . e 

Equations (3) and (4) then we may write, after eliminating r, 8, and r, 
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Furthermore since: 

I- 

and 

sin 8 

* 
we may wr i t e  the following expression for R : 

i t 4 7  [ - ( l + e c o s ~ ~ s i n j B + h ) i e s i n ~ c o s ( ~ + h )  cosp.  (11) 

Thus, from Equation (1 l), w e  obtain: 
1 a ( 1 - e )  

. 

By implicitly differentiating Equations (3)  and (4) we obtain the 
a e  

a 00 following expression for - : 
2 

a e  1 - e cos 

Thus, combining Equations (8), (12), and (13), we have: 

. 
From Equations (11) and (3)  and (4), w e  see that R depends upon 

the parameters e and a both explicitly and implicitly +rough the angle 

and - a to be more 8, thus we may expect the calculation of - 
chfficult. The expressions for the complete partial derivatives of R 
with respect to e and a a r e  given by the.following equations, the f i r s t  

a r i  
a a  ae 0 

3 



terms of which a r e  to be regarded as formal partials of R m with r e s  

to e and a from Equation ( 11) --ignoring the dependence of R upon e 
and a through e, 
dependence of k upon e and a through 8. 

The second terms properly account for the implicit 
The equations.az-e: 

Since - a ' is given by (12), then (15) and (16) may be evaluated a e  
when we have the quantities: 

where the subscript 'f denotes the formal partial obtained from (1 1) 

by ignorning 0. 

From (11), we have: 

-k sin 8 cos (e + A )  cos f3 ' 3 
a e  * 8 0  

a a  To obtain ae and - we must differentiate (3) implicitly. 

That is, consider: 

- r sin 5 )  - ( 5, - e sin 5,) = 0 (19) 1 a 3/2 

r F (eo, e, a, t, e) = t - - 
4 '  



, Equations (19) and (4) define 8 implicitly as a function of Bo, 
e, a, and time t. The quantities ae and 

from the standard technique for the differeatiation of implicit functions 

as described, e, g., in  Sokolnikoff's Advanced Calculus(?) That is, 

we may write: 

a e a r e  then obtained 

which allows the computation of the required derivatives even though 

(3) may not be analytically inverted to yield a n  explicit expression 

for 9 as a function of Bo, e, a, and t. 

From (3) and (4): 

+ sin 5 - sin 5, J (1 - e cos 5,) ( 1-cos 8 

(1-e ) s i n e o  

cos 5,) 0 - 
2 v2 

I, S. and E, S. Sokolnikoff* Advanced Calculus, p. 89. 
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Thus Equations (20) through (23) allow us to complete the 

calculation of our Tequired derivatives and yield exact expressions 

for .= and aR aR 
- 3 - Z - O  

The remainder of the calculation of the covariance matrix of the 

estimator e r r o r s  proceeds exactly a s  described in Apollo Note No. 67, 
the elements of the inverse of the covariance matrix being given by: 

N * . 

where: 

CY1 = X , , a 2  = p, c t 3 =  eo, c y 4 =  e, a5= a. 

To obtain the covariance matrix of the estimator errors,  the 
2 

where c r 2  is the matrix C. . is inverted and multiplied by - 
noise variance of the doppler data and N is proportional to the smooth- 

ing time or the number of independent pieces of doppler data. 

U 
1, 3 ,N 
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OLLO NOTE NO. 81 . C. P. Siska 
15 July 1963 

MAXLMUM ALLOWABLE INJECTION ERRORS FOR A PARTICULAR 

DSIF AIDED RENDEZVOUS SCHEME 

IIVTRODU CTXON 

This note examines the problem of LEM rendezvous with the CM 

under the condition that large injection velocity e r ro r s  may exist at the 

end of the f i r s t  boost phase. 

It is assumed that the DSIF can attain precise orbital data on 

the LEM and consequently assist  the LEM in providing the proper s teer-  

ing information to cancel the effects of initial injection e r rors .  

With this in mind, the question ar ises  as  to how large a f i r s t  

boost velocity e r r o r  can be made and still be cancelled within a designed 

10% velocity pad. 

rendezvous scheme. . 

This note examines this question for a particular 

RENDEZVOUS SCHEMES 

For comparison purposes, the nominal rendezvous scheme is 

defined as one using a Hohmann transfer with perilune and apolune at 

8 and 80 n. m. altitude a s  shown in Figure 1 (a). Trying to establish 

a Hohmann ellipse, immediately restricts the maximum injection boost 

e r r o r  to around 100 f t /sec. ,  in order to avoid grazing the lunar surface 

(without additional boost). 

to yield an "off design" orbit which is larger than the Hohmann. 

programmed rendezvous scheme is shown in Figure 1 (b), and uses 

three programmed boosts, the second boost correcting to a Hohmann 

orbit. 

Consequently, the first  boost will be designed 

The 

When f i rs t  boost velocity e r rors  exist, the correction scheme 

will be as pictured in Figure 1 (c). 

first orbit for almost half a revolution (in two segments), and then pro- 

vide thrust information for the LEM to initiate the Hohmann transfer at  

The DSIF will be able to track the 



d 

pi 



the end of the first revolution. ::: 

three initiates a waiting orbit, s o  that a t  the end of exactly N revolutions, 

the LEM and CM positions coincide and boost four then provides circular 

orbit velocity. 

At the Hohmann apolune, boost 

3 

In the analysis that follows i t  is assumed boost e r r o r s  are negligible 

after the first boost and, therefore, a r e  cancelled ol;t in tne final dock- 
ing procedure. However,  if more than one waiting orbit (N > 1) is designed 

into the procedure, then the DSIF can assist in refining the waiting orbit 

beiore boost four is applied. 

the programmed "off-design" boost one velocity vector must be horizontal 

in order to prevent .unfavorable bias for  upward o r  downward velocity 

e r rors .  For  example, i f  boost two occurs after a half revolution, the 

design boost one velocity can be pitched upward, thereby allowing greater 

injection exroxs before the lunar grazing condition occuro. 

3 

It is noted that since boost two is applied after one full revolution, 

REQUIRED PERIODS OF WAITING ORBITS 

For sake of mathematical simplicity, the following linearized 

relations will  be used in the analysis. 

From the energy equation and Kepler's law of periods, we obtain: 

a 1 2 IPc: 

and after combining Equations (1) and (2), 

:;e 

ing, the secor,d boost will  remain the same but the desigii lead angle 
for the CAM niust be changed appropriately. 

If more than one revolution is required €or adequate DSIF track- 

3 



where the subscript C M  refers to orbital quantities associated with 

the circular orbit of the Command Module. -_ 
The mean relative rate of phase angle change can be written: 

Tor the rendezvous scheme under consideration, the required 

period for orbit three (waiting orbit) in order to make contact with the 

CAM is, 

where: 
= design phase angle difference between the LEM and 

CM at the end of boost one. TO 

N3 = Number of waiting orbits. 

Since the subscript 2 refers to the Hohmann orbit, it will hence- 

forth be replaced by subscript H, so that upon combining Equations (4) 

and (51, 

- ?CM- p3 _ .  

We now have to impose a restriction on the magcitude of.-,. . *pcM 

in order to prevznt perilunes which lie too near the lunzr surface and 

thus, allow some margin for boost three errors .  For  convenience, we 

will restrict  orbit three to l ie outside the Hohmann, sothat: 
, 
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-P 
The maximum value of PCM in Equation (6) will occur 

pCM 

for the case of minimum [ ' ~ ~ ~ ' )  . Designing the initial lead angle 

qo with these values assures that Equation (7) will always be satisfied. 

Thus, the design lead angle is: 

-= TO ( N 3 t  ~1 ( P ~ ~ - P ~  ) + ( P ~ ~ - P i  ] 
PCM PCM min. 2n 2 

Note that the lead angle is designed for maximum PI (the 

largest  orbit), which occurs when the velocity e r ro r  is co-linear to, 

and increases the magnitude of the programmed boost one velocity. 

' Combining Equations (6) and ( S ) ,  yields: 

EXCESS VELOCITY REQUIREMENTS 

The excess velocity requirement is defined a s  the total velocity 

used to accomplish the rendezvous, (see Figure 1 (c)), minus the velocity 

used for the nominal rendezvous with the Hohmann transfer, Figure 1 (a). 
A schematic illustration of Equation (9 ) ,  shown in Figure 2, enables 

us to discuss some facets involved in the rendezvous scheme. 

First of all, the curve defined by Equation (9) is a simple straight 

line whose slope is determined by the magnitude N3. 
involves a transfer in which the phase angle difference between the LEM 

1 and CM after orbit one is,  by design, dissipated in exactly N + - 3 2  
Hohmann revolutions. 

the difference remaining after orbit one in one-half a Hohmann revolution. 

Point A on the curve 

On the other hand, the point B transfer eliminates 

It is evident that waiting orbits between points A and B lie 

between the Kohrnann orbit and the circular orbit of the CM. In these 
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Uooer Limit FTnhm ;I nn 

I 

4 ‘  
*?-I 0 1  ng orbits 1 , result in no excess I , velocity reqmt. for 
k I  

G O  E”,, I 

t. 
5 
O m I  Y i i .  

I O  

I 

Relative Periods Resulting 
From Boost One E r r o r s  

Figure 2. Schematic Relarion Involving Required 
Waiting Orbits and Orbits Resulting 

From Boost bne E r r o r s  
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cases the sum of velocities generated in boosts three and four is exactly 

equivalent to the velocity generated in boosting from Hohmann apolune 

velocity to circular orbit velocity. 

velocity is required for this par t  of the rendezvous. Between points 

B and C, the waiting orbits lie outside the CM circular orbit and.the 

excess velocity here is 2 (V -VcM). Therefore, i f  5 V defines 

the excess velocity requirements for boosts three plus four, we have 

the conditions, 

Consequently, no excess boost 

3 384 

5 V3,4 = 0 if PCM-P3 - 0  > 
PCM 

PCM-P3 < o  = 2 (V3 - VcM) if 
v3, 4 PCM 

According to Equation (3),  therefore, 6 V3, 
boost one e r ro r s  move one from point B to point C. 

On the other hand, the excess velocity requirement associated 

will increase as 

with boosts one and two is the difference between the s u m  of the velocities 

generated by boosts one and two, and the Hohmann perilune velocity 

Call this excess velocity 6 V1, 2. With the aid of the following vHP' 
diagram, one can express this in more concrete terms as: 

vl, 

Boost Boost Two 
F 

I 2 2 
= (VHp t. v t AVl cos a) t (AV1 sin cy) 



= (v I- AV, cos a) 2 f (AVl sin a) 2 

where: * 

AV, = boost one velocity e r r o r  

V t v  = programmed boost one velocity for the "off design" 
orbit --(See Figure l(b)). A m ?  

In the foregoing diagram i t  is apparent that as V decreases 1 
' (or equivalently the period P1), the value of 6 V decreases. Thus, 

192 
in  Figure 2, as one moves from point A to point C on the curve, the 
value 6 V de c r eas e s monotonically. 

la2 
Swnmarizing the above discussion, as one moves from point 

and thus A to B, the total excess velocity required is simply 6 V 
keep decreasing in rnqnitude. 
velocity is the sum of 6 V and 6 V 

1 , 2  394 
and the latter increasing. Since we a re  interested in determining the 

maximum excess velocity requirement, it is a question of comparing 

the values st points A and C only f o r  a given AV1, or,  in other words, 

comparing the two velocity e r ro r  directions a = 0, IT. 

6 Vtot denotes the total excess velocity, we therefore have 

182 
fn moving from 8 to C, the total exeesa 

with the former decreasing 

If 
f rom Equations (10) through (13), 

6 Vtot (a = 6) = 2 (v t AV,) 

8 



Using Equations (3) and ( 9 ) ,  one can rewrite Equation (15) to read: 

2av1 

?3 vcM 
vCM t 2 k  (V -AV,) (16) Vtot 

0 ; v SAV,  

1 ; v > AV, 

with K = 

For a given AVl ,  the quantity v in the preceding equations will  

affect the location of the straight line curve in Figure 2, moving i t  from 

left to right and vice versa. The permissible combinations of v and AV, 

must never permit the condition to exist in which orbit one intersects the 

lunar surface. This problem is examined in the next section. 

LUNAR GRAZING LIIMITATIONS ON FIRST BOOST VELOCITY 

The grazing limitation on the first boost velocity components can 

be obtained froin the following energy and momentum relations, 

Combining Equations (17) and (18) yields the limiting hyperbola 

in the hodograph plane, 

2 2 

a 2 b2 

'1T V I N  
_I - - = 1.0 



The condition that non-intersecting orbits prevail implies that, 

for any given v, the maximum value of AV must equal the segment 

or' the normal to the hyperbola bounded by the hyperbola and the VIT 
axis, 

1 

This is shown graphically in the following ?Lagram. 

Since the 

subnormal is: 

/ 

Hyperbola 

, the value of the - 
b2 VrlT 

2 - v;N slope of the normal i s  - -- 

b2 
a 

- V ' y  - 2 viT 

which can be written: 

1 Corniaining Equations (24: 2nd ( 2 0 ) ,  the vzrtical component of A V  

bzc ome s : 

Finzlly, forming A V  from the components in Equations ( 2 3 )  1 
and ( 2 5 ; 9  wz b v e :  

10 



2 1 [ V m + v I 2  - b 2  

or in terms of the boost one burnout altitude after introducing Equations 

(21) and (221, 

<< 1.0, and also - 
R. e 

hl Since the a rea  of interest is when 
1Vl V - << 1.0, Equation (27)  can be linearized, (by the use of the energy 

vHP 
equation f o r  V HP), to yield: 

where: 
- 

hCM - CM circular orbit altitude 

boost one burnout altitude 

I 

V = circular orbit velocity at lunar surface 
cxhi 

Eqcation (28) gives us  the maximum value of AV, for preventing 

intersecting orbits with the lunar surface with boost one. 

NUMERIC AL RESULTS 

The solution for the maximum 

able 107; velmity pad can be obtained 

permissible AV, within the allow- 

graphically using XGizaions (14), 
* 

(16), and (28). 

From Apollo Note No. 75 ,  Figure 1, the diiference between the 

N 620 f t /sec,  vtot velocity pote5i;lal for the loyo pad and the Hohmann transier is 

Also,  fro,= the same note we Lave: 

11 



6 
% = 5. 7 x 10 ft. = 938 n. mi. 

6 6. 19 x 10 ft. = 1018 n.mi. RClf 

= 5288 ft/sec. (circular orbit velocity at 80 n. mi. altitude) VCM 

In additisn there are the following values, 

Vc% = -& = 5510 ft/sec. (circular orbit velocity at lunar surface) 

hl = 8 n.mi. (boost one burnout altitude) 

3: 8 0  n.mi. (circular orbit altitude of CM) 'CM 

= .0177, from Equation (1) V ~ ~ - V ~ ~  
Tl " CM 

Using the above values, the aforementioned equations a re  shown 

graphically in  Figure 3. 

The LY = 0 case, where AV is directed along the perilune velocity, 1 
f v, reaches the allowable excess velocity 1imit.first as v increases, vHP 

and therefore, determines the critical value of AV1. 

"off design" orbit  one should have a perilune velocity approximately 120 ft/sec. 

greater than perilune velocity for a Hohmann, and this allows a maximum 
boost one velocity e r ro r  AV, 190 ft/sec. 

Thus, the programmed 

Note that for a Hohrnann transfer, (v = 01, the allowable AV, is 

approximately 115'ft/sec. , and the maximum excess velocity for this 

rendezvous occurs for the cy = r case at  a value 6 Vtot C- 2 x 132.5-265 ft /sec,  

For the values v =  120 and AV, = 19a, Equation (3) indicates that 
- 

= - . 123, which froi-n Equation i4) yields a phase angle 

m in 

12 



Boost One Burnout Altitude = 8 n.mi. 
CNi Circular Orbit Altitude = 80 n.mi. 

13 



change of -44.3O for this case; that is, the CM gains a maximum of 

4.3O on the LEM during.orbit one. 

Also from Equation (3), we find that the relative Hohrnann period 

= .0531, and thus from Equation ( 8 ) ,  the following lead angles 

0 obtain, qo (N3 = 1) =-15.5 and qo (N3 = 2) = 3.6'. Consequently, at the 

end of boost one, the LEM is leading the CM by 15.5O i f  one waiting 

. orbit is planned and is trailing by 3.6O if  two waiting orbits a re  planned 

for the rendezvous. 
9 

The maximum rendezvous time from boost one burnout for 
3 t .z PH, which upon using the above values 

Since PCM= 2.04 hrs., this time is 5.2 hours. 
1 max 

CM' 

one waiting orbit is P 
yields a value 2.543 P 

SUMMARY 

By programming a boost one perilune velocity 120 ft/sec. , greater 

than Hohrnann perilune velocity, the dlowable boost one velocity e r r o r  

can be increased from 115 ft/sec. to'l90 ft/sec. 

excess velocity required to cancel the e r r o r s  during rendezvous increases 

from 265 ft/sec. t o  620 f t  /set. 

In this case the maximum 

The maximum rendezvous time from boost one burnout with one 

waiting orbit planned is 5.2 hours for the boost one velocity e r ro r  of 

190 ft/sec. 

14 



(ala4 t a a t a3a6) 2 5  - 4 - 2  - = -  aa. 
J 

o aa 
j 

a rO a a (roko) a io 
o aa .  

j J 
= r  aa 

a r  
O K  

0. 

J 

ai.o 

j 
o aa r - = 6 a t €iZj a5 t a6 t 64j a i  + a2 t 66ja3 - it l j  4 

The angular momentum H is given by: 

A A 4 - 
H = (a2a6 - a3a5) x' + (a3a4 - ala6) y' t (ala5 - a2a4) z . 

2 2 2 H~ = (a2a6 - a3a5) + (a3a4 - a a ) t (ala5 - a a ) 1 6  2 4  

a H  ~ a (a2a6 - a3a5) 
2 H -= 2 (a2a6 - a a ) a a. 

J 
a a. 3 5  

J 

--. . -. ". . 
a (ala5 - a a ) 2 4  " 

j 
aa ': t 2 (ala5 - a2 a4) 

. . . . . ~ . . . ,. . . .,. . . . .. . _. .._._. . . , - *.,;-.- <*.. . **' 

H = a  a 
l 5  I 

4 



in which p 

rate. 

is the radius of the Earth and w is the Earth’s angular 
. e  e 

The latitude and longitude of the sub-lunar point on Earth at 
the instant of the first observation a re  L and I respectively. 

inclination between the plane of the orbit of the Moon about the Earth 

and the Earth’s equator is PI as shown in Figure 1. 

whether the angle y in that figure is greater or less than n/2. 

The 

It must be specified 

Then 

sin L 
sin p sin y = 

cos cos (6 -1) = cos 2 I 
IT sin b = - sin p sin ( - - y). 2 

sin‘b; = -sin p cos y 

. . I .. . . . . . , .. ... . ,...<.- <-.e: c - 
COS b = t 



lS1 

K12 

K1 3 

K2 1 

K22 

K23 

Kg 1 

K32 

K33 

cos L cos m 

cos L sin d 

sin L 

COS b cos ( d t - v )  

cos b sin {d t u )  

sin b 

The rotation matrix L rotates vector components from the 
- r u m  x y 2; system to the x' y' z' system. The relative angular positions 

of these two co-ordinate systems are shown in Figure 2. 

COS c sin 5 0 

0 1  

I 

1 0 0 

0 cos q s inq  

. 0 -sinq cos 11- 

cos s i n e  0 

-sin$ cos $ 0 

0 0 1 

20 



Then the vecto s s andF are 

and 

N 

X' t L (%m " Xd) 

. 
Dencdng the partials of Xi and Xi with respect to a. by 

J a .  . . * . .--.*; * - 
R'. &d R' J j' 

22 



POLL0 NOTE €3. Engel 
16 July 1963 

CALCULATION O F  COVARIANCE MATRICES lII 

This note presents a means for finding the covariance matrix 
. .  

when Doppler observations of a vehicle in an elliptic or  circular orbit 

. about a moving Moon are made from a DSIF or MSFN facility on the 
surface of the Earth. 

an elliptical orbit could be used with just slightly more computation. 

The orbit of the Moon is assumed circular, but 

The parameters chosen to describe the vehicle orbit a r e  i ts  

position and velocity with respect to the Moon at the time of the first 

observation. This choice of parameters has the advantage that it is 

possible to obtain expressions for the partial derivatives used in calcu- 

lating the inverse of the covariance matrix that do not blow up when the 

orbit eccentricity approaches or  equals zero. 

The vector from the Moon to the vehicle is r, the vector from 

the Earth to the Moon is xm, and the vector from the center of the 

Earth to the observing station is w,. 
station to  the vehicle is s, 

The vector from the observing 

The observed quantity is the rate of change of distance between 

the observing station and the vehicle, i. e.,  s. Now, 

Then, 

--- - - + + - -  
ark ar .  axd 

a a  
as 

j 
a a. a a  a a. 

j J 3 



and 

+ s  0 - -  -= _I_ 

S - 
s e- 

aE; l 
a a  S 

j 

a r e  used in computing the a a j  aa ,  Terms of the form 

matrix from which the covariance matrix is found. 

It is convenient to use different co-ordinate systems in computing - - 
Xm, r, and rd. By co-ordinate rotations x and a re  expressed in 

the same co-ordinates as r so  a b / a a .  can be evaluated. 
m d 

J 
In the work that follows, the various quantities that must be 

employed a r e  presented in the sequence in which they a r e  used in actual 

computations. - 
The x'y'z' co-ordinate sy stem is right-handed, non-rotating and 

Moon-centered. x' is directed along the initial position vector (x ', 0,O) 
of the vehicle, vehicle motion is in the x ' y '  - plane, and y' is directed 

so that 

0 

is positive, The orbit parameters a re  the components of - 
r 0 a n d F  0 in the x'y'z' co-ordinate system; these a re  x' o' Y b ,  2;. "As 

and id, and a r e  called a1 through a respectively. 6 
Note well that one can not employ the fact that a a and a a re  

zero, until after derivatives a r e  taken; otherwise incorrect results a r e  

obtained. For  this reason two different expressions for a quantity may 
a5, and a 3' 5' be found, one perhaps including a 

a,-, and a 3' 6 and a second expression without a 

The quantities used for computation a r e  enclosed in boxes. 

