
SM

709 Data Processing System

Reference Manual

Contents

COMPUTER INSTRUCTIONS ©2020... 00000000 ccceee24

Fixed Point Operation0... 0.0.0.0. 000eee 26

Floating Point Operations0..0..0. 0.002 c eee eee. 3]

Shifting Operations0...00 0.0.0...eee 37
Word Transmission Operations0......... eee 39

Control] Instructions0.. 000.0000 eee eete. 4]

Index Transmission Operations 0000000005 50

Logical Operations0 0000000002eee 53
Sense Indicator Operations bbe v ere b beeen ees 56

Convert Instructions0...0..000 00.0020eee 61

Input-Output Operations0........0-.00002 000 63
Data Channel Commands0 20.0 eee ee 66

Channel Trap Instructions0.0002...0.0......000.. 69

Input-Output Transmission Operations 2................. 70
System Compatibility Operations0................ 71
Systems Program Compatibility0...0................ 72

CONSOLE OPERATION ..0 0.000000 0000000 ccc ceeeee. 12]

IBM 709 Operator’s Console000.2.2000000 00002. 121
Data Synchronizer Console So ... 124

PROGRAMMING EXAMPLES0000000000000 00 ccc cece ee vee. 129

Definition of an Assembly Program es “130
Assembly .000020ees 13)

Logical Check Sums 2.0022ee 131
Drum Copy Loopfoneeyre 133
Packing and Unpacking eee ete teeny 134

Subroutines «2.0.0.0... 000000.enes 136

Convert Instructions0.000.00.000.0.0 137

Sense Indicators 20.00.0000.00ee 142

Floating Point Overflow and Underflow 144

Card Reader Wiring for Column Binary ae 148

APPENDIX 20000ee150

A. Number Systems and Conversion ee 150

B. Powers of Two0.0.00 000.0002cee 155

C. Octal-Decimal Integer Conversion Table_.............. 156

D. OctaJ-Decimal Fraction Conversion Table Doce eee 160

E. SCAT Mnemonic Operation Codes. re 163
F. Listing of Imstructions 2.002002... 0220-005. 166

followed by

703 FORTRAN Automatic Coding System

Computer Instructions

This section defines all computer instructions and
describes their execution, indicators that may be
affected, and timing.

A diagram representing the format of the instruc-
tion is given for each instruction. Preceding this dia-
gram is the alphabetic code which identifies the in-
struction. The official name of the“instruction is also
given (Figure 22).

CLA — Clear and Add

Operation Flag Tag

=
¥1o12-1314 17 18-20 21 35

Figure 22. Sample Format of Instructions

The numerical operation code is given in the octal
number system. This can be easily converted to the
binary system for reference to the bit pattern inter-
preted by the computer. The numbers appearing be-
neath the diagram indicate the bit positions of the
computer-word that are concerned with this particular
instruction.

The symbol “Y” appearing in the diagram denotes
the address part of the instruction. Y may stand for
the address of a word in core storage, the length of a
shift, or the address of an input-output unit. For some
index transmission instructions, Y may also represent
a number whichis to be loaded either in true or com-
plement form into an indexregister.

For some instructions, positions 21-35 are used to

contain part of the operation code. The appearance
of octal numbers instead of Y in the address field will
distinguish this type of instruction from others. In
all cases, the full operation code is shown byits octal
representation.

Those instructions for which indirect addressing

may be specified will have the symbol F (flag) ap-

pearing in positions 12 and 13 of the instruction dia-

gram (Figure 22). This symbol represents 1 bits in

both positions 12 and 13 of the instruction. The de-

scription of those operations which can have indirect

addressing will be defined in terms of direct address-

ing.

Similarly, for instructions that are subject to effec-
tive address modification by an indexregister, the dia-

gram has the symbol T in the tag field of the instruc-
tion. This T is also used to specify any index register

24 BM 709

to be changed, stored, or tested. The description ac-
companying an instruction defines the manner in
whichit is executed when its tagis zero.

The shaded area in the instruction diagrams repre-
sent fields that are not used in that instruction.

The symbols D, C, and R are used to denote the

decrement, count, and right-half word fields of in-

structions which use these fields. Each of these fields
is interpreted only by certain classes of instructions.
If such a field is interpreted by an instruction, the bit
positions used bythefield will be shown in the instruc-
tion diagram. If an instruction has a D or R part,
neither indirect addressing nor effective address modi-
fication is ever possible.

Descriptions of the instructions use the following
special terms and definitions:

1. C(Y) denotes the contents of location Y, where
Y refers to some location in storage. Similarly, c (ac),
CG (MQ), C(sR) and c(s1) denote the contents of the ac-
cumulator, multiplier-quotient, storage and sense in-

dicator registers, respectively. In addition, subscripts
refer to individual bit positions of a register. For
example, C (MQ) g1-17 is read “the contents of positions

S, 1 through 17 of the mg.” When subscripts are not
used with this notation, the entire register is implied.
For example, c(ac) denotes the contents of positions
$,Q,P, 1-35, inclusive.

2. With input-output operations, pc denotes data
channel, Lr denotes a pc location register, AR denotes
a pc address register, and wr denotes a pc word count
register.

3. When register or part of a register is cleared,
the cleared partis reset to zeros.

4. The negative of a numberis the numberwithits
sign reversed.

5. The magnitude of a numberis the number with
its sign made positive. (A zero in position S corre-
spondsto a positive sign.)

6. When the word “store” is used in the title of an
instruction, the transmission of a word or part of a

word from some special register (e.g., the Ac, MQ,SI
or an index register) to some location in core storage
is always implied.

7. When the word “load” is used in thetitle of an
instruction, the transmission of a word or part of a
word from some location in core storage to some

special register (e.g., the MQ,SI, or DC registers, but not

the ac) is always implied.

8. Whenthe word “place” is used in the title of an

instruction, the ac is always one of the agents.

9. All logical operations interpret the sign position

(S) of Y as a numerical binary bit corresponding to

position P of the ac or position 0 of the si. The S

position of the ac is either ignored or cleared by

logical operations.

10. In the three-letter alphabetic code:

a. The letter Q designates the mgregister.

b. The letter X in the second or third position
designates an index register.

c. The first letter of all transfer instructions

isa T.

In the following instruction descriptions, an instruc-
tion format is shown for each instruction. Under the
“Indicator” heading, only those indicators that may
alter the course of a program through test instruc-
‘tions or by trapping are noted. Under the “Execu-
tion” section, when instructions are similar, only the

differences are noted and a statement (e.g., “Same as
App procedure”) will mean that the operations are
alike except for the differences noted. Instruction
flow charts are used with many instructions to aid in

presenting the data flow.

Note again that all addresses and numbers, unless
otherwise specified, are given in the octal numbersys-

tem.

Instruction Timing

All instructions are listed in the appendix in alpha-
betic and numerical sequence. Timing is noted in
cycles with modification type, if any. The 709 cycle
is 12 microseconds. If an instruction is subject to
address modification through indexing and/or in-
direct addressing the facts will be noted by a T or F,
respectively. With indirect addressing, the execution

time is increased one cycle. The modification types

‘are:

Type 1 Instructions. Multiply instructions are exe-
cuted in two cycles if the number broughtfrom stor-
age contains zeros in positions 1 to 35. If the number
brought from storageis not all zeros, execution time is
a function of the numberof sequential zero bits. |

Type 2 Instructions. The execution time of these
instructions is determined by the count field (C)
specified in positions 10 through 17. The maximum
number of cycles for a given value is C/2 +3. Any

remainder should be discarded.

Type 3 Instructions. FAD, FAM, FSB, and FsM will be
executed in 6 cycles if the difference in character-

istics is greater than 63 or if the extent of shift is less
than 11 places during the adjustment of character-
istics (step 5); also if the extent of shift is less than
four places when normalizing (step 9b) .

Type 4 Instructions. UFA, UAM, UFS and USM will be
executed in five cycles if the difference in character-
istics is greater than 63 or if the extent of shift is less
than 11 places in step 5.

Type 5 Instructions. The execution of a FDH or
FDP instruction requires only three cycles if the frac-

tion of the dividendis zero.

Type 6 Instructions. The execution of a convert in-
struction is increased by one cycle for each storage
reference specified by the count field in positions 10

through 17 of the instruction.

Type 7 Instructions. The instruction will be exe-
cuted in two cycles if the extent of shift is 9 places
or less. Each additional 12 shifts, or portion thereof,

require another cycle.

Type 8 Instructions. The execution of these in-
structions may be delayed an indefinite length of time
after interpretation, depending on the status of the
I-o unit. For example, if multiple select instructions
are given for the same data channel, the secondselect
will be delayed if both selects are of the data-select
type of operation.

All variable cycle instructions that have a precise
minimum, average and maximum numberof machine

cycles are shown in Table I.

Table I. Variable Cycle Instructions

MACHINE CYCLES

INSTRUCTIONS AVERAGE MIN. MAX.

MPY, MPR 15.8 2 20
DVH, DVP 20 3 20
FMP, UFM 14.2° 2 17
FDH, FDP 18 3 18
FAD, FAM, FSR, FSM 6.4 6 15

UAM,USM — 5 1]

UFA, UFS — 5 11
ALS, ARS, RQL _ 2 5
LLS, LRS, LGL, LGR _ 2 8
CAD, CAQ, CYR _ 2 8
VDH, VDP, VMP — 2 20

Instructions with a count whose valueis larger than

that implied by the size of the arithmetic registers

may exceed the times shown. Average multiply times

are derived assuming a random distribution of ones

and zeros. In floating-point, a normalized operand is

assumed. In determining the average floating-point

add speed, a numberof representative programs were

traced. The time shown is based on an analysis of

several million operands.

Computer Instructions 25

Fixed Point Operation
+

CLA — Clear and Add

+0500 AN Y
S,! TT 12-1314 17 18-20 21 35

Description. The C(ac)s ;.3; are replaced with the
C(y). Positions P and Q of the ac are set to zero.
The c(y) remain unchanged.

Indicators. None.

Timing:.2 cycles

Execution. The c(y) are brought to the sr. C(SR),-95
is taken to the adders, the adders to AC(;.35) and the
SR(S) to AC(S).

CAL — Clear and Add Logical Word

 =o
S,1 11 42-1314 17 18-20 21 35

Description. The c(y) replace the c(ac)p,.3;- The
sign of Y appears in position P of the ac. Positions
S and Q of the ac are set to zero. The c(y) are un-
changed.

Indicators. None.
Timing: 2 cycles

Execution. The sr (S) goes to adder position P. The
rest of the operation is the sameas for CLA.

CLS — Clear and Subtract

+0502 FINN Y]
5,1 1112-1314 17 18-20 21 35

Description. The negative of c(y) replaces the
C (AC) s3-35- Positions P and Q of the ac are set to
zero. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. (1) Invert sign of Y as it is entered into
the SR. (2) Sameas cia.
The logic flow diagram for both the cLa and cLs

instructions is shown in Figure 23.

ADD — Add

+0400 LFLN T | Y
S.1 1212-1314 17-18-2021 35

Description. The c(y) are algebraically added to
the c(ac). The resulting sum is placed in the ac.

26 BM 709

Obtain instruction

from storage

Instruction placed
in storage register

T 21-35

 3, 1-11

!
Operation code Address routed
placed in inst. reg, through addersto stg.

Operation decoded Address of data is

in decoders located

Bring up execution CLA, CAL Data routed to the
control lines 1 ~ storage register

cus CAL

Minusto storage SR sign to Data routed through
register sign adder P ~~ | adders to accumulator

Figure 23. cLa and cis Flow Chart

The c(y) are unchanged. Numbers of the same mag-
nitude but different signs give a resultant sign the
same asthesign of the original ac.

Indicators. ac overflow.

Timing: 2 cycles

Execution. The c(y) are taken to the sr and then
to the adders. With signs alike, the true ac(Q-35) is

also taken to the adders, and the sum returned to the

ac. With signs unlike, the complement of the ac
(Q-35) is taken to the adders; any Q carry is taken
to adder 35 and is remembered. The resultant sum
in the adders is then taken back to the ac. If the
signs were unlike and there was no Q carry, the com-
plement of the ac(Q-35) is again taken to the adders
and then back to the ac. With a Q carry, reverse the
AC sign (Figure 24).

ADM — Add Magnitude

+0401 [FINN Y |
3,1 VV 12-1314 17 18-20 21 35

Description. The magnitude of the c(y) is added
to the c(ac). The resulting sum is placed in the ac.
The c(y) are unchanged. Thesign of Y is ignored
and Y is treated as a positive number. With a minus
AC sign, a subtractive process will occur.

Indicators. AC overflow.

Timing: 2 cycles

Execution. (1) sr(s) is forced plus. (2) Procedure
is the sameas for app.

SUB — Subtract

| +0402 LFNNN T | Y |
S,1 V1 12-1314 17 18-20 21 35

Description. The c(y) are algebraically subtracted
from the c(ac). The difference replaces the c (Ac).

The c(y) are unchanged.

Indicators. AC overflow.

Timing: 2 cycles

Execution. (1) Sign of sr is reversed. (2) Same
as ADD procedure.

SBM — Subtract Magnitude

~ 0400 F T | Y |
Ss V421314 17 18-2021 35

Description. The magnitude of the c(y) is sub-
tracted from the c(ac). The difference is placed in

Obtain instruction

from storage

Instruction placed in
storage register

]

Operation code placed in
instruction register

Operation code decoded
in operation decoders

!
Bring up execution ADD

the c(Ac). The sign of Y is ignored and the c(y) are
treated as a negative number. The c(y) are un-
changed. If the sign of the ac is minus, an App will

occur.

Indicators. AC overflow.

Timing: 2 cycles .

Execution. (1) sr(s) is forced minus. (2) Same as

add procedure.

The logic flow diagram for the app, suB, ADM, and
SBM instructions is shown in Figure 24.

ACL— Add and Carry Logical Word

17 18-20 21 35

 5,1 1112-1314

Description. The c(y) are added to the C (AC) p1-25.

The resultant sum replaces the C(AC) p-35. The sign

i
Address routed through
adders to storage

!
Address of data is

located

»| Data routed to the

control tines

Y

- SBM SUB ADM

minus invert plus
to SR SR to SR
sign sign sign

| |

storage register

Data from the storage
register to adders

unlike

Complement accumulator
to the adders

a!

Accumulator to the

adders in true form

Figure 24. app, ADM, suB, and sBM Flow Chart

>|
Y

Adders back to the

accumulator

 Yy
Check signs and Q
carry and adjust
the accumulator

Answer is now in the
laccumulator

Computer Instructions 27

of Y is added to position P of the ac. A carry from
ac(p) is added to ac(35). Positions S and Q of the

Ac are notaffected.

Indicators. None.

Timing: 2 cycles

Execution. The c(y) are taken to the sr. The

sr (s, 1-35) are then taken to the adders (P, 1-35). An

adder P carry goes to adder 35. Adders (P, 1-35) are

then returned to ac(P, 1-35).

MPY — Multiply

+0200 FINN T | Y |Sl “TT 21314 17: 18-2021 35

Description. The c(y) are multiplied by the c(mqQ).
The 35 most significant bits of the 70-bit productre-
place c(Ac),.,, and the 35: least significant bits re-

place the C(MQ),.35. AC (P and Q) are cleared. The

signs of the ac and mg are set to the algebraic
sign of the product. The numberofbits to the right
of the binary point of the first factor added to the
numberof kits to the right of the binary point of the
second factor give the total numberof bits to the right
of the binary point in the product.

Indicators. None

Timing: 2-20 cycles, modification 1.

Execution. (1) The c(y) are tested, and if the
magnitude of the c(y) is zero, the c(ac) and c(MQ)
are cleared. Step 2 is skipped and step 3 occurs. (2)
If the magnitude of the c(y) is not zero, the c (ac)
g,pi-25 are cleared and multiplication proceeds:

a. If mQ,, contains a 1, the c(y),.,, are added to

the ac. The C(AC)gp3.3,; and the c(MQ),-35 are

then shifted right one position.

b. I£MQ,5 contains a 0, the G(AC) 9 p,i-35 and C (MQ)

1-3, are shifted right one position. Step 2 occurs

3 times per cycle on the 709. With sequential
zeros, up to 12 shifts may occur per cycle.

(3) If the signs of the mg and location Y are the

same, the signs of the ac and mq are made positive. If

the signs differ, the signs of the ac and MQ are made

negative.

As an example, assume that the ac, mq, and location

Y are four bits in length instead of 35. The following

sequence of steps would occur during a multiply. The
number 13 is in the Mg and the c(y) are 6. The
actual bit-configuration appears in each register (after

the step is complete).

The flow chart is shown in Figure 25.

28 1BM 709

AC MQ Y COMMENTS

0000 1101 0110 Initial contents of the registers. MQ 35 ready
to be tested.

0110 1101 c (Y) added to ac since MQ 35 isa l.

0011 0110 ce, MQ) shifted right one place. Test MQ

0001 1011 No addition, since MQ 35 contained a 0.
c(AC, MQ) again shifted right and MQ 35
is tested.

0111 1011 c(yv) added since Mg 35 isa l.

0011 1101 c (AC, MQ) shifted right and MQ 35tested.

1001 1101 c(y) added, since MQ35 isa l. _

0100 1110 c(ACc, MQ) shifted right. At this point the
shift counter has been reduced to zero and
the process stops with the eight-bit prod-
uct in the ac and Mgregisters.

MPR— Multiply and Round

 S,1 - i FRAT Y i

Description. This operation is the same as multiply
except that the c(ac) are increased by 1 if MQ(1)
contains a one after multiplication is complete.

Indicators. None.

Timing: 2-20 cycles, modification 1.

Executton. (1) Develop the productas in multiply.
(2) If MQ(1) contains a 1, add a 1 to ac (35).

RND — Round

Description. If position 1 of the mg contains a 1,
the c(Ac) are increased by one. If MQ(1) contains a
0, the c(ac) are unchanged.In either case the c (MQ)
are unchanged. Note that positions 24-35 of this in-
struction represent part of the operation code. Modi-
fication by indexing may change the operation code
itself,

Indicators. AC overflow.

Timing: 2 cycles

Execution. If MQ(1) contains a 1, the C(AC) 9.3; is
sent to the adders with a carry to adder 35. The adder
(9-35) is then taken to ac(Q-35). If mQ(1) contains
a 0, no rounding occurs.

VLM -- Variable Length Multiply

[+02 Fc IT | v |
Sl Ti 2 17 18-20 21 35

Description. This instruction multiplies the c(y) by
the C low-order bits of the c (MQ), to produce a 35+ CG

Instruction in the
storage register

Y

Operation code placed
in the instruction reg.

Y
Operation is decoded

“
 Bring up execution

‘ control lines

Set count Set 43 in

field in shift ctr.

shift ctr.

Add 1 to AC <

Y
Address through the
adders to storage

Y
Address of data is located

Y
Data routed to the
storage register

)
Add storage register Do not add SR

to AC to accumulator

| Take result to AC |

Shift AC and MQ
right 1 place

Figure 25. MPY, MPR, VLM Instruction Flow Chart

bit product. The 35 most significant bits of the prod-
uct replace the cC(aAc),.,; and the C least significant
bits replace the c(MQ) 1 through C. Positions Q and
P of the ac are cleared. The remaining 35—C posi-
tions of the Mg will contain the original 35—C high-
order positions of the MQ. The sign of the ac and
MQ is the algebraic sign of the product. An example
is shown in Figure 26.

If C is zero, the instruction is interpreted as a no-

operation and the computer proceeds directly to the
next instruction in sequence, leaving the ac un-
changed.

If C is not zero but the c(y) are zero, the c(ac) and
c(mQ) are cleared. If the signs of the mg and location
Y are the same, the signs of the ac and mg are made
positive. If the original signs of the sr and mgdiffer,
the signs of the ac and mq are made negative. NOTE:
A countfield which places a 1 bit in both positions 12
and 13 (60 or larger) will cause indirect addressing.
In general, counts larger than 35 are meaningless.

Operation complete

Indicators. None.

Timing: 2-20 cycles, modifications 1 and 2

Execution. The instruction is the same as multiply
except that the contents of the count field, instead of

43, are placed in the shift counter.

Figure 25 shows the flow chart for mMpy, MPR, and

VLM instructions.

AC MQ

Before | | | i |
multiplication t

1 351

Ce
C bit multiplier 35

After :
multiplication | :

ee

35 +C bit*product 35- C unused bits
of MQ

Figure 26. Variable Length Multiply

Computer Instructions 29

DVH — Divide or Halt

+0220 FENSN T Y |
St 17:32-1314 17-18-2021 35

Description. The C(AC)gp1-35 and the C(MQ);.35 are
treated as a 70-bit dividend plus sign, and the c(y) as

a 35-bit divisor. If the magnitude of C(y) is greater
than the magnitudeof c(ac), division takes place. A
35-bit quotient replaces the c(MQ),.;, and the re-

mainder replaces the C(AC);.3;. The mg sign is the
algebraic sign of the quotient and the ac sign is the

sign of the dividend.

If the magnitude of the c(y) is less than or equal

to the magnitude of the c (Ac) , division does not occur

and the computer stops with the divide-check indi-
cator on. For example, if Q or P of the ac contains a
1, the magnitude of the c(y) is less than the c(ac).
If division does not occur, the dividend remains un-
changed in the ac and MQ.

Indicators. Divide check

Timing: 3-20 cycles.

Execution. (1) The c(ac and MQ),.,5 are shifted

left one position, creating a zero in position 35 of the
mg. (2) If the magnitude of the c(y) is less than or
equal to the magnitude of c(ac), the magnitude of
c(yv) is subtracted from the magnitude of c(ac) and
a one replaces the zero in MQ;;. Step 1 is then repeated

(Figure 27). (3) If the magnitude of the c(y) is
greater than the magnitude of the c(ac), the com-
puter returnsto step 1.

The above process occurs 35 times for each division,

two times per machinecycle.
Thefollowing example is a division problem. Again

assume a four-bit machine. The problem is 66 divided
by 5, and the binary numbers represent the result of

the described step.

Ac MQ Y

0100 0010 O101

COMMENTS

Initial contents. c(ac) less than c(y); divi-
sion will take place.

1000 0100 c(ac and Mg) shifted left one place; c (Ac)
greater than C(y).

0011 0101 c(y) subtracted from c(ac) and a I replaces
MQ 35.

0110 1010 c(ac and MQ) shifted left one place; c (ac)
greater than c(¥).

ooo! 1011 c(yY) subtracted from c(Ac) and a | replaces
MQ 35.

0011 0110 c(ac and MQ) shifted left one place; c (Ac)
less than C(y).

0110 1100 c(ac and MQ) shifted left one place; c (Ac)
greater than C(y).

0001 1101 c(y) subtracted from c(ac) and a 1 replaces
MQ 35.

The quotient is now complete in the MQ
with the remainder in the ac.

30 1BM 709

DVP — Divide or Proceed

| soz LF Y |
S, 11 12-1314 17 18-20 213 35

Description. If the magnitude of the c(y) is greater
than the magnitude of the c(ac), division occurs as
with the pvH instruction. If the magnitude of the
c(y) is less than or equal to the magnitude of the
c(ac), the divide-check indicator is turned on and
the computer proceedsto the next instruction.

Indicators. Divide check

Timing: 3-20 cycles.

Execution. Exactly the same as pvH except thatin-
stead of halting, when a divide-check occurs, the com-

puter executes the next sequential instruction (Figure

27).

VDH — Variable Length Divide or Halt

[+o2a tc TY Y |
5.1 Wi2 17 18-20 21. 35

Description. This instruction is the same as a DVH
except that a C-bit quotient plus sign replaces the C
low-order positions of the Mg. The remainderreplaces
the c (Ac) ,.;; and the 35—C high-orderpositions of the

MQ. Instead of 43 being placed in the shift counter
initially, C is placed there. If C is zero the instruction
is interpreted as a no-operation and the computer
proceeds directly to the next instruction in sequence.

Indicators. Divide check.

Timing: 2-20 cycles, modification 2

Execution. The same operation as DVH except as
noted above.

Nore: Indirect addressing may occur if the count
field places 1-bits in positions 12 and 13 of the instruc-
tion (Figure 27).

VDP — Variable Length Divide or Proceed

[sos eT] vd
§,1 1112 17 18-20 21 35

Description. This instruction is the same as DVP
except that a C bit quotient with a sign replaces the
C low-order positions of the Mg. The remainder re-
places the c(Ac),.3; and the 35—C high-order posi-

tions of the mag. C rather than 43 is placed in the
shift counter initially. If C is zero the instruction is
interpreted as a no-operation and the computer pro-
ceeds directly to the next instruction in sequence.

Indicators. Divide check.
Timing: 2-20 cycles, modification 2

Instruction in the
storage register

"
| Operation is decoded

Y

DvP VDP
DVH VDH

'
Address of data is located
and in storage register

(Divisor)

Set 43 in
the shift

counter

Set Cin

the shift

counter

Figure 27. DVH, DvP, vDH, and vpe Flow Chart

Execution. The same procedure as pvp except as
noted above.

Nore: Indirect addressing may occur if the count
field places 1 bits in positions 12 and 13 of the in-
struction.

Figure 27 shows the logic flow chart for pvH, DvP,

VDH, and vppP instructions.

Floating Point Operations

The following operations are divided into two groups
to describe the processing of floating-point numbers
in either normalized or unnormalized form. The pos-
sibility of floating-point overflow or underflow during
the execution of a floating-point instruction is indi-
cated by an asterisk (*). All conditions of underflow
and overflow are discussed following the last floating-
point instruction.

Shift C(AC and MQ)
1 place to the left
(MQ 1 to AC 35)

No Yes

0 to MQ 1.to MQ
35 35

Operation complete-
Quotient in MQ.
Remainder in AC.

Floating Point Arithmetic

The algebraic addition of two floating-point num-
bers in the computer is analogous to the ordinary al-
‘gebraic addition of two signed numbers with decimal
points: An example is the algebraic addition of the
two numbers 100 and —0.1009:

100.0000

— 0.1009

99.8991

Note that the second number must beshifted to the

right to line up the decimal points, and that the first
number must be supplied with additional zeros. The
same addition performed with numbers expressed in
floating-point decimal form, would be:

-1000 x 103

—.1009 x 10°

Again, before the addition, the lower number is

shifted to the right with a compensating change in

Computer Instructions 31

the exponent and corresponding zeros are added to

the numberon the upperline:

.1000000 x 10°

—.0001009 x 108

0998991 x 103 = .998991 x10?

Note also that the digits of the answer must be moved

to the left to be in normalized form and that thefinal

fraction contains more digits than either of the two

numbers involved in the addition.

In the computer the two numbers are expressed. as

binary fractions, each having an 8-bit binary char-

acteristic to represent the exponent of 2. The “lining

up”is doneby shifting from theac into the Ma. The

result of an addition or multiplication is normalized by

shifting the fractions in the ac and mg left while mak-

ing compensating changes in the characteristic of the

sum or product.

FAD — Floating Add

+0300 F T} Y
5,1 11 12-1314
 17 18-20 23 35

Description. The floating-point numbers located in

Y and the ac are added together. The mostsignificant

portion of the result appears as a normalfloating-point

number in the ac. Theleast significant portion of the

result appears in the MQ as a floating-point number

with a characteristic 33 (octal) less than the ac char-

acteristic. The signs of the ac and Mg areset to the

sign of the larger factor. The sum in the ac and MQ

is always normalized whether the original factors were
normal or not. If C(AC) ;.35 contain zeros, the FAD may

be used to normalize an unnormalfloating-point num-

ber.

Indicators. Floating-point underflow, overflow, and

floating-point trap.

Timing: 6-15 cycles, modification 3

Execution

1. The mg register is cleared to zeros.

2, The c(y) are placed in the sr.

3. If the characteristic in the sr is less than the

characteristic in the ac, the c(sR) and C(AC) ¢4-35 are

interchanged, as the number with the smaller char-

acteristic must appear in the ac before addition can

take place.

4. The mgis given the samesign as the ac.

5. If the difference in the characteristics is greater
than 63, the c(ac) are cleared. If the difference in
the characteristics is a number N less than or equal
to 63, the C(Ac) 9.35 are shifted right N places. Bits
shifted out of position 35 of the ac enter position 9

32 1BM 709

of the mg. Bits shifted out of position 35 of the MQ

are lost.

6. The characteristic in the sr replaces the C (AC)1...

7. The c (sk) 9.3, are added to the € (AC) 9.35 and this

sum replaces the C(AC) 9.35. If the signs of the ac and

sr are unlike, the c(sR) 9.35 are added to the 1’s com-

plement of the C(AC) 9.35. Since the C(AC) 9.35 repre-

sent a pure fraction, the magnitude of their l’s com-

plement is equal to (1 — 2°27) —C(AC) 9.55.

8. Regardless of the sign or relative magnitudes of

the sr and ac, the result appears in double-precision

form with signs alike in both the ac and mq. If the

signs of the ac and sr are the same and the magnitude

of the sumsof the fractions is greater than or equal to

one, there is a carry from position 9 into position 8
of the ac. Thus, the characteristic of the ac is in-
creased by one.* In this event, the fractions of the
ac and mgareshifted right one position and a | is
inserted into position 9 of the ac. If the signs of the
ac and sr are different, there are two cases, both de-
pending on the difference between the sr and ac

fractions.

CasE 1. If the magnitude of the SR fraction is
greater than the fraction in the ac, the ac and
MQ signs are both changed to the sign of the sr.
If the fraction of the mg is zero, the difference

between the fractions of the sr and acis placed
in the ac. If the fraction of the MQ is not zero,

the difference between the fractions of the sr and
AC, minus one, is placed in the ac; the 2’s com-

plement of the mg fraction replaces the fraction

in the MQ.

Case 2. If the magnitude of the sr fraction is less
than the fraction in the ac, the difference of the
two fractions replaces the fraction of the ac. The
sign of the ac and the entire MQ remain un-

changed.

9a. If the resulting fractions in both the ac and
MQ are zero, the acis cleared, yielding a normal zero.
If the fractions are in normalized form before the FAD
is given, this result can only occur if the signs are
different and the c(y),.;; are equal to the C(AC) 1.35.
The signs of the ac and mg will be equal to the sign
of the number originally in the ac. If the resulting
fraction in the ac is zero and the two numbers were
not in normalized form before addition, the signs of
the ac and mg are equal to the sign of the original
number having the smaller characteristic.

9b. If the resulting fractions in the ac and mg are
not zero, the fractions of the ac and mgare shifted

left until a 1 appears in position 9 of the ac. Bits
enter position 35 of the ac from position 9 of the MQ.
The characteristic in the ac is reduced by one for each

position shifted.* No shifting is necessary if the frac-
tion of the ac is in normal form at the beginning of

this step.

10. The mg is given a characteristic which is 27
less than the characteristic in the ac,* unless the ac
contains a normal zero, in which case zeros are left

in positions 1-8 of the mq.

If the P and/or Q positions of the ac are not zero
before the execution of the FAp, the result will usually

be incorrect. Non-zero bits in P and/or Q which are
initially interpreted as part of the ac characteristic
make it larger than the characteristic in the sr so that
the interchange in step 3 will always take place. Dur-
ing the interchange a] will be placed in position S
of the sr if there is a] in either S or P positions of the
AC, so that the sign of the number may be changed.
Any bit in Q is lost during the interchange and both
P and Q are cleared when the c (sr) replace the c (Ac).
The difference between the two characteristics is com-
puted after the interchange occurs, so that in step 5,
N will not be equal to the difference between the
original characteristics. In step 6 the characteristic in
the sr, with its Q and P bits missing, replaces the char-
acteristic in the ac. Consider as a sample problem the
addition of:

2? x .1001 = (SR) +10000010.1001
25 Xx 1001 = (AC) +10000101.1001

First, the exponents must be equalized and then the
addition may proceed. The characteristics are checked
and found unequal, with the largest in the ac. The
numbers in the ac andsr are then exchanged, giving:

SR +10000101.1001
AC +10000010.1001

The mg content is zeros at this time. The (AC) 9.35

are then shifted right the numberof places needed to
equalize the exponents. (Remember that the binary
point is located between positions 8 and 9 of all regis-
ters.) The registers then appearas:

SR +10000101.1001

AC +10000101.0001

MQ +00000000.0010

Thefractions (positions 9-35) may now be added.

SR +10000101.1001
AC +10000101.1010
MQ +00000000.0010

AC position 9 is checked for a 1 and no normalizing
occurs. The MQ characteristic is now set. It is equal
to the ac characteristic minus the numberof places in

the ac fraction (27 in the computer, 4 in this ex-
ample) :

SR +10000101.1001

AC +10000101.1010

MQ +10000001.0010

Decoding the results into the original format, we find:

25 xX .1001 MQ = 2? X .0010 = 2° X .00000010

25 x .0001001 AC = 25 X .1010

25 x .1010001 resultant sum = 2° X .10100010

FAM — Floating Add Magnitude

+0304 FLN T| Y | |
17 18-20 21 35 $,1 11 42-1314

Description. This instruction algebraically adds the
positive magnitude of the floating-point numbers con-
tained in Y to the signed floating-point number in

the ac. The sum is normalized.

Indicators. Floating-point underflow and floating-
point overflow; floating-point trap.

Timing: 6-15 cycles, modification 3

Execution. The same procedure as FAD except that
the magnitude of the number in the sr is used (sR
sign is forced plus).

UFA— Unnormalized Floating Add

-0300. «IF NNN7] Y
5,1 1b 42-1314 17 18-20 21 35

Description. This instruction algebraically adds two
floating-point numbers contained in the ac and Y.
The sumis not normalized.

Indicators. Floating-point underflow and floating-
point overflow; floating-point trap.

Timing: 5-11 cycles, modification 4

Execution. The same procedure as Fab except that
no normalizing will occur (step 9).

FSB — Floating Subtract

+0302 F INN | Y |
51 1d 12-1314 17 18-20 21 35

Description. This instruction algebraically subtracts
the floating-point number located in Y from the float-
ing-point number in the ac, and normalizes the re-
sult.

Computer Instructions 33

Indicators. Floating-point underflow and floating-

point overflow; fioating-point trap.

Timing: 6-15 cycles, modification 3

Execution. The same procedure as FAD except that

the negative of the c(y) are placed in the sr (sr sign

is reversed).

UAM— Unnormalized Add Magnitude

- 0304 1FINNN T) Y
¥7 18-20 21 35

 S,1 VV 92-1314

Description. This instruction algebraically adds the
magnitude of the floating-point number contained in
Y to the signed floating-point numberin the ac. The
sum is not normalized.

Indicators. Floating-point underflow and floating-
point overflow; floating-point trap.

Timing: 5-11 cycles, modification 4

Execution. The same procedure as FAD except that

the sign of the numberin the sr is made positive and
the result is not normalized.

FSM — Floating Subtract Magnitude

+0306 | F NNT} Y
$1 11092-1314 17 18-20 21 35

Description. This instruction algebraically sub-
tracts the magnitude of a floating-point numberstored
at Y from the signed floating-point numberin the ac.
The result is normalized.

Indicators. Floating-point underflow and floating-
point overflow; floating-point trap.

Timing: 6-15 cycles, modification 3

Execution. The same procedure as FAD except that
the negative magnitude of the contents of Y are used
(sr sign is forced minus) .

UFS — Unnormalized Floating Subtract

- 0302 Ni Y
5,1 1312-1314 17 18-20 23 35

Description. This instruction algebraically subtracts

the floating-point numberlocated in Y from the float-

ing-point number in the ac. The result is not nor-

malized.

Indicators. Floating-point underflow and floating-
point overflow; floating-point trap.

Timing: 5-11 cycles, modification 4

34 1BM 709

Execution. The same procedure as Fab except that
the negative of the contents of Y are placed in the

srk and normalizing does not occur.

USM — Unnormalized Subtract Magnitude

ee“i v
$.1 Y1012-1334 17 38-2021 35

Description. This instruction algebraically sub-

tracts the magnitude of a floating-point numberstored
at Y from the signedfloating-point numberin the ac.

The result is not normalized.

Indicators. Floating-point underflow and _floating-
point overflow; floating-point trap.

Timing: 5-11 cycles, modification 4

Execution. The same procedure as FAD except that
the negative magnitude of the contents of Y are used
andtheresult is not normalized.

The differences between answers, received after
execuuion of a floating-point add or subtract opera-

tion, when using a 70+ or 709 system is a matter

of increased precision and is summarizedas:

704

1. Accumulator sign and

MQ sign not neces-

sarily the same.

2. Characteristic differ-

ence between accu-

mulator and MQ is

usually 27,,, but it

can be 28,, when add-

ing numbers of un-
like signs.

3. If the accumulatoris

zero and the MQ is

not, the sum will not

be shifted andthe ac-

cumulator will be

made equal to a nor-

mal zero.

FRN — Floating Round

2 17 18-20 21-23 24 35VW

709

Accumulator sign and
MQ sign are guaranteed

to be equal.

Characteristic difference

between accumulator

and MQ is always 27,0.

If the accumulator is

zero and the MQ is not,

the mq factor will be

shifted in order to nor-

malize the sum.

Description. Floating-point add, subtract, and mul-
tiply produce a double-word result. The instruction

FRN will add 1 to position 35 of the ac if the MQ frac-

tion is equal to or exceeds half the magnitude of a

l-bit in ac 35. The ac is corrected if rounding re-
sults in a carry from ac 9. |

Indicators. Floating-point overflow, floating-point

trap.

Timing: 2 cycles

Execution. If Mg 9 contains a 1, a carry will be

added to ac 35. A carry out of ac 9 increases the char-

acteristic of the ac by 1, causes the fraction of the ac

to be shifted right and a 1 to be placed in ac 9. Since
the address part of this instruction represents part of
the operation code, any modification by an index reg-
ister may result in changing the operation itself.

FMP — Floating Multiply

| +0260 FAWN7! y
S.1 11012-1314 17 18-20 21 35

Description. The c(y) are multiplied by the c(mQ).
The most significant part of the product appears in
the ac and the least significant’ part appears in the
MQ. The product of two normalized numbers is in

normalized form. If either of the numbers is not nor-

malized, the product may or may not be in normalized
form.

Indicators. Floating-point underflow, floating-point
overflow, and floating-point trap.

Timing: 2-17 cycles, modification 1]

Execution

1. The c(yv) are placed in the sr and the ac is
cleared.

2a. If the multiplicand is a normal zero so that

c (SR) ;.3; are equal to zero, the MQ,.;; is cleared and

the calculator proceeds directly to the next instruc-
tion in sequence.

2b. If the c (sR) 5.3, are not equal to zero, the sum of

the characteristics in the sk and mg minus 128 is

placed in positions 1-8 of the ac* (Figure 28).

3. The (SR) 9.3; are multiplied by the C (MQ) 9.35.

The 27 mostsignificant digits of the 54-digit product
replace the c(ACc) 5.,,; and the 27 least significant digits

replace the C(MQ),.,;. The sign of the ac is the al-

gebraic sign of the product.

4a. If the fraction in the ac is zero, the C(AC)gp, 1-35

are cleared, yielding a signed normalzero.

4b. If the position 9 of the ac contains a zero but

the fraction in the ac is not zero, the C(AC) 15.35 and

| Multiplicand to storage register

| Check signs and set signs of product |

Y
| Add char, of the MQ and SR |

1
Subtract 200 from char. and place
in the accumulator register

!
Multiply SR fraction by MQ fraction

Put AC char., minus 33,
in the MQ

Set accumulator

characteristic to0 y
Operation

Complete

Shift AC and MQ left

until AC (9) = 1

Y
Reduce AC char. by no.
of shifts used

1
Set MQ char. to AC char.

minus 33

Operation complete

Figure 28. rmMp and UrM Flow Chart

the c(MQ),.3; are shifted left one position and the
characteristic in the ac is reduced by1.

5a. If the ac contains a normal zero, positions 1-8

of the mq arecleared.

5b. If the ac does not contain a normal zero, the

C (MQ) ,-. are replaced by a characteristic which is 27

less than the characteristic in the ac (*).

6. The sign of the mgis replaced bythe sign of the
AG.

UFM — Unnormalized Floating Multiply

0260 NG Y

17 18-20 21 35
 S,1 ¥}012-1314

Description. This instruction multiplies the float-
ing-point number at Y by the floating-point number
in the mq. The result is not normalized.

Indicators. Floating-point underflow and floating-
point overflow; floating-pointtrap.

Computer Instructions 35

Timing: 2-17 cycles, modification 1

Execution. The same procedure as FMP except that
the product is not normalized or zero tested.

Figure 28 shows a flow chart of the FMp and UFM
instructions.

FDH — Floating Divide or Halt

+0240 [F NWT] Y |
S,1 V1 12-1314
 37 18-20 21 35

Description. The c(ac) are divided by the c(y).
The quotient appears in the Mg and the remainder
appears in the ac. If the magnitude of the ac fraction
is greater than or equal to twice that of the C(Y) 9-35,

or if the magnitude of the C(y) ».;; is zero, the divide
check indicator is turned on and the computerstops,
leaving the dividend in the ac unchanged and a nor-
mal zero in the c(mMQ). The quotient is in normal
form if both the dividend and divisor are in that
form. If they are, the magnitude of the ratio of the
fraction in the ac to the fractional part of c(y) is less
than two butgreater than one-half.

Indicators. Floating-point underflow, floating-point
overflow, divide check, and floating-point trap.

Timing: 3-18 cycles, modification 5

Execution

1. The c(y) are placed in the storage register.

2. The mg is cleared.

3. The sign of the mq is made equal to the alge-
braic sign of the quotient. The sign of the ac re-
mains unchanged throughoutso that the signs of the
remainder and dividend always agree.

4. If the magnitude of the fraction in the ac is
greater than or equal to twice the magnitude of the
fraction in the sr, or if the fraction in thesr is zero,
the divide-check indicator and panel light are turned
on, the calculator stops and the dividend is left un-
changed in the ac.

5. If the fraction in the ac is zero, the C(AC)g,p1-35
are cleared and the remaining steps are skipped. If
S (AC) is minus, the sign is forced plus.

6. If the magnitude of the fraction in the ac is
greater than or equal to the magnitudeof the fraction

in the sr, the ac is shifted right one position, and the

characteristic in the ac is increased by one.* Thebit
in position 35 of the ac enters position 9 of the Ma.

7. The characteristic of the ac minus the charac-

teristic of the sr plus 128 is placed in positions 1-8 of
the Mq.*

36 iBM 709

8. The fractional part of the dividend, which con-
sists of the c(Ac),.,, (and the c(MQ) if the condition
of step 6 is met), is divided by the fraction in the sr
and the quotient replaces the C (MQ) .35-

9. The 27-bit remainder resulting from the division

in step 8 replaces the C (AC) 9.35.

10. The characteristic in the ac is reduced by 27*.

NoTE: Even though the numbers are not in nor-
malized form, the quotient will be normalized if the

ratio above holds. If the fraction in the AcIs zero, a

normalized zero will result in the Ma.

FDP — Floating Divide or Proceed

[+0241 LFINN T | Y |
11 12-1314 17 18-20 21 35

Description. This instruction divides the floating-
point number stored in the ac by the floating-point

number located at Y.

Indicators. Floating-point underflow, floating-point
overflow, divide check, and floating-point trap.

Timing: 3-18 cycles, modification 5

Execution. The same procedure as FpH except that

if the computer cannot handle the problem, it does

not halt but proceeds to the next sequential instruc-

tion.

Floating-Point Trap

During the execution of floating-point instructions
the resultant characteristic in the ac and MQ may ex-

ceed eight bit positions (result is too large for stor-
age). The capacity is exceeded if the exponent goes
beyond +177 or below —200. Beyond +177 is termed
overflow while below —200 is termed underflow. Over-

flow and underflow may occurin either the ac or the
MQ registers.

To aid the programmerin checking for these condi-
tions, a unique check called floating-point trap is used.
The computer will, upon sensing an underflow or
overflow, put the address plus one of the instruction
that caused the condition into the address portion of
location 0000.

An identifying code, telling whether an underflow
or an overflow occurred and whether the mostsignifi-

cant result is in the ac or aq,is placed in the decre-

ment portion of location 0000. The computer then
executes the instruction at location 0010 and proceeds

from there. These underflows and overflows are

termed spills. The spill code is produced as follows:

DEC. PORTION OCTAL
OPERATION ACCUMULATOR MQ 14 15 16 17 cope

Add,Subtract underfiow 0 0 0 #/] Ol
Multiply underflow underflow 0 0 1 1 03
Round overflow 0 1 1 90 06

overflow overflow | 1 1 07
Divide underflow 1 0 0O 1 11

underflow 1 oO 1 0 12
underflow underflow 1 0 1 1 13

overflow 1 1 0 1 15

Shifting Operations

Shift instructions are used to move the contents of the
ac and/or the Mgeither to the right or the left of
their original positions. With the exception of the
ROTATE MQ LEFT instruction, zeros are automatically

introduced in the vacated positions of a register.
Thus, a shift larger than the bit capacity of the reg-
ister will cause the contents of the register to be re-

placedbyzeros.
Whena shift instruction is interpreted, the amount

of the shift is determined by bit positions 28-35 of the
instruction. This provides a maximum shift of 377
places. Any number larger than 377 is interpreted
as modulo 400. By modulo 400 is meant that, given
any shift count, the actual numberof positions shifted
will be the remainder after dividing the shift count
by 400.

Instruction in storage register |

All shift instructions are subject to address modifica-
tion through indexing. Shifting a number in a reg-
ister is equivalent to multiplying or dividing it by a
power of 2 (as long as none of the significant bits is
lost) .

In the following description of the shift instruc-
tions, the number of positions to be shifted is speci-

fied by “positions 28-35.” With indexing, this shift
is modified by positions 10-17 of the specified index
register or registers.

ALS — AccumulatorLeft Shift

[s—35

Description. This instruction causes the C(AC)g,p, 1-35
to be shifted left the number of places specified in
positions 28-35 of the address portion of the instruc-
tion. The sign position is unchanged.

Indicators. AC overflow.

Timing: 2-5 cycles, modification 7

Execution. If a non-zero bit is shifted into position

P from position 1, the ac overflowindicator is turned

on. Bits shifted past position Q are lost. Vacated posi-
tions arefilled with zeros (Figure 29).

S,1-11 28-35

Instruction Set address in

decoded shift counter

AS SS ARS

 ’ Y

LLS <> LRS

Y
Shift AC left Shift AC
1 position right 1 position

Shift AC &M
left ? position

Shift AC&MQ

 right 1 position

\
|MQ1t0AC35| [AC35t0oMQ1 |

 Operation complete

 /

Set AC sign
to MQ sign

Set MQ sign
to AC sign

Figure 29. ARS, ALS, LLS, and Lrs Flow Chart Operation complete

Computer Instructions 37

ARS — Accumulator Right Shift

[or] y
8,1 Vyi2 } 13820 21 35

Description. The € (AC) g, p, 1-35 are shifted right the
number of places specified in positions 28-35 of the
address portion of the instruction. The sign position
is unchanged.

