
aC sicrutitiWane: T|

weeel

for the IBM 704 Data Processing System

Reference Manual

FORTRAN II

for the IBM 704 Data Processing System

© 1958 by International Business Machines Corporation

MINOR REVISION

This edition, C28-6000-2, is a minor revision of the previous

edition, C28-6000-1, but does not obsolete it or C28-6000.

The principal change is the substitution of a new discussion

of the COMMONstatement.

TABLE OF CONTENTS

Page

General Introduction... . ee 1
Note on Associated Publications Le 6

PART |. THE FORTRAN If LANGUAGE , 7

Chapter 1. General Properties of a FORTRAN II Source Program . 9

Types of Statements. . . 1... 1. ee ee ee we 9

Types of Source Programs. ~ ee 9

Preparation of Input to FORTRAN I Translatorcee es 9

Classification of the New FORTRAN II Statements. 9

Chapter 2. Arithmetic Statements Involving Functions. 10
Arithmetic Statements. . .. 1... 2... ew eee . 10

Types of Functions . . il

Function Names. 12

Additional Examples . . 13

Chapter 3. The New FORTRAN II Statements 2 16
CALL .. 16

SUBROUTINE. 2... 6 ee ee te ew eh ee es 17
FUNCTION. . 2... 1 ee ee ww ew ew ww ew ew ee 18

COMMON 2. ee se ee eee wee . 20

RETURN. 2... 1 1 ew ee te ee we wt wt wh wt 22

END... «4... ee we ee ce ew oe te tw . 22

PART Il, PRIMER ON THE NEW FORTRAN II FACILITIES0+2«~W~ 25

Chapter 1. FORTRAN II Function Subprograms. 0... eee 27
Purpose of Function Subprograms.445... . 27

Example 1: Function of an Array. 2 + 6 27

Dummy Variables. 27

Restriction on Statements Involving Dummy Variables. . 28
Example 2: Series Evaluation » . . 28
Main Program Function Arguments 30

Chapter 2. FORTRAN I! Subroutines, . . , re 31
Purpose of FORTRANIISubroutines oe ew ew we ew we we CO

Example 1: Matrix Multiplication. » - ol

Dummy Variables and Main Program Arguments . . 382

Example 2: Computation of Arrays2e.. 33
Partitioning of Problems.eee8e6 34

Joining Pre-written Programsa 34

Chapter 3. Subprograms Coded in 704 Symbolic Language 36

Use of Non-FORTRAN Subprograms 36

Calling Sequence » « © « «+ « oe ee we te . 36

SAP Transfer List and Prologue. 36

Results . . 1. 1. «ee © we ew we cee ew ee we ww 0 8

Return . . 1. «© 6 © © © ee we ew we ew we wt et ee 39

Entry Points 6 «+e «+ eee oe . 39

Program Card ... 1. 6 + © «© © © © eee we ew ww .39

Program Break...... er41

Relocation of Location References-.e- 42

Example: FORTRAN II Main Program and SAP Subprogram. 43

Program Card for the Example wee ee 44

Alternate Form of the Example » 45

PART II]. BINARY SYMBOLIC SUBROUTINE LOADER-+.-.47

Introduction. -. . 49

Transfer Card. rr . 49

Transfer List . . . 2. 6 2 2 ee we ew ew ee we ee ee 50

Execution of the BSS Loader. re ee er er er er .50

Control Cards for Library Tape Routines.-. 50

Card Formats Acceptable to the BSS Loader. 50

Appendix A. Summary of FORTRAN II Statements... soe : 99

Appendix B. Built-in Functions 2. 2. «© 6 «© «© ww oe 61

GENERAL INTRODUCTION

The original FORTRAN language was designed as a concise,
convenient means of stating the steps to be carried out by the IBM
704 Data Processing System in the solution of many types of
problems, particularly in scientific and technical fields. As the
language is simple and the 704, with the FORTRAN Translator
program, performs most of the clerical work, FORTRAN has
afforded a significant reduction in the time required to write
programs.

The original FORTRAN language contained 32 types of state-
ments. Virtually any numerical procedure may be expressed by
combinations of these statements. Arithmetic formulas are
expressed in a language close to that of mathematics. Iterative
processes can be easily governed by control statements and arith-
metic statements. Input and output data are flexibly handled in a
variety of formats.

The FORTRAN II language contains six new types of statements
and incorporates all the statements in the original FORTRAN
language. Thus, the FORTRAN II system and language are com-
patibie with the original FORTRAN, and any program used with the
earlier system can also be used with FORTRAN II. The 38
FORTRAN II statements arelisted in Appendix A, page 59.

The additional facilities of FORTRAN II effectively enable the
programmerto expand the language of the system indefinitely. This
expansion is obtained by writing subprograms which define new
statements or elements of the FORTRAN II language. All state-
ments so defined will be of a single type, the CALL type. All
elements so defined will be the symbolic namesof single-valued
functions. Each new statement or element, when used in a
FORTRAN II program, will constitute a call for the defining
subprogram, which may carry out a procedure of any length or
complexity within the capacity of the computer.

The FORTRAN II subprogram facilities are completely
general; subprograms can in turn use other subprograms to what-
ever degree is required. These Subprograms maybe written in
source program language. For example, subprograms may be
written in FORTRANII language such that matrices may be pro-
cessed as units by a main program. Also, for example, it is
possible to write SAP (SHARE Assembly Program) subprograms
which perform double precision arithmetic, logical operations, etc.

Certain additional advantages flow from the above concept. Any
program may be used as a subprogram (with appropriate minor
changes) in FORTRAN II, thus making use, as a library, of
programs previously written. A large program may be divided into

sections and each section written, compiled, and tested

separately. In the event it is desirable to change the method of

performing a computation, proper sectioning of a program will

allow this specific method to be changed without disturbing the

rest of the program and with only a small amount of recompilation

time.

There are two ways FORTRAN II links a main program to

subprograms, and subprogramsto lower level subprograms.

The first way is by statements of the new CALL type. This type

may be indefinitely expanded, by means of subprograms,to include

particular statements specifying any procedures whatever within

the power of the computer. The defining subprogram may be any

FORTRAN II subprogram, SAP subprogram, or program written

in any language which is reducible to machine language. Since a

subprogram may call for other subprograms to any desired depth,

a particular CALL statement may be defined by a pyramid of multi-

level subprograms. A particular CALL statement consists of the

word CALL, followed by the symbolic name of the highest level

defining subprogram and a parenthesized list of arguments.

A FORTRAN II subprogram to be linked by means of a CALL

statement must have a SUBROUTINEstatement asits first state-

ment. SUBROUTINEis followed by the name of the subprogram

and by a number of symbols in parentheses. The symbols in

parentheses must agree in number, order, and mode with the

arguments in the CALL statement used to call this subprogram.

A subprogram headed by a SUBROUTINEstatement has a RETURN

statement at the point where control is to be returned to the

calling program. A subprogram may, of course, contain more

than one RETURN statement.

The second way in which FORTRAN II links programs together

is by means of an arithmetic statement involving the nameof a

function with a parenthesized list of arguments. The function

terminology in the FORTRAN II language may be indefinitely

expanded to include as elements of the language any single-valued

functions which can be evaluated by a process within the capacity

of the computer. The power of function definition was available in

the original FORTRAN but has been made much moreflexible in

FORTRAN I.

As in the original FORTRAN, library tape functions and

built-in functions may be used in any FORTRAN II program. The

library tape functions may be supplemented as desired. Two new

built-in functions have been added in FORTRAN II, and provision

has been made for the addition of up to ten by the individual

installation. The most flexible and powerful meansof function

definition in FORTRAN Il is, however, the subprogram headed by

a FUNCTION statement. The FUNCTION statement specifies the

function name, followed by a parenthesized list of arguments corres-

ponding in number, order, and modeto the list following the function

2

name in the calling program. This new facility enables the
programmerto define functions in source language in a sub-
program which can be compiled from alphanumeric cards or tape
in the same way as a main program. Function subprograms may
use other subprogramsto any depth desired. A subprogram headed
by a FUNCTIONstatementis logically terminated by a RETURN
statement(s) in the same manner as the SUBROUTINE subprogram.
Subprogramsof the function type may also be written in SAP code,
or in any other language reducible to machine language.

Subprogramsof the function type may freely use subprograms
of both the subroutine type and the function type without restriction.
Similarly, the subroutine type may use subprogramsof both the
subroutine type and the function type without restriction.

The namesof variables listed in a subprogram in a SUB-
ROUTINE or FUNCTION statement are dummy variables. These

wel 4h nAwnatfrAwnn “aAnames are independent of the calling program and, therefore, need
not be the same as the corresponding variable namesin the calling
program, and may even be the same as non-corresponding variable
namesin the calling program. This enables a subprogram or group
of subprogramsto be used with various independently written main
programs.

There are many occasions when it is desirable for a subprogram
to be able to refer to variables in the calling program without re-
quiring that they be listed every time the subprogram is to be used.
Such cross-referencing of the variables in a calling program and
in various levels of subprograms is accomplished by meansof the
COMMONstatement which defines the storage areas to be shared
by several programs. This feature also gives the programmer more
flexible control over the allocation of data in storage.

The END statement has been added to the FORTRANII language
for multiple program compilation, another new feature of FORTRAN
II. This statement acts as an end-of-file for either cards or tape
so that there may be many programsin the card reader or on a
reel of tape at any one time. Five digits in parentheses follow the
END statement. These digits refer to the first five Sense Switches
on the 704 Console, allowing the programmer, if he wishes, to
indicate to the Translator which of certain options it is to take,
regardless of the actual setting of the Sense Switches.

In an early phase of the FORTRANII Translator, a diagnostic
program has been incorporated which finds many types of errors
much earlier during the compilation process, provides more
complete information on error print-outs, and reduces the number
of stops. Thus, both programming time and machine compilation
time are saved.

The object programs, both main programs and subprograms,
are stored in 704 memory by the Binary Symbolic Subroutine Loader.
The Loader interprets symbolic references between a main program
and its subprograms and between various levels of subprograms and

3

provides for the proper flow of control between the various

programs during program execution.

Because of the function of the Loader, the programmer need

know only the symbolic name of an available subprogram and the

procedure which it carries out; he does not need to be concerned

with the constitution of the machine language deck, nor with the

location of the subprogram in storage. In machine language decks,

symbolic references are retained in a set of names, or "Transfer

List, " at the beginning of each program which calls for sub-

programs. The symbolic name of each subprogram is also

retained on a special card, the 'Program Card," at the front of

each subprogram deck. At the beginning of loading, a call for a

subprogram is a transfer to the appropriate symbolic namein the

Transfer List. Before program execution commences, the Loader

replaces the Transfer List names with transfers to the actual

locations occupied in storage by the corresponding subprogram

entry points.