29 3 6 

and used for differentiation, 

and used for computation, 

2 



e initial radius r is given by: 
0 

A 
I t a2 yt t a3 21 

in which the caret denotes a unit vector. 

r 2 =  a 2 t a  2 + a 3  2 
0 1 2 

2To - =  2 al slj't 2 a2 62j t 2 a3 63j a a. 
3 

in which 6 . is the Kronecker delta 
i , J  - 

O i f i f j  

d i , j =  ( 1 i f i f j  

ro = a l  

- - 
r2= r a r 

0 0 0 

r * r  
' 0  0 E =  

0 r 
0 

a a t a a  t a a  

r 
- 1 4  2 5  3 6  - 

0 
3 



The angular momentum 

- 
H 

H2 

A = (a2a6 - a a ) x' 3 5  

K is given by: 

a (aZa6 - a a ) 3 5  
aa 

j 

a (a3a4 - a a ) 1 6  
aa 

j 

a (ala5 - a a ) 2 4  

j 
aa 

E = a  a I-2L.J 
4 



a H  - =  6 . a  - 6  
8a. 1J 5 J 

The orbit energy E is given by: 

2 E =  - &- +a: + a 5  2 +a6 2 
r 

0 

If the orbit eccentricity is e,  then, 

H2 r =  p (1 t e cos 0) 

and 
E = sin Q 

where 0 is the central angle between the vehicle and perilune. Then 

H2 e c o s 0 = -  - 1  
F r  

H2- e e o s Q =  - -  
0 F r o  

e cos 0. = I 0 F 5 



d 
H i .  e sin 8 = - 
CL 

.Hio 
e sin Q0 = .  - 

. C L  

Then, 

r c 
2 e2 = (e cos Q ~ ) ~  t ( e  sin oO) 

Also, 

e2= 1 t  2EH2 
2 
- 
P 

so 

and 

2 
ae  

j 
aa 
- =  + E  -1 a H~ 

j 
aa 

I I 

H ZE a H  
H aa. 

2 ae 

6 



If the eccentricity is not zero, the2 Q can be found from: 
0 

and if the eccentricity is zero, 8 
8 is always between - 5 ~  and IT. 

evaluated from Qo. 

can be arbitrari ly chosen as zero. 

In both cases sin Qo and cos Qo are 
0 

0 

Now, 

8 (e cos QJ - - 
aa a a. 

j J 

a H2 - 
aa 

j 
+ H2 aa aro- l  j I 

L J 

7 



a5 al 2)+ - “4 - a H  a (e sin Qo) 

J 
=-----.I a a  

j P J aa. . P  

The.sine and cosine of the initial eccentric anomalye  a r e  
0 

.given by: - _  

sin Lo . = - s in  o0 
a5 

and 
e t cos 8,  
1 t e cos Qo cos E = 

0 

- 1- = tan 
0 

E is always between -IT and IT. The’rnean anomaly at the initial 

condition is: 

8 



and the mean motion, n, is 

so the 

‘Then, 

1 

time, t from perilune to the initial point, T = 0, is 
0’ 

also, 

an 3 n  a E  
aa. 2E aa 
- =  -- 

j J 

2 9 2  
( l - e  ) (e sin Oo). 

1 t cos 00 e sin E = 
0 

0 

0 
e s i n c  

-e sin60 a (e sin go) 

a (e.cos Qo)/aa. 

1 t .e cos O O .  

2 s i n z o  a (e sin o0) e sin E 0 a(e COSQJ a e  

j 
aa  
- 

j 
aa 1 t e cos C10 

j 
a a  

0 
sin 0 

9 



and 

- a (e COS Qo) a (e sin Q0) - -  a a. 
j 3 

+ sin Qo Ga a e  - cos Qo aa 
j 

2 e t e cos Qo 

1 + e cos 8 
- - e cos 

0 
0 

Also, since 

e = (e cos go) t (e sin Qo)  
2 2 2 

it follows that 

e de = e cos Qo d (e cos Qo) + e s in  Qo d ( e  sin Qo) 

so 

Since 

e sin %, 
c o  = tan-1 (-1 

a (e s ineo )  a ( e  cosIs0) 
aa. 

it follows that 

- e sin &, 
0 aa. e c o s E  

a 5, 1 

a a. j 1 + t a n 2 F o  ( e  cosEo)2 
-= 

10 



SO 

a (e sin do, 
= cos - sin a a. 0 aa. aa. e 

J 3 J 

Since 

MO = g o - e s i n e 0  

it follows that: 

- .  
At any time T after the initial observation, the time from 

perilune is . 

and the mean anomaly is 

The corresponding eccentric anoma,j must be compute( 

solution of the equation 

11 



and the values of sin an2 cos ~ G L ~ C !  from 5 e 

Then the trigonometric Facetions 02 the central angle a r e  

and 

so 

Then from. 

M = c - e s i z ~  
P 

it follows that 

J J 

12 



to Now T is not varied when the orbit parameters a r e  so t - 
should be held constant in taking parxi91 derivatives with respect to the 

orbit parameters. 

t - to = (M - Mo)/n 

and 

J J 

so 

or 

equal to oae another, Setting the two eql-essions ZGZ e -- 6 a. 
J 

a M  

we find 

13 



Setting g, 8, and M equal to os Q0, and Mo we find 

2 2  4 - (1-e e 
2 

- 
!i -e cos E 1 

2 1h (1-e ) e - 
2 (1-e c o s & )  

0 

2 2 112 /'e a M o  \ - 2  cos go i e cos eo + 2 cos - e  cos E 
-I- (1-e 1 e K j  

j t - e  C O S E  } 2 (1-e cos.&o) 2 \ J  

14 



2 r(O - 0$ 
= (1-e ) a a; 

J 

/ 

1-e c o s 6  
+ 

e 3(M-Mo) 
_I_ 

2 aE + sin G 
j \ l-e 2 E  aa 

sin go  [ 1 -e + I )  e J l-e cos g o  

2 - 
(1-e cos . 

(cos c- cos go) 12-e cos + cos go]] 
f (1-e cosg) '  (1-e cos&,) 2 (e 7) 

Now since 

p (It e cos 6 ,  

it follows that 

- = 2 - - -  a r  r aE r cos 0 - -  ae sin 0 (e $11 
aa 
j 

i - ~  aa i+e cos 8 
j 

a a  
j 

and 

I 

15 



Now 

sin (0 - O0) = sin 0 cos Bo - sin 8 cos 0 
0 0 

and the components of 7 in the x'y'z' co-ordinate system are: 

- 
and the components or' :: iri the same co-orlinates a r e  

r I 

-4 
r 
- 
H 
r 
- 

OO) 
sin (a - go) -I- 4 cos (9 - 
COS (0 - Qo) f 5 sin (0  - 

0 

I 1 

y v - r u  The x y z co-ordlnzx system is Zarth-centered, non- rotating 

and right-harxled with Z riormal to the plane of the MOOII'S motion about 

the Earth and directed at an accclte alrgle to t L e  Earth's angular velocity 

vector. x is in the direction of the Earth-Xoon line at  the time of the 

initial observztioa. Then t h e  positioil and the velocity of the Moon with 

respect to  the E x : h  a r e  given by: 

ry 

16 



and 

in which w 

the Earth-Moon distance. 

is the angular ra t s  of the Moon about the Earth and p m m is 

The xyz co-ordinate system is Earth-centered, right-handed 

The z axis is in the direction of the Earth angular and non-rotating. 

rotation vector and the x axis is in the plane of the prime meridian 

at the instant of the first  observation. If X is the observing station 

latitude (measured positive North) and CY is the observing station 

longitirde (measured positive Sast) ,  then 

cos X cos ( w  T + P )  e 

p e cos X sin ( we T + a> 

J pe sin A 

and 

17 



in  which p 

rate, 

is the radius of the Earth and w is the Earth's angular . e  e 

The latitude and longitude of the sub-lunar point on Earth at 

the instant of the first  observation a r e  L a n d  1 respectively. 

inclination between the plane of the orbit of the Moon about the Earth 

and the Earth's equator is p, as shown in Figure 1. 

whether the angle y in that figure is greater o r  less than n/2. 

The 

It must be specified 

Then 

sin (6 -1) = tan L cot p 

sin y = sin f3 

cos cos (6 - a )  = cos 2 I 
IT sin b = - sin p sin ( - -y) ' 2  

I in b = - s inp  cos y 

18 



sin v = - 

cos (6 + v )  = cos 6 cos 1: - sin 6 sin v 

n cos (- 2 - y) 
cos b cos v = 

sin (6, + v )  = sin 6 cos v + sin v COS 6 

sin y 

cos 6 = cos (6 -1 )  cos P - sin (6 - 1 )  s i n 1  

sin 6 = sin (6 - 1 )  cos P + cos (6 - 1 )  s i n 1  

The rotation matrix K rotates vector components from the 

xyz s y s t e r n a q h e  Z Y 2  system. 

K =  

K1 1 K1 2 K13 

K2 1 K22 K2 3 

L K31 K3 2 K33 

19 



1.1 

K 1 2  

K1 3 

K2 1 

K22 

K23 

Kg 1 

K32 

K33 

cos L cos B 

cos .L sin B 

sin L 

cos b cos (d t v )  

cos b sin (d f v )  

sin b 

K 1 2  K23 K 1 3  K22 

K13  K 2 1  - K 1 l  K23 

K 1 l  K22 - K 1 2  K21  

I 1 

The rotation matrix L rotates vector co-mponents from the 
N C - r I V  x y z system to the x' y' z'  system. The relative angular positions 

of these two co-ordinate systems a re  shown in Figure 2. 

cos sin 5 0 i 
. L  = -sin 5 cos G O  L. 0 I 

0 cos 5 sin f 0 1 

0 -sinq cos T, 

20 



Figure 1. 
N x 
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e 

Then the vectors Z a n d F  are  

and 
. . . . . . . . . . , . ..,; .---: c *'- 

2 I  I S S 

2 2 s = x! t yb2 4- 2' 
t 

I . 
Denoting the partials of Xi and Xi with respect to' a .  by 

J 
R'. and R' 

J j ' 

ar  

j 
aa 

a ( e  - QJ 

j 
aa 

5 

X' t sin (O-So) - 

a x' - a4yf 
4 - 6  L. 

63j H 6 j  a5 22 



R! 
3 

. 

Finally, 

and 

a3 (T ) as (T 
NCi, = aa 

p= 1 a ai j 

in which T 
being zero at the initial measurement. 

(p = 1, .  . , N) a r e  the times of the N measurements, T 
P P 

The covariance matr ix  of the parameters is simply 

in which w L  is the mean square Gaussian e r r o r  in the measurements. 
23 
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Figure 2. 
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APOLLO NOTE €3. Engel 
18 July 1963 

USE OF RANGE AND RANGE RATE DATA 

Range Only 

From Apollo Note No. 43,  if the measured quantities, f(t) , have 

a fixed bias, b, and a zero mean stationary Gaussian noise, n( t ) ,  impressed, 

then 

fm(t) = fc(t) t b t n(t) 

and 

i, j=1,. . . ,7 cov (ai,aj) = r 2 (NC)" 

2 in which c is the variance of the Gaussian noise, 

fc(t) = fc (t, a l , .  . . , a  b) M' 

k= 1 J 

and 

= N  NC?, 7 

Now, i f  the quantity measured is the range from the DSIF or 

MSFN station to the vehicle orbiting the Moon, then from Apollo Note 

No, 82, 



o r  

- 
Now, expressions for s, s, 'and - a r e  available from Apollo a 

a a. 
Note No. 82, so i t  is simple (in theory) to dktermine the covariance 

matrix of orbit parameters and radar range bias using this note and 

Apollo Note No. 82. 

Range and Ranpe Rate 

From Apollo Notes No. 43 and 82, the likelihood function of the 

data is: 

in which N1 is the number of range measurements, N2 the number 

of range rate measurements, and 



To obtain the covariance of the ost likely ais and b, set  8 
and ax/i3b equal to zero, and, assuming N and N2 are sufficiently great, 

obtain a set  of seven equations linear in the random perturbation quantities 
1 

Aai and ab. 

This leads to: 

1 aRc(k) C aai ci, = 7 
6R k=l 

‘j, 7 = 
1 - 
2 

=R 

N1 

Ll 

- N1 - -  2 
R 0- 

‘7, 7 

and 
-1 cov (a., a.) = C 

1 J  
i , j =  1, ..., 7 

3 



z 
3 

ES ON L. S. PONT YAGIN'S THEORY 

OF OPTLMAL PROCESSES (TI) . 
e INTRODUCTION 

The previous note on this topic (Apollo Note No. 76)  sketched 
Soviet Academician. L. S .  Pontryagin's method of optimal control 

synthesis for linear problems. I t  was shown that optimal controls for 
this case were step functions assuming their extreme values almost 

everywhere. 

illustrate the technique, and restriction to the linear case emphasized 

as the factor limiting general applicability of this method. 

The linear position servo problem was  then solved to 

Further work by Soviet Academician L. 1. Rozonoer has general- 

Rozonoer shows that there exists a function 

ized this method to the case of non-linear payoff functions by an extension 

of the Pontryagin theory. 

H of the state and control variable of the system with the property that its 

absolute extrema completely characterize optimal selection of the control 

functions. 

shows it a straightforward matter to apply this formulation to non-linear 

problems. Illustrative examples a re  given. Finally, it is shown that 

although formal relations defining optimal controls for  non-linear problems 

cifn now be written directly, a two-point boundary value gimultaneous nonu 
linear differential system has to be solved in general. 

that a computer will have to be utilized to generate optimal controls for 

non-linear cases, 

* 

This paper sketches Rozonoer's results heuristically and 

Thus, i t  appears 

Pontryagin Maximum Principle: Following Apollo Note No. 76, we con- 

sider the transfer of a vehicle between two points with boundary conditions 

specified. 
transfer-we wish to select the "optimum" controls u. (t) providing the 

most rCeconomical" transfer (the criterion for optimality may be economy 

Bounded control functions u. (t) a r e  available to mechanize the 
1 

1 

# 

i.' 

L. I. Rozonoer, Pontryagin Maximum Principle in the Theory of - 
Optimum Systems, Avtomat. i T e l e m e k h m 5 F  - 



of fuel, time, 

The equations 

* x ' =  
i 

hazard, etc, 

of motion a r e  

f i ( X 1 #  * ,  

even a ~ t ~ ~ i g h t e d f e  combination the 

. 
where the xi are generalized coordinates in the phase space of the problem. 

W e  take the bounded control functions ui (t) as normalized 

Initial conditions a r e  given: 

0 

i x . ( t  ) = x 
1 0  

. . O  

i Xi(t0) = x 

A final condition is also given: 

f 
Xi($) = x i 

O f  

i k ( t )  = x l f  

for - some tr.. We wish to select the ui (t) [ 1 ui (t)l .= 1) so as to minimize 

ti. (This assumes we are  interested only in time economy; only a minor 

modification is needed to minimize (maximize) some other state variable 

o r  linear combination thereof). 

To illustrate the Pontryagin Maximum Principle, consider first 

the case of Equation (I), linear in the state variables: 

k = A x t b l u l  t f b  u 
c - - - r  r 

as in Equation (3), of Apollo Note No. 76. 
for  this linear case, optimal controls a r e  given by 

We have already shown that 

2 



as in Apollo Note No, 76 (12). Here, . 

where - $"(t) generate the fundamental system of solutions to the cor res -  

ponding homogeneous adjoint equation 

I - $ = - A 2  
I 

(A is the adjoint (conjugate transpose) of A and ccr are constants 

defined by the boundary conditions). 

Following Rozonoer, we can now produce a new function H of 

the state variables x i  and the control variables u 

absolute extrema when and only when optimal u . (t) have been selected. 

Then, once we know bow to write this function H (it will be shown that 
this is a simple and 8traightfhr.ward matter), we need only locate the 
zeros of 

which assumes i 
1 

to determine the optimal controls. Generalization to Tiii 
the non-linear case will complete the probletn. 

W e  first note that $ (t) * (t) 5 constant as shown on page 10 - - 
of Apollo Note No. 76. Further, 

by definition (page 10, Apollo Note No. 76) where 

identity element (by the normalization of 6 
outward normal to the convex set  R ( t ) ,  as illustrated in Figure 3, page 

7, of Apollo Note No. 76. It is clear on physical grounds that the angle 

between the outward normal X(t) an9 the velocity vector. k (t) never 

exceeds 

$CY is the tensor 
--a! - 

and - $a) and l ( t )  - i s  the -a 

- - 
L 

3 



W e  now define the function H by 

by (5), i t  is a non-negative constant when optimal controls a r e  used 
(since we a r e  then on the boundary 8 R o f K s  shown in F igure  3 

of Apollo Note No. 76). 
possess the advertised property; viz., that it assumes an absolute 
extremum when optimal controls ui( t )  are used. 

(assuming only one control u. (t) for the moment), we have 

We can now show that the function H does indeed 

For  by using (2) in ( 6 )  

1 

H = +(t) .-  A x ( t )  + - $ ( t ) *  - b u ( t )  == - 0 . - - (7) 

By (3),  we have already shown that optimal controls require u (t). 

= sign @ * - $(t)). Hence, - $(t)  * 2 u (t) = 9 (t) 2 sign (b - -  $ (t)) 
so that H does in fact assume an absolute extremum when the optimal 

u(t) i e  choeen. This argument extends inductively to the case of multiple 
controls,. so  that optimal control synthesis precisely corresponds to 

maximizing H. 

0, 

Before proceeding to the non-linear case, we first see how H 

is formed for the general linear case. 

(1) with boundary conditions specified, we introduce new variables p 

Taking the optimization problem 

by i 

(These pi( t )  a r e  just the variables of the adjoint equation (4), since with 
the matrix A taken as A=Gi j>  where a - a ; [assumed constant i j  

the case of real coefficients). 

"payoff function?', as i t  is sometimes called) by S. Introducing new 

Denoke the variable to be optimized (the 

4 



variables 3 necessary, S can always be ~ r i t t e  
of the state variables xi: 

as a linear combination 

I n I 

Here, T is the time required fo r  execution of the.transfer; it may o r  
may not be specified (if T itself is to be optimized, simply introduce 

by the relation Gn .). I = 1; then S = xn + n +  1 the new state variable x 

See page 3 of Apollo Note No. 76 for  further illustrations). Since (8) 
is a f i rs t  order differential system in the p i  , we a re  f ree  to impose 

a boundary condition-the obvious one is 

pi(T) = - e  * i =  1, * * ,  n i '  s 

where the c i  are given by (9). The function H is then just  

1 n 1 

? 8  Ur) precisely as in ( 6 ) ,  where k i  = f i  (xl, 0 0 ,  xn ; u l ,  e .  

as in  (I.). Differentiating (1 1) with respect to p . yields 
1 

Further,  differentiating (11) with respect to x yields i 

0 
with the boundary conditions x i  (0) = x 

2;** , n. Note that (12) and (13) are precisely Hamilton's equations 

and p i  (T) = - c - i = 1, i i '  

for the generalized coordinates x and p ;. i 1 
t 

5 



Application of the Maximum Principle 
I_ 

To apply this p inciple to a specific p 

governed by equations of motion linear in the 

take the case 

iables u i  (t) : 
r 

k i = f i  (XI, * * e 8 Xn) t bik  U k ( t )  ; i =  1, ' * '  8 ne (1 4) 

k =  1 
0 ' 0  

W e  take the i '  Boundary conditions are: xi(0)  = x k ( 0 )  = x i '  
control functions to be bounded by 1: 

By ( l l ) ,  the H-function for this system is 

n n 1: 

i =  1 i = l  k = l  

Then by the Maximum Principle, optimal controls are achieved by 

maximizing (minimizing) H, which simply means choosing the u 
that 

so k . . i . i = ~ l .  (16) 

precisely as argued on page 4 of this note. Kopp points out that if 
n 

b ik  p (t) happens to vanish identically, then the payoff function c 
i =  1 

* 
S = 1 c x is insensitive to the particular control variable u (t). i i  k 

i 

Note that the payoff function S = c x appears in the problem 

through boundary values selected for the adjoint variables p . (t): 
p i  (T) = - c . ;  i = 1, e e ,  n, where T is the time required for 

i i  
1 

1 

the transfer. I 

t Optimization Techniques, edited by G. Leitman, Academic Press, 
1962,  p. 2194- 6 



iple given in this note res ts  on 

1 

' 

This relatior, was in turn obtained from the convex properties 

of the loci of accessible terminal points in phase space, all as argued 

in  Apollo Note No. 76. Fundamental in this argument was the lineari- 

zation of the equations of motion (3) of Apollo Note No. 76, since this 

established the convexity of these loci (page 6 of Apollo Note No. 76) 
and hence (16) of this note. 

The basis for this linearization was the truncation of the Taylor 

Series for f i :  

n a f i  1 n a2fi  
A f i  ( X 1 8  * # xn) = 'E exj  ' 2 1 1 F a x  A%*Axp 

k. 2 k = l L = l  j =  1 J 

(1 7) t . . e * .  

where we assume that over sufficiently small intervals of time, the 

higher order increments A x k  Axp 0 * 0 can be neglected in proving 

that the Maximum Principle (16) still obtains over each small increment 

A t -  

hence holds the extremum everywhere, 

optimization of the payoff function S is always that the H-function attain 

an extremum with respect to the control vector u = 
provided only that the equations of motion are linear in  the control func- 

, * 
Hence, H assumes an extremum at each point of the trajectory and 

Thus, a necessary condition for 

( u l  0 * * ur), - 
tions u .. 
ence of the mixed partial derivatives of (1 7). 