Indicators. None.

Timing: 2-5 cycles, modification 7

Execution. Bits shifted past position 35 of the ac-

cumulator are lost. Bits shifted from Q enter P and

bits from P enter position 1. Vacated positions are
filled with zeros (Figure 29).

LLS — Long Left Shift

73| Y |
3.1 1112 17, 18-20 21 35

Description. The C(AC) 9pi-35 and the C (MQ) 1-35

are treated as one register. The contents of these reg-
isters are shifted left the numberof places specified in
positions 28-35 of the address portion of the instruc-
tion. The mgsign position is unchanged andthesign
of the ac is madeto agree withit.

Indicators. AC overflow.

Timing: 2-8 cycles, modification 7

Execution. Bits enter position 35 of the ac from
position | of the me. If a non-zero bitis shiftedinto

or through position P, the ac overflow indicator is
turned on. Bits shifted past position Q are lost. Posi-
tions vacated are filled with zeros (Figure 29).

LRS — Long Right Shift

+0765 T | Y |
s.1 V1 42 17 1820 21 35

Description. The C(AC)gp13; and the C (MQ)1-35
are treated as one register. The contents of these reg-
isters are shifted right the number of places specified
in positions 28-35 of the address portion of the instruc-
tion. The ac sign is unchanged and the sign of the
MQ is madeto agree withit.

Indicators. None.

Timing: 2-8 cycles, modification 7

Execution. Bits enter position 1 of the Mg from

position 35 of the ac. Bits shifted past position 35 of
the mq are lost. Vacated positionsare filled with zeros

(Figure 29).

Figure 29 showsthe flow chart for the ARS, ALS, LLS,

and LRs instructions.

38 IpM 709

LGL — Logical Left Shift

aidl Y |
7 1225 2) 35

Description. The c(AC) gp, 1-3; and the C (MQ) s,1-35

_are treated as one register. Their contents are shifted
left the number of places specified in positions 28-35

of the address portion of the instruction. The sign of

the ac is unchanged.

Indicators. AC overflow.

Timing: 2-8 cycles, modification 7

Execution. Bits enter position S of the Mg from

position | of the mg. Bits from Mg (s) then enter posi-
tion 35 of the accumulator. If a non-zero bit is shifted

into or through position P of the ac, the ac overflow

indicator is turned on. Bits are shifted from P to Q

and any bits shifted from Q are lost. Vacated posi-
tions are filled with zeros.

LGR — Logical Right Shift

| 0765 SWN | Y |
S, J} 32t 17 3820 21 35

Description. The C (AC) 9, p, 1-35 and the C (MQ) sg,1-35

are treated as one register. Their contents are shifted

right the number of places specified in positions 28-
35 of the address portionof the instruction. The sign
of the ac is unchanged.

Indicators. None.

Timing: 2-8 cycles, modification 7

Execution. Bits enter position S of the MQ from

position 35 of the ac. Bits enter MQ 1 from MQ(s).
Bits shifted past position 35 of the MQ are lost. Va-

cated positions are filled with zeros.

RQL — Rotate MQ Left

S$. 1 1112 17) 1220 21 35

Description. The c(MQ) are shifted left the num-

ber of places specified by positions 28-35 of the ad-
dress portion of the instruction. The instruction

shifts position S into position 35, and thusthe register

becomesa circular one.

Indicators. None.

Timing: 2-5 cycles, modification 7

Execution. Bits are rotated from position 1 of the

MQ to position S, and from position S$ to position 35.
Nobits arelost.

Word Transmission Operations

The operations described in this section are con-

cerned with the movement of words or parts of words

from one core location or register to another.

LDQ — Load MQ

| +0560 LEXSN 7 v |

$1 11 42-1314 17 18-20 21 35

Description. This instruction places the contents of
Y into the mg. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

STQ — Store MQ

| ~ 0600 FRATT Y
$1 11 12-1314 17 18-2 35

Description. This instruction places the contents of
the mq into the specified Y location. The c(mQ) re-
main unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

SLQ — Store Left Half MQ

T, Y |- 0620
Si VW 12-1314 i j

17 18-20 21 35

Description, The cC (MQ) gs, :-17 replace the ¢ (yY) s, 1-17

The c(mg) and the c(y) ,s.3; are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

STO — Store

+0601 LEASNT Y |
Si 1192-1314 -17: 18-2021 35

The

Description. The C (AC) g3.35 replace the c (y).

c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

SLW — Store Logical Word

+0602 F T Y |
'

ob i

17 18-20 21 35

The

$,1 11012-1314

Description. The C(Ac)p3.35 replace the c(y).

c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

STP — Store Prefix

#0680FT Y |
$,] 11012-4314 V7 18-20 21 35

Description. The c(AC) p.i,2 replace the C(Y) 51,2

The c(y) 5.3; and the c(ac) are unchanged.

Figure 30. Data Flow Chart for Store Instructions

Computer Instructions

SW s10| SXD SLQ STQ ||STZ | ST! [sto | [str |[sta [sxa | STL | ste |
L

NN

' ' v Y yy \ v y

AC(P, 1-~35) Tagged XR MQ(S,1-35) Zeros to SB 51(0-35) AC(S, 1-35) Tagged XR IC to
to SB(S, 1-35) to SB(3-17)] [to SB(S, 1-35)H] {(S, 1-35) to SB(S, 1-35)|} |to SB(S,1-35)}| to SB(21-35) 5B(21-35)

Y ‘A Y a
Store Store Store Store |Store

$,1,2 3-17 S,1-17 18-20 [21-35
oniy only only only only

¥ vi { v

Store full word Trap and
S,1-35 set the IC

to 0002

39

Indicatois. None.

Timing: 2 cycles

Execution. See Figure 30.

STD — Store Decrement

+0622 FINN 7 Y |
S,1 TV 12-1314 V7 18-20 21 35

Description. The c (Ac) 3.,; replace the C (Y)3.17. The

C (Y) gs, 1, 2, 18-35 and the c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

STT — Store Tag

 as FT
17 18-20 21 35 S,1 112-1314

Description. The C(AC) y3.25 replace the C(Y¥) 18-20-

The €(Y) s1-17, 21-35 and the c(ac) remain unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

STA — Store Address

FA Y
VV12-1914 17 18-20 21 35

+0621

Description. The C(AC) 1.35 replace the €(Y) o1-35-

The C(¥) 5, 1-29 and the c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

STL — Store Instruction Location Counter

-0625 [FW] Y |

St VT 12-1344 V7 18-20 21 35

Description. The location of the sti instruction
plus 1 replaces the C(Y) 91.35. The c(¥)s 1-29 are un-

changed.

Indicators. None.

Timing: 2 cycles

Execution. Instruction counter contents to address

switches. Address switches to the storage bus. SB
(21-35) to storage. See Figure 30.

40 1BM 709

STR — Store Location and Trap

Bn
$,1-23 35

Description. The location of the sTR instruction,

plus one, replaces positions 21-35 of location 0000.
The computer then takes its next instruction from
location 0002. The contents of positions 3-35 of this
instruction are not interpreted by the computer.

Indicators. None.

Timing: 2 cycles

Execution.

Note: Conflicts may arise when the computeris op-
erated in the trapping mode. This instruction, TRANs-
FER TRAP MODE, and floating-point trap, all use loca-
tion 0000. See Figure 30.

STZ — Store Zero

+0600 F T |
17 18-20 21 35
 S.] 11 12-1314

Description. The C(y¥) ;.35 are replaced by zeros and
the C (Y) gs are madeplus.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 30.

XCA — Exchange AC and MQ

+0131

R
S
K
G

WWWGwWwm
yve12 35

Description. The cC(AC)s 1.3; are exchanged with
the C(MQ)s1.35. Positions P and Q of the ac are

cleared.

Indicators. None.

Timing:2 cycles

Execution. See Figure 31.

XCL — Exchange Logical AC and MQ

0130
VW a5

Description. The C(Ac) p,1.3; are exchanged with

the C(MQ)s1-35. Positions S$ and Q of the ac are

cleared.

Indicators. None.

Timing:2 cycles

Execution. See Figure 31.

ENK — Enter Keys

17 18-20 21-22 23

Description. This instruction places the contents of
36 panel input switches into the c(MQ). When a
panel input switch is down it represents a 1; when it
48 up, it represents a zero.

Indicators. None.

Timing: 2 cycles

Execution. Since the address part of this instruc-
tion contains part of the operation code for this in-
struction, any address modification by an index regis-
ter may result in the changing of the operationitself.

Control Instructions

Instructions which govern the flow of a program, and

in particular those which cause an alteration in the

computer’s normal process of taking its instructions
from sequential locations, are called control instruc-
tions.

Unconditional transfer instructions specily the lo-
cation “Y” from which the computer is to take the

Decode the instruction

C(MQ)to the storage

next instruction. Conditional transfer instructions also

specify a location Y. However, whether the computer
takes its next instruction from Y or the next sequen-
tial location depends upon the outcomeofa test. This
test is specified by the operation code of the instruc-
tion.

Test instructions are similar to conditional control
instructions in that they cause some test to be per-
formed. Unlike conditional instructions, however, test

instructions do not specify a location Y to which con-
trol may be transferred. Instead, the alternative loca-
tion to which control maybe transferred is fixed rela-
tive to the location of the test instruction.

NOP — No Operation

Description. This instruction causes the computer

to take the next instruction in sequence.

Indicators. None.

Timing: 2 cycles

HPR — Halt and Proceed

Description. This instruction causes the computer

to halt. The 1c contains the location of the next se-

register

(
XCA X€L

Inst.

SR(1~35) to SR(S, 1-35) to
adders adders

y Y Y y

SR sign to AC(S, 1-35) to AC(P, 1-35) to Adders (Q-35)

AC sign storage reg SR(S,1-35) to AC

Set AC sign
to plus

Y

SR(S, 1-35) to
MQ(S, 1-35)

Figure 31. xca and xct Flow Chart

Computer Instructions 4]

quential instruction. When thestart key on the op-

erator’s console is depressed, the computer proceeds

and executes the next sequential instruction.

Indicators. None.

Timing: 2 cycles

HTR — Halt and Transfer

+0000 LF NNN 7] Y |
$1 11012-1314 17 18-20 21 35

Description. This instruction causes the computer

to halt. The 1c contains the location of the HTR in-

struction... Depression of the start key, on the opera-
tor’s console, causes the computer to transfer to loca-

tion Y and execute that instruction.

Indicators. Trap Mode.

Timing: 2 cycles

XEC — Execute

+ 0522 A. NG YS,1 V1 12-1314 17 18-20 21 35

Description. This instruction causes the computer
to perform or “execute” the instruction at location Y.

Indicators. None.

Timing: 1 cycle

Execution. Since the location counteris not altered
(when Y contains any instruction other than a suc-
cessful transfer or test instruction), the program ad-
vances to the next sequential instruction following the
execute instruction after performing the instruction
at location Y. If location Y contains a transfer in-
struction, it will be executed and program controlwill
be altered from the sequential process. If location
Y contains a test instruction, the instruction following
EXECUTE will be located relative to the EXECUTE rather
than the TEsT instruction. Thus, any instruction which

changes the instruction counter (STR, TRA, DCT, etc.)
will alter program control when that instruction is
executed by XEc.

TRA — Transfer

+0020 I. Ni Y
S,1 11 12-1314 17 18-20 21 35

Description. This instruction causes the computer
to take its next instruction from location Y and pro-

ceed from there.

Indicators. TrapMode.

42 1BM 709

Timing:2 cycles

Execution. See Figure 32.

ETM — Enter Trapping Mode

3,1 Vv 17 18-20 21-22 23 35

Description. This instruction causes the computer
to enter the transfer trapping mode. The transfer
trapping indicator on the operator’s console is turned
on.

Indicators. Trap Mode.

Timing: 2 cycles

Execution. The computer operates in the trapping

mode until either a LEAVE TRAPPING MODE OPERATION
is executed or the clear or reset key on the operator’s
console is depressed. Since positions 23-35 represent
part of the operation code of this instruction, any
modification by an index register may result in the
changing of the operationitself. See Figure 32.

TRAin Trap Mode <> TSX

Y

| Instruction in SR |

SR (18-35) to adders (P-17)

| Instruction in the SR |

'
Block address portion
to address switch (AS)

! |
AS set to 00000 and sent

to address register (AR) Adders to AS and AS to AR

Y |
Instruction counter (IC)

to AS and AS to SR (21-35)

| Y

IC is made equal to AS -
—
-
—
_
—

ASto SR (21-
| AR to IC (00000 in IC) | © (21-35)

Block storage bus (SB) SR (21-35) to adder (P-17)
to SR

Y !
SR to SB and advance Adder (3-17) to XR and 1

IC to 00001 to adder 17

!
XR to adders and adders

to XR

Figure 32. rra, 1sx, and Trap Mode Flow Chart

LTM — Leave Trapping Mode

5,1 1112 17 18-20 21-22 23 35

Description. ‘This instruction turns off the trap
mode indicator and causes the computer to leave the
transfer trapping mode. Transfer instructions, there-

fore, will not be trapped again until an ETM opera-
tion is executed.

Indicators. Trap Mode.

Timing:2 cycles
Execution. When the computer is in the trapping

mode and any transfer instruction except a TIR is
executed, the location of the transfer instruction re-

places the address part of location 0000 whether the
condition for transferring is met or not. If the trans-
fer condition is met, the computer takes its next in-
struction from location 0001 and proceeds from there.
Only instructions which have “transfer” in their title
are affected by the transfer trapping mode. Address
modification may change the operation, since posi-
tions 23-35 of the instruction are a part of the opera-
tion code.

TTR — Trap Transfer

 $.1 11-12-1314 17 18-20 21 35

Description. ‘This instruction causes the computerto

take its next instruction from location Y and to pro-

ceed from there whether in the transfer trap mode or

[| Decode the instruction: |

Address switch to
address register

TNZ, TZE '

TPL, TMI

Comp, AC to adders
adder Q carry to
adder position-35

not. This makes it possible to have an unconditional
transfer in the transfer trapping mode.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 32.

TZE — Transfer on Zero

to FR Y
5.1 1112-1314 17 18-20 21 35

Description. If the c(aC)gp.3; are zero, the com-
puter takes its next instruction from location Y and
proceeds from there. If they are not zero, the next

sequential instruction is taken.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 33.

TNZ — Transfer on No Zero

Fe
1112-1314 17 18-20 21 35

- 0100

Description. If the C(AC)gpi25 are not zero, the

computer takes its next instruction from location Y

and proceeds from there. If they are zero, the next
sequential instruction is taken.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 33.

Execute the next
sequential instruction

Figure 33. TNZ, TZE, TPL, and TMI Flow Chart

Computer Instructions 43

TPL — Transfer on Plus

+0120 [F KW] Y
$1 Tl }21314 17 18-2021 35

Description. If the sign position of the ac is post-
tive, the computertakes its next instruction from loca-
tion Y and proceeds from there. If the sign position
is negative, the computer takes the next sequential
instruction.

Indicators. Trap mode.

Timing:2 cycles

Execution. See Figure 33.

TMI — Transfer on Minus

-0120 INN T] Y
5,1 WT 12-1314 17 38-20 21 35

Description. If the sign position of the ac is nega-
tive, the computer takes its next instruction from loca-
tion Y and proceeds from there. If the sign position
is positive, the computer takes the next sequential
instruction.

Indicators. Trap mode.

Timing:2 cycles

Execution. See Figure 33.

TOV — Transfer on Overflow

+0140 IN T| Y
5.1 V1 12-1314 17 18-20 21 35

Description. If the ac overflow indicator is on, it

is turned off and the computertakes its next instruc-
tion from location Y. If the indicator is off, the com-

puter takes the next sequential instruction.

Indicators. ac overflow, trap mode.

Timing: 2 cycles

Execution. See Figure 34,

TNO — Transfer on No Overfiow

“oe FB]J
5,1 VV 12-1314 17 18-20 21 35

Description. If the ac overflow indicator is off, the

computer takes its next instruction from location Y.

If the indicator is on, it is turned off and the com-

puter takes the next sequential instruction.

44 iM 709

Address switch to
address register

TNO, TOV TQP

minus

TOV

—-¢

\

Transfer
Execute next sequential

instruction
Figure 34. rov, TNo, and TQo Flow Chart

Indicators. ac overflow, trap mode.

Timing: 2 cycles

Execution. See Figure 34.

TQP — Transfer on MQ Plus

+0162 ISN T| ¥
7 Tr te1314 17: 182021 35

Description. If the sign position of the mq is plus,
the computer takes its next instruction from location
Y. If the sign position is negative, the computer takes
the next sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 34.

TQO — Transfer on MQ Overflow

+0161 NNT] Y
5,1 VV 12-1314 V7 18-20 21 35

Description. This instruction is a conditional trans-

fer when the computeris operating in the 704 floating-
point mode. If the mg overflow indicator is on, the
computer takes its next instruction from location Y

and turns theindicator off.

Indicators. MQ overflow.

Timing: 2 cycles

Execution. If this instruction is executed while the

computeris in the normal mode,it is treated as a no-

operation whether the mg overflow indicator is on or

not.

TLQ — Transfer on Low MQ

+0040 =O T | Y |
s1 WW 12-3314 17 16-20 21 35°

Description. If the c(MQ) are algebraically less than
the c(ac), the computertakes its next instruction from
location Y. If the c(mQ) are algebraically greater than
or equal to the c(ac), the computer takes the next
sequential instruction. Nore: a plus zero is algebra-
ically greater than a minuszero.

Indicators. ‘Trap mode.

Timing: 2 cycles

Execution. See Figure 35.

TSX — Transfer and Set Index

TX! — Transfer with Index Incremented

E D | 7 | Y
$.1-2 3 17 18-20 21 35

Description. This instruction adds the decrement
(D) to the contents of the specified index register
(T) and replaces the contents of the index register
with the resulting sum. The computer then takes its
next instruction from location Y.

Indicators. Trap mode.

Timing: 2.cycles

Execution. See Figure 36.

TXH — Transfer on Index High

[3 D [7 | ¥ |

 SS7
Description. This instruction places the 2’s com-

plement of the instruction counter contents in the
specified index register (T). The computer takesits
next instruction from location Y. Nore: Subtracting
the 2’s complement of a numberis equivalent to add-
ing the number.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 32.

Address switch to
address register

 y
MQ(S=35) to the
adders and comp
accumulator to

the adders
sF>F

minus <> plus

Q carry to
adder 35

~ |
on Q off

carry

MQ minus Transfer lus ACsign
sign minus plus?

minus
plus 1

'
Execute the next
sequential instruction

Figure 35. TLQ Flow Chart

$.1-2 3 17 48-20 24 35

Description. If the number in the specified index
register (T) is greater than the decrement (D), the
computer takes its next instruction from location Y.
If the number in the specified index register is less
than or equal to D, the computer takes the next
sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 37.

Address switch to
address register

C(XR) to adders,
carry to adder 17

Adder (3-17) to

index register

Y
SR (S,1-35) to

adders (P-35)

!
C(XR) to adders,

carry to adder 17

Adder (3-17) to

index register

!
Address register to
instruction counter

Figure 36. Txt Flow Chart

Computer Instructions 45

Address switch to

address register

!

2's comp. of XR to
adder (3-17) and

SR(3-17) to adders

Difference to

index register

Y
Recomplement
index register

TXH, TIX, TNX, TXL

LAonInst.

TNX ' Tix
TXL TXH

Transfer
Controls

Do next sequential tt
instruction

Figure 37. VIX, TXH, TNX and TxL Flow Chart

TXL — Transfer on Index Low or Equal

E >i] v |
$,4-23 V7 48.20 23 35

Description. If the contents of the index register
specified by T are less than or equal to the D portion,
the computertakes its next instruction from location
Y. If the contents of T are greater than D, the com-
puter takes the next sequential instruction.

Indicators. Trap mode.

Liming: 2 cycles

Execution. See Figure 37.

TIX — Transfer on Index

l+2 D [T | Y a
S123 17 18-20 21 35

Description. If the c(xR) specified by T are greater
than the c(p), the numberin the index register is re-

46 1M 709

duced by D and the computer takes its next instruc-
tion from Y. If c(T) is less than or equal to D, the

c(T) are unchanged and the computer takes the next
sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 37.

TNX — Transfer on No Index

|-2 D iT | Y
17 18-20 21 35

un ~~ N
O

w

Description. If the c(xr) specified by T are equal to
or less than D, the c(r) are unchanged and the com-
puter takes its next instruction from Y. If c(T) are
greater than D, the c(t) are reduced by D and the
computer takes the next sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 37.

PSE — Plus Sense

$,1 v1 12 17 18-20 21-22 23 35

Description. This instruction provides a means of
testing the status of the sense switches and of turning
on or off the sense lights on the operator’s console.
The instruction also permits the transmission of an
impulse to or from the exit or entry hubs on the
printer or card punch control panels. Address modifi-
cation may cause the operation code to be changed.

Indicators. Sense indicators and switches.

Timing: 2 cycles

Execution. The address part (23-35) of this in-
struction determines whethera light, switch, printer,

or card punchis being sensed. Further, it determines

which light, switch, or hub is sensed. The octal ad-
dresses for sense instructions are:

0030 Advances film of crr Recorder.

0140 Turns off all sense lights on the operator's
console.
‘Turn on sense lights 1, 2, 3 or 4, respectively,
on the console.

Test sense switches on the console. If the
corresponding switch is down (on), the com-
puter skips the next instruction and procecds
from there. If the sense switch is up (off).
the computer takes the next sequential in-
struction,

O14] - O144

0161 - 0166

An impulse will appear at the specified exit

hubof the card punch control] panel attached
to appropriate data channel. Hubs are num-

bered | and 2.

1341 - 1342 (A)
3341 - 3342 (C)
5841 - 5342 (E)

1360 (A) If an impulse is present at the sense entry

3360 (C) hub of the printer control panel, the com-
5360 (E) puter skips the next instruction and pro-

ceeds from there. If no impulse is present,

the computer takes the next sequential in-

struction.

1361 - 1372 (A)
3361 - 3372 (C)
5361 - 5372 (E)

The computer causes an impulse to appear

at the specified hub on the control panel of

the printer. attached. to that particular. data

channel.

MSE — Minus Sense

780K
3,1 YW 18-20 21-22

Description. This instruction provides a means of
testing the status of the sense lights on the operator’s
console. The lights may be turned on by a PsE instruc-
tion with an address of 0141 to 0144. Address modifi-
cation may cause the operation code to be changed.

Indicators. Sense lights.

Timing: 2 cycles

Execution. The addresses of the foursense lights are
0141 to 0144. If the corresponding sense light is on,
the light is turned off and the computerskips the next
instruction and proceeds from there. If the light is
off, the computer executes the next sequential in-

struction.

BTT — Beginning of Tape Test

+0760 T
£,1 V1 32

17 18-20 21-22 23 35

Description. This instruction is used to test the
status of data channel beginning-of-tape indicators.
The channel whose indicator is to be tested is speci-
fied by the address portion (Y) of the BTT instruction.
Address modification may cause the operation codeto
be changed. The addresses for the channels are:

Data channel A 1000
Data channel B 2000
Data channel C 3000
Data channel D 4000
Data channel E 5000
Data channel F 6000

Lndicators. All beginning-of-tape indicators.

Timing: 2 cycles

Execution. If the beginning-of-tape indicator for
data channel Y is on, the computer takes the next

sequential instruction, and the indicator is turned off.
If the beginning-of-tape indicator is off, the computer

skips the next instruction and proceeds from there.
The beginning-of-tape indicator is turned on by a
backspace record or backspace file instruction given to

a tape unit that is positioned at its load point. See
Figure 38.

ETT — End of Tape Test

8,1 W112 17 18-20 21-22 23

Description. This instruction is used to test the
status of data channel end-of-tape indicators. ‘Phe
channel whose indicator is to be tested is specified by
the address portion of the Err instruction. The ad-
dressing system is the same as specified for the BIT
instruction. Address modification may cause the oper-
ation code to be changed.

Indicators. End-of-tape indicators.

Liming: 2 cycles

Execution. If the end-of-tape indicator for data

channel Y is on, the computer takes the next sequen-

tial instruction and turns the indicator off. If the

[err instruction | | ETT instruction |

Channel address

‘ Y

BTT and channel . ETT and channel

addresses addresses

BOT EOT
No No

Indicator Indicator

Non

Yes Yes

f

Skip--advance
the instruction

counter

BIT <n ETT

Y y

Turn off the

EOT indicator

Turn off the

BOTindicator

Figure 38. srr and Err Flow Chart

Computer Instructions 47

indicator is off, the computer skips the next instruc-

tion and proceeds from there. The end-of-tape indi-
cator is turned on wheneither a write select or a write

end of file causes the end-of-tape marker to be passed

over. See Figure 38.

1OT — Input-Output CheckTest

eS
$,1 i 18-20 21-22 23 35

Description. If the 1-o check indicator is on, the
indicator. is turned off and the computer takes the
next sequential instruction. If the indicator is off, the
computer skips the next instruction and proceeds
from there. Any address modification may result in
the changing of the operation itself.

Indicators. 1-o check.

Timing: 2 cycles

Execution. The 1-o check indicator will be turned

on byanyof the following conditions:

1. If a drumselect instruction without a copy or

locate-drum-address instruction is executed.

9. If a RESET AND LOAD CHANNEL Or a LOAD CHAN-

NEL is executed and the specified channel is not se-

lected.

3. If, when writing, a channel data register has not

been loaded with a word fromstorage by the timeits

contents are to be sent to the output unit.

4. If, when reading, a channel data register has not

stored its contents by the time new data are to be

loaded from an input unit.

PBT — P-Bit Test

8,1 W V7 18-20 21°22 23 35

Description. If the c(Ac)p are a 1, the computerskips

the next instruction and proceeds from there. If P

contains a 0, the computer takes the next sequential
instruction. Address modification may result in the

changing of the instruction itself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 39.

48 ism 709

PBT

No AC(P) Yes

LBT

No Yes

On

Turn off

indicator

/ Y Y_Y
Do next Advance instruction
sequential bw counter to skip the
instruction next sequential

instruction

Figure 39, PBT, LBT, and pcr Flow Chart

LBT — Low-Order Bit Test

$,1 W712 18-20 21-22 23 35

Description. If the c(ac),; is a 1, the computer skips

the next instruction and proceeds from there. If 35
is a 0, the computer takes the next sequential instruc-

tion. Address modification mayresult in the changing

of the instruction.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 39.

DCT — Divide Check Test

$,1 im] 17 18-20 21-22 23

Description. If the indicator is on, it is turned off
and the computer takes the next sequential instruc-

tion. If the indicator is off, the computer skips the

next instruction and proceeds from there. Address

modification may result in the changing of the in-

struction itself.

Indicators. Divide check.

Timing: 2 cycles

Execution. See Figure 39.

ZET— Storage Zero Test

+0520 F T Y

S,1 Tt 12-1314 17 18-20 21 35

Description. If the c(y),.35 are 0, the computer skips
the next instruction and proceeds from there. If the
C(Y),.35 are not zero, the computer takes the next

sequential instruction. The c(y) are not changed.

Indicators. None.

Timing: 2 cycles

_. Execution. See Figure 40.

NZT — Storage not Zero Test

-0570 [FT| Y |
1 11 12-1314 V7 18-20 21 35

Description. If the c(y),.3; are not 0, the computer

skips the next instruction and proceeds from there.If

the C(yY),.3; are 0, the computer takes the next sequen-
tial instruction. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 40.

CAS — Compare Accumulator with Storage

+0340 F T | Y
S,1 1112-1314 17 18-20 21 35

Description. If the c(ac) are algebraically greater
than the c(y), the computer takes the next sequential
instruction. If the c(ac) are algebraically equal to the
c(y), the computer skips the next instruction and pro-
ceeds from there. If the c(ac) are algebraically less

 Y
Advance instruction

counter to skip next
sequential instruction

¥ Do-next sequential

instruction

Figure 40. Nzt and zeT Flow Chart

than the c(y) the computer skips the next two instruc-
tions and proceeds from there.

Indicators. None.

Timing: 3 cycles

Execution. Note: Two numbers are considered
algebraically equal if the magnitudes and signs of
both are equal. A plus zero is algebraically greater
than a minuszero.

LAS — Logical Compare Accumulator with Storage

-0340 | FKW T| Y
$1 V1 12-1314 17 18-20 21 35

Description. The C(AC)gpj.35 are treated as an un-

signed 37-bit number and are compared with the
C(Y)si-s; Which are treated as an unsigned 36-bit

quantity. If the C(aC)gp3.3, are greater than the c(y),
the computer takes the next sequential instruction. If
the C(AC)gpj-3; are equal to the c(y), the computer
skips the next instruction and proceeds from there. If
the C(AC)gp33, are less than the c(y), the computer
skips the next two instructions and proceeds from
there.

Indicators. None.

Timing: 3 cycles

FOR THE FOLLOWING control operations that refer to
data channels, the description of the operation is given

for channel A. For the other channels, the operation

code and thetitle are given.

TCOA — Transfer on Channel A in Operation

+0000 [FKW] Y
S.] 71022-1314 17 18-20 21 35

Description. If channel A is in operation, the com-

puter takes its next instruction from location Y. If
the channel is not in operation, the computer takes

the next sequential instruction, and the operation of

the channel is not affected. The channelis in opera-
tion as long as a select register contains information.

Indicators. Trap.

Timing: 2 cycles

INSTRUCTION CODE NAME

TCOB +0061 Transfer on Channel B in Operation

TCOC +0062 Transfer on Channel C in Operation

TCOD +0063 Transfer on Channel D in Operation

TCOE +0064 Transfer on Channel E in Operation

TCOF +0065 Transfer on Channel F in Operation

Computer Instructions 49

TCNA — Transfer on Channel A not in Operation

 “oo [FE
S,1 TT 42-1314 17 18-20 21 35

Description. If channel A is not in operation, the
computer takes its next instruction from location Y.

If the channel is in operation, the computer takes

the next sequential instruction, and the operation of
the channel is not aftected.

Indicators. ‘Trap.

Timing: 2 cycles.

INSTRUCTION CODE NAME

TCNB —0061 Transfer on Channel B not in Operation

TCNC —0062 Transfer on Channel C not in Operation

TCND —0063 Transfer on Channel D not in Operation

TCNE —0064 Transfer on Channel E not in Operation

TCNFEF —0065 Transfer on Channel F not in Operation

TRCA — Transfer on Channel A Redundancy Check

 vonST
S.t 17012-1314 17 18-20 21 35

Description. If the tape check indicator for channel
A is on, it is turned off and the computer takes its

next instruction from location Y. If the indicator is

off, the next sequential instruction is taken.

Indicators. Tape Check, Trap.

Timing: 2 cycles.

INSTRUCTION CODE NAME

TRCB —0022 Transfer on Channel B Redundancy Check

TRCC +0024 Transfer on Channel C Redundancy Check

TRCD —0024 Transfer on Channel D Redundancy Check

TRCE +0026 Transfer on Channel E Redundancy Check
TRCF —0026 Transfer on Channel F Redundancy Check

TEFA — Transfer on Channel A EndofFile

+0030 ENa Y |
$1 1112-1314 17 18-20 21 35

Description. If the end-of-file indicator for channel
A is on, it is turned off and the computer takes its
next instruction from location Y. If the indicator is
off, the computer takes the next sequential instruc-
tion.

Indicators. End-of-file, Trap.

Timing: 2 cycles.

50 1nM 709

INSTRUCTION CODE NAME

TEFB —0030 Transfer on Channel B End of File

TEFC +0031 Transfer on Channel C End of File

TEFD —0031 Transfer on Channel D End of File

TEFE +0032 Transfer on Channel E End of File

TEFF —0032 Transfer on Channel F End of File

Index Transmission Operations

This section of operations deals with the loading and

storing of the contents of indexregisters.

The operations always involve one or more index
registers and either the address or decrement field of

some location in storage or the accumulatorregister.
The following 15-bit fields may serve as one of the
agents in an index transmission operation: the ad-

dress or decrement of the accumulator, the address or

decrement of any location in storage, or the address
part of the index transmission instruction itself. In
addition, the numberto be loaded may be placed in
the specified index register in either true or comple-

mentform.

Single registers or any combination of index regis-
ters may be specified. If more than oneregister is
specified in an unloading operation, their contents
are “or’ed” together to produce the effective number.
OR’ing matches the registers position-for-position. If
there is a bit in either or both of the registers, the
result is a bit. For example:

xRA 101100

xRB 011000

Result 111100

If more than one index register is specified in a load-
ing operation, the data are loaded into all registers

specified.

LXA — Load Index from Address

a
VW 2] 35

Description. The C(¥),;.3; replace the contents of

the specified index register. The c(y) are unchanged

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 41.

LXA,LAC <a> LXD,LDC

Yy

SR (21-35) to SR (S,1-35) to

adder (P-17) adder (P-35)
L T

Y
Adder (3-17) to
index register

|
Index register to

adders with carry
to adder 17

Inst. LAC, LDC

LXA 1

LXD Adder (3-17) to

index register

po y
Next instruction

Figure 41. LXA, LAC, Lxp and Loc Flow Chart

LAC — Load Complementof Address in Index

TdWW 35

Description. The 2’s complement of the C(¥).;-35 re-
places the contents of the specified index register. The
c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 41.

LXD — Load Index from Decrement

tp11 21 35

Description. The c(y)3.1, replace the contents of the
specified index register. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 41.

LDC — Load Complementof Decrementin Index

7
1412 1 2) , 35

Description. The 2’s complement of the c(Y)3.,, re-
places the contents of the specified index register. The
c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution, See Figure 41.

AXT — Address to Index True

vorKt Yo
31 1112 17 18-20 21 35

Description. Positions 21-35 of this instruction re-
place the contents of the specified index register. The
instruction is unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 42.

AXC — Address to Index Complemented

a
4112 i7 18-20 21 35

Description. The 2’s complementof positions 21-35
of this instruction replaces the contents of the speci-
fied index register. The instruction is unchanged.

SR (21-35) to
adders (3-17)

Y
Adder (3-17) to

index register

!
Index register to

adders with a carry
to adder 17

Adder (3-17) to

index register

Next instruction

Figure 42. axt and axc Flow Chart

Computer Instructions 51

Indicators. None.

Timing: 2 cycles

Execution. See Figure 42.

PAX — Place Address in Index

$,1 112 i 35

Description. The C(ac),;.,;; replace the contents of

the specified index register. The c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 43.

PAC — Place Complementof Address in Index

iW 21 35

Description. The 2’s complement of the c(Ac)2;-55

replaces the contents of the specified index register.
The c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 43.

AC (S, 1-35) to
storage register

PAX, PAC <> PDX, PDC

Y \

SR (18-35) to SR (1-35) to

adder (P-17) to adder (1-35)

l J

i
Adder (3-17) to
index register

t

Index register to adders
with a carry to adder 17

Adder (3-17) to index
register
=

Next instruction

Figure 43. PAx, pac, pbx, and ppc Flow Chart

52 1BM 709

PDX — Place Decrementin Index

VW 3 wn

Description. The c(Ac);.,; replace the contents of

the specified index register. The c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 43.

PDC — Place Complement of Decrementin Index

a 23

Description. The 2’s complement of the C(AC);.1;

replaces the contents of the specified index register.

The c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 43,

SXA— Store Index in Address

ev
W 17 18-20 21 35

Description. The C(¥).:.3; are replaced by the con-

tents of the specified index register. The C(Y)s1-25 are

unchanged.

Indicators. None.

Index register to adders

Adder (3-17) to index reg
and index reg to adder
(3-17)

SXD Sn SXA

Adder (P=35) to Adder(3-17) toadd. sw.

Stg. reg. (S-35) and add, sw. to stg. reg.

(21-35)

Adder (3-17) to
index register

Adder (3-17) to
index register

Storage register (21-35)
to storage

Stg. register
(3-17) to storage

Figure 44, sxa and sxp Flow Chart

Timing: 2 cycles.

Execution. See Figure 44.

 §XD— Store Index in Decrement

TI 21 Y a35

Description. The C(y)3..; are replaced by the con-
tents of the specified index register. The C(Y)g118-35

are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 44.

PXA — Place Index in Address

ST: VW 2\ 35

Description. The entire accumulator is cleared and
the contents of the specified index register are placed
in the address part of the ac,,.,;. With a tag of 0 the
C(AC) are set to zeros.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 45.

XR to adders and adders

(3-17) back to XR

Y

| XR to adders |

PXD <i> PXA

Adder (3-17) to AS

 Y

|

Adder (Q-35) to AC | !

AS fo SR (21-35) and
SR (S=35) to adder (P-35)

Y
Adder (Q-35) to AC

Figure 45. pxp and pxa Flow Chart

PXD — Place Index in Decrement

aVy 2 35

Description. The entire accumulator is cleared and

the contents of the specified index register are placed
in the decrement part of the ac,.,;. With a tag of 0,

the C(AC) are set to zeros.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 45.

Logical Operations

Logical instructions operate on a 36-bit word. The
sign position is simply another bit position. The ex- -
ception to this is when the P position is used instead
of the sign position. Logical instructions are fre-
quently used in a process called masking. This is the
process of extracting one or more small parts of a
word from the whole word.

The AND and or concept ‘s used with logical opera-
tions. When two numbers are combined by an AND,

they are matched bit-for-bit. If the same position in
each word contains a 1, the result is a 1. If in one
word the position is 0 and in the other worditis a 1,
the result is a 0. If the same position in both wordsis
a zero, the result is a 0. The following is an example
of a logical aNp operation:

101101011011
101001001101

101001001001 Resulting anp

An or function (sometimes called “inclusive or’)
also matches two numbersbit-for-bit. The difference,
however, when compared with an anp, is: (1) if the
same position in either word containsa 1, the result is
al; (2) if the same position in both wordsis a 1, the
result is again a 1; (3) only if the sameposition in
both words is a 0, is the resulting position a 0. For
example:

011010110101
001100100100

011110110101 Resulting inclusive or

One other function of the logical operations is an
exclusive or. In this operation, only those positions
which do not matchresult in a 1. If the same position
in each wordis a zero or if the same position in each
word is a 1, the result is a zero. If the same position
in one word is a 1 and in the other a 0, then the
result isa 1. For example:

Computer Instructions 53

101101100101
001011001101

100110101000 Resulting exclusive oR

ORA — ORto Accumulator

-0501 TEINT/ Y _|
$,1 VT 12-1314 17 18-20 21 35

Description. Each bit of the C(¥)s,i-s5 1s matched

with the corresponding bit of the C(AC)pi-s5. C(¥)s is

matched with C(AC)p.

Indicators. None.

Timing: 2 cycles

Execution. When the corresponding bit of either

location Y or the ac (or both) is a 1, a 1 replaces the

contents of that position in the ac. When the cor-

responding bits of both location Y and the acare 0’s,

a 0 replaces the contents of that position of the ac.

The c(y) and the S and Q positions of the ac are un-

changed. See Figure +6.
-

Storage bus to AC (P,1-35) to

Storage Register Storage Register

| 7 _|

SR(S, 1-35) to

Adder (P, 1-35)

Y
Adder (Q+35) to

AC

Figure 46. ora Flow Chart

ORS — ORto Storage

 aLl
5,1 11092-1314 V7 18-20 23 35

Description. Each bit of the C(AC)p,1-35 is matched

with the corresponding bit of the C(Y)s,1-s5» C(AC)p

being matched with C(¥Y)s.

Indicators. None.

Timing: 2 cycles

Execution. Whenthe correspondingbitof either the

ac or location Y (or both) is a 1, a 1 replaces the

contents of that position in location Y. When the

corresponding bits of both the ac and location Y are

0’s, a O replaces the contents of that position in loca-

tion Y. The c(ac) are unchanged. See Figure 47.

54 1BM 709

/ AC(P-35) to C(Y) to

| Storage Bus Storage Bus
uu

~LL

Storage Bus to

Cty)

Figure 47, ors Flow Chart

ANA — ANDto Accumulator

0320

|F

WT] Y |
S.1 11 12-1314 17 18-20 21 35

Description. Each bit of the C(¥)s1-35 1s matched

with the corresponding bit of the C(AC)pi-35- C(¥)s is

matched with C(A€)p.

Indicators. None.

Timing: 3 cycles

Execution. When the corresponding bits of both

location Y and the ac are l’s, a 1 replaces the con-

tents of that position in the ac. Whenthe correspond-
ing bit of either location Y or the ac, or both,is a 0,
a 0 replaces the contents of that position in the ac.

The S and Q positions of the ac are cleared. The c(y)

are unchanged. See Figure 48.

ANS — ANDto Storage

+0320 [FKWNT, Y |
$1 11012-1314 17 18-20 21 35

Description. Each bit of the c(AC)p3.35 is matched

with the corresponding bit of the C(yY)sj-3;, C(AC)p

being matched with C(yY)s.

Indicators. None.

Timing: 4 cycles

Execution. When the corresponding bits of both

the ac andlocation Y are 1’s, a 1 replaces the contents

of that position in location Y. When the correspond-

ing bit of either the ac or location Y, or both, is a 0,

a 0 replaces the contents of that position in location

Y. The c(1c) are unchanged. See Figure 48.

ERA — Exclusive OR to Accumulator

vo [FRA y
17 18-20 21 35 S,1 11°92-1314

Description. Each bit of the C(y)si-3; is matched

with the corresponding bit of the C(AC)p,.35, C(Y)s
being matched with C(AC)p.

ANA, ANS ERA

 f Y

| Contents of Y to SR |

Add AC to SR and put
results in the AC

! Y
| Exchange SR and AC | SR to AC, At the same time

"AND’ACand SR into the SR,

!
Contents of Y to SR

Complement accumulator |

 (
| Complement AC |

v

y | Complement AC

SR to AC and at the same

time "AND" AC and SR

through the adders back
into the storage register

| Exchange SR and AC |

Shift AC left 1 pl
Exchange the SR and AC | I ne Piece |

Y Add SR and AC in the adders
|Complement AC and place the result in the

y AC

ANA> ANS

Yy

Exchange AC and sk|

SR to location Y

Comp accumulator

Figure 48. ANA, ANS, and ERA Flow Chart

| Complete |

Indicators. None.

Timing: 3 cycles

Execution. When the corresponding position of the
AC matches the position in location Y, a 0 replaces
the contents of that position in the ac. When the
corresponding position of the ac does not match the
position in location Y, a 1 replaces the contents of

that position in the ac. Positions S and Q of the ac
are cleared. The c(y) are unchanged. See Figure 48.

THE FOLLOWING logical operations affect the contents
of the accumulator only.

COM — Complement Magnitude

11°12 17 18-20 21-23 24 35

Description. All 1’s are replaced by 0’s and all 0’s
are replaced by 1’s in the C(AC)gpi.35. The c(Ac)g is

unchanged. Address modification may change the in-
struction itself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 49.

CLM — Clear Magnitude

[a 7
Description The C(AC)gpi.35 are cleared. The

c(Ac)s are unchanged. Address modification by an in-
dex register may change the operationitself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 49.

| Decode instruction |
_

Y

Comp AC (Q-35)
to adder (Q-35)

[
>

Adder (Q-35) fo

C (Q-35)

Figure 49. cLM and com Flow Chart

CHS — Change Sign

NT
ST ne 17 18-20 21-23 24 35

Y
j

N
O

Description. If ac sign is plus, it is made negative.
If it is negative, it is made plus. Address modification
by an index register may change the operation itself.

C (AC) g.pi-35 are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 50.

“<>

y ‘

Set AC Set AC

sign minus sign plus

Figure 50. cHs Flow Chart

o
r
G
uComputer Instructions

SSP — Set Sign Plus

P0760KT
W 18-20 21-23 24 35

Description. The sign of the ac is set to plus (0).
Address modification by an index register may result
in changing the operationitself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 51.

SSM — Set Sign Minus

VW 17 18-20 21-23 24 35

Description. The sign of the ac is set to minus(1).
Address modification may result in changing the op-
eration itself.

Indicators. None

Timing: 2 cycles

Execution. See Figure 51.

 Decode the instruction

Set AC

| sign plus

Set AC

sign minus

Figure 51. ssmM and ssp Flow Chart

Sense Indicator Operations

The following 24 instructions make reference to the
36-bit sense indicator (s1) register. The 36 bits of the
st may be thoughtof as switches which may be turned
on or off and tested either singly or in groups by the
program.
The contents of the si register are manipulated

through the use of a mask. The maskis a bit pattern
comprised of 1l’s and 0’s which may appear in an
instruction, the ac, or any storage location. All masks
for si operations are used in the same way; that is,
each position in the mask is compared with the cor-
responding position in the si register. For the posi-
tions in the mask which contain a 1, the correspond-

ing position in the si is either modified or tested de-

56 1BM 709

pending upon thesi operation used. For the zero bits
in the mask, the corresponding positions of the s1
are not affected.
Four of the sense indicator operations are concerned

with the transmission of full 36-bit words between the
st and either the ac or core storage. The remaining 20
operations are used to test or modify the c(st). These
20 operations may beclassified by the following five
functions:

1. Set or Logical OR. These operations replace
with a 1, the contents of each si position selected by
the mask.

2. Reset. These operations replace with a 0 the

contents of each si position selected by the mask.

3. Invert. These operations replace the contents of
each si position selected by the mask with its comple-
ment; i.e., 1’s are replaced by 0’s and 0’s are replaced

by l’s.

4. On Test. These operations examine the contents
of each sI position selected by the mask. If all ex-
amined positions contain a 1, the calculator will
either transfer to a location Y or skip the next instruc-
tion, depending upon thetesting operation used.

5. Off Test. These operations examine the contents
of each 31 position selected by the mask. If all exam-
ined positions contain a 0, the calculator either trans-

fers to location Y or skips the next instruction, de-

pending uponthetesting operation used.

PAI— Place Accumulator in Indicators

35

Description. The C(AC)pj.3; replace the C (st) 9.35.
The c (ac) are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 52.

Decodethe instruction

PAL y Pia} Lol y STi |

AC(P,1-35) SI{0-35) to Stor. Bus to $1(0-35) te

to SI{0-35) AC(P, 1-35) storage reg. SR(S, 1-35

Reset AC SR(S, 1-35) Stg.reg.to

(S and Q) to SI(0-35) stg. bus

Figure 52. pal, pia, LbI, and sti Flow Chart

PIA — Place Indicators in Accumulator

$1 VW
3

w
n

Description. The C(St)o-35 replace the C(AC)p.1-35-
Positions S§ and Q of the ac are cleared. The c(s!)
are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 52.

LDI — Load Indicators

+044] LFNSN T Y |

$1 1142-1314 17 18-20 21 35

Description. The C(Y)s,3-35 replace the C(SI)o.3;. The
c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 52.

STI — Store Indicators

[we
1112-1314 17 18-20 21 35

Description. The C(S1)o.35 replace the C(Y)g4.35. The
c(s1) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 52.