The order in which the decks are loaded determines the actual

locations occupied by the main program and subprogramsin

storage but does not affect the logical flow of control. The order

in which decks are loaded is therefore arbitrary.

The following diagram illustrates the flow of control between

a main program and two subprograms, each of which may be of

either the function type or the subroutine type. The main program

calls for subprogram A, and subprogram A calls for subprogram B.

Main Program

———,

Transfer to Subprogram A

START
 F

'

Pass Control to Instruc-
tion which Transfers to
Subprogram A

Subprogram A

Argument Addresses

Return Point from

Transfer to Subprogram B

a,

Subprogram A
I

|
|
|
Y

STOP
ENTRY POINT

Pass Control! to Instruc~
tion which Transfers to
Subprogram B

Subprogram B

Argument Addresses

Retum Point from
Subprogram B

ENTRY POINT

|

|
|
Y
 Return to
 Main Program
 Retum to

Subprogram A

NOTE ON ASSOCIATED PUBLICATIONS

Part I of this manual supplements the FORTRAN Reference

Manual, Form No. 32-7026. Taken together, Part I and

Form No. 32-7026 completely define the FORTRANII language.

Part II of this manual supplements the FORTRAN Program-

mer's Primer, Form No. 32-0306. Part Il assumes familiarity

with the following types of FORTRAN statements:

Arithmetic: a = b

GO TOn

IF (a) ny, ng, ng

STOP

DOn i= mj, mg

CONTINUE

FORMAT(Specification)

READ n, List

PRINT n, List

DIMENSIONv, v, v, ...

Part II, Chapter 3, which deals with the use of non-FORTRAN

subprograms, assumes in addition a basic knowledge of the sym-

bolic code acceptable to the SHARE Assembly Program, presented

in SHARE Distribution No. 347.

Part III of this manual describes the Binary Symbolic Sub-

routine Loader and supersedesall information previously

distributed to FORTRAN userson the loading of object programs

produced by the original FORTRAN system.

The FORTRAN Reference Manual and Programmer's Primer

may be obtained from the IBM Sales Representative. SHARE

Distribution No. 347 may be obtained from:

SHARE Program Librarian

International Business Machines Corporation

590 Madison Avenue

New York 22, New York

PART 1: THE FORTRAN If LANGUAGE

CHAPTER 1 - GENERAL PROPERTIES OF A FORTRAN II SOURCE PROGRAM

Types of

Statements

Types of
Source Programs

Preparation of
Input to

FORTRANI!
Translator

Classification

of the New

FORTRAN II

Statements

A FORTRAN II source program consists of a sequence of FOR-

TRAN II statements. There are 38 different types of statements in

FORTRAN I, including the 32 types of statements in the original

FORTRAN and 6 additional types. The 6 new types of statements

are described in detail in Part I, Chapter 3. Since the original

FORTRAN statements are part of the FORTRAN II language, all

programs written for the original FORTRAN system are proper

FORTRAN IT programs.

A FORTRANII source program can be either a main program or a

subprogram. Source subprograms are of two types:

a. Subroutines, which must have an initial SUBROUTINE

statement (see page 17).

b. Functions, which must have an initial FUNCTION

statement (See page 18).

There are no changes in the way statement cards are punched.

Main programs and subprograms are prepared as distinct sets of

ecards. The actual input to the Translator may be a deck consisting

of one or more programs, or may be a binary-coded decimal (BCD)

tape written from a deck on the card-to-tape equipment with the

standard SHARE 80 x 84 board. On both cards and tape, the END

statement (See page 22) is treated as an end-of-file indication,

thereby permitting multiple program compilation with a single

loading of the Translator.

The 6 new types of statements may be included in twoof the original

FORTRAN classifications as follows:

Control Statements

CALL

RETURN

s
y 4

Specification Statements

SUBROUTINE

FUNCTION

COMMON

CHAPTER 2 - ARITHMETIC STATEMENTS INVOLVING FUNCTIONS

Arithmetic

Statements

As in the previous FORTRAN system, there are two kinds of arith-

metic statements. The terms used in previous FORTRAN literature

for the two kinds of arithmetic statements are arithmetic formula

and function statement. The latter should not be confused with the

new FUNCTION statement. To avoid confusion of terms, the sec-

ond kind of arithmetic statement will be referred to subsequently

in this manual as a function definition.

The formal description of the function definition is as follows:

General Form Examples

"a= b" where ais a FIRSTF(%) = A*¥X +B

function name followed

by parentheses enclos- SECONDF (X%, B) = A*X +B

ing its arguments (which

must be distinct non- THIRDF(D) = FIRSTF(E)/D
subscripted variables)

separated by commas, FOURTHF(F, G) = SECONDF(F,

and b is an expression THIRDF(G))

which does not involve

subscripted variables. FIFTHF (I, A) = 3.0*A**]

The function name on the

left side of the function SIXTHF (J) =J +K

definition consists of 4 to

7 alphabetic or numeric XSIXTHF (J) = J+ K

characters (not special

characters), of which the

last must be F and the

first must be alphabetic.

Also, the first must be X

if and only if the value

of the function is to be

fixed point. Any functions

appearing on the right

side must be built-in,

or available on the library

tape, or already defined

by preceding function

definitions, or defined by

a function subprogram.

In the left column on the following page are examples of arithmetic

formulas as defined in the FORTRAN manual.

In the right column are the equivalent algebraic formulas.

10

Types of
Functions

FORTRAN

S@ = A**2.0 - (B/C) *D**X

Y¥(3) = A - COSF (C/B)

P = MAXIF (A, B, C, D)

R = ARGF (8, T,W) +A/B r=arg (s, t, w) +

ALGEBRA

-= _2_ D gxi a ad

C
Yg= a-cos yf

p = max (a, b, c, d)

b
a

The second FORTRAN example involves COSF, a library

The third FORTRAN example involves MAXIF, atape function.

built-in function. Assuming ARGFis not a library tape function,

the last of the above FORTRAN examplesis valid only if ARGF has

previously appeared in the program as a function name, with three

arguments, on the left side of a function definition; for example:

ARGF (X, Y, Z) = (D/E) *Z+X**F+Y/G

This FORTRAN statement is equivalent to the algebraic

function definition:

d ff, ¥
arg (xX, y, Z)= @utx + ¥

_ The function definition is very convenient, but it is limited to
functions which can be defined in one statement. FORTRAN I

provides a new means of defining functions - the subprogram with

The new FORTRAN II function isan initial FUNCTION statement.

not subject to the foregoing limitation.

In summary, there are four types of functions in FORTRAN II:

1. Built-in Functions: These functions are pre-defined as

part of the FORTRAN II system and are compiled by the

FORTRAN II Translator as open subroutines. In all, there

are 20 built-in functions in FORTRAN I, the 18 functions

listed on page 13 of the FORTRAN Reference Manual and

2 new functions:

Type ot Definition # of Name | Mode of
Function Args Argument Function

Diminishing Arg, (dim Argo9)| 2 DIMF Floating Floating

(See note XDIMF Fixed Fixed

below)

NOTE: The function DIMF (Arg), Argo) is defined as
Arg, - Min (Arg), Argo).

11

Function Names

Provision has been made for the addition of up to ten built-in

functions by the individual installation. Details are given in

Appendix B, page 61. Also in Appendix B, the twenty built-in

functions provided with FORTRAN II are listed for convenient

reference.

2. Library Tape Functions: These functions are pre-defined

in 704 language and stored on the FORTRANI library tape.

In FORTRAN II, library tape functions are compiled as

closed subroutines, relocatable relative to 0. The library

tape functions to be distributed with FORTRAN I, which

may be supplemented, altered, or replaced by the individual

installation, are the following:

LOG Logarithm

SIN Sine

COS Cosine

EXP Exponential

SQRT Square Root

ATAN Arctangent

TANH Hyperbolic Tangent

3. Functions Defined by a Single Arithmetic Statement: These

functions are as described above.

4, Functions Defined by a Function Subprogram: These

functions are defined either by a FORTRAN II subprogram

headed by a FUNCTIONstatement specifying the name of

the function, or by an equivalent non-FORTRAN subprogram.

Compiled function subprograms, like compiled library tape

functions, are relocatable relative to 0. The FUNCTION

statement is described in detail on page 18.

Once defined, the four types of functions are used in the same

way in a FORTRAN I source program; that is, the function is

specified in an arithmetic formula. For example, the arithmetic

formula

Y(3) = A - COSF (C/B)

will cause the cosine of C/B to be computed, using the library tape

cosine function, and subtracted from A; the result will then be

assigned as the current value of Y(3).

The FORTRAN II Translator distinguishes a function name with a

parenthesized list of arguments from a subscripted variable by

examining the DIMENSION statements in the program. A sub-

scripted variable must be listed in a DIMENSION statement, and a

12

Additional

Examples

function name must not be so listed. Having determined that an

alphanumeric symbol is a function name, the Translator deter-

mines the type of function by examining the characters used to

specify the function.

1.

2.

A built-in function is specified by a name which is uniquely

reserved for it and listed in a dictionary on the system tape.

A library tape function is specified by its name with a

terminal F added. With the terminal F added, the name

consists of 4 to 7 alphabetic or numeric characters, of

which the first is alphabetic and the last is F. Also, the

first must be X if andonly if the value of the function is to

be fixed point.

. A function defined by an arithmetic statement (function

definition) is specified by the name on theleft side of the function

definition. This nameis not distinct in form from a library

tape function name, but is recognized because of its previous
Anmwrnnannn Inia fumantian Anfiniting
OCCuUrTrEence iff a tuNCtviOn GELinition.

. A function defined by a FUNCTION subprogram is specified

by a name which is formally distinct from the names of

other types of functions. This name consists of 1 to 6

alphabetic or numeric characters, the first of which must

be alphabetic; the first character must be I, J, K, L, M,

or N if and only if the value of the function is to be fixed

point, and the last character must not be F if the total

number of characters is 4 or more.

1. Built-in Function

Meansof definition: The open subroutine MAXI1Fon the

FORTRANII system tape.

Example of use in a source program:

FOR iz!
i |= |

COMMENT 5S |
z

1

STATEMENT
NUMB:ER

zira
8 |

5 6 7

FORTRAN STATEMENT

__'READ 2, A, B, C, D, E

2,FORMAT(1P5E14. 5)

 BIGX = MAXIF (A, B, C, D, E,)
‘PRINT 2, BIGX __

t

| STOPoe

13

Library Tape Function

Meansof definition: The closed subroutine SQRT on the

FORTRAN II library tape.