No linearity in the state variables x i  is  assumed; only the exist- 
1 

* For  a more thorough discussion 'of this result, see  Leitman (loc. cit. 
p. 260) and BoltyanskG, of Processes,  Izvest. Mad.  Nauk 
S.S,S.R. Ser. Mat. _. 24, r9 7 



Conclusions 

Optimal controls u i  (t) optimizing (1) together with indicated 

r y  c ~ ~ d ~ ~ ~ o ~  by 
absolute extrema of the H-function (1 1). 

provided only that the equations of motion are linear in the controls 

(as itl (14)) and that the mixed partials of f i  with respect to the state 

variables exist. 

are selected so as to maximize H. This is the Pontryagin Maximum 

P r inc iple . 
The next Apollo Note on this topic shows how optimum thrust 

This criterion is usable . 

Once the H-function is formed (as in (15)), the ui 

control is obtained for a variable-mass vehicle being transferred 

between two points in phase space in a three dimensional central 

gravitational field in such a way as  to minimize fuel expenditure. 

Other problems under consideration include: 

(i) Optimum transfer through hazardous regions 

(Van Allen belts) 

(ii) Optimum thrust regulation to obtain desired reentry 
dive angle 

Optimum transfer with fixed probability of safe return. 

8 



APOLLO NOTE NO, 85 J. Holdsworth 
22 July 1963 

THE EQUIVALENCE OF DATA PROCESSING S C H ~ M E S  
IN A LINEARIZED ERROR ANALYSIS 

The purpose of this note is to demonstrate rigorously the sta- 

tistical equivalence of certain pairs of data processing schemes under 
- the assumption'of a linear propagation of random e r r Q r s  in the estimators 

of certain orbital parameters. 
' First, we consider that we a r e  observing a time series R (t) m 

which may be represented as: 

R,(t) = Rc(al, . . a6, t) 't n(t)  

where n(t) is a white stationary zero mean gaussian process with 

variance 0- . 
Rc (al.. . a6, t) on the orbit parameters a.. 

pieces of data Rm(l), . . . Rm(N,), where N I Z  6 ,  we compute the 
4 maximum likelihood estimates a 

2 We assume that we know the functional dependence of 

Then, on the basis of N1 
n 

1 

46 of tIx parameters al ,  . . . 1'"" 
e9 

Apollo Note No. 43 gives a method for computing the covariance 

matrix of the e r r o r s  in the estimators of the parameters as a function 

of the noise variance 0- and the number of independent observations n 

N1. It wil-l be recalled tkat the analysis in that note was based upon 

the assumption that the number of pieces of data N was sufficiently 

large so that the following linearization was valid: 
1 

Rc(al,.  . A  . .a , ,  A t)= Rc (al,.  . a6, t) t a H  (ais** Aai  A (2) 0 a ai i= 1 

where 
A A  Aai = a - a.. i i  

h Let Aa denote the column estimator 

It was shown A are: a. - a. for i = 1,2,. . . 6 .  
1 1  

e r ro r  vector whose components 

in Apollo Note No. 43 that 



the covariance matrix of the estimator e r ro r s  is given by: 

-1. = 9;" c (N1) 

where the i, jth element of the matrix C is given by: 

* (4) 
C. .(N1) = ? .8;- aRc ( a l * * * a 6 * \ )  aRc 

k= 1 J 1 S J  

Furthermore, i f  the parameters were estimated on the basis 

of N1 t N2 observations we would have 

(5) Cov (A& (N1tN2)) = 2 C -1 (N1+NZ) 

2 



]in Equations (3) -(6 
matrices upon the smoothing times notationally explicit by writing 

cOV ( ~ 2  ( N ~ ) ) .  . etc. 

we have made the dependence of the covariance 

Now assume that N1 observations a re  made first and that an 
A . 

estimator vector a (N1) is computed from the observations R 

maximum likelihood estimate of a.. 
said that the covariance matrix of the estimator vectqr a (N1) is given 

by the expression in (3). 

(tl). e.. 
R (t ), where the ith component of the estimator vector A m  a (N1) is the 

N1 
Then it follows from what has been 

4 1 

Next assume that the same parameters a re  to be e s t k a t e d  from 

N2 observations Rm (tN +1) . . . . , R (t 1 without the knowledge 1 m N1+N2 
of Rm (tl). . . . R (t ). Denote the resulting estimator vector based . m .  ?1 

) by 4 ($J2). Then if N is sufficiently upon Rm ltN1+ 112 ' Rm (tN +N 2 1 2  
large so that the linearization in (2) holds, we may write: 

(N2) 
2 c-l 
n 

where-: 

(tk) 
aRC 

(tk) j 
k=Nl+ 1 

A It is important to note that the estimator vector a (N2) wars com- 

puted without assuming that the computed value of the estimator vector 
$ (N ) was known and conversely. What we wish to show is that know- 

ing only the computed estimator vectors '$ (N1) and a (N ) allows us 

to form a new estimator vector of the parameters such that the 

resultant accuracy is the same as if  we were able to make the total 

A 1 

2 

number, Nl+N2, of observations Rm(tl). - .. R (t ), R, (tN +l). . . 
N1 1 

) first and then estimate the parameters. Rm(tNl t N 2  
A To show this, we assume that we have computed a (N1) and 

A h a (N ) as described above. Knowing the estimator vectors a (N1). and 2 

3 



2)s we define the new estimator vector% ( 

N A -1  A a (N1,N2) = Cov ( h a  (N1tN2) a (N1) t Cov (ha (N2))i(Nz)]. 
1 

Note that the new estimator 2 (N1, N2) is obtained from linear operations 
A A on the vectors a (N1) and a (N2), and that 

observed data oqly through the estimator vectors 2 (N1) and a (N2). The 

proof of our assertion will consist of showing that: 

(N1, N2) depends upon the 
A . 

I 

Cov (A: (N1, N2)) = Cov (A4 (N1t N2)) 

If we le t  a denote the column vector whose ith component 

is ai, then subtracting a from both sides of (9) yields the following 

expression for the estimator e r r o r  vector AZ (N 

Aa (N1, N2)= Cov (Aa (N1tN2)) 

N 1. 1’ 2 

I -1 A 

( 1  1) 
c L1 

P A 
Cov (A &N1)) A t  (N1) t Cov (Aa(N2)Aa(N2) 

The covariance matrix of the estimator e r rors  A%’ (N1, N2) is 
given by: 

where T denotes matrix transposition and E is the expected value 

operator which is integration over the observation space with respect 

to the joint distribution of the components of Aa (N1) and Aa (N2). Using 

the symmetry of the matrix Cov (Aa (Nlf N2$we may explicitly write: 

A A 

9 

(13) 
where in (13) we have used the fact that the maximum likelihood e r r o r  

4 



a r e  independen distributed with as 

t r i b ~ t i o n  with 2; s so that ter 
form: 

(A$(N2 = o  

thus. yielding ( 13). 

However, from Equations (4), (6 ) ,  and (8 ) ,  we see that: 

C0v-l [Â . ( N l t N Z ) ]  = Cov-' [At (NL) 3 t Cov-' [As ( N Z , ]  

so that 

COV (A% (N1.N2)) = Cov (A2 (N1+ Nz)) 

. which proves our assertion. 

Intuitively we may say that a priori distributional knowledge 

obtained from prior observations has a modifying effect on our later 

data so that the effective sample size is increased. It is worthwhile 

to note that i f  the noise is auto.-correlated, then quantities such as  the 

expression given by (14) will not in general vanish and our assertion 

will no longer be true. 

Next we consider the following situation. We assume that 

observations a r e  made as  before over a given interval of time -- 
say Rm (tl), . . . Rm(tN). On the basis of these observations we wish 
to estimate the values of the components of the position and velocity 

. 

vectors at some initial time t = 0. 

xi (0) 

upon the quantities xi(0) .  e . xi(0) and conversely. 

relations of the form: 

Let these quantities be denoted by 

where i = 1, .  . . 6 .  
The value oi rhe quantities xi(t) at an arbitrary time t depends 

Thus there exist 

i=l, . e .  6 (17) 
and 

Xi(0) = gi (Xl(t), . . * x.(t 1 

'1 5 



aving originally estimated the ~ u ~ n t i t i e s  x. 
1 

observations we may us e 

upon the estimators x 1(0 
JI state vector x ( O ) ,  there will also be e r ro r8  in the predicted quantities 

xl(t). . . . x (t); 

to predict values 
A 

e ~ ~ ( 0 ) .  Because of e r r o r s  in the estimator 
* 

/v 0- Since: 2 

From (19) we see that the predicted covariance matrix for the 

quantities zi(t) may be written 

Cov (AZ (t) ) = J Cov (&$ ( 0 ) )  JT 

a fi 

*ax,(o) ' where J is the Jacobian matrix whose i ,  jth el-ment is 
J 

On the other hand, instead of first estimating xi(0) from the 

data.and then predicting ahead to the gi(t) on the basis of the estimators 

$(O), we could have estimated the xi(t) quantities directly from the data. 

Let these direct  estimates be denoted by xi(t). 

under the assumptions of a linear propagation of e r r o r s  that the 

two methods a r e  equivalent, i. e. , that 

b We wish to show that 

To do this we recall  that the i, jth element of the inverse of the 
A matrix Cov (Ax (t) is given by: 

On the other hand, from Equation (20), the inverse of Cov ( A 2  (t 

be written: 
6 



e - 2 .  ov = ( J  ov 

Since the inverse of the Jacobian matrix is L5e matrix whose 
a gi -1 

i, j th element is and since the i, jth element of Cov (Ax (0)) is 

-1 
then it follows that the i, j th element of Cov (A% (t) ) may be written: 

However, for fixed k, we note that 

and 

thus: 
N 2i, = ci, and 

COV (AZ (t) ) = Cov (A 4 (t) ) 

which completes the proof of equivalence. 

7 



OPTIMAL CONTROL THROUGH HAZARDOUS REGION 

IN A 3-DIMENSIONAL GR ITATIONAL FIELD 

XNTRODUG TIOM 
The Pontryagin Maximum Principle was sketched in Apollo 

Note No. 84 where the problem of optimum transfer of a vehicle 

between two points in phase space was considered. It was shown 

that under very general conditions there exists a point function H 

on the state variables x i  and the control variables u i  with the 

property that i ts  absolute extrema completely characterize the 

desired optimal control functions u .  (t). 
1 

This paper considers an American Rocket Society presenta- 

tion (August 7-9, 1961) dealing with the Maximum Principle as it 

applies to the optimal control of a variable-mass vehicle moving in 

a central gravitational field.* It is shown that application of the 
maximum principle to the optimal selection of control functions yields 

a s2multaneous s y s  tem of non-linear two-point boundary value differ- 

ential equations whose solution defines the desired optimal controls. 

An interesting feature of this technique is that the "payoff 

function" to be optimized appears as an eclectic combination of the 

state variables with Irweighting constantsrr chosen to best define the 

optimization criteria. 
for the transfer, as dictated by the maximum tolerable time in a 
hazardous radiation region. 

We assume a maximum time T is specified 

SOLUTION OF THE PROBLEM 
The following application of the Pontryagin Maximum Principle 

is essentially that of the American Rocket Society Conference (D. Lukes) 

presentation previously cited. 'Applications of the Pontryagin Maximum 

* ARS Guidance, Control and Navigation Conference, Stanford, California 
August 7 - 9, 1961: Pontryagin Maximum Principle presented by D. Lukes 



~ e f e ~ ~ n c e s  to 

Symbols used: . 

e 
x 2  = X I  

. 
x4 = x 3  

0 

x6 = " 5  

X7: 

u 1 e  U2' u3: 

u 4  : 

c :  

6 :  

ll4I = 

T: 

rectangular coordinates 

mass 

components of thrust 

mass flow rate 

cons t a t  exhaust velocity 

gravitational constant 

2 
-$XI? x i  t x 5 

Equations of motion (84 - 1): 

2 x 1  = x 

x 3  = x4 
e 

ks = x6 

e -1 u4  x 1  - 
x 2  - x7 - m  

time to effect transfer 

. x 3  c u 2  u 4  

x7 IlXlJ 
* I I _  x =  4 

2 



. 
-4 x =  7 

Admissible controls (76- 7): 

= 1, O < u 4 <  - - B 2 .  2 2 u 1  + u2 4- u3 

Payoff function: 

W e  wish to satisfy the end conditions x i  (T) = x '- , i =  1, 2, **., 6 

and also minimize the net fuel expenditure (7) d T. Thus D. Lukes 
. .  

0 

suggests that the payoff function to be minimized is 

where X i  are non-negative arbitrary weighting constants. 
introduce the additional equation of motion 

Thus, we 

6 
* - xi t h 7 U 4  x 8  - 

i =  1 

Adjoint variables: 

where p i ( T )  = 0, i = 1, 2, e * , 7 ;  p 8 ( T )  = -1, 

3 



- F ~ ~ ~ t i o n  (8 

8 . 
H =  Pi xi 

i =  1 
(3) 

u- - c u 4  [- P * u  - -- x7 C (P, i- 4 + 
7 X 

where - u = (ul, u2, u3) 

and we define 

APPLICATION OF THE MAXIMUM PRINCIPLE 

We wish to minimize S = x8 (T). By the Pontryagin Maximum 

By examina- Principle (84-7), H must be maximized with respect to u. 

tion of (3),  we clearly require u to be parallel to P and select u4 = B - - 
i- h7] > 0,  = 0 otherwise. Thus, the optimum x7 

( p 7  when - - 
controls (call them u i  ) are: 

C * 

4 



t 
Denote u4 by B (t). 

Optimization equations: 

We calculate the adjoint equations from (84-13): 

& - - -  - . a H  
a x i  

and obtain the desired simultaneous system: 

5 



X 

0 

x 2  

. 
3 X 

0 

x4 

x5 
e 

e 

x6 

e 

7 X 

0 

p2 

. 
p3 

e 

p4 

$6 

a 

p7 

-x 4 

x6 

'1 x2 

0 

'2 x2 

x3 "4 

'4 &4 

'5 x6 

h ; r  6 6  

G 

G 
3 llxll 

h l  (xl 

(P4 - 

kg (x3 

l2 

- [p5 - '5 

& 

x7 

- x3-J 
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s pointed out by - *  e Lukes, equation (2) can be dropped f rom 

the system once u has been determined, so 

to solve the preceding non-linear simultaneous s y s t ~ m  with the boundary 

conditions 

e Pemaining problem is 

o 
Xi(0) = x. 1 

for  i = 1, 2, .: s 7. 

* 
The required controls u i  (t) a r e  then given by (4). 

CONCLUSIONS 

For  optimal transfer through hazardous radiation regions, (4) 
. provides optimal control for  a variable mass vehicle traveling in a 

3-dimensional gravitational field. The constants X appearing in the 

payoff function (1) may be chosen to provide the best balance between 

minimum fuel consumption and maximum "terminal point" precision, 
where by terminal condition we mean the specified end condition in 

phase space. 



POLLO NOTE NO. 87 

‘RENDEZVOUS AIDS 

1. RENDEZVOUS ERRORS WITH IMU AND 
OPTICAL SYSTEM 

26 July 1963 

G. F. Floyd 
A 

In.this section we assume that everything is  working normally 

except the LEM radar. 

system are functioning normally but there is no way to measure relative 

CSMILEM range or  range rate. 

That is, the IMU, AGC and on-board optical 

According to MIT Report E1212, M U  Er ro r  Data for Apollo 

Trajectories, p. 63, the 1 0- uncertainty in LEM velocity at  the end 

of the lunar take-off trajectory will be 2. 31 ft/sec. 

able to assume that on the basis of the long time available for CSM 

orbit determination, the e r r o r  in CSM velocity at  any time will be the 

order  of 1 ft/sec. Therefore, at the end of the lunar take-off, if we 

assume that the LEM AGC is programmed to keep track of - both LEM 

and CSM positions and velocities, the uncertainty in LEMICSM relative 

It is then reason- 

range would be about 

1 

This e r r o r  will propagate on essentially a 1:l basis during the 
0 180 

rendezvous stage , the inertially generated e r r o r  in relative vector 

range rate (closing vector velocity) will still  be about 3 ft/sec. At 

this time the closing velocity will  be the order of 150 ft/sec. , and 

the e r r o r  in the inertially computed relative range may be several miles , 
leading to an e r r o r  in the inertially predicted direction of the line-of- 

sight of perhaps loo and the predicted line-of-sight is about 20 away 

from the relative velocity vector (see Grurnman LMO-500-22, Figure 1, 

p. 6). 
150 (cos 20° - cos 30°) 

coast towards rendezvous, so as the LEM entered the terminal 

0 

Then the inertially predicted (1 0-) range rate e r r o r  would be 

150 (. 94 - .86) = 150 (. 08) = 12 ft/sec. 



However, with the use of the optical sight, the astronaut can 

accurately determine the real line-of-sight direction and with this 

information, .the AGC can resolve the computed 7 vector along the 

actual line-of-sight. 

only the e r r o r  in the magnitude of Y and this has a 1 o- of 3 ft/sec. 

In this case the e r r o r  in the scalar 2 will involve 

Thus, with the inertial system - and computation of CSM/ LEM 

relative position, and the use of the angle pointing data in the computer, 

we would expect 1 r e r r o r s  in i. during terminal phase of 3 ft/sec., 

hence 3 o- e r r o r s  of 9 ft/sec. 

be wrong by several  miles and s o  not of much help. 

In addition, the inertial range data will 

The conclusion is then that the inertial, optical r and i. data 

will not be satisfactory for docking and some assistance is needed. 

2. WAYS OF USING DSIF IN TERMINAL 
RENDEZVOUS NAVIGATION H. Engel 

There a r e  many ways in which the ground stations might be used 

to assist in the terminal phase of lunar rendezvous in the absence of a 
radar on board either of the two vehicles. 

The parameters characterizing these techniques are the number 

of ground stations employed, the utilization of boost T/M data from the 

vehicles, the use of angular information from the vehicles and the use 

of ring-around. 

relative to inertial space of the line-of-sight between the vehicles, de- 

termined optically using either the IMU o r  celestial'objects fo r  a 

reference system. 

The angular information referred to is the direction 

: 

The discussion here  is limited to the terminal portion of lunar 

rendezvous. In this terminal portion, the range between the two vehicles 

is assumed to be less  than two nautical miles and the principal quantities ~ 

of interest a r e  the relative range and relative range rate. 

Four second smoothing gives range and range rate of one vehicle 

f rom the observing station with standard deviations of 30 m and 0. 1 m/sec.  , 
re spec tively. 

As only the terminal phase'of rendezvous is considered here, 

the CM/SM is assumed visible and the LEM capable of maintaining the 

line-of-sight angular rate zero without ground assistance. 2 



The simplest system uses only one ground station and a pre- 

scribed terminal rendezvous maneuver. 

place itself in line with the CM/SM and the Earth, either closer or 

farther from the Earth than the CM/SM, and by boosting normal 

to the line -of-sight preserve this configuration. 

the ground station can determine the relative range and range rate 

in a very short  time. 

relative range rate can be determined to 0. 1 m/sec.  in 4 seconds 

and the relative range to 10 m in half a minute. 

orbit is not known accurately, then using transponders on both 

vehicles simultaneously, the relative range rate can be determined 

to 0. 15 m/sec.  in 4 seconds and the relative range to 14 m in half 

a minute. 

culated, but it certainly would seem to be within the 10% pad. 

It requires that the LEM 

In this situation, 

Assuming that the CM/SM orbit is known, the 

If the CM/SM 

The propellant cost of this maneuver must still  be cal- 

If boosts a r e  performed only in accordance with instructions 

from Earth or i f  the LEM transmits its estimates of the magnitude 

of such boosts, then the ground station(s) can use past observations 

together with estimates of the boost performed to obtain new values 

for relative range and relative range rate. 

been analyzkd. 

This case has not yet 

Using only ground station range and range rate rendezvous 

can be acco'mplished, but only with a great increase in the time 

required. In this mode i t  is necessary to observe the vehicle(s) 

for a significant fraction of an orbit following any boost to  obtain 

relative velocity of 0. 1 m/sec. Just  how long these observations 

must be performed has not been determined. 

3 



w 
0 

- 
If the LEM is required to drive the line-of-sight rate to 

zero, using the IMU or  a celestial reference system, and transmits 

the direction of the line-of-sight to the ground, then the value of the 

ground assistance in terminal rendezvous is strongly dependent on 

the angle between the line-of-sight between the vehicles and the line- 

of-sight from the Earth to the CM/SM. 

situation is the same as the first case described. 

approximately n /2 ,  the relative range and range rate estimates are  

degraded by a factor of the order of 50 even when using three observing 

4000 n. mi. apart simultaneously 

If this angle is 0 o r  r, the 

If this angle is 

( 50 [Earth-Moon Distance ] / [Station Separation 

If the line-of-sight direction is transmitted to the ground, 

and if  boosts a re  performed in accordance with instructions or  

telemetered to the ground, the grodnd can use this and past observation 

data to determine relative range and range rate to better accuracy than 

with boost telemetry alone. 

Using ring-around with one DSIF station, the relative range 

and range rate should be determined to better than 60 m and 0.2 m/sec.  

in 4 seconds, the e r r o r s  decreasing inversely as the square root of 

the observation time. 

4 



3. . RELATIVE RANGE AND RAiiGE RATE ERRORS 
USING THREE OBSERVING DSIF STATIONS H. Engel 

For this analysis an optimum configuration of vehicle and observing 

, station is assumed, as  shown in the accompanying figure. 

Letting S. be the distance from station i to a vehicle,, 
1 

3 
2 

(Xj - x..) 
J1 

si” = 1 
j= 1 

3 

si 6Si = (Xj - Xji) (6Xj - bx..) 
31 

j= 1 

3 3 

(X.”X..) 6x = si 6Si t (Xj” x.,) 6x,. 
J J1 J J1 J1 

j= 1 j= 1 

Because of the symmetry of the chosen configuration, it is only 

necessary to consider e r ro r s  in the location of one station and e r ro r s  in 

measurement of one range and one range rate. 