OAI— OR Accumulatorto Indicators

— +0043.
re} 35

Description. Each bit of the c(ac)p,.3; is matched

with the corresponding bit of the c(sI)o.3;. The c(aAc)

are unchanged. Whenthe correspondingbit of either
(or both) the ac or si is a 1, a 1 replaces the contents
of that position in the st. When the corresponding
bit of both the ac and s1 is a 0, a 0 replaces the con-
tents of that position ofthesl.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 53.

Decode

instruction

OAl Y Os!

AC(P, 1-35) and $1(0-35) and
$1(0-35) to storage location Y to
bus storage bus

Storage bus to storage
register; storage register

to S1(0-35)

Figure 53. oAL and ost Flow Chart

OS!I— OR Storage to Indicators

ee FE
1 11 12-1314 17 18-20 21 35

Description. Each bit of the C(y)s,-3; 1s matched

with the corresponding bit of the c(st)).,;. The c(y)

are unchanged. Whenthe corresponding bit of either
location Y or si (or both) is a 1, a 1 replaces the con-
tents of that position of the s1. When the correspond-
ing bit of both Y andsr is a 0, a 0 replaces the contents
of that position in thesI.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 53.

SIL — Set Indicators of Left Half

4
Y 17 18 ¢ 35

Description. Each bit in positions 18-35 (R) of this
instruction is matched with the corresponding bit of
the C(st)o-47. The c(s1),3-3; and R are unchanged. When

the corresponding bit of either (or both) R or the
s1 is a 1, a 1 replaces the contents of that position in
the st. When the corresponding bit of both the R and
the si is a 0, a 0 replaces the contents of that position

in the si.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 54.

SIR — Set Indicators of Right Half

ossST 4
HN 35

Description. Each bit in positions 18-35 (R) of this
instruction is matched with the corresponding bit of

Computer Instructions 57

| SR (18-35) to adders(P-17) |

j

Adders(P-35)to SR (S-35)

|sk (18-35) to adders (18-35)

 Y

SR (18-35) is now in SR(S-17) Adders to SR=-left half of
and SR (18-35) is cleared SR isnow clear, oe

. Y
Set SI (0-17) for the bit in Combine SR (18-35) and
corresponding SR (S-17) SI (18-35) into $1 (18-35)

 Y

Figure 54. sip Flow Chart Figure 55. sir Flow Chart

the C(st)15.35- The C(st)o.., and R are unchanged. When

the corresponding bit of either (or both) R or the sI
is a 1, a 1 replaces the contents of that position in the

si. When the corresponding bit of both the R and
st is a 0, a O replaces the contents of that position in

the si. .

Indicators. None.

os . € .Timing: 2 cycles.

Execution. See Figure 55.

RIA — Reset Indicators from Accumulator

eeAAACBRAAGGS
Va12 35

Description. Each bit of the c(AC)p,.3, resets to 0

the corresponding bit of the c(s!)o.35. “The c(ac) are
unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. When the bit in the Ac is a 1, a 0 re-

places the contents of that position in the s1. When
the bit in the ac is a 0, the contents of that position
in the st are unchanged. This is accomplished by tak-

ing the contents of the accumulator, bit for bit, and
feeding it into a reset input of the sense register. This
input will accept only a “1” pulse which turns that
position off (0 condition).

RIS — Reset Indicators from Storage

j toms [Ft] y |
$1 V1 12-1314 17 18-20 21 35

Description. Each bit of the C(y)gs1.35 resets to 0 the

corresponding bit of the C(s!)o.3;. The c(y) are un-

changed.

58 1BM 709

Indicators. None.

Timing: 2 cycles

Execution. When the bit in location Y is a 1, a 0

replaces the contents of that position in the st. When

the bit in location Y is a 0, the contents of that posi-

tion in the s1 are unchanged. The operationis identi-
cal to that of r1A except that the contents of a storage

location, instead of the accumulator, are used to reset

the indicators.

RIL — Reset Indicators of Left Half

or 4
n 35

Description. Each bit in positions 18-35 (R) of this
instruction resets to 0 the corresponding bit of the
C(SI)o.4;- The C(s1),s.3, and R are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. When the bit in R is a 1, a 0 replaces
the contents of that position in the si. When the bit
in R is a 0, the contents of that position in the si are
unchanged. The operation is identical to that of RIA
except that positions 18-35 of the RIL instruction are

used to reset positions 0-17 of the sense .indicators.

RIR — Reset Indicators of Right Half

orSSS —

a5

Description. Each bit in positions 18-35 (R) of
this instruction resets to 0 the corresponding bit of
the C(S1),s-35. Ihe cC(st))..; and R are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. When the bit in R is a I, a 0 replaces
the contents of that position in the si..When the bit
in R is a 0, the contents of that position in thesi are
unchanged. The operation is identical to that of RIA
except that positions 18-35 of the rir instruction are
used to reset positions 18-35 of the sense indicators.

lA — Invert Indicators from Accumulator

Description. Each bit of the c(Ac)p,.3, is matched

with the corresponding bit of the c(sI)o.5;. When the

bit in the Ac is a 1, the contents of that position in

the st are complemented. Whenthe bit in the ac is a
0, the contents of that position in the si are un-

changed. The c(ac) are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. Sense indicator positions may have “‘bi-
nary input.”” When this input is used, a “1’’ pulse fed
to the position will reverse its status. For example,

if the position holds a 0 and a is fed to it, the posi-

tion will reverse to a | status. Likewise,if the position

holds a 1 and a Iis fed to it, it will flip to a zero
status. Zeros fed to the binary input do not affect the
position. For the 1a instruction, the C(AC)p,.3; are

fed to the binary inputs of the s1(0-35).

IIS — Invert Indicators from Storage

 [ae FE
11°12-1314 V7 18-20 21 35

Description. Each bit of the C(y¥)g,.3; is matched
with the corresponding bit in the C(st)o_35. When the

bit in the location Y is a 1, the contents of that posi-

tion in the si are complemented. Whenthebit in lo-

cation Y is a zero, the contents of that position in the

st are unchanged. The C(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. The same procedure as IA except that

the contents of storage location Y, instead of the con-

tents of the accumulator, are used to reset the sense

indicators.

IIL — Invert Indicators of Left Half

RR _|
re} 17° «18 35

Description. Each bit of positions 18-35 (R) of this
instruction is matched with the corresponding bit of
the C(sI)o.47. The c(st),s.35 and R are unchanged. When

the bit in R is a 1, the contents of that position in the
SI are complemented. If the bit in R is a zero, the con-
tents of that position in the si are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. The same as 1a except that 18-35 of
this instruction is usedin resetting positions 0-17 of
the sense indicators.

IIR — Invert Indicators of Right Half

+0051 R |
S41 V1 12 17 18 35

Description. Each bit of positions 18-35 (R) of this
instruction is matched with the corresponding bit of
the C(SI);s.3;. The C(st)).4, and R are unchanged.

Whenthe bit in R is a 1, the contents of that position

in the st are complemented. When the bit in R is

a zero, the contents of that position in the st are un-
changed.

Indicators. None.

Timing: 2 cycles.

Execution. The same as A except that 18-35 of the
IIR are used to reset positions 18-35 of the sense indi-
cators.

TIO — Transfer when Indicators On

ae

1t 12-1314 17 18-20 21 35

Description. For each bit in the C(AC)p,.;5 that is a

1, the corresponding position of the c(sI),.3; is exam-

ined. If all the examined positions in the si contain
a 1, the computer takes its next instruction from lo-

cation Y. If any of the examined positionsis nota 1,
the computer takes the next sequential instruction.
The c(ac) and c(sI) are unchanged.

Indicators. ‘Trap.

Timing: 2 cycles

Execution. See Figure56.

TIF — Transfer when Indicators Off

+0046 F T ¥
$1 1112-1314 17 18-20 21 “35

Description. For each bit of the c(ac)p,.,; that is a
1, the corresponding position of the C(sI)).,,; is exam-
ined, If all examined positions contain 0’s, the com-

puter takes its next instruction from location Y. If
any of the examined positions does not contain a 0,
the computer takes the next sequential instruction.
The c(ac) and c(st) are unchanged.

Indicators. Trap.

Timing: 2 cycles

Execution. See Figure 56.

Computer Instructions 59

Complement AC
TIF

ORindicators with

with comp AC
OR complement of
indicators with comp. AC

 Y
Result of OR to

storage register

Y

Add "I" to OR'ed

result, stg.reg to
adders

 =] y

Figure 56. 110 and tif Flow Chart

ONT — OnTest for Indicators

+0446 F T Y |

| i j
1 1) I21g14 17 182021 35

Description. For each bit in the C(¥)g1.3, that is a

1, the corresponding position of the C(S!)o.35 is exam-
ined. If all the examinedpositions in the si contain
a 1, the computer skips the next instruction and pro-
ceeds from there. If any of the examined positions do
not contain 1’s, the computer takes the next sequen-
tial instruction. The c(y) and c(si) are unchanged.

Indicators. None.

Timing: 4 cycles

Execution. See Figure 57.

OFT — Off Test for Indicators

 a

17 18-26 21 35

+ 0444
$1 Va V2-43TS

Description. For each bit of the c(¥)s.,5 that is a 1,

the corresponding position of the C(SI)9.35 is examined.
If all the examined positions contain 0’s, the computer

skips the next instruction and proceeds from there.
If any of the examinedpositions does not contain a 0,
the computer takes the next sequential instruction.
The c(y) and c(st) are unchanged.

60 1BM 709

Test word to SR;

Exchange AC &SR

Comp. test word in
accumulator

Exchange AC & SR

 Y
ORindicators OR comp. indicators
to storage reg. to storage register

!
Add "1" to OR'ed result.
Storage reg. to adders

Increase the Next
instruction ctr. instruction

Figure 57. onT and oft Flow Chart

Indicators. None.

Timing: 4 cycles

Execution. See Figure 57.

LNT — Left Half Indicators on Test

R |

(osSS
trie }

Description. For each bit in positions 18-35 (R) of
this instruction that is a one, the corresponding posi-
tion of the C(s1)o.47 is examined. The c(si) and R are
unchanged. If all the examinedpositions contain a 1,
the computer skips the next instruction and proceeds
from there. If any of the examinedpositions does not
contain a 1, the computer takes the next sequential
instruction.

Indicators. None.

Timing: 4 cycles

RNT — Right Half Indicators on Test

[m
ss

R
$.1

Description. For each bit in positions 18-35 (R)
of this instruction that is a l, the corresponding posi-

tion of the C(sI),3.35 is examined. The c(s1) and R are

unchanged. If all the examined positions contain a l,
the computer skips the next instruction and proceeds
from there. If any of the examined positions does not
‘contain a 1, the computer takes the next sequential
instruction.

Indicators. None.

Timing: 4 cycles

LFT — Left Half Indicators Off Test

15RY |
si 17 18 35

F
F

Description. For each bit in positions 18-35 (R) of
this instruction that is a 1, the corresponding position
of the C(sI)).4; is examined. The c(s1) and R are un-
changed. If all the examined positions contain a 0,
the computer skips the next instruction and proceeds
from there. If any of the examinedpositions does not
contain a zero, the computer takes the next sequen-
tial instruction. |

Indicators. None.

Timing: 4 cycles

RFT — Right Half Indicators Off Test

#0054KG R |
12 1718 35

Description. For each bit in positions 18-35 (R)
of this instruction that is a one, the corresponding

position of C(st),s.3, is examined. If all the examined

positions contain a zero, the computer skips the next
instruction and proceeds from there. If any of the ex-
amined positions does not contain a zero, the com-
puter takes the next sequential instruction. The c(s1)
and R are unchanged. |

Indicators. None.

Timing: 4 cycles

Convert Instructions

The convert operations enable a program to have very
rapid access to information stored in tables in core
storage. A single convert instruction can perform a
series of table look-up operations by making multiple
references to core storage. Three such convert opera-
tionsare available in the computer.

Toillustrate the method of execution of these con-
vert instructions, the following section describes the
CONVERT BY REPLACEMENT FROM THE MQ (CRQ) in-

struction. The following two definitions will apply
throughoutthis description:

Argumeni—The knownreference factor necessary to
find a desired item in table.

Function—The unknownfactorin a table associated

with a known reference factor (argument) .

The contents of the mq are interpreted as six 6-bit

quantities. Each of these quantities may be consid-
ered as a 6-bit binary integer and will be designated
as L1, L2, , L6 (Figure 58).

MQ Register

; ou |e } 13 | u | ts Zz |
5 56 T1217 1823 242930S

Figure 58. MQ Register

The number, Yl, contained in the address part of

the crQ instruction is interpreted by the instruction
as the address of the first location (origin) of a table
in core storage. The formatof a typical table is shown
in Figure 59. The 6-bit binary integer, LI, is taken
as the first argument and the address Yl + LI is
formed. The instruction then looks up the word lo-
cated at Yl + LI]. The left-most six bits of this word,
positions S, 1-5,-are taken as the desired function V1.

This 6-bit number, V1, then replaces the number LI

in the MQ. The right-most 15 bits of this word, posi-
tions 21-35, are interpreted as an address, Y2, specify-

ing the origin of a second table in core storage. The
number L2 is then taken as the second argument and
a reference to the second table is made at location
Y2 + L2. The contents of Y2 + L2, positions S, 1-5,
make up the second function, V2, and replace L2 in

the MQ. Positions 21-35 of this word are interpreted

as a third address, Y3, the origin of a third table in
core storage, and the process continues.

The function V1 replaces L] in the mg through a
shifting operation. The mgis shifted left six positions
and the bits of L1} are shifted out of position’S of the

Location Contents

Yi V0 Y2

YI +11 Vi Y2

YI+N VM Y2

S 5 6 20 21 35

Figure 59. Convert Table

Computer Instructions 61

MQ REGISTER

|v |
29 30 35

Ts
23 24

| L2 | L3 | L4 | L5

5 56 142 17 18

Figure 60. Q Register

mg and are lost. The number V1 then replaces the

contents of the Mg, positions 30-35 (Figure 60) .

Thus, the crinstruction provides for replacement

of the contents of the mq from left to right.

The number of such table references made by a

single convert instruction is specified by the count

field, positions 10-17, of the instruction. If a count of

six is given, six numbers V1, V2,........ , V6 will occupy

the exact MQ positions originally containing the six

corresponding arguments Ll, L2,........ , L6. If a count

of one wasspecified for a crQ instruction, the final con-

tents of the 1@ would be as shown in Figure 60. When
a count of morethan six is specified, the values taken.

from the tables during the first six references will be
used for additional table references. For example,

V1 = L7, V2 = L8, and so on.

After the last function, Vn, has been placed in the

mq, the location in core storage from which Vn has
been taken contains as its address part a number, Yn.

If the tag field of the convert instruction contains a
one, the number Yn replaces the contents of index
register 1. This provides a convenient method for the
program to determine where thelast storage table ref-
erence has been made or where the next table refer-
ence is to be made. (Only index register 1 can be

used.)
The CONVERT BY REPLACEMENT FROM THE AC (CVR)

instruction is analogous to the crQ instruction. For
this instruction the cC(Ac)p,.,;; rather than the C(MQ)
are interpreted as the 6-bit numbers LI, L42,...... , L6.

Also, the six-place shifts which occur during the execu-

tion of the instruction are right shifts rather than left
shifts. Thus, for the cvr instruction, the replacement
takes place right to left, whereas, for the cra, the re-
placement takes place from left to right.
The cag instruction interprets the c(MQ) as six

6-bit quantities LI, L2,...... , L6 and uses these num-

bers as arguments in the same manner as the CRQ
instruction. However, instead of replacing the num-
bers LI, L2,...... , L6, the contents of the looked-up

words are added into the ac. The address parts of
these words are then used as origins for additional
look-ups in the usual manner. Addition into the ac

is logical, with the S position of the word being added
into the P position of the ac. After.an argumenthas
been used for a table reference, the c (MQ) are rotated
left so that bits leaving position S enter position 35 of
the mq. Thus, if a count of six is specified for a cag

instruction, the final andoriginal c(mQ) are identical.

62 “inna 709

CVR — Convert by Replacement from the AC

[wie | cl UN] Y |
S.i 9 10 17 B19 21 35

Description. This instruction treats the C(AC)p.1-35

as six 6-bit quantities and replaces the first C of these

quantities by values from tables in core storage. Posi-
tion S of the ac is unchanged. Norte: Bit position Q
is not cleared and will or with the first function, if

present initially.

Indicators. None.

Timing: 2-8 cycles, modification 6

Execution. The instruction is executed in the fol-

lowing steps:

1. The address part (Y) replaces the C(SR)21-35-

2. The count field (C) is placed in the shift reg-

ister.

3. The contents of the shift register are tested. If
the register contains zero, step 4a follows. If the reg-
ister is non-zero, step 4b follows.

4a. If position 20 of this instruction contains a 1,
the C(sR).;.3; replace the contents of index register 1
(xRa), and the computer takes the next sequential in-

struction. If position 20 contains a 0, the computer
proceeds directly to the next sequential instruction.

4b. The c(sr).,-35 are added to the C(AC)39.35 to form

an address (X). The c(x) replace the c (sr).

5. The c(ac)gpi-35 are shifted right six places. Posi-
tions vacated arefilled with zeros.

6. The c(sr)s,.5 replace the C(AC)p5. However, if
position Q of the ac initially contains a 1, it will be

shifted to position 5 of the ac during step 5. This 1
in position 5 of the ac will remain regardless of the

contents of position 5 of thesr.

7. The contents of the shift register are decreased

by one and the computerreturnsto step 3.

CRQ — Convert by Replacement from the MQ

| “0154 | oc | Y
!

S.1 > 10 7 1849 21 5

Description. This instruction treats the C(MQ) as
six 6-bit quantities and replaces the first C of these
quantities by values from tables in core storage.

Indicators. None.

Timing: 2-8 cycles, modification 6

Execution. The instruction is executed in the fol-

lowing steps:

]. The address part (Y) replaces the c(sR),,35

2. The count field (C) is placed in the shift reg-
ister.

3. The contents of the shift register are tested. If
the register contains 0, step 4a follows. If the register

is not 0, step 4b follows.

4a. If position 20 of this instruction contains a 1,
the C(SR)..35 replace the contents of xra and the com-

puter proceeds to the next sequential instruction. If
position 20 contains a 0, the computer proceeds di-
rectly to the next sequential instruction.

. 4b...TheC(SR)1.35 are added.to the c(MQ),,., to form
an address (X). The c(x) then replace the c (sr).

5. The c(mQ) are shifted left six places. Bits shifted
out of position S of the mg are lost. Positions vacated

are filled with zeros.

6. The c(sr)s.; replace the C(MQ)s30.35-

7. The contents of the shift register are decreased
by one, and the computerreturnsto step 3.

CAQ — Convert by Addition from the MQ

| -o114 | c WN ¥
$1 9 10 17 1819 21 35

Description. ‘This instruction treats the C(MQ) as
six 6-bit quantities. The first C of these quantities are
used in making references to tables in core storage.
Words selected by the references are added to the
C(AC)gpi-35- Position S of the ac is unchanged. NOTE:
Care should be taken that the binary sum of the quan-
tities added from 21-35 does not carry into position 19
of the ac.

Indicators. None.

Timing: 2-8 cycles, modification 6

Execution. The instruction is executed in the fol-
lowing ‘steps:

1. The address part (Y) replaces the c(sR)o1-35-

2. The count field (C) is placed in the shift reg-
ister.

3. The contents of the shift register are tested. If
the register contains 0, step 4a follows. If the register
is not 0, step 4b follows.

4a. If position 20 of this instruction contains a 1,
the C(sR).1.35 replace the contents of xra, and the com-

puter proceeds to the next sequential instruction. If
position 20 contains a 0, the computer proceeds di-
rectly to the next sequential instruction.

4b. The C(sr).1.35 are added to the c(MQ)s,.5 to form

an address (X). The c(x) then replace the c(sr).

5. The c(MQ) are rotated six positions to the left.
Bits leaving position S of the mg enter position 35 of
the Ma.

6. The c(sr)s,-3, are added to the C(ac)gp1-3, and

the sum replaces the C(AC)gpi-35. The sign position of

the sr is added into position P of the ac, and the sign
of the ac is disregarded. Note: Even though acover-
flow is possible, the overflow indicator is not affected
by this instruction.

7. The contents of the shift register are reduced by
one ahd the computer returnsto step 3.

The reader is referred to the CONVERT programming
examples contained in the programming section of
this manual for possible uses of these instructions.

Input-Output Operations

As has been previously stated, the address part of an
instruction may refer either to a location in corestor-
age, the length of shift, or may be interpreted as a
part of the operation codeitself.
The identifying number for the various input-out-

put units appears in the address part of the instruc-
tion. For tapes, card machines and printers the ad-
dress part specifies both the particular 1-o unit and
the data channel to which it is attached. Channels A
through H are specified by the numbers | through 10,
respectively, appearing as the first two digits of an
octal five-digit address. The last three digits specify
the I-o unit. If the 1-o unit is a tape, the mode of
operation, either binary or scp,is also specified hy the

address.
The addresses of the input-output devices are shown

below:

DEVICE CHANNEL =OCTAL ADDRESS

Tape Units (BCD) \ 1201-1212

B 2201-2212

Cc 3201-3212
D 4201-4212

E 3201-5212

F 6201-6212

Tape Units (binary) A 1221-1232

B 2221-2232

Cc 3221-3232
D 4221-4232

E 5221-5232

F 6221-6232

” 1321

332]

5321

Card Reader

m
o

Computer Instructions 63

DEVICE CHANNEL OCTAL ADDRESS

Card Punch A 134]
Cc 3341
E 5341

Printer (normal) A 1361
Cc 3361
E 5361

Printer (binary) A 1362
Cc 3362
E 5362

Drum None 0301-0310

CRT None 0030

In the following instruction description, only the

operation code will be shown. The address part will

appear in the normal code of Y. All input-output in-
structions may be trapped using the compatibility

feature.

Since it is possible to create magnetic tapes of mixed
density, precautions should be taken so that all read
tape instructions are executed when the tape unit is
set to the density in which the tape was recorded.

RDS — ReadSelect

7
VW a 35

Description. This instruction causes the computer

to prepare to read information, from the 1-o device

specified by Y, into core storage. If Y specifies a tape,
printer, or card reader, Y also specifies the channel to

whichthe device is attached.

Indicators. Simulate, end of file. (See device being

used.)

Timing: 2 cycles, modification 8

Execution. When a channel is designated, a RESET
AND LOAD CHANNELinstruction must be given within
the specified time following the rps, or the 1-0 device
will be logically disconnected from the computer and
one record will be passed. (See each device for tim-
ings.) When an rps specifies channel operation, only
positions 27-35 of the address part of the instruction
are subjectto effective address modification.

WRS — Write Select

oa
$,1 iB 35

Description. This instruction causes the computer
to prepare to write information from storage to the
1-0 device specified by Y. If Y specifies a tape, printer
or card punch, Y also specifies the channel to which

the device is attached.

64 1nmM709

Indicators. Simulate, end of tape. (See device being

used.)

Timing:2 cycles, modification 8

Execution. When a channel is designated, a RESET

AND LOAD CHANNEL instruction must be given within

specified time following the wrs, or the -o device will

be logically disconnected from the computer and, if

the wrs specified a tape, a blank section of tape will
be written. If the end of tape reflective spot is en-
countered during the execution of a wrs, the end-of-

tape indicator in the proper channel will be turned
on. When a wrs specifies an 1-0 device attached to a
channel, only positions 27-35 of the address part of the
instruction are subjectto effective address modification.

BSR — Backspace Record

|oeTI Y
$.1 bi i2 1718.20 21 35

Description. This instruction causes the tape desig-
nated by Y to move backward until recorded informa-
tion is reached and then to continue this backward
motion over information until an end-of-record gap
or load pointis encountered.

Indicators. Beginning of tape and simulate.

Timing: 2 cycles, modification 8

Execution. If the tape designated by Y is positioned
at its load point, a BsR is interpreted as a no-operation
and the beginning-of-tape indicator in the proper
channel is turned on. If load point is encountered
before information is encountered, the Bot indicator

is turned on. Only positions 27-35 of the address part
of this instruction are subject to effective address modi-

fication.

BSF — Backspace File

iT yd
5. 12 35

Description. This instruction causes the tape desig-
nated by Y to move backward until recorded informa-
tion is reached and then to continue this backward
motion over information and end-of-record gaps until
an end-of-file record or the load point is encountered.

Indicators. Beginning of tape, simulate.

Timing:2 cycles, modification8.

Execution. If a BsF is given to a tape positioned at
its load point, the BSF is interpreted as a no-operation

and the beginning-of-tape indicator in the proper
channel is turned on. If load point is encountered

before an end-of-file record, the beginning-of-tape in-

dicator is turned on. Only positions 27-35 of the ad-
dress part of this instruction are subject to effective

address modification. .a

WEF — Write End-of-File

+$.1 uM

35

Description. ‘This instruction causes the tape desig-
nated by Y to write an end-of-file gap followed by a
tape mark (andits check character) on the tape.

Indicators. End oftape, simulate.

Timing:2 cycles, modification 8.

Execution. If an end of tape reflective spot is passed
over during the execution of a wer, the end-of-tape in-
dicator in the proper channel is turned on. Only posi-
tions 27-35 of the address part of this instruction are
subject to effective address modification.

REW — Rewind

a

35

Description. This instruction causes the tape desig-
nated by Y to rewindits tape to the load pointposition.

Indicators. Simulate.

Timing: 2 cycles, modification 8.

Execution. If the tape is positioned at its load point
at the time the REw is interpreted, the instruction is

treated as a no-operation. Only positions 27-35 of the
address part of this instruction are subject to effective

address modification.

LDA — Locate Drum Address

+ 0460 FKW 7] Y]

Execution. Thefirst cpy following an Lpa will read
from er write into the drum location found by the

LDA. Subsequent cpy’s will denote the storage loca-

tions to be used by succeeding drum locations. If no
LDA is given following an RDS or wRs, it is equivalent
to giving an LDA with an effective address of zero. This
operation clears the mq. If an LDA is given without a

prior RDS or wrs, the LDA is treated as a no-operation .

and the 1-0 check indicator is turned on.

CPY — Copy

$.1 “ ASS= 21 35

Description. This instruction follows an RDS or wRS

referring to either a drum or crT device, or following

- an LDA or another cry. If the initial select was a wrs,

a word will be transmitted from storage location Y to
‘ the selected device. If the initial select was an RDS, a

word will be read from the device to be stored in loca-

tion Y.

Indicators. 1-0 check, simulate.

Timing: 3 cycles, modification 8.

Execution. Whether reading or writing, the MQ is
’ used as a buffer between storage and the 1-o device.
* After a drum has beenselected and the first cpy or an
LpA has been issued, succeeding cpy’s must be given
within 36 microseconds. A cpy given after this time
interval will cause the 1-o check indicator to be turned
on and the cry will be executed as a no-operation. If
a cpy is given without a prior Rps or wrs, the cpy is
treated as a no-operation and the 1-o check indicator

‘is turned on.

CAD — Copy and AddLogical

 S,1 V1 12-1314 17 18-20 21 35

Description. This instruction follows an RDs or wrRs
instruction which refers to a magnetic drum, butbe-
fore the first cpy instruction is given. The address y
specifies a core storage location from which positions
21-35 will be used to denote the first drum location to
be involved in the transmission.

Indicators. 1-o check, simulate.

Timing: 3 cycles, modification 8.

| -0700 MSS | Y |
3.1 W112 17 18-20 21 35

Description. This instruction executes a cpy fol-
lowed by an ACL.

Indicators. 1-o check, simulate.

Timing:2 cycles.

Execution. See cpy and act descriptions. Refer to

“Compatibility” section.

ComputerInstructions 65

Data Channel Commands

The eight types of data channel commands are de-
scribed in much the same manner as other computer
instructions. The following steps list command condi-
tions:

1. The letter Y in the address part (21-35) of a com-
mand is used to denote a core storage location.

2. The letter C in the decrement part (3-17) of a
commandis used to denote a word count amount.

3. The numerical operation code is shown by an

octal digit in the prefix part (S, 1 and 2). The digit
may be visually converted to its binary equivalent
for reference to the bit pattern actually used.

4. Indirect addressing of data channel commandsis
optional on the 709 system. Position 18 of the com-

mandcontains the flag bit. Thus, with a command
having an address part (Y) and a one in position 18,
the address part of location Y replaces the address
part of the commandbefore it is executed. With a
zero word count, indirect addressing does not occur

on 1ocp or 1osp commands. Indirect addressing will
occur only on reador write operations.

5. Separate commands have not been formulated to
handle bit position 19. Instead, a fifth character (N—

denoting non-transmit) is appended to the mnemonic
codes used for positions S, 1, and 2. This type of com-
mandis used for read operationsonly.

6. Seven of the eight commands deal with data

transmission. The codes for these commands all con-

tain the letters “1-0”.

7. The eighth commandis a transfer in channel
command.

8. The word disconnected means that the units in-
volved are separated logically rather than physically.
Whena disconnectis signalled, it may be delayed de-
pending on the operation being performed. For ex-
ample:

a. Write. Tape. Disconnect will not occur until the
end of record gap is written. This permits a pro-
grammed ETT or TRC test to be valid if given after
the channe! leaves operation (disconnects).

b. Read Tape. Disconnect will not occur until tape
control circuits and tape units have accepted the
read instruction. This assures that any read select
instruction will move tape before the disconnect
occurs even if an immediate disconnect is pro-
grammed. Disconnect will not occur between the

last word of the record and the interrogation of the
longitudinal redundancy check character (LRc).
This assures that with a channel programmed to

read an entire record, a TRC test, given after the

66 inm 709

channel leaves operation, will have tested the LRC

character.

Recognition of an endof file, while reading tape

or cards, causes a disconnect regardless of the com-

mand being used. The tape unit does not leave

operation until the Lrc character has been checked
and the end of record reached. An 10RP, IORT, IOSP,

or 10st command will not recognize a logical end

of record on an end offile.

c. Card Machines. Unless a disconnect is pro-

grammed immediately following a transmission or
end of record time, the disconnect will generally be

delayed until the next transmission or end of record
time. For example, if the channel is loaded with an.

10cbD command (with zero word count) an extra
machine cycle will occur ten milliseconds after end
of record time. The disconnect then occurs at the
9-left transmission time of this extra cycle.

IN EXECUTION descriptions of the 1-o commands, tape

is assumed to be the 1-0 device. However, mechanical
motion on the tape (from record to record) may be
compared to card equipment (from card to card or
line to line) on the printer. The descriptions may
then be applied to 1-o devices other than tape.

IOCD — Input-Output under Count Control

and Disconnect

(o| C [FINN Y |
$,1-23 17 1819 (21 35

Description. C words are transmitted between an
1-0 device and core storage beginning with location Y.
The data transmission is under control of the count
(C) field only.

Indicators. See 1-0 device being used.

Timing: See 1-0 device being used.

Execution

Read Operation. If the word count has been re-
duced to zero before a record gapis reached, the chan-
nel leaves operation and tape motion will continue
until a record gap is reached. No transmission will
occur during this time. If a record gap is encountered
when the word count is not zero, the gap is ignored
and reading continues from the next record. An 1ocp
commandwith a zero word count loadedat the endof
record will disconnect the channel.

Write Operation. When C words have been written
on tape, a record gap is written. If this command is
given at the beginning of a record and C is initially
zero, approximately eight inches of blank tape will be

written before the record gap is written. The chan-
nel is then disconnected unless restricted by the op-
eration. (See part 8 of command conditions.)

IOCP — Input-Output under Count Control

and Proceed

| C FN
$,1-23 171819 21 35

Description. G werds are transmitted between an
1-0 device and core storage location Y. The data trans-
mission is under control of the countfield only. When
C is reduced to zero, or is initially zero, the next se-
quential commandis brought into the data channel
and executed.

Indicators. See 1-0 device being used.

Timing. See 1-0 device being used.

Execution

Read Operation. C words are read from tape and
stored in consecutive storage locations beginning with
location Y. When the word count has been reduced to
zero, the channel takes its next command in sequence

and executesit.

If the word countis reducedto zero bythe last word
of a record and the next commandis an 10RP, IospP,

IORT, or 1osT, the present end of record will be recog-
nized. Unlike the r1osp, the 1ocp command need not

proceed within 11 cycles in order to recognize the
present endof record.

Write Operation. C words from storage beginning
with location Y are written on tape. When thespeci-
fied words have been written, the channel proceeds to

the next sequential command. An endof recordis
not written on tape when the word count is reduced
to zero.
In printing or the punching of cards, if the word

count is reduced to zero on the 12-rowright transmis-
sion point, and the next commandis an 10rP or IORT,
the end of the present machine cycle (record) will be
recognized.

IORP — Input-Output of a Record and Proceed

|
$,1-23 71819 21 35

Description. See “Execution.”

Indicators. See 1-o device being used.

Timing: See 1-0 device being used.

Execution

Read Operation. Words are transmitted from tape

and stored in consecutive storage locations until either

an end of record is encountered or the word count has

been reduced to zero. If the word count is reduced to

zero (or is initially zero) before an end of record is
reached, the rest of the words in that record are

skipped without transmission to storage. When the
record gap is reached, the channel takes the next se-
quential command.

Write Operation. When C words have been written,

a record gap is written and the channel proceeds to
the next sequential command.

IOCT — Input-Output under Count Control

and Transfer

<r
$,1-2 3 171819

9

21 35

Description. C words are transmitted between an
1-0 device and storage beginning with location Y. The
data transmission is under control of the count field

only. WhenC is reduced to zero, the next command

is taken from a core location specified by the load

channel instruction in the main program or discon-

nects (andtraps if the channel is enabled) if no load

channel instruction is waiting. If this commandis
loaded by an RCH or LCH instruction and C is initially
zero, the channel is immediately disconnected unless

restricted by the operation. If commandtrap is en-
abled, the trap occurs when recognized even if the dis-
connect is restricted by the operation.

Indicators. CommandTrap.

Timing: See 1-0 device being used.

Execution

Read Operation. Execution of the commandis un-

der control ofthe count field only and end of record
gaps are ignored. If the word count is reduced to zero
by the last word of a record and the next command is

an IORP, IOSP, IORT, or 10ST, the present endof record

will be recognized. Unlike the 1ost command, the Ltcu

instruction need not load the channel within11 cycles
in order to recognize the present endof record.

Write Operation. An end of record will not be
written after GC words have been written if the tcu
instruction results in bringing into the channel a new
wordcount.

In printing or the punching of cards, if-the word
count is reduced to zero on the 12-row right transmis-
sion point and the next commandis an iorP or IORT,

the end of the present machine cycle (record) will be
recognized.

Computer Instructions 67

IORT — Input-Output of a Record and Transfer

{3 | C FNN CY |
31-23 Wisig 21 35

Description. See “Execution.”

Indicators. Commandtrap.

Timing:See 1-0 device being used.

Execution

Read Operation. Wordsare transmitted from tape

and stored in consecutive storage locations until either

an end of record is encountered or the word counthas
been reduced to zero. If the word count is reduced to
zero (or is initially zero) before an end of record is
reached, the rest of the words in that record are

skipped without transmission to storage. When the
record gap is reached, the next command is taken
from a core location specified by the LCH instruction in
the main program or disconnects (and traps if the
channel is enabled) if no LcH is waiting.

Write Operation. When C wordshave been written,
a record gap is written and the channeltakes its next
command from a core location specified by the LcH
instruction in the main program or disconnects (and
traps if the channel is enabled) if no Lcu instruction

is waiting.

1IOSP — Input-Output until Signal, then Proceed

|a a
$,1-23 71819 21 35

Description. See “Execution.”

Indicators. See 1-0 device being used.

Timing: See 1-0 device being used.

Execution

Read Operation. Words are read into consecutive
storage locations beginning with location Y until

either the contents of the word counter are reduced to
zero or an endof record is reached. When either event
occurs, the channel proceeds immediately to the next
sequential commandand executes it.
With a tape read operation and an IOsP or 10ST

command whose word count is reduced to zero by the
last word in the record and whose next commandis an
IORP, IORT, IOSP, or IOST, this next command will

normally enter the channel in time to recognize the
present endof record. This next command transmits
no data and is effectively skipped. If this next com-
mand cannot enter the channel within 11 machine
cycles, the IORP, IORT, 1OsP, or IosT command will not

recognize the present end of record gap, but will proc-

68 1BM 709

ess the following record. To determine if this se-

quence can besafely programmed,three cycles should

be allowed if the cpu is processing a TCo instruction

(five cycles if other instructions are being processed)

plus one cycle for each channel in operation, plus one

cycle for each channel programmed with proceed com-

mands, plus one cycle for each channel which may

process a TCH at this time, plus one cycle for each

channel which may have indirect addressing at this

time. If the total exceeds 11 cycles, the sequence

described must not be used.

Write Operation. C words are written on tape be-
ginning with storage location Y. When the specified
words have been written, the channel proceeds to the
next sequential command. An end of record is not
written on tape when the word count is reduced to
zero. Note that this is identical to the operation of

the 10cp.
In printing or the punching of cards, if the word

count is reduced to zero on the 12-row right transmis-
sion point and the next commandis an IORP or IorT,
the end of the present machine cycle (record) will be
recognized.

IOST — Input-Output until Signal then Transfer

I7] C [FINN Y
$,1-23 171819) 2) 35

Description. See “Execution.”

Indicators. See 1-o device being used.

Timing: See 1-o device being used.

Execution

Read Operation. Words are read into consecutive
storage locations beginning with location Y until
either the contents of the word counter are reduced

to zero or an end of record is reached. Wheneither
event occurs, the channel takes its next command

from a core location specified by the LcH instruction in
the main program or disconnects (and traps if the
channel is enabled) if no Lcu instruction is waiting.
With a tape read operation and an lost command

whose word countis reduced to zero bythe last word
in the record and whose next command is an IorpP,

IORT, IOSP, Or 10ST, this next commandwill normally

enter the channel in time to recognize the present end

of record. This next commandtransmits no data and
is effectively skipped. If this next command cannot
enter the channel within 11 cycles, the 10RP, 1oRT, 10sP,

or 10sT commandwill not recognize the present end of

record gap but will process the following record. To
determine if this sequence can be safely programmed,
two cycles should be allowed for the Leu instruction

plus one cycle for each channel in operation, plus one
cycle for each channel programmed with proceed com-
mands, plus one cycle for each channel using indirect
addressing. If the total exceeds 1] cycles, this sequence
must not be used.

Write Operation. C words are written on tape from
storage beginning with location Y. When C words
have been written, the channel takes its next command

from a core location specified by the Lcu instruction
in the main program or disconnects (and traps if the
channel is enabled) if no Lcu instruction is waiting to
be executed.

In printing or the punching of cards, if the word

count is reduced to zero on the 12-row right trans-
mission point and the next command is an 1oRrP or
IoRT, the end of the present machine cycle (record)

will be recognized.

TCH — Transfer in Channel

(EITh To]
31-2 2} 35

Description. This command is the transfer com-

mandfor all data channels.

Indicators. None.

Timing: 2 cycles

Execution. When a TcH commandis executed, the

data channel proceeds immediately to its next com-
mand which is taken from location Y. The location

register is set to Y + 1. The commandlocatedatY is

then loaded into the data channel.

Program Examples

The following examples illustrate the use of data
channel commands to read and write tape. The pro-
grams, aside from the instructions and command
codes, are shown in the octal numbersystem.

Figure 6] shows a program which maybe used to
read and skip tape records. The first instruction
(500) selects the proper channel and tape. Thesec-

Location |Instruction Comments

00500 |RTDA 01201 Select tape 1, channel A
00501 (|RCHA 01000 Load first command

01000 |1OCP 00006 0 03000 |Read first six words

01001 |1OCPN 00005 2 00000 |Skip next five words
01002 !ORP 77777 0 03006 Read remaining words in record
01003 |fOCD 00000 0 00000 |Disconnect

Figure 61. Read and Skip Tape Program

ond one loads the first command (1000) into the
channel. The commandexecution proceedsas follows:

1000 —IOCP 00006 0 03000. This command

reads the first six words from tape and places them

into core locations starting with 3000.

1001 —IOCPN 00005 2 00000. This command

reads, but does not transmit, the next five words, in

effect skipping them.

1002 —IORP 77777 O 03006. The next com-
mand reads the remaining words in the record into
locations starting with 3006. Whenthe record gap is’
sensed, the next command (1ocp) will disconnectthe
channel and the tape unit, thus ending the channel
program.

Figure 62 shows a program that could be usedto

write all of core storage on a tape and delay at loca-
tion 502 until all but the last word has been written.
The first two instructions select the channel and

tape unit to be used and load the first channel com-
mand. The central processing unit then senscs the
load channel instruction (LCHF) and the main pro-
gram will wait until the next-to-last word has been
written before loading the second channel command
which will write location 77777 and disconnect both

the channel andthetape unit.

Location Instruction Comments

00500 WTOF 06202 Select tape 2, channel F
00501 RCHF 01000 Load first command

00502 {LCHF 01001 Wait until last word, then load

. . . channel F

01000 |IOCT 77777 0 00000 Write locations 00000-77776

01001 1OCD =00001 0 77777 Write location 77777 and then

disconnect
Figure 62. Write Tape Program

Channel Trap Instructions

ENB — Enable from Y

a
3.1 1112-1314 V7 18-20 21 35

Description. When this instruction is executed, the
contents of location Y determine which signals may
cause a trapping operation. Execution of each enable
instruction cancels the effect of previous enable in-
structions. All channels may be disabled (traps will
not occur) by executing an enable instruction whose
operand containsall zeros.

Indicators. None.

Timing: 2 cycles

Computer Instructions 69

Execution. Trapping signals are controlled as fol-

lows:

SIGNAL DUE TO CHANNEL EFFECTIVEIF

A“? IN
POSITION

Channel command or EOF A 0035
Channel command or EOF B 0034
Channel command or EOF Cc 0033
Channel command or EOF D 0032
Channel command or EOF E 0031
Channel command or EOF F 0030

Tape check A 0017
Tape check B 0016
Tape check Cc 0015
Tape check D 0014
Tape check E 0013
Tape check F 0012

Execution of a trap will inhibit all further traps until

a new enable instruction is executed or a restore-

channel-trap instruction is executed. Depression of

the reset or clear key will also disable all channels.

RCT — Restore Channel Traps

VW 17 18-20 21-23 24 35

Description. This instruction will allow traps to
occur as specified by the previous enable instruction.
It cancels the inhibiting effect of an executed trap.

Indicators. Trap Control.

Timing: 2 cycles
Ye

Execution. Since the address part of this instruc-

tion is a part of the operation code, modification by

an index register may change the operationitself.

Input-Output Transmission Operations

Instructions that either send commandsto a data chan-
nel or store information from data channel registers
are classified as input-output transmission operations.
These instructions are described in groups of eight.
All eight instructions within a group are identical in
function and differ only in that each refers specifically

to one of the eight possible data channels. The in-
structions will be described for data channel A.

70 IBM 709

SCHA — Store Channel A

+0640 LENNW T Y |
5,1 11 121314 17-38-2021 35

Description. This instruction replaces the c(y) with

the contents of the channel A address, location, and

operation registers. If channel A is not attached to

the computer when the scHa is given, the c(y) are

cleared by the scHa.

Indicators. None.

Timing: 2 cycles

Execution. The C(Y).;.,; are replaced by the c(aR),

the c(y);.,; are replaced by the c(LR), and the C(Y)s,1,2,19

are replaced by the contents of the operation register.

An scHA instruction may be executed at any time,
regardless of whether or not the specified channel 1s
in operation. If the channel is in operation and the
channel registers are in the process of being changed,
the execution of the scua will be delayed until the

change has been completed. Note that the c(AR) will
be one greater than the storage location of the last
word involved in data transmission and that the
c(LR) are one greater than the storage location from
which the current command was taken.

INSTRUCTION CODE NAME

SCHB —0640 Store Channel B
SCHC +0641 Store Channel C
SCHD —0641 Store Channel D
SCHE +0642 Store Channel E
SCHF —0642 Store Channel F

RCHA — Reset and Load Channel A

+0540 F T | Y
s,1 1112-1314 17 18-20 21 35

Description. If channel A has been selected by
either an RDS or wrs, the C(Y)g12,19 replace the channel

operation register, C(Y)317 replace the c(wr) and the
C(Y)o3-33 replace the c(aR). In addition, the number Y

plus one replaces the C(LR).

Indicators. 1-o Check.

Timing: 3 cycles

_ Execution. If channel A is not selected when the
RCHA is given, the RCHA executes normally but the 1-0
indicator is turned on. If the commandloadedby the
RCHA specifies indirect addressing, it will not occur.

For each rps or wrs, the corresponding RcHA must be
given if any transmission between storage and these-
lected 1-0 device is to take place. If a second RcHAis
given at a later time, the order is executed immedi-

ately. See “Programmed Interruption of a Data Chan-
nel” for further details regarding this type of opera-
tion.

INSTRUCTION CODE NAME

RCHB —0540 Reset and Load Channel B
RCHC +0541 Reset and Load Channel C
RCHD —0541 Reset: and Load Channel D
RCHE +0542 Reset and Load Channel E
RCHF —0542 Reset and Load Channel F

LCHA— Load ChannelA

ese
S.1 11012-1314 17 18-20 21 35

Description. If the data channel has been selected,

the computer delays until an IOCT, IORT, or 10ST com-
mandis processed for channel A or the channel leaves

operation. After an IOCT, IORT, or 10ST command has

been executed by the channel A, the Lcnais executed
as shown below.

Indicators. 1-o check.

Timing: 3 cycles, modification 8

Execution. The C(¥)g1219 replace the contents of

channel A operation register. C(Y)3.,; replace the

c(wrR), the C(Y).:.3, replace the c(aR), and the number

Y plus one replaces the c(Lr). If an LcHa is issued
and either (1) the channel is not selected, or (2)
channel A is selected but an 10CT, IORT, or IOST com-

mand is not executed before the channel disconnects,

the 1-o check indicator is turned on and the LcHa is

treated as a no-operation.

INSTRUCTION CODE NAME

LCHB —0544 Load Channel B
LCHC +0545 Load Channel C
LCHD —0545 Load Channel D
LCHE +0546 Load Channel E
LCHF —0546 Load Channel F

System Compatibility Operations

ESNT — Enter Storage Nullification and Transfer

|=o0a1 FT Y
VT 12-1314 17 18-20 21 35

Description. This instruction turns on a half-storage
mode indicator, which serves as a protective device for
a program being run while using the compatibility
feature of the computer

Indicators. Simulate.

Timing: 2 cycles

Execution. With the half-storage mode indicator on,
the following events occur: (1) the upper half of
storage is made unavailable for reference by a 704
program, (2) index register capacity is halved, and

(3) program control is transferred to location Y. The
indicator may be reset by depressing thereset, clear,

or any of the load keys, execution of any 1-o trap (ex-
cept data channel trap), or execution of an LsNM
instruction.