Example of use in a source program:

FoR

COMMENT
STATEMENT
NUMBER

1 5) 6) 7

FORTRAN STATEMENT

72

READ 2, A, B, C

|
|
—

I
|
|
|

2 |__|FORMAT (1P5E14.5)
X=(-B - SQRTF (B ** 2.0 - 4.0 * A * C))/(2.0*A)

|__|PRINT 2, X
STOP

Le.

Note that from the point of view of the writer of the source

program the terminal F is part of the nameofthe library tape

function.

FOR 3
=

COMMENT 3

STATEMENT
NUMBER

|

14

Function Defined by an Arithmetic Statement

Example of the definition (first statement) and use of this type

of function:

FORTRAN STATEMENT

4. Function Defined by a FUNCTION Subprogram

Example of a FUNCTION subprogram, defining the

function SUM:

FOR 3

comment 3 FORTRAN STATEMENT
STATEMENT 5
NUMBER oo

1 5 6 7 — — 72

| FUNCTION SUM (A, NA, B, NB) oe

! DIMENSION A(500), B(500) __ ne ee .
j

l __ |SUM=A(1) ~ a
ne REERIREE, AS

__|DO5 J=2, NA

| 5 | _|SUM= SUM + Aq) we ee
| __ [D0 10 I=1, NB oo _

|_ 10 SUM= SUM + B()

| __|RETURN
]
| __ -—. ee ee eee ee —

Example of the use of the SUMfunction in a main program

(NX, NY, NV, and NW are each < 500):

FOR &

| _comment 5 FORTRAN STATEMENT
STATEMENT z ,
NUMBER 8

1 s| 6/7 oe a 22

| DIMENSION X(500), ¥(500), V(500), W(G00) aee

| READ 2, NX, NY, NV, NW, X, Y, V, W ee 7
| __| AVERG=(SUM(X, NX, Y, NY) + SUM‘V, NV, W,NW))/FLOATF (NX+NY+NV+NW)

| __| PRINT 10, AVERG -
I

|_| 2 |__| FORMAT (418/ (1P5E14.5)) _. cee

| 10 FORMAT (35H AVERAGE OF X, Y, V, AND W LISTS IS1PE14.5) |

| STOP ee

15

CHAPTER 3 - THE NEW FORTRANII STATEMENTS

CALL

General Form Examples

CALL NAME(aj, a9, -.+5 ap) CALL MATMPY(X,5, 10,

where NAMEstands for the sym- Y, 7, Z)

bolic name of a subroutine, and

the arguments aj, a9, ..-, ay, | CALL QDRTIC(P * 9. 732,
if any, may each have one of Q/4.536, R - S**2.0, X1,

seven forms, described in the X2)

text below.

This statement causes transfer of control to the subroutine NAME

and presents the subroutine with the arguments, if any, enclosed

in parentheses. The order of the arguments is taken from thelist,

reading from left to right. There must be agreement in number,

order, and mode between the argumentlist of the corresponding

SUBROUTINE statement.

_ An argument in the CALL statement must be one of the

following:

1. Fixed point constant

Floating point constant

Fixed point variable, with or without subscripts

Floating point variable, with or without subscripts

A FORTRAN II arithmetic expression

An argumentof the following form:e
r
r

Y
e
t

nHx, K9 ee Xp

where the x's are any n Hollerith characters.

A Hollerith argument is interpreted in the same way as a

Hollerith field in a FORMAT statement. It is not the name of a

variable but, as with constants, is itself the data to be operated

on. A Hollerith argument is stored as follows:

1, The characters nH are dropped.

2. The first Hollerith character x, is stored as the first

character of the first word.

3. The remaining characters, including blanks, are stored

as successive characters, six to a word, in successive

words.

4, If the last word contains less than six characters, it is

filled out with blanks.

5. Aword consisting of 36 binary 1's is stored immediately

after the last word.

16

SUBROUTINE

General Form Examples

SUBROUTINE NAME (Aj, ag, --., SUBROUTINE MATMPY
a,) where NAMEstandsfor the (A, N, M, B, L, C)
symbolic nameof a subroutine,

and the arguments 41, 49, ..-, 4,

|

SUBROUTINE QDRTIC
if any, are non-subscripted variable (B, A, C, ROOT,
names. The subroutine name con- ROOT2)
sists of 1 to 6 alphanumeric cha-

racters, the first of which is

alphabetic; the final character must

not be F if the total numberof

characters is 4, 5, or 6. Also, the

subroutine name must not occur in

a DIMENSION statement in the

subroutine, nor in a DIMENSION

statement in any program having a

CALLfor the subroutine. The

arguments may be any variable

names occurring in executable statements in the subroutine.

This statement, when used, must bethefirst statement in a
program and defines the program to be a subroutine. A sub-
routine introduced by a SUBROUTINE statement must be a
FORTRAN II program and may contain any FORTRAN II state-
ments except a FUNCTION statement or another SUBROUTINE
statement. If several programsare stacked together to form a
Single source language deck for multiple program compilation,
each SUBROUTINE or FUNCTION statement marks the beginning
of a new program, and successive programs must be separated
by an END statement. Thus, it is not permissible to insert a
subprogram between two statementsof a higher level program.

A subroutine introduced by a SUBROUTINEstatementis
called into the main program by a CALL statement specifying
the name of the subroutine. For example, the subroutine
introduced by SUBROUTINE MATMPY(A, N, M, B, L, C) could
be called into the main program by the statement

CALL MATMPY(%, 5, 10, Y, 7, Z).

In the above, X, Y, and Z are matrices which are given the same
size dimensions in the DIMENSION statementof the calling
program as A, B, and C are given in the DIMENSIONstatement
of the subroutine. The operations specified in the subroutine for
A, N, M, B, L, and C would be performed on the X matrix, 5, 10,
the Y matrix, 7, and the Z matrix, respectively. Note the

17

FUNCTION

correspondence between the list in the main program and the

list in the subroutine. There must be agreement in number,

order, and mode between the argument list following the sub-

routine name in the CALL statement and the argumentlist in

the SUBROUTINE statement.

If an argument is the name of an array, it must appear in a

DIMENSION statement following the SUBROUTINE statement. A

DIMENSION statement must be given in the main program,

specifying the same dimensions for the corresponding CALL

statement argument. The actual dimensions of the array must be

less than or equal to the specified dimensions. If the actual

dimensions are less, this information can be conveyed to the

subprogram by means of arguments which, in the subroutine, are

indexing parameters. In this case, of course, some of the

locations reserved for the array will be unused.

General Form Examples

FUNCTION NAME(a1, a9, ---, 4) FUNCTION ARCSIN

where NAMEstands for the symbolic (RADIAN)

name of a single-valued function,

and the arguments aj, a9, ...; ay FUNCTION ROOT

are non-subscripted variable names. (B, A, C)

The function name consists of 1 to 6

alphanumeric characters, the first FUNCTION INTRST

of which is alphabetic; the first (RATE, YEARS)

character must be I, J, K, L, M,

or N if and only if the value of the

function is to be fixed point, and

the final character must not be

F if the total number of charac-

ters is 4, 5, or 6. Also, the

function name must not occur in

a DIMENSION statement in the

FUNCTION subprogram, nor ina

DIMENSIONstatement in any

program which uses the function.

The arguments may be any variable

names occurring in executable

statements in the subprogram.

There must be at least one argument.

This statement, when used, must be the first statement in a

program and defines the programto be a function subprogram.

A subprogram introduced by a FUNCTION statement mustbe a

18

FORTRANII program which evaluates a single-valued function,
that is, a function which has one and only one value for a given
set of arguments. The FUNCTION subprogram maycontain any
FORTRANII statements except aSUBROUTINE statement or
another FUNCTION statement. If several programs are stacked
together to form a single source language deck for multiple
program compilation, each FUNCTION or SUBROUTINE statement
marks the beginning of a new program, and successive programs
must be separated by END statements. Thus, it is not permissible
to insert a subprogram between two statements of a higher level
program. :

A subprogram introduced by a FUNCTION statement is called
for in the main program by an arithmetic formula involving the
function name. For example, the subprogram introduced by
FUNCTION ARCSIN (RADIAN)could be called for in the main
program by the arithmetic formula:

A = B - ARCSIN (X)

The current value of the argument X would be assigned to
RADIANin the subprogram. The arcsine of X would be computed
and subtracted from the current value of B, and the difference
assigned as the value of A. Note the correspondence between X
in the main program and RADIANin the FUNCTION statement.
There must be agreement in number, order, and mode between
the argumentlist following the function namein the main program
and the argument list in the FUNCTION statement.

If an argument is the name of an array, it must appear in a
DIMENSIONstatement following the FUNCTION statement. A
DIMENSIONstatement must be given in the main program,
specifying the same dimensionsfor the corresponding function
argument appearing in an arithmetic formula. The actual
dimensionsof the array must be less than or equal to the specified
dimensions. If the actual dimensionsare less than the specified
dimensions, someof the locations reserved for the array will
be unused.

In a FUNCTION subprogram, the name of the function must be
evaluated as a variable on the left side of an arithmetic formula;
for example, by means of a DO loop:

19

FOR

=
COMMENT 5 FORTRAN STATEMENT

STATEMENT
NUMBER

It is the final value of the function name, used as a variable,

that is returned as the function value.

COMMON GENERAL FORM EXAMPLES

"COMMONA,B,...'' where COMMON X, ANGLE,

A, B,.... are the namesof MATA, MATB

variables and non-subscripted

array names.

Variables, including array names, appearing in COMMONstate-

ments are assigned to upper storage. They are stored in locations

completely separate from the block of program instructions,

constants, and data. This area is assigned separately for each

program compiled. The area is assigned beginning at location

77462. and continuing downwards. This separate (COMMON)

area may be shared by a program and its subprograms. In this

way, COMMONenables data storage area to be shared between

programsin a way analogousto that by which EQUIVALENCE

permits data storage sharing within a single program. Where

the logic of the programs permit, this can result in a large

saving of storage space.

Array names appearing in COMMON must also appear in a

DIMENSIONstatement in the same program.

The programmer has complete control over the locations assigned

to the variables appearing in COMMON. The locations are assigned

in the sequence in which the variables appear in the COMMON

statements, beginning with the first COMMON statement of the

problem.

20

Arguments in

Common

Storage

Because of the above, COMMON statements may be used to

serve another important function. They may be used as a medium

by which totransmit arguments from the calling program to the

called FUNCTION subprogram or SUBROUTINE subprogram.

In this way, they are transmitted implicitly rather than explicitly

by being listed in the parentheses following the subroutine name.