5 



Station 1 Station 2 Station 3 Vehicle 1 Vehicle 2 

% 0 - 4 x  to 4x10 6 .  0 
1 X 

8 0 0 0 4 x  10 4 x  t o  t y 7  x3 - 
(meters 1 
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Considering errors b x  1 ,  - 6x21, 6x31 in the position of station 1 ,  

x21 6x21 i- 3 6x31 0 6x1 - x 6x 21 2 f x3 .6x3 = 0 6Xl1- 

-Xl3  6x1-,x23 6 x  4- x 6x3 = 0 2 3  b 

I ~- _I __I - --. . - 

Using the facts that xZ2 = x23 and x12 = - x13, we find from the 

second and third equations that 

6Xl = 0. 

x3 
6x3 

= -  
6x2 XZ2 

From the first equation, then, 

(x 6 x  - x22 3 31 - x21 6x21) 

x3 (x22-x21) 
6x3 - 

and then, 
x 6 x  sx2 = 3 31 - x 2 1  6x21 

tX22 - x21) 

6 x  is obviously far larger than 6 x  and 6x is primarily dependent 2 3’ 2 

Substituting in values, 
8 

6x2 5 6x3 1 

3 1’ on 6 x  

-4 x 10 

1 2 6x2 = - - ( lo  6 x 31 - - ,  - 5 7 . 7  s”31 G- 
7 



For the second vehicle, the same equations may be written, sub- 

stituting Sx. + 6y.  for 6x. and x. + y. for x., Subtracting one se t  of these 
J J J J J  J 

equations from the other, the e r ro r s  in vector range between the two 

vehicles, resulting from an  e r r o r  in  statLon position can be found. 

6Y1 = 0 

r -h 

The e r r o r  in y is proportional to the component of station position 

e r r o r  in  the direction of y. Calling X1 the magnitude of the position e r r o r  

of station 1, 

2 

and is very small compared to y even for station position e r ro r s  of 100 m. 

Then , 

x3 y2 6x31 

x22 (x22 - x21) 

y2 
6x31 s - 6x3 1 

x22 - y2 * - -  - 
x22 - x21 &y2 x22 - XZ1 x3 

Thus station position error,s a r e  of no importance in determining 
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the relative position of the two vehicles. 

1’ ow consider the case of an e r r o r  in the measurement of S 

OSxl - x E t  + x3 Sx3 = 6S1 29 X$ 6S1 

-X l2  4x1 - x 6x + x 6x3 = 0 22 2 3 

-XIS 6x1 - x23 6x2 + x 6x = 0 3 3  

These equations lead to 

6x1 = 0 

6s1 6x3 - - - ‘ 1  
3 

The largest  e r r o r  is bx Substituting values, 2’ 

8 
. 6S1 1; 4 x 10 5x2 - - - 

3 

1 2 = - x 10 6S1 =57.7  6S1 
fi 

If the e r r o r  in S1 is 30 m,  the e r r o r  in x is 173 m. In this case, 2 
the position e r r o r s  for the second vehicle a re  independent, so for like 

e r r o r s  in the measurement of S for  the two vehicles the e r r o r  in range 

:. between them will be of the order of 150 m. Thus, a single set  of range 



observations from three ground stations cannot determine the relative 

position of the two vehicles with sufficient accuracy for  the terminal 

phase of lunar rendezvous. 

For velocity e r r o r s  we proceed as follows. 

3 
2 

(Xj - x..) 
Ef = E  J1 

J= 1 

si si = 2 (Xj - x..) J1 f 

j= 1 

3 3 E, (Xj - x..) 6 k  
J1 J 

j= 1 j= 1 

Now, considering only an e r r o r  in S1, 

6k t x 62 = s l  6S1 s x3 6S1 0 6k1 - x2, 2 3 3  

6k + x  6k = o  2 3 3  -Xl2 6icl - x22 

-Xl3 6S1 - x  6k + x  6% = 0 2 3 2  3 3  
it follows that 

6kl = 0 

6s 1 6k2 = - 
3x22 
x3 

10 



The largest  e r r o r  is 6k2" By substitution 

. 
If 6S1 is 0.1 m/sec,  then 6k2 is 5r77m/sec, o r  about 20ft/sec.(l r) 

which is far more  than the allowable rendezvous impact velocity of 0.3 m/sec.  

(.l ftfsec). 

range rate measurements from three ground stations the ground can direct 

the terminal phase of rendezvous. 

Hence, it does not appear that with a single set  of range and - 

Compared with the results of Section 1, we note that the on-board 

inertial with optical tracking calculated 2 to about 3 ft/sec. o r  better than 

the above value by a factor of 6. 

4. ITEMS FOR FURTHER STUDY H. Engel 

The computation procedure described in Apollo Note No. 82 has 

With this program been programmed and is currently being debugged. 

it is possible to determine the covariance matrix of orbit parameters for 

various times of observation following any boost, assuming no a priari  
data, and using only range rate from one observing station. 

show whether under these conditions the IMCC can provide data for 

LEM midcourse corrections. 

This will  

In accordance with the discussion in  Apollo Note No. 83,  this 

program with minor modifications can make the same determinations 

on the basis of range o r  independent range and range rate from one 

station. 

Further, accordingly, the Apollo Note No. 77, minor changes 

in the program will permit the same computations to be performed on 

the basis of data from more than one ground station. 

Still further, Apollo Note No. 77 indicates how minor changes 

in the program can be made to permit the inclusion of a priori  date 

such as LEM position prior to takeoff and telemetered or  voice-communi- 

cated boost data. Such data can alsb include nominal or  telemetered mid- 

course boosts or boosts near rendezvous. 

11 



The analysis necessary to adapt the program to using angle 

measilrements has not yet been performed, 

The computations to be performed, using the "standard" ascent 

trajectory, axe a s  follows: 

1. Using range rate  from one ground station, with no a 
pr ior i  information, determines orbit parameter accuracy as a function 

of total time LEM is visible. 
1 

2. Using range and range rate from one ground station, with 
no a priori information, determine orbit parameter accuracy as a 
function of total time LEM is visible. 

3. 
ground stations, with no a priori  information, determine orbit parameter . 
accuracy as a function of total time LEM i s  visible. 

Using range rate (and perhaps range) from two and three 

4. Repeat 1, 2, and 3 as necessary including a priori  values 

of position velocity and covariance of these quantities at the end of boost. 

This will greatly improve the accuracy with which the position and velocity 

can be determined by the ground at a later time, 

5 ,  . Repeat 4 including a priori (or telernetered) values of mid- 

course corrections and boost at the apolune of the Hohmann ascent 

trajectory to determine how well ground can compute position and 

velocity as  LEM again becomes visible: 

- -. 
*. Solid Line = LEM visible I 

/ *\ 
\ Dashed Line = LEM not . /  

visible 

\ Dots = Boosts 
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6 .  Continue 5 with small telemeter.ed boosts to determine ..-- 
!' how well the ground can ass i s t  in the terminal (docking) stage of rendez- 

vous. 

fn addition to these computations an analysis will be performed 

to determine how long actual orbit calculations will take; that is, answers 
will be sought to the questions: 

1. How long can the LEM be observed with the requirement 

that the observations be reduced and the trajectory data transmitted 

to the LEM before it is.occultated by the Moon? 

2. Can observations be reduced rapidly enough for the ground 

to-be useful in  aiding the terminal phase of rendezvous? 

It appears that the Kalman-Schmidt method should be used in  

orbit determination in order to keep the processing time dom.  

is being investigated. 

This 

5. SOME "RING-AROUND" TECHNIQUES FOR 
DETEWINATION OF THE SCALAR RANGE 
ANDRANGERATE M. Epstein 

This portion is devoted to two basic techniques to quickly 

establish scalar range and range rate. 

the DSIF and the use of other radar equipment available in the LEM a r e  

considered here. 

Ring-aro-und systems involving 

The frequencies of interest for the CM transponder has been 

extracted from the unified S-band equipment specification for the CM. 

The normal mode is indicated below. 

Normal Mode 

Non- Coher ent Mode - 2282* = 19.0208333 me. - 120 Crystal Frequency 

221 Coherent Mode Frequency Received 
from DSIF = 2106.2 mc. (2287.5 x 240 ) 

Transponder Trans - 
mitted Frequency = 2282.5mc. 

I 

13 



e will assume that the requirement exists for simultaneous 

communications between the DSIF and both spacecraft. 

consider that essentially two transmitters (and possibly antenna systems) 

exist at each RSIF station, 
will also assume that the CM/SM transponder will  transmit at  22.87.5 mc. 

for both modes and the LEM in both modes at 2282.5 mc. 
sponding DSIF frequencies are taken as approximately 2106.2 mc. and 

2101.6 me., respectively. 

We will further 

With the present frequency allocation, we 

The cor re-  

A. Ring-Around Systems For Scalar Range and Range Rate 
Between CM and L E M  During Terminal Position of Rendezvous 

Two basic types of ring-around systems a re  considered for this 

application. 

on earth and the second, by computations in the LEM. 'The basic geometry 

is indicated below. It should be indicated that this technique requires only 

one DSIF station to be employed. 

The first, in terms of measurements and computations made 

LEM 

14 



Prior  measurements on the CM can be assumed sufficiently 

accurate that precise values for R and R2 a r e  known. 2 

e 

Case I. Earth Computation of R and R 

Let R3 = R1 t R2 t R 

. * . 
and Rg = R1 t R2 t R 

then R = R3 - R1 - R2 
. 

and R = R3 - Rl - R2 

One implementation for this technique would involve an additional 

transponder in either the LEM o r  the CM. The operation would be as 

follows. 

Considering that the additional transponder is placed in the LEM - 
the DSIF would interrogate the LEM and measure R1 and R1. 

same time the DSIF is interrogating the CM, which, in  turn, would 

radiate a signal to  the LEM or LEM and DSIF, The signal transmitted 

by the LEM as received from the CM (with the same ratio transponder} 

would be 2485 mc. This would require additional frequency allocation. 

A different ratio transponder could be used with a frequency range near 

the present DSIF if desired. 

mitting at  2282. 5 mc. and receiving at 2287. 5 mc. would represent a 

At the 

The diplexing situation with the LEM trans-  

serious r - f  filtering problem. To circumvent this difficulty, a time- 

sharing mode would probably be necessary. An additional antenna 

receiving system to operate specailly with the CM received signal 

might conceivably possess adequate isolation from the directional 

antenna employed for the LEM transmitter i f  the present omni-antenna 

system is not suitable. 

From a purely technique standpoint, the most desirable technique 

would involve essentially a special frequency allocation for the ring- 

around system. This would necessitate a new transponder in each the 

15 



LEM and CM. 

with this technique with a somewhat more complex multiplexing network 

than presently employed. 

It might be practical to utilize the same antenna system 

. One other alternate technique should be mentioned. For this 

mode the DSIF would transmit only to the LEM. 

the LEM would be received by the DSIF directly and, in addition, by 

the CM. An additional transponder in the CM could then retransmit 

this signal to the DSIF via i ts  directional antenna a t  a frequency perhaps 

within the DSIF allowable transmission band (if required), suitable 

different from the transmission frequency to the LEM. 

receiving antennas at the DSIF stations and the transmission antennas 

on the CM a r e  required suitably broad-band antenna feeds would be 

The signals from 

If the same 

required. 

Other alternates could be indicated but these examples should 

provide suitable .scope for the techniques involved. 

In summary, the technique to  be considered would be primarily 

determined by the following factors. 

1. The allowable frequency allocation. 

2. The additional equipment that can be placed on 
the CM, LEM, and at the E I F  slationa. 

Case II. Computation of R and k by the LEM aided by-the DSIF 

The basic concept involved here can best be explained with the 

aid of the pulsed waveforms as indicated below. 

DSIF is considered to simultaneously transmit both the CM and LEM. 

To begin with the 

IL 
(a )  Signal Transmitted by the DSIF 

(b) Direct Signal frbm DSIF to LEm R1-k I 

IC- R2+R-> I (c) Signal Received by LEM Via CM 
16 



In the LEM, one could measure R4 = R2 + R - R1 

If the transmission time of the DSIF to the LEM is delayed by 

R1-R2 from the transmission of the DSIF to the CiM then R4 = R, (the 
desired range). 

one, the above mentioned delay technique (and a similar frequency 

offset for R purposes) and, two, the transmission from the .DSIF of 

R2 - R1 and R2 - Rl via a data link. Since the ephemeris of the CM 
should be well known, the delay and frequency offset would most appropri- 

Two techniques a re  suggested for this application: 

ately be placed on the transmission to the DSIF. 

G M  is not modified, the diplexing problem mentioned ear l ier  appears again. 

In addition, range and range rate processing equipment would be required 
in the LEM. 

If the transponder in the 

The factors which would determine the design of equipment for 

these purposes a re  as follows: 

1. ‘Frequency allocation. 

2. Time synchronization problem. 

3. The allowable additional equipment in the LEM, 
CM, and at  the DSIF stations. 

e 

B. Using LEM Lunar Landing Radar fo r  R and R 

The Lunar Landing Radar appears to possess interesting properties 

for this application. 

the LEM on a collision path with respect to the CM. 
adequate to make occasional range, or  range and range rate measurement 

with a high accuracy system. 

antennas, it is necessary to interrupt the optical tracking to orient the 

appropriate antenna to the CM. 

if the antenna system for the LEiM rendezvous radar could be employed 
with some rather simple modifications. This would require integration 

of some of the radar parameters for these equipments. 

system actually is one of the radar elements least likely to fail and as 

a consequence, this technique bears, further consideration as perhaps 

the most attractive of the approaches indicated. 

Basically, the optical system is  presumed to place 

It wil l  probably be 

Since the lunar landing radar has fixed 

This difficulty could be circumvented 

The antenna 
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c. Power Calculations 

S 
N The signal-to-noise ratio (--j for a one-way transmission system 

is given by: 

S '  
N F R TB - =  

Standard values a r e  given for the parameters to empiriy €or scaling 

purposes as follows, 

where: . 

PT = transmitter power = 250 mw 

GTGRdz = - 6db 

GT = transmitting antenna gain 

GR = Receiving antenna gain 

Xz = total system losses 

h = free-space wavelength = 13. 5 cm 

B = receiver bandwidth = 1 mc  

R = distance between transmitter and receiver 

These values correspond to the most pessimistic situation for a 
range and range rate system with a solid-state transmitter only, - as  

a function of range is given in a following graph. 
N 

A threshold signal occurs for a signal-to-noise ratio 0 db (quite 

frequently -2 db is  employed by some). 

normally associated with signal-to-noise ratios of about 15 db. 

corresponding ranges obtained for the standard system a r e  about 12 KM 

and 2. 1 KM respectively. Actually .substantially greater ranges a r e  

obtained since the DSIF (or LEM) wil l  have an effective bandwidth much 

more narrow. For  example, the DSIF ring-around system requires that 

the phase-locked-loop properly operate. 

bandwidth for the phase-locked-loopand a 10 db car r ie r  suppression, the 

The strong signal condition i s  

The 

I 

If we asiume a 3000 cps 
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corresponding ranges attained a re  70 KM with a 

with a - = 15 db, Since interest here lies with comparatively short  

distances for the near locking phase, this performance level should 

- = 0 db and 12 KM N S 
N 

easily be adequate. Fo r  other applications at  much greater ranges, the 
power amplifier (20 watts) could be used which would increase these 

ranges by about an order of magnitude. 

directional antenna for the CM to LEM link would increase ranges by more 

than an order of magnitude. Another alternate would be to employ a 
narrow band loop for the VCO (i. e., less than about 100 cps) for this 

application. This again would present .a highly attractive solution. Recall 

that basically the minimum bandwidth in the phase-locked loop is limited 

by the rate of change of doppler frequency that must be accommodated. 

In addition, use of the CM 

1 

. In summary, the range requirement for this application does 

not appear to present a.serious problem area. 

'9 , 





6 ,  SLMPLE RENDEZVOUS AID SENSOR G. F-. Floyd 

The basic guidance scheme adopted by both Grumman and MIT 

for  the terminal rendezvous phase consists of angle optical tracking 

and thrust application normal to the line-of-sight in order to drive the 

,,"angular rate of the line-of-sight to zero, thus getting the LEM 0n.a 
i 

collision course with the CSM. In addition, thrusts a r e  applied along 

the line-of-sight in order to maintain a schedule of range rate  versus 

range. A typical schedule is given in Grumman Report, NO-500-22,  

1 April 1963, p. 5, and is as below. 

Percent 

R Allowed 
Range (n. m. ) Bounds T (min) = - R Variation 

ft ftisec. 

40 350 - 250 11.6 - 16.2 16 

35 - 325 - 225 10.8 - 15.8 19 

30 300 - 200 10.3 - 15.2 19 

20 200 - 120 10.3 - 16.8 

10 120 - 70 8.4 - 14. 5 

4 70 - 30 5. 8 - 13. 5 

1 30 - 10 3.5 - 10.3 

24 

26 

40 

51 

The third column is simply the ratio of the range to the desired range 

rate and,in all probability., holding this ratio constant at approximately 

10 minutes would give satisfactory results. 

Since the command service module will be equipped with 

bright lights to aid the LEM in acquisition in angle tracking, this 

immediately suggests'the use of an old idea originally studied in 

connection with back-up IR missile launching systems. 

ment involved would consist of a photocell mounted on the LEM 

optical tracker and a simple analog. computer circuit. 

The equip- 

The received 
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optical power and its time derivative would be measured and their ratio 

computed, Since there is no atmosphere, received power as a function 
of range would be of the form: 

P K - 
R2 

Hence, its time derivative would be: 

l i . =  -2KR 
* 

R3 

leading to the' ratio: 

Thus, this simple mechanization would yield the time to go and 

the LEM astronaut would control thrust along the line-of-sight to hold 

this measured time -to-go within acceptable limits. Again, we point 

out that this is an old idea borrowed from military programs that has 

been successfully used, and therefore the development program should 

. b e  easy, the reliability should be good, and the total weight of the 

equipment could probably be kept less than a few pounds. 

Preliminary E r r o r  Study 

The main source of e r r o r  is the ability of the sensor to detect 

changes in P. Thus from (l) ,  we have: 

2 P 6 P  6 T  = 
fi2 
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and T is the observation time. Using (1) and (3) in (2), we have 

2 P 6  (ap) 6T = 
(qjz. 

-=- 6T T 8 (AP) 
T 21 P 

For preliminary calculations, we assume a 400 watt non- 

directional source with 10% of the energy in the photocell bandwidth 

or 40 watts of effective radiated power. 

effective collector a rea  of (A) at  a range R in a vacuum is 

The received power with an 

2 
pt A P =  ! 

4n R 
2 4 Assuming a 3" lens, (A = 1/20 ft. 1, and a range of 40 n. rn. (24 x 10 

we get: 

ft. ), 

- I2 = 3 x 10 watts (40) (1/20) 
(12) (580 x 10 8 P =  

-15 The noise equivalent power of the photocell is about 10 

a S / N  of 10 the detectable power change is 

watts so  at  

Using the value of T = 14 min. from the table and an observation 

time of 1/2 min., we get from (4) 

14 ( 1 0 - l ~ )  = 5% 6T - -  
(2) (1/2) (3 x lo-12) T -  

which is much less  than the 16% variation in T permitted by the R 
bounds. 
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Finally from (4), we see that the percent uncertainty in T will 

decrease with P, (T, T, 6 (AP)  staying fixed), hence with the square 

of range so that by 20 n. m. the system would be good to 1% as com- 

pared with the 24% variation allowed at this range. 
The conclusion is then that such a device works as though-it 

would be useful, light and easy to develop, and therefore worthy of 

additional study. 4 

In this connection items of planned-on-study include: 

1. Determination of satisfactory (T) limits for easy control 

during the rendezvous. 

2. Mechanization possibilities. For example, from 
_. so that a single d P Equation (l) ,  we note that - ( In P) = - - 

dt P -  T 
loaded diode network to approximate the log function, with a differenti- 

ating circuit at the end may be sufficient to generate T. 

3. Further e r r o r  studies to establish the achievable accuracy 

to be expected. 
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7, FAR-SIDE RELAY L, Lustick/ 
6. Siska 

Additional trajectory calculations were made on the far -side 

relay to see if boost conditions could be established which would allow 

voice communication with the CM/LEM. 

communication capabilities during the portion of the mission from 

deboost into lunar orbit to rendezvous between LEM and CM, (a period 

It is desired to have voice 

of approximately 32 hours). 

communication at  the time of deboost of CAM into lunar orbit. 

It is particularly important to have voice 

The ground rules specified by Mr. Fordyce allowed boosts as 

large as 1000 ft/sec. to be applied within the first seven hours follow- 

ing translunar injection. 

with voice communication was given as 40,000 nautical miles. 

The range between the relay and CM consistent 

Method 

Nominal trans lunar inj e c tion conditions we r e  e s t abli s he d which 

were approximately consistent with the arr ival  of the CM at perilune 

(100 n. m. ) 72 hours after injection. The effect of perturbations in the 

velocity vector, both at translunar injection and approximately 7 hours 

after injection were  examined. The locus of the position of the relay 
relative to the CM/SM at the time when the CM/SM pierces the LSOI 

was established. The elongated - These Loci a r e  shown in Figure 1. 

,.'. ellipse is for a boost at  translunar injection of 1000 ft/sec. The 

different points on the locus correspond to different boost directions 

relative to the reference velocity vector as indicated in the upper 

left diagram in Figure 1. 

sponds to applying a boost of 1000 ft/sec. approximately 7.6 hours 

after translunar injection. 

The other ellipse shown in Figure 1 cor re-  

In lunar space, each point on the locus is  traveling roughly in  

a 45 degree direction from lower left to upper right, and therefore, one 

can quickly estimate which points will  penetrate the lunar sphere of 

influence. 
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Results 

The trajectories of several points on the loci of Figure 1 were 

examined briefly in lunar space and at f i r s t  glance, i t  appears that the 
positions around CY =- 90. for the 7.6 hr. delayed boost a r e  the m o s t  

promising to fulfill the mission requirements. 

0 

Figure 2 shows the trajectory for the (Y = -90 boost in lunar 

space and also the reference lunar vehicle trajectory. The, lunar 

vehicle enters the LSOI at  60 hours after translunar injection and 

arrives at perilune (for deboost into a circular orbit) approximately 

12 hours later. 

Relay) a r e  indicated. 