LSNM — Leave Storage Nullification Mode

s.1 Vt 18-20 21-23 24 35

Description. Execution of this instruction returns
the computer system to its normal operating capacity
by turning the half-storage mode indicator off. If the
computer is in its normal operating mode and an
LSNM instruction is executed, the instruction will be

treated as a no-operation.

Indicators. Simulate.

Timing: 2 cycles

Execution. Since the address part of this instruction

is a part of the operation part, modification by an
index register may change the operationitself.

ESTM — Enter Select Trap Mode

79780KITS 5
11:12 17 18-20 21-23 24 35

Description. This instruction turns on the select

trap mode indicator, and, while in this mode, 1-o

select and sense instructions are not executed but are

trapped. It should be used before entry into a 704
program, so that a 704 instruction will be trapped

rather than result in indefinite delays.

Indicators. Simulate.

Timing: 2 cycles

Execution. Instructions that will be trapped in-

clude: WEF, BSF, BSR, REW, RDS, WRS, I-O sense, RTT, EOT,

redundancy and sor. The location plus one of the
trapped instruction is stored in core storage location
10,000 or 40,000 (depending on which core storage is
being used). Program control is transferred to loca-
tion 10,001 or 40,001. Trapping also turns off the half-

Computer Instructions 71

storage, select trap, and copy trap indicators. The
indicators may also be turned off by: depression of
reset, clear, or load keys, or execution of any 1-0 trap
(except a data channel trap). Since the address part
of this instruction is a part of the operation code,
modification by an index register may change the
operation itself.

ECTM— Enter Copy Trap Mode

3.1 Vv 17 18-20 21-23 24

Description. This instruction turns on the copy
trap mode indicator. With the indicator on, cPy, CAD,
and LDA instructions are trapped instead of being

executed.

Indicators. Simulate.

Timing: 2 cycles

Execution. The location plus one of the trapped in-
struction is stored in core location 10,000 or 40,000

and program control is transferred to location 10,002
or 40,002. The execution of this instruction will also

turn off the half-storage, select trap, and the copy trap

mode indicators. The copy trap mode indicator may
also be turned off by: depression of the clear, reset, or
load keys, or the execution of any 1-0 trap (except a
data channel trap). Since the address of this instruc-
tion is a part of the operation code, modification by

an index register may change the operationitself.

EFTM — Enter Floating Trap Mode

P0780KTNN 2
$1 Vv 17 18-20 21-23 24 35

Description. This instruction turns on the indicator
for floating-point trap mode. When in this mode,
floating-point overflow and/or underflow will cause a
trapping operation.

Indicators. MQ overflow.

Timing: 2 cycles

Execution. This mode is the normal operating
mode. Floating-point overflow-underflow have the
operating characteristics of the standard computer
(store location plus one in address 0000 and then
transfer to 0010). Since the address part of this in-
struction is a part of the operation code, modification
by an index register may change the operationitself.

72 1nM 709

LFTM — Leave Floating Trap Mode

p07K.VT 4
3.1 VW 17 18-20 21-23 24 35

Description. This instruction turns off the floating

trap mode indicator, giving the computer floating-

point overflow characteristics of the standard 704

(turns on the ac or MQ overflow indicators only) .

Indicators. MQ overflow.

Timing: 2 cycles

Execution. Depression of the reset, clear, or load

keys will return the computer to its normal operating

mode (floating trap mode) by turning the floating
trap mode indicator on. Since the address of this
instruction is a part of the operation code, modifica-
tion by an index register may change the operation

itself.

Systems Program Compatibility

704 Programs on 709 System

The compatibility 11 program makes possible the
execution of programs written for a 704 system on
the 709 system. The compatibility program simulates
704 input-output operations through use of the
storage-nullification, input-output select trap, and
copy trap modes. The program requires no modif-
cation of the 709 on which it is used; however, it can-

not be used on a 709 system with less than 8192 words.
of core storage.

Compatibility 11 executes a leave floating-point trap
mode (LFTM) instruction before entering a 704 pro-
gram, in order that overflow will function as on a
standard 704. Computations are not affected in any
other way. The program is designed to use all of the
upper half of storage. Some of these locations are

used for storing the program itself; the rest are used
as an input-output buffer between the 704 program
and tape or card units, and, if required, for simulat-
ing magnetic drums. All locations of the upper half
of storage not used for the compatibility program in-
structions or for drum simulation are used for the
input-output buffer.

Before a 704 program can be processed, a control
card must be read. This control card indicates the
709 equivalents of the 704 tapes used in the processing
of the 704 program. After the control card is read,

the compatibility program enters select trap, copy

trap, and storage nullification modes and simulates a

load card, load tape, or load drum operation depend-
ing on the setting of the console entry keys. Until the
completion of the 704 program, input-output opera-
tions are simulated through use of the select trap and

copy trap modes of operation. (All other instructions
are compatibile with the, 709.)
A complete explanation of the compatibility 11 pro-

gram is found in the IBM 709 Data Processing System
Bulletin, J28-6039.

709 Programs on 7090 System

Programs written for the 709 may be run on the 7090
without modification or sacrifice in efficiency andstill

take advantage of the increased system speed. There
are, however, differences which are potential areas of

incompatibility. These are:

]. Read or write drum instructions will be trapped

if an ESTM instruction has been executed. cpy, CAD,

and LpA instructions will be trapped if an EcTm is
executed. When the instruction is not trapped, the

I-o indicator will be turned on andtheinstruction will

be treated as a no-operation. CRT instructions may be
trapped but they will always turn on the 1-o check
indicator.

2. It is usually possible to simulate the drum on
the 7090 system by using the 704 compatibility fea-
ture. If, however, the 709 program uses data chan-

nel traps, difficulty may be encountered if traps occur
while the compatibility program is being executed.
This will result in returning control to the 709 pro-
gram without allowing the 7090 to set proper operat-
ing modes.

3. The change in the ratio of compute speed to
input-output speed will affect programs that depend
upon computed delays for satisfactory operation.
Since the 7090 is faster than the 709, difficulty will
occur only in cases where “shrinkage” of a delay loop
can cause trouble. For instance, a programmay as-

sumethat certain storage locations may be changed n

machine cycles after a write tape instruction. Thus,
if that area is used without makinga test, the 709 and

7090 may not write the same data.

4. To achieve compatibility, the 7090 system must

have the same complement of data channels, tape
units, and card equipment. Further, these units must

be arranged in the same way with regard to address-
ing.

5. Since magnetic tape may be recorded at two den-
sities on the 7090, provision must be made to set up

the tape units for the particular density required. This
may be done by use of the change density switch
located on each tape unit. .

7090 Programs on 709 System

To run a 7090 program on a 709, the same general
precautions observed with a 709-to-7090 program
must be used. Instructions pertinent to the 7090 only
(instructions referring to channels G and H) will
cause the 709 to hang up.
Inasmuch as the computed delays will be much

longer when 7090 programs are run on a 709, trouble
will be encountered whenever somecritical timing
may not be exceeded. For example, if the maximum
allowable number of 7090 instructions are executed
between select and reset and load instructions, an 1-0
check will result when this program is run on the 709.
This is essentially the inverse of the problem en-
countered when 709 programs are run on a 7090.
Again, the size and configuration of the systems must
be the same. It is possible, however, to write pro-

grams for 7090 systems which are not attainable with
the 709. This will occur because a 7090 data channel
has more than eight tape units, the 7090 system uses
channels G and H, and card equipment on the 7090

may appear on channels B, D,orF.
Since the 709 does not have dual-density tape units,

all programs will produce low density tape as output
and must have low density tape as input.

Computer Instructions 73

The keys and lights found on the 709 operator’s and
data channel consoles and on the tape control are
described in this section of the manual. The operation

of these keys, when the central processing unit and/or

a channel is in manualstatus, is also given.

IBM 709 Operator's Console

The 709 console panel lights are divided into twosec-
tions, for discussion. The first section concerns neon
lights and the second section incandescent: lamps, in-

cluding the color of the lamp cover. The items are
numbered in the discussion for easy reference to

Figure 121.

~

reassay

Console Operation

Neon Lights

1. Instruction Counter. The instruction counter is
15 positions long to accommodate the largest core
storage address (with an 1BM 738 Core Storage).

If the 709 system has one 737 unit, only 12 of the 15
positions are used. If two 737 units are used, only 13
positions of the instruction counter are active.
The instruction counter (ic) is used to tell the com-

puter the location of the next instruction to be per-
formed. It may be reset to zero at the start of the
program or may be set to a predétermined address.
Once the program is started, the 1c counts sequentially

unless a transfer instruction is executed. In this case,

TN STRUCTION

eeo 8
OP eR A THON
é 3«

Figure 121. Operator’s Console

Console Operation 12]

the Ic is set to the address specified by the transfer
instruction and is again stepped sequentially starting
with this new address. The highest location in core
storage and location zero are treated as consecutive
addresses.

Thetc is normally advanced at the end of the I cycle.
However, some instructions cause the computerto skip

one or two instructions and, therefore, the Ic may be

advanced as many as three times while the instruction
is being completed. If a halt occurs during the execu-
tion of a divide or halt instruction or a halt and pro-
ceed instruction, the 1c has the address of the instruc-

tion being executed plus one. Upon execution of a halt
and transfer instruction, the 1c contains the address of
the instruction.

If the auto-manual switch is depressed during the
execution of a cpU program, the ic contains the ad-

dress of the instruction to be executed, plus one.

2. Instruction Register. Instructions and data are

both in the form of 36-bit words, and the computer

finds the difference between the two in the following
manner:

I. Any word brought into the computer during an
I cycle is treated as an instruction.

2. A word brought in at any other time is treated
as data.

The instruction register (IR) is divided into two parts:
positions S, 1-9 contain the operation part of the in-
struction, while positions 10-17 form a counter known
as the “‘shift counter.” In shifting, multiplication, and
division instructions, the numberof shifts to be made
is placed in this counter.
With an 1-0 instruction, the address part of the in-

struction is placed into the shift counter. The counter
in turn sets the class and unit selectors for the type of
instruction (such as read, write, and so forth) and the
exact unit involved.

3. Internal Registers. The contents of the internal
registers (storage, accumulator, and MQ) are displayed
on the console. The display is marked off in groups of
three, making the direct conversion from binary nota-
tion to octal a matter of sight.

#4. Index Registers. A row displays the contents of
any index register, depending on which one of the
display (A, B, or C) keys is depressed with the com-

puter in manualstatus.

5. Trap Light. The trap light goes on whenever the
CPU is operating in the transfer trap mode.

6. Sense Lights. There are four sense lights which
may be turned on or off by the main program. They
are explained under plus and minussense instructions

in the instruction section.

122 BM 709

7. I-O Check Light. This light goes on as stated in
the description of the 1-o check test instruction. The
light may be turned off by the execution of an 10T.

8 Tape Check Lights. The tape check lights (six
lights, one for each channel) are turned on if any
error is detected while writing or if both the HI and Lo
registers are in error on reading. The lights may be
turned off by the execution of a transfer on psc re-
dundancycheck.

9. Channel Select Lights. These lights (six, one for
each channel) will be turned on accordingto the chan-

nel that is in operation. They will be turned off if the
channel is not in operation.
Note: Both the tape check and the channel select

lights are duplicated on the data channel panel.

10. Class Select Lights. There are three class select
lights (tape, drum, and card machines). One of these
lights will be on according to the 1o class being se-
lected or waiting to be selected.

Incandescent lights

11. Simulate (Yellow). The simulate light will be
turned on when the 709 is operating in the following
modes associated with the 704-709 compatibility
feature.

Input-outputselect and sense trap mode
Copy and load drum address trap mode
Storage nullify mode

12. MQ Overflow Light (White). This light will be
on whenever an MQ overflow occurs and the calculator

is using the compatibility program.

13. Accumlator Overflow Light (Green). This light
will be turned on at any time (during fixed point
operation or shifting operations) when a carry out of
position | of the accumulator occurs. It may be turned
off by the TNo or Tov instructions.

14. Divide Check Light (Yellow). The divide check
light will be turned on (fixed point division) if the
dividend (accumulator) is greater than or equal to the
divisor (storage). On floating point division a divide
check occurs if the divisor is zero or if the magnitude
of the fraction of the dividendis greater than or equal
to twice the magnitudeof the fraction of the divisor.
The divide check indicator is tested by the pcr instruc-
tion.

15. Read-Write Select Light (Yellow). The read-

write select light will be turned on when an input-
output unit has been selected for reading or writing.
The light goes off when the input-output unit is dis-
connected.

16. Program Stop Light (Red). This light will be
turned on when the calculator executes a HALT instruc-

tion and stops.

17, Automatic Light (Green). The automatic light
is on if the calculator is executing instructions in the
automatic mode.
Note: Any of the above lights may also be turned

off by using the clear or the reset keys on the 709
console.

18. Ready Light (White). The ready light indicates
that the electronic circuits have reached operating
level. The light remains on except when the system is
operating in automatic mode or when processing
stops owing to a halt and no channelis in operation.
It is important to make sure thatthis light is on before
using the computer for any operation.

19. Power-On Light (Red). This light is on when-
ever power is applied to the 709 system (except the
tape and data channels) .

20. I-O Fuse Light (Yellow). The -o fuse light will
be turned on if an 1-o indicating fuse is blown. The
fuse light will be turned off when the fuse has been
replaced by a customer engineer.

Panel Keys and Switches

21. Auto-manual Switch. Pressing this switch down
stops the computer after it has completed the execu-
tion of the instruction then being processed, unless an
I-O unit is connected to the logical unit. In this case,
the computer stops after the 1-o unit in use has been
disconnected. The automatic light goes out, andall of
the switches and the following keys become effective:
display sense indicators, enter mg, enter instruction,
display effective address, display A, display B, dis-
play C, multiple step, and single step. The clear key
and load key becomeineffective.

22. Single Step and Multiple Step Keys. These keys
enable the operator, when the 709 is in manual status,
to proceed with his program either step-by-step (one
step at a time) or at a slow automatic rate of speed.
If an instruction is executed which causes an input-
output device to be connected to the computer, the
computer operates in the automatic modeuntil the 1-o
unit is disconnected. When this occurs, the computer
returns to the manual mode.

23. Sense Switches. Six sense switches give the opera-
tor manual control over the program while it is
being executed by the computer at high speed. At
various points in the program, giving sense instruc-
tions with the addresses of the sense switches causes
the computer to follow one of two courses, depending
on whetheror notthe sense switch tested is depressed.

The sense switches are also effective while the com-
puter is in manualstatus.

24. Panel Input Switches. These 36 panel input
switches enable the operator to insert a word of in-
formation into the MQ or the instruction registers of
the computerif it is in manualstatus and the enter-MQ
or enter-instruction key is depressed. When a panel
input switch is down,it represents “1”; when upit
represents a “0”. (A bit configuration may beset in
these keys, and with the calculator in automatic mode,
an ENK instruction will set the input switches’ contents
into the mq.) —_

25. Index Display Keys. The three index display
keys let the operator display the contents of any of
the index registers, while the computer is in manual,
by pressing the key marked with the letter corre-
sponding to the index register in question. For exam-
ple, to display the contents of index register A, the
Operator presses the display A key; the contents of
index register A then appear in the index register
neons. To display index register B, the operator
presses the display B key. The contents of index regis-
ter B would then replace the information from index
register A. The index register remains displayed until
the computer is returned to automatic status.

26. Load Keys. The load keys let the operator ini-
tiate the loading of a self-loading program stored on
binary cards, a drum,or a tape.If a self-loading pro-
gram is stored on the tape whoselogical identification
is 221, and is attached to channelA,pressing the load-
tape key causes the computerto perform the following
sequence of instructions:

Read select channel A for tape unit 221.

Reset load channel A with a bit in position S, a word
count of 3, and an address of 0000. (The first

three words are sent to core storage.)
The contents of location zero are sent to channel A

as a command.

Transfer to core storage location 0001.

This sequence of instructions starts the loading of a
program stored on tape 221. .

Pressing the load card key causes the same sequence
of instructions to be executed, except that the address
in the first instruction is 321, selecting the reader in-

stead of the tape unit.
A.somewhatsimilar situation holds for the load

drum key except that the instructionsare as follows:

Readselect drum 301.
Copy 0000.
Copy 0001.
Transfer 0000.

Whenloading is started, it is essential that the par-
ticular input unit from which information is to be

Console Operation 123

loaded into storage be in ready status. Depressing the
load keys resets both channels A and B. Note that the
MQ register will not be reset. The keys are operative
only when the auto-manual switch is in automatic and
the 709 is in a ready status,

27. Reset Key. Pressing the reset key resets all regis-
ters and indicators in the logical section of the ma-
chine, except the si. That is, the sr, Ac, MQ, instruc-

tion location counter, instruction register, and index
registers are set to zero andall indicators are turned
off. The panel lights are all turned off with the ex-
ception of power and ready. Core storage is not
affected by the reset key. Any channels in automatic
status, and their associated registers, are also reset.

28. Clear Key. With the computer in automatic
status, pressing the clear key sets all magnetic cores to
zero. In addition, all registers and indicators are re-
set as with the reset key depression. The clear key is
inoperative when the computer is in true manual
status.

29. Start Key. Pressing the start key continues cal-
culation at high speed if the computer has halted at
a program stop, or if it has been returned to auto-
matic operation after having been in manual status.
Pressing the start key will reset the program stop light,
and calculation starts with the operation specified in
the instruction counter. Pressing the start key (cpu
in manual) resets the program stop or read-write check
light. All register contents are not destroyed. An in-
dex register may then be displayed or the program
may be stepped at slow speed.

30. Enter MQ Key. If the operator manually keys a
given word of information into the panel input keys

and if the enter-mQ key is pressed while the calcula-

tor is in manual, then the keyed-in word replaces the

contents of the Mag. The contents of the sr are de-

stroyed by this operation.

31. Enter Instruction Key. If the operator presses
the enter instruction key while the computer is in
manual status, the word in the keys is executed.

32. Display Storage Key. If, while the computeris in
manual status, the operator keys a storage location
into the address part of the panel entry keys and
presses the display storage key, the contents of the
address appearing in the keys are displayed in the sr
where they may be read from thesr lights.

33. Display Effective Address Key. Assume that the
computeris in manualstatus, an instruction is in the

sR, and the display effective address key is pressed.
The difference between the contents of the address
field in the sr and those of the index register tagged
in that instruction (if one is tagged) will appear in

124 1M 709

the address field of the sr, where it may be read from

the sr lights.

34, Display Sense Indicators. If the display-sense-
indicators key is depressed while the computer is in
manual, the contents of the 36-position sense-indi-

cator register will be displayed in the storage register
neons. The contents of the storage register are de-
stroyed by this sequence butthe contents of the sense-
indicator register remain unchanged.

35. Power-On, Normal-Off, DC-On, and DC-Off Keys.

These keys are for servicing the system and lrave no
programming significance.

Operation

The sequence of operations necessary to enter a con-
stant or new instruction into a core storage location
is as follows: Assume that the instruction cLa 0100 is
to be inserted in storage. .

1. With the auto-manual switch in the manual po-
sition, set the information to be stored (cLa . . . 0100)
into the panel entry keys.

2. Depression of the enter MQ key stores the con-
tents of the entry keys into the MQ register.

3. Set —0600 (store mg) , with an address of 0200 into
the keys and then push the enter instruction key. This
action stores the contents of the MQ register (CLA...
0100) into core storage location 0200.

Data Synchronizer Console

Indicator Lights

The contents of all registers and counters in the 709
system data synchronizer (ps) are displayed on the
neon indicator panel (Figure 122). In addition, the

input-output selection and operation indicators (S, 1,
2 and 19) are displayed. There are also nine special

indicators for each channel on the neon panel. For

reference assume that vertical rows of neons are num-
bered | through 18 and the horizontal rowsare let-
tered A through O.

1. Data Register (A-B, I-J, 1-18). These neonsreflect
the contents of the data register.

2. Word Counter (C, K, 4-18). The word count
minus one is indicated with these neons.

3, Address Register (D, L, 3-18). ‘The core storage
address is indicated with these neons.

Figure 122. psc Console, Top

4. Location Register (E, M, 3-18). The location regis-
ter neons contain the address of the core storage loca-
tion of the next commandto be executed.

3. I-O0 Check (G, O, 10). This indicator turns on

for lack of a storage reference cycle on one channel
operation.

6. Tape Check (G, O, 11). This indicator is turned
on if any error is detected while reading or writing
on tape. The channel tape check indicator parallels

the tape check indicator on the 709 console.

7. End of Tape (G, O, 12). The end-of-tape indi-

cator will be turned on, during a write operation,

whenever the end-of-tape reflective spot of the selected
tape passes the read-write head.

8. Beginning of Tape (BOT) (G, O, 13). This indi-
cator is set whenever a backspace record or backspace

file instruction moves a tape to its load point orat-

tempts to backspace it beyond its load point.

9. End of File (G, O, 14). When a disconnect occurs
because an end offile is sensed while reading cards
or tape, this indicator is turned on.

10. Word Count Equal to Zero (G, O, 15). This in-
dicator will be turned on whenever the word count

is equal to zero.

11. Read Gate (G, O, 16); Write Gate (G, O, 17);
Data Register Loaded (G, O, 18). These three neon
indicators are customer engineering aids.

12. Input-Output Indicators: Read Tape (F, N, 1);

Write Tape (F, N, 2); BCD (F, N, 3); WEOF(F,N,4);

Rewind (F, N, 5); Backspace Record (F, N, 6); and

Backspace File (F, N, 7). These indicators are turned
on whenever the individual operations are being

executed or stacked in the channel.

13. Unit-Selected Indicators (F, N, 9-18). There are
ten unit-selected indicators for each channel. During

w
Console Operation 125

an automatic operation they are turned on from the
709 unit register or PSE instruction to designate the
unit which is to be selected. Under manual condi-
tions, the indicators will be turned on according to
the setting of the unit selection switches.

14. Card Machine Indicators: Read Card Reader
(G, 1); Write Printer (G, 2); Write Punch (G, 3); Read

Printer (G, 4); and Print Binary (G, 5). These indica-
tors are concerned with channel A, C or E. They will

be turned on whenever the particular card machine
is selected.

15. Indicator Triggers (C, K, 1-3; D, L, 1-2). These

indicators will be on or off according to the bit con-
figuration of the commandin the channel. They are
explained in detail under “Data Channel Registers.”

16. A Select (H, 7); B Select (H, 8). These indicators
reflect which channel is in operation.

17. Unit Priority (H, 9). This indicator, when on,
shows which of the three ps’s has priority at any in-
stant.

18. A Priority (H, 10); B Priority (H, 11). One of
these indicators will be on, showing which channel
has priority, assuming this ps has priority.

19. Manual A, B (H, 12, 13). These indicators reflect

the setting of the auto-manual switches.

20. Fil. Det. (O, 9). This indicator is for customer
engineering use.

Keys and Switches

The operator’s panel on the data synchronizer con-
sole is shown in Figure 123. It contains all switches,

keys, and lights necessary for ps operation. Some of
the switches are a locking type and others are spring-

return switches.

Lockinc KEys

1. Entry Keys. There are 36 entry keys, one for each
position of the 709 word. When a key is depressed,
it remains in the position until reset by the reset key
for the entry keys. These keys are operative only when

the channel is in manual status.

2. Auto-Manual Channel A. In automatic position,
this switch permits 709 operation of channel A. It
permits resets initiated by the 709 to reset channel A
indicators. In manual position, this switch activates
the other manual controls and entry keys for channel
A, It also permits the reset key on the ps to reset
channel A indicators while blocking any resets origi-
nating in the 709.
With this switch in the manual position, the fol-

lowing instructions will be affected as indicated:
Transfer on channel A in-use will not transfer.
Transfer on channel A not-in-use will transfer.
Transfer on channel A Eor will not transfer.
Transfer on channel A redundancy-check will not

transfer.

Store channel A probably will store zeros, but may
store any combination of zeros and ones.

The execution of any of the following instructions
will result in “hanging up” the cpu:
Load channel A or reset and load channel A.
Read channel A or write channel A.

Rewind channel A or write end of file channel A.

Backspace record channel A or backspace file chan-

nel A.

2 READY ort) orcs Ss
. Pista .

ie vos :

° powes
ON ed

roan

Figure 123. psc Console, Bottom

126 IBM 709

If either sense-printer-channel-A or sense-punch-chan-

nel-A instruction is executed, it will be treated as no-

operation. With the execution of either beginning-of-

tape-test-channel-A or end-of-tape-test-channel-A, the
program will skip the next instruction and then pro-

ceed.

3. The automatic, read-write select, channel select,

tape check, or the I-O check lights on the cpu console
will not be turned on by operations of a channel that
is in manual status.

4. Auto-Manual Channel B. This switch operates

the same as the channel A switch except that it per-
tains to channel B.

5. BCD. The scp switch is operative only in manual
status and, when depressed, forces a Bcd mode of

operation.

’ SPRING-RETURN Keys

6. Load Data Register. Depression of this key sets
the condition of the entry keys into the data register
of whichever channel is in manual status. The key
has no effect if both channels are in automatic.

7. Store Data Register. This key, when depressed,
will cause the contents of the data register, for the
channel in manualstatus, to be stored in core storage
at the address in the address register of the channel.
After the word is stored, the address register is in-
creased by 1 and the word count register is decreased
by 1. When both channels are in automatic, this key

is inoperative.

8. Load Control Word. This key, when depressed,
causes information set up on the ps entry keys to be
entered into the indicators, word counter, and ad-

dress register of whichever channelis in manualstatus.
Entry keys S, 1, 2 and 19 are entered into the indica-
tors, keys 3-17 are sent to the word counter, and keys
21-35 are sent to the address register.

9. Display Storage. Depression of this key will cause
the contents of the storage location, whose address
appears in the channel’s address register, to be dis-
played in the data register of whichever channelis
in manual status. The key is inoperative if both chan-
nels are in automatic status.

Norte: If either the store data register or the dis-
play storage key is depressed more than one time, for

each depression the next sequential storage location
will either receive the contents of the data register or
be displayed in the data register.

10. Load Location Counter. Depression of this key

causes the information set up in the ps entry keys

(21-35) to be entered into the location counter of
whichever channel is in manualstatus.

11. Write Punch, Write Printer, Read Tape, Write

Tape, Read Reader. These keys control some phase
of input-output operation when a channel is in man-
ual status. They are inoperative if the channel is in
automatic status. They are explained as a group be-
cause their operation is identical except for class of
operation. One example of their use is in punching a
card:

1. The auto-manual switch for channel A is in

manual.

2. A command with a countof 24 (keys 13 and 14)
and an address of 100 (keys 11, 12 and 15)is set
up in the ps entry keys.

3. The load control key of the ps is depressed, en-
tering the commandset up in step 2.

4. The write-punch key is depressed.
These steps would result in writing 24 words from
core storage, starting at core location 100. Upon com-
pletion of the punching operation, the last word trans-
mitted to the punch would be retained in the data

register, the word count would be reduced to zero,
and the address register would have advanced once
for each word that was punched.

In another example, reading a tape, the sequence

of operations would be the sameas those in the first
example for steps 1, 2, and 3. Step 4 would change in
three ways:

a. The tape selector switch on ‘the ps, for the ap-

propriate channel, would beset to the tape unit

desired.

b. The mode, scp or binary, would be set by use

ofthe Bcp switch.

c. The rest of the operation would be the same as

example 1 except that the first 24 words on the

selected tape unit would be stored in locations

100 through 123.

12. Rewind, Write End-of-File, Backspace Record,

Backspace File. These keys are also grouped because
their operation is the same except that they refer to
the non-data type of operation and are concerned
only with tape. Depending on thesetting of the selec-
tor switch on the ps, the specified tape unit would,
according to which key was depressed, rewind, write
an end-of-file, backspace one record, or backspace one

file.

13. Unit Selection Switches. Two selection switches,

one for each channel and each numbered 1 through

10, control unit selection under manualstatus. For ex-

ample, assume that the selection switch for channel A

is turned to position 3 with channel A in manual

status. Any tape unit attached to channel A whose

Console Operation 127

individual selector switch is set at 3 will be selected

for manual operation under the control of the chan-

nel tape control keys.
In addition to its tape function, the channel A

switch is active when a printer or punchselect key is
depressed to activate the corresponding sense exit on
the printer or punch control panel. If no sense exit
is to be set, the switch must be set to an unlabeled

position.

14. Fuse Light. When this light is on, it indicates a
blown fuse in the ps. A pc-off or power-off condition

will also have occurred.

15. Thermal Light. This light indicates, when lit,
that the temperature inside the ps has gone beyond
limits. A power-off condition occurs at the time the

light is turned on.

16. Power-On Light. This light indicates that ac
power is being supplied to the ps for filaments, blow- |

ers and power supplies.

17. DC-On Light. This light indicates that all volt-
ages in the ps have reached operating levels.

128 IBM 709

18. Ready Light. This light indicates that both
channels in the ps are available for automatic opera-

tion.

19. Power-On Key. This key initiates a sequence of
operations in which the various voltages are supplied

to the ps in the proper order.

20. DC-Off Key. Depression of this key causes the
removalof all pc voltages from the tube panels. Power
is still supplied to the filaments, blowers and power

supplies.

21. Power-Off Key. Depression of this key causes all
power to be removed except the 40-volt supply and
110 volts ac to a customer engineering outlet.

22. Reset Key. This key is operative only if one or
both of the ps’s auto-manual switches are in manual.

If either or both are in manual, depression of the re-

set key will reset all indicators, registers and counters
which are under manual control. With the ps in auto-

matic, all resets originate in the 709.

Programming Examples

A computer program is similar to the program re-
ceived at baseball games, concerts, and many other
presentations in that it is a plan of operations or
events that will occur. The process of getting to work
each morning may be compared to a program con-
cerned with the following problem: Compute A + B
— C andstore the result (D), if it is a plus number;

if minus, halt the computer(Figure 124).
‘Block diagrams, also called flow charts, are a sche-

matic diagram ofthe logic of the computer and meth-
ods it uses in solving a problem. The main reason for
a flow chart is that it is easier to write and under-
stand than a written paragraph about the problem.
The flow chart is a map of all logic paths and deci-
sions used by the computer, and simplifies the writing
of a coded computer program.
The same program used in Figure 124 maybe ex-

pressed in program terminology as shown in Figure

125. Given: Factor 4 stored in location 100, factor B
in 200, factor C in 300.
The instruction location designates the place, in

core storage, where the instruction is stored. The in-
struction abbreviations are such that they represent
the actual operation involved. For example, sus means
subtract and sto means store, while cLa meansclear
the register to zero and add. The address part desig-
nates a location in core storage where a number is
located or where a number may be stored. Thus, the
operation of the program would proceed as follows.
The program is started with the first instruction

(cLa 100) which is contained in location 0000. This
instruction will clear the accumulator register to zero
and then bring the contents of core location 100 into
the accumulator (factor A). The next instruction
(app 200) will bring factor B from storage and com-

Move A to arithmetic section

Instruction Location |Instruction |Address

Move A ..ccccceecue 0000 CLA 100

Form At+B....ccaeee 0001 ADD 200

Form A+B=-C...... 0002 SUB 300

Form Answer (D) 0003 STO 400

Figure 125. Simple Program

bine it with factor A. The third instruction (sus 300)
brings factor C from storage and subtracts it from the
combined factors A and B. The fourth instruction
then takes the result in the accumulator andstoresit
in storage location 400. Thus D has been formed and
stored.

A possible use of two of the shifting instructions is

shown in Figure 126 with the following facts known.
‘T'wo numbers are contained in the samestorage loca-
tion. One numberis located in positions 6 through 20,

and the otheris in positions 21 through 35. (Assume
that this word is already located iri the accumulator.)
The problem is to multiply the number in positions
6-20 by the numberin positions 21-35.

Location |Instruction }Address Comments

0000 LRS 0015 Move positions 21-35 into the MQ,
0001 RQL 0016 Align this number in proper place to

be used as the multiplier.
0002 STO 0100 Store the multiplicand so that it may

be used in the multiplication.
0003 MPY 0100 Multiply the two numbers.
0004 STQ 0200 Store the result. (STQ is used because

the result is small enough to be
completely contained in MQ.)

Figure 126. Multiply and Shifting Problem

Conditional transfers may be used to solve the fol-
lowing type of problem. Assume that A and B are two
positive numbers located in storage at locations 100

Get out of bed i

 !
Add B to A and then subtract

C from the result

Wash, shave, and
get dressed

ls result plus?

Eat breakfastHh

_Y

}
Halt computer
computer Put on

overcoat

Store result

Figure 124. Simple Program Analogy

Cold
day?

i
Go to work

Programming Examples 129

Location Instruction Address Remarks

0000 CLA 0100 Factor A
0001 SUB 0101 Subtract factor B from factor A
0002 TZE 0017 Factors are equal
0003 TPL 0005 A is larger than B
0004 TMI 0012 A is smaller than 8
0005 CLA 0100 Factor A
0006 STO 0201 Store A
0007 CLA 0101 Factor B
0010 ‘STO 0200 Store B
0011 HTR 0022 Stop. A was larger than B
0012 CLA 0100 Factor A
0013 STO 0200
0014 CLA 0101 Factor B
0015 STO 0201
0016 HTR 0022 Stop. A was smaller than B
0017 CLA 0100 Factor A
0020 STO 0200
0021 HTR 0022 Stop. A was equal to B
0022 Proceed with program

Figure 127. Flow Chart and Program for Sorting

and 101. The problem is to find the smaller number
and put it in location 200; also, to place the larger
number in 201. If they are equal, put one numberin
200 and nothing in 201. The computer program is
shownin Figure 127.

The use of index registers can be pointed up by
showing the number of program steps saved, and thu’
also computer time saved. Given numerical constants
in locations 1 through 50, with a | in location 100, the
numerical value 50 in location 200 and the value 50
stored in location 300. The problem is to add 1 to
each of the 50 constants. Figure 128 shows the prob-
lem solved without using index registers. Figure 129
shows the same problem solved with index registers
being used. The advantages and flexibility of in-

dexing are readily evident.

Location Instruction Address

Form constant 1000 CLA 0001

Plus one and 1001 ADD 0100

store 1002 STO 0001

Increase constant 1003 CLA 1000

address and store 1004 ADD 0100

1005 STO 1000
Reduce the counter 1006 CLA 0300

by one - 1007 SUB 0100
Test 1010 T™NZ 1000
Stop 1011 HLT

Figure 128. Address Modification without Indexing

Location Instruction Address

Set 50 in XRA 1000 LXA A 0200
Constant modifica- 1001 CLA 0100

tion loop and 1002 ADD A 0051
store 1003 STO A 0051

Test for equal XRA 1004 TIX GQ) A 1001
Stop 1005 HLT

Figure 129. Address Modification with Indexing

130 18M 709

Another programming aid which permits the chang-
ing of an instruction’s address is indirect addressing.
Bits in positions 12 and 13 denote indirect address-
ing. They are signified in the instruction format by
an “F” and in programs and text by an asterisk fol-
lowing the instruction code (cta*). One additional
computer cycle will be taken whenever indirect ad-
dressing occurs. During this cycle the word located at
the instruction’s address is brought out of storage and
its address is used to locate the word upon which the
instruction operates. This is sometimes called “the

second effective address.”
As an example of the feature’s use, assume that a

word has been read into storage by an input-output
device. The programmer knows that the command
which read in the data is in location 0100. To bring
the data back into the accumulator, a portion of the

program could be as shownin Figure 130.
The indirect addressing feature may also be com-

bined with indexing, as mentioned above, to obtain a

second effective address.

Location Instruction Address Remarks

0077 XXX XXXX Previous command
0100 Oj teens input-output command

0200 CLA* 0100 The CLA* would bring in the
data serviced by the I-O
instruction even though the
address portion is not known.

Figure 130. Indirect Addressing Example

Definition of an Assembly Program

An example of an assembly program is one that de-
fines the symbols and their use as follows:

1. The general format of each instruction is:
LOCATION, OPERATION, ADDRESS, TAG, DECREMENT.
Only those instructions that are referred to

by other instructions in the program need be
given a symbolic location. All other instructions
may be written leaving the location field blank.
If the tag and decrement fields are not used,
they are left blank. In the case of instructions
such as cAQ and vLM,the countis placed in the

decrement field. Also, for these instructions, if

a tag is not required the instruction would be
written in the form OPERATION, ADDRESS, O, COUNT.

2. A symbolic address or location can be composed
of one to six alphamerical characters, one of
which must be non-numerical. For example:
TEMPI, GO, HALT, x1 are all allowable symbols.

Thus, each symbol can have an important

mnemonic value. Six special characters may not
be used in a symbol. They are -+ — * /, and §.
These characters are used for special operations.
For example, the plus sign is used for the ad-
dition of two or more symbols and/or numbers.
Such an operation might be Al + A2 or HALT

+ 3.

3. When dealing with a block of data words, only
one location in the block need be assigned a
symbol. For example, if a block of data words
consisted of Al, A2, ... A75, the location of
the first word of the block could be given the
symbol aone. All other words in the block would
be related to this point. If A23 were to be re-
ferred to it, would be by the symbol Aone + 22..

4. When the actual value of an address, decrement,

or count is known, it should be written in abso-

lute form.

When the program has been written it is prepared
for assembly by punching each instruction and piece
of data into a separate 18m card. These cards are then
referred to as symbolic cards.

This symbolic deck is converted to magnetic tape

through the card-to-tape equipmentandentered, along
with the assembly program, into the computer. If de-
sired, the symbolic program may be entered directly
into the computer through the on-line card reader.

Assembly

In the assembly process, the symbolic instructions are
processed as follows:

1]. The symbolic operation codes are replaced with
the actual patterns used by the computer. For
example, CLA is replaced by the combination of
bits 000 101 000 000 which occupy positions S,
1-11 of the 36-bit instruction word in storage.

2. The absolute location for the first instruction
of the program is determined by the prograin-
mer and given to the assembly program. Each
succeeding instruction and data wordis piven
an absolute location stepped up by one. It. is
therefore important that the symbolic deck he
in the proper order. Each symbolic location de-

tected by the assembly program is entered into a

table (called the symbolic table) along with its
assigned absolute location. The assembly pro-
gram then replaces the symbolic address with

the absolute locations from the table.

Normally, as a product of the assembly program,
a listing of the program in the symbolic format and
the actual machine language program is made. In
addition, the assembly program furnishes the pro-
grammer with a deck of cards containing the machine
language program.

Logical Check Sums

One of the principal methods of keeping a check on a.
block of information in storage is to attach to this
block a sum value of all the words in the block. This

sum is called the check sum. The best possible check
sum that can be formed is one that is developed us-
ing the logical operations of the computer. This check
sum is known as a logical check sum. It is normally
not equal to the algebraic sum of the block. When
using a logical check sum there is no possibility of
overflow as in the case of algebraic sums. Further-
more, it does not matter in what direction the words
of the block are added. This is not true in algebraic
summation where overflow possibilities are affected
by the direction of summing. An example of the com-
puting of check sums is shown in Figure 13]. The
programmer knows that there are five blocks with
nine words in each block. The first block starts at
location 0601, the second at 0611, the third at 0621,
and so on. Location 0500 contains a 9 and location
0501 contains a 49. The problem is to find the logical
sum of each block and place it in the first location
preceding that block..

The coding of a program instruction normally fol-
lows this sequence: (1) the location of the instruction,

(2) the instruction mnemonic, (3) the address,if any,
(4) the index register, if any (5) the decrement. Thus a
Tix, 1, A, 1000 would mean that the t1x has a decrement
of 1, index register A is to be used, and the address
for the transfer is 1000. The location of the instruction
would precede the Trx.

The program shown in Figure 132 will compute the
logical check sum for a block of 300 words in core
storage. Assume that the 300 words are located in
storage in locations 700 through 999. The resulting
check sum is to be stored in location 1000. The pro-
gram uses an index-register-controlled loop to form
the logical check sum. The contents of index register
| are used to effectively modify the address of the
instruction in location 102. The index register ini-
tially contains the number 300. The final value in the
index repister will be 1 since the decrement of the
TIX Instruction is ft. Che manner in which the two-
instruction loop is performed is as follows:

Programming Examples 13]

Set up XR B

Set up XRA

H ; LOCATION OPERATION | ADDRESS, TAG, DECREMENT/COUNT

, 12 é to =

the ' 9100 LXA ‘| 501,B 49 to XRB
: Y ' 0101 LXA | 1 500,A 9 to XRA

Logicallyocc | 0102 CLM ! Clear the accumulator

| , 0103 ACL \ ; 650,B Add the block

0104 TNX 11 110,B,1 Test all blocks for end

“inished with 0105 TIX. 103,A,] Reduce count

all blocks? 1 0106 SLW ' 640,B Store the check sum for block

‘0107 TIX ' |.101,B,1 Test for end of block |

=Y 0110 SLW ! ! 640 Store check sum (last one)

js | Finished with ; O11 HPR _ Stop

present block?

Yes

Store the result

Stop

Figure 131. Computing Check Sum Program andFlow Chart

LR. | EFFECTIVE ADDRESS OF Normally a symbolic location is assigned to the
LOOP CYCLE ACL INSTRUCTION block of words. For example, the symbol First could

Endof Ist cycle be used to designate the location of the first word of

(Before TIx executed) 300 ACL 700 the block. The symbol cksum could be used to specify
End of 2ndcycle the location where the computed logical check sum is

(Before TIx executed) 299 act 701 to be stored. The program would then be written as

End of $rd cycle shownin Figure 133.

(Before 11x executed) 998 act. 702 The number of times the loop iS executed 1S de-

pendent upon the value placed into the index regis-

Endof 299th cycle ter and the value of the decrementof the TIx instruc-
(Before 11x executed) 2 Act 998 tion. In the preceding example, since xRa contained

Endof 300th cycle 300 and the decrement of the TIx instruction is 1, the

(Before 11x executed) l act 999 loop is executed 300 times. If the decrement had been

End of 300th cycle 2, the loop would have been executed 150 times. In

(After TIx executed) 1 Not executed this case the logical check sum would have been com-

_H ; LOCATION OPERATION) ADDRESS, TAG, DECREMENT/COUNT COMMENTS | pean

1 12 6| 7548 273 80

100 AXT 1 300, 1 LOAD 300 INTO INDEX REGISTER1
101 CLM i CLEAR ACCUMULATOR (EXCEPT FOR SIGN)

! 102 ACL ! ! 1000, 1 TWO INSTRUCTION LOOP TO COMPUTE LOGICAL

103 TIX ‘1 102,1,1 CHECK SUM. TIX USED TO TEST END OF LOOP
104 SLW ‘11000 STORE LOGICAL CHECK SUMIN LOCATION 1000

Figure 132. Logical Check Sum Program, Actual

H LOCATION OPERATION

CLM

ACL

TIX

SLW

} ADDRESS, TAG, DECREMENT/COUNT
'

A

1

I

l

FIRST + 300, 1

ADDER, 1,1

CKSUM

Figure 133. Logical Check Sum Program, Symbolic

132 1BM 709

COMMENTS IDENTI-

FICATION

A

CHECK SUM. TIX USED TO TEST END OF

STORE LOGICAL CHECK SUM IN A

puted for every other word in the block. Note that
at the end of the 300th cycle the index register con-
tained 1. The contents of an index register are never
reduced to zero as the result of using a TIx or TNX
instruction. The final value.found in an indexregis-
ter is dependent on the decrement of the TIx or TNx
instruction. If the decrement is the integer K, then,
depending upon theinitial value of the contents of
the index register, the final value of the index regis-
ter can vary in the range K, K-1, K-2,...., 3, 2, 1.

Oneof the ways check sums could be used is shown
in Figure 134. The problem is to find the logical sum
of a block of seven numbersstarting in location 0100.
If the sum does not equal the predetermined amount
in location 0200, transfer to an error stop. If it does
equal the amount in 0200, proceed with the program.
The first check sum (original) is in location 0200, and

a 6 is in the address part of location 0006.

Form Ist word of block

Add next word in block

0000 CAL 0100
0001 LXA, A 0006
0002 ACL, A 0107
0003 TIX,1, A. 0002

0004 ERA 0200
0005 TZE 0007

0006 HPR 0006
0007 ADD 0300

Not Equal Equal

Figure 134. Use Check Sums and Tests

Drum Copy Loop

Whenever information is transmitted between core
storage and magnetic drums, either a cPyY or a CAD
instruction must be executed for each word transmit-
ted. These instructions specify the sending or receiv-
ing location in core storage. The starting location on
the drum is specified by a LDA.
The use of these instructions is illustrated by the

program in Figure 135. Five hundred consecutive
words in core storage are to be transferred to mag-
netic drum 1. The block of words is in storagestart-
ing with locationFirst and is to be copied onto the
drum starting at location 1ntrL. The logical check sum
for the block of words is stored in location First +
500.
This same program can be used to copy 500 words

from the drum into magnetic core storage. The only
change necessary is to substitute an rps for the wrs.
The cap instruction will simultaneously write (or
read) each word onto(or from) the drum andlogically
add it into the accumulator. Thus it is necessary to
copy the block check sum by use of the cry instruc-
tion, which only copies the word onto (or from) the
drum. The block check sum is then compared with
the check sum developed during the transmission of
the data between core storage and the drum. Thisis
done through the use of the ERA instruction. This in-
struction will provide a positive test since any posi-
tion in the 36-bit words having the samebit (either
I’s or 0’s) will be set to zero. Thus, two check sums
equal to one another will produce a zero word in
the ac.

8 ' LOCATION OPERATION | ADDRESS, TAG, DECREMENT/COUNT COMMENTS FICATION

J 2 6| 718 '] 72)| 73 80

|_WRITE WRS ‘| 301 WRITE SELECT DRUM 1
AXT ' 1 500,2 LOAD500 INTO INDEXREGISTER 2

! LDA 2 DRADD LOCATION DRADD CONTAINS FIRST DRUM ADDRESS
CLM i CLEAR ACCUMULATOR

'_CPYLP CAD | 1 FIRST +500,2

|

COPY LOOP. 500 WORDS WRITTEN FROM STORAGE
TIX 11 CPYLP, 2,1 DRUM 1. LOGICAL CHECK SUM COMPUTED
CPY |_| FIRST +500 PREVIOUS CHECK SUM COPIED TO DRUM
ERA '_! PIRST +500 COMPARE PREVIOUS AND NEW CHECK SUMS AND
TZE 11 OUT TRANSFER TO LOCATION OUT IF EQUAL
HTR |_| WRITE STOP AND THEN REPEAT IF ERROR

| DRADD 1S INITL STARTING DRUM ADDRESS
| OUT i MAIN PROGRAM CONTINUES HERE

Figure 135, Drum Copy Loop

Programming Examples 133

Packing and Unpacking

There are many cases where the information to be
handled by the computer is made up of individual
items, each of which is less than the size of a com-
puter word. For example, it may be necessary to work
with numbers no larger than three decimal digits.
To conserve storage space, three such numbers can
be stored in the same wordas illustrated in Figure
136, where positions S, 14 and 25 are the sign posi-

| NI | N2 | N3 |
s 13.14 24 25 35

Figure 136. Diagram of Packed Word

tions of the numbers N,, N,, and N;, respectively.