To obtain implicit arguments, it is necessary only tohave the

corresponding variables in the two programs occupy the same

location. This can be obtained by having them occupy corresponding

positions in COMMONstatements of the two programs,

Notes:

1. In order te force correspondence in storage locations

between two variables which otherwise will occupy different

relative positions in COMMONstorage, it is valid to place

dummy variable names in a COMMONstatement. These

dummy names, which may bedimensioned, will cause reservation

of the space necessary to cause correspondence.

b
o

While implicit argumMmencs Can Land tic viavrr VL
nll sreuments
aii aLlLepguLLITLLLYD

in SUBROUTINE subprogram, there must be at least one

explicit argument in a FUNCTION subprogram. Here, too,

a dummy variable may be used for convenience.

The entire COMMONarea maybe relocated downward for any

one problem by means of a Control Card (See FORTRAN

Operations Manual).

When a variable is made equivalent to a variable which appears

in a COMMONstatement, the first variable will also be located

in COMMONstorage. When COMMONvariables also appear

in EQUIVALENCEstatements, the ordinary sequence of

COMMONvariables is changed and priority is given to those

variables in EQUIVALENCEstatements, in the order in which

they appear in EQUIVALENCEstatements. For example,

COMMONA, B, C, D

EQUIVALENCE(C, G), (E, B)

will cause storage to be assigned in the following way.

21

RETURN

END

77462. CandG

77461 B and E

77460° A

77457 D
8

General Form Examples

RETURN RETURN
This statement terminates a subprogram and returns control to

the calling program. A RETURN statement mustbe the last

statement to which control passes in a function subprogram or a

subroutine; that is, it must be the last statement logically, but

not necessarily physically.

General Form Examples

END (11, Ig, Ig, I4, I5) where I END (2, 2, 2, 2, 2)

is 0, 1, or 2 (fixed point integers).| END (1, 2, 0, 1, 1)
An END statement, when used, must be the physically last state-

ment ina program. The I's in the END statement, all of which

must be specified, control the interrogation of Sense Switches 1

through 5, respectively, on the 704 console:

I =0 means "Ignore the Sense Switch and assumeit to be in

UP position."

I = 1 means "Ignore the Sense Switch and assumeit to be in

DOWN position. "'

I = 2 means 'Interrogate the Sense Switch."

If 1, = 0 or 1, the console operator's setting of Sense Switch n

will be overridden by the programmer's option. Thus either the

programmeror the operator may, at the option of the programmer,

control certain FORTRAN II operations. If the END statementis

omitted in single program compilation, the absence of the END

statement is equivalent to an END statement with all I's equal to 2.

In addition to controlling the interrogation of Sense Switches,

the END statement is treated as an end-of-file on either the card

reader or tape, thereby permitting multiple program compilation

with a single loading of the FORTRAN II Translator. In multiple

program compilation, the physically last statement in each

program must be an ENDstatement.

Sense Switch 6 in the DOWN position causes FORTRANII to

assume multiple program compilation (‘batch compiling").

Sense Switch 6 in the UP position causes FORTRAN II to assume

22

a single program is to be compiled. The functions of Sense

Switches 1 through 5 are as follows:

Sense Switch 1

Sense Switch 2

Sense Switch 3

Sense Switch 4

23

UP

DOWN

UP

DOWN

UP

Binary cards for the object program(s)

are punched on-line. If not batch

compiling, tape unit 3 contains the

binary program. If batch compiling,

tape unit 3 contains the binary output

for the last program compiled. Tape

unit 7 contains no binary programs.

Binary cards for the output program(s)

are not punched. Tape unit 3 contains

the binary program for the last or

only source program compiled. If

batch compiling, tape unit 7 contains

the binary programsforali the

source programs compiled in the order

they were compiled.

Produces, on tape unit 2, two files for

the source program compiled, con-

taining the source program and a map

of object program storage. If batch

compiling, tape unit 6 will contain two

files for each program compiled and

tape unit 2 will contain twofiles for

the last program compiled.

Adds a third file for each program

compiled (see above) containing the

object program in SAP (SHARE

Assembly Program) type language

on tape unit 2 (and 6, if batch

compiling).

No on-line listings are produced.

Lists on-line the first two or three

files of tape unit 2, depending on the

setting of Sense Switch 2.

Causes FORTRAN II to produce a

program optimized with respect to

index registers.

Sense Switch 5

24

DOWN

UP

DOWN

Causes FORTRAN II to produce a

program not fully optimized but which

will be translated from a source to an

object program more rapidly.

Library Routines are not to be punched

out or written on tape unit 3.

Causes Library Routines to be punched

on-line or written on tape unit 3, de-

pending on whether Sense Switch 1 is

in the UP or DOWNposition.

PART II:

25

PRIMER ON THE NEW FORTRAN II FACILITIES

CHAPTER 1 - FORTRAN II FUNCTION SUBPROGRAMS

Purpose of In FORTRAN JI, functions which are not available as built-in

FUNCTION functions or library tape functions and which cannot, or cannot

Subprograms conveniently, be defined by a function definition may be defined

by a subprogram headed by a FUNCTION statement. Like the

other three typesof functions, the function defined by a sub-

program must be single--valued; that is, it must have one and only

one value for a given set of arguments. Lists and two- or three-

dimensional arrays can, however, be computed and returnedto

the main program by a FORTRAN II subroutine - a subprogram

headed by a SUBROUTINEstatement. On the object program level,

the only difference between a FUNCTION subprogram and a

SUBROUTINE subprogram is that the single result of the FUNCTION

subprogram is left in the Accumulator for further computation in

the main program, and the result or results produced by the

SUBROUTINE subprogram are assigned to storage locations.

Example 1: One of the principle uses of the FUNCTION subprogram is to

Function of define a function of one or more arrays. The following simple

an Array example illustrates this use.

It is desired to write a subprogram to compute the average value

of a one-dimensional array of N floating-point numbers, where

N

is

less than or equal to 500. The following subprogram will carry out

this procedure.

FORC< :
COMMENT 3 FORTRAN STATEMENT

sane” 2

5 6 (7
72

1 |_| FUNCTION AVRG (ALIST,) EuUNCTIOW LEIMVO [x \

| __| DIMENSION ALIST (500) ’

|__ |SUM= ALIST (1)
__DO 10 1=2, N

10 | |SUM=SUM+ ALIST ()
__|AVRG=SUM / FLOATF(0)
|__|/RETURN

|__/END (2, 2, 2, 2, 2)

Dummy Variables The arguments listed in parentheses after the function namein the

FUNCTION statement are dummy variables. In Example 1, the

dummy variables listed as arguments of the AVRG function are

ALIST and N. The dummy variable names may be different from

the corresponding arguments listed after the function namein the

calling program. The only requirements are:

1. The dummy variable list in the subprogram must agree in

27

Restriction

on Statements

Involving

Dummy Variables

Example 2:
e

Series
Evaluation

number, order, and mode with the corresponding argument
list in the calling program.

2. If adummyvariable name represents an array, equivalent
DIMENSION statements must be made for the dummy
variable in the subprogram and the corresponding argument
in the calling program.

For example, the AVRG function could be called for in a
main program as follows:

C~< :
comment

{

5
FORTRAN STATEMENT

rE
z
oo

Note that the DIMENSION statementin the main program

specifies the same length (500) for the array named SET as the
DIMENSION statement in the subprogram specifies for the
dummy variable ALIST. This is required even though the actual
length of SET is only 200. The argument 200 is supplied to the
subprogram from the main program andis used in the subprogram
as an index maximum.

A dummy variable in a FUNCTION subprogram should not

normally appear on the left side of an arithmetic statement,
except as a variable subscript. The reason forthis is that it
is generally undesirable to change the value of the arguments
supplied to the subprogram bythe calling program. Similarly,
a fixed-point dummy variable should not normally appear in an
ASSIGN statement.

The following subprogram is an example of a series evaluation
with IF-type branching. The function defined by this subprogram
cannot be defined in a single statement. The subprogram computes
the value of arctan x, correct to 4 decimal places, for any given
argument x greater than or equal to zero. Actually, the arc-
tangent function is available on the FORTRANII library tape and,
in practice, would not normally be rewritten as a function sub-
program. It will, however, serveto illustrate a type of problem.

28

Where 0 < x <1, the following series equation is used in the

subprogram:

3 5 7

arctan x =x -2 += - > + cee
D 7

Where x >1, the following equation is used:

3 5 7

a 1a) @,@
arctan xX =— -—+—- —+—-

2 x 3 5 7?

FOR

COMMENT FORTRAN STATEMENT
STATEMENT
NUMBER

>
CO

NT
IN

UA
TI

ON

rr 7 72

t
s __|FUNCTION ARCTANG)

| IF@ 2, 3, 3
| | _2!_istop

3|_ |ARCTAN=0.0

IF (X - 1.0) 10, 10, 5

o
a | /TERM= - 1.0/X

ARCTAN = 1.57079

GO TO11

10.'TERM=X
11| /PREVXP 1.0

__|¥= TERM ** 2,0

12|‘ARCTAN= ARCTAN + TERM

PRESXP = PREVXP + 2.0

13 TERM = - PREVXP/PRESXP* Y * TERM

PREVXP = PRESXP

15| IF (-TERM - 0.00005) 16, 12, 12
16; |RETURN

20| END (2, 2, 2, 2, 2)

|

|
I

|

|
|

|
! 14| IF (TERM - 0.00005) 15, 12, 12

|

i
|

|

Statement 13 is an arithmetic formula which calculates

successive terms of either series. In this equation, the variable

PRESXP stands for the exponent of X in the term currently being

calculated, and PREVXP for the exponent of X in the previous

term. Statements 14 and 15 test for the desired accuracy. When

enough terms have been taken, the iterative calculation and

summation of terms ceases. Statement 16 returns control to

the calling program.

The following is a main program calling for the ARCTAN

function. |

29

Main Program

Function
Arguments

FOR
C< 2

coumewt

|

3 FORTRAN STATEMENT

t

STATEMENT
NUMBER u

5] 6 7
72

DIMENSION A(2), B(2), C(2)

__|READ 2, A, B,C

__|ANGLEI = ARCTAN (MAXIF (A(1), B(), C(1)))

ANGLE2 = ARCTAN (MINIF (A(2), B(2), C(2)))

ANGLE3= ANGLEI1 - ANGLE2

|

|
|

|

| 7|

PRINT 2, ANGLE1, ANGLE2Z, ANGLE3

STOP

Note that the FUNCTION subprogram will be executed twice in
carrying out the above procedure. In the computation of ANGLE1,
the operations specified for X in the subprogram will be performed
on the value returned by the built-in MAXI1Ffunction. Similarly,
in the computation of ANGLE2, the operations specified for X in
the subprogram will be performed on the value returned by the
built-in MINIF function.