(i. e. , the tangent to the lunar surface which passes through the 

perilune position) indicates that perilune is always visible to the 

booster position. 

deboost, the Far-side Relay has approached the 40 ,000  n.mi. 

communications limit. Thus, it ap2ears that the Far-side Relay 

will be within the voice communications limit for both lunar deboost 

and lunar. rendezvous. Although it appears occultation by the moon 

occurs at 102 hours, this presents no problem since the trajectory 

can be shifted with slight changes in boost direction around CY = -90°. 

moon (counter-clockwise), say for boosts slightly less  than CY = 90°, 
may also fulfill the mis siQn requirement, 

is yet to be investigated. 

Corresponding positions for the booster (Far-side 

The perilune visibility limit shown in Figure 2, 

Approximately thirty hours after lunar vehicle 

Far-side Relay trajectories going the other way around the 

This alternative procedure 

Conclusions 

Assuming that a 1000 ft/sec. boost is available at approximately 

7 hours after translunar injection, voice communications via the Far- 

side Relay appears feasible for both the lunar deboost and lunar 

rendezvous portions of the Apollo mission. 
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Future Tasks 

1. 

facilitate the trajectory calculations s o  that a more complete evalu- 

Write.a computer program based on the Egerov Model to 

ation of the far-side relay patential can be obtained. 

2. 
That is, what a r e  translunar injection conditions that a r e  consistent 

with a free return trajectory. 

3. 
far - side relay trajectory. 

Establish the nominal trajectory for the CM/SM more accurately. 

b 

Investigate the effect of e r rors  in the boost velocity on the 

4. 

at the time of boost and decide how the boost is to be executed. 

Determine expected orientation e r r o r s  in the reference system 

5. 
navigation. 

Investigate the potential of the far-side relay as an aid to 

27 
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Figure 1. Relative Booster Positions At Time 
Lunar Vehicle Enters Lunar Sphere 
Of Influence - A V  = 1000 ft/sec. 28 



Figure 2. Booster Trajectory For  
AV,= 1000 ft/sec. and Q = -90° 
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APOLLO NOT2 n-3. 88 E. Engel 
31 July 1963 

- e .  is i r -~ :C~d 2zi:xZrily io: r-terczi 23issett-Berzxan Corporation distribution 

to zzqw.int t h o s e  worlci;?a 3 on ;:?,is prcjsct with the method. 

bzse2 priinAarlly on ;,3L Z'ecl~sica; Xemorandum 3 12-291 , "I)yna,m i c 

Filtezinz, ' I  5y C. 3. Solloway zr-d on R. E. Zattin's, I I A  Statistical 

O;sti:-nizlzng hkvig;atlon Pzoczdzre for Space Flight, ' I  appearing in the 

h-overr,ber 1552 X,W Joirrnzl. 

This note is 

AS inelczteci i:i ?zzvfocs ie.zres, it i s  passi51e to obtzin a best 



METHOD 

The Kalman-Schrnidt method, a s  presented by Solloway and 

Battin, employs a reference'trajectory to permit linearization of the 

equations to be solved; that is, there must be good a priori  knowledge 
of the trajectory. 

Let x be a column N-vector describing the deviation of the n 

no '"n 

corresponding to fixed but 

actual trajectory fro,m the reference trajectory at  time t 

inclules three position com2onents F 
r and a n -mber  of components, cc n' n' 
urdkaown Siases in the observables. 

unho-an fixed bizses as orbit parameters has been employed previously 

in -&.pollo Xo;e iYo. 4 3 .  

three velocity components n' 

This same technique of including 

- 

Let y be a column p-vector denoting the deviation of the measure- n 
mer,% at time t reszllting fromL the deviation Sx 

3 n' p is less than or 
equal to  3. Sirxe the fixed biases a r e  included in xn, the e r r o r  in  

ya is randow. wit*:? mean zezo  assxaed. 

6enoted by a co?uixn p-vector u 

The random components, 

a re  assuAmed to have a known p x p n 

is yri covariance matrix f2 The measured value of y 
3' n 

and 
T1 u u  - 

*n - E [  n n f  

Let M 3e the 'xr,own p x N matTix that Amaps x into y and n 2 n' 
be the known N x N transition matrix that maps x into let b l ,  n n 

xr,+ 1' 

X nf1 ,n  n X = 6  n t  1 

Kote wel l  that the last equations above are  linear in x This n' 

2 



means that x and y 

cations based on the matrices Mn and bn 
beforehand on the basis of the reference trajectory. 

can be computed by simple matrix multipli- n t l  n+ 1 

1, 
that may be computed 

Let x:: be the best linear estimate of x prior to measurement 
It is assumed 

n n 
yg, and let 

that the expected of x::: is x 

P:: be the N x N covariance matrix of x::. n n 

n n' 

based on all measurements n t 1  Let znt be predicted value of x 
prior to y::: 

measurements prior to y::: 

described above, 

and let yn+l be the predicted value of y:: based on all n t  1' n t  1 
Ma'king use of the linearity property n t  1' 

- x:: 
= &  nf1 ,n  n n t l  X 

A A 
Let x and y be the e r ro r s  in the prediction of x and y:x prior n n n n 

to measurement y:: n 

- 
= x  - x  n 

X n t l  n f l  TA t l  

A 
Now, the expected value of x is zero, and its covariance nf 1 

matr ix  is: 

3 



= E['{h 

r 1 

1 (x* - xn) {x; - x )T dT = E [ dnt1,n n n n t l ,  n 

n f l ,  n d p::: 
n 

T 

A In like fashion, the expected value of y is zero and its covariance n 
matrix is: 

n n  (x::: - xn) - .Jfjnb: - Xn) - un 
= L J 

- M P::: MT t Q n t O t O  n n  n 

also, 

4 



T 
= d  n+l, n P g M n  - *n+l, n 

P:% MnT - 0 n+l ,n  n = 6  

It is shown in the appendix that if cy and P a r e  two column vector 

random variables, not necessarily of the same dimension, with means 

zero and covariance matrices 

. 

then the '%est" linear estimate p:g of P, given cy, is: 

A A 
Now, letting y be a, and xn be P, it follows that the best 

given y is x 
A A ::: A n-1 

n+l' n' n+ 1 linear estimate of x 

-1 4 
= ( 6  n t l ,  n . P*n MZ) (Mn Pg MnT + Q,) y, 5 



Letting 

4 -1  
n n+lL,n n a 

we have 

Note that (Mn Pg MnT t Qn) is a p x p matrix. If only range 

rate fro= one station is measured, it is s imply  a number; if range 

and range rate  from one station a r e  measured, it is a 2 x 2 matrix; 

and so on. 

Now the best estimate of x given all measurements prior to n t l ’  

- A* - x  n t l  n+l x ::< = x  n t l  

where 

6 



we now let be the error in the estimate of n 

tu = &e x + A2 un nt1 ,n  n 

Now P* is the covariance'matrix of zn, so n 



P*nMZ +A* M P:g MT) AT n n n  n n 
T 

= b% n t l ,  n pZ * n t l , n  

= g5* t (b; - P:g Mn)An T T  
*n+l,n n 1 . n t l ,  nPZ 'n+l,n 

T ' T  P'R Mn) An T T 
5 b* n t l , n  p*n 6nt l ;n  ('ntl, n p*n M n  - 'n t l ,n  n 

Thus, starting with the known Qn, brit 1, n, and Mn, and a priori  

estimates xg and Pz, it is possible to find x'3 and-P* by means of a 
single iteration technique: 

n n 

0 *n 
I 

&* - Pg M z  (M P'g M n  T i- Qn) 
n - 'n+l,n n n  

** = d  - A>R M n+l ,n  n t1 ,n  n n 

I Xg+! = 6* n+l ,n  x*-i-A*y* n n n 

n t l - n  
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Theorem: Let CY and j3 be two column vector random variables, 

not necessarily of the same dimension, with means zero and covariance 

matrices 

& 
Then the "best" linear estimate p of p, given a, is 

tu 
where l 'bestll means that the covariance matrix of the e r ro r  in p is 

such that variance'in the estimate of 3 quantity, + = aT p is minimized. 

This can be shown as follows: 

= R a 

9 



TO ~ i n ~ ~ i z e  cr2 only R ca 
rite 

4 J 9  
linear estimate of 

= A a  

Now vary A (and AT) to obtain a stationary value. 

-A 6 A T t A h  SAT - 6 A A  t 6 A n  a AT = ' 0  P a  a CUP 6 R =  

Hence, for a stationary solution 

It is "easily" shown that this stationary solution results in a 10 
2 

r+ 
minimum 



Le Horowitz 
26 July 1963 

ON THE NUMERICAL COMPUTATION OF OPTIMUM CONTROLS 

INTRODUCTION 
The typical optimum control problem requires selection of 

bounded control functions ui(t) in such a way as to optimize some 

over a transfer trajectory. 

and velocity are specified as boundary conditions for the problem. 

Since the .solution of differential equations of motion together with 

specified initial and final conditions is fundamental to the solution 

of this problem, we have every reason to expect to have to solve 

two-point boundary value problems somewhere along the line. 

. physical parameter (time, fuel expenditure, radiation hazard, etc. ) 

In general, both initial and final position 

Note 

.- that the two-point boundary value feature is introduced through the 

essential nature of the problem (i. e., a differential system with both 

initial and final boundary values explicitly specified) and is in no way 

induced by the particular optimization technique employed, be i t  varia- 

tional calculus ," dynamic programming ,uimbedding theory '5/or 
Pontryagin optimum contro? theory. 9 

In Apollo Note No. 86 ,  the problem of minimum fuel transfer 

through a radiation hazard was considered. It was shown that the 

desired controls were provided through simultaneous solution of a 

two-point boundary value system of 14 non-linear differential equations. 

ThL; note sketches various techniques for mechanizing numerical 

solutions of such two-point boundary value problems as they apply to 

the synthesis of optimal controls, 

SKETCH OF THE PROBLEM 

As is well known, the digital computer is ideally suited to the 

gA, Miele, Optimization Techniques, edited by G. Leitmann, 
Academic Press (19621, Chapter 4 
aR. Bellman, Dynamic Programming, Princeton (1957), Chapter 3 

aC. M, Kashmar; Leitmann (op. cit.), Chapter 10  

gA.pollo Note No. 84 



simultane.ous solution of initial value, non-linear differential systems. 

A s  R, Bellman points out, even the simultaneous solution of several  

hundred SUC differential equations is generally a matter of no great 

difficulty.'For given initial values of all variables, the differential 

system is readily converted into a finite-difference system. 

using an arbi t rary "grid size", the computer steps along in discrete 

finite steps, computing values of the variables at step n 4- 1 by iteration 

on the system of finite-difference equations at  step n. These techniques 

are well-documented and need not be repeated here. 

Then 

ii/ 
The problem occurs in the two-point boundary value case. 

F o r  here, only some of the values a r e  specified at  the initial point; 

the remainder of the values a r e  specified at the terminal point. Thus, 

simple iteration on the finite-difference system in discrete steps from 

the initial point is no longer possible, since all the required initial 

values a r e  not known. 

SZSGGESTED T.ECHNIQUES 

1. Direct Method 

A direct technique is to guess initial values where necessary, 

then iterate forward to the terminal point. 

a r e  then compared with the given terminal values--new guesses for  

the initial values a r e  then made by linear extrapolation and the process 

repeated until close terminal agreement is achieved. 

be a long-winded process for the general case, so that special efforts to 

exploit any possible simplifications inherent !n the particular problem 

should be carefully considered. 

The derived terminal values 

This may well 

2/ R, Bellman, Adaptive Control ProcessesI  (Princeton, 1961), p. 28 
I .  

-!?/ See, e. g. Hildebrand, Introduction to Numerical Analysis (McGraw 
Hill. 1956). Chapter 6, o r  Milne, Numezcal Calculus (Princeton. 1949) - . .- I 

Chapter 5, 
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2, 

From the simultaneous system appearing on page 6 of Apollo 

Note No. 86, we see  that the variables appear in a fairly simple fashion- 

this is to be expected, since the essential non-linearities a r e  introduced 

through the 1 2 
2 gravitational field and the thrust constraint u .+ u 1 r 

1; both simple algebraic forms. This suggests that the 

process outlined in 1 above be accelerated by choosing large grid 

sizes to localize the unknown initial values, since dramatic non-linear 

fluctuations should not occur in  the region of interest, 

can then be attempted by narrowing the grid size. 

+ u3 

Finer resolution 

3. Linearization 

Were the original diiferential system linear, the general solution 

could be written parametrically in terms of the initial values (whether 

specified or not). 

at the terminal point with the givea terminal values imposed, the 

Then evaluating the general (parametric) solution 

resulting algebraic system could then be solved directly for the unknown 

initial values appearing as parameters. Indeed, since linear differential 

systems are,  in particular, linear in the boundary conditions, it suffices 

to choose m y  arbitrary values of the mknown initial conditions, solve 

the linear system at the terminal point and perform a single linear 

extrapolation to obtain the exact initial values directly as an immediate 

consequence of the linearity in the bo*.indary values (courtesy of L. Lustick). 

This suggests as the f i rs t  approximation, linearizing the original differ- 

ential system (by 1-bear trurrcation the Taylor Series expanaLons of the 

non-linear terms)  , solving the "parametric" kitial-value lilrear system, 

evaluating the solution thus obtaiaed zt the terminal point, and rhea 

solving the resulting alzebraic system for the unknown initial values. 

These values can then be used. as first a2proximations for the unknown 

initial values of the non-lizear case, and the non-linear system then 

solved i;l +&e ordinary fzshion {e. g., 3unge-Kutta method). 

terminal values thus achieved can then be compared with the given 

terI;;fnal values and a linear extrapolation used as in method 1 above. 

- 

The 
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Bellman provides a method for converting the two-point 

boundary value problem to an initial value problem by an iterative 

technique. 

5. Time Reversal  

_z/ Details are given in the literature. 

Another possibility is to handle two-point systems like those 

in Apollo Note No. 86 by integrating the x. equations forward in time, 

the p. equations backward in time (assuming initial and final values 

where necessary),  then extrapolating linearly as in 1. to obtain 

1 

1 

. second approximations. Convergence should present no problem i f  
the initial guesses are sufficiently close. 

3. should suffice to obtain fairly good initial guesses since the physics 

The linearization technique 

of the problems under consideration dictate that the non-linear elements 

of the differential sys tems are generally slowly-varying quantities. 

CONCLUSIONS 
W e  have shown that two-point boundary value problems are 

inherent in the optimization problems under consideration and as 

such a re  in  no way created by the particular optimization methods 

employed. 

solutions have been suggested. 

linearization of the differential equations is eminently suitable for the 

problems under consideration in the earth return abort studies, since 

the intrinsic non-linearities a r e  in general slowly-varying quantities. 

Finally, possible techniques for  obtaining Last-order approximations 

to the unknown initial and final boundary values were given. A better 

appraisal of the solution of two-point boundary v b h e  problems will be 

possible when actual computer solutions have been attempted. 

Several possible techniques for  mechanizing the numerical 

We noted in particular that first-order 

u. R..  Bellman, Adaptive ControZ Processes  (loc, cit. p. 113 
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, POLL0 NOTE NO. 90 C. Siska 
6 August 1963 

FURTHER EXAM1 NATION O F  FAR-SIDE 

RELAY TRAJECTORIES 

DISCUSSION 

This note represents.a continuation in the study of Far-side 

Relay trajectories as explored in Apollo Note No. 44 and Section 7 of 

Apollo Note No. 87. 

There exists an interest for using the S I V  booster as a voice 

communications relay between locations back af the Moon and the Earth 

during the times of lunar vehicle deboost from the translunar trajectory, 

and lunar rendezvous prior to Earth return. These periods of time occur 

approximately '72 and 100 hours, respectively, after translunar injection. 

A slant range limit of 40, O G O  n. mi. from the Moon has been adopted as 

consistent with the power requirement involved in the voice communication. 

It is assumed that a velocity impulse of up to 1000 ft/sec. can be 

applied to the S IV  booster at any time during a period of approximately 

7 hours after translunar inj3ction. 
- .. The feasibilit-; .>A ;L.r;,iing the d o v e  -mentioned criteria is shown 

in Apollo Note S c .  A?, \ v l i i < h  iiiustrates a ;epreseniative trajectory in 
L/ i OOt. the vicinity of t ke  

In this note, the relation between boost velocity and direction, 

and the time of boost application is explored in a cursory manner, in 

order to indicate the operating region for these cndracteristics. 

RESULTS 

A graphical-analytic procedure has been used to determine the 

approximate'limar trajectories which appear in this note. 

The particular combinations of operating characteristics .which 

have been inveszigated a re  as follows: 



A V  cy I I t 

Boost Direct ion 
Relative to Path Time of Boost Application 

(hours after translunar injection) 

- 120° to + 120° 

It quickly became apparent that the range of boost directions, cy, 
0 which might satisfy the mission requirement was approximately -90 e a e - 1 15O, 

as depicted in  the following diagram. 

- Pat,h Velocity 

To 
Earth 

To approximate the range of admissible values of (Y for each 
0 combination of AV’and t, the LY = -90 trajectory was computed for each 

case to represent the one limit, and then the other limit of cy was obtained 

by searching for the trajectory which yielded perilune visibility a t  

t = 72 hours. These two trajectories for each combination of AV, t 

are illustrated in Figures 1, 2,  and 3. 

2 



The vertical axis of the co-ordinate system has been chosen to 

be the Earth-Moon line at  t = 60 hours.. 

Moon in a counterclock-wise direction at a rate of 0. 55 /hour, and 

therefore, at some time par t  of the trajectory will  not be visible to 

the Earth. 

2 km/sec. so that the duration of occultation is approximately one-half 

hour. 

This line is moving around the 
0 

Relative to the Earth, the path velocity is approximately 

Using Figures 1, 2 ,  and 3,  one can develop the operating region 

for given cr i ter ia  as shown in Figure 4. 
and cy for a given t lie within the region bounded by the specified t 

contour. This contour, as shown in Figure 4, consists of two segments; 

the left side is associated with the upper trajectory of Figures 1, 2 ,  
and 3 (leaving the 40,000 n. mi. circle a t  t = 100 hours), while the 

right side is for the lower trajectory (perilune visibility at t = 72 hours). 

A third segment which completes the contour is not shown and this would 

represent the situation when the t = 72 hour position lies on the 40,000 
n. mi. circle. 

Permissible values of A V  

Note that i f  the upper limit of A V  is 1000 ft /sec. ,  then applying 

the A V  at t = 0 offers hardly any margin for e r ro r  in thrust direction. 

Therefore, it appears preferable to apply A V  sometime after translunar 

injection. However, thrust direction accuracy is expected to diminish 

with time because of gyro drift associated with the stable platform. 

Furthermore, evaporation of the residual fuel in the SIV booster may 

significantly lower the A V  below the estimated value of 1000 ft/sec. for 

times after t = 0. .These factors have not been given consideration 

up to the present time. 
It can be noted that some combinations of A V  and (Y yield counter- 

clock-wise lunar trajectories. However, none of these will simultaneously 

satisfy the criterion of observing the lunar vehicle perilune position at 

slant ranges of not more than 40,000 n. mi, for both t = 72 and t = 100 hours. 

. 

COhTCLUDING REMARKS 

A cursory analysis has shown that an operating region exists 

for the velocity impulse and direction for the SIV booster which will 
3 



satisfy the Far-side Relay voice communication requirement. 

A precise definition of the boost conditions for the Far-side 

Relay should involve the following considerations: 

1. A more extensive set  of data to provide a more accurate 

and detailed delineation of the boost operating region 

(such as illustrated in Figure 4 ) .  

most efficiently collected by means of a computer 

program using an Egorov Model. 

This data can be 

2. Examination of the velocity impulse and thrust direction 

accuracy available with time after translunar injection. 

3. A final check on the selected design operating point 

using three -body trajectory equations. 

To the above should probably be added the consideration of 

possible secondary missions of the Far-side Relay which may influence 

the particular reference trajectory chosen. For example, the Far- 

side Relay might be used as a navigation aid, together with an Earth- 

based computer, for lunar rendezvous steering commands to the LEM. 

4 



Figure 1. Far-s ide Relay Trajectories for 

A V  = 1000 ft/sec. Applied 7.6 Hours 5 
After Translunar Injection. 



Figure 2, Far-side Relay Trajectories for 
A V  = 500 ft/sec. Applied 7 . 6  Hours 
After Translunar Injection. 

1 
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Figure 3. Far-side Relay Trajectories for 
A V  = 1000 ft/sec. Applied at  Time 

of Translunar Injection. 
7 



Limiting Criteria: 

1. 

2. 
Lunar Vehicle Deboost Visible (t = 72 hours) 

Lunar Rendezvous VisiSle (t = 100 hours and 
approx. same position as deboost) 

3. Slant Range at Above Times 5 40,000 n. mi. 

Time after Trans- 
lunar Injection for 
AV Application 

t = 0 hours // t z 7 .6  hours 

i \ \  9\ 
I l l  \ 

I 
'- I 

-goo - looo  -1 loo  -120O 
0- 

-SO0 

LY - Direction of A V  Xelative to PztC Velocity 

Figure G. A??roximate Qeza t ing  Region for 
Far-side Relay Boost. 

8 



L, ~ o r o w i t z  

~ I ~ ~ U ~ - T ~ E  RENDEZVOUS 

INTRODUCTION 

Optimal control theory given in Apollo Note No. 84 is used 

here to develop a system of equations governing optimum thrust 

regulation for minimum- time rendezvous. Nonlinearities in the 

resulting differential system render closed form solutions untenable 

so that numerical computer solutions a r e  ultimately needed. 

already been shown, however, that for  the case under consideration, 

optimum control is always of the ffbang-bangll type, with a maximum 

It has 

of three frswitckringsfr over the entire optimal trajectory. L/ 

Formulation of Problem 

, we take the case of planar motion in a constant 

gravitational f ie ld  

F igu re  1. 