Handling of information in this manner is called

information by reducing, for instance, the amountof
magnetic tape which must be read or written.
Assume that a word in core storage has the form

shown in Figure 136, and the number N2 is to be
operated upon. Before arithmetic operations can be
performed with this item, it must be separated from
the other data in the word. The methodof doing this

is called unpacking. The logical operations are em-
ployed in this type of operation, as they provide a

powerful andflexible tool for carrying out the method.
The number N2 is to be unpacked from the word
without destroying the numbers N1 and N3. There-
fore, the unpacking will be done in the accumulator,
saving the packed wordin core storage.

The program shown in Figure 137 will accomplish
this. The mask used in the program contains 1’s in
positions 14-24 and0’s elsewhere. The result of using
this mask with the ana instruction will place the num-
ber N2 in positions 14-24 of the accumulator. Byvary-
ing the format of the mask, any of the three numbers

“packing.” In addition to conserving storage space, could have been unpacked (extracted) from the
packing also increases the entry and exit speed of packed word.

HI LOCATION OPERATION | | ADDRESS, TAG, DECREMENT/COUNT COMMENTS IDENTI-
' 1} FICATION

112 6{ 7/8 ; : 7273 80)

CAL PAKWD PLACE PACKED WORD INTO AC POSITIONS P, 1-35

ANA !_\ MASK N2 LEFT IN AC AS RESULT OF ANA OPERATION
ALS 1414 SHIFT N2 UNTIL SIGN OCCUPIES POSITION P

SLW ! LOCN2 STORE N2 IN LOCATION LOCN2

: a
MASK OCT ! 000017774000 MASK CONFIGURATION TO OBTAIN N2 ONLY

Figure 137. Unpacking Program

134 IBM 709

H :; LOCATION OPERATION | ADDRESS, TAG, DECREMENT/COUNT COMMENTS Ficanion

1 ‘» 6|7{[8 ' 72173 80

! CAL ‘| MASK PLACE MASKIN AC POSITIONS P, 1-35
ANS |} PAKWD ERASE N2 FROM PACKED WORD
CAL | 1 LOCN4 PLACE N4 INTO POSITIONS P, 1-10 OF AC
ARS 1 414 SHIFT N4 INTO POSITIONS 14-24 OF AC

! ORS ' | PAKWD INSERT N4 INTO POSITIONS 14-24 OF LOCATION
: -_ PAKWD. POSITIONS S,1-13 AND 25-35 UNCHANGED |

| MASK OCT ! | 777760003777 MASK TO REMOVE N2 FROM LOCATION PAKWD 4

Figure 138. Packing Program

After performing the desired arithmetic operations
on the number N2, a new number, N4, is the result.

This number is the same size as N2. Now this new
number is to be packed (inserted) in location PADWD
replacing N2. N1 and N3 are to remain unchanged.

The program in Figure 138 will accomplish this. The
program assumes that the number N4 occupies posi-
tions S, 1-10 of location Ltocn4. The mask used with
the Ans preserves the numbers NI and N3 while re-
placing N2 with 0’s.
Masking may be used to extract a full number or

portion of a word from a given location instead of
shifting and adjusting the result. Another example

is shown in Figure 139 where a numberlocated in
positions 12-35 of location 0100 is to be extracted
and stored in location 0200. The mask used is located
in 0050 and consists of zeros in positions S-11 and
ones in positions 12-35.

The program example in Figure 140 shows a num-
ber of test instructions, the compare instruction, and

some arithmetic operations. The instruction PRINT
means that a print routine is being used andthe data
being printed are denoted by its address.
The problem is to divide A by B. If the computer

cannot handle the problem, print both A and B.If
the answer equals 7000, multiply it by C and save the
answer in location 0400. If it is less -han 7000, print
the answer. If it is more than 7000 put the difference
in location 0500.

The programmeris given A in location 0100, B in
location 0101, C in location 0102, and 7000 in loca-
tion 0103.

Again the flow chart should serve as an aid in the
program steps and is a reference when reading the
program,

Location Instruction Address Remarks

0000 CLA 0100 Put the number in accumulator
0001 ANA 0050 Extract positions 12-35
0002 STO 0200 Store the result, properly aligned.
0003 HTR

 Lp

 Greater than 7000

Equal te 7000

Less than 7000

Figure 139. Masking Program

0001
0002

0003

0004

0005
0006

0010

0011

0012

0013

 Ly and store result,
then halt.

Greater: subtract 7000 0014
0015
0016

by C andstore result,
then halt.

Equal to 7000; multiply 0017
w 0020

0021

Numbers too large;
print A and B, then

halt. 0022
0023
0024

Figure 140. Program Example

Programming Examples

LDQ
DVP
DCT

TRA

STQ

CLA
CAS

TRA

TRA

STO

Print

HTR

SUB
STO
HTR

MPY
STO
HTR

Print

Print

HTR

0100
0101

0022

0105

0105
0103

0014

0017

0600

0600

0103
0500

0102
0400

0100
0101

135

An example of input-output and computing is
shown in Figure 14]. There are eight binary records
on tape unit I attached to channel A. Each record
contains ten words. The program should: (1) skip the
first three records, (2) skip the first five words of the
fourth record, (3) read the last five words of that rec-
ord, (4) skip the first five words of the fifth record,
and (5) read the last five words of the fifth record.
Put the ten words read into binary print using the
printer attached to channel C. Simultaneously with
the reading, solve (B + C) X andstore the re-
sult in 0110 and 0111. B is in location 0200, C is in
location 0201, and D in location 0202.

Read tape 1, channel A; 0000 RTBA 1221
get first command 000] RCHA 0300

Put B in accumulator. 0002 CLA 0200

Add C to B; 0003 ADD 0201
Store result. 0004 STO 0207

Put Din MQ,then 0005 LDQ 0202
multiply it by (A + B). 0006 MPY 0207
Store answer 0007 STO 0110

and remainder. 0010 STQ 0111

0011 TCOA 0011
Write records read trom
tape on printer 0012 WPBC 3362

Disconnect the printer 0013 RCHC 0307
and halt. 0014 HTR Input-Output Program

Skip the first 0300 JORPN 1000
ords 0301 !ORPN 1000

0302 TORPN 1000
Y

Skip next five words 0303

0304
Skip next five words 0305

Read last five words 0306

Disconnect the operation 0307

IOCPN (5) 1000

JOCP (5) 0100

IOCPN (5) 1000

IOCT (5) 0105

10CD(10) 0100
after printing 10 words.

Figure 14], Simultaneous Read, Write and Compute, then Print

Subroutines

It is very often necessary to repeat the same group
of instructions many times during the execution of a
program. Examples are the series of instructions nec-
essary for decimal-to-binary conversion, square root,
or computing a logical check sum.It is not desirable
to write out the necessary instructions each time a

function is needed. Instead, the instructions needed
are written only once and the main program is then

136 nM 709

arranged to transfer to this block of instructions each
time they are required. Such a block of instructions

is called a ‘‘subroutine.”

These subroutines normally perform such basic
functions that they may be used in the solution of
many types of problems. For instance, a subroutine

which computes a square root can be used in a wide
variety of problems. Another example of such a sub-
routine would be one which computes the logical
check sum for a block of words in storage.

Subroutines may be used in two ways with respect
to the main program. One method is to insert the
subroutine into the main program at the point where
it is to be used. Subroutines designed for this type of
usage are called “open-subroutines.” The open sub-
routine is “sandwiched” into a program as though it
were part of the original coding of the program. This
type of subroutine usage is normally restricted to the
cases where the main program uses the subroutine
only once.

When the main program uses a subroutine several
times, which is the commonsituation, it is apparent
that the open subroutine is not desirable. Here, the
second method of employing subroutines is used. The
subroutine used in these situations is called a “closed
subroutine.” A closed subroutine may occur several
times within one main program, but the set of in-
structions comprising the subroutine need appear
only once. The transfer of control from the main pro-
gram to the subroutine takes place from a set of in-
structions knownasthe calling sequence or basic link-
age. The calling sequence transfers control to the
subroutine, tells the subroutine where to return to
the main program,and gives the subroutine any other
information required (Figures 142 and 143).

The subroutine illustrated computes the logical
check sum for a block of words in core storage. Three
parameters are needed by this subroutine. There are
the initial location of the block, the number of words
in the block, and the location for storing the resulting
check sum. The subroutine then returns control to
the main program at the instruction following the
last parameter of the calling sequence.

The calling sequenceis of the form shownin Figure
142, The subroutineis of the form shownin Figure 143.

The complete transfer of control between the main
program and the subroutine is based upon the Tsx
instruction. As the result of the execution of this in-
struction, the twos complement of the location LINK

is placed in index register 4. From the standpoint of
algebraic operation the twos complement of a number
is equivalent to the negative of the number. For ex-
ample, 1 minus (twos complementof LINK) is equiva-
lent to 1 minus (minus Link) = 1 + LINK.

Figure 142. Calling Sequence

H ; LOCATION OPERATION | ADDRESS. TAG, DECREMENT/COUNT COMMENTS FICATION

} 2 61 7/8 ' 72/73 80

| LINK TSX | | BLKSM,4 AUTOMATIC LINKING INSTRUCTION

(| FIRST LOCATION OF FIRST WORD IN BLOCK
iN NUMBER OF WORDS IN BLOCK

; |_| CKSUM LOCATION FOR STORING CHECK SUM

— --- ------- LOCATION TO WHICH CONTROL WILL BE RETURNED |

ADDRESS, TAG, DECREMENT/COUNT

H 1 LOCATION OPERATION it COMMENTS
' FICATION

1,2 6| 7|8 1 72\[73 80

BLKSM CLA 2,4 GET NUMBER OF WORDS IN BLOCK

i PAX i 0,1 PLACE N IN INDEX REGISTER 1

ADD 1,4 ADD LOCATION FIRST TO FORM FIRST +N

STA ADDER INITIALIZE LOGICAL ADD INSTRUCTION

; CLA ' 3,4 GET LOCATION TO STORE CHECK SUM

STA ! STSUM PLACE ADDRESS IN STORE INSTRUCTION

! CLM 1! CLEAR AC
| ADDER ACL ‘ 0,1 TWO INSTRUCTION LOOP FOR COMPUTING LOGICAL

i TIX i ADDER, 1,1 CHECK SUM FOR BLOCK OF N WORDS

STSUM SLW 0 STORE CHECK SUM IN LOCATION CKSUM

TRA ‘ 4,4 RETURN CONTROL TO MAIN PROGRAM
Figure 143. Subroutine to Compute Logical Check Sum

In the subroutine the instructions which make use

of this property are:

EQUIVALENT
INSTRUCTION EFFECTIVE EXECUTION EXECUTION
CLA 2,4 CLA 2— (2’s comp. LINK) CLA LINK + 2
ADD 1,4 ADD 1 — (2’s comp. LINK) ADD LINK + 1
CLA 3,4 CLA 3 — (2’s comp. LINK) CLA LINK + 3
TRA 4,4 TRA 4— (2’s comp. LINK) TRA LINK + 4

From the above table it can be seen that the sub-
routine will be able to make use of the information
found in the parameter locations of the calling se-
quence without knowledge of their exact location in
storage. Since LINK is a symbol representing any
location in core storage, the subroutine can thus com-
municate with the main program at any location in
the main program. By means of the TRA 4,4 instruc-
tion, the subroutine has the ability to transfer control
back to the proper location in the main program.
One of the main responsibilities of a subroutine is

to insure that when control is transferred back to the
main program thestatusofall the registers is the same
as when control was transferred to the subroutine.
This does not apply, of course, to a subroutine de-
signed specifically to change a machine condition. For
example, in the previous illustration the contents of
index register 1 are destroyed by the subroutine. Thus,

when control is transferred back to the main pro-
gram, index register 1 may not be the same as when
control was transferred to the subroutine. The con-
tents of index register 1 may be preserved by adding
the instruction sxa SAVE, | just after the instruction
cLA 2, 4. The contents of xr 1 will be stored in the

address part of location save. Now, if location SAVE is

inserted just before the TRa 4,4 instruction and con-
tains the instruction axT 0,1, the original contents

of xr 1 will be replaced just before control is trans-
ferred back to the main program.

Convert Instructions

Three convert instructions are available in the com-
puter. During their execution these instructions use,
in addition to core storage, the accumulator, multi- -

plier-quotient, and storage registers. Index register 1
mayalso be used, if desired, to receive information at
the conclusion of a convert instruction execution.
These instructions normally work with tables stored
in core storage.
These convert instructions provide the programmer

with a rapid means of performing such operations as

Programming Examples 137

BCD-to-binary and binary-to-Bcp conversion, Bcp arith-
metic, editing of records, and modificationof collating
sequences.

When the convert instructions are used, either the
AC or the MQ contains a 36-bit word that is divided

into six 6-bit binary numbers. Each 6-bit number
(sometimes referred to as a character) is treated sepa-
rately in consecutive order by the convert instruc-
tions. For the instructions crg and cvr, this 36-bit
word represents the actual word operated upon. The
CvR examines the word six bits at a time from right
to left, while crQ examines the word six bits at a
time from left to right. For the cag, the contents of
the MQ are examinedsix bits at a time from left to
right while addition of quantities found in corestor-
age, as determined by this word in the ma,takes place
in the ac.
The problem of replacing the leading zeros of a

Bcb number with blanks is reduced to a short rapid
program throughthe use of the crQ instruction. This
particular convert instruction is used because, to re-
move leading zeros, the Bcb number must be tested
from left to right.

To carry out the editing (modification) of the scp
number, it is necessary to set up a table in core stor-
age. This table has the following format:

The program shownin Figure 144 will perform the

required editing operation on a scp number of 12
digits occupying two consecutive core storage loca-
tions. The program must consider the following cases:

1. All leading zeros must be sensed and replaced
by blank characters,

2. All non-zero digits must be preserved.

3. Once a-non-zero digit is found, all succeeding
zeros must be preserved.

4. If a non-zero digit is found in the high-order
six digits, the second half of the number need
not be processed.

The program is executed as follows: The high-
order six digits of the scp numberare placed in the
MQ by the Lng sep] instruction. The first table ref-
erence made by the crg A,1,6 instruction will be at lo-

cation A + N, where N is the high-order digit in the
MQ, that is, C(MQ)g5,.5. If N is zero, the cr@ instruc-

tion will go to table location A and from this location
will replace the zero with the scp blank character.
Since the address part of location A contains A, the
second table reference will beginat location A of the

table. Once a non-zero digit occurs, the crQ instruc-
tion will make a table reference at location A + K,
where K is the non-zero digit. Location A + K con-

LOCATION CONTENTS tains K in positions S,1-5 and A + 10 in the address
$1 — 5 21 — 35 part. Thus, the value K will replace the number K

aad Bop yank (b) 4 10 and this insures that the non-zero digits will be pre-
A+2 BCD two A+10 served. Once the first non-zero digit is found, only

. . . the second partof the table, location A + 10 through
: . : A + 19, is used. This insures that zeros following the

ATK BCD (K) A+ 10 first non-zero will be replaced with zeros instead of
. : blanks. Figure 145 illustrates the execution of the

A+t9 BCD ‘nine A+10 convert instruction using the Bcp number 000307.
A +10 BCD zero A+ 10 Whenall six of the scp digits have been tested (the
aie pen one atte count reduced to zero), the execution of the crg in-

. . struction is terminated. Since the instruction contains
a tag of one, the address part of the last table refer-

A +19 BCDnine A +10 ence location will be placed in index register 1. After

H HOCATION OPERATION | ADDRESS, TAG, DECREMENT/COUNT COMMENTS Flearion

1 12 6,718 ;
72[73 80

L_START LDQ | BCD1 LOAD HIGH ORDERSIX DIGITS INTO MQ
CRQ | 1A,1,6 EDIT HIGH ORDERSIX DIGITS
STQ i_1 BCD1 STORE EDITED DIGITS
TXH 1} OUT,1A TEST FOR NON-ZERO THIS HALF
LDQ |_1 BCD2 LOAD LOW ORDERSIX DIGITS INTO MQ

! CRQ i 1 A,0,6 EDIT LOW ORDERSIX DIGITS
STQ ! | BCD2 STORE EDITED LOW ORDER DIGITS

|_OUT --- Py eoeeo--- PROGRAM CONTINUES HERE
Figure 144. Edit Program

138 1BM 709

storing the edited pcb number (sTQ Bcpl) the con-

tents of index register 1 are then compared with the
number A by the TxH out,1,A instruction. If the
index register contains A, then all six of the high-
order BcD digits were zero and the program will con-
tinue to examine the remaining digits in the number.
If the index register contains A + 10, this indicates
that a non-zero digit was found in the high-order six
digits. Thus, the low-order digits need not be proc-
essed and control is transferred to location out.
The convert instruction cvr can be used to perform

BcD addition without having to rely on a complex
logical routine. The cvr instruction is used in this
application since it is necessary to process the decimal

sum from right to left to provide for carries from
one position to the next. The program which will
add two 6-digit unsigned scp numbers is shown in
Figure 146. ‘This program insures that the following
conditionsaresatisfied.

1, Any position of the sum that does not produce
a carry must be preserved.

2. Any position of the sum that does produce a
carry must be modified with the carry propa-
gated to the.nextposition.

3. A test must be made to determine whether or
not a carry occurs out of the high-order posi-
tion. If such a carry does occur, a one must be
placed in the next highest word location.

C(SR)

C(MQ) Count C(MQ) + C(SR) = X C(X) Remarks
3,1-5 6-11 12-16 17-23 24-29 30-35 8,1-5

|

21-35

|

$,1-5

[

21-35 §,1-5

|

21-35

LLLfff, 6 - A 0 A A+0 b A Start cycle 1

0) 0 3 0 7 b 5 b A End cycle 1

LfffL- 5 b A 0 A A+0 b A Start cycle 2

0 3 0 7 b b 4 b A End cycle 2

OL fi Lfff 4 b A 0 A At+d b A Start cycle 3

3° 0” 7° b”% bY b 3 b A End cycle 3
3 J 0J7 bJ b Wa b 3 b A 3 A Atg 3 Atl0

|

Start cycle 4

0 7 b b b 3 2 3 At10 End cycle 4

°Y o, v7 wy v2 3 2 3 A+10 0 At+10 At+10 0 At+10 Start cycle 5

7 b b b 3 0 1 0 Atl0 End cycle 5

7 J b J °Y YY 3 J 0 T 0 At+10 7 A+10 Atl7 7 Atl10 Start cycle 6

b b b 3 0 7 0 7 At10 End cycle 6 -

Figure 145. Execution of CRQ

H | LOCATION OPERATION | | ADDRESS, TAG, DECREMENT/COUNT COMMENTS IDENTI-
ry FICATION

1 2 6i7{8 ' ! 72||73 80
| i]

! CAL ‘ : DEC1 FIRST UNSIGNED BCD NUMBER TO AC

ADD ' | DEC2 ADD SECOND BCD NUMBER, SUM IN‘AC
i

CVR 1A,1,6 REPLACE VALUES FOR WHICH CARRIES OCCURED
mT

SLW 1, SUM STORE SUM
' TXL ' ; OUT,1,A TEST FOR HIGH ORDER CARRY
. '
| CLA 1 | LOCONE CARRY OCCUPIED, PLACE BCD ONE IN AC
1 T T

STO i | SUM+1 PLACE HIGH ORDER CARRY IN NEXT LOCATION

' OUT ---- ' ; centr PROGRAM CONTINUES HERE

: a
_LOCONE HTR id

Figure 146. BCD Addition Program

Programming Examples 139

BCD CHARACTER NEXT TABLE REFERENCE
LOCATION POSITIONS S-5 POSITIONS 21-35

A 0 A
Atl 1 A
At+2 2 A

A+9 9 A
A+10 0 Atl
Att] 1 A+]
A+12 2 A+]

A+19 9 Atl
Figure 147. Table for BCD Addition

The convert instruction cvR used in the program
uses the table found in Figure 147.
The execution of this program can best beillus-

trated by the following example. The two sep un-
signed numbers 434589 and 691593 are to be added.
The resulting sum is considered as six 6-bit numbers
(Figure 148). The low-order 6-bit number has the
value 12. Thus, the first table reference made by the
cvr A,1,6 instruction is at location A + 12. Positions

S,1-5 of this location contain a BcD 2 which replaces
the number 12 in the ac. Positions 21-35 of this loca-
tion contain the number A + 1. The address A + 1
causes the next table reference to be madeat location
A + 18 rather than A + 17. Thus, a carry of one
is propagated from the units to the tens position of
the sum. The execution of the cvr will end when the
count has been reduced to zero. Since this instruction
has a tag of one, the contents of the storage register

Binary equivalent of BCD Next table location
Location Digit. Positions $,1-19 Positions 21-35

A 0 B
At] 1 x 109 B
At+2 2x1 B

At? 9x 10° B
B 0 c
B+] 1x 104 c
B+2 2x 104 c

B+9 9x 104 Cc
c 0 D
C+1 1x 10° D
C+2 2x 108 D

C+9 9 x 103 D
D 0 E
D+] 1x 102 E
D+2 2x 102 E

D+9 9 x 102 E
E 0 F
E+] 1x10 F
E+2 2x10 F

E+9 9x 10 F
F 0 0
F+] 1 0
F+2 2 0

F+9 9 0

Figure 149. Table for BCD-to-Binary Conversion

STORAGE REGISTER
ACCUMULATOR CONTENTS START OF CYCLE END OF CYCLE

INSTRUCTION COUNT P-5 6-11 12-17 18-23 24-29 30-35 S$~5 21-35 $-5 21-35

CAL DECI 4 3 4 5 8 9

ADD DEC2 10 12 5 10 17 12

CVR A, 1,6 6 10 12 4 10 17 12 - At12 2 Atl

5 a NSSSo _— 2 At1+17 8 Atl

4 aSaSoSi, SsS10 8 A+1+10 1 Atl

3 1a>to2» 5 | Atit5 6 A

2 6 >] “eS>io12 6 A+12 2 Atl

1 >™,™“»0 2 At+1+10 1 Atl

0 DaSeSDSe 2] Atl
Figure 148. Execution of CVR

140 iBMt 709

positions 21-35 (A + 1) will be placed in index reg-
ister 1. The Txt ovutT,1,A instruction then tests the
contents of this index register. Since A + 1 is greater
than A, the program continues and a scp | is placed
in positions 30-35 of location sum + 1. Had index
register 1 contained A, the program would havetrans-
ferred control to location ovr.

Conversion from one number system to another
may be performed by the cag convert instruction.

An example of Bcp-to-binary conversion is illustrated
here. The program which performs this conversion is
based upon the fact that a Bcd number(e.g., 803157)
is really a sum of terms of the form:

8 X 10° + 0 XK 104 + 3 X 103

+ 1X 10? +5 X 10 + 7.

The binary number equivalent to a scp numberis
obtained simply by findirig the sum of the binary
equivalents of each term. For this example, the binary
equivalent of 8 X 10° plus the binary equivalent.of
0 X 104 plus ... plus the binary equivalent of 7.
The table used with this program is thus divided into
six parts (Figure 149). Each section’ consists of ten

_ words, one word for each of the digits 0-9 multiplied

by a power of ten. The binary equivalent of each Bcp
digit is contained in the twenty positions S-19 of each
word in the table. This is based on the fact that only
20 binary positions are necessary to represent a 6-digit
BCD number.
The cag instruction uses a straightforward table

look-up operation to build up the binary equivalent
of the scp number, digit by digit. Each digit of the
BcD numberis employed to look upits binary equiva-
lent from one of the six parts of the table. The first
BCD digit will choose its binary equivalent from the
first section (105) of the table; the second scp digit
will choose its equivalent from the second section of
the table; and so forth. This operation is continued
until the complete binary equivalent is formed in
positions P-19 of the ac. Caution must be taken to
choose table locations so that the sum of the locations
(as illustrated in Figure 151) will not overflow into

the resulting binary number portion of the ac.
The program in Figure 150 will perform the con-

version operation.
The execution of the cag A,0,6 instruction is illus-

trated in Figure 151. As can be seen, the sum of the
table locations B,C,F must not form a sum that

will overflow into the binary portion of the ac.

 LOCATION OPERATION | ADDRESS, TAG, DECREMENT/COUNT
i

_ 2 61 718

COMMENTS IDENTI-.
FICATION

72 ||73 80

-
~
-
/
-
-
b
-
L
-
4

-
—
-

-—
-
_
-
J

]

I
!

1

|

{

t
I
|

}
!

|

1

+

!
T 4

d
-
-
F
-

LDQ |__BCDWD LOAD BCD WORD INTO MQ
CLM CLEAR AC (EXCEPT FORSIGN)
CAQ | A, 0,6 CONVERT BCD TO BINARY
ARS | 16 SHIFT BINARY RESULT TO PROPER POSITION
SLW | BINWD STORE BINARY RESULT

Figure 150. BCD-to-Binary Conversion Program

ACCUMULATOR CONTENTS STORAGE REGISTER
(Binary equivalent) MQ START OF CYCLE

|

END OF CYCLEINSTRUCTION COUNT| P,1 - 19 21 - 35 |CONTENTS

|

$-19 21-35

|

S-19 21-35

LDQ BCDWD 803157

CLM 0000 00...... 000

|

803157

CAQ A,0,6 6 - A+8

|

8x10° B

5 8x10° B 031578 8105 B+0

|

0 ¢C

4 8x105+0 Bt 315780 0 C+#3

|

3x03 D

3 8x10540#3x103 BHC+D 157803 3x103 D+ 1 Ix102 E

2 8x1094+0+3x103+1x102 B+C+D+E 578031 Ix102E+5

|

5x10 F

1 8x109+043x1034+1x10245x10 B+C+D+E+F 780315 5x10 F+7

«|

7 0

0

|

8x10°+0+3x103+1x10245x1047 BeCHDHE+F

=|

808157 7 0
Figure 151. Execution of CAQ

Programming Examples 14]

Sense Indicators

In many applications of data-processing machines it
is desirable to have switches which can be set and

tested by the program. A special register, the sense
indicator register, provides 36 such devices. Each of
these can be turned on or off (zero or one). The
individual positions are called sense indicators.

Either singly or in groups these indicators can be
turned on or set (set to ones) or turned off or reset
(set to zeros). These indicators can be used as pro-
gram-controlled sense switches, sense lights, or selec-
tors. In addition, they are also useful in extracting
or inserting ‘parts of words and for testing fields

within a word.
A program is often written that deals with a prob-

lem having several variations. In cases of this type,

HI, 1V

tL,1V | ;
 >| SECT4

} 11,1

SECT 5

i } LIL

SECT 6

TALL

 \ SECT 7

y LIV

SECT 8

 Y
OUT

Figure 152. Block Diagram of General Program

142 1BM 709

one way of developing the general program is to con-
struct the program so that it is composed ofself-
contained sections. Control in the general program is
then transferred from section to section in the se-
quence determined by the particular variation being
solved. The sense indicators may be used to direct
and monitor the desired sequence of control.

For example, a general program is composed of
eight sections and is to deal with a problem having
four variations. The eight sections and the four varia-
tions are illustrated in Figure 152. The sequence of

control necessary for each variation and the repre-
sentation of the sense indicator bits needed for the
direction of this sequence are shown in Figure 153.

SENSE INDICATOR
SEQUENCE OF CONTROL REGISTER POSITIONS

VARIATION BY PROGRAM SECTION 32 33 34 35

1 1-2-3-4-5-6-7-8 010 0 1
Ht 1-4-5-6 0 0] 0
tt 3-7-4-5-6 0] 0 0
IV 3-7-8-1-2 1 0 0 0

Figure 153. Sense Indicator Pattern

Four control words are used to contain the different
bit patterns to be used in the sense indicator register
for the four different problem variations (Figure
154). The general program is started by loading the
desired control word into the sense indicator register.

CONTROL
LOCATIONS WORD REMARKS

VARI Oct 1 Variation | bit pattern for the SI register
VARH Oct 2 Variation 2 bit pattern for the SI register
VARIII Oct 4 Variation 3 bit pattern for the SI register
VARIV Oct 10 Variation 4 bit pattern for the SI register

Figure 154. Problem Variations

The instructions in the general program that are
necessary for the direction of control are shown in

Figure 155.

Both the RFT and RNT instructions contain masks
(in octal) in positions 18-35. These 18 bits are com-
pared with the right-most (positions 18-35) 18 bits
of the sense indicator register. The instruction LFT
and LNT with the same masks could have been used
in place of the rrr and RNT instructions. However,

since these instructions compare with the left-most

H LOCATION OPERATION j ADDRESS, TAG, DECREMENT/COUNT : COMMENTS FICATION

1 9 é 718 I 72}| 73 80

| START LDI 1 | CONWD LOAD CONTROL WORD FOR DESIRED SEQUENCE

Vi
RFT 1 114 | INITIAL SEQUENCE TEST. SI POSITIONS 32 AND 33

TRA |_| SECTS TESTED FOR ZEROS. IF ZEROS CONTRCL TO SECT1. IF
| §ECT1 | NOT CONTROL TO SECT3

tt

! RFT 12 SECTION 1 END-SEQUENCE TEST. TEST POSITION 3.

' TRA ' | SECT4 IF ZERO CONTROL GOES TO SECTION 2. IF ONE,

|__SECT2 I | CONTROL TO SECTION4.
! 1

I RFT 10 SECTION 2 END-SEQUENCE TEST. TEST POSITION 32.
! TRA _1 {_ouT IF ZERO CONTROL GOES TO SECTION 3. IF ONE, END-

|_, SECT3 _ OF-PROGRAM.
; | |
! RFT 1! 44 SECTION 3 END-SEQUENCE TEST. TEST POSITIONS 32

; TRA (| SECT? AND 33. IF ZERO, CONTROL GOES TO SECTION4. IF :

SECT4 1 ONES, CONTROL TO SECTION7.

1
| SECTS 1 CONTROL ALWAYS GOES FROM SECTION 4 TO SECTION

i 5.
i

‘sects i CONTROL ALWAYS GOES FROM SECTION 5 TO SECTION
i ry 6.

ot
RNT il SECTION 6 END-SEQUENCE TEST. TESTPOSITION 35.
TRA | our IF ONE, CONTROL GOES TO SECTION 7. IF ZERO, END+

|__SECT7 1 | OF -PROGRAM.
; i

RFT 114 SECTION 7 END-SEQUENCE TEST. TEST POSITION 33.

TRA | 1 SECT4 IF ZERO, CONTROL GOES TO SECTION8. IF ONE,

|__SECTS CONTROL TO SECTION 4.

rt
I RFT 1 110 SECTION 8 END-SEQUENCE TEST. TEST POSITION 32.

TRA ! SECT1 IF ONE, TRANSFER CONTROL TO SECTION1. IF ZERO,

OUT iL! END-OF PROGRAM.

Figure 155. Control Instructions in Program

18 positions (positions 0-17) of the sense indicator register. In this case, the sense indicator register may
register, the four commands must be changed so that _—_—be used for the unpacking operation. For example,
the four si positions concerned are positions 14-17. to unpack a number occupying positions 14-24 of a

It may be necessary to unpack a word without packed word, a mask containing ones in positions
affecting the accumulator or the multiplier-quotient S,1-13,25-35 is used to perform the extraction.

Programming Examples 143

Figure 156 is the program whichis used to execute

the extracting. The packed word is loaded into the
si register by the LpI instruction. With the execution
of the ris instruction all the positions in the sI corre-
spondingto the ones in the maskare set to zero. Thus,
as a result of the mask used, the desired number in

positions 14-24 is left intact and the remaining posi-
tions are set to zero. The number extracted from the
packed word is simply dependent on the mask used.
A companion operation to the extracting described

above is that of insertion. This may also be accom-
plished by using the si register. An exampleis insert-
ing a new numberin positions 14-24 of the packed
word of the last example. The new number to be
inserted occupies positions 14-24 of the ac. The pro-
gram is shown in Figure 157. The packed word is

loaded into the st by the Lp1 instruction. The mask
used by the RIS instruction sets positions 14-24 of the
st to zero. The remaining positions are unchanged.
The new number is then ‘‘or’ed” into the packed
word by the OAI instruction.

Floating Point Overflow and Underfiow

During many scientific and engineering problems,
the programmer is faced with the difficulty of keep-
ing track of the decimal point. To aid in this respect,
the computer is equipped with a complete set of float-
ing point instructions. Briefly, a floating point number
is treated as a 27-bit signed proper fraction and an

8-bit characteristic which represents a signed exponent.
By the nature of floating point operation, the frac-

tion may never overflow the registers, and an under-
flow of the fraction produces a normal zero which
is a proper result. The characteristic enjoys no such
freedom. A floating point operation resulting in a
characteristic, either too large or too small for that
portion of the word set aside for it, produces a con-

dition knownasfloating point overflow or underflow,
respectively. These conditions are referred to collec-
tively as floating point spill.
Whenfloating point spill occurs, the factors must

be scaled to fall within the range of the computer
registers if calculation is to continue. The exact de-

tails of this scaling usually depend upon the condi-
tions of the problem. However, the computer provides

adequate facilities to assist the programmer in decid-
ing what these conditions are and for controlling the
corrective process.
The computer may be operated in two modes with

regard to floating point operation. Normally, the com-
puter operates in floating point trap mode; thatis,
the floating point trap device is normally on. This
device is referred to as “rrr.” If the instruction leave
floating trap mode (LFTM) is executed, the computer
operates in what is called the 704 floating point trap
mode.

IBM 704 Floating Point Trap Mode

To enter the 704 floating point trap mode, the in-
struction LFTM must be executed. It is necessary be-

Figure 156, Extraction Program Using Sense Indicator

H 1 LOCATION OPERATION ; |ADDRESS, TAG, DECREMENT/COUNT COMMENTS IDENTI-
t ' ' FICATION

1 ta 61718 ; ! 72\|73 80

1 ry
i LDI PAKWD LOAD PACKED WORDINTO SI

| RIS | 1 MASK MASK TO PRESERVE POSITIONS 14-24 OF SI
\
i STI 1 UNPAK STORE UNPACKED NUMBERINTO STORAGE

ra !
: , |

MASK OCT I 777760003777 MASK TO OBTAIN POSITIONS 14-24 :

Figure 157. Insertion Program Using Sense Indicator

144 ipM 709

HT LOCATION OPERATION ADDRESS, TAG, DECREMENT/COUNT COMMENTS (IDENT

112 | 7]8 j 72\(73 80

; LDI |! PAKWD LOAD PACKED WORDINTOSI
RIS ‘| MASK MASK TO CLEAR POSITIONS 14-24 i
OAI a OR NEW NUMBER INTO POSITIONS14-24 (

| ST! PAKWD STORE NEW PACKED WORD

i
MASK OCT 000017774000 MASK TO CLEAR POSITIONS 14-24 |

cause FPT is normal in the computer. If a floating
point spill occurs while in the 704 mode, the ac-
cumulator and/or the mg overflow indicators are
turned on. Which indicator is set is determined by
the register producing the spill. Each indicator may
be tested by the program, subsequentto thespill, by
executing the proper overflow test instruction. The
mathematics involved in the following examples are
specialized to point out how thelogical facilities of
the computer might be employed to detect and to
control the correction of floating point spill.

Floating Point Spill in the 704 Mode

This problem is defined below.

A body of surface area (suRA) is being bombarded
by particles of some nature. The researcher has meas-
ured the number of impacts (Imp) on the surface at
N discreet time intervals. At a certain point in the
calculations, the programmer wishes to know if the
following conditions exist: Q < MAX, where MAX is

a constant and Q is the average numberof impacts per
unit area. If the inequality holds, the program is to
continue at location ox. Otherwise, program control

is to be transferred to symbolic location Tosic.

All the mmp, (total impacts in the N time intervals)
are written within the range 0=<Imp, < 10%. The

IMP, are stored at symbolic locations Imp to IMP +
N — 1. The values N, MAx, and sura are known.

The original values of imp, must remain intact. The
first step is to calculate the total impacts. If a spill
occurs, the Imp, are scaled by 2:19, and the summa-
tion repeats. If another spill occurs, it is treated as an
irretrievable error. Note that MQ spill has no effect
on this summation. The program is shown in Figure
158 and executed as described below:

Line 1. LErTM must be given to enter the 704 mode.
The accumulator overflow indicator is then turned off
by the Tov instruction; this is necessary because its
condition cannot be assumed.

Line 6. The imp, is brought to the accumulator.
Because of the methodof scaling used, zero words are
skipped over.

Line 8. Because spill detection is most useful if
thefirst spill is detected, scaling is accomplished with-

out using floating point. If xRA is zero, scaling is
not required and the program proceeds to line 11.
If xRa is not zero, scaling is required. A word con-
taining an octal! 100 in the characteristic field is fixed-

point subtracted from the imp,. This is equivalent
to floating point division by 21°, If the accumulator
goes minus, the imp, is not within the given range.

If IMP, is not in this range, control is transferred to
1ERR.

Line 11. The partial sum is added to the mp, in
the accumulator. If spill does not occur, the program
proceeds with the summation; if spill does occur, xRA
is set to 1 and the summation is restarted. If scaling
has already occurred, an error is indicated and con-
trol transfers to 2ERR.

Line 18. The MQ overflow and the divide check

indicators are reset to the off position, because their
condition cannot be assumed. The For is then exe
cuted and both the divide check and mq overflow

indicators are tested (mq overflow or underflow is de-
fined as a TOBIG condition).

Line 27. With the quotient in the accumulator and
the condition of the accumulator overflow indicator
established (lines 25 and 26), a test to find if scal-
ing has taken place is executed. If so, the word sub-
tracted in line 9 is added back to increase the charac-
teristic by 160, which is equivalent to floating point
multiplication by 21°. An overflow at this point —
(fixed point overflow) indicates that Q is too big.
If scaling has not occurred, control transfers.

Line 30. Max is then subtracted from the quotient.

A spill at this point is not significant; the sign of
the result establishes the range of the number.If the
accumulator is minus, the program proceeds to sym-
bolic location ox, where FPT is reset to the on posi-
tion and the main program may resume.

Floating Poin? Trap

Figure 158 illustrates how the interpretation of spill

depends upon the conditions prevailing when the
spill is detected. In general, the program should: (1)
detect the spill as soon as it occurs, (2) know in which
register the spill occurred, and (3) know whatinstruc-
tion was being executed when thespill occurred. This
information can be provided automatically by the
floating point trap.
When spill occurs with the FrT on, the computer

automatically performs the following steps:

1. The address plus 1 of the instruction causing
spill is placed in the address field of core loca-
tion 0000.

2. A four-bit code which identifies the nature of

the spill is placed in positions 14 through 17 of

core location 0000.

3. The computer takes its next instruction from
location 0010 and proceeds from there.

Programming Examples 145

To illustrate a use of FPT, the problem used in
Figure 158 is repeated using the floating-point-trap

feature. Note that, although the program is larger,
the possibilities for control are increased. Figure 159
shows that the trap routine starting at location 0010
can conditionally return to the main program or

PROBLEM

LOCATION OPERATION ; ADDRESS, TAG, DECREMENT/COUNT

TIMP

initiate a general operation (in this case, a print pro-

gram and then halt).
Thepractice of continually storing certain addresses

from the main program in a standard routine is some-
times referred to as “breakpoint” programming; as
Figure 159 shows, it is an extremely powerful and

COMMENTS IDENTI-
FICATION

TURN OFF FPT.

TURN OFF ACC OVERFLOW INDICATOR.

W.

100000000000

PROGRAM.
Figure 158. Floating-point Spill, 704 Mode

146 IBM 709

OTIENT TO THE ACC.

ALED

100

OPERATION

Figure 159. Floating-Point Trap

i ADDRESS, TAG, COMMENTS IDENTI-

FICATION

Is SCALING NEEDED?

2100

BE

2,32767 XRB = 0 AND

A FF

DIVIDE BY SURFACE AREA.

TEST DIVIDE CHECK INDICATOR.

OF RANGE.

TURN INDICATOR OFF.

TO ACCUMULATOR.

WAS SCALED?

YES, MULTIPLY BY

NUMBERIS OUT OF RANGE.

NUMBERIS OUT OF RANGE IF PLUS.

CONTINUE.

NEW CONTROL ADDRESS.

TAKE CONTROL.

TO ROUTINE.

IS NOT SIGNIFICANT.

TOBIG, 1,9 SPILL MEANS NT IS OUT OF RANGE

0 CONTINUE ROUTINE IF OK.
Programming Examples 147

flexible technique. Note the use made of the decre-

ment bits at location 0000 and a use of the address

field of location 0000 in the routine sPIL2.

Line 1. Location 0000 is cleared to erase any data

that may have been placed in it by a previous routine.

Thesymbolic address spit is placed in the xEc in-

struction located at 0010. This causes the trap routine

to return control to this program. NOTE: a post-mortem

print that prints location 0010 informs the pro-

grammerthat his program has passed this point.

Line 16. The Tx1 instruction regains control of the

program from the trap routine, and sets the scaling

signal by placing a 1 in xrs. Recall that an MQ spill

was not significant at this point; therefore, with the

partial sum stored, the bit code in the decrement por-

tion of location 0000 is checked. If position 17 has

a 1 while positions 14, 15, and 16 have 0’s, the sum-

mation is continued and xrsis set to zero (line 21).

Line 22. If scaling has already been in progress, a

second spill is defined as an error.

Line 24. A new control address is placed at loca-

tion 0010, because a spill in the following routines is

to be treated in a different fashion. (Again, the ad-

dress field of location 0010 can inform the pro-

grammer that this point of the program has been

processed).

Line 35. Note that the accumulator overflow in-

dicator is related to fixed-point operations only, when

the FPT is on.

Line 44. The transfer instruction seizes control from

the trap routine. The decision is madeas follows:

1. If the spill occurred in the FsB instruction, the

octal code in the decrement of location zero is

less than 0010. Such a spill is not significant and

a return to the routine is made by an indirectly

addressed TRA instruction.

2. If the spill occurred in the accumulator alone

(on Fpp), the octal code in the decrementof loca-

tion 0000 is not greater than 0012 and not less |

than or equal to 0011. Accumulator spill, alone,

at the FDP instruction is not significant. With an

MQspill, the conditions just stated are not met;

the program proceeds to Toxic location (MQ over-

flow or underflow is defined as a ToBIG condition).

148 1BM 709

Card Reader Wiring for Columnar

Binary

The modification (special feature) required in order

to use the 18M 714 Card Readerfor auxiliary columnar

binary card-to-tape operations includes the addition

of nine hubs(labeled A, B, CG, D,E, F, G, H and J in

Figure 160) for use in control panel wiring. The func-

tions of these hubsare:

F and G are common hubsandare connected on an

electronic sensing circuit which recognizes the

presence of the columnar binary indication (9 or

9-7). The detection of a 9-punch (or 9-7 punches)

when a card is in the first read position causes

that card to be treated as a columnarbinary card

whenat the second read.

H and J are connected only during the portion of

read time of a columnar binary card at second

read. These hubs are connected through a relay

contact which is transferred during 9-time only,

if the columnarbinary identification is a 9-punch,

or during 9-, 8- and 7-time if the identification is

a 9-7 combination. These hubs can be wired to

prevent a 9-punch(or 9, 8, 7 punches) from being

read into the record storage unit if the columnar

binary identification is not to be placed on tape.

(Extra bits are injected into the checking circuits

when a columnar binary card is at second read,

thus correcting the horizontal row countat second

read.)

A, B, C, D and E are connected in the following

manner: A and C,B and D,are connected when

a Bcp card is at second read. When a columnar

binary card is at second read, hubs B and C, D

and E, are connected.

Figures 160 and 16] show sHARE standard wiring for

columnar binary card-to-tape operations, With this

wiring, columnar binary is converted to standard

binary. tape format with the proper check bits, and

the 18m card codes are converted to standard scp tape

characters with the proper check bits. The wiring in

Figure 161 is straightforward and requires no explana-

tion. However, Figure 160 wiring does require some

explanation.

Hub F is wired from hub | offirst read because

column | will contain the columnar binary card iden-

tification. The wires numbered 4 through 10 create a

“look-ahead” indication in every record to indicate

the type of tape record which follows it. The wiring

is such that when a columnar binary card is at first

read, 9-impulses enter hubs 81 and 82, and 7-impulses

enter hubs 83 and 84 of record storage entry, regard-

less of the type of card at second read. If the card at

second read is a columnar binary card, a 7 impulse

hoz? 03 4) $ 6 7 8 Y © tt 12 «13 «14 15 16 OF 18 1 20 po2o03 4 S$ 6 F 8g mt 1 2 13 14 1S 16 1? te 19 20
’ 5 10 15 2 1 3 G) 10 15 20o o° 9° © 9 © © © 0 6 © © 0 @© © © oo oO af a Alo o—-6—-0—_o hy —o 1-09 o *fi 2s 3% as «0 21 25 » / 35 «0o 9° 06 © © 0 0 © © © © 0 © © © © 68 © @ of 0 8

|

o—o—s—-0 2-2. o———-0at 4s FIRST so READ 35 a a 4s FIRST »” | peso 3S ©f\0 © © 0 © © 0 0 8 6 0 0 0 6 6 6 8 6 oO ole C

|

o--s— ee
Re 45 70 75 m| oie “ss 7 | [/ 75 80o o oO o ° ° oO o oO a oO o ° ° a Oo QO o ° ° Oo Ls 2 > > ~~ > e +e oe —2= 5 10 15. 5 a s———_(7)-»-\- { sp 0t Veo ° ° o

|

8 Elo eases he ° os
2 x» 2 25 0 \ | “Flo ° F ee» 6 »--e «6 e .—e
a 50 a ‘s CHECK 50 ENTRY Y ss | 0Glo ° ° G

|

eee
6 20 61 6s 70 ay r")n oO ° ° Fe) eos. o—~< o —"

81 85 9 2
© 0 0 6 Oo ° $10 0 60 0 @ 0 0 x 0 0 9 o |

x24 LTO HECK ENTRY GR. SWiy—x-12 7 :x.127—4
0 0 08 o ° wa oOf-O 19° © 0 80©@ 8© 60 © 80© @ 8 0 0

0.9 x 01G RSM o9 COLUAN o9© 0 © 0 ole t ° ° ° ° 0 © © © © © @ 80 © © «68
; COMMON. . 2 12 RM. COMMON SPLUS COMMON:°0 © 0 8 ole ai] oo o ° o 0 © © © 6 9 @ © 6 60 o

o Nia ° ° Q ° ° o ° ° o o

TO REC STOR ENTRY DIGIT SELECTORS
a) ’ °o o e ° °o ° ° ° 2 Q °

De RSA 8 c 2K 0 1 2 3 4 5 6 ?
a \ ° Q@}o0 0 © © © © © 8 © © «6
12 am

R10 0 0 @ © © o wo 0 OO

2 # slo ewewe - Pa >
° ° a °o o °o f

« 1 a 25 x»
o Oo 8 8 oO ° . ~ ~«w 4a as | SECOND 4

, oo 6 0 otal u |dug 96»! -o

61 65 70

Ste

8

8

es , | l
o° 09 © 6 0 ° 1 c ' of i.