The main program in example 2 illustrates the use of functions
as FUNCTION arguments. The dummy variable names in a subprogram
argument list must be non-subscripted variables. However, any
legitimate FORTRAN II constant, variable (subscripted or non-
subscripted), function, expression, or name of an array may be
used as a FUNCTION argument in a calling program, provided the
corresponding dummy variable in the subprogram has the same
mode. A Hollerith argument (see page 16) may also be used. As
a Hollerith argument does not have a mode, the naming of the
corresponding dummy variable is arbitrary with respect to mode.
Although Hollerith arguments can be supplied as data to FORTRAN I
subprograms, Hollerith arguments are useful principally in con-
Junction with non-FORTRANsubprograms.

30

CHAPTER 2 - FORTRAN II SUBROUTINES

Purpose of FORTRANII subroutines, that is, subprograms headed by a
FORTRANII SUBROUTINEstatement, may be written to carry out procedures
Subroutines for which the FUNCTION-type subprogram is inappropriate.

In general, the subroutine is used for the computation of lists
and arrays, which cannot be computed in a single run of a
FUNCTION subprogram, and for the performance of segments
of a total problem (e.g., complex input and output operations)
which are more conveniently written separately or are applicable
to more than one problem. The subroutine may also be used as
an alternative to the FUNCTION subprogram in cases where there
is no particular advantage to using the function notation in the
calling program.

Example |: Subroutine:

Matrix 1 Fh
< = |

Multiplication commen 2 FORTRAN STATEMENT
NUMBER oo

7
72

SUBROUTINE MATMPY(A, N, M, B, L, © . .
DIMENSION A (10, 15), BQ5, 12), C0, 12)0

po|DOST=1,N
_ DOS J=1, L

3 _le@n=0.0.eee

i8CG OD=CLD+aALH*BKDe
_RETURN

|_ 7END @,2, 2, 2, 2)

Main Program

FoR
C< é

COMMENT

|

3 FORTRAN STATEMENT
STATEMENT
NUMBER

5|__| CALL MATMPY 5, 10, Y, 7
|

__| CALL MATMPY (D, 6, 8, E, 5, F)
| DO 13J=1, 7

| -4

(continued on next page)

31

(continued from preceding page)

=
COMMENT |5z

FoR | =

FORTRAN STATEMENT
STATEMENT
NUMBER vo!

& 7
- 72

14

15
16

__|PRINT 15, (FG, J), I=1, 6)

__|FORMAT (6 E 15.6)
__ STOP

Dummy Variables

and Main

After the first transfer (statement 5 in the main program) to

the subroutine MATMPY, values in the X matrix will be substituted

for the dummy variable A, 5 for N, 10 for M, values in the Y

matrix for B, and 7 for L. The values in the X and Y matrices

will not all be used by the subroutine, since the CALL statement

specifies the values 5, 10, and 7 for N, M, and L, respectively,

which function in the subroutine as subscript maxima. These

maxima are less than the values (10, 15, and 12, respectively)

which wouid cause the subroutine operations to be performed on

the entire X and Y matrices. The actual Z matrix computed by

the subroutine will be

10

Z-=) Xa, Yi-4
Ij =

=1

forI=1, 2, , 5andJ=1, 2, ..., 7. The resulting 5 by 7

matrix will be stored in the locations for Z] 1, 29,1, 43,1;

Z4,1: Z5 1: Zi 2: Zo2s ees Zs7 The arguments listed in

the second CALL statement will be similarly operated on after

the second transfer to the subroutine, and the resulting 6 by 5 F

matrix will be stored in the locations for F,, through F¢5.

After control is returned the second time to the main program,

the computed 5 by 7 Z matrix will be printed out in natural order

(Z],1 through Zs, 7, as listed above), followed by the computed

6 by 5 F matrix in natural order (F1,1 through F¢5).

The same general restrictions on the naming and use of dummy

variables apply to subroutines as apply to FUNCTION subprograms.

Note, however, that the SUBROUTINElist will usually contain

one or more dummyvariables standing for the result or results

to be returned to the calling program; in example 1, C is the

dummy variable for the matrix to be computed. The dummy

variable for a result may be freely used on theleft side of

arithmetic statements, as C is used in statements 3 and 5 in the

MATMPYsubroutine. In addition to the use of constants,variables

(subscripted or non-subscripted), functions, expressions, and the

32

Example 2:
Computation
of Arrays

names of arrays as arguments in CALL statements, a Hollerith
argument may be used, as explained on page 16. As a Hollerith
argument does not have a mode, the namingof the corresponding
dummy variable is arbitrary with respect to mode. In practice,
as stated in the preceding chapter, Hollerith arguments are
useful principally in conjunction with non-FORTRAN subprograms.

The condition for critical dampingof a circuit consisting of
resistance, capacitance, and inductance in series is given by the
relation

C= 4L/R?

where R is the resistance in ohms

L is the inductance in henrys

C is the capacitance in farads.

The instantaneous current of an LCR circuit meeting the
critical damping condition is given by the relation

a)
C -Rt/2L

j=————-e t
L

where i_ is the instantaneous current in amperes
E is the average voltage in volts

is the initial charge on the capacitor in coulombs
t is the time elapsed in seconds since the circuit was

closed

e is 2. 71828

R, L, and C are as above.

A subroutine is to be written which will do the following:
1. Compute the values of capacitance which satisfy the

critical damping condition for all pairs that can be formed
from up to 50 values of inductance and up to 50 values of
resistance.

2. Compute the corresponding values of the current, given
a set of conditions consisting of the average voltage,
the initial charge, and 10 values of the time elapsed since
the circuit was closed.

3. Call in another subroutine which will transmit the computed
values and the various data as output in some desired form.

4, Return control to the calling program.

33

Partitioning

of Problems

Joining
Pre-Written

Programs

FoR

COMMENT

STATEMENT
NUMBER

A subroutine to carry out this procedure could be written

as follows:

FORTRAN STATEMENT

C
O
N
T
I
N
U
A
T
I
O
N

FORTRAN HI is particularly adaptableto the partitioning of a

problem into convenient segments. This is illustrated by example 2,

in which the subroutine LCRDMPcalls for the subroutine OUTPUT,

to be written separately. Moreover, the subroutine LCRDMP,

rather than being of general utility, might well be a segment of

a larger problem. The chief advantage of partitioningis that
various parts. of thetotal problem may becoded, compiled, tested,

and debuggedat different times. In the event that changes are
required in one portion of a problem, proper initial partitioning

can resultin a considerable saving of programming time and

machine time.

The new subprogram facilities of FORTRAN II make it possible to

convert pre-written programs to subprograms and usethem jointly.

A main program can be written for the particular problem at hand;

this main program maybe essentially a call program, directing

the flow of control among various subprograms.

A FORTRAN program can readily be converted to a FORTRANII

subprogram, of either the FUNCTION or SUBROUTINEtype, which-

ever is appropriate. For example, the program described in the

Programmer's Primer for FORTRAN, Form No. F28-6019, pp. 53-58,

might well be useful as a subprogram in the solution of a larger

problem.

This program reads in a set of values xj, yi, wherei=1, ...,

n, andn <100. It then calculates and prints out the m + 1 coeffi-

cients ag, a1, ..-, a, obtained byfitting the n points (x, yj) by

the least-squares method to the m-degree polynomial

34

2 m
Y=agt ay X+a,X + ...+ ay X

where m < 10.

Assumethat this program is to be converted to a FORTRAN I

subroutine with the symbolic name POLFIT, and that input and

output is to be handled by the main program having a CALL for

POLFIF. The program can then be converted to a subroutine by

deleting the READ, PRINT, and FORMAT statements and placing

the following statement at the head of the program:

SUBROUTINE POLFIT (X, Y, M, N, A)

and the following statement at the end of the program, replacing

the STOP statement:

RETURN

An END statement may, if desired, be written after the RETURN

statement. Where m = 10 andn=100, the main program might have

the following CALL statement:

CALL POLFIT (XSET, YSET, 10, 100, COEFNT)

After return of controlto the main program from the subroutine

POLFIY, called by the above statement, the array of computed

coefficients. would be referred to subsequently in the main program

by the name COEFNT. For example, the main program could

printthe array by means of the following statements:

b<
COMMENT z | FORTRAN STATEMENT

FOR | =oO1 34

STATEMENT EY!
NUMBER 8

33_6 ? 72

 __50);FORMAT (E15. 6)

PRINT 50, (COEFNT (), 1=1, 11)

Note that POLFIT cannot be converted to a subprogram of the

function type, since the result of the computation is not a single

value.

35

CHAPTER 3 - SUBPROGRAMS CODED IN 704 SYMBOLIC LANGUAGE

Use of Non-

FORTRAN

Subprograms

Calling Sequence

Programs assembied by a system other than FORTRAN or FORTRAN Ii

can also be linked to FORTRAN II programs by means of the new sub-

program facilities. This chapter is concerned with object subprograms

whose source language was the symbolic code acceptable to the SHARE

Assembly Program (SAP).

SAP subprograms can be used in the same way as FORTRANII

subprograms, of either the FUNCTION or SUBROUTINEtype, provided

the SAP coding answers properly to the calling sequence produced by

the FORTRAN II Translator, returns results in the manner of the

appropriate type of FORTRANII subprogram, and preserves the index

register settings. Thus, SAP subprogramscoded in conformity to the

SUBROUTINE type can be linked to a FORTRANII program by a CALL

statement, and SAP subprograms coded in conformity to the FUNCTION

type can be linked to a FORTRANII program by an arithmetic formula.

A calling program produced by FORTRANII always has a calling

sequence equivalent to the following SAP instructions:

SAP Transfer

List and

Prologue

There are n+ 1 words in the calling sequence. Thefirst

causes transfer of control to the subprogram. The remaining n

words include one word for each argument. In the case of an array,

there is one wordfor the entire array, containing in the address

field the location of the first member of the array, i.e., the mem-

ber whose subscripts are all 1's.

Immediately preceding the main part of the sequence of machine

language instructions, a translated FORTRAN II subprogram,of

either the function or the subroutine type, has a Transfer List if

it refers to one or more lower level subprograms, and always has a

prologue. The coding below gives the general form of a Transfer

36

List and prologue produced by FORTRAN I. If the subprogram

refers to N lower level subprogram names, there are N names in

the Transfer List. If the subprogram does not refer to lower level

subprograms, there is no Transfer List. Similarly, there is a
pair of CLA and STA instructions for each argument. If there are

no arguments (permissible only for the subroutine type of sub-

program), there are no CLA and STAinstructions in the prologue.

H LOCATION ADDRESS, TAG, DECREMENT COMMENTS

t 12

for contents of index

for contents of index

A SAP subprogram to be used with FORTRAN II programs

must obtain its arguments and preserve the index register contents

in a similar but not necessarily identical way. A SAP subprogram

must conform to the above coding in the following respects.