G.  Leitmann, On a Class of Variational Problems in Rocket Flight, 
J. AerolSpace Science 2 6 ,  586-591 (1959). 

2 It has been shown that the optimum thrust schedule for this case is . 
in fact always planar - see  F. D. Faulkner, American Rocket Society 
Journal 31, 33-39 (1961). 
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otation: 

x1 t xz: position coordinate s 

5' x4 : k l ,  i, respectively 

0 time xs 
u2 : normalized thrust components 

b maximum thrust magnitude 

G gravitational c ons tant 
r 

T 

V 

total time for rendezvous (to be minimized) 

constant tangential speed of target 

equations of motion: 

3, = x3 

. - - - G L  t b u l  

llxll 

II Xtl - 

x3 

. - x2 
x4 - -G- t b u  

2 

thrust constraint: 

2 2 u1 t uz = 1 

boundary conditions: 2 



initial: 

x1 ( 0 )  = 0 

xz (0) = a 

x3 ( 0 )  = 0 

X,(O)  = 0 

x5 (0) = 0 

final: 

x1 (T) = c cos (a, + UT) 

x2 (T) = c sin(Oo + w T) 

x3 (T) = V cos (8, t w T) 

x,(T) = V sin(O0 + w T) 

x5 (T) = T 

payoff function: 

4 
s = x6 (t) = f X5 x5(t), where the 

a r e  non-negative, arbitrary weightkg constants. W e  wish to 'i 

minimize x (T). 6 

Adjoint vzrizbles: 

Introduce new variables p. (t) (as in Apolio Note No. S 4 j  by 
3 1 



the simdianeous system 

6 a x. 
pi 0 

- _  - - 1 pj qd x. 3 , subject to the ezd  cocditions 
1 

0, i =  1, 2, 3, 4, 5 
-1, i =  6 

pi (TI = 

Iniroduca tha Pontryzgiri i.l-fr;-,ction: 

i 

T ~ e n  by the '>on';zyzgin ,Vziclrr;urn Prizciple, H rr,~.5'i be maximized 

wi:h respec: to u. for  o p f , i m ; ~ m  control. 
1 

a x , ( T )  

a x. 
0 (since p. (T j  = 0 f o r  i = 1, 2, 3, 4, 5). 

a 1 
Frcm (21, -p, (T) = 

1 
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Then from (31, 

H ( T )  = - k6(T) so that 

6 S = - H ( T )  6 T. 

For  an optimum solution, we require the variztion 6 S in the payoff 

fmction to be positive definite at  time T. 

any value of 6 t (positive or negative), we conclude H (t) must vuAish 

identically at time T.' 
through which T may be eliminated: 

Sime this must hold for 

- 
This is then the required additional equation 

H ( T )  = 0 t 4) 

CONCLUSION 

The desired optimal controls u (t) a r e  obtaixed by solving the 

twelve simultaneous con-linear differential equations ( I )  and (2)  sub- 

ject  to the initial bounlary conditions in te rms  of the u.. 

maximized with respect to the u. with u -k u2 = 1. The final time 

T is then elimiaatec! by (4). 

for  miaimurn-time rendezvous. 

i 

(3) is then 
1 2 2 

1 1 
This yields the o?timum controls u. (t) 

As noted earlier,  the optimum 
1 

coctrols f o r  this case will be "baag-bazg" type, switching no more 

than three t ines over tne entire trajectory. 

assumed ic!eal c o 3 t r d  so that no terminal e r r o r  corrections have 

been considerid here. 

This technique has 
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OPTIMUM ABORT TRAJECTORIES 

INTRODWC TION 
R. Roche has shown that to a f i r s t  approximation, maximizing 

probability of safe earth return in an abort situation is tantamount to 

minimizing return time.g This note provides mechanization equations 

for effecting such minimum time transfers and shows how the desired 

ogtimum control is established. Two cases  a r e  treated: 

I. Minimum time transfer in  a gravitational field with 

initial and final conditions specified. 

Minimum time transfer in a gravitational field with 

entry dive angle specified. 
11. 

The optimization technique is that given in Apollo Note No. 84. 

Case I: 

No tat ion 

X 8  rectangular coordinates x l '  3 '  
x2 J x4 : kl ;C3 respectively 

u1 t u.2 : 

c gravitational constant 

k maximum thrust magnitude 

thrust components 

S (I payoff function 

equations of motion (84-1): 

G x, 

k, = x4 

. .  
No. 71, p. 5 -- 



2 

thrust constraint (76-7): 
2 2 u1 .t u2 = 1 

Payoff function: 
f We wish to satisfy the end conditions xi (tf) = x. 
1' 

i = 1, 2, 3, 4, 

for some (as yet unspecified) total transfer time tf and at the same time 
minimize x 
- 

(t ) = tf e Thus, a suitable payoff function is 5 f  
2 4 

( 2 )  
1 - 1 ZXi (Xi - Xt)  t .x 5' s E x 6 '  

i =  1 

where the X. are arbi t rary weighting constants > 0 ,  

require a minimum value of S = x6 at t = tf. 

Thus, we - 1 

Boundary conditions: 

Initial: 
0 Xi(0)  ' = x. 
1 '  

f 
1 '  

i = 1, 2, 3, 4, 5 

Final: 

i = 1, 2, 3, 4 Xi(tf)  = x. 

Adjoint variables (84- 8): 

Introduce adjoint variables pi (t): 

where pi (tf) = 0 ,  i = 1, 2, 3, 4, 5 ; 

P6(tf) = -1  : 
2 



as in Apollo Note No, 84, p. 6. 

Poctryzgln EI-fu2ctioZ2 (84- 2 1): 

X&) = 0 
L 



6 
a = - k (t ) ;  just the time derivative P i  xi 6 f  since by (4), H ( t  ) = f 

i =  1 

of the payoff function S evzlueted at. time t 

For a r  optimum solution, 6 S (tf) must be non-negztive f o r  zny vari-  

ation 6 t, so thzt X ( t  ) must vanish icknticzliy for the optimum czse. 

T'Xs efimiaztes t from (3) so that x .  (t) an2 pi (t) can be determined 

by simultaneous solu~loc of (1) 2nd (3 ) .  Optimum controls u. (t) are 

then given by (5). 
t i o r d  field with initial 2nd fin21 conditlons specified. 

Hence, 5 S (t,) = H(tf) 6 t. f "  
- 

f 
f 1 

1 
Thfs provides minimum time trznsfer in a gravita- 

Case  11: 

Notatior, 

equations of moticri: 

Same 2s (I) in Cass I 

thrust c.onstrakt: 

Sam-e as Czse I 

f 

Figure 1. 4 



boundzry conditions: 

Ini tiaf: 
0 

I 
xi (0) = x. for  i = 1, 2, 3, 4 

Final: 

x x  - x x  
= arctan [ 1 

x j, e x2 x1 +f 

I x ; f x  2 = h  2 
2 

Payoff function : 

We wish to satisfy the end condition + = + when f 2 2 
x1 t x i  = h 

payoff function is 

and also minimize t ransfer  time. Thus, a suitable 

where X is zn arbi t rary non-negative weighting constant. 

Adjoint varia3fe s: 

Same as (3) OL Casa I. 
6 

1 pi ki H =  

i =  1 

Optimum sohtion: 

Optimum coatrols u. (t) a r e  determined. by maximizing H with 
1 

respect to u. then solving (1) 2nd ( 3 )  together with indicated. boundary 
1’ 

conditions to completely deline the required optimum controls u. (t). 

The transfer time t is aga-h eliminated from the problem by the 
1 

f 
additional relation H (t,) = 0 as in Case I. 
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APOLLO NOTE NO. 93 €3. Engel 
14 August 1963 

GROUND SYSTEM COiMPUTATION O F  

LEM ORBIT 

In the various schemes for ground support system computation 

of the LEiM orbit on the basis of DSIF or MSFN radar data, there is the 

ever-present question of whether the computations can be performed 

rapidly enough to be of use. 

to the question, 
This note is intended to provide an answer 

The conventional technique employed on deep-space shots is to 

acquire data for a long time, and then find the mean square e r r o r  between 

the observations and the values of the quantity observed calculated on the 

basis of assumed or  previously determined values of the trajectory 

parameters. The parameters a r e  then adjusted and the computations 

repeated. The process continues until the mean square e r r o r  is suf- 

ficiently small o r  can be reduced no further. 

diagram is as  follows for  one kind of measurement only, say, Doppler 

vel0 ci ty , 

The computation flow 

Given a priori values of orbit parameters al, . . , , a 

Using a priori  values of parameters 

S 
Obtain data measurements M 1 9  M 2 , 0 . * J M N  

Compute expected values E 1' E y ' " E N  
of measurements, and 8El /aa  . . . , 8E,/aa. by 

j '  J 
. integrating the differential equations of the orbit. 

N 
2 1 ('Mi - Ei) , 

2 1 
- N  O-compute (r - - 

i- 1 



2 Is cr small enough o r  as small as possible? 

no 
2 

modify al ,  . . . , a On the basis of 0- 2 and - a c  
j 

aa S 

Using these parameters compute E. and aEi/aa. (i=l, . . . , N) 
by integrating the differential equations of the orbit. 

1 J 

Go to 0. 

In this method of computation the computations up to the first 

yes-no decision can be performed concurrently with the receipt of 

data, but the computations necessary for the remaining computations 

can not be instituted untii all the data is available. As a result in the 

case of deep-space shots, there is a long delay between receipt of 

the last  data.point and determination of the orbit parameters. 

According to JPL, the time required to perform an iteration is 

currently 20 to 25 minutes, and might possibly be reduced to 10 minutes 

by reprogramming. Two o r  three iterations have been found necessary. 

Further, the number of parameters considered by JPL is far more than 

6, since the speed of light, the mass of the Moon and other quantities 

a r e  considered as  parameters. Still further, the number of observations 

used in the deep-space shots i s  far greater than wi l l  be used in ground 

support of the LEM. 

Assuming that the gravitational field of the Moon and the ephemeris 

of the Moon have been determined to sufficient accuracy from previous 

lunar orbiting shots, and assuming that from burn-out to passing out of 

sight behind the Moon takes only 30 minutes, so that only 30 one-minute 

observations can be made, the time required to perform the necessary 

calculations for orbit parameter determination should be reduced by at  

least  an order of magnitude. 

7090 will  reduce the time by a1,most another order of magnitude because 

of built-in double precision operations. 

Use of the B M  7094 instead of the IBM 

2 



Since 30 observations is not a very large number of observations, 

i t  is not desirable to gain additional time for computation by decreasing 

the number of observations. 

for.computation after receipt of the last  data point can be found. 
approaches to this problem a re  possible. 

Other means for reducing the time required 

Two 

The first approach s tar ts  the iteration procedure at, say, the 

27th observation. 

28 data points, is the orbit parameters determined in this fashion. 

The starting point for the second ite.ration,which uses 

In 
like manner the third iteration uses 29 observations, and the fourth 30 
iterations, so  the computations a re  completed with just one iteration 

after the las t  observation. 

The second approach uses the Kalman-Schmidt method of 

parameter determination. 

No. 88. The Kalman-Schmidt method employs a nominal or  reference 

trajectory that has been pre-calculated in order to linearize the problem 

and to reduce the amount of real-time computation. 

is "close enough" to the reference trajectory, the Kalman-Schmidt method 

can be employed to produce orbit parameters within milliseconds after 

the final observation. 

This method is described in Apollo Note 

If the actual trajectory 

Using the lengthier procedure, the estimated time to find improved 

orbit parameters after the' las t  observation is  of the order of 3 seconds 

using range .rate from one station with no biases, o r  7 seconds using 

range, range rate and angle from three stations including biases in range 

and angle. 

. 

These computation times will be increased substantially if triple 

precision operations a re  required instead of double precision operations. 

The computation times will increase slightly if more complete 

expressions for the gravitational field of the Moon must be employed. 

The time to compute guidance instructions is negligible com- 

pared to the time required for orbit determination. 

3 



APPENDIX A 

Encke's method is suitable for orbit calculations when near 

enough to one body that the effects of the gravitational fields of other 

bodies can be considered as small  perturbations. 

for the LEM ascent and rendezvous trajectories. 
This is the case 

_. 

Let E = R (t) be the orbit relative to the Moon resulting from 
initial conditions of position and velocity, considering only the radially 

symmetric, inverse square component of the Moon's gravitational field. 

.. - 
R =  

in which pM is 

Let F = 

the gravitational constant of the Moon. 

r (t) be the actual motion relative to the Moon, and let  
- 

- 4 - -  p - r - R  

Then 

in which is the perturbing 

Letting 
Q 4 a[[-&] 2 - 

it is found that 

; * (E  4- p/2) 

R2 
Q =  

- 5) + F 

acceleration. 

4 



For the orbits of interest, Q is a small quantity, R being of the 

order of 1 . 7 5  x 10 m and r differing from it by at most of the order of 
10 m, 

6 
4 -5 . so that IQ 1 .=: 3 x 10 

Further, the first few terms in the expansion for F (Q) a r e  given 

315 4 Q3 - -7 Q t... Q + - -  15 2 35 
by 

F(Q) = ~ Q - T  2 

-5  and since Q is of the order of 3 x 10 at  most, it follows that the 

ratio of the third term to the first  t e rm in the above expression is - 

between 0 and 5 . 2 5  x Still further the ratio of r F (Q) to p is 

2 
= F ( Q ) p  r3Q g 3  r ( 5 3  

P P P 

<-E- 

hence 
35 Q3 r -  

< 5 . 7  5 . 2 5  2 
P 

-1  1' < '3  x 10 

5 



Thus, the third and succeeding terms in F ( ) may be neglected, and 

5 F(Q) P 3 Q  (1 - T Q )  

The perturbing acceleration P may be written as 

- - - -  
P = P I  t P 2  t P g  tpq 

in which - 
P1 = results from the remaining portion of the Moon's 

gravitational field. 

_. Pz = results from the Earth's gravitational field. 

P?) = results from the Sunk radiation pressure. 

- P4 = results from the Sun's gravitational field. 

The gravitational potential of the Moon, in excess of i ts  radially 

symmetric, inverse square portion, may be expressed as 

(A1 + A2 + A3 - 3 I) cr - 
'M - 3 

in  which G is the universal gravitational constant, Ai is the moment 

of inertia about the principal axis u and i' 

The corresponding acceleration has components 

U - au 3G - j (A1 t A2 t A3 - 51 t 2 A.) Z R  J 
- - -  = 

au. 
J pl, j 

I 

j = l , 2 , 3  

6 



The perturbing effect of the Earth is due to the difference in 

acceleration of the Moon and vehicle resulting from the Earth's gravi- 

tational field. Letting E,, be the vector from the Earth to the Moon, 

then for the radially symmetric, inverse square portion of the field, 

1 t 2  

3 

Observe that "/REM is of the order of 5 x or less. Letting 

it follows that 

Further, pE/R EM is of the order of 3 x l om6  m/sec  '. Then 

15 2 35 3 
8 "-16" t - - -)*E P2 - - 

R~~ 
2 

315 
128 "4 " 

t -  

7 



so 5 can be represented adequately 

Thus, 

3crE 
Pz, EM, j 5 = R 

2R EM 

The effect of the higher order terms in the Earth’s gravitational 

potential is obviously negligible. 

. The radiation pressure of the Sun at a distance of one astronomical 

unit is of the order of 4 x 

and a projected a rea  of 10 rn 
of 10-12rn/sec , and may be neglected. Thus F3 =” 0. 

Sun’s gravitational field is 

dynes/m2. With a LEM mass  of 10 kg 
, the resultant acceleration is of the order  2 

2 

The acceleration of the vehicle reiative to the Moon due to the 

in which Qs is the vector from the Sun to the Moon and cy = r/RsM. 

Now ps /R iM is of the order of m/sec  ; and the quantity in the 

brackets has magnitude less than unity, so for all practical purposes 

z 

0 - 
P4 = 0. 

The differential equation for the unperturbed motion of the 

vehicle is most easily solved in the manner indicated in Apollo Note 

No. 82. . 
The solution of the differential equation for the perturbation 

p must be obtained by numerical integration. The method of Runge 

and Kutta can be used fo r  the first  few points, and then the methods 

of Adams and Moulton. According to JPL TR 32-223, one minute 

intervals of time may be used for the integration in the vicinity of 

the Moon. 

- 

I 

The equation to be integrated is: 
.. - 
P -  - -  - PM [ F t R  F(Q)] -kF 

R3 a 



in  which the right-hand side is a function of time and position only. 

This equation may be rewritten as a se t  of simultaneous f i r s t  

order  differential equations by letting 

A 51 = P 1  

ei t Ri F (a) t Pi 3 
Then 

The initial conditions a re  

Si, o =  0' 

i = 1 , 2 , 3  

i = l , 2 , 3  

i .=  1, ..., 6 

The solution is started using the Runge-Kutta method, using 

t ( k i , 1 t 2 k .  t 2 k .  t k .  ) / 6  t i J n  t 1= c i , n  1, 2 1, 3 1,4 

where: 

9 



in which 

h 4 T n t  l - T n  

and is independent of n, 

The steps of the Runge-Kutta method a re  repeated five t imes 

to obtain initial differences for use in the 

These differences a r e v  si, in which 

methods of Adams and Moulton. 

A 0, = w - w  n n n-1 

4 v m w n  - u m W n - l  = v v m w  n wn 
p m t l  

In the next and succeeding iterations, the method of Adams 

is employed to obtain f i rs t  estimates of f i , n +  1' and then the method 

quantities. 

'of Moulton is applied repeatedly to obtain better values for these 

It is assumed that three iterations each time a r e  sufficient. 

In Adam's method 

r .-) 

1 5 2 3  251 4 95 5 1tzV-t + s v 3 + m v  t- 288 v l1 i ,n  

and in Moulton's method the improved value of si, 
+ 

is obtained from: 

After obtaining and in this manner for all the points in  time 

at  which.data is to be taken, the computed values of the observed quantities 
are determined. Considering only range rate from one station as an 

example, the expected number of Doppler cycles in the one minute of 

observation must be computed, allowing for the motions of the vehicle 

and station during the signal transit time. 

Using a co-ordinate system fixed in the station, a signal received ' 

by the station at  time T 

seconds earlier,  where 

must have been transmitted by the vehicle T n f n 

1 n = l z ( T n  - T ~ )  I I C  
10 



in which s (Tn - T ) is the position of the vehicle relative to the station 

at time Tn - T If this signal is a re- t rans-  

mittal of a signal the vehicle received from the station, it must have 

been transmitted by the station at time Tn - 2 Tn . 
corrections necessitated by the vehicle off-setting the r e  -transmitted 

frequency a r e  neglected here. T 

n 
and c is the speed of light. n 

Any relativistic 

is determined by solution of the n 
’ equation: 

c 7 n = 1 s (Tn - fn)l = s (Tn - T ~ )  

In the vicinity of Tn, s (T)  can be expressed as a qJadratic 

in T. Let sn denote s (T,). Then, 

n +  1 - 2 s  n t s n l  - 2 
n 

S 
T T t  

n -1-1- ‘n-1 S 

2h2 2h n S (Tn - T ~ ) =  s - 
n 

2 
= s  t b  T + c ~ T ~  n n n  

and 
. 2  

t bn T~ t cn T~ ‘7;1= n 

I - so 
-I L 

(c - bn) - v ( c  - bn) - 4 c n  sn - 
2cn Tn - 

C - b  2 c  s 
0 n n n  - - 

2 
‘n (c - bn) 

S 
0 n - - 

c - bn 

11 



or ,  more accurately, 

S n 
T =  n 

c - s  n 

Letting f be the transmitting frequency of the station, the number 

of cycles received by the station between T and Tnfl is n 

f [ (Tn+l - 2 -rn tl) - ( Tn - 2 T ~ )  3 and the number of Doppler 

cycles between this and the signal transmitted in the interval 

Tntl- Tn is - 2f ( T ~ ~ ~  - T ~ ) .  

Let 

and let y be the measured value of this quantity. Then n 
N 

i= 1 

is ' to  be minimized by choice of the six orbit parameters a 1 ,  * 8 

This is  accomplished by computing r and a F/aa, for the assumed i 
set  of six orbit parameters, and setting a o- /aa  

J 2 equal to zero. 
j 

This gives six simultaneous linear equations for  estimates of the 

changes in the parameters to minimize o- . 2 

12 



and 

2 the above equations, a o- / a A  a = 0, can be written as: 
. j  

[ ‘jk] [ “.j] ‘= [‘ k ]  

Inverting the C matrix, we find 

[AQj] = r L Cjk 3 - I  [ €!k]. 

The quantities a r . /  aa. to be used in the above equations are 
1 J  

obtained as follows: 

S. 
1 

c - s  

Now, 
r. = 
1 

i 

so 

a si 

s aa. .  e aa  
c-s j 

‘i a Ti Ti as i  
aa 
- = - - - . - - - -  

J i j i 

I 

Thus a r i / aa .  can be computed. 

the unperturbed orbit may be used. 

In calculating asi/aa. and 
J J 

ak/aa 
j’ 

13 



The orbit parameter estimates a r e  changed in accordance with 

the a a.'s obtained in this manner and the entire computation repeated. 
J 

The flow diagram for the computation could be as follows, although 

in practice a more. efficient arrangement might be found. 

diagram suffices for determining computation time. 
This flow 

Start P 
Insert h and !la priori" parameters a 1' Y 

Note: Parameters a re  position and velocity relative to ihe Moon. 

k a- Accept measurement y 

Is k 3 26? 

si ,o = 0 , i=l, ..., 6 

2 -  2 2 2  Ro - a t a 2 , t a 3  1 

Ro -%q- - 

2 2  V: = a 2 + a  4 5 6  + a  

tJ.M - 2 E =  - -  
Ro 

Note: IT= R," 5 
a2 a6 - a3 
a3 a4 - ala6 

H1 = 

H2 = 14 



H3 - - a a - a  a 
1 5  2 4  

2 2 2 
H2 = H1 t H 2  t H 3  

H = @  
A 
H1 = H1/H 

A 
H2 = H2/H 

= H3/H 

I\ 
R1 = a,/ Ro 

A 
R2 = a2/Ro 

I \ A  A 
Note: L = Ro x H 

A 4 r (  4 A  
L1 = R2 H3 - R3 Hz 

A A A  h A  

L2 = R3 H1 - R1 H3 

A A A . 4 A  

L3 = R1 H2 - R2 H1 

A A b  
Note: In the Ro, H, L co-ordinate system the unperturbed orSit is 

h A  
in the RoL - plane. 