° <o °° ° ° wio © 0 o o° 09 oO o 6°68
lit CYCLE cle J CYCLE ALTERNATORS

eo 8 Of oF 8 8 2nd CYCLEQnd CYCiE vio eo oo
o 0 9 OD s o 66 1

+ 21 —- COMMON ——2
COMMON a+ z ° ° ° °

° ° ° ° ° o Oo Ast CYCLE

Ist CYCLE alo oo °

3° ° Cc oO ° o 9 1 Ind CYCLE

Ind CYCLE aslo oo o

o 0 a COMMON
ac

|
o ° ° °

o 8 Tst CYCLE ALT.
AO

|
oO 5 o Qo °°

o ° 2nd CYCLE
aE ° oO ° ° Qo° ° o 0 bylg5 a 15 05 at |O ee ewe

So °o ° a ° ° a 3° ° °° 5 oO oO oS 3 o o 21 25
25 x» as O16 AG

|

& se geo 0 09 09 © © 0 ¢€© © 0 6 @ 9 60 6 o a 4545 RECORD STORAGE ENTRY 55 op a

|

oo2 9 © 0 © © 0 © 6 © 50 6 0 oo olf a“ 6565 70 75 ry Al

|

qui m
a °o °° a o o 9° ° Ce 9 ° oO ° ° oO 9 o si es85 90 92 AKi9 9 0 0 © 90 0© 0 60 © «6meg

6

9 0 9 © ofo 5 o o °oe

o

° oO
Figure 160. Columnar Binary Wiring Figure 161. Columnar Binary Wiring

2. If followed by a sep record, the 27th and 28th

wordsof the record will be: (xxxx xxxx 0004),

and (0000 0001 0000)..

enters hub 81, and a 9 impulse enters hub 83 of rec-

ord storage entry. This arrangement creates the fol-
lowing look-ahead words in tape records.

A. BCD Record

1. If followed by a binary tape record, the 14th
word of the record will be (xx xx 11 11 07 07),,
where X indicates a digit which varies from
record to record.

2. If followed by another scp record, the 14th
word will be (xx xx 00 00 00 00),.

B. Binary Record
1. If followed by another binary record, the

27th and 28th words of the record will be:
(xxxx xxxx 0005) g and (0001 0005 0004),.

Note that wire 12 crates redundant bits when a col-
umnar binary card is at second read. These bits are
necessary because, as previously explained, a 9 im-
pulse or 9 and 7 impulses are injected into the check-
ing circuit when a columnar binary card is at second
read. Wire 12 compensates for these injected bits so
that the horizontal row count at second read will be
correct. When the columnarbinary identification is a
9 punch only, wire 12a should be removed in order to
prevent a read check from occurring.

Programming Examples 149

Appendix A

Number Systems and Conversion

The common decimal notation of the commercial

and scientific world is familiar to all of us. This no-

tation is so familiar that you probably have never be-

fore questioned its use: Could it be possible that, for

some purposes, another system is more convenient?

Thedecision is entirely a matter of convenience. Deci-

mal notation is used because it is most familiar and

is understood by most people. However, had our

primeval ancestors developed eight fingers instead of

ten we would probably be more familiar with the octal

system and would be questioning the decimal system.

The decimal system, with its ten digits, is learned

by most people early in their training. This system

serves very well for counting purposes. Why then,
should computers which are designed to assist mathe-
maticians, or engineers and businessmen, be designed.

to use the binary system of numbers?
Current digital computers use binary circuits and

the mathematics of the computers is therefore binary

in nature. The only convenient way to learn the op-

eration of a computer is to learn the binary system.
The octonary or octal system is a shorthand method

of writing long binary numbers. Octal notation is

used when discussing the computer but has no rela-
tion to the internal computercircuits.

Perhaps, as a first step, it would be well to see what
is meant by the binary system of numbers. The bi-
nary, or base-two system, uses two symbols, 0 and

1, to represent all quantities. Counting is started in
the binary system in the same manneras in thedeci-
mal system with 0 for zero and 1 for one. At two in
the binary system it is found that there are no more

symbols to be used. It is therefore necessary to take
the same move at two in the binary system that is
taken at ten in the decimal system. This move is to

place a 1 in the next position to the left and start
again with a 0. in the original position. A binary 10
is equivalent in this respect to a 2 in the decimal sys-
tem. Counting is continued in an analogous manner
with a carry to the next higher order every time a
two is reached instead of every time a ten is reached.
Counting in the binary system is as follows:

BINARY DECIMAL BINARY DECIMAL

0 0 101 5
l 1 110 6

10 2 Ill 7
11 3 1000 8

100 4 1001 9

150 1BM 709

The binary system is used in computers because

all present components are inherently binary. ‘That
is, a relay maintains its contacts either closed or open,
magnetic materials are utilized by magnetizing them

in one direction or the other, a vacuum tube is con-

veniently maintained either fully conducting or non-
conducting, or the transmission of information along
a wire may be accomplished by transmitting or not
transmitting an electrical pulse at a certain time.
Although binary numbers in general have more

terms than their decimal counterparts (about 3.3
times as many), computation in the binary system is
quite simple.

For addition, it is only necessary to remember the
following threerules:

1. Zero plus zero equals zero.

2. Zero plus one equals one.

3. One plus one equals zero with a carry of one to
the next position on the left. To see how the
rules work, consider the addition of 15 plus 7
with these numbers expressed in binary notation:

SIXTEENS EIGHTS FOURS TWOS ONES

(carries) (1) (1) (1) (1)

0 1 I I 1—15

40 0 1] l= 7

1 0 I 1 0 = 22

In the ones column we have | plus | for a sum of

0 and a 1 carried to the two column. In the twos

column we have 1 plus 1 for a sum of 0 but we must
also add the carry from the ones column, makinga
final sum of | with a carry to the fours column. The
same procedure occurs in the fours column. In the

eights column we have a | plus a 0 giving a sum of
1, but adding in the carry from the fours column

makes the final sum 0 with a carry to the sixteens
column. In this column wehave 0 plus 0 giving a sum
of 0 and to this we add the carry from the eights col-

umn, making a final sum of 1.
The resultant sum of the addition contains 1’s in

the sixteens, fours, and twos columns, which is the

binary representation of 22, the correct sum of 15 plus
7 (16 plus 4 plus 2 equals 22).

The rules for subtraction of binary digits are

equally simple:

1. Zero minus zero equals zero.

2. One minus one equals zero.

8. One minuszero equals one.

4, Zero minus one equals one, with one borrowed

from theleft.

Using the same numbers as we did in the addition,

the subtraction worksas follows:

SIXTEENS EIGHTS FOURS TWOS ONES

(borrows) 0 0 0 0 0
0 1 1 1 1= 15

— 0 0 1 1 1= 7

0 1 0 0 0o=— 8

In the ones column we have 1 minus 1 for a sum

of 0 with no borrows. The same procedure occurs

in the twos and fours columns. In the eights column

we have 1 minus 0 for a sum of 1. In the sixteens col-

umn we have 0 minus 0 for a sum of 0. With the

subtraction finished we have 1’s in the eights column

only, signifying the answerto be 8.

For multiplication only three rules need to be re-

membered:

1. Zero times zero equals zero.

9. Zero times one equals zero; no carries are con-

sidered.

3. One times one equals one.

The binary multiplication table is such that all that

is necessary when multiplying one number (multi-

plicand) by another (multiplier) is to examine the

multiplier digits one at a time and, each time a 1 is

found, add the multiplicand into the result, and each

time a 0 is found add nothing. Of course, the multi-

plicand must be shifted for each multiplier digit, but

this is not different from the shifting that is done in

the decimal system.
An example of binary multiplication is 26 multi-

plied by 19:

DECIMAL BINARY

2% = 6+8+0+2 + 0 = 11010
x 19 = 146+ 0+ 04+ 2 4+ 1 = 10011

Using the above rules, the product 11010

will be arrived at by a series 11010

of adding the multiplicand 00000

and shifting whenever 00000

a 1 is found in the 11010

multiplier. 111101110

Interpreting the binary result of the multiplication
by using the ones, twos,fours, . . . etc., system we find
that we have, .

256 + 128 + 64+ 32+0+8+47+270

which equals 494, thus proving the problem.

Binary division is accomplished by applying similar
concepts. From the examples of addition, subtraction,

and multiplication, it may be seen that whatever

operation the computer is working on will be accom-

plished by repetitive addition.
The computer operates internally using the binary

system. However, it is able to convert from onesys-
tem to another by use of a stored program. Thus,
input-output data may be expressed in decimal (or
any other) form when the operator finds it more con-
venient to do so.

Octal Number System

It has already been pointed out that binary numbers
require aboutthree times as manypositions as decimal
numbers to express the equivalent number. This is
not much of a problem to the computeritself. How-
ever, in talking and writing, these binary numbers are
bulky. A long string of ones and zeros cannot be
effectively transmitted from one individual to another.
Some shorthand methodis necessary. The octal num-
ber system fills this need. Because of its simple rela-
tionship to binary, numbers can be converted from
one system to another by inspection. The base or
radix of the octal system is 8. This means there are
eight symbols: 0, 1, 2, 3, 4, 5, 6, and 7. There are no
8’s or 9’s in this number system. The importantrela-
tionship to remember is that three binary positions
are equivalent to one octal position. The following
table is used constantly when working on or about the
computer.

BINARY OCTAL

000 0
001 1
010 2

011 3

100 4
10] 5

110 6

111 7

At this point a carry to the next higher position of
the numberis necessary, since all eight symbols have
been used.

BINARY OCTAL

001 000 10

001 001 11

001 010 12

001 011 - 18

001 100 14

and so on.

Rememberthat as far as the internal circuitry of the
computer is concerned it only understands binary

Appendix 151

ones and zeros. The octal system is used to provide a
shorthand method of reading and writing binary
numbers.

Number Conversions

Before an attempt is made to convert numbers from
one system to another, it is best to review what a
numberrepresents. In the demical system a number
is represented or expressed by a sum of terms. Each
individual term consists of a product of a power of
ten and some integer from 0 to 9. For example, the

number 123 means 100 plus 20 plus 3. This may also
be expressed as:

(1 x 102) + (2 x 101) + (8 X 100)

Ten is said to be the base or radix of this system be-
cause of the role that the powers of 10 and thein-
tegers up to 10 play in the above expansion. If two
is chosen as the base, numbers are said to be repre-
sented in the binary system. Consider the binary
number 1 111 011. What do these zeros and ones
represent? They represent the coefficients of the as-
cending powers of 2. Expressed in another way the
numberis:

(1 x 26) + (1 X 25) + (1 x 24) +

(1 x 23) + (0 x 22) + (1 X 21) + (1 x 20)

The various orders do not have the meaningof units,
tens, hundreds, thousands, etc., as in the decimalsys-
tem; instead they signify units, twos, fours, eights,
sixteens, etc. In applying the above information it
is found that the number 123 breaks down in both
systemsas follows:

BINARY DECIMAL

1 Ill Oll 12 3

[no units L3 units
2 twos 20 tens

0 fours 100 hundreds
8 eights 123
16 sixteens

32 thirty-twos
64 sixty-fours

‘123

In the octal system, a numberis represented in the
same manner except that the base is 8. The digits of
the number represent the coefficients of the ascending
powers of 8. Consider the octal number:

173 = (1 X 8") + (7 X 81) + (3 X 8°)
= 64 + 56 4+ 3

123 (decimal)

152 eM 709

Similarly:

Octal 173
[U8 units

56 eights
64 sixty-fours

By remembering what a number represents in the
binary or octal system, the number can be converted

to its decimal equivalent by the method shown above.
As the numbers get bigger, this method becomesquite
impossible to use. The following section provides
detailed methods for converting from one system to
another.

Integers

DECIMAL TO OCTAL

Convert the decimal number 149 to its octal equiva-
lent. Rute: Divide the decimal number by8 and de-
velop the octal number as per example.

8 |__149 Remainder 5

8 |.18 “ 2

8 2 “‘ 2

0 read

== 225

Wefirst divided the original number to be converted
by 8. The remainderof this first division becomes the
low-order digit of the conversion (5). We then di-
vide the quotient (received from the first division)
by 8. Again the remainder becomesa part of the an-
swer (next higher order, 2). This is continued until
the quotient is smaller than the divisor. At this time
the final quotient is considered the high order of the
conversion (2).

OcTAL To DECIMAL

Convert the octal number 225 to its decimal equiva-
lent. Rute: Multiply by 8 and add, as per example.

225
x 8

]

] a
p
s

14

-+
-

o
b

149

The high-order digit is multiplied by 8 and the next
lower-order digit is added to the result. The resultant
answer is then multiplied by 8 and the next lower-
order digit is added to the result. When the low-
order digit has been added to the answer, the process

ends. In the following examples, where multiplication
or division is used, detailed explanations will not be

used because the operationsare similar.

OcTAL TO BINARY AND BINARY TO OCTAL

Rute: Express the numberin binary groupsof three.

OCTAL TO BINARY BINARY TO OCTAL

2 2 5 010 O10 101

aAOS bey ee
010 010 101 = 010 010 101 2 2 5h = 225

DECIMAL TO BINARY

Rute: Divide the decimal number by 2 and develop
as per example; convert 149 to its binary equivalent.

t2 | 149 Remainder]

0

]

0

1} =— 010 010 101

0

0 [1 es 1

read

BINARY TO DECIMAL

RuLeE: Multiply by 2 and add as per example; convert
010 010 101 to its decimal equivalent.

10 010 101

x 2

OR 10 010 101 18 TH] = 12) 402% 4 0(2) +1 (24) +

0

18 0 (2%) + 1 (2?) + 02") + 12")

36 — 1284161441
l

37 = 149

2

Fractions

DECIMAL TO OCTAL

Rue: Multiply by 8 and develop the octal number
as per example:

Read .149
° x 8

] .192

«x 8

] .536

x8
4 .288

x 8

2 304

= .1142 +

OcTAL To DECIMAL

RuLe: Express as powers of 8, add and divide as per

example:

1142 = 1 (8-2) +1 (8-2) +4 (8-8) +2(8-4)
=1/8+1/64 + 4/512 + 2/4096
= 610/4096
= .1489 plus

or .149

OcTAL TO BINARY AND BINARY TO OCTAL

Rute: The same rule applies for fractions as for
whole numbers.

Example:

Al] 4 2 001 001 100) O10

.001 001 1090 =9010 Jl] 4 2

BINARY TO DECIMAL

The same rule applies as for whole numbers; for
example:

001 001 100 010

= 1 (2-3) +1 (2-6) +1 (2-7) +1 (2-11)

=1/8+1/64+1/128 + 1/2048

= 305/2048

= .1489 plus

or .149

DECIMAL TO BINARY

The same rule applies as for whole numbers.
example:

For

Appendix 153

Read 149
. 4 2

0 .298
x 2

0 |596
x 2

1 .192
x 2

0 .384
x 2

0 .768
x 2

1 536
x 2

1 .072
x 2

0 .144
x 2

0 |.288
x 2

0 |.576
x 2

1 .152
x 2

0 |.304
Y = 001 001 100 010 +

Improper Fractions

DECIMAL TO BINARY

This requires conversion from decimal to octal and

then to binary. For example, convert 149.149 to its

binary equivalent.

8 | 149. remainder 5 149

8 |_ 18. “ 2 x 8
8 2. “ 2 1 192

0 read. x 8

I 536

x 8

4 .288

| x 8
read, 2 304

—- 2 2 5 1 1 4 2
HQ NR RN
010 010 101+*001 O01 Too O10

149.149,, — 225.1142, — 010 010 101.001 001 100 010,

154 1BM 709

BINARY TO DECIMAL

This requires conversion from binary to octal and —

then to decimal.

Convert to decimal:

010 O10 101-001 001 100 O10
WHee oe

x |G |
+2

] 1 4 2

18 ot Te fo =
8 610
144 4096 —

+5
149 .149

As with decimal-to-binary, conversion of the integer

and fraction parts is performed independently.

Floating-Point Word

DECIMAL TO FLOATING POINT

Convert decimal 149.149 to normal floating-point

word.

Decimal to octal:

149.149,, = 225.1142,

Octal to binary:

225.1142, = 010 010 101.001 001 100 010,

Binary to floating point word:

10 010 101.001 001 100 010 x 20=

10 010 101 001 001 100 010 x 28

8 + 128 = 136 (Characteristic)

10 001 000.100 101 010 010 011 000 1 FP
X yo a —_—/

Characteristic Fraction

21 0.4 5 2 2 3

0 4,

NOTE: Word is normal if the fraction is less than 1, but greater

than or equal to one-half.

2"

co
wm
D
O
R

16
32
64
128

256
912

1 024
2 048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864

134 217 728

268 435 456
936 870 912

1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
949 755 813 888

~ ~
I
O

O
l
>

W
N
e

O
S

Appendix B

Table of Powers of Two

2-H"

1.0
0.5
0.25
0.125

0.062 5
0.031 25
0.015 625
0.007 812 5

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
9.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

Appendix 155

Appendix C

0000 | 0000
to to

0777 0511
(Octal) |(Decimal)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000 0512
to to

1777 3023

(Octal) (Decimal)

156 iM 709

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0000 |0000 0001 0002 0003 0004 0005 0006 0007 0400 |0256 0257 0258 0259 0260 0261 0262 0263
0010 |0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271
0020 {0016 0017 0018 0019 0020 0021 0022 0023 0420/0272 0273 0274 0275 0276 0277 0278 0279
0030 |0024 0025 0026 0027 0028 0029 0030 0031 0430/0280 0281 0282 0283 0284 0285 0286 0287
0040 |0032 0033 0034 0035 0036 0037 0038 0039 0440/0288 0289 0290 0291 0292 0293 0294 0295
0050 10040 0041 0042 0043 0044 0045 0046 0047 0450/0296 0297 0298 0299 0300 0301 0302 0303
0060 10048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311
0070 |0056 0057 0058 0059 0060 0061 0062 0063 0470/0312 0313 0314 0315 0316 0317 0318 0319

0100 |0064 0065 0066 0067 0068 0069 0070 0071 0500 |0320 0321 0322 0323 0324 0325 0326 0327
0110 (0072 0073 0074 0075 0076 0077 0078 0079 0510/0328 0329 0330 0331 0332 0333 0334 0335
0120 |0080 0081 0082 0083 0084 0085 0086 0087 0520 |0336 0337 0338 0339 0340 0341 0342 0343
0130/0088 0089 0090 0091 0092 0093 0094 0095 0530 |0344 0345 0346 0347 0348 0349 0350 0351
0140/0096 0097 0098 0099 0100 0101 0102 0103 0540 |0352 0353 0354 0355 0356 0357 0358 0359
0150; 0104 0105 0106 0107 0108 0109 0110 011] 0550/0360 0361 0362 0363 0364 0365 0366 0367
0160/0112 0113 0114 0115 0116 0117 0118 0119 0560 |0368 0369 0370 0371 0372 0373 0374 0375
0170/0120 0121 0122 0123 0124 0125 0126 0127 057010376 0377 0378 0379 0380 0381 0382 0383

0200 {0128 0129 0130 0131 0132 0133 0134 0135 0600 10384 0385 0386 0387 0388 0389 0390 0391

0210/0136 0137 0138 0139 0140 0141 0142 0143 061010392 0393 0394 0395 0396 0397 0398 0399
0220/0144 0145 0146 0147 0148 0149 0150 0151 0620/0400 0401 0402 0403 0404 0405 0406 0407
0230 0152 0153 0154 0155 0156 0157 0158 0159 0630/0408 0409 0410 0411 0412 0413 0414 0415
02400160 0161 0162 0163 0164 0165 0166 0167 0640/0416 0417 0418 0419 0420 0421 0422 0423
0250/0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
026010176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0270 |0184 0185 0186 0187 0188 0189 0190 0191 0670/0440 0441 0442 0443 0444 0445 0446 0447

0300} 6192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454 0455

0310}0200 0201 0202 0203 0204 0205 0206 0207 0710/0456 0457 0458 0459 0460 0461 0462 0463

0320/0208 6209 0210 0211 0212 0213 0214 0215 0720/0464 0465 0466 0467 0468 0469 0470 0471
033010216 0217 0218 0219 0220 0221 0222 0223 0730/0472 0473 0474 0475 0476 0477 0478 0479
034010224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 0487

0350/0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 0492 0493 0494 0495

0360 0240 0241 0242 0243 0244 0245 0246 0247 0760| 0496 0497 0498 0499 0500 0501 0502 0503

0370/0248 0249 0250 0251 0252 0253 0254 0255 0770] 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7

1000| 0512 0513 0514 0515 0516 0517 0518 0519 1400 |0768 0769 0770 0771 0772 0773 0774 0775

1010}0520 0521 0522 0523 0524 0525 0526 0527 1410/0776 0777 0778 0779 0780 O781 0782 0783

1020| 0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 0786 0787 0788 0789 0790 0791
1030! 0536 0537 0538 0539 0540 0541 0542 0543 1430/0792 0793 0794 0795 0796 0797 0798 0799
10401 0544 0545 0546 0547 0548 0549 0550 0551 1449/0800 0801 0802 0803 0804 0805 0806 0807
1050} 0552 0553 0554 0555 0556 0557 0558 0559 1450/0808 0809 0810 0811 0812 0813 0814 0815
1060] 0560 0561 0562 0563 0564 0565 0566 0567 1460/0816 0817 0818 0819 0820 0821 0822 0823
1070/0568 0569 0570 0571 0572 0873 0574 0575 1470 0824 0825 0826 0827 0828 0829 0830 0831

1100} 0576 0577 0578 0579 0580 0581 0582 0583 1500/0832 0833 0834 0835 0836 0837 0838 0839

1110] 0584 0585 0586 0587 0588 0589 0590 0591 1510/0840 0841 0842 0843 0844 0845 0846 0847

1120| 0592 0593 0594 0595 0596 0597 0598 0599 152010848 0849 0850 0851 0852 0853 0854 0855

1130| 0600 0601 0602 0603 0604 0605 0606 0607 1530/0856 0857 0858 0859 0860 0861 0862 0863
1140] 0608 0609 0610 0611 0612 0613 0614 0615 1540/0864 0865 0866 0867 0868 0869 0870 0871

1150/0616 0617 0618 0619 0620 0621 0622 0623 1550/0872 0873 0874 0875 0876 0877 0878 0879

1160| 0624 0625 0626 0627 0628 0629 0630 0631 1560/0880 0881 0882 0883 0884 0885 0886 0887

1170| 0632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895

1200| 0640 0641 0642 0643 0644 0645 0646 0647 1600 10896 0897 0898 0899 0900 0901 0902 0903

121010648 0649 0650 0651 0652 0653 0654 0655 1610 |0904 0905 0906 0907 0908 0909 0910 0911

1220| 0656 0657 0658 0659 0660 0661 0662 0663 1620 |0912 0913 0914 0915 0916 0917 0918 0919

123010664 0665 O666 0667 0668 0669 0670 0671 1630 |0920 0921 0922 0923 0924 0925 0926 0927

1240/0672 0673 0674 0675 0676 0677 0678 0679 1640 |0928 0929 0930 0931 0932 0933 0934 0935

1250/0680 0681 0682 0683 0684 0685 0686 0687 1650 [0936 0937 0938 0939 0940 0941 0942 0943

1260/0688 0689 0690 0691 0692 0693 0694 0695 1660 |0944 0945 0946 0947 0948 0949 0950 0951

1270| 0696 0697 0698 0699 0700 0701 0702 0703 1670 |0952 0953 0954 0955 0956 0957 0958 0959

130010704 0705 0706 0707 0708 0709 O710 0711 1700 |0960 0961 0962 0963 0964 0965 0966 0967

1310] 0712 0713 0714 0715 0716 0717 0718 0719 1710 |0968 0969 0970 0971 0972 0973 0974 0975

1320/0720 0721 0722 0723 0724 0725 0726 0727 1720 |0976 0977 0978 0979 0980 0981 0982 0983

1330/0728 0729 0730 0731 0732 0733 0734 0735 1730 |0984 0985 0986 0987 0988 0989 0990 0991

134010736 0737 0738 0739 0740 0741 0742 0743 1740 |0992 0993 0994 0995 0996 0997 0998 0999

1350/0744 0745 0746 0747 0748 0749 0750 0751 1750 |1000 1001 1002 1003 1004 1005 1006 1007

1360] 0752 0753 0754 0755 0756 0757 0758 0759 1760/1008 1009 1010 1011 1012 1013 1014 1015

1370! 0760 0761 0762 0763 0764 O765 0766 0767 177011016 1017 1018 1019 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2000 |1024 1025 1026 1027 1028 1029 1030 1031 2400; 1280 1281 1282 1283 1284 1285 1286 1287

2010 /}1032 1033 1034 1035 1036 1037 1038 1039 2410| 1288 1289 1290 1291 1292 1293 1294 1295

2020/1040 1041 1042 1043 1044 1045 1046 1047 2420/1296 1297 1298 1299 1300 1301 1302 1303

2030/1048 1049 1050 1051 1052 1053 1054 1055 2430} 1304 1305 1306 1307 1308 1309 1310 1311

2040!1056 1057 1058 1059 1060 1061 1062 1063 2440/1312 1313 1314 1315 1316 1317 1318 1319

205011064 1065 1066 1067 1068 1069 1070 1071 245011320 1321 1322 1323 1324 1325 1326 1327

2060 ;1072 1073 1074 1075 1076 1077 1078 1079 2460; 1328 1329 1330 1331 1332 1333 1334 1335

2070/1080 1081 1082 1083 1084 1085 1086 1087 2470/1336 1337 1338 1339 1340 1341 1342 1343

2100/1088 1089 1090 1091 1092 1093 1094 1095 2500} 1344 1345 1346 1347 1348 1349 1350 1351

2110/1096 1097 1098 1099 1100 1101 1102 1103 2510) 1352 1353 1354 1355 1356 1357 1358 1359

2120;1104 1105 1106 1107 1108 1109 1110 1111 2520! 1360 1361 1362 1363 1364 1365 1366 1367

2130 }1112 T1I3-1114 TII5 LTTE LWT TITS 1179 2530/1368 1369 1370 1371 1372 1373 1374 1375

2140/1120 1121 1122 1123 1124 1125 1126 1127 2540|1376 1377 1378 1379 1380 1381 1382 1383

2150/1128 1129 1130 1131 1132 1133 1134 1135 2550| 1384 1385 1386 1387 1388 1389 1390 1391

2160/1136 1137 1138 1139 1140 1141 1142 1143 2560/1392 1393 1394 1395 1396 1397 1398 1399

2170/1144 1145 1146 1147 1148 1149 1150 1151 2570: 1400 1401 1402 1403 1404 1405 1406 1407

i

2200/1152 1153 1154 1155 1156 1157 1158 1159 2600: 1408 1409 1410 1411 1412 1413 1414 1415

2210/1160 1161 1162 1163 1164 1165 1166 1167 2610; 1416 1417 1418 1419 1420 1421 1422 1423

2220/1168 1169 1170 1171 1172 1173 1174 1175 2620; 1424 1425 1426 1427 1428 1429 1430 1431

2230 ;1176 1177 1178 1179 1180 1181 1182 1183 2630/1432 1433 1434 1435 1436 1437 1438 1439

12240;1184 1185 1186 1187 1188 1189 1190 1191 2640/1440 1441 1442 1443 1444 1445 1446 1447

2250/1192 1193 1194 1195 1196 1197 1198 1199 2650 | 1448 1449 1450 1451 1452 1453 1454 1455

2260 (1200 1201 1202 1203 1204 1205 1206 1207 2660; 1456 1457 1458 1459 1460 1461 1462 1463

2270/1208 1209 1210 1211 1212 1213 1214 1215 2670 | 1464 1465 1466 1467 1468 1469 1470 1471

2300/1216 1217 1218 1219 1220 1221 1222 1223 2700/1472 1473 1474 1475 1476 1477 1478 1479

2310 (1224 1225 1226 1227 1228 1229 1230 1231 2710:1480 1481 1482 1483 1484 1485 1486 1487

2320} 1232 1233 1234 1235 1236 1237 1238 1239 2720} 1488 1489 1490 1491 1492 1493 1494 1495

2330/1240 1241 1242 1243 1244 1245 1246 1247 2730/1496 1497 1498 1499 1500 1501 1502 1503

2340/1248 1249 1250 1251 1252 1253 1254 1255 2740/1504 1505 1506 1507 1508 1509 1510 1511

2350 1256 1257 1258 1259 1260 1261 1262 1263 2750} 1512 1513 1514 1515 1516 1517 1518 1519

2360/1264 1265 1266 1267 1268 1269 1270 1271 2760/1520 1521 1522 1523 1524 1525 1526 1527

2370/1272 1273 1274 1275 1276 1277 1278 1279 2770/1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

3000/1536 1537 1538 1539 1540 1541 1542 1543 3400; 1792 1793 1794 1795 1796 1797 1798 1799

3010/1544 1545 1546 1547 1548 1549 1550 1551 3410/1800 1801 1802 1803 1804 1805 1806 1807

3020/1552 1553 1554 1555 1556 1557 1558 1559 3420) 1808 1809 1810 1811 1812 1813 1814 1815

3030/1560 1561 1562 1563 1564 1565 1566 1567 3430/1816 1817 1818 1819 1820 1821 1822 1823

3040/1568 1569 1570 1571 1572 1573 1574 1575 3440 324 1825 1826 1827 1828 1829 1830 1831

3050/1576 1577 1578 1579 1580 1581 1582 1583 3450/1832 1833 1834 1835 1836 1837 1838 1839

3060 1584 1585 1586 1587 1588 1589 1590 1591 3460/1840 1841 1842 1843 1844 1845 1846 1847

3070/1592 1593 1594 1595 1596 1597 1598 1599 3470| 1848 1849 1850 1851 1852 1853 1854 1855

3100/1600 1601 1602 1603 1604 1605 1606 1607 3500/1856 1857 1858 1859 1860 1861 1862 1863

3110/1608 1609 1610 1611 1612 1613 1614 1615 3510/1864 1865 1866 1867 1868 1869 1870 1871

3120;1616 1617 1618 1619 1620 1621 1622 1623 3520/1872 1873 1874 1875 1876 1877 1878 1879

3130/1624 1625 1626 1627 1628 1629 1630 1631 3530/1880 1881 1882 1883 1884 1885 1886 1887

3140}1632 1633 1634 1635 1636 1637 1638 1639 3540/1888 1889 1890 1891 1892 1893 1894 1895

3150}1640 1641 1642 1643 1644 1645 1646 1647 3550; 1896 1897 1898 1899 1900 1901 1902 1903

3160/1648 1649 1650 1651 1652 1653 1654 1655 3560/1904 1905 1906 1907 1908 1909 1910 1911

3170!1656 1657 1658 1659 1660 1661 1662 1663 3570/1912 1913 1914 1915 1916 1917 1918 1919

3200 11664 1665 1666 1667 1668 1669 1670 1671 3600 }1920 1921 1922 1923 1924 1925 1926 1927

3210 {1672 1673 1674 1675 1676 1677 1678 1679 3610/1928 1929 1930 1931 1932 1933 1934 1935

3220 |1680 1681 1682 1683 1684 1685 1686 1687 3620/1936 1937 1938 1939 1940 1941 1942 1943

3230 |1688 1689 1690 1691 1692 1693 1694 1695 3630/1944 1945 1946 1947 1948 1949 1950 1951

324011696 1697 1698 1699 1700 1701 1702 1703 3640/1952 1953 1954 1955 1956 1957 1958 1959

3250/1704 1705 1706 1707 1708 1709 1710 1711 3650/1960 1961 1962 1963 1964 1965 1966 1967

3260 (1712 1713 1714 1715 1716 1717 1718 1719 3660/1968 1969 1970 1971 1972 1973 1974 1975

3270 ;1720 1721 1722 1723 1724 1725 1726 1727 3670/1976 1977 1978 1979 1980 1981 1982 1983

3300 |1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 1986 1987 1988 1989 1990 1991
3310/1736 1737 1738 1739 1740 1741 1742 1743 3710/1992 1993 1994 1995 1996 1997 1998 1999
3320 |1744 1745 1746 1747 1748 1749 1750 1751 3720/2000 2001 2002 2003 2004 2005 2006 2007

3330 }1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014 2015

3340 {1760 1761 1762 1763 1764 1765 1766 1767 3740] 2016 2017 2018 2019 2020 2021 2022 2023

3350/1768 1769 1770 1771. 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030 2031

3360{1776 1777 1778 1779 1780 1781 1782 1783 | 3760 2032 2033 2034 2035 2036 2037 2038 2039

337011784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044 2045 2046 2047

2000 1024
to to

2777 1535
(Octal) |(Decimal)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000 1536
to to

3777 2047
(Octal) |(Decimal)

Appendix 157

Octal-Decimal Integer Conversion Table

4000 2048

to to

4777 2559

(Octal) |(Decimal)

Octal Decimal

10000- 4096
20000- 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000 2560
to to

5777 3071
(Octal) (Decimal)

158 1M 709

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

4000} 2048 2049 2050 2051 2052 2053 2054 2055 4400) 2304 2305 2306 2307 2308 2309 2310 2311

4010] 2056 2057 2058 2059 2060 2061 2062 2063 4410|2312 2313 2314 2315 2316 2317 2318 2319

4020) 2064 2065 2066 2067 2068 2069 2070 2071 4420/2320 2321 2322 2323 2324 2325 2326 2327

4030] 2072 2073 2074 2075 2076 2077 2078 2079 4430/2328 2329 2330 2331 2332 2333 2334 2335

4040! 2080 2081 2082 2083 2084 2085 2086 2087 4440/2336 2337 2338 2339 2340 2341 2342 2343

4050| 2088 2089 2090 2091 2092 2093 2094 2095 4450/2344 2345 2346 2347 2348 2349 2350 2351

4060| 2096 2097 2098 2099 2100 2101 2102 2103 4460] 2352 2353 2354 2355 2356 2357 2358 2359

4070| 2104 2105 2106 2107 2108 2109 2110 2111 4470| 2360 2361 2362 2363 2364 2365 2366 2367

4100! 2112 2113 2114 2115 2116 2117 2118 2119 4500} 2368 2369 2370 2371 2372 2373 2374 2375

4110) 2120 2121 2122 2123 2124 2125 2126 2127 451012376 2377 2378 2379 2380 2381 2382 2383

4120) 2128 2129 2130 2131 2132 2133 2134 2135 4520} 2384 2385 2386 2387 2388 2389 2390 2391

4130) 2136 2137 2138 2139 2140 2141 2142 2143 453012392 2393 2394 2395 2396 2397 2398 2399

4140} 2144 2145 2146 2147 2148 2149 2150 2151 4540/2400 2401 2402 2403 2404 2405 2406 2407

4150! 2152 2153 2154 2155 2156 2157 2158 2159 4550/2408 2409 2410 2411 2412 2413 2414 2415

4160] 2160 2161 2162 2165 2164 2165 2166 2167 4560/2416 2417 2418 2419 2420 2421 2422 2423

4170| 2168 2169 2170 2171 2172 2173 2174 2175 4570! 2424 2425 2426 2427 2428 2429 2430 2431

4200! 2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439

4210) 2184 2185 2186 2187 2188 2189 2190 2191 4610/2440 2441 2442 2443 2444 2445 2446 2447

4220| 2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455

4230) 2200 2201 2202 2203 2204 2205 2206 2207 4630/2456 2457 2458 2459 2460 2461 2462 2463

4240| 2208 2209 2210 2211 2212 2213 2214 2215 464012464 2465 2466 2467 2468 2469 2470 2471

4250] 2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479

4260| 2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487

42701 2232 2233 2234 2235 2236 2237 2238 2239 4670/2488 2489 2490 2491 2492 2493 2494 2495

4300 2240 2241 2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 9500 2501 2502 2503
4310/2248 2249 2250 2251 2252 2253 2254 2255 4710/2504 2505 2506 2507 2508 2509 2510 2511
4320/2256 2257 2258 2259 2260 2261 2262 2263 4720/2512 2513 2514 2515 29516 2517 2518 2519

4330/2264 2265 2266 2267 2268 2269 2270 2271 4730} 2520 2521 2522 2523 29524 2525 2526 2527

4340| 2272 2273 2274 2275 2276 2277 2278 2279 4740| 2528 2529 2530 2531 2532 2533 2534 2535
4350! 2280 2281 2282 2283 2284 2285 2286 2287 4750] 2536 2537 2538 2539 2549 2541 2542 2543

4360. 2288 2289 2290 2291 2292 2293 2294 2295 4760/2544 2545 2546 2547 9548 2549 2550 2551

4370/2296 2297 2298 2299 2300 2301 2302 2303 4770/2552 2553 2554 2555 9556 2557 2558 2559

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 qT

5000/2560 2561 2562 2563 2564 2565 2566 2567 54002816 2817 2818 2819 2820 2821 2822 2823
5010; 2568 2569 2570 2571 2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831
5020/2576 2577 2578 2579 2580 2581 2582 2583 5420.| 2832 2833 2834 2835 2836 2837 2838 2839
5030; 2584 2585 2586 2587 2588 2589 2590 2591 5430/2840 2841 2842 2843 2844 2845 2846 2847
5040; 2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
5050/2600 2601 2602 2603 2604 2605 2606 2607 5450/2856 2857 2858 2859 2860 2861 2862 2863
5060 2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
5070/2616 2617 2618 2619 2620 2621 2622 2623 5470/2872 2873 2874 2875 2876 2877 2878 2879

5100 2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
5110| 2632 2633 2634 2635 2636 2637 2638 2639 5510/2888 2889 2890 2891 2892 2893 2894 2895
5120/2640 2641 2642 2643 2644 2645 2646 2647 5520/2896 2897 2898 2899 2900 2901 2902 2903
5130/2648 2649 2650 2651 2652 2653 2654 2655 5530/2904 2905 2906 2907 2908 2909 2910 2911
5140 2656 2657 2658 2659 2660 2661 2662. 2663 5540} 2912 2913 2914 2915 2916 2917 2918 2919
5150 2664 2665 2666 2667 2668 2669 2670 2671 §550 2920 2921 2922 2923 2924 2925 2926 2927
5160.2672 2673 2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
5170 2680 2681 2682 2683 2684 2685 2686 2687 5570/2936 2937 2938 2939 2940 2941 2942 2943

5200/2688 2689 2690 2691 2692 2693 2694 2695 5600 |2944 2945 2946 2947 2948 2949 2950 2951
5210 2696 2697 2698 2699 2700 2701 2702 2703 5610 12952 2953 2954 2955 2956 2957 2958 2959
5220 2704 2705 2706 2707 2708 2709 2710 2711 5620 |2960 2961 2962 2963 2964 2965 2966 2967
5230/2712 2713 2714 2715 2716 2717 2718 2719 5630/2968 2969 2970 2971 2972 2973 2974 2975
5240 |2720 2721 2722 2723 2724 2725 2726 2727 5640 |2976 2977 2978 2979 2980 2981 2982 2983
5250 |2728 2729 2730 2731 2732 2733 2734 2735, | 565012984 2985 2986 2987 2988 2989 2990 2991
5260 (2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
527012744 2745 2746 2747 2748 2749 2750 2751 5670/3000 3001 3002 3003 3004 3005 3006 3007

5300 2752 2753 2754 2755 2756 2757 2758 2759 5700 }3008 3009 3010 3011 3012 3013 3014 3015
5310/2760 2761 2762 2763 2764 2765 2766 2767 5710 |3016 3017 3018 3019 3020 3021 3022 3023
5320 (2768 2769 2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
5330/2776 2777 2778 2779 2780 2781 2782 2783 5730 13032 3033 3034 3035 3036 3037 3038 3039
5340 2784 2785 2786 2787 2788 2789 2790. 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
5350/2792 2793 2794 2795 2796 2797 2798 2799 5750/3048 3049 3050 3051 3052 3053 3054 3055
5360 2800 2801 2802 2803 2804 2805 2806 2807 5760/3056 3057 3058 3059 3060 3061 3062 3063
5370/2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

Octal-Decimal Integer Conversion Table

6000 3072
to to

6777 3583

(Octal) |(Decimal)

Octal Decimal

10000- 4096
20000- 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400/3328 3329 3330 3331 3332 3333 3334 3335

6010/3080 3081 3082 3083 3084 3085 3086 3087 64101 3336 3337 3338 3339 3340 3341 3342 3343

6020 |3088 3089 3090 3091 3092 3093 3094 3095 6420! 3344 3345 3346 3347 3348 3349 3350 3351

6030/3096 3097 3098 3099 3100 3101 3102 3103 6430] 3352 3353 3354 3355 3356 3357 3358 3359

6040/3104 3105 3106 3107 3108 3109 3110 3111 6440] 3360 3361 3362 3363 3364 3365 3366 3367

6050 |.3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375

6060/3120 3121 3122 3123 3124 3125 3126 3127 6460! 3376 3377 3378 3379 3380 3381 3382 3383

6070 3128 3129 3130 3131 3132 3133 3134 3135 6470| 3384 3385 3386 3387 3388 3389 3390 3391

6100 (3136 3137 3138 3139 3140 3141 3142 3143 6500! 3392 3393 3394 3395 3396 3397 3398 3399

6110/3144 3145 3146 3147 3148 3149 3150 3151 6510| 3400 3401 3402 3403 3404 3405 3406 3407

6120 3152 3153 3154 3155 3156 3157 3158 3159 6520) 3408 3409 3410 3411 3412 3413 3414 3415

6130 3160 3161 3162 3163 3164 3165 3166 3167 6530! 3416 3417 3418 3419 3420 3421 3422 3423
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540/ 3424 3425 3426 3427 3428 3429 3430 3431
6150/3176 3177 3178 3179 3180 3181 3182 3183 6550| 3432 3433 3434 3435 3436 3437 3438 3439
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560| 3440 3441 3442 3443 3444 3445 3446 3447
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570| 3448 3449 3450 3451 3452 3453 3454 3455

6200 {3200 3201 3202 3203 3204 3205 3206 3207 6600/3456 3457 3458 3459 3460 3461 3462 3463
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610/| 3464 3465 3466 3467 3468 3469 3470 3471

6220 |3216 3817 3218 3219 3220 3221 3222 3223 6620/ 3472 3473 3474 3475 3476 3477 3478 3479

6230 3224 3225 3226 3227 3228 3229 3230 3231 6630/ 3480 3481 3482 3483 3484 3485 3486 3487

6240 3232 3233 3234 3235 3236 3237 3238 3239 6640/ 3488 3489 3490 3491 3492 3493 3494 3495

6250 |3240 3241 3242 3243 3244 3245 3246 3247 6650/| 3496 3497 3498 3499 3500 3501 3502 3503

6260 |3248 3249 3250 3251 3252 3253 3254 3255 6660/ 3504 3505 3506 3507 3508 3509 3510 3511

6270 |3256 3257 3258 3259 3260 3261 3262 3263 6670! 3512 3513 3514 3515 3516 3517 3518 3519

6300 |3264 3265 3266 3267 3268 3269 3270 3271 6700/3520 3521 3522 3523 3524 3525 3526 3527

6310 |3272 3273 3274 3275 3276 3277 3278 3279 6710| 3528 3529 3530 3531 3532 3533 3534 3535

6320 |3280 3281 3282 3283 3284 3285 3286 3287 6720| 3536 3537 3538 3539 3540 3541 3542 3543

6330 |3288 3289 3290 3291 3292 3293 3294 3295 67301 3544 3545 3546 3547 3548 3549 3550 3551

6340

|

3296 3297 3298 3299 3300 3301 3302 3303 6740] 3552 3553 3554 3555 3556 3557 3558 3559

6350

|

3304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567

6360

|

3312 3313 3314 3315 3316 3317 3318 3319 6760) 3568 3569 3570 3571 3572 3573 3574 3575

6370 |3320 3321 3322 3323 3324 3325 3326 3327 67701 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7000] 3584 3585 3586 3587 3588 3589 3590 3591 7400| 3840 3841 3842 3843 3844 3845 3846 3847

7010| 3592 3593 3594 3595 3596 3597 3598 3599 7410/3848 3849 3850 3851 3852 3853 3854 3855

7020] 3600 3601 3602 3603 3604 3605 3606 3607 7420| 3856 3857 3858 3859 3860 3861 3862 3863

7030| 3608 3609 3610 3611 3612 3613 3614 3615 7430| 3864 3865 3866 3867 3868 3869 3870 3871

7040} 3616 3617 3618 3619 3620 3621 3622 3623 7440] 3872 3873 3874 3875 3876 3877 3878 3879

7050| 3624 3625 3626 3627 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887

7060| 3632 3633 3634 3635 3636 3637 3638 3639 7460| 3888 3889 3890 3891 3892 3893 3894 3895

71070] 3640 3641 3642 3643 3644 3645 3646 3647 7470! 3896 3897 3898 3899 3900 3901 3902 3903

7100| 3648 3649 3650 3651 3652 3653 3654 3655 750013904 3905 3906 3907 3908 3909 3910 3911

7110| 3656 3657 3658 3659 3660 3661 3662 3663 751013912 3913 3914 3915 3916 3917 3918 3919

7120] 3664 3665 3666 3667 3668 3669 3670 3671 7520/1 3920 3921 3922 3923 3924 3925 3926 3927

7130| 3672 3673 3674 3675 3676 3677 3678 3679 7530/3928 3929 3930 3931 3932 3933 3934 3935

7140] 3680 3681 3682 3683 3684 3685 3686 3687 7540

|

3936 3937 3938 3999 3940 3941 3942 3943

7150| 3688 3689 3690 3691 3692 3693 3694 3695 7550/3944 3945 3946 3947 3948 3949 3950 3951

7160| 3696 3697 3698 3699 3700 3701 3702 3703 7560

|

3952 3953 3954 3955 3956 3957 3958 3959

7170| 3704 3705 3706 3707 3708 3709 3710 3711 7570| 3960 3961 3962 3963 3964 3965 3966 3967

7200} 3712 3713 3714 3715 3716 3717 3718 3719 7600

|

3968 3969 3970 3971 3972 3973 3974 3975

7210| 3720 3721 3722 3723 3724 3725 3726 3727 7610/3976 3977 3978 3979 3980 398r 3982 3983

7220| 3728 3729 3730 3731 3732 3733 3734 3735 7620/3984 3985 3986 3987 3988 3989 3990 3991

7230| 3736 3737 3738 3739 3740 3741 3742 3743 7630

|

3992 3993 3994 3995 3996 3997 3998 3999

7240| 3744 3745 3746 3747 3748 3749 3750 3751 7640/4000 4001 4002 4003 4004 4005 4006 4007