1. If the subprogram modifies the contents of any of the three

index registers, it must contain instructions which will save

and restore the original contents, so that the index register

settings after execution of the subprogram are the same as

they were upon entry to the subprogram. In a FORTRAN I

subprogram, the restoration of the index register contents

is effected by the equivalent of the following SAP instructions,

37

Results

immediately preceding the transfer of control back to the

main program:

Address, Tag Decrement

4 Restore contents of IR4 from

2. The subprogram must obtain the locations of its n arguments

from the addressfields of locations (1, 4), (2, 4,,

(n, 4), where index register 4 is as set by the main program

upon transfer to the subprogram. In the case of an array,

the subprogram must obtain the location of the first member

only in this way, i.e., the member whose subscripts are

all i's. An array is considered one argument.

3. The subprogram must begin with a Transfer List if it calls

for other subprograms, assembled separately from it, by

instructions of the form:

 TT =
Location | i Op {| Address, Tag Decrement Comments

al

i| «Lorex |SUBPN, 4

6| 748 10] 11112 2

A subprogram of the function type mustplace its single result in

positions 8, 1, 2, ... , 35 of the Accumulator prior to return of

control to the main program.

A subprogram of the SUBROUTINEtype must place each ofits

results, if any, in positions 8, 1, 2, ... , 35 of a storage location.

A result represented by the nth argument in a CALL statement must

be stored in the location obtained from the addressfield of (n, 4),

where index register 4 is as set by the main program upon transfer

to the subprogram.

A FUNCTION subprogram always produces a single result. A

subroutine may produce as many results as are specified as argu-

ments in the CALL statement. Subroutines usually have arguments

for results, but it may be desirable to write a subroutine which

operates on data without returning results - for example, an output

subroutine.

38

Return

Entry Points

Program Card

A subprogram which has n arguments must return control to
location N+ 1, 4), where index register 4 is as set by the main
program upon transfer to the subprogram. The final machine
instruction in a translated FORTRAN II subprogram is always
equivalent to the following symbolic instruction:

Location Op Address, Tag Decrement
Comments

6, 718 We: Ut

y

12
72

TRA n+l, 4 Return

This instruction is immediately preceded by the three LXD
instructions which restore the contents of the index registers.

Unlike a FORTRAN II subprogram, a SAP subprogram may have
more than one entry point. A SAP subprogram used with a
FORTRAN I program maybe entered at any desired point,
provided a subprogram name acceptable to FORTRAN II is assigned
to the selected entry point, and provided all the foregoing conditions
are fulfilled when the subprogram is so entered. The entry point
hame or names by which a FORTRAN II main program refers to a
SAP subprogram need not have been usedin the original symbolic
coding. Control information for the interpretation of the entry
point name or names must always be furnished on a Program Card,
as described in the following section.

The FORTRAN II Translator automatically produces a Program
Card for a FORTRAN II main program or subprogram as part of
the machine language deck. For SAP subprograms, however, the
Program Card must be furnished by the coder and placed at the
head of the machine language deck produced by SAP. A complete
description of the format of a Program Cardis given in Part II.
The following description specifies the information which must be
punched on a Program Card for a SAP subprogram not using data
in common storage:

Rows Columns

9 1 Must be punched.

2, 3 Not significant.

4-18 Number of words on this card,

not counting row 9.

39

Rows Columns

9 19-21

22-36

37-72

4-18

19-21

37-57

58-72

7 1-36

37-57

98-72

Not significant.

Must be blank.

Add-and-carry-logical checksum

of all words on this card, not

counting row 9, cols. 37-72.

Not significant.

Number of words in Transfer List.

Not significant.

Total number of words in subprogram,

including data used by the subprogram

other than data in commonstorage.

This is the same numberasthe pro-

gram break location, the location

following the highest non-common

location, relative to 0, in the program

about to be loaded.

Not significant.

Zero for subprogram not using common

storage.

BCD representation of the name

assignedto the first entry point for

purpose of reference in FORTRAN II

programs. If the name has fewer

than 6 characters, each unused

6-digit group at the right must be

filled in with the BCD character

110000.

Not significant.

Location (relative to 0 within sub-

program deck) of the first entry

point.

Program Break

Rows Columns

6 1-36 BCD representation of the name

assigned to the second entry
point, if any, (same requirements

as for row 7, cols. 1-36).

37-57 Not significant.

38-72 Location (relative to 0 within

subprogram deck) of the second

entry point.

5 1-36 BCD representation of the name

assigned to the third entry point,

if any, (same requirements as for

row 7, cols. 1-36).

etc.

Row 7, columns 1-36 must never be blank for a subprogram.

If there is only one entry point, however, rows 6, 5, ... 0, 11,

and 12 must be entirely blank.

The key location for relocation purposes is the program break.

This location is the same numberasthe total numberof words in

a program, including data used by the program other than data in

common storage. The program break, specified in row 8, columns

22-36, of the Program Card for a routine, is the lower limit of

upper memory, relative to 0, for that particular routine.

Location references in a routine are relocated by the Binary

Symbolic Subroutine Loader either as lower memory or upper

memory (commonstorage) locations. By relocation as a lower

memory location is meant incrementation by the current Loader

increment, which is initially 24 and is augmented after each

routine has been loaded. By relocation as an upper memoryloca-

tion is meant decrementation by the current Loader decrement;

unless specifically set by means of a special card, the decrement

of the Loader is zero. Details about the Loader increment and

decrement and special cards are given in Part II.

The program break is one of the two factors which determine

41

how a particular location reference is to be handled by the Loader.
However, location references which are numerically less than the
program break are not necessarily relocated as lower memory
locations; nor are location references which are equal to or greater
than the program break necessarily relocated as upper memory
locations.

Relocation The Loader determines whether a location reference in an address
of Location or decrementfield is to be relocated:as an upper or lower memory
References location by comparing the numerical-value of the fieldwith ‘the

program break and examining the associated relocation digits in row
8 of the relocatable binary instruction card. If the relocation digits
are 10 and the corresponding field is an-upper memory I6cation
relative to the program break, the field will be relocated as an upper
memorylocation. If the relocation digits are 11 and the corres—
ponding field is an upper memory location relative to the program
break, the field will be relocated as a lower memory location.
Likewise, relocation digits 10 cause a field which is a lower memory
location relative to the program break to be relocated as a lower
memory location and relocation digits 11 cause a field which is a
lower memory location relative to the program break to be
relocated as an upper memorylocation.

Since SAP Assembly produces the relocation digits 10 for all
noncomplemented relocatable fields, some of the relocation digits
may have to be changed from 10 to 11 before a SAP deck can be
loaded correctly by the BSS Loader.

The relocation digits 11 cause the relocation of the address on the
opposite side of the program break from whereit actually is. For
example, assumeB is 1 less than the program break, and it is
intended that B be located below the program break. Then when
the instruction:

 Hi Location : Op jj Address, Tag Decrement
Comments1 t!

is used in the symbolic coding of a subprogram for FORTRAN I,
it must be given the relocation digits 11.

SAP assembly producesrelocation digits 11 for relocatable
complemented fields, that is, relocatable fields which have a
negative value as written in the symbolic coding. Since relocation
digits 11 are used for a special purpose by the BSS Loader, as
described above, relocatable complement symbolics cannot ordi-
narily be used in SAP subprogramsto be used with FORTRAN I.

42

Example:

FORTRANII

Main Program

and SAP
Subprogram

Assume that a non-FORTRAN program has produced twosets of

positive, double-precision, floating-point numbers, each set

constituting one binary record on tape 6 and consisting of 500

twe-word numbers. Thefirst set is the A() list, each A having

a high-order part AH, which is one word, and a low-order part AL,

which is one word. The second set is the B(@ list, each B having

a high-order part BH, which is one word, and a low-order part BL,

which is one word. The FORTRAN U main program has three
branches, depending on whether Af) < B®, AM = BQ, or AD) > BOM.
Since the low-order parts of the A and B values are not in normalized

floating-point form (i.e., the fractional parts are not necessarily

> |4)). the comparison of A(I) and B(D cannot be expressed by

FORTRAN statements. However, the new features of FORTRAN II
make it possible to ‘call in a SAP subprogram to perform the com-

parison. The main program might appear as follows:

FOR
C< 2 |

COMMENT : : FORTRAN STATEMENT
STATEMENT
NUMBER 9

5 j_6 7 72

'4 __'CALL DPCOMP (AH(I), AL(), BH(), BI(D, K)

10 _ CALL EQUAL
_ _ GOTO 20

_'_15 |. CALL ABIG
_ 20

__|DIMENSION AH(500), AL(500), BH(500), BL(500)

REWIND 6

READ TAPE6, (AH(),AL(D, 1=1, 500) ve
__ READ TAPE6, (BH(D), BL(), I=1, 500)

__ DO 20 T=], 500

__|_ {UF (K) 5, 10, 15

5 |CALL ASMALL

_ GO TO 20

|CONTINUE
I t

|__REWIND 6

'_ STOP

The REWIND statement rewinds the binary tape mounted on

tape unit 6. The READ TAPE statements each read 1000 binary

words from the tape mounted on tape unit 6, assigning them to

AH(1), AL(Q), AH(2), AL(2), ... , AHG00), ALG00), BH(1),
BL(1), BH(2), BL(2), . . . , BH(600), BL(600), in that order.
After each of the 500 specified comparisons has been made, the

main program branchesto one of three subprograms with symbolic

names ASMALL, EQUAL, and ABIG. These subprograms can be

written and converted to machine language separately from the

main program, The procedures to be followed in these subprograms

are not of interest here, as the point of this example is to illustrate

the use of a SAP subprogram with a FORTRAN I program. DPCOMP

may have been pre-coded as a subroutine-type subprogram as

43

Program Card

for the Example

follows; for simplification, it is assumed that all numbers are

positive and that no values result below the lower limit of

approximately 1038

Doubie-precision, floating-point comparison: This
subroutine places in the location obtained from the address
field of 6,4): 0, if A=B; -1, if A<B;+1, ifA>B.

Address, Tag Decrement

Shift out characteristic.