H = H /Ro 
2P V 
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e cos Go = H - 1 
V 

A n A 
H .(R1 a4 t R2 a5 + Rg a6) e sin Go 

e = ( e  cos eo) +'(e sin Go) 

= 
F 

2 2 2 

e' t (e cos go) 

V 
L =  H e cos 
0 

-1 (e s i n L o )  

0) 
(e cos 6 = tan 

0 

Note: 
quadrant de'cision necessary but not shown to determine quadrant of E 

Branch path necessary, but not shown, if Hv = 1. Also, 

0' 

M~ = E o  - (e sin eo) 
(-2E) n =  

PM 

j= 1, ..., 6 

16 



r I 

a ( e  COS Qo) 

a a. J 

a (e s in  0") - 
aa .  

J 

"4 aH 
acr. (6 4j Ro i- 6 zj a51 i- - - a5 - -  

J P 

1. 

2 

a(e cos Qo) 
a a. 

J 

a ( e  C O S  CJO ) 

J 

a (e sin €lo) 
f sin Qo a e  

a a  
j 

- = cos Qo aa.  aa. 
J 

a hio 

a a. 0 2 aa. 
( ::) sin60 a e  2 e - = ( I -e  c o s t  e- - 

J J 

it 0 

0 
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Mi+ 1 = M i t n h  

Is 5 K1? 
1 - e cos 2. I 

i = i t 1  

sin t i = s i n g i  

c o s t i  = cos &i 

(1-e 2 l/2 s i n E i  

sin 0 = i 1-e cos 6 i 
cos 4 i-e 

1-e cos gi.  cos ei = 

sin (ei - Qo) = sin 0. cos 0 - sin 8 cos Oi  
1 0 0 

cos (Oi  - Q0) = cos 0. cos 8 + sin 8 sin 8 
1 0 0 i 

H2p 
1 + e cos Oi Ri = 

n/ 

Mi+l - M  

1-e cosgit 
N 

Ri,R= Ri COS (8i-80) 

18 



Rip = Ri sin (Qi - go) 
P 4 - 

Ri, 1 - Ri, R R1 + Ri, L L1 

A 4 

%, 2 = Ri, R R2 + L L2 

A A 

Ri, 3 = Ri, R R3 + Ri, ~~3 

e sin 8, 

H . .  

Ri,R = R i  cos (Qi - Qo) - Ri Qi sin (Qi - Qo) 

= Ri sin (ei - Qo) + Ri Qi cos (Qi - Oo) Ri, L 

0 A h 

Ri, 1 = Ri, R R1 + Ri, L L1 

. A A - 
Ri, 3 - Ri, R R3 + Ri, L L3 

E.j,o = 0 
I 

i = o  

j =  1,  ..., 6 
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T 1,  i = Rl,i + I 1 , i  

r 2, i = Rz, i  + f 2 , i  

r 3, i = R3,i + 53,i 

2 -  2 2 2 
1 , i  + '2,i + '3,i - r  i r 

r i 

A A 1 t A 2 + A 3 - 5 1  

3G = (A . -  A1)  pl, 1 2ri 5 $ 1  

3G 
2 ri 

= ( A -  A2) -5 5, pl,  2 

- 
Look up QM in Ephemeris (assume 200 multiplications and 

200 additions for each look-up and co-ordinate rotations). 

20 



2 2 2 
EM - - R ~ ~ ,  I ' R ~ ~ ,  2 + R ~ ~ ,  3 
2 

p2 

pl . 

p2 

p3 

Q 

R ~ ~ ,  1 i ' R ~ ~ ,  2 '2, i + R ~ ~ ,  3 r3, i 

pi, 1 + P2 R ~ ~ ,  1 

pi, 2 + p2 R ~ ~ ,  2 

pi,  3 + p2 R ~ ~ ,  3 

R2 

- - -  -pM [ C l  t R1 F (Q) ] f P1 

- - [e2 

- - -  'pM [e3 + R3 F!Q)] + P3 

R3 

- -ELM + R2 F (Q}] f P2 
R3 

R3 

21 



j =  1, ..., 6 

P = 4  

l c 3 ?  I E l ?  

I =  2 

no ye 8 

i 
f .  = f .  t k. / 2  E.={. t IC' ,/Z 

3 J J * 2  J J 

9 
i z k ?  
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m = O  

m = m t l  

R ~ ~ ,  I = c1  COS ( w e T i  t B o )  

j= l , . .  . , 6  

= c1  sin ( w e  Ti td o) R ~ ~ , ~  . 

R ~ ~ , ~ r  52 
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RED, 2 = ‘2TRED, I ‘22 RED, U. ’ ‘23 RED, IXI 

c 

R ~ ~ ,  3 .- R ~ ~ ,  I ’ ‘32 R ~ ~ ,  II ’ ‘33 R ~ ~ ,  rn 

. - 
R ~ ~ , ~  - Oe R ~ ~ ,  I 

. * * - 
R ~ ~ ,  1 R ~ ~ ,  I ’ ‘12 ED, II ’ ‘13 R ~ ~ ,  rn 
* . - 
RED, 2 - ‘21 RED, I ’ ‘22 RED, 11 ’ ‘23 RED, III 

-  RE^, 3 -. ‘31 R ~ ~ ,  I ’ ‘32 R ~ ~ ,  LI ’ ‘33 R ~ ~ ,  LII 

. 
EM, 1’ R ~ ~ ,  2’ R ~ ~ ,  1’ R ~ ~ ,  29 R ~ ~ ,  3 from computed values of R 

additions for each lk 
by finite differences. (Assume 10 multiplications and 10 R ~ ~ ,  3 

EM, j)* 
. ’ 54 r1 = R. 
1, 1 

. . 
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s =  i 

.I - 
i , 2  - s 

. - 
i , 3  - S 

R ~ ~ ,  3 ' r3 R ~ ~ ,  3 

2 
1,  i S 

47-  
. 

2 '  2 ' '2, i ' '3, i 

. . 
R ~ ~ ,  2 ' r2 .. R ~ ~ ,  2 

. . 
R ~ ~ ,  3 ' '3 - R ~ ~ ,  3 

1 - - - (6 k )  
'i '1 A 

i s 

c - s  
- Ti - 

i 
i = i t l  

i >  k ?  
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1 -e 2 

a ( B ~ - Q J  

J 

3 (Mi "Mol 
2E aa. 

J J 

-1) 

I - 0  

(cos~i-cos 6 0 ) (2-e[cosEi t cos to]] 
(1-e cost:) 2 (1-e cosCo) 2 

+ 
z 

-=- I_ cos 0i - sin oi 
aRi 2Ri a~ Ri 
aa. H aa. L+e cos Bi 

ae 

j J 3 
e ')3 aa. ' 

J 

a ( Q i - Q o )  a Ri + cos (0, - e o )  - - .. Ri,L aa. aar. 
J I J 

aRi,R - 
a a. 

J 
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a Ri - Qo) - a&. a @. 

aRi, L 

J J 
a a. = Ri, R 

J 

Ri L "5 Ri, R- Ri, L + - 
H 63 a5 

aRi, H = 63j a". 
J 

aRi 1 aRi ,R  A aRi ,L  aRi, H I\ 

a a. a&. . R i t  am.  L1 +- a m .  H1 
I= 

J J J J 

a R. aRi ,R  A aRi, L * aRi ,H A 192 = a a. L 2 t  a m .  HZ 
3 J 

R2 aa. a@. J J 

aRi 3 aRi ,R a R i , L  A aRi ,H 4 A= L3 + a@. H3 
J 

R 3 +  aa. 
"j J '  

8" 
j 

a R. . a(oi-oo) 
' + ?  a@. R~ a@. 2 aa 

I aH H 

J Ri 

- -e--- - 
j J 

A 

a Ri 1 ae t cos 8 (+)I - - 'i - aH - aa.  = - H [sin oi j i H a&. J 
J P 

I 

aRi, R = - A sin (0 - Oo) t €3 cos (ei - Qo) aa .  i 
J 
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aRi, L 
a&. 0 

J 

- a  R 
@5 Ri,R 4 i , L  - 

3j H 65 a5 
aRi, H = 6  a a. 

J 

aRi, 2 
a a. 

J 

. 
aRi, 3 

aa. 
J 

. 
aRi, R 

aa.  
J 

aRi, R' 
a a. 

J 

aRi, R 
3 

aa. 

A aRi, L 
R i t  aa. 

J 

A . aRi ,L  
R 2 t  a a .  J 

A aRi, L 
R 3 t  . aa. 

J 

t 

t 

t 

a%, H 
a a. 

J 

aRi, H 

J 
aa .  

aRi, H 
a@. 

J 

A 

H1 

A 

H2 

3 
3 , i  aa.  t s  'Ri, 2 

2 , i  aa. t s  aRi, 1 
'1,i aa. - - as - aa .  6 

J 
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. 1 aRi, 2 aRi, 3 8 R. 
1, 1 

+ 'i, 1 act. + 'i,2 a&. + ' i ,3  aa. 
J J J 

7. a bi 
a&. 

1 
7. asi 
1 

a Ti 

a a. 
- - - -  - _I_ - - 

'i J c-s i J 
act. 

J .  

' i=O ? 

ir i+l 

i > k? 
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a r i  a r i  ) 
a@. aak 

J 
‘jk . 

-1 
Compute [Fkj 1 = ICjk ] using Jordan-Gauss method 

(assume 532 multiplications, 1064 additions, 72 divisions) 

6 

Fkj e k  A @ . =  1 
I 

J 
k= 1 

Computations Reauired 

Additions Roots, Load, 
Subtraction Multiplications Divisions Trigonometric Store 

@-GI 0 0 0 0 0 

@--a 24 33 5 5 20 

@-a 3,060 2,520 0 0 3,000 

0-@ 2,430 220 60 180 1,000 

a-0 11,460 12,960 870 0 .11,000 

0--0 90 163 32 6 150 

0-@ 60 0 30 0 60 

0-@ 8,560 7,500 120 60 8,000 

(@ 1,100 610 72 1,000 

26,784 34,006 1,189 251 24,230 

The following mean times a re  allowed for the indicated double 

precision operations in the ICBM 7094 computer ( psec )  
I 

15 15’ 20 350 5 

30 



The total computation time is then 1. 15 seconds. Allowing a 

factor of 2. 5 for bookkeeping --indirect addressing, etc. - -  the total 
computation time is still less  than 3 seconds. 

course correction instructions certainly can be given less than a minute 

after the last observation., 

Thus it appears that 

. 
If range, range-rate and angle from three stations a re  to be 

used instead of just  range rate from one, it is estimated that the 

following changes in computations will  be needed. 

Additions Roots, Load, 
Subtractions Multiplications Divisions Trigonometric Store 

0 0 0 0 0 
700 200 600 3,000 

20,000 24,000 1,500 0 20,000 
13,400 6,700 550 . 0 10,000 

0-0 
@=@ 7,300 

40,700 31,400 2,250 600 33,000 

The additional computing time base on mean IBM 7094 times is 

1. 51 seconds. Allowing a factor of 2. 5 this becomes 3.8 seconds. 

Thus, even for range, range-rate and angle from three stations 

the total computation time is of the order of 7 seconds --far less  than a 
minute. 
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APOLLO NOTE NO. 94 H. Engel 
14 August 1963 

USE OF ANGLE DATA 

The observiog station is at  latitude X North and longitude cz 

East. The u, v, w coor2inzte system moves with the station. u 

points East,  v points North and w points up. The unit vector s in  

the direction or' tile line-of-sight f rom the station to a vehicle can 

be resolved into u, v and w com2onents. 

A 

See Figure 1. 

From Apollo Note No. 82, the components of s in the x'y'z' 
coordinate system a re  given by 

and 

2 2 s 2  = x' + y t2  -I- 2' 

The components of 2 in the x, y, z Coordinate system are'then 

and the components in the u, v, w system a re  

Y" S = [i] = J Y S 

cos(w T + a) sin(w T f a) 0 

-sin(w T + a) cos(w T +  a) 0 

0 0 1 

e e 

e e 

' in which 

J =  



$ 9  9 
Let  the u, v, w coordinate system be obtained by f i rs t  

rotating u, v, w through and angle 6, about u and then g, about 

v displaced, the angles 6, and d, being chosen so that w is along 
1. These last two rotations correspond to the motions of an x-y 

antenna mount. 

' i  sin * 6, 

1 0 

0 cosbl 

0 - s i n d l  

* A 9 * 
Since w is along s, it follows that u and v are zero, giving 

two equations for 6, and 6 2 '  

o = u cos6 t v  sin 4, sin 5, - w cosd, sin 95, 2 

0 = v cos b1 t w sin 6, 

From the last of these equations 

and from the first ,  

2 



- -  
I 

Then taking derivatives of the first equation above, 

or 

- -d w d v  - - +  - 
W V 

61 
cos bl s u l  8 ,  

From which the partials of d ,  with respect to the orbit parameters, 

aj, may be written 

d 

The following sketch 

-V 

W 

is useful in obtaining. the auxiliary equations 

-V w sin d,= ; cos d, = qx7- 3 



to reduce the 

1 
a * l  - - 2 2 ( V E 7  a w  " 

J w t v  - 3 - r  
J 

For the second radar angle, 4, 

From this the partial of 6, with respect to the orbit parameters, 
may be written 

- s in  4, 

V 

' the partial equation may be reduced 

I 

NOW a u/a a . ,  8 v/a a , and a w / a  a. are equivalent to 8 Y 8 w / a a j ,  
J .i . J  

4 and 



t 
but a Xs / . a  a. and 8 s / a  a. a re  already available f rorn Apollo Note 

No. 82, so the partials of u, v and w with respect to a. are  easily 

found. 

J 3 

3 

Next, as in Apollo Note Nos. 43 and 83, the measured value 

of a quantity fm (t) can be expressed as 

fm (t) = fc (t) t 'b t n (t) 

in  which f (t) is the computed value of that quantity, b is a fixed 

bias and n (t) is a zero mean stationary Gaussean noise with variance 
C 

2 r. 

1 The information matrix for each of the two groups of data, 4 
and d2, are of the form 

c.. = c.. u J1 



e se 
0 

' is  the mean expected noise and is  

for 6,: u- = k  
52 

a constant 
\ 

This last point is explained by the geometry of the definition of the 

angles, 4, and b2 I and by the fact that the actual radar errors. 
are assumed to be symmetrically distributed about the boresight 
axis.. See Figure 2, 

6 



Figure 1. 
A 
8 

K 

actual 
radar 
axis 

Figure 2. 
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t 1963 

GROUND ASSISTANCE TO LEM, INCLUDING 

MID-COURSE CORRECTION 

Assume that at time T = 0 a p r io r i  orbit data a r e  available and 

observations s tar t .  Assume further that at time T1 the vehicle boosts 

for a mid-course correction based on the data up to that time, and the 

variance of the boost is known. 
which time the Covariance matrix of the e r r o r s  in the orbit parameters 

is calculated. 

The vehicle is observed until T2, a t  

Let C. denote the j - th  information matrix and V. the j-th covariance 
J J 

matrix,  Gj Vj = I. 
Let V be the covariance matrix of e r rors  in initial position 

0 

and velocity of the a priori  data, and C1 the corresponding information 

matrix of obeervationa up to  t ime TI, Then 

-1  co = vo 

c2 = c o t  c1 
and 

- 1  v2 = c2 

in which V is the covariance matrix of e r r o r s  in initial position and 

velocity resulting from the use  of both se t s  of data. 
2 

. 

The corresponding 

and velocity at time T1 is 

T V3 = Q, V z Q l  

covariance mat r ix  V of e r r o r s  in position 3 

in which Q 

to  those at t ime 0. 

is the Jacobian of the components at time T 1 1 with respect 

Assume that at time T a boost with zero mean and covariance 

mat r ix  V is applied. In the simplest case ,  all the components of this 
1 ,  

4 



ix are  ze ro  except for the three diagonal ele nt cor responding 

to the velocity components, w 

The covariance mat r ix  of e r rors  in position and velocity after 
boost at time TI is 

v5 = vg t v4 
The corresponding covariance mat r ix  at time ze ro  is 

- 1. -lT 
Vb = Q1 v5 *l 

and 
-1 C6 = V6 

The inforrxqt'on mat r ix  of the observations from T1 to T is 2 

Gq, 
is C8. 

The information matrix from combining this with previsue obeervationa 

and the corresponding covariance matrix is 

The covariance mat r ix  of e r rors  in  position and velocity at 

t ime T2 is V9 

in which Q 

to those at time zero. 

is the Jacobian of the components at time T with respect 2 2 

Combining all these intermediate stages, we'find 

-1  I co = vo 
v3 = Q, ~ , ~ t , j l  Q: 

2 



-1 
v9 = Q, [ C 6  t C7 Q2T 

3 



APQLL0,NOTE NO, 96 L, Horowitz 
15 August 1963 

USE OF LEM/CM OBSERVATIONS 

L. Lustick has pointed out a simple way to determine the 

information matrix (inverse of covariance matrix) resulting from 

observations of the LEM by the CiM: If the CM orbit is circular, 

the necessary computations a r e  the same as f o r  an observing station 

on the surface of the earth (Apollo Note No, 82) with the earth-moon 

distance reduced to zero, the station latitude zero, the radius of the 

ear;h changed to the radius of the CM orbit, and the angular rate of 

the earth se t  equal to the angular rate of the CM in its orbit. 

calculations may be performed for  the same  kinds of observables 

as already done for observations from earth-range, range rate and 

angle. 

The 

Some ca re  is necessary in selecting angles to be used, F o r  

the nominal ascent (Hohmann transfer), the orbits of the CM and 

LEM are  coplanar. Then a mechanization for defining t$e relative 

orientations of the three coordinate systems X, X' and X of Apollo 

Note No. 82 is simpiy to take all three systems coincident. Thus, 

X'  is a right-hzaded, non-rotating, moon-centered coordinate system 

in which x' is along the initial position vector (x' 

vehicle motion is in the x l - y t  pla~c, and y' is directed 6 0  that i b  
is positive. 
G, 7, 3 = (x, y, z) = ( X I ,  y', zr). W e  introduce the initial central 

angle a between the two vehicles as what was originally the DSIF 

station longitude in the X system, This mechanization treats the 

/J 

0, 0) of the LEM, 
O *  

X and X a re  then taken to coincide with X' so  that 

Cib.4 as  a 'lpseudo-DSIF" to permit full utilization of the existing 

computer program for calculating information matrices, 

formulacion, the rotation matrices L and K transforming between the 

3 coordinate systems will reduce to the identity matrix. 

input data for the program can thep be taken as follows: 

In this 

The resulting 



p = 0 (since no earth involved) 

XI = 0 

ZETA = 0 

X = 0 (latitude of DSIF) 

a = central angle between LEM and CM, where cy is positive 

for  CM leading LEM 

0 = w  ’T& = .8 .5463 x lom4 rad/sec e c m  

based upon: altitude = 80 n. mi, ,  

3 R = 1,7373 x 10 km andp = 4 , 8 9 6 ~  l o 3  kmxc2 m 

w = 0 (not relevant since p --+z>O) m m 

6 = moon radius f 80 n. mi. = 1.8855 x 10  meters 
p e  

= 0 (since earth-moon distance = 0) p L r n  

12  3’ 2 p = 4 , 8 9 6  x 10 m/sec 

latitude and longituck of sublunar point 
B = o  

The icl-iial vzlues f o r  nominal lunar trajectories can then be selected 

as desired, 2 



OLLO NOTE NO, 97 6. Siska 

MINIMUM BOOST VELOCITY REQUIREMENT 

FOR FAR-SIDE RELAY 

PURPOSE 

This note presents data which augments the data appearing 

in Apollo Note No. 90. 

RECAPITULATION 

There is an interest in  using the S-IV booster as a far-side 

relay to facilitate voice communications "back of the moon" to ear th  

during the lunar deboost and lunar rendezvous operations. 

ciple, after the S-IV booster injects the lunar vehicle into a trans- 

lunar orbit and is jettisoned, an addit'onal boost can be applied to . 

send the booster on its own translunar trajectory. 

side relay requirements, as  presently defined, the S-IV booster must 

be within a slant range of 40,000 no mi. f rom the lunar vehicle deboost 

position at a time approximately 72 and 100 hours after translunar 

injection (or ,  equivalently, S-IV booster jettison). 

In prin- ' 

To fulfill the far- 

Apollo Note No. 90 indicates the operating region fo r  the boost 

velocity, AV, and its direction a, relative to the path velocity, in order 

to fulfill far-side relay requirements when the A V  is applied at 0 and 

7.6 hours after translunar injection. 

trajectories a r e  also shown in the note. 

Representative far-side relay 

The present note examines the case  when A V  is applied a t  

4.15 hours after translunar injection and shows the resulting compil- 

ation of data, 

RESULTS 

Figures 1. and 2. show representative far-side relay trajec- 

tories in lunar space fo r  A V  values of 1000 and 700 f t / sec  respectively. 

The direction of A V ,  denoted by a, is measured relative to the path 



velocity existi 5 hours after t rans  ar injection; a = 0 

dicates that 

a values decrease the i ty makes with the local 

horizontal. 

By combining results such as shown in Figures 1, and 2,, 
one can develop limiting contours in the AV, (Y plane as shown in 
Figure 3. Combinations of A v  and P which satisfy the indicafed ' 

limit criteria lie within a specified contour. The left hand side of 

each contour is dictated by the criterion that the t = 100 hour positions 

lie on the 40,000 n. mi. c i rc le  (see Figures 1. and 2.), while the 

right hand side is associated with seeing the lunar vehicle deboost 

position at t = 72 hours. 

J 

Now the time when A V  is applied will have an influence on 

the magnitude of A V  which is available at that time, because of fuel 

boil- off ". 
Thus, it would appear that from the consideration of boost 

velocity availability and boost requirements , there exists an upper 

limit to the time for applying the boost. 

as a €unction of time, can be obtained f rom Figure 3. and the resulting 

curve  is shown in  Figure 4. 

The minimum A V  required, 

2 



Figure 1, Far-side Relay Trajectories for 
A V  = 1000 f t / s e c ,  
After Translunar Injection. 