7250| 3752 3753 3754 3755 3756 3757 3758 3759 7650|}4008 4009 4010 4011 4012 4013 4014 4015

=960| 3760 3761 3762 3763 3764 3765 3766 3767 7660/4016 4017 4018 4019 4020 4021 4022 4023

7270| 3768 3769 3770 3771 3772 3773 3774 3775 7670| 4024 4025 4026 4027 4028 4029 4030 4031

730013776 3777 3778 3779 3780 3781 3782 3783 71700 |4032 4033 4034 4035 4036 4037 4038 4039

7310) 3784 3785 3786 3787 3788 3789 3790 3791 771014040 4041 4042 4043 4044 4045 4046 4047

7320| 3792 3793 3794 3795 3796 3797 3798 3799 772014048 4049 4050 4051 4052 4053 4054 4055

7330/2800 3801 3802 3803 3804 3805 3806 3807 7730 |4056 4057 4058 4059 4060 4061 4062 4063

7340| 3808 3809 3810 3811 3812 3813 3814 3815 774014064 4065 4066 4067 4068 4069 4070 4071

7350/3816 3817 3818 3819 3820 3821 3822 3823 775014072 4073 4074 4075 4076 4077 4078 4079

7360| 3824 3825 3826 3827 3828 3829 3820 3831 776014080 4081 4082 4083 4084 4085 4086 4087

7370| 3832 3833 3834 3835 3836 3837 3838 3839 7770 14088 4089 4090 4091 4092 4093 4094 4095

7000

to

7777

(Octal)

Appendix

3584
to

4095

(Decimal)

159

Appendix D

160

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC. OCTAL DEC,

- 000 . 000000 - 100 . 125000 - 200 . 250000 . 300 . 375000

001 . 001953 .101 . 126953 201 - 251953 .301 . 376953
. 002 . 003906 .102 . 128906 - 202 . 253906 . 302 . 378906

. 003 . 005859 . 103 . 130859 . 203 . 255859 . 303 . 380859

- 004 . 007812 . 104 . 132812 . 204 . 257812 .304 . 382812

. 005 . 009765 .105 . 134765 . 205 . 259765 . 305 . 384765

. 006 -011718 - 106 . 136718 . 206 - 261718 . 306 . 386718

007 . 013671 107 . 138671 - 207 - 263671 . 307 . 388671

.010 . 015625 - 110 . 140625 -210 - 265625 .310 . 390625

O11 . 017578 -111 . 142578 211 «267578 311 - 392578

.012 .019531 112 . 144531 212 » 269531 .312 . 394531

. O13 . 021484 .1T3 - 146484 213 «271484 313 . 396484

014 . 023437 114 . 148437 214 . 273437 314 » 398437

015 - 025390 115 . 150390 215 - 275390 315 - 400390

.016 . 027343 116 . 152343 216 - 277343 .316 . 402343

.017 . 029296 117 . 154296 217 - 279296 317 - 404296

. 020 . 031250 - 120 - 156250 . 220 - 281250 . 320 - 406250

.021 . 033203 .121 . 158203 .221 - 283203 321 . 408203

022 . 035156 . 122 . 160156 - 222 - 285156 . 322 .+ 410156
. 023 037109 -123 . 162109 . 223 . 287109 323 . 412109

.024 . 039062 124 . 164062 224 . 289062 . 324 - 414062

.025 - 041015 . 125 . 166015 . 225 - 291015 - 925 . 416015

. 026 - 042968 . 126 . 167968 » 226 «292968 .326 -417968

027 . 044921 127 . 169921 227 . 294921 . 327 . 419921

. 030 . 046875 . 130 . 171875 - 230 - 296875 . 330 . 421875

.031 . 048828 . 131 . 173828 .231 - 298828 331 . 423828

. 032 . 050781 . 132 . 175781 - 232 . 300781 . 332 . 425781

. 033 . 052734 . 133 - 177734 - 233 . 302734 . 333 . 427734

- 034 . 054687 . 134 . 179687 . 234 . 304687 . 334 429687
. 035 - 056640 - 135 . 181640 235 - 306640 .335 - 431640

. 036 . 058593 . 136 . 183593 . 236 . 308593 . 336 «433593

. 037 . 960546 .137 . 185546 - 237 . 310546 .337 . 435546

. 040 - 062500 . 140 . 187500 . 240 - 312500 . 340 - 437500

041 . 064453 .141 . 189453 241 . 314453 . 341 . 439453
- 042 . 066406 . 142 . 191406 . 242 . 316406 - 3842 . 441406

043 - 068359 . 143 . 193359 - 243 . 318359 . 343 - 443359

044 . 070312 . 144 . 195312 . 244 . 320312 . 344 - 445312

. 045 - 072265 ~ 145 . 197265 - 245 - 322265 . 345 « 447265

- 046 974218 . 146 . 199218 - 246 324218 . 346 - 449218

047 -076171 . 147 201171 247 . 326171 . 347 .451171

. 050 . 078125 . 150 . 203125 . 250 - 328125 . 350 - 453125

051 . 080078 151 . 205078 251 . 330078 .351 - 455078

. 052 . 082031 . 152 . 207031 252 . 332031 .352 - 457031

. 053 . 083984 . 153 . 208984 -253 . 333984 .353 - 458984

. 054 . 085937 . 154 - 210937 254 . 335937 354 - 460937

. 055 . 087890 . 155 . 212890 255 - 337890 .355 . 462890

. 056 . 089843 . 156 . 214843 - 206 - 339843 . 356 - 464843

.057 . 091796 157 - 216796 .257 . 341796 357 - 466796

.060 - 093750 . 160 . 218750 . 260 . 343750 - 360 - 468750

- 061 - 095703 . 161 - 220703 261 . 345703 361 - 470703

. 062 . 097656 . 162 . 222656 - 262 . 347656 2362 - 472656

. 063 . 099609 . 163. - 224609 - 263 . 349609 . 363 . 474609

. 064 . 101562 . 164 . 226562 . 264 . 351562 . 364 - 476562

. 065 . 103515 - 165 . 228515 . 265 353515 . 365 - 478515
- 066 . 105468 . 166 . 230468 - 266 . 355468 . 366 - 480468

- 067 . 107421 . 167 . 232421 - 267 . 357421 . 367 . 482421

.070 . 109375 . 170 . 234375 270 . 359375 .370 - 484375

-071 . 111328 171 . 236328 271 . 361328 .371 . 486328
-072 . 113281 .172 . 238281 272 . 363281 .372 - 488281

. 073 . 115234 .173 - 240234 273 . 365234 .373 . 490234

074 . 117187 .174 . 242187 274 . 367187 374 . 492187

-075 . 119140 . 175 . 244140 275 . 369140 .375 - 494140

. 076 . 121093 176 . 246093 276 . 371093 - 376 . 496093

.077 . 123046 177 . 248046 277 . 373046 .3T7 . 498046

1nM 709

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC, OCTAL DEC,

. 000000 . 600000 . 000100 000244 . 000200 . 000488 . 000300 . 000732

000001 . 000003 .000101 . 000247 - 000201 . 000492 . 900301 . 000736
. 000002 . 000007 - 000102 000251 . 000202 - 000495 . 000302 . 000740

. 000003 . 000011 - 000103 . 000255 - 000203 . 000499 . 000303 . 000743

- 000004 . 000015 000104 - 000259 - 000204 . 000503 - 000304 . 000747
. 000005 . 000019 - 000105 . 000263 . 000205 . 000507 . 000305 .000751

- 000006 . 000022 . 000106 . 000267 , 000206 900511 . 000306 .000755
000007 . 000026 000107 . 000270 . 060207 . 000514 . 000307 . 000759

.000010 . 000030 000110 000274 . 900210 . 000518 . 000310 . 000762

000011 - 000034 000111 . 000278 -800211 . 000522 - 000311 . 000766
.000012 . 000038 . 000112 . 000282 000212 . 000526 - 000312 . 000770

-000013 . 000041 . 000113 . 000286 . 000213 . 000530 . 000313 000774

.000014 . 000045 000114 ; 000289 . 000214 . 000534 . 000314 . 000778

- 000015 . 000049 000115 . 000293 000215 . 000537 . 000315 . 000782
000016 . 000053 . 000116 . 000297 - 900216 . 000541 . 000316 . 000785

- 000017 . 000057 000117 - 000301 000217 . 000545 . 000317 . 000789

- 000020 .000061 . 000120 . 000305 - 000220 - 000549 . 000320 . 000793

000021 . 000064 .000121 . 000308 . 000221 . 000553 . 000321 - 000797
. 000022 . 000068 - 000122 . 900312 . 000222 . 000556 - 000322 000801

. 000023 . 000072 . 000123 . 000316 . 000223 . 000560 . 000323 - 000805

000024 . 000076 . 000124 . 900320 . 000224 . 000564 . 000324 . 000808
- 000025 . 000080 - 000125 . 000324 - 000225 . 000568 . 000325 . 000812
. 000026 . 000083 ~ 000126 . 000328 . 000226 . 000572 - 000326 . 000816

. 000027 . 000087 000127 . 000331 - 000227 . 000576 . 000327 - 000820

- 000030 . 000091 . 000130 . 000335 . 000230 . 000579 - 000330 . 000823

. 000031 . 000095 . 000131 . 0060339 . 000231 . 000583 . 000331 . 000827

. 000032 . 000099 - 000132 . 000343 . 000232 . 000587 . 000332 . 000831

. 000033 . 000102 . 000133 . 000347 . 000233 . 000591 - 000333 . 000835

. 000034 . 000106 . 000134 . 000350 . 000234 . 900595 . 000334 . 000839

- 000035 000110 -000135 .000354 - 000235 . 000598 . 000335 - 000843

. 000036 000114 - 000136 . 000358 . 000236 . 000602 . 000336 . 000846

. 000037 . 000118 . 000137 . 000362 - 000237 . 000606 . 000337 000850

- 000040 . 900122 . 000140 . 000366 - 000240 . 000610 . 000340 . 000854
000041 .000125 000141 - 000370 . 000241 . 000614 . 000341 . 000858

000042 . 000129 . 000142 . 000373 . 000242 . 000617 . 000342 . 000862

. 000043 - 000133 . 000143 . 000377 . 000243 . 000621 . 000343 . 900865

. 000044 . 000137 - 000144 . 000381 000244 . 000625 . 000344 . 000869

. 000045 000141 - 000145 - 000385 900245 - 000629 . 000345 . 000873

. 000046 - 000144 . 000146 . 000389 - 000246 . 000633 . 000346 . 000877

000047 .000148 . 000147 . 000392 - 900247 . 900637 . 000347 . 000881

.000050 - 000152 . 000150 . 000396 . 000250 . 000640 . 000350 . 000885

. 000051 . 000156 900151 - 000400 .000251 . 000644 . 000351 - 000888

. 000052 . 000160 . 000152 . 000404 - 900252 . 000648 . 000352 . 000892

000053 . 000164 . 000153 . 000408 . 000253 . 000652 . 000353 . 000896

. 000054 . 000167 . 000154 . 000411 . 000254 . 000656 . 000354 . 000900

000055 000171 . 000155 . 000415 . 000255 . 000659 . 000355 . 000904
. 000056 . 000175 . 000156 . 000419 - 000256 . 000663 . 000356 . 000907

000057 . 000179 . 000157 . 000423 . 000257 - 000667 . 000357 000911

000060 . 900183 . 000160 . 000427 - 000260 , 000671 . 000360 . 000915

000061 . 000186 . 000161 . 000431 - 000261 900675 -000361 . 000919

000062 . 000190 . 000162 000434 - 900262 . 000679 . 000362 - 000923
- 000063 . 000194 . 000163 . 000438 . 000263 . 000682 . 000363 . 000926

. 000064 . 000198 . 000164 . 000442 . 000264 . 000686 . 000364 . 000930
000065 . 000202 000165 - 000446 . 000265 . 000690 . 000365 . 000934

- 000066 . 000205 . 000166 . 000450 . 000266 . 000694 . 000366 . 000938

000067 . 000209 - 000167 .000453 . 000267 . 000698 . 000367 . 000942

000070 . 000213 . 000170 - 000457 - 000270 . 000701 - 900370 . 000946

- 000071 000217 000171 . 000461 - 900271 . 000705 . 000371 . 000949

. 000072 . 000221 . 000172 . 000465 . 000272 . 000709 . 000372 . 000953

. 000073 . 000225 . 000173 .000469 . . 000273 . 000713 . 000373 . 000957

000074 . 000228 .000174 . 000473 900274 000717 . 000374 . 000961

. 000075 . 000232 000175 . 000476 . 000275 - 000720 . 000375 . 000965

. 000076 . 000236 000176 - 000480 . 000276 - 000724 . 000376 . 000968

. 000077 . 000240 000177 . 000484 900277 . 000728 . 000377 . 000972

Appendix 161

Octal-Decimal

162

Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC, OCTAL DEC,

. 000400 . 000976 . 000500 . 001220 000600 . 001464 .000700 .001708

000401 . 000980 .000501 . 001224 000601 . 001468 .000701 001712

. 900402 . 000984 . 9000502 . 001228 . 000602 . 001472 000702 .001716

000403 .000988 . 000503 . 001232 . 000603 . 001476 000703 . 001720

. 000404 . 000991 . 000504 . 901235 . 000604 . 001480 000704 001724

. 900405 . 900995 ~ 000505 . 001239 . 000605 . 001483 . 000705 . 901728

. 900406 . 000999 . 000506 001243 000606 001487 . 000706 001731

. 000407 - 901003 . 900507 . 001247 000607 . 001491 000707 901735

. 000410 .001007 . 000510 .901251 . 000610 001495 . 000710 001739

. 9000411 -001010 .000511 ~001255 000611 . 001499 .000711 . 001743

. 000412 .001014 . 000512 ~ 001258 . 000612 . 001502 . 000712 001747

. 600413 . 061018 . 000513 . 001262 . 000613 . 001506 . 000713 . 001750

900414 001022 .000514 . 001266 .000614 001510 . 000714 001754

- 900415 001026 .000515 . 001270 . 000615 .001514 . 000715 .901758

000416 .001029 000516 001274 .000616 . 901518 . 000716 . 001762

000417 . 901033 . 000517 001277 . 000617 . 001522 000717 . 001766

000420 . 001037 . 000520 001281 . 000620 . 001525 900720 . 001770

. 000421 . 001041 . 000521 . 001285 . 000621 . 001529 900721 .001773

. 000422 . 001045 . 000522 .001289 . 000622 . 001533 . 000722 -, 001777

.- 900423 .001049 - 900523 .091293 . 000623 . 001537 000723 .001781

000424 901052 000524 . 001296 . 000624 . 001541 . 000724 001785

000425 .001056 000525 . 001300 . 000625 001544 000725 .001789

. 000426 . 001060 000526 . 001304 . 000626 . 001548 . 000726 . 901792

000427 . 001064 . 000527 001308 . 000627 001552 .900727 . 001796

. 000430 . 9001068 900530 001312 . 000630 . 001556 ~000730 ~ 001800

000431 001071 .9000531 .9001316 000631 901560 .000731 ~ 001804

. 000432 ~ 901075 . 000532 .001319 . 000632 . 001564 . 900732 . 001808

. 000433 . 001079 - 000533 - 001323 . 000633 . 9001567 000733 ~001811

. 000434 001083 . 000534 . 001327 . 000634 .001571 000734 .001815

_ - 000435 . 001087 . 000535 901331 . 000635 001575 . 000735 .001819

000436 .001091 . 000536 001335. . 900636 . 001579 . 000736 001823

- 900437 .001094 000537 . 901338 000637 001583 000737 001827

. 900440 001098 . 000540 001342 . 000640 001586 . 000740 001831

- 000441 .001102 900541 001346 . 000641 . 001590 900741 001834

000442 - 001106 9000542 001350 . 000642 . 001594 - 900742 001838

. 000443 ~001110 000543 001354 . 900643 . 001598 . 000743 001842

000444 001113 000544 001358 000644 . 001602 000744 ~001846

000445 .001117 - 000545 001861 000645 001605 000745 001850

. 000446 001121 000546 901365 . 000646 . 001609 000746 .~001853

- 900447 001125 000547 001369 000647 001613 » 000747 . 001857

000450 .901129 - 9000550 001373 . 000650 001617 000750 .001861

000451 . 001132 - 000551 001377 .000651 . 001621 .000751 ~001865

- 000452 . 001136 .000552 001380 . 000652 . 001625 000752 . 001869

. 000453 . 001140 000553 . 001384 . 000653 001628 900753 - 901873

900454 001144 000554 . 001388 . 000654 001632 000754 . 001876

000455 001148 000555 . 901392 . 000655 001636 000755 001880

000456 001152 - 000556 . 001396 . 000656 001640 000756 901884

000457 001155 000557 ~9001399 000657 001644 900757 901888

. 000460 .001159 . 000560 .001403 .~000660 001647 900760 001892

- 000461 001163 .000561 001407 .-900661 ~ 001651 000761 901895

000462 .001167 000562 .901411 - 000662 .001655 000762 - 901899

. 000463 .001171 . 000563 001415 . 000663 ~ 001659 900763 .901903

. 000464 001174 000564 901419 . 000664 - 901663 000764 . 001907

000465 . 001178 .000565 . 001422 . 000665 . 001667 000765 ~001911

. 000466 091182 . 900566 001426 . 000666 001670 . 000766 .001914

- 000467 . 001186 . 900567 001430 . 000667 . 001674 000767 901918

.~ 000470 - 001190 000570 001434 . 000670 . 001678 . 000770 ~ 001922

. 900471 .001194 000571 . 001438 . 000671 . 001682 060771 . 901926

000472 ~001197 . 900572 - 001441 . 000672 . 001686 . 000772 ~ 001930

. 000473 .001201 900573 901445 000673 . 001689 . 000773 5001934

000474 001205 . 000574 001449 . 000674 . 001693 000774 . 001937

900475 901209 . 900575 001453 - 000675 . 001697 000775 . 001941

. 000476 001213 . 000576 001457 . 900676 .001701 . 000776 .001945

000477 . 001216 000577 .001461 . 000677 001705 . 000777 001949

1BM 709

Appendix E « SCAT Mnemonic Operation Codes

<8 s 8 |
B «¢ & a 6 og

CODE COMMENT Zz z = CODE COMMENT Zz Zz <

ACL Add and Carry Logical Word............ X X 27 FDH Floating Divide or Halt00.00...... X X 36
ADD A oiiececccleccccceccsseesecateeeeeueveneeerenneceeennnas xX xX 26 FDP Floating Divide or Proceed xX xX 36

ADM Add Magnitude0.ceee X Xx 26 FMP Floating Multiply 0.000. Xx Xx 35
ALS Accumulator Left Shift00000.00... X 37 FOR FOULciesceececeeeeeeeetseeensneneeeenees (1)
ANA AND to Accumulator X X 54 FRN Floating Round 00...ee Xx 34
ANS AND t0 Storage 0... Xx X 54 FSB Floating Subtract 000. Xx x 33
ARS Accumulator Right Shift0...... x 38 FSM Floating Subtract Magnitude X Xx 34
AXC Address to Index, Complemented...... 51 FVE Five oii ceeccecccetececeesensteeeeevenstteeeeces (1)
AXT Address to Index, True............000....... 51 HPR Halt and Proceed 0.0.0.0 4]
BSFA Backspace File, Ch. A ou... xX 64 HTR Halt and Transfer0.0..0.ce. X X 42
BSFB Backspace File, Ch. Bu... X 64 IIA Invert Indicators from Accumulator 58
BSFC Backspace File, Ch. C oo... X 64 liL Invert Indicators of the Left Half 59
BSFD Backspace File, Ch. D000. X 64 IIR Invert Indicators of the Right Half 59
BSFE Backspace File, Ch. Eo... Xx 64 IIS Invert Indicators from Storage X xX 59
BSFF Backspace File, Ch. Fu... X 64 10CD Input-Output under Count Control
BSFG* Backspace File, Ch. G ou... xX 64 and Disconnect |... 66
BSFH* Backspace File, Ch. H. X 64 IOCDN (IOCD with No Transmission) 66
BSR Backspace Recordccccee X 64 IOCP Input-Output under Count Control
BSRA Backspace Record, Ch. A00... xX 64 and Proceed o.......00cceccccececceceeeeteees 67
BSRB Backspace Record, Ch. B X 64 IOCPN (OCP with No Transmission) 67
BSRC Backspace Record, Ch. C X 64 10cT Input-Output under Count Control
BSRD Backspace Record, Ch. D X 64 and Transfer00.0..00cccee 67
BSRE Backspace Record, Ch. E. X 64 IOCTN (OCT with No Transmission) 67
BSRF Backspace Record, Ch. F ow... xX 64 IORP Input-Output of a Record
BSRG* Backspace Record, Ch. G0....... xX 64 and Proceed o..........cccccc eeeees 67
BSRH* Backspace Record, Ch. H0... Xx 64 IORPN (IORP with No Transmission) 67
BITA Beginning of Tape Test, Ch. A Xx 47 IORT Input-Output of a Record
BITB Beginning of Tape Test, Ch. B Xx 47 and Transfer 00.0...es 68
BTTC Beginning of Tape Test, Ch. C X 47 IORTN (IORT with No Transmission) 68
BITD Beginning of Tape Test, Ch. D. Xx 47 IOSP Input-Output until Signal
BITE Beginning of Tape Test, Ch. E X 47 then Proceed oo... 68
BITF Beginning of Tape Test, Ch. F xX 47 IOSPN (IOSP with No Transmission) ; 68
BTTG* Beginning of Tape Test, Ch. G X 47 1OST Input-Output until Signal
BITH* Beginning of Tape Test, Ch. H_........ X 47 then Transfer 000. 68
CAD** Copy and Add Logical Word............ Xx 65 IOSTN (LOST with No Transmission) 68
CAL Clear and Add Logical Word............ Xx X 2 1OT Input-Output Check Test 00.0000... % 48
CAQ Convert by Addition from MQ........ 63 LAC Load Complement of Address
CAS Compare Accumulator with Storage X X 49 in Index............ ae 51
CFF Change Film Frame |... Xx 46 LAS Logical Compare Accumulator
CHS Change Sign 2.0.00. X 55 with Storage oo.® X 49
CLA Clear and Add ou... Xx X 26 LBT Low-Order Bit Test 000000000000... XN 48
CLM Clear Magnitudeoe x 55 LCHA Load Channel A ou.. aN Xx 71
CLS Clear and Subtract 2.0.0 x Xx 26 LCHB Load Channel Bow. x X 71
COM Complement Magnitude Xx 55 LCHCG Load ChannelCoo X 71
Cpy** COPYteeeet rneene ees Xx 65 LCHD Load Channel D oo. oo x 71
CRQ Convert by Replacement from MQ 62 LCHE Load Channel E ow... xX X 71
CVR Convert by Replacement from AC 62 LCHF Load Channel Foo. xX Xx 71
DCT Divide Check Test 00... Xx 48 LCHG* Load Channel Goe x X 71
DVH Divide or Halt... Xx Xx 30 LCHH* Load Channel H . bie Xx ve
DVP Divide or Proceed o.oo X X 30 LDA** Locate Drum Address............ JX X 65
ECTM Enter Copy Trap Mode......0..0.0.0...... xX 72 LDC Load Complement of Decrement |
EFTM Enter Floating Trap Mode................ Xx 72 I KR ceceeens 5h
ENB Enable ooceeececeteeeeeerieteeen X X 69 LDI Load Indicators occ... cece x Xx 37
ENK Enter Keys 00000 Xx 4] LDQ Load the MQ ow... poe Xx 39
ERA Exclusive OR to Accumulator.......... Xx Xx 54 LFT Left Half Indicators, Off Test. ; 61
ESNT Enter Storage Nullification, LFTM Leave Floating Trap Mode .. ON 72

and Transfer 000.00 cccccccccccseccceeccsee X xX 71 LGL Logical Left Shift 0.000000... Xx 38
ESTM Enter Select Trap Mode0..0000... x 71 LGR Logical Right Shift xé 38

ETM Enter Trapping Mode000. Xx 42 LLS Long Left Shift coe X 38
EITA End of Tape Test, Ch. A ow... X 47 LNT Left Half Indicators, On Test... 60
ETTB End of Tape Test, Ch. Bow... X 47 LRS Long Right Shift X 38
ETTC End of Tape Test, Ch. C oo... X 47 LSNM Leave Storage Nullification Mode XN 71

ETTD End of Tape Test, Ch. Doo... X 47 LTM Leave Trapping Mode Xx 43
ETTE End of Tape Test, Ch. Eo. xX 47 LXA Load Index from Address 50

ETTF End of Tape Test, Ch. Foo... X 47 LXD Load Index from Decrement jl

ETTG* Endof Tape Test, Ch. G oo... x 47 MON Minus On€ i eeen a)
ETTH* End of Tape Test, Ch. Hoo... xX 47 MPR Multiply and Round....... xX NX 28
FAD Floating Add occcece X X 32 MPY Multiply vette i cee X 28
FAM Floating Add Magnitude |....0.00.00..... xX xX 33 MSE Minus Sense ooeee 47
a MTH Minus Three 0... coe a)
(1) The mnemonic code is an extended code; no particular ma- MTW Minus Two oo ew. (1)

chine code is concerned with it. MZE Minus eroee ad
* 7090 Instruction only, not included in this manual. NOP No Operation bc oevttetccee 4]

** 709 Instruction only. NZT Storage Not-/ero Test. 00... X xX 49

Appendix 163

SCAT Mnemonic Operation Codes (Cont’d)

CODE

OAI
OFT
ONT
ORA
ORS
OSI
PAC

PAI
PAX
PBT
PDC

PDX
PIA
PON
PSE
PTH
PTW
PXA
PXD
PZE
RCDA
RCDB*
RCDC
RCDD*
RCDE
RCDF*
RCDG*
RCDH*
RCHA
RCHB
RCHC
RCHD
RCHE
RCHF
RCHG*
RCHH*
RCT
RDR**
RDS
REWA
REWB
REWC
REWD
REWE
REWF
REWG*
REWH*
RET
RIA
RIL
RIR
RIS
RND
RNT
RPRA
RPRB*
RPRC
RPRD*
RPRE
RPRF*
RPRG*
RPRH*
RQL
RTBA

is
@
rN
a

COMMENT z

OR Accumulator to Indicators........
Off Test for Indicators00.... X
On Test for Indicators0........... X
OR to Accumulator oo... xX
OR to Storage oo...ee X
OR Storage to Indicators x
Place Complement of Address

IN XR oolcecenceecccseececeeeeeecseceee
Place Accumulator in Indicators
Place Address. in Index.0.600008
P-Bit Test 2.000. ccicceceeeseteeseteeee xX
Place Complement of Decrement

UN XRecceecccecccuaeccesaeeseneeeenes
Place Decrement in Index...............
Place Indicators in Accumulator....
Plus One ooocccccccccccccccecceeeceeeesseeeecenees
Plus Sense oo. ciecccccccceccceccccecesstsneeeeeeees xX

Plus Three ooccccccccccccceccccssssessceeeeeeeeees

Plus Two ooooccccccceccccccccccccececceeeeeesstsenserees

Place Index in Address..........000..0..
Place Index in Decrement veseetcevtaneees
Plus ZrO oooeec cece ccecccccecccccceeebeseeessesssstseeas
Read Card Reader, Ch. A... x
Read Card Reader, Ch. X
Read Card Reader, Ch. C00... X

Read Card Reader, Ch. D000... xX
Read Card Reader, Ch. E0...0... xX

Read Card Reader, Ch. F X
Read Card Reader, Ch.G ceuteaaeese xX

Read Card Reader, Ch. H00... X

Reset and Load, Ch. A... X
Reset and Load, Ch. B0..000... X
Reset and Load, Ch. C0.0000... x
Reset and Load, Ch. D xX

Reset and Load, Ch. E ou. X
Reset and Load, Ch. F ou... X
Reset and Load, Ch. G 0. xX
Reset and Load, Ch. H000.00..... xX
Restore Channel Traps.................... x
Read Drum ooo. iccecceceecceeenertcees xX
Read Select oo... eeccccceceeeereeteee xX
Rewind, Ch. Ao.cccceeeeeeee xX

Rewind, Ch. Boooooicececcceeeceeeeeees xX
Rewind, Ch. Gooonc..ceceeceeeeeeseneeees x
Rewind, Ch. Doooc..cccceceecceeceeeeeeeeeeneeee xX

Rewind, Ch.Eox

Rewind, Ch. Foooo.cccccciecccccceseees X

Rewind, Ch. Goou....ccccceceeeeeeeees xX

Rewind, Ch. Hooceeeeeeeeeeee xX
Right Half Indicators, Off Test......
Reset Indicators from Accumulator...

Reset Indicators of Left Half
Reset Indicators of Right Half
Reset Indicators from Storage.......... xX

Round oii ccccccccececeetsceeseseeeecseveneees X
Right ‘Half Indicators, On Test......

Read Printer, Ch. Ao... xX

Read Printer, Ch. Boo. xX

Read Printer, Ch. Coo... ».<
Read Printer, Ch. Doo... X

Read Printer, Ch. Eo... xX

Read Printer, Ch. Foo. xX

Read Printer, Ch. G westeeeeeeeeees X

Read Printer, Ch. H 00.00... xX

Rotate MO Left oo. X
Read Tape Binary, Ch. A X

I
N
D
.
A
D
D
R
E
S
S

76
P
P
S

PK
PE
P
S

Xx

K
h

rs
r
e

() The mnemonic code is an extended code; no particular ma-
chine code is concerned with it.

* 7090 Instruction only, not included in this manual.
** 709 Instruction only.

164 1BM 709

CODE

RTBB
RTBC
RTBD
RTBE
RTBF
RTBG*
RTBH*
RTDA
RTDB
RTDC
RTDD
RTDE
RTDF
RTDG*
RTDH*
RUNA*
RUNB*
RUNC*
RUND*
RUNE*
RUNF*
RUNG*
RUNH*
SBM
SCHA
SCHB
SCHAC
SCHD
SCHE
SCHF
SCHG*
SCHH*

. SDLA*
SDLB*
SDLC*
SDLD*
SDLE*
SDLF*
SDLG*
SDLH*
SDHA*
SDHB*
SDHC*
SDHD*
SDHE*
SDHF*
SDHG*
SDHH*
SIL
SIR
SIX
SLF
SLN
SLQ
SLT
SLW
SPRA
SPRB*
SPRC
SPRD*
SPRE
SPRF*
SPRG*
SPRH*
SPTA
SPTB*
SPTC
SPTD*
SPTE
SPTF*
SPTG*
SPTH*
SPUA

kk
3
<
>
8

COMMENT z

Read Tape Binary, Ch. Xx
Read Tape Binary, Ch. C Xx
Read Tape Binary, Ch. D x
Read Tape Binary, Ch. X
Read Tape Binary, Ch. F0.... xX

Read Tape Binary, Ch. G xX

Read Tape Binary, Ch. H xX
Read Tape Decimal, Ch. A xX

Read Tape Decimal, Ch. B. xX
Read Tape Decimal, Ch. C.............. x
Read Tape Decimal, Ch. D x
Read Tape Decimal, Ch. X
Read Tape Decimal, Ch. F X
Read Tape Decimal, Ch. G X
Read Tape Decimal, Ch. H_ xX

Rewind and Unload ChannelA xX
Rewind and Unload Channel xX
Rewind and Unload ChannelC xX
Rewind and Unload ChannelD X
Rewind and Unload Channel xX
Rewind and Unload Channel F...... Xx
Rewind and Unload Channel G xX
Rewind and Unload Channel XK
Subtract Magnitude oo.ee X
Store, Che Ao ccccccccceeccccceeeaseees X

Store, Ch. Bow.ccceeecee xX

Store, Ch. Cooooccccccieccceccceceeccsteseaeeeee X

Store, Ch. Dooceccc ceceeeseees xX -
Store, Ch. Eoooo..c.cccccccccceeeceeesteeeee X
Store, Ch. Fooo...ccccecceccceeceeeeeeaeeees X

Store, Ch. Gooi..ccccccceececeecceeeeessnseees X
Store, Ch. Howo..ccceeeeeeeeeeeee xX

Set Density Low, Channel A xX
Set Density Low, Channel B xX
Set Density Low Channel C x
Set Density Low, Channel xX

Set Density Low, Channel X
Set Density Low, Channel F xX

Set Density Low, ChannelG X
Set Density Low, Channel H. XxX
Set Density High, ChannelA.......... X
Set Density High, Channel X
Set Density High, ChannelC X
Set Density High, Channel D xX
Set Density High, Channel X
Set Density High, Channel X
Set Density High, Channel G X
Set Density High, Channel X
Set Indicators of Left Half
Set Indicators of Right Half
1)b,eed iutebbcuttteeneees
Sense Lights Off oo. XxX
Sense Lights On owe x
Store Left Half MQ ow... X
Sense Light Testo... X
Store Logical Word oo. Xx
Sense Printer, Ch. Ao... xX
Sense Printer, Ch. Bo... xX
Sense Printer, Ch. Coo... x
Sense Printer, Ch. Do... xX

Sense Printer, Ch. Eo... X
Sense Printer, Ch. Foo... x
Sense Printer, Ch. G oo... X
Sense Printer, Ch. H000.. xX

Sense Printer Test, Ch. A w..00..0000...... xX

Sense Printer Test, Ch. Boo... x

Sense Printer Test, Ch. C 0.0000... x

Sense Printer Test, Ch. D oo... X

Sense Printer Test, Ch. E o..000000....... xX

Sense Printer Test, Ch. Fo... xX
Sense Printer Test, Ch. G x

Sense Printer Test, Ch. H o...000000..... xX

Sense Punch, Ch. A ooo... xX

I
N
D
.
A
D
D
R
E
S
S

7%
Ph

Pe
PK
P
K
O
O

Xx

xX
R
R
R
A
R
F

PA
CE

CODE

SPUB*
SPUC
SPUD*
SPUE
SPUF*
SPUG*
SPUH*
SSM
SSP
STA
STD
STI
STL
STO
STP
STQ
STR
STT
STZ
SUB
SVN
SWT
SXA
SXD
TCH
TCNA
TCNB
TCNC
TCND
TCNE
TCNF
TCNG*
TCNH*
TCOA
TCOB
TCOG
TCOD
TCOE
TCOF
TCOG*
TCOH*
TEFA
TEFB
TEFC
TEFD
TEFE
TEFF
TEFG*
TEFH*
TIF
TIO
TIX
TLQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQO
TOP
TRA
TRCA
TRCB
TRCC
TRCD
TRCE
TRCF

Sense Punch, Ch.
Sense Punch, Ch.
Sense Punch, Ch.
Sense Punch, Ch.
Sense Punch, Ch.
Sense Punch, Ch.
Sense Punch, Ch.
Set Sign Minus

COMMENT

Set Sign Plus 0...
Store Adress oo... ecccceeeeeecsseeeeees
Store-Decrement
Store Indicators
Store Instruction

h
y

PS
PS

Pe
PS

PS
Pe

pe
pe

Pe
PS

DS
PS

I
N
D
E
X
A
B
L
E

Location Counter X
NY 0)9xX

Store Prefix 00.000 ccccccccececeetseeettetecs X
Store MQ occeee teeeeeeeenenees X
Store Location and Trap |...
Store Tag oo.eeceeeeeeees xX
Store ZOO oo. cccccccecccsceccssceecseteeteseetees xX
Subtract 000.000 occ eecccecsceeecsesecsseeeeees xX
SEVEN oii ccccccccceccecceccusevereseeeeeutarsatesess
Sense Switch Test000.000ee XK
Store Index in Address0..000.000...
Store Index in Decrement................
Transfer in Channel00.00000....
Transfer on Ch.
Transfer on Ch.
Transfer on Ch.
Transfer on Ch. D Not in Operation
Transfer on Ch.
Transfer on Ch.
Transfer on Ch. G Not in Operation
Transfer on Ch. H Not in Operation
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer

Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

if Indicators Off
if Indicators On
on

on

on

on

on

on

A Not in Operation
B Not in Operation
C Not in Operation

E Notin Operation
F Not in Operation

Ch. A in Operation.
Ch. B in Operation....
Ch. C in Operation. ...
Ch. D in Operation....
Ch. E in Operation
Ch. F in Operation.
Ch. G in Operation....
Ch. H in Operation....
End of File, Ch. A

End of File, Ch. B
End of File, Ch.
End of File, Ch.
End of File, Ch. E
End ofFile, Ch. F
End of File, Ch. G
End of File, Ch. H

PO
P
E
P

PS
PE

PE
E
K
P
E
E
P

PE
PE

Oe
OE

OE
Pe

OE
Oe

OK
Dd

Od
Oe
O
K

Index oo. ccccccccecees
Low MQ ones X
Minus ooo...ceceeee xX
No Overflow oo... xX
No Index oo.
NO Z€YO occ, xX
Overflow
Plus occeccceeees

Quotient Overflow......
MQ Plus oo...

a

. Check, Ch.

. Check, Ch.

. Check, Ch.
. Check, Ch.
. Check, Ch.
. Check, Ch. m

i
m
O

h
p

Po
Pe

PS
PM

PM
pd

Dt
Pe

pd
pd

I
N
D
.
A
D
D
R
E
S
S

P
P
E

P
E

RG
OM

pe
P
e

PO
P
S

PS
PE

Pe
PK
E
P

PS
PS

PS
PM
R
A
S

OK
Od

DM
DK

DK
DM

Dd
Dd

Bd
Dd

Dd
DM

DM
Dd

Dd
pd

Dd
dt

DE
Dd

bd
pd

bd
pd

bl
pt

46
52
53
69
50
50
50
50
50
50
50
50
49
49
49
49
49
49
49
49
50
50
50
50
50
50
50
50
59
59
46
45
44
44
46
43
44
44
44
44
42
50
50
50
50
50
50

(1) The mnemonic code is an extended code; no particular ma-
chine code is concerned with it.

* 7090 Instruction only, not included in this manual.
** 709 Instruction only.

SCAT Mnemonic Operation Codes (Cont'd)

CODE

TRCG*
TRCH*
TSX
TTR
TXH
TXI
TXL
TZE
UAM
UFA
UFM
UFS
USM
VDH
VDP
VLM

WDR**
WEF
WEFA
WEFB
WEFC
WEFD
WEFE
WEFF
WEFG*
WEFH*
WPBA
WPBB*
WPBC
WPBD*
WPBE
WPBF*¥
WPBG*
WPBH*
WPDA
WPDB*
WPDC
WPDD*
WPDE
WPDF*
WPDG*
WPDH*
WPUA
WPUB*
WPUC
WPUD*
WPUE
WPUF*
WPUG*
WPUH*
WRS
WTBA
WTBB

WTBC
WTBD
WTBE
WTBF
WTBG*
WTBH*
WTDA
WTDB
WTDCG
WTDD
WTDE

WTDF

WTDG*
WTDH*

WTv**

XCA
XCL

XEC
ZET

Transfer on Redun. Check, Ch. G
Transfer on Redun. Check, Ch. H
Transfer and Set Index

COMMENT

Trap Transfer 0.0.eeteneees
Transfer on Index High0.0.00.....
Transfer with Index Incremented ..
Transfer on Index Low or Equal ..
Transfer on Zero
Unnormalized Add Magnitude........
Unnormalized Floating Add_
Unnormalized Floating Multiply
Unnormalized Floating Subtract......
Unnormalized Subtract Magnitude..
Variable Length Divide or Halt......
Variable Length Divide or Proceed..
Variable Length Multiply ...:............
Write Drum

Write End of File o000.0000ccee
Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write
Write

Write

Write

Write

Write
Write

Write

Write

Write
Write
Write
Write
Write
Write
Write

Write
Write
Write

End of File, Ch.
End of File, Ch.
End of File, Ch.

End of File, Ch.
End of File, Ch.
End of File, Ch.
End of File, Ch.
End of File, Ch.
Printer Binary, Ch.

Printer Binary, Ch.

Printer Binary, Ch.
Printer Binary, Ch.
Printer Binary, Ch.

Foe

Printer Binary, Ch. F

Printer Binary, Ch.
Printer Binary, Ch.
Printer Decimal, Ch.
Printer Decimal, Ch.
Printer Decimal,
Printer Decimal, Ch.

Printer Decimal,

Printer Decimal,
Printer Decimal, Ch.
Printer Decimal, Ch.
Punch, Ch.A

Punch, Ch.
Punch, Ch.
Punch, Ch.
Punch, Ch.
Punch, Ch.

Punch, Ch.
Punch, Ch.

Ch. C

Ch. E
Ch. F

Write Select 200.000 cccccceccccccececsesseeens
Write

Write
Write
Write
Write

Tape Binary, Ch.
Tape Binary, Ch.

Tape Binary, Ch.
Tape Binary, Ch.

Tape Binary, Ch.
Write Tape Binary, Ch.

Write
Write

Tape Binary, Ch.
Tape Binary, Ch.

Write Tape Decimal, Ch.

Write Tape Decimal, Ch. B
Write Tape Decimal, Ch.C

Write Tape Decimal, Ch.
Write Tape Decimal, Ch.
Write Tape Decimal, Ch. F
Write Tape Decimal, Ch.
Write Tape Decimal, Ch.

Go.
A.

Write Cathode Ray Tube..................
Exchange Accumulator and MQ
Exchange Logical Accumulator

x
I
N
D
E
X
A
B
L
E

*

ANd MQ ooeectteniteeies
EX€CUtE oecceeseeetictttnseriees Xx
Storage Zero Test 0... X

Appendix

r=
PS
I
N
D
.

A
D
D
R
E
S
S

6
Pe

Pe
PS
P
S

Xx
x

Appendix F «Listing of Instructions

ia
betic Listing 7eAlphabetic Listing zB BS

& 2 BE
OPERATION CODE a8 ae
ALPHA OCTAL INSTRUCTION SZ 28

ACL 0361 Add and Carry Logical Word X X
ADD 0400 Ad ieee ceceeee tee tees ecenenes XX
ADM 0401 Add Magnitude 2.0.00... X X
ALS 0767 Accumulator Left Shift 7X
ANA —0320 AND to Accumulator............ X X
ANS 0320 AND to Storage X X
ARS 0771 Accumulator Right Shift...... 7X
AXC —0774 Address to Index Comple-

mented oo...eee
AXT 0774 Address to Index True........
BSF —0764 Backspace File00...0:00004 8 X
BSR 0764 Backspace Record...........-...4: (8X
BIT 0760,.xxxx Beginning of Tape Test X
CAD —0700 Copy and Add Logical Word 8 X
CAL —0500 Clear and Add Logical Word X X
CAQ —O114 Convert by Addition from

MQ) ecessesssssssccsssseesesnnesnnseeeie 6
CAS 0340 Compare AC with Storage... xX X
CHS 0760, .0002 Change Sign... X
CLA 0500 Clear and Add ww... X X
CLM 0760. .0000 Clear Magnitude...........0.0...- X
CLS 0502 Clear and Subtract X X
COM 0760, .0006 Complement Magnitude........ xX
CPY 0700 COPY eeeetree 8 X
CRQ —0154 Convert by Replacement from

MQ oeeccccscceeccteeeteeteeneeeeens 6
CVR 0114 Convert by Replacement from

bce e eet ecee creas ten ents ceceneeeeneees 6
DCT 0760, .0012 Divide Check Test0...5...
DVH 0220 Divide or Halt0.0.0000...
DVP 0221 Divide or Proceed
ECTM —0760, .0006 Enter Copy Trap Mode........
EFITM —0760, .0002 Enter Floating Trap Mode...
ENB 0564 Enable .o....cccccceccceececceereeeceteetees
ENK 0760, .0004 Enter Keys00.eee
ERA 0322 Exclusive OR to Accumulator
ESNT —0021 Enter Storage Null.

and Transfer0..0.........
ESTM —0760,.0005 Enter Select Trap Mode......
ETM 0760, .0007 Enter Trapping Mode............
ETT —0760,.xxxx End of Tape Test00..0.

~
~

FAD 0300 Floating Addoe 3
FAM 0304 Floating Add Magnitude...... 8
FDH 0240 Floating Divide or Halt 5
FDP 0241 Floating Divide or Proceed... 5
FMP 0260 Floating Multiply0.0.......]
FRN 0760, .0011 Floating Round0.0000..

P
P
E

PR
PE

Pe
S
K

PS
OM

Od
Oe
r
h
P
e

OM
O
K

M
R

FSB 0302 Floating Subtract 0.0.0.0... 8
FSM 0306 Floating Subtract Magnitude 3
HPR 0420 Halt and Proceed............0.....
HTR 0000 Halt and Transfer
ITA 0041 Invert Indicators from AC......
TIL —0051 Invert Indicators of Left Half
TIR 0051 Invert Indicators of Right

Half oo.ees
IIS 0440 Invert Indicators from Stor-

AZO eeecece cnet eeeesetentneneees xX X
IOT 0760. .0005 Input-Output Check Test.... x
LAC 0535 Load Complement of Address

in Index oo...ee
LAS —0340 Logical Compare Accumula-

tor with Storage0... xX X
LBT 0760. .0001 Low-OrderBit Test Xx
LCHA 0544 Load Channel A ou... 8X X
LCHB —0544 Load Channel Be. 8X X
LCHC 0545 Load Channel C oo. 8X xX

166 1BM 709

0
0

G
O
0
0

PO
6

PO
6

PS
PK

PM
PO

PS

Alphabetic (Continued) z

OPERATION CODE a
ALPHA OCTAL INSTRUCTION 3

LCHD —0545 Load ChannelD0....
LCHE 0546 Load Channel E0.......00.....

LCHF —0546 Load Channel Fi...

LDA 0460 Locate Drum Address............
LDC —0535 Load Complement of Decre-

ment in XR oo...

LDI 0441 Load Indicators::00
LDQ 0560 Load MQ. on.
LFT —0054 Left Half Indicators, Off Test

LFTM —0760, .0004 Leave Floating Trap Mode...

LGL —0763 Logical Left Shift- 7

LGR —0765 Logical Right Shift 7

LLS 0763 Long Left Shift... 7
LNT —0056 Left Half Indicators, On Test
LRS 0765 Long Right Shift «0.0... 7
LSNM —0760,.0010 Leave Storage

Nullification Mode............

LTM —0760..0007 Leave Trapping Mode..........

LXA 0534 Load Index from Address......

LXD —0534 Load Index from Decrement.

MPR —0200 Multiply and Round.............. l

MPY 0200 Multiply0...]

MSE —0760 Minus Sensecccecceeee

NOP 0761 No Operation 0.
NZT —0520 Storage Non-zero Test

OAI 0043 OR Accumulator to Indica-
COTS ceccccccscecccvecesevteeeututeeeteneres

OFT 0444 Off Test for Indicators..........

ONT 0446 On Test for Indicators.........

ORA —0501 OR to Accumulator

ORS —0602 OR to Storage «0.0.00.