After the subroutine in the preceding example has been assembled
by SAP, the only extra step required to use this subroutine with a
FORTRAN II main program is the preparation of a Program Card.
Since the entry point designated ENTRY in the symbolic codingis
referred to by the name DPCOMPin the FORTRAN II main program,
row 7, columns 1-36 of the Program Card must contain the BCD
representation of DPCOMP, and row 7, columns 58-72 must contain

44

the location, relative to 0, corresponding to ENTRY in the symbolic

coding. ENTRY appears in the location field of the first instruction

in the subroutine and, therefore, corresponds to location 0. It can

readily be verified that the following Program Card meets the re-

quirements previously stated in this chapter:

COOKTKDHNKNHKCONNNNOONOHFONNHOHODODDNDCANNDNKOHNHKDNOATNDNDKDHHDDOGHOOLONODKHOOKOOROOD
123456

Verdi

PB 9 101112 93 415 16 17 1B 19 20 21 22 23 24 25 MG 27 28 29 WO 31 32 39 WIS 3G 37 38 39 40 41 42 93 44 AS 46 47 48 99:50 51 52 53 SH 55 SE 57.58 59 60 GT 62 63 G4 65 66 67 Go 69 70 71 /2 73 74 7H 76 77 78 79 BO

i TEDTELETETTATUET ETAT TTT TEEDEETad

22kkkkkkk222208222222 2222222

3393333333333333333333333333333333333333

SAAGAAGAAAAGAAEEASAAGAAAAAAASASAAAATAAAAAA AANAEAAdg

SSSSSHSSS SSS SSS SS SS SSS S SSS SSS SSS SSS S SSS SS STS HUST SSS H SST SS SSS SSSSSSSSSSSSSSSISSS

BEBEGEGGEHGHEE EHEC CBG CCBSEESGGEbEGEEEGEEEBEGEECESEEESEGEEBGGGSCEGEGUGGEEEGGE6E666

TWHIPIBPE ED EPPPBadd

BBEREESSRHBESHSHGRSSBESHGSKHHGHMSSHSSSERHHSGSRRASHESHESKSBEGRSRHHKSRHRHGRSHHRERESB

$999999999999998999999999999999ST TFT P MOTOR ROA MRMRS SBR ES CES Roo PFs ss99999
2P24aSHR TBS a5 5 1 28 re wUBBS u "O An 58 59 60 51 6

aS

3h 66 37 48 49-90 S57 55 SAS AG 87 31 G2 62 69 €. Gh 67 68 69 FOF) te Ta 14 7S 76 97 78 79 BO
NOTE: The BCD code used for the symbolic entry point namesis

that given for 704 storage on page 35 of the 704 Electronic

Data Processing Machine Manual of Operation,

Form No. 24-6661.

Alternate Since the SAP subroutine in the example computes a single-valued

Form of function of the arguments, AH(]), AL(), BH(), and BL(), it can
the Example readily be converted, if desired, from the subroutine type to the

function type. In the latter case, statement 4 in the FORTRAN I

main program could be written:

K= DPCOMP(AH(), AL(), BH(), BL())

The subprogram itself would require slight modification.

Since the subprogram, as a FUNCTIONtype, would have only four

arguments, the fifth pair of CLA and STA statements would have
to be deleted. For the same reason, the instruction in location

EXIT would have to be changed to

H | Location Op | Address, Tag Decrement Comments

| |
142 6.748 lo wya _ n

. i |_ EXIT. _TRA 5,4
|

45

Since the result is to be left in the Accumulator, the instruction
in location INDIC would have to be deleted. For the same reason,

the transfers to INDIC would have to be replaced by transfers to

EXIT. Thus altered, the subprogram would define a function of

four arguments.

The only differences between the Program Cards for the function
DPCOMPand for the subroutine DPCOMP would be in the word-

count and, consequently, in the checksum.

46

PART Ill: BINARY SYMBOLIC SUBROUTINE LOADER

47

PART II] - BINARY SYMBOLIC SUBROUTINE LOADER

Introduction

Transfer Card

The Binary Symbolic Subroutine (BSS) Loader is punched out by

the FORTRANII Translator as the first nine cards of each main

object program. The BSS Loader is not punched out with subprograms.

The FORTRAN II Translator produces decks in relocatable
binary form. In a relocatable binary deck, instructions are assigned
to consecutive storage locations starting at 0, and all location
references are relative to 0. When a relocatable binary deck is
loaded, location references are altered according to the actual
locations occupied by the program in storage.

All routines produced by FORTRAN II, both main programs
and subprograms, are loadable by the BSS Loader. The Loader
enables programsin relocatable binary form to retain symbolic
references to subprograms. As a result of this feature, a main
program and each of its subprograms can be independently compiled.
It is thus possible to compile a main program for which some or
all of the subprograms have not yet been written. After a main
program and its attendant subprograms have been compiled, either
jointly or independently, the resulting relocatable binary decks

can be loaded together and executed. At execution time, the

relocatable binary decks of the main program and its subprograms -
all starting at relocatable 0 - are stacked in the card readerin any
order, headed by the nine Loader cards; loaded and relocated by
the BSS Loader, using control information supplied with the com-
piled routines; and finally run.

Control information for the relocation process is provided to
the Loader by Program Cards, one at the front of the main program
deck and one at the front of each subprogram deck. A Program
Card is the tenth card punched out by the FORTRAN II Translator
for a main program and the first card for each subprogram. A
Program Card specifies the numberof locations to be occupied by
the routine; this number is used as an increment for relocating an
immediately subsequent routine. The increments specified by
successive Program Cards are cumulative. Program Cards contain
other information required by the Loader to interpret symbolic
cross-references between the main program and its subprograms
and between levels of subprograms.

In addition to relocatable binary decks produced by FORTRANII,
the Loader can also load binary cards, both absolute and relocatable,

produced by a system other than FORTRAN I.

The last card of the last deck to be loaded must be a Transfer Card.
Row 9, column 1, must be punched on the Transfer Card, and
row 9, columns 2-36, must be blank. The rest of the card is

ignored. This card will signal the BSS Loaderthat the main program

49

Transfer List

Execution of

the BSS Loader

Control Cards
for Library
Tape Routines

Card Formats
Acceptable to the
BSS Loader

and all subprograms have been loaded. The FORTRAN II Translator

produces a Transfer Card as the last card of a main program deck.

If a program refers to subprograms, the first instruction of the

program in the compiled deck is preceded by a Transfer List. The

Transfer List consists of the names of all the subprograms referred

to in the program; in the case of SAP subprograms with more than

one entry point, a nameis listed for each entry point to which

reference is made. Note that subprograms as well as main programs

may have a Transfer List, since a subprogram may call for lower

level subprograms. When a program has a Transfer List, the first

name in the list occupies relocatable location 0 in the compiled

deck, and each namein the list is counted as one word of the

program.

Initially, the BSS Loader loads itself into the computer storage,

the first card into the first 24 memory locations, and the other

eight cards into the last 192 locations. The first Loader passis

then executed. In the first pass, absolute locations are assigned

to the instructions, data, and Transfer List names of all sub-

programs being loaded. A symbol table is set up in which each

subprogram nameis associated with the absolute location of the

entry point designated by the name.
In the second pass, each Transfer List name is replaced by

an instruction which transfers control to the entry point designated

by the name. The symboltable provides the necessary information

for this step. Execution of the main program then commences.

In order that FORTRAN II compilation may produce the proper

Program Cards for library tape routines, the control cards

formerly required must be changed as follows, thereby converting

them to the FORTRAN IJ Program Card format:

1. Punch a "9" in column 1.

2. If the nameof the routine has fewer than six characters,

complete the name entirely with binary-coded decimal

blanks (octal code: 60). For example, SIN must be punched

SINbbb (octal code: 623145606060), instead of SINb00 as

formerly.

3. Recompute the checksum and punchit in the right half of

row 9 (columns 37-72).

The following types of cards are loadable by the BSS Loader:

Program Cards

. Transfer Cards (indicating end of first Loader pass)

Common Reassignment Cards

Control Cards

Absolute Transfer Cards

Absolute Binary Instruction and Data Cards

Relocatable Binary Instruction and Data Cards.A
N
A
i
k
h
w
n
h

50

51

Blank cards will be ignored. The following is a description

of the required formats for the seven types of cards listed above.

Rows

9

Columns

1

2-3

4-18

19-21

22-36

37-72

1-3

4-18

19-21

22-36

Program Card

Must be punched.

These columns will be ignored and a

checksum will be done whether or not

there is a punch in column 3, which

means ignore checksum on other cards.

The Loader cannot be made to ignore a

non-zero checksum, known to be in-

correct, on the Program Card;if the

sum is made blank, however, the blank

sum field will be ignored.

Count of words on this card, not including

the 9 row.

Ignored.

Must be blank.

Checksum (add-and-carry-logical) of all

words on this card except 9R.

Ignored.

Contains the number of words which are

the Transfer List for this program. This

list must be the next thing to be loaded;

it is followed by instructions in the usual

relocatable format. This field will be

zero when the program being loaded does

not require subprogramsfor its execution

and, therefore, has no Transfer List.

Ignored.

Contains a number showing the length of

lower memory. This is the program

break. It is the same as the address-plus-

one, relative to zero, of the last word of

the program, excluding data assigned to

common storage.

All location references in the address

52

Rows Columns

8 22-36

37-57

58-72

or decrement fields of instructions being

placed in memory are relocated as either

lower memory or upper memory locations,

depending on the range in which they fall

with respect to the program breakand on

the associated relocation digits (see page 42).

References to be relocated as lower

memory locations are relocated by the

current increment of the Loader. The

Loader increment is initially 302

(i.e., 24,9), since the first card of the

Loader itself occupies locations 0 through

27g. The current increment is augmented

by the numberin this Program Card field

when a subsequent Control Card or Program

Card is read. References to be relocated

as upper memory locations are relocated

according to the information provided to

the Loader by the last preceding Control

Card or Common Reassignment Card.

Ignored.

Contains the address of the last piece of

data to be assigned downward in upper

memory (common storage). This field

must be blank (zero) if no commonstorage

data is assigned. In the case of SAP sub-

programs assigning common data down-

ward from 777779, this address is the

same numberas the 2's complement of

the length of common storage. In the case

of FORTRAN II programs, which always

assign all common data downward from

774629, this address is 315g (20549) less
than the 2's complementof the length of

common storage.

Unless otherwise instructed, the

Loader will cause the common data of

successive routines to be overlapped.

If overlapping is not desirable, the Loader's

current decrement should be reset by a

Common Reassignment Card in front of

the Program Card for the routine whose

data is to be moved down. The Common

Rows Columns

8 58-72

7 1-36

37-57

58-72

6,5,..., 1-36

0,11,12

37-57

58-72

Rows Columns

9 1

53

Reassignment Card will set a new decre-

ment into the Loader to cause relocation

of upper storage on cards following the

Program Card. The decrement will be

retained until replaced by a new decrement

given on a subsequent Control Card or

Common Reassignment Card.

If the program is a subprogram, this

field contains the BCD representation of

the name assignedto the first entry point

(or to the subprogram if there is only

one entry point). If the name contains

fewer than 6 characters, each unused

6-digit group at the right must befilled

in with the BCD character 110000. If

the program is a main program, this

field must be blank, as a main program

is considered to have a blank name.

Ignored.

Address, relative to zero, associated

with the name in columns 1-36.