Applied 4-15 Hours 
3 



Figure 2, F a r - s i d e  Relay Trajectories  for 

A V  = 700 f t / s ec ,  
After Translunar Injection. 

Applied 4.15 Hours 

4 
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OLLO NOTE NO, 98 He Engel 
21 August 1963 

M U L T I P L E  DATA SOURCES W I T H  FIXED BIASES 

Apollo Note No. 43 has  shown how to treat biased data from a 
single source. 

from multiple sources. 

fixed biases from multiple, uncorrelated sources. 

Other notes have shown how to handle unbiased data 

This note considers the case of data with 

It is assumed that each observed quantity, f .  , may be 
Jm 

expressed a s  

f.  (t)= f .  (t) t b. + n.(t) 
Jm J C  J J 

in which f .  
and n. is zero mean Gaussian n0ise.wit.h correlation t ime small com- 

pared to the t ime between measurements. The standard deviation of 

is the computed value of the quantity, b. is a fixed bias 
JC J 

3 .  

the noise is assumed to be a known function of time: (3: = ?(t). 
J 

W e  may replace f .  (t) f b , in which f .  (t) is a function 
J =  j JC 

of six parameters a 0 , a6 by 1 '  

A 
Fjc(t) = f .  (t) t b 

JC j 

' a6' a6 + j in which F. (t) is a function of seven parameters a ., 
J C  1' 

The measurements are made at t imes t. 

1' 

and ra ther  than writing 
1' 

everything as functions of t. 

of i. 

ured at the same instants. 

be written as 

we shall simply write them as functions 

Further, we shall assume all the different measurables are  meas- 

Then, the likelihood function of the data may 



here 
N 3 

N 

h 
in which F.(i) is the estimated value of F.{i). 

J J 
The maximum likelihood estimators of the parameters al, 

and those which maximize the likelihood 

function, and are those found by solving the set of 6 t J simultaneous 

equations that result from setting the par t ia l  derivatives of 
respect to each of the parameters equal to zero. 

* '  a 6 + J  
. . e  

8 ab* - 0 . 0  

with 

A 
a F:(i) N J  

- F.(i) -- = 0 k =  1, * * ', 6 + J 
A J ] "k 

These equations are nonlinear, but for a sufficiently large 

number of independent observations, the estimators 

as 
may be written 

where the random error  terms A %  are negligible except where they 
appear as first order terms. Then 

1 a6 + J* i) i) = Fj(al  8 * e *  
A A A 
F.(i) = F. (a l ,  * * * *  a 6 t J '  J J 

6 + J  a F .  + E  J A  

P = l  

2 



aking th is  substitution, we find 

(i) - F.(i) - 
mj J 

1 = 1  

This last equation may in turn be written in matrix form as 

C A a =  e 

where 

As in previous notes, 

3 



Now, the expected value of n.(i) n ( 8 )  is given by J X 

2 b: (i) 

so the expected value of ekel is 

= cw 

Thus 

Now, other expressions can be obtained for the elements of 
matrix C ,  

k, P = 7, * - * ,  6 t J 

4 



N 

7 - 6  i = l  
k =  1, * * ,  6 
1 = 7,  * = e ,  6 + J 

Of course it is also possible to include the case whe’re the 
observations at different stations are taken at different times by 
taking subsets of the observations from t l  to t 

each station, 

corresponding to n 

5 



PRELIMINARY RXSULTS 
OF COMPUTER ANALYSES 

1963 

Introduction 

A problem susceptible to verification by a separate analysis 

In addition, a number of successful computer runs to  determine’ 

has been run, and indicates that the computer program is correct. 

the e r r o r s  in future vehicle position have been accomplished. 

These are all reported in this note, 

Check Problem 

The problem of determining vehicle position and velocity and 

probable e r r o r s  in  these quantities on the basis of one range and one 

range-rate measurement from each of three stations simultaneously 

is capable of direct analytic solution, and serves  as a check on the 

computer program and on the more elaborate analysis on which it 
depends 

The distance si from station i to the vehicle is g i ten  by: 
2 

si - - 2 (Xj - x..) 2 
j= 1 J1 

in  which (xl, x2, 9t ) is the vehicle position and (xli, x2i, xSi) is the 

position of the i- th station. Follo lo Note No. 87, 
3 

- x..) 1 a Si 

8X. S i J1 
- =  .--.I 

J 



2 



V equ I sec 

I\ 4 h v = o x t v y t o a ;  
a A  h I x - -  y t o 2  - A 

s1 - - S 8 

Then, 
n 

b i = " * S i  

a 

e a V  
2s s3 = - 

al  through a6 a re  the parameters that describe the vehicle 

orb i t  in the computer calculations. 

relative to the Moon, and a4 through a6 ' a re  vehicle velocity relative 
h 

to the Moon the direction of al and a4 is - x 

a l  through a are vehicle position 3 

I\ 
direction of a and a5 is y 2 

I\ direction of a and a is - z. 3 6 

Then ihe partial derivatives of 8i and Bi with; respect  to the 

vehicle orbit parameters are: 
3 



0 

0 

-I 

- a l e  

0 

0 

0 

0 

3 
-aVI l e  

S (I-E] ") 
-abV/(2s3) 

-a/ s 

0 .  

The information matrix corresponding to range measurements 
1 

from station i has components 

4 



The corresponding information matrix elements or  range -rate 
measurements are:  

aei  asi 

j 
qc" - aa. aa - - -  

J 

All  may be calculated from the asi/8a.  and asi /Ba.  matrices 
J J 

already given. We show,below,these C i' and Ci' matrices as 
computed in this  fashion together with the values determined from 

the computer program (in parentheses). 

can  be attributed to slightly different geometrics employed in the 

two calculations. 

The small differences 

- 
(1.0 + 0) 
1.0 + o *  

(.41-2) 
-.41-2 

(, 78-2) 
0 

(-. 20-14) 
0 

( - e  91-12) 
0 

(0) 
0 

- 

(0.41-2) 
0.41-2 

( *  17-4) 
.16-4 

(-. 32-4) 
0 

(. 82-17) 
0 

(. 37-14) 
0 

(0 1 
0 

(. 78-2) (0.20-14) (-.&91-12) 
.78-2 ' ,* 0 " 0 . 

(a. 32-4) (. 82-17) (. 37-14) 
-. 32-4 0 0 

(. 61-4) (-.16-16) 
0 0 

(--71-14) (. 18-26 

0 0 

(-. 71-14) 
0 

(. 18-26) 
0 

(. 82-24) 
0 

(0) 
0 

5 



(1.0 + 0) 
1.0 + 0 

(m.41-2) 
.45-2 

(-. 78-2) 
-. 78-2 

(-. 20-14) 
0 

(-. 91-12) 
0 

(0 1 
0 

- 
$0 + 0) 
1.0 + 0 

:. 89-2) 
89-2 

[-. 18-08) 
0 

[. 44-14) 
0 

(-. 91-12) 
0 

(0) 
0 

( - @  41-2) 
e. 45-2 

(. 17-4) 
.20-4 

(. 32-4) 
.33-4 

(. 82-17) 
0 

(. 37-14) 
0 

(0) 
0 

(. 89 -2) 
.89-2 

(e  79-4) 
81-4 

(-. 16-10) 
0 

(. 39-16) 
0 

(-. 81-14) 
0 

.(O) 
0 

( m a  78-2) 
-. 78-2 

(. 32-4) 
s 33-4 

(. 61-4) 
e 61-4 

(. 16-16) 
0 

[, 71-14) 
0 

(0) 
0 

( 0 .  18-8) 
0 

(-. 16-10) 
0 

(. 32 -17) 
0 

(-. 80-23) 
0 

(. 16-20) 
0 

4 

(0 1 
0 

0 

(. 82-17) 
0 

(. 16-16) 
0 

(040-29) , 
0 

(. 18-26) 
0 

(0) 
0 

(. 44-14) 
0 

(. 39-16) 
0 

( m e  78-23) 
0 

(. 19-28) 
0 

(-. 40-26) 
0 

(0) 
0 

0 

(. 37-14) 
0 

(e 'I 1 - 14) 

0 

(. 18-26) 
0 

(. 83-24) 
0 

(0 1 
0 

(-. 91-12) 
0 

(-. 81-4) 
0 

(. 16-20) 
' 0  

(-. 40-26) 
0 

(. 83-24) 
0 

(0) 
0 



II 

(. 34-15 

.40-15 

(. 83-13) 

a 90-13 

(. 26-17) 

.30-17 

(-. 18-7) 

-. 20-7 

(. 75-10) 

.90-10 ' 

I 

(-. 14-9) 
- -. 16-9 

(. 34-15) 

40-16 

(. 83-13) 

a 90-13 

(-. 26-17) 

-. 32-17 

(-. 18-7) 

-. 20-7 

(. 75-10) 

e 90-10 

(* 14-9) 

.16-9 
_. 

(. 83-13) 

.90-13 

(. 20-10) 

.20-10 

(. 65-15) 

.71-15 

(-. 45-5) 

-. 45-5 

(. 18-7) 

.20-7 

(-. 35-7) 

-. 35-7 

(. 83-13) 

90-13 

(. 20- 10) 

.20-10 

(-.65-15) 

-. 70-15 

(-. 45-5 ) 

' -.45-5 

(. 18-7) 

20-7 

(. 35.07) 

.35-7 

(* 26-17) 

e 30-17 

(. 65-15) 

.71-15 

(. 21-19) 

.25-19 

(-. 14-9) 

-. 16-9 

(. 59-12) 

.70-12 

(-. 11-11) 

712-1 1 

(-. 26-17) 

( - e  18-7 

-. 20-7 

(I. 45-5) 

- 0  45-5 

(-* 14-9) 

-. 16-9 

(1.0 t 0) 

1.0 t 0 

(0.41 -2) 

-. 45-2 

(* 78-2) 

.78-2 

( 0 .  18-7) 

-. 32-17 -. 20-7 

(-. 65-15) (-.45-5) 

-. 70-15 -e 45-5 

(e21-19) . (a  14-9) 

.25-19 16-9 

(. 14-9) (1.0 t 0) 

. 16-9 1.0 t 0 

(-. 59-12) (-,41-2) 

-. 70-12 -. 45-2 

* 

( - e  11-11) ( - e  78.-2) 

-. 12-11 -. 78-2 

(. 75-10 

e 90-10 

(. 18-7) 

,2007 

(. 59-12) 

70 -12 

(-.'4 1-2) 

-. 45-2 

(. 17-4) 

20-4 

(-. 32-4) 

-. 35-4 

(.75-10). 

90-10 

(. 18-7) 

.20-7 

(-. 59-12) -. 70-12 

(-.41-2) 

-. 45-2 

(. 17-4) 

.20-4 

(. 32-4) 

.35-4 

- 
(-, 14-9) 
-. 16-9 

(-. 35-7) 

-. 35-7 

(-. 11-11) 

- 0  12-12 

(* 78-2) 

.78-2 

(-. 32-4) 

-. 35-4 

(. 61-4) 

.61-4 - 
(. 14-9) 
.16-9 

(. 35-7) 

0 35-7 

( - e  11-11 

-. 12-11 

(-. 78-2) 

-. 78-2 

(. 32-4) 

,35-4 

(. 6 1-4) 

.61-4 
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(. 16-14 
.16-14 

(-. 18-12) 
-. 18-12 

(-’. 28-23) 
0 

(. 40 -7) 
40-7 

(. 35-9) 
0 35-9 

{-. 71-16) 
* o  - 

( w e  18-12) 
b-. 18-12 

(. 20-10) 
.20-10 ’ 

(. 32-2) 
0 

(-. 45-5) 
-.45-5 

( - .-4 0 - 7 ) -. 40-7 
(* 80-14) 

0 

( - e  28-23) (. 40-7) 
0 40-7 

(0.32-21) (-.45-5) 
0 -. 45-5 
(0 1 (-. 71-16) 
0 0 

(0.71-16) (1.0 t 0) 
0 1.0 t 0 

(-. 63-18) (* 89-2) 

0 90-2 

(. 13-24) (9.18-8) 
0 0 

(. 35-9) 
e 35-9 . 

(0.40-7) 
“(6 40-7 

( - a  63-18) 
0 

( 0  89-2)  

.90-2 

( 0  79-4) 
-80-4 ‘ 

(-. 16-10} 
0 

(-. 71-16 
0 

(. 80-14) 
0 

(. 13-24) 
0 

(-. 18- 8) 
0 

(-• 16-10) 
0 

(. 32-17) 
0 - 
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In the above, the notation a I- b stands for a x 10 b 

In addition, several values of the Jacobian mat r ix  ax. (t)/aa 
1 j 

w e r e  checked for t equal to  one-half period and were found to be cozrect. 
Far ther ,  the covariance matrix obtained using all the Civ and C i, R 
with vR= 15 m and 0-k = 3 cm/see. w e r e  checked fo r  seasonabl~eness 

and found to be very nearly equal to the est 

Computa5ons Without Boost 

The following Computations have been performed, and the - 
results are presented graphically. In all these cases the pararncters 
used are: 

6 al = 1 . 7 5 2 5 ~  10 m 

= o  m l s e c  "4 

= 1.70172 x 10 3 m/sec  a5 

f ,  = oo 

w = .7291160 x l o m 4  rad/sec e 

w = -42360 x lom6 rad/sec m 

= 6.3781 x 10 6 m Pe 

8 3.85 x 10 m 

p = 4 . 8 9 6 ~  lo1' rn'/sec 2 

L = 150 
I = 90° 9 



These conditions correspond to a vehicle at perilune of a 

Hohmann t ransfer  from 8 n. mi. altitude t o  80 n. mi. altitude, the 

nominal lunar rendezvous maneuver. 

l ine,  and the orb i t  of the vehicle is in the plane of Earth-Moon 

rot ation. 

Perilune is on the Earth-Moon 

The orbit period is 116,2 minutes. Half a period is 58.09 

Through a minor e r r o r ,  the time used for prediction of , minutes. 

e r r o r s  at time of nominal rendezvous was 59.08 minutes. This 

has  a negligible effect upon the results of the computations since 

e r r o r  in position and not position is calculated. E r r o r  in  position 

is a slowly varying quantity, while position of the LEM o r  position 

of the LEM relative to the CM/SM is not. 

ea r ly  in the computations, but because of its very small effect and 
because of the desire  to obtain results in time for thb final report, 

it was not corrected. 

The error was discovered 

Three stations a re  used  

Station x P 

(latitude) (longitude) 

Madrid 41' -4O 

Johannesburg -26' 2 8 O  

Woomera -30° 138O 

Information matrices for range and range-rate f rom these 

stations have been computed for  1,4,9, 16 and 25 successive 1 minute 

' observations after the initial conditions. The Jacobian matrix for 

computing the e r r o r s  at rendezvous was computed for 59.08 minutes 

as described above. 

Using CT = 15 m and c r i  = 3 cm/sec  for one minute observations, R 
the covariance matrices of e r r o r s  at  59.08 minutes have been computed 

for the following conditions e 

10 



Stations 

M 
I_ - 
X 

X 

X 

* 

J W  
.a__ 

R 
__I - 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X '  

X 

Data - 
R - I 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X' 

X 

X 

- 

Aprior i  . 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Note 1: 
Apr ior i  data 

3 r = c r  =r = 10 m 
al =2 a3 

Total Observation 

1 4 -  9. 16 25 - 
15_ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

_I 

_I - 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

_I 

- - 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

I 

I - 
X 

C 

c 

c 

c 

Y 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

- 

II__ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

- 

Remarks 

Note 1 

Note 2 
Note 1 
Note 2 

Note 1 
Note 2 
Note 1 
Note 2 
Note 1 

Note 2 
Note 1 

Note 2 
Note 1 
Note 2 
Note 1 

Note 2 
Note 1 
Note 3 
Note 4 
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Note 2: 

The number of minutes of observations to be able to determine 

al through a6 depends on the number of stations and whether range, 

range-rate o r  both a re  used. The total number of independent 

observations must be at l eas t  6 .  For this reason, the covariance 

matrix of the e r r o r s  at rendezvous starts with other than 1 minute 

observations i n  some instances. 

Note 3: 

A priori  data 

0- = r  = c r  = VIO' 10 m/sec .  
a4 a5 "6 

Note 4: 

of 

Aprior i  data 
4 r = r  =o- = 10 m 

0- =(r =o- =$G' 102m/sec .  

al "2 a3 

a 5 "6 a7 

On the basis of these e r r o r  covariance matrices 0- 0- and 

% have been plotted, as has (9," t o- + 2 ) 'l2which is referred 

to as the RMS error at 59.08 minutes. 

2 x' Y 
Y 

Further, a major portion of the e r r o r  is in the y direction 

(along the direction of motion). 

orbit,  and the LEM is near apolune in a near-circular orbit. 

the relative motion is in the y direction, and for small  e r ro r s  in 

velocity is approximately 29. 7 m/sec. As a consequehce, a short  

time before or  after the nominal rendezvous time the e r r o r  in the 

y direction becomes zero while the e r r o r s  in  the x and z directions 

remain essentially unchanged. The RMS time between nominal 

rendezvous and this time of minimum miss is a- / 2 9 . 7  seconds 

Now, the CM/SM is in  a circular 

Thus, 

Y 

12 



and has been plotted for those cases in which the velocity e r rors  are 
small. 

plotted. 

The corresponding minimum R.MS misses have also been 

Computztions With Boost 

Additional information matrices corresponding to  range and 

range-rate measurements f rom Madrid, Johannesburg and Woomera 
at one minute intervals f rom 17 to 25  minutes has been computed; 

so  has the Jacobian matrix 

With these additional matr ices ,  the following problem has been 

solved, according to the method outlined in  Apollo Note No. 95. 

ax./ aa. corresponding to 16 minutes. 
1 J  

The vehicle has the orbi t  parameters described under 

"Computations Without Boost, above. The vehicle is observed i n  

range and range-rate from Madrid, Woomera, and Johannesburg 

fo r  16 minutes. 

e r r o r s  of 1.0 m/sec.  in the x, y and z directions. The actual boost 

is assumed zero ;  this does not substantially affectthe e r ro r s  in 

estimated position at future time. Then the vehicle is observed 

fo r  another 9 minutes , and the e r ror  covariance mat r ix  at rendezvous 

computed. 

An orbit correcting boost is then made with RMS 

From this  the RMS e r r o r s  at 59.08minutes (1250m) , the RMS 
difference between the nominal time of rendezvous and the time of 
minimum RMS miss f32.4 secJ  and the minimum RMS miss ( 790,) 
are computed. 

In performing the calculations f o r  determining the errors  with 

boostyit has been necessary to "fool" the program to obtain the desired 

results since the modifications to make these computations simple and 

routine have not yet been completed. 

require severa l  computer passes performed at least a half day apart ,  

with a consequent lengthy throughput time. 

At present these computations 

13 
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A P G L L S  NCTE NO. 100 H. Dale 
23 August 1963 

ORBIT PARAMETERS FROM TI-IXEE STATIONS USING 
RANGZ P-PITD XANGE-RAT: 

Apollo h'ote No. 87 dircusses Cie e€fect of measuring the position 

of the LEM by taking range ax<. range-rate measurements from three 

stations equally spaced upon an Ezrth-based triangle. Three stations 

that could be used a r e  those at Madrid, Johannesburg and Woomera. 

They are positioned upon the Earth as shown in the following sketch: 

149O 
Madrid Woomera 

JokamesbErg 

0 A conservatively placec 55 eqilalateral triangie is cocstructed 

within the above sketch. 

Note No. 87 to estimate the expected e r r o r  in position and velocity. 

From Apollo Note No. 87, page 9: 

This triangle catn be used along with Apollo 

X- 
2 

6s 1 x22 
6 x2 = 

wherex  - 3 -  

- 
x22 - 

6S1 = 

8 Earth-Moon Distance = 3.85 x 10 m. 

(LaX edge of triangle, 

6 6 
0 ( 6 * 3 8  )=  1-67 10 

1.732 (Re s in  27 1 = 

e r ro r  in measuring range from a single station 

:, 6 x2 = 77 6S1 



pol10 Note No. 87, it can be seen that is an e r r o  

in  non-orthogonal three -dimensional planar co-ordi 

to each other axis. 
measuring stations 

each axis at 60’ 

Thus for  equally likely e r ro r s  in each of the range 

2 = 1.5 (6x2) 

Thus the expected error in  position normal to  the line-of-sight (in 
all directions) 

0- = q 1 . 5  (77 o- = 94 wSl 
1J2 

1 

X 

where wS is the estimated single station e r r o r  in’measuring range 

over some shor t  smoothing time. 

On page 11 of the referenced note, it is seen that the same eort 
of equation applies to S measurements. Thus 

. 
0-. = 94crs1 X 

With one-shot measurements of S and 5 expected e r r o r s  are: 

rs = 15 meters =>cr = 1500 meters 
192 

X 

From Apollo Note 7, expressions exist for predicting the future 

positional e r r o r  due to initial e r rors  in a satellites velocity and position. 

Using equations (1 1) and (12) from Apollo Note No. 7 and realizing that 

range e r rors  (corresponding to y in Note No. 7) a re  insignificant, then 

after 180’ of travel: 
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3 ;io 

2 )eo 

0 x = - s i n n -  - 
w 0 

0 y f - c o s n +  -. w 0 

* * . 
and at 180' z = 0 ,  zi = 
random variables, then 

But since x xo and i; are actually . .  0' 

u2 
0 = (e  = 180 = 

X 

4; 
0 

0- = ( e . =  180 ) =  + - Y 0 
t 

where o is the nominal LEM angular rate (. 9 x rad/sec)  and 

5 K  = w .  and xo = r . Thus for the assumed numbers involved: 
192 

. x1 ,2  X 

(0 = 180°) = 31,000 meters (along the orbit path) 

"y (0 = 180°) = 13,000 meters (altitude) 

5 (0 = 180°) = 1,500 meters (out of track) 

And it is interesting to note that the major e r r o r  (along the 

orb i t  path) is strongly a function of range-rate measurements alone. 
0 

' Velocity e r r o r s  at 180 were not calculated but will be small. 
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