If the program is a SAP subprogram with

more than one entry point, the names

assigned to the second, third, etc. entry

points are listed in these fields in order,

i.e., the second in row 6, the third in

row 5, etc. When all names have been

listed, the remaining rows areleft blank.

The names are represented as described

for row 7.

Ignored,

The address, relative to zero, associated

with the name in columns 1-36.

Transfer Card

Must be punched.

Rows’ Columns

9 2-36 Must be blank.

37-72 Ignored

8,7,...;

0,11,12 The rest of this card is ignored.

Common Reassignment Card

Rows Columns

9 1 Mustbe blank.

2 Must be punched.

3 Ignored.

4-12 Must be blank.

13 Must be punched.

14-18 Must be blank.

19-21 Ignored.

22-36 Must be blank.

37-57 Ignored.

58-72 Contains the 2's complement of the number

the Loader is to use in relocating common

data downward in memory. This number

becomes the current decrement of the

Loader and is reset each time a Common

Reassignment Card or Control Card is

read.

8, 7,206,

0,11,12 The rest of this card is ignored.

Control Card

Rows Columns

9 1 Must be blank.

D4

NOTE:

55

Rows Columns

9 2

4-12

13

14-18

19-21

22-36

37-97

58-72

8, 7,266;

Must be punched.

Ignored.

Must be blank.

Must be punched.

Must be blank.

Ignored.

Contains the number of locations to be

added to the current increment of the

Loader, yielding a new increment. The

new incrementis effective for the

relocation of lower memory locations

in the next routine loaded.

Ignored.

Contains the 2's complement of the number

the Loader is to use in relocating common

data downward in memory. This number be-

comes the current decrement of the Loader.

The current decrement is reset each time a

Control Card or Common Reassignment

Card is read and is not related to the last

previous decrement of the Loader.

0,11,12 The rest of this card is ignored.

When a Control Card is read, the increment of the Loader

is increased by the number given in row 9, columns 22-36,

of the last preceding Program Card, and further increased

by the number in row 9, columns 22-36, of the Control

Card. The decrement of the Loader, however, is reset

to a value not related to the previous decrement. If row 9,

columns 58-72, of the Control Card is blank, the decre-

ment will be reset to 0.

Rows Columns

9 1-21

Absolute Transfer Card

Must be blank, except that a punch in

column 3 will be ignored.

Rows Columns

9 22-36 Absolute location to which BSS Loader

now transfers control.

37-72 Ignored.

8,7,...;

0,11,12 The rest of this card is ignored.

Absolute Binary Instruction or Data Card

Rows Columns

9 1-2 Mustbe blank.

3 If punched, checksum will be ignored.

4-13 Ignored.

14-18 Count of words on this card, not counting
row 9.

19-21 Ignored.

22-36 Address into which first word (i.e., 8L)
is to be loaded.

37-72 Checksum (add-and-carry-logical) of all

words on this card except 9R.

a

0,11,12 Instructions or data to be loaded.

Relocatable Binary Instruction or Data Card

Rows Columns

9 1 Must be blank.

2 Must be punched.

3 If punched, checksum will be ignored.

4-18 Count of words on this card, not including

rows 8 and 9.

56

Rows Columns

9 19-21

22-36

37-72

8 1-72

7,6,...;

Ignored.

Address, relative to zero, into which the

first word (i.e., 7L) is to be loaded.

Checksum (add-and-carry-logical) of all

words on this card except 9R.

Both words are read together and contain

information about the relocation of location

reference in the address field (columns

22-36 or 58-72) or decrementfield
(columns 4-18 or 40-54) of the instructions

in rows 7-12 of this card. .

0,11,12 Instructions or data to be loaded.

The digits in row 8 of this card are interpreted one at a time

and related to the decrement field of 7L, the address field of 7L,

the decrement field of 7R, the address field of 7R, the decrement

field of 6L, etc. The digits have the following significances:

0

10

11

Ignore this field. .

If the numberin this field is equal to or

greater than the program break, relocate

as an upper memory location. If less than

the program break, relocate as a lower

memory location.

If the numberin this field is equal to or

greater than the program break, relocate

as a lower memory location. If less than

the program break, relocate as an upper

memory location.

Instructions for which there is no room in the 8 row for the

necessary relocation digits must be put on another card.

Additional Note on the Program Card

If there are more than ten entry point names; one or more

additional Program Cards are required, containing the eleventh,

twelfth, etc. names. Supplementary Program Cards must have

row 9 punched as specified in the description of the Program

Card, and the names muststart in row 8.

57

APPENDIX A - SUMMARY OF FORTRAN II STATEMENTS

The following is a summary of the 38 types of FORTRANII

statements, groupedin the four classifications: arithmetic

statements, control statements, input/output statements, and

specification statements.

1. Arithmetic statements (arithmetic formulas and function

definitions):

a=b

2-19. Control statements:

GO TOn

GO TO n, (ny, No, --+; Nm)

ASSIGN i TOn

GO TO (nq, No, .--, Ny), i

IF (a) ny, No, Ng

SENSE LIGHT i

IF (SENSE LIGHT i) ny, no

IF (SENSE SWITCHi) ny, no

IF ACCUMULATOR OVERFLOW n,, No

IF QUOTIENT OVERFLOW nj, no

IF DIVIDE CHECK nq, No

PAUSE or PAUSE n

STOP or STOP n

DO ni= M4, Moy or DOni=My, Mo, Mg

CONTINUE

CALL Name (Argument List)

59

RETURN

END(i, ig, ig, ig, is)

20-32. Input/Output statements:

FORMAT (Specification)

READ n, List

READ INPUT TAPEi, n, List

PUNCH n, List

PRINT n, List

WRITE OUTPUT TAPE i, n, List

READ TAPE i, List

READ DRUMi, j, List

WRITE TAPE i, List

WRITE DRUM i, j, List

END FILEi

REWIND i

BACKSPACEi

33-38. Specification statements:

DIMENSIONv, v, v, ...

EQUIVALENCE(a, b, c, ...), (d, e, f, ...), ee.

\FREQUENCYni mir 12G aN EL UX, ty st ads wee
1 4 \

¥ yw ait 249 Jo ceo fs til

SUBROUTINE Name (Argument List)

FUNCTION Name (Argument List)

COMMONa, b, c, .

APPENDIX B

The chart summarizes the 20 built-in functions at present available

as open subroutines on the FORTRAN II system tape.

Mode of

Type of Function Definition No.of{| Name [Argument Function

Args.

Absolute value |Arg| 1 ABSF| Floating Floating

XABSF Fixed Fixed

Truncation Sign of Arg times 1 INTF Floating Floating

largest integer XINTF Floating Fixed

< | Arg|

Remaindering Arg, (mod Argo) 2 MODF| Floating Floating

(see note 1 below) XMODF| Fixed Fixed

Choosing Max (Arg), Argo, .--)| 22 MAXOF | Fixed Floating

largest value MAXIF| Floating Floating

XMAXOF| Fixed Fixed

XMAXIF| Floating Fixed

Choosing Min (Arg), AYZo, ++» 22 MINOF Fixed Floating

smallest value MINIF| Floating Floating
XMINOF | Fixed Fixed

XMINIF | Floating Fixed

Float Float fixed number 1 |FLOATF| Fixed Floating

Fix Same as XINTF 1 XFIXF Floating Fixed

Transfer Sign of Arg. 2 SIGNF Floating Floating

of sign times |Argj| 2 XSIGNF| Fixed Fixed

Diminishing Arg, (dim Argo) 2 DIMF| Floating Floating

(see note 2 below) XDIMF| Fixed Fixed

NOTES: 1. The function MODF (Arg,, Argg) is defined as Arg, -

[Arg,/Argo| Argo, where |[x]= integral part of x.
2. The function DIMF (Arg), Argg) is defined as Argy -

61

Min (Argy, Argo).

Provision has been made for the addition of built-in functions

by the individual installation. There may be up to ten of these,

since the dictionary (See 2.a below) for the built-in functions pro-

vides room for only ten additional names. To de this, certain

additions and changes must be madeto the edit deck, FNEDT2.

The two necessary changes (described in 1.b and 2.d below)

require the use of binary correction cards. The general format

of a binary correction card for the edit deck is as follows:

Rows Columns

9 1-3

4-18

19-21

22-36

37-72

8 1-36

37-72

7

0

11

12

Must be blank.

Number of words to be loaded from this

card.

Ignored.

Location of the first word to be loaded.

Add-and-carry logical checksum ofall

words on this card, not counting this field.

First binary correction word, to be loaded

in the location given in row 9, columns

22-36,

Second binary correction word, if any,

to be loaded in the location following the

first binary correction word.

etc.

The changes and additions required to add built-in routines

to the FORTRAN II system are as follows:

1. In State C of Section I in the edit deck, FNEDT2:

62

63

a. The name of each new routine must be added to the

dictionary. The name must consist of 3, 4, 5, or 6

alphanumeric characters, omitting the terminal F used

in the FORTRAN II source language. The first character

must be alphabetic and must be X if and onlyif the

function is to be fixed point. The name must be punched

in BCD characters. If the name has fewer than 6

characters, each unused 6-digit group at the right

must be filled in with the BCD character 110000 (blank).

The decrement which controls the search of the dictionary

must be changed by a binary correction card. This

decrement must be set to the 2's complement of the

numberof built-in routines in the FORTRAN II system.
At present, the decrement is the 2's complementof 20.

If one more routine is added, the decrement will have

to be reset to the 2's complement of 21.

The locations at which the foregoing addition and change to

Section I must be made cannot be stated at the present time.

This information will be distributed in the near future.

a.

. In Section III in the edit deck, FNEDT2:

The BCD name (same requirements as 1.a above) of

each new routine must be added to the M1D2 dictionary

in record 55, locations 7122. through 7135¢. At present,

the names DIM and XDIM occupylocations 7122, and

71233. The next entry must therefore be made at 7124g.

. Each new routine must be placed in available space in

the range 7260. to 7777g.

. Atransfer to the entry point of each new routine must

be added to the branching routine in record 55, locations

7106. thorugh 7127. These transfer instructions,

which must be added in binary machine code, have the

operation field TRA (i.e. , 000000010000). Since two

routines (DIM and XDIM) have already been added to

the original 18 routines, the next transfer instruction

must be placed in location 7100 8° The transier instruc-

tions must be placed in the same order as the corres-

ponding namesin the M1D2 dictionary.

The decrement of the TXH instruction in location 7077.

must be changed by a binary correction card. This

decrement must be set to the 2's complementof the

number of routines added to the original 18. At present,

this decrement is set to the 2's complement of 2. The

entire binary word is now (3 77776 4 07073)...

TeV
CECESOSeters Vetattt Corporation

590Madison Avenue New York 22N.Y.
i eneeeeee)