OSI 0442 OR Storage to Indicators......

PAC 0737 Place Complementof Address
in XR cee

PAI 0044 Place Accumulator in Indica-
COTS cocccccccecsceeseveseetscetcteseereeees

PAX 0734 Place Address in XR

PBT -—0760.. P-bit Test ...0...cccccccceeeereees
PDC W—0737 Place Complement of Decre-

ment in XRoe

PDX 0734 Place Decrement in Index...

PIA —0046 Place Indicator in Accumula-
COT cocccccccscccecceceueeeeeseeeeceteeeeuses

PSE 0760 Plus Sense00cccccscceseseenees

PXA_ 0754 Place Index in Address..........
PXD —0754 Place Index in Decrement ...
RCHA 0540 Reset and Load ChannelA...
RCHB —0540 Reset and Load Channel B...
RCHG 0541 Reset and Load Channel C...
RCHD —0541 Reset and Load Channel D
RCHE 0542 Reset and Load Channel E ...

RCHF —0542 Reset and Load Channel F....

RCT 0760... Restore Channel Traps..........
RDS 0762 Read Select 0.0... 8

REW 0772 Rewind occccccccccceecc cesses 8

RFT 0054 Right Half Indicators, Off
TeSt oiciccccccccccccseetceeeessteeeetee

RIA —0042 Reset Indicators from Accu-
MuUlator 2.0...eee

RIL —0057 Reset Indicators of Left Half
RIR 0057 Reset Indicators of Right

Half ooo. .cec cece ceessceseereeeees
RIS 0445 Reset Indicators from Storage
RND 0760. . ROuUnd ooo cccecceeceeeeecseecesceteeeaes

RNT 0056 Right Half Indicators, On
TTOSt occ ccccccecceeeceeeeeeeeeeeeeee

A
D
D
R
E
S
S
A
B
L
E

I
N
D
E
X
A
B
L
E

I
N
D
I
R
E
C
T
L
Y

r
e
P
P
P
P
R
P

K
e
w
m

m
x

Pe
WK
P
X

m
K m
A

>A rs

r
h
6
P
e

6
h
s

»

PO
6

PS
PK
O
S

m
K

r
s

Alphabetic (Continued)

OPERATION CODE

ALPHA OCTAL

RQL 0773
SBM —0400
SCHA 0640
SCHB —0640
SCHC 0641
SCHD —0641
SCHE 0642
SCHF —0642
SIL —0055
SIR 0055
SLQ —0620
SLW 0602
SSM 0760, .0003
SSP 0760. .0003
STA 0621
STD 0622
STI 0604
STL —0625

STO 0601
STP _—_0630
STQ —0600
STR —1000
STT 0625
STZ 0600
SUB 0402
SXA 0634
SXD —0634
TCNA —0060

TCNB —0061

TCNC —0062

TCND —0063

TCNE —0064

TCNF —0065

TCOA 0060

TCOB 0061

TCOC 0062

TCOD 0063

TCOE 0064

TCOF 0065

TEFA 0030

TEFB —0030

TEFC 0031

TEFD —0031

INSTRUCTION

Rotate MQ Left......
Subtract Magnitude
Store
Store

Store

Store
Store Channel
Store

ChannelA
ChannelB
Channel C
Channel D oo.

Channel

Set Indicator of Left Half.....
Set Indicator of Right Half ..
Store Left Half MQ
Store Logical Word
Set Sign Minus........
Set Sign Plus............
Store Address............
Store Decrement......
Store Indicators........
Store Instruction Location
Counter00.....00....

Storeoe
Store Prefix
Store MQ
Store Location and Trap........
Store Tag oon.
Store ZETO oo... cecccccccceseeeee
Subtract 00... cccececeseeesveeee
Store Index in Address..........
Store Index in Decrement......
Transfer on DSC A
Not in Operation

Transfer on DSC B
Not in Operation

Transfer on DSC C
Not in Operation

Transfer on DSC D
Not in Operation

Transfer on DSC E
Not in Operation

Transfer on DSC F
Not in Operation

Transfer on DSC A
in Operation........

Transfer on DSC B
in Operation........

Transfer on DSC C
in Operation........

Transfer on DSC D
in Operation........

Transfer on DSC E
in Operation

Transfer on DSC F
in Operation.

Transfer on DSC A
Endof File

Transfer on DSC B
End ofFile............

Transfer on DSC C
End ofFile

Transfer on DSC D
End ofFile

~
1

M
O
D
I
F
’
N

PK
PE

PK
Pe

PE
PK
P
h

PK
Po

Pe
PK

Pe
P
S

I
N
D
E
X
A
B
L
E

P
P
P

P
P
P
R
K

P
K

Oe
Oe
O
K

d
d
d

De
pd

od
pt

od
Ot

* *

ae
em

Ke
e
M

r
e

~~
Ke

em
Ke
K
K
K
K
m

U
K

UK

i
i

a
ee

i
i

a
I
N
D
I
R
E
C
T
L
Y

A
D
D
R
E
S
S
A
B
L
E

a
m
r

m
p

OPERATION CODE

. ALPHA OCTAL

TEFE

TEFF

TIF
TIO
TIX
TLOQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQO

TQP
TRA
TRCA

TRCB

TRCC

TRCD

TRCE

TRCF

TSX
TTR
TXH
TXI

TXL

TZE
UAM

UFA

UFM

UFS

USM

VDH

VDP

VLM

WEF

WRS

XCA

XCL

XEC

ZET

Alphabetic (Continued)

0032

—0032

0046
0042
2000
0040

—0120
—0140
—2000
0100

0140
0120
0161

0162
0020
0022

—0022

0024

—0024

0026

—0026

0074
0021
3000
1000

—3000

0100
—0304

—0300
—0260

—0302

—0306

0224

0225

0204
0770
0766
0131

—-0130

0522
0520

INSTRUCTION

Transfer on DSC E
End of File .000...0000.

Transferon DSC F
End of File ...000

Transfer if Indicators Off
Transfer if Indicators On
Transfer on Index
Transfer on Low MQ............
Transfer on Minus
Transfer on No Overflow......
Transfer on No Index..........
Transfer on No Zero..............
Transfer on Overflow............
Transfer on Plus00.......
Transfer on Quotient
Overflow ooo.eceeeee

Transfer on MQ Plus..«........
Transfer
Transfer on DSC A
Redundancy Check............

Transfer on DSC B
Redundancy Check............

Transfer on DSC C
Redundancy Check............

Transfer on DSC D
Redundancy Check............

Transfer on DSC E
Redundancy Check............

Transfer on DSC F
Redundancy Check............

Transfer and Set Index..........
Trap Transfer 000.000.0000.
Transfer on Index High.....
Transfer with XR Incre-
ments

Transfer on XR Low or
Equal

Transfer on Zero oo...
Unnormalized Add Magni-
tude

Unnormalized Floating Add.
Unnormalized Floating Mul-

tiply
Unnormalized Floating Sub-

tract

Unnormalized Subtract
Magnitude 0.0

Variable Length Divide or
Halt

Variable Length Divide or
Proceed oo...

Variable Length Multiply1, 2
Write End of File o0.0000000......
Write Select 00.0.0.
Exchange AC and MQ..........
Exchange Logical AC and
MQcette

Execute

Storage Zero Test ..00.00.0000...

Appendix

M
O
D
I
E
F
’
N

4
4

1

4

2

2

8

8

A
D
D
R
E
S
S
A
B
L
E

I
N
D
I
R
E
C
T
L
Y

P
A
G
E

I
N
D
E
X
A
B
L
E

Ca
t

o
O

M
P
P
O

m
K
K
O ry re

46
43

34
33

34

x
~e

Ke
K
K

OM

ma
me

Mm
K
R

34

30

30

28

65

64

40

a
x
e
m
m

40

XX 42

XX 49

167

Numerical Listing

OPERATION CODE

ALPHA OCTAL

HTR
TRA
TTR
ESNT

TRCA

TRCB

TRCC

TRCD

TRCE

TRCF

TEFA

TEFB

TEFC

TEFD

TEFE

TEFF

TLQ
1A
TIO
RIA
OAI

PAI

TIF
PIA

IR

IIL
RFT

LFT
SIR
SIL
RNT

LNT
RIR

RIL
TCNA

TCNB

TCNC

TCND

TCNE

TCNF

TCOA

TCOB

TCOC

168

0000
0020
0021

—0021

0022

—0022

0024

—0024

0026

—0026

0030

—0030

0031

—0031

0032

—0032

0040
0041

—0042
0043

0044

0046
—0046

0051

—0051
0054

—0054
0055

—0055
0056

—0056
0057

—0057
~~0060

—0061

—0062

—0063

—0064

—0065

0060

0061

0062

IBM 709

INSTRUCTION

Halt and Transfer..................
Transfer
Trap Transfer00.00.
Enter Storage Null.
and Transfer 2.0000...

Transfer on DSC A
Redundancy Check............

Transfer on DSC B
Redundancy Check............

Transfer on DSC C.
Redundancy Check............

Transfer on DSC D
Redundancy Check............

Transfer on DSC E
Redundancy Check............

Transfer on DSC F
Redundancy Check............

Transfer on DSC A
End of File 000.

Transfer on DSC B
End of File 2.000000...

Transfer on DSC C
End of File ...0000.0000c.

Transfer on DSC D
Endof File 20000000000.

Transfer on DSC E
End of File 000.0000.

Transfer on DSC F
End of File ..0...0000..

Transfer on Low MoO
Invert Indicators from AC
Transfer if Indicators On....
Reset Indicators from AC
OR Accumulator to Indica-

LOTS ooo cccecceceeeececeeeeeeceees
Place Accumulator in Indica-
LOS ooo cccecceeeceesececcssuees

Transfer if Indicators Off
Place Indicators in Accumu-
Vatorcccceccccceteccceececees

Invert Indicators of Right
Half oor

Invert Indicators of Left Half
Right Half Indicators, Off

TTOSO ooo ecceeccccecccceceececees
Left Half Indicators, Off Test
Set Indicator of Right Half ...
Set Indicator of Left Half |.
Right Half Indicators, On
Test occcccecececeseesesesreseeeees
Left Half Indicators, On Test
Reset Indicators of Right

iS£-) |en
Reset Indicators on Left Half
Transfer on DSC A
Not in Operation

Transfer on DSC B
Not in Operation

Transfer on DSC C
Not in Operation.

Transfer on DSC D
Not in Operation................

Transfer on DSC E
Not in Operation

Transfer on DSC F
Not in Operation

Transfer on DSC A
in Operation 200.00.

Transfer on DSC B
in Operation 0.000.000...

Transfer on DSC C
in Operation 2.0.00...

M
O
D
I
E
’
N

I
N
D
E
X
A
B
L
E

I
N
D
I
R
E
C
T
L
Y

m
m
m
K

c
k

a
xe
K
K
K
K

OK
OK

OM

A
D
D
R
E
S
S
A
B
L
E

P
A
G
E

x
e
e
K
w

K
K

OK

OPERATION CODE

Numerical (Continued)

ALPHA OCTAL

TCOD

TCOE

TCOF

TSX
TZE
TNZ
CVR

CAQ

TPL
TMI
XCL

XCA

TOV
TNO
CRQ

TQO

TQP
MPY
MPR
VLM
DVH
DVP
VDH

VDP

FDH
FDP
FMP
UFM

FAD
UFA
FSB
UFS

FAM
UAM

FSM
USM

ANS
ANA
ERA
CAS

LAS

ACL
ADD
SBM
ADM
SUB
HPR
TIS

LDI
OSI
OFT
RIS
ONT
LDA

0063

0064

0065

0074
0100

-—0100
0114

—0114

0120
—0120
—0130

0131

0140
—0140
—0154

0161

0162
0200

—0200
0204
0220
0221
0224

0225

0240
0241
0260

—0260

0300
—0300

0302
—0302

0304
—0304

0306
—0306

0320
—0320

0322
0340

—0340

0361
0400

—0400
0401
0402
0420
0440

044]
0442

0445

0460

INSTRUCTION

Transfer on DSC D
in Operation 0.0.0...

Transfer on DSC E
in Operation ...0...0

Transfer on DSC F
in Operation oo.

Transfer and Set Index
Transfer on Zero0000000.......
Transfer on No Zero..............
Convert by Replacementfrom
AC

‘Transfer on Plus
Transfer on Minus..................
Exchange Logical Accumula-

tor and M

Transfer on Overflow............
Transfer on No Overflow.......
Convert by Replacementfrom

MQ oncecette cnteees
Transfer on Quotient
Overflow once

Transfer on MQ Plus............
Multiplyoo
Multiply and Round..............
Variable Length Multiplly......
Divide or Halt0.0.00.
Divide or Proceed
Variable Length Divide or

Halt occ
Variable Length Divide or

Proceed ooo.cece
Floating Divide or Halt
Floating Divide or Proceed...
Floating Multiply 00.0000...
Unnormalized Floating Mul-

UIP]Y occas
Floating Add oo...
Unnormalized Floating Add.
Floating Subtract ..00.0000..........
Unnormalized Floating Sub-

ETACt occseeees

Floating Add Magnitude......
Unnormalized Add Magni-
tUdEeee

Floating Subtract Magnitude
Unnormalized Subtract Mag-
MICUdE oe

AND to Storage00000.
AND to Accumulator
Exclusive OR to Accumulator
Compare Accumulator with
Storage oo..Le ceeceeeeeees

Logical Compare AC with
Storage oe

Add and Carry Logical Word
Ad oiiccceetetee eects
Subtract Magnitude................
Add Magnitude |...
Subtract oe.
Halt and Proceed....................
Invert Indicators from
Storageee

Load Indicators
OR Storage to Indicators ...
Off Test for Indicators..........
Reset Indicators from Storage
On Test for Indicators
Locate Drum Address............

M
O
D
I
F
’
N

6

6

o
o

e
d
t
d

I
N
D
E
X
A
B
L
E

m
e

m
m

P
P
P
R
P
R
O
K
E

a
e

pe
at

DM
K
O

H
R
K
r
O
O

O
M

76
OK
6

OS
K
O

OK

A
D
D
R
E
S
S
A
B
L
E

I
N
D
I
R
E
C
T
L
Y

P
A
G
E

m
s

w
s

a
A

r
e
P
M

6
6
P
S
O
K

49

49
45
43
43

62

63

44

40

40
44
44

62

44
44
28

28
30
30

30

30
36
36
35

35

33
33

34
33

34
34

34
54
54
54

49

Numerical (Continued) z
fy

OPERATION CODE 3
ALPHA OCTAL INSTRUCTION 5

CLA 0500 Clear and Add |...
CAL —0500 Clear and Add Logical Word
ORA —0501 OR to Accumulator................
CLS 0502 Clear and Subtract
ZET 0520 Storage Zero Test «0.0.0.0...
NZT —0520 Storage Non-Zero Test..........
XEC 0522 Execute ooo... cccceeeceeeeeees
LXA 0534 Load Index from Address.....
LXD —0534 Load Index from Decrement
LAC 0535 Load Complement of

. Address in XR _..........0.00..
LDC —0535 Load Complement of

Decrement in XR
RCHA 0540 Reset and Load Channel A.
RCHB —0540 Reset and Load Channel B..
RCHC 0541 Reset and Load Channel C.
RCHD —0541 Reset and Load Channel D.
RCHE 0542 Reset and Load Channel E.
RCHF —0542 Reset and Load Channel F..
LCHA 0544 Load Channel0..... 8
LCHB —0544 Load Channel0... 8
LCHC 0545 Load Channel C 8
LCHD —0545 Load Channel D 0... 8
LCHE 0546 Load Channel0.... 8
LCHF —0546 Load Channel F00.... 8
LDQ 0560 Load MQ oun.
ENB 0564 Enable .o0..0..0000cece
STZ 0600 Store ZELO oo...eeseeeenees
STQ —0600 Store MQoo
STO 0601 SHOE ooooccecccccccceccececeseereeceseeeene
SLW 0602 Store Logical Word
ORS —0602 OR to Storage0.0 cs.
STI 0604 Store Indicators0...006
SLQ. —0620 Store Left Half MQ
STA 0621 Store Address0..006ccc0ee
STD 0622 Store Decrement................0...
STT 0625 Store Tagcccccceeeeee
STL —0625 Store Instruction Location

Counter ooo... ccc cecceceecevees
STP 0630 Store Prefix00..cece
SXA 0634 Store Index in Address..........
SXD —0634 Store Index in Decrement....
SCHA 0640 Store Channel A0..000.
SCHB —0640 Store Channel B0.0000..
SCHC 0641 Store Channel C
SCHD —0641 Store Channel D0.0....0..
SCHE 0642 Store Channel E00.0....
SCHF —0642 Store Channel F0000..000..
CPY 0700 COPY oeseeteeeeeeetees 8
CAD —0700 Copy and Add Logical.......... 8
PAX 0734 Place Address in Index..........
PDX —0734 Place Decrement in Index......
PAC 0737 Place Complement of Address

IN KR occecsscccsereetseeeeees

I
N
D
E
X
A
B
L
E

PK
e
K
K
e

Ph
PA
P
S

OS
O
e

P
E
P

E
P
S
O
O
O

PS
PE

PG
PG

OS
OE

OO
Oe

re
Ke

PK
Pe

PE
PE

PE
DE

PE
OK

P
E
P

Po
PE

OS
R
P

OE
PE

PE
PE

OO
OS

DE
Oe

OK
Oe

OE
Oe

OK
OE

OK
PK

DE
OK

OS
PO

Kk
A

OE
Pe

Pe
P
e

A
D
D
R
E
S
S
A
B
L
E

I
N
D
I
R
E
C
T
L
Y

P
A
G
E

h
h

P
e

26

54
26
49
49
42
50
51

OPERATION CODE

Numerical (Continued)

ALPHA OCTAL

PDC

PXA
PXD
PSE
MSE
CLM
LBT
PBT
CHS
EFTM
SSP
SSM
ENK
LFTM
IOT
ESTM
COM
ECTM
ETM
LTM
RND
LSNM

FRN
DCT
RCT
NOP
RDS
LLS
LGL
BSR
BSF
LRS
LGR
WRS
ALS
WEF
ARS
REW
RQL
AXT
AXC

TXI

STR

TIX

TNX

TXH

TXL

—0737

0754
—0754

0760
—0760

0760.
0760.

—0760.
0760.

—0760.
0760,

—0760,
0760.

—0760.
0760.

—0760.
0760...

—0760.
0760.

—0760.
0760.

—0760,

0760.
0760.
0760.
0761
0762
0763

—0763
0764

—0764
0765

—0765
0766
0767
0770
0771
0772

—0773
0774

—0774

1000

—1000
2000

—2000
3000

—3000

.0000
0001
.0001
0002
.0002
.0003
0003
.0004
0004
0005
.0005

.0006
0007
0007
.0010
.0010

.0011

.0012

.0014

M
O
D
I
E
’
N

I
N
D
E
X
A
B
L
E

INSTRUCTION

Place Complement of
Decrement in XR0000......

Place Index in Address..........
Place Index in Decrement......
Plus Sense€ 000000.
Minus Sense0....c0ceees
Clear Magnitude |...
Low-Order Bit Test
P-bit Test ooo...
Change Signo...ee
Enter Floating Trap Mode....
Set Sign Plus...
Set Sign Minus 0...
Enter Keys 0.000.
Leave Floating Trap Mode...
Input-Output Check Test......
Enter Select Trap Mode........
Complement Magnitude........
Enter Copy Trap Mode........
Enter Trapping Mode............
Leave Trapping Mode.........
Round ooceceeeeeeeeee ees
Leave Storage Nullification

NYCo)6(nn
Floating Round0.0.....0..
Divide Check Test
Restore Channel Traps..........
No Operation «0.0.0.0...
Read Select 2.000.000.0000.
Long Left Shift 2000.00.00.
Logical Left Shift 00.00.0000.
Backspace Record |...
Backspace File 2.0.00...

Long Right Shift ...00.0000...
Logical Right Shift 000000...
Write Select 0.0.00 8

Accumulator Left Shift.......... 7

Write End of File 0000.00.00... 8

Accumulator Right Shift 7
Rewind oo...eee 8

Rotate MQ Left oe. 7

Address to Index True..........

Address to Index
Complemented 2.00...

Transfer with XR
Incremented0006008

Store Location and Trap......
Transfer on Index 000.000.0000...

Transfer on No Index............

Transfer on Index High........
Transfer on XR Low

or Equaloe

2

P
O
P

PR
P
E

PE
PE
P
P
P
E
E

PE
RE

PR
P
R
E
P
e
P
O

PE
E
E

Oe
P
E

OE
PE

OK
O
K

~
y

+
C
O

™
)

“
I

“
1
@

Appendix

A
D
D
R
E
S
S
A
B
L
E

I
N
D
I
R
E
C
T
L
Y

P
A
G
E

45
40

46

45

46

169

709 FORTRAN Automatic Coding System for the IBM 709

TABLE OF CONTENTS

PART |. GENERAL CONCEPTS

Chapter 1. The General Properties of a FORTRAN Source Program

Chapter 2. Constants, Variables, Subscripts and Expressions

Chapter 3. Functions

PART Il. THE FORTRAN LANGUAGE

Chapter 1. The Arithmetic Formula

Chapter 2. Control Statements and END Statement

Unconditional GO TO

Computed GO TO

Assigned GO TO

ASSIGN

IF

SENSE LIGHT

IF (SENSE LIGHT)

IF (SENSE SWITCH)

IF ACCUMULATOR OVERFLOW

IF QUOTIENT OVERFLOW

IF DIVIDE CHECK

DO

CONTINUE

PAUSE

STOP

END

Chapter 3. Subprogram Statements

SECTION A: FUNCTION andSUBROUTINE
FUNCTION

SUBROUTINE

SECTION B: CALL and RETURN

CALL

RETURN

Chapter 4. Input/Output Statements

FORMAT

READ

Page

12

17

19

20

20

20

20

21

21

21

21

22

22

22

23

23

26

26

27

27

28

30

30

31

33

33

34

35

37

42

Chapter 5.

READ INPUT TAPE

PUNCH

PRINT

WRITE OUTPUT TAPE

READ TAPE

READ DRUM

WRITE TAPE

WRITE DRUM

END FILE

REWIND

BACKSPACE

Specification Statements
DIMENSION

FREQUENCY

EQUIVALENCE

COMMON

PART II]. GENERAL RULES FOR FORTRAN PROGRAMMING

Chapter 1.

Chapter 2.

Miscellaneous Details about 709 FORTRAN

Limitations on Source Program Size

APPENDICES

A.

B.

Source Program Statements and Sequencing

Table of Source Program Characters

. Table of Library Functions

. Sense Switch Settings for 709 FORTRAN

. Using Hand-Coded Subroutines with 709 FORTRAN
Compiled Object Programs

42

43

44

44

45

46

46

46

AT

47

48

48

48

30

2

59

56

64

69

73

75

77

79

CHAPTER 1 — GENERAL PROPERTIES OF A FORTRAN SOURCE PROGRAM

Example of a

FORTRAN
Program

Punching
a Source
Program

A FORTRANsource program consists of a sequence of source

statements, of which there are 38 different types. These statement

types are described in detail in the chapters which follow.

The brief program shown in Figure 1-will serveto illustrate the

general appearance and someof the properties of a FORTRAN

program. It is shown as coded on a standard FORTRANcoding sheet.

The purpose of the program is to determine the largest value attained

by a set of numbers, (I), and to print the numberon the attached

printer. The numbers exist on punched cards, 12 to a card, each

number occupying a field of 6 columns. There are no more than

999 numbers; the actual numberis punched on the leading card and

is the only number on that card.

Each statement of a FORTRANsource program is punchedinto a

separate card (the standard FORTRAN card form is shown in

Figure 2); however, if a statement is too long to fit on one card, it

can be continued on as many as nine "continuation cards."' The

order of the source statements is governed solely by the order of

the statement cards.

FOR COMMENT

STATEMENT |e

vue FORTRAN STATEMENT5

Figure 1

A
s

/ For
“TommentC

STATEMENT

NUMBER

e000
laaas

Watt

212222

313333

leans

515555

ease

17777

dsaee
TO

N

2

3

4

5

6

7

8 9993 Qs
2245

9
Eg

—
eo
]
co

nt
ia

ua
r

FORTRAN STATEMENT IDENTIFICATION

COCODTAOHHOKOOKHHHONKKOKOKAONNDHODOONOTHOOHODOOGOHOOOCoOOANDOGOOHOOD
TW 9 1G 11 12 13-14 15 6 17 $8 19 20 2-22 29 24 2S 2G 27 2M 29 OB BZ 3B 3S 26 37 IW WS 40.41 42 49 46 45 AG 47 48 49 50 51 52 53 SA 55 36 57 58 58 GO ET GZ 63 64 6S G6 67 68 68 7071-72
PEDEVATAT EDTA TAD AT TEA T TDD TTT ATTTATA)

28kkkk22222222222222222222222222

33333333333333333339333

MAAAMAAAAAAGAAA AMARA AAAAAAAAAAAAAAARAAAAAAA AMAA A EAEAAAS

RESERELECEEEECEE ECOL EEL EELEL EES EEL EEE EEE EE EEE ESE EEE ELE LEED)

BEGGGESSESGSESESSEESSEEGSEEGEEGESGSEGEEGSEESEEEEEEGEGEGGGEEGESEGES

PUTTT TUTTI TVTI TAT T TTT TTT IIIT TTITITITATTTVATTITTIIIITIVIITTAITITTATIII

BESERRBSSSSSSSSSSRSGSSSBBBBSSBSSBBBSSSSSBSEESS3BSISSSSSRSBEBS8E88

9999999999999999999999999 9 9
ef 2S 10 99-42 13 14.95 16 17 18 19.20 21 22 23 24 5 6 272 39 WN uv a
 8

a Ss?
99
G1 82

$
oT

993999999999999999993999999999999999999999
32 32M 3S 36 B38 40 2 43 44:45 45 47 48 9 50 52 53 54 55 56 SB 59 GO 63 64 G5 65 88 69 1071 72

DO000000
[a 75 1617 1839.29
Thitiiy

22222222

33333333

4444gag

55555555.

BG6S66566

71777177

88888888 §$9999939913 74 75 7% 77 78:79 80 (am 688157

Cards which contain a 'C" in column 1 are not processed by the

FORTRAN program. Such cards may, therefore, be used to carry

comments which will appear when the source program deckis listed.

Numbersless than 32,768 may be punched in columns 1-5 of the initial

card of a statement. When such a number appears in these columns,

it becomes the statement number of the statement. These statement

numbers permit cross references within a source program, and when

necessary, facilitate the correlation of source and object programs.

Column6 of the initial card of a statement must be left blank or punched

with a zero. Continuation cards (other than for comments), on the

other hand, must have column 6 punched with some characterother

than zero, and may be punched with numbers from 1 through 9.

Continuation cards for comments need not be punched in column 6;

only the ''C'" in column 1 is necessary.

The statements themselves are punched in columns 7-72, both on

initial and continuation cards. Thus, a statement may consist of not

more than 660 characters (i.e., 10 cards). A table of the admissible

characters for FORTRANis given in Appendix B. Blank characters,

except in column 6, are simply ignored by FORTRAN, and may be

used freely to improve the readability of the source program listing.

Columns 73-80 are not processed by FORTRAN, and may, therefore,

be punched with any desired identifying information.

The input to FORTRAN maybe either the deck of source statement

cards, or a BCD tape prepared on peripheral card-to-tape equipment

using the standard SHARE 80 x 84 board. On such a tape, an end-of-

file mark is required after the last card.

Types of
FORTRAN
Statements

The 38 types of statements which can be used in a FORTRANprogram

may be classified as follows:

1. The arithmetic formula which specifies a numerical computation.

Part I, Chapter 2 discusses the symbols available for referring

to constants, variables and functions; and Part II, Chapter 1 the

combining of these into arithmetic formulas.

The fifteen control statements which govern the flow of control

in the program. These, plus the END statement, are discussed

in Part II, Chapter 2.

The four subprogram statements which enable the programmer

to define and use subprograms. The method for utilizing sub-

programs is discussed in Part II, Chapter 3.

The thirteen input/output statements which provide the necessary

input and output routines. These statements are discussed in

Part II, Chapter 4.

The four specification statements which provide information

required, or desirable to make the object program efficient.

These are discussed in Part II, Chapter 5.

CHAPTER 2 — CONSTANTS, VARIABLES, SUBSCRIPTS, AND EXPRESSIONS

CONSTANTS

Fixed Point

Constants

Floating

Point

Constants

VARIABLES

As required of any programming language, FORTRANprovides a

means of expressing numerical constants and variable quantities.

In addition, a subscript notation is provided for expressing one-,

two-, or three-dimensional arrays of variables.

Two types of constants are permissible in the FORTRAN source

program language: Fixed point (restricted to integers), and

floating point (characterized by being written with a decimal point).

GENERAL FORM EXAMPLES

1 to 5 decimal digits. A preceding 3

+ or - sign is optional. The +1

magnitude or absolute value of the -28987

constant must beless than 22”,

Wherea fixed point constant is used for the value of a subscript,

it is treated modulo (size of core storage).

GENERAL FORM EXAMPLES

Any numberof decimal digits, with 17.

a decimal point at the beginning, at 5.0

the end, or between two digits. A -. 0003 3

preceding + or - sign is optional. 5.0E3 (5.0 x 10°)

A decimal exponent preceded by an 5.0E+3 (5.0 x 10°)

E may follow a floating point constant.

The magnitude of a number thus 5.0E-7 (5.0 x 1077)

expressed must lie between the

approximate limits of 10-38 and

1038 | or be zero.

Two types of variables are permissible: fixed point (restricted to

integral values) and floating point. References to variables are

made in the FORTRANsource language by symbolic names consisting

of alphabetic and, if desired, numerical characters.

Fixed Point
Variables

Floating
Point

Variables

SUBSCRIPTS

GENERAL FORM EXAMPLES

1 to 6 alphabetic or numerical I

characters (not special characters), M2

of which the first is I, J, K, L, M, JOBNO

or N,
A fixed point variable can assume any integral value provided the

magnitude is less than 217. Values used for subscripts, however,

are treated modulo (size of core storage).

To avoid the possibility that a variable may be considered by

FORTRAN to be a function (see page 13), the following two warnings

should be observed with respect to the naming of variables:

Warning: A variable cannot be given a name which coincides with

the name of a function without its terminal F. Thus, if

a function is named TIMEF, no variable should benamed

TIME.

Unless their names are less than four characters in length,

subscripted variables (see below) must not be given names

ending with F, because FORTRANwill consider variables

so namedto be functions.

GENERAL FORM EXAMPLES

1 to 6 alphabetic or numerical A

characters (not special characters), B7

of which the first is alphabetic but DELTA

not I, J, K, L, M, or N.

A floating point variable can assume any value expressible as a

normalized floating point number, i.e. , zero or with magnitude

between approximately 1038 and 10738,

Note: The restrictions on naming fixed point variables also apply

to floating point variables.

A variable can be made to represent any element of a one-, two-,

or three-dimensional array of quantities by appending 1, 2, or 3

subscripts to it, respectively. The variable is then a subscripted

variable. These subscripts are fixed point quantities whose values

determine the memberof the array to which reference is made.

7

GENERAL FORM EXAMPLES

Let v represent any fixed point I

variable and c (or c’) any unsigned 3

fixed point constant. Then a sub- MU+2

script is an expression in one of the MU-2

forms:

Vv 5*J

Cc 5*J+2

vte or v-c 5*J-2

c*¥v

c¥v+c' or c¥v-c!

(The symbol * denotes multiplication.)
The variable in a subscript must not itself be subscripted.

Subscripted GENERAL FORM EXAMPLES
Variables

A fixed or floating point variable, A (J)

followed by parentheses enclosing K (3)
1, 2, or 3 subscripts which are BETA (5*J-2, K+2, L)

separated by commas.
Each variable which appears in subscripted form must have the size

of its array (i.e., the maximum values which its subscripts can

attain) specified in a DIMENSION statement precedingthefirst

appearance of the variable in the source program.

The value of a subscript exclusive of its addend, if any, must be

greater than zero and not greater than the corresponding array

dimension.

Arrangement If an array, A, is 2-dimensional, it will be stored sequentially in

of Arrays in the order Aj, 13 Ag, Joe seee ; Am, 13 A123 Ag, Denes Am, Qivcccenes ;

Storage Amn Arrays are thus stored "columnwise," with the first of their

subscripts varying most rapidly, and the last varying least rapidly.

The sameis true of 3-dimensional arrays. Arrays which are

1-dimensional are of course simply stored sequentially.

All arrays are stored backwards; i.e., in the order of decreasing

absolute storage locations.

EXPRESSIONS

Rules for
Constructing
Expressions

A FORTRAN expression is any sequence of constants, variables

(subscripted or not subscripted), and functions (see page 13 for

naming of functions), separated by operation symbols, commas,

and parentheses so as to form a meaningful mathematical expression.

By repeated use of the following rules, all permissible expressions

may be derived.

1. Although a FORTRAN expression may be either fixed point or

floating point, it must not be a mixed expression. This does

not mean that a floating point quantity cannot appear in a fixed

point expression, or vice versa, but rather that a quantity of

one mode can appear in an expression of the other mode only in

certain ways.

These are:

A. A floating point quantity can appear in a fixed point expression

only as an argumentof a function.

B. A fixed point quantity can appear in a floating point expression

only as an argumentof a function, or as a subscript, or as

an exponent.

Any fixed point (or floating point) constant, variable, or subscripted

variable is also an expression of the same mode. Since variables

with names beginning with I, J, K, L, M, or N, and intergers

are fixed point, 3 and I are fixed point expressions. However,

ALPHA and A (I,J, K) are floating point expressions.

If SOMEFis somefunction of n variables, and if E, F,...., H

are a set of n expressions of the correct modes for SOMEF, then

SOMEF(E, F,..... , H) is an expression of the same mode as

SOMEF.

If E is an expression, and if its first character is not + or -, then

+E and -E are expressions of the same mode as E. Thus -A is

an expression, but + -A is not.

If E is an expression, then (E) is an expression of the same mode

as E. Thus (A), ((A)), (((A))), etc., are expressions.

If E.and F are expressions of the same mode, and if the first
character of F is not + or -, then

E+F
E-F
E*F
E/F

Hierarchy of
Operations

Ordering

within a
Hierarchy

Verification

of Correct Use

of Parentheses

are all expressions of the same mode, but A-+B and A/+B are

not expressions. (The characters +, -, *, and / denote addition,

subtraction, multiplication, and division, respectively.)

If E and F are expressions, and is not a floating point expression

unless E is too, and the first character of F is not + or -, and

neither E nor F is of the form A**B; then

E**F

is an expression of the same mode as E. Thus A**(B**C) is an

expression, but I**(B*¥*C) and A**B**C are not. (In FORTRAN,

the symbol ** denotes exponentiation; hence A**B means AB,)

Whenthe hierarchy of operations in an expression is not explicity

specified by the use of parantheses, it is understood by FORTRAN

to be in the following order (from innermost operations to outermost):

Exponentiation

Multiplication and Division

Addition and Subtraction

For example, the expression

A+B/C+D**E*F-G

will be taken to mean

A+(B/C)+(DE*F)-G

Parentheses which have been omitted from a sequence of consecutive

multiplications and divisions (or consecutive additions and subtractions)

will be understood to be grouped from the left. Thus, if erepresents

either * or / (or either + or -), then

A*B*Ce*DeE

will be taken by FORTRAN to mean

((((A*B)*C)*D)° E)

The following procedure can be used for checking that the parentheses

in a complicated expression correctly express the desired operations:

10

Label the first open parenthesis "1"; thereafter, working

from left to right, increase the label by 1 for each open

parenthesis and decrease it by 1 for each closed parenthesis.

Optimization of

Arithmetic

Expressions

Then the label of the last parenthesis should be 0; the mate
of an open parenthesis labeled n will be the next parenthesis
labeled n-1.

The efficiency of instructions compiled from arithmetic expressions
may also be influenced by the way in which the expressions are
written. The section on Optimization of Arithmetic Expressions in
Part III, Chapter 2 mentions some of the considerations which affect
object program efficiency.

11

CHAPTER 3 — FUNCTIONS

CALLING

This chapter is intended to discuss the four function-types which may

be utilized in FORTRAN. However, in order to better clarify the

meaning and uses of functions, they will first be shown in their relation
to subroutine-types as a whole. A subroutine is considered as any
sequence of instructions which performs some desired operation.

In addition to functions, subroutines consist of subprograms. Their
interrelationship can be represented schematically as follows:

Use

Calling

Method Naming Definition

5 _

Closed (or Library)
functions

Open (or Built-in)

functions

Arithmetic Statement]

functions

Fortran functions)
(FUNCTION-type
Subprograms)

Subroutine (or

SUBROUTINE-

type) Subprograms 4 —

It is thus clear that from the standpoint of use there are four sub-

routine-types (i.e., the functions) which are alike. They differ only

in the way that one of them is named. When defining (writing) these

subroutines for incorporation in a FORTRAN program, there are

four different possibilities. (These are discussed on page 14.)

As indicated in the schematic there are two distinct ways by which

subroutines may be referred to. One of these is by means of an

arithmetic expression. (This applies to the four functions: Closed,

Open, Arithmetic Statement, and Fortran functions.) The other,

which applies to Subroutine subprograms, is by means of a CALL

statement. (See page 33.)

Following are examples of arithmetic expressions including function

names.

12

NAMING

Naming of

Open, Closed,
and Arithmetic
Statement

Functions

Y =A - SINF(B-C)

C = MINOF (M, L)+ABC (B*FORTF(Z), E)

The names of Open, Closed, Arithmetic Statement, and Fortran

functions are all used in this way. The appearancein the arithmetic

expression serves to call the function; the value of the function is

then computed, using the arguments which are supplied in the

parentheses following the function name, Only one value is produced

by these four functions, whereas the Subroutine subprogram may

produce many values. (A value is here defined to be a single

numerical quantity.)

The following paragraphs describe the rules for naming Open, Closed,

and Arithmetic Statement functions.

GENERAL FORM EXAMPLES

The nameof the function consists ABSF (B)

of 4 to 7 alphabetic or numerical XMODF(M/N,K)
characters (not special characters), COSF (A)

of which the last must be F and the FIRSTF (Z + B, Y)

first must be alphabetic. Further,

the first must be X if and only if the

value of the function is to be fixed

point. The nameof the function is

followed by parentheses enclosing the arguments separated by commas.
on +1

Mode of a Function and its Arguments. Consider a function of a

single argument. It may be desired to state the argumenteither in

fixed or floating point; similarly the function itself may be in either

of these modes. Thusa function of a single argument has 4 possible

mode configurations; in general a function of n arguments will have

mode configurations.

A separate name must be given, and a separate routine must be

available, for each of the mode configurations which is used. Thus,

a complete set of names for a given function might be:

SOMEF Fixed argument, floating function

SOMEOF Floating argument, floating function

XSOMEF Fixed argument, fixed function

XSOMEOF Floating argument, fixed function

The X's and F's are mandatory, but the rest of the namingis arbitrary.

13

Naming of

Fortran

Functions

DEFINITION

Open(or
Built-in)

Functions

Although these functions are referred to by arithmetic expressions

in the same manneras the previous three types, the rules for naming

them are different. These functions are named in exactly the same

,way as ordinary variables of the program, except that no nameof a

‘Fortran function which is 4 to 6 characters long may end in F. This

means that the nameof a fixed point Fortran function must have

I, J, K, L, M or N forits first character.

Further details on naming Fortran functions are given on page 30.

Each of the four types of functions is defined (or generated) ina

different way.

The 709 FORTRAN system, as distributed, contains 20 built-in

subroutines.

subroutines.

system by the particular installation.

this are given in the 709 FORTRAN Operations Manual.

It, further, has the capacity for 7 more built-in

The additional subroutines may be inserted into the

The detailed rules for doing

Following are the 20 functions that are compiled as open subroutines

into the arithmetic statement which calls them.

No. of Mode of

Type of Function Definition Args. Name Argument Function

Absolute value | Arg] 1 ABSF Floating Floating
XABSF Fixed Fixed

Truncation Sign of Arg 1 INTF Floating Floating

times largest XINTF Floating Fixed

integer SlArg|
Remaindering Arg; (mod 2 MODF Floating Floating

(see note below) Arg?) XMODF Fixed Fixed

Choosing Max (Arg1, 22 MAXOF Fixed Floating

largest value Argo,.--) MAXIF Floating Floating

XMAXOF Fixed Fixed
XMAXIF Floating Fixed

Choosing Min (Arg1, MINOF Fixed Floating

smallest value Argo,.-.) 22 MINIF Floating Floating
XMINOF Fixed Fixed
XMINIF Floating Fixed

Float Floating a 1 FLOATF Fixed Floating

fixed number

Fix Same as 1 XFIXF Floating Fixed

XINTF
Transfer Sign of Argo 2 SIGNF Floating Floating

of sign times (Arg1) XSIGNF Fixed Fixed
Positive |Argy-Arg9| 2 DIMF Floating Floating

difference XDIMF Fixed Fixed

NOTE: The function MODF (Arg;, Argo)is defined as Arg, - [Argy / Argo| Arg,
where (xJ=integral part of x.

14

Closed (or
Library)
Functions

Arithmetic

Statement

Functions

These are functions which are pre-written and may exist on the

library tape or in prepared card decks. These functions constitute

"closed" subroutines, i.e., instead of appearing in the object

program for every reference that has been made to them in the

source program, they appear only once regardless of the number

of references.

Hand-coded closed functions may be added to the library. Rules for

coding these subroutines are given in Appendix E; those for adding

them to the library are included in the FORTRAN Operations Manual.

Seven library functions are included in the 709 FORTRANsystem,

as distributed. These are listed in Appendix C.

These are functions which are defined by a single FORTRAN

arithmetic statement and apply only to the particular program or

subprogram in which their definition appears.

GENERAL FORM EXAMPLES

"a =b" where a is a function FIRSTF(X) = A*¥X + B

name followed by parentheses SECONDF (X, B) = A*¥X +B

enclosing its arguments THIRDF(D) = FIRSTF(E)/D
(which must be distinct non- FOURTHF (F,G) = SECONDF(F,

subscripted variables) THIRDF (G))

separated by commas, and b FIFTHF(I, A) = 3. 0*A**I

is an expression which does SIXTHF(J) =J +K

not involve subscripted XSIXTHF(J) =J +K

variables. Any functions

appearing in b must be built-

in, or available on the

master tape, or already de-

fined by preceding function

statements.
Just as with the other functions, the answer will be expressed in

fixed or floating point according as the name does or does not begin

with X.

The right-hand side of a function statement may be any expression,

not involving subscripted variables, that meets the requirements

specified for expressions. In particular, it may involve functions

freely, provided that any such function, if it is not built-in or

available on the master tape, has been defined in a preceding

function statement.

15

Fortran

Functions

As many as desired of the variables appearing in the expression on

the right-hand side may be stated on the left-hand side to be the
arguments of the function. Since the arguments are really only

dummy variables, their names are unimportant (except as indicating

fixed or floating point mode) and may even be the same as names

appearing elsewhere in the program.

Those variables on the right-hand side which are not stated as

arguments are treated as parameters. Thus if FIRSTFis defined

in a function statement as FIRSTF(X) = A*X + B then a later reference

to FIRSTF (Y) will cause ay+b, based on the current values of a, b,

and y, to be computed. The naming of parameters, therefore, must

follow the normal rules of uniqueness.

A function defined by a function statement may be used just as any

other function. In particular, its arguments may be expressions

and may involve subscripted variables; thus a reference to

FIRSTF(Z + Y(1)), with the above definition of FIRSTF, will cause

a(zty;) + b to be computed on the basis of the current valuesof a, b,

y,> and z.

Functions defined by arithmetic statements are always compiled as

closed subroutines.

Note: All the arithmetic statements defining functions to be used in

a program must precedethe first executable statement of the

program.

This class of functions covers those subroutines which on the one

hand cannot be defined by only one arithmetic statement, and on the

other, are not utilized frequently enough to warrant a place on the

library tape.

They are called Fortran functions because they may conveniently be

defined by a conventional FORTRAN program. In this instance

compiling a FORTRAN program produces a Function subroutine in

exactly the form required for object program execution.

Since Fortran functions and Subroutine subprogramsare defined in

the same way, a discussion of the definition of Fortran functions

is included in Part I, Chapter 3.

16

CHAPTER 1 — THE ARITHMETIC FORMULA

Arithmetic

Formula

GENERAL FORM EXAMPLES

"a =b" where a is a variable Ql1=K

(subscripted or not subscripted) A(I)=B(D+SINF (C(1))

and b is an expression.

The arithmetic formula defines a numerical calculation. A FORTRAN

arithmetic formula resembles very closely a conventional arithmetic

formula. However, in a FORTRANarithmetic formula the = sign

means "is to be replaced by," not "is equivalent to.'' Thus, the

arithmetic formula

Y = N-LIMIT (J-2)

meansthat the value of N-LIMIT (J-2) is to replace the value of Y.

The result is stored in fixed point or in floating point form if the

variable to the left of the = sign is a fixed point or a floating point

variable, respectively.

If the variable on the left is fixed point and the expression on the

right is floating point, the result will first be computed in floating

point and then truncated and converted to a fixed point integer. Thus,

if the result is +3. 872 the fixed point number stored will be +3, not

+4, If the variable on the left is floating point and the expression on

the right fixed point, the latter will be computed in fixed point, and

then converted to floating point.

Examples of Arithmetic Formulas

A=B Store the value of Bin A.

I =B Truncate B to an integer, convert to fixed point,
and store in I.

A=I Convert I to floating point, and store in A.

I =I+1 Add 1 to land store in I. This exampleillustrates
the fact that an arithmetic formula is not an equa-
tion, but is a commandto replace a value.

A = 3.0*B Replace A by 3B.

A = 3*B Not permitted. The expression is mixed, i.e.,
contains both fixed point and floating point variables. A = I*B Not permitted. The expression is mixed.

19

CHAPTER 2 — CONTROL STATEMENTS AND END STATEMENT

Unconditional

GO TO

Computed
GO TO

Assigned |

GOTO

The second class of FORTRAN statements is the set of sixteen

control statements which enable the programmerto state the flow

of his program.

GENERAL FORM EXAMPLES

"GO TO n" where n is a statement GO TO 3

number.

This statement causes transfer of control to the statement with

statement numbern.

GENERAL FORM EXAMPLES

"GO TO (21, N9,..., Ny), i where GO TO (30, 42,50, 9), I

Nj, ng,....-. » Nm are statement

numbers and i is a non-subscripted

fixed point variable.

Control is transferred to the statement with statement number

Ny, ng,ng,---, Nm, depending on whether the value of i at time of

execution is 1, 2, 3,..., m, respectively. Thus, in the example,

if iis 3 at the time of execution, a transfer to the 3rd statement of

the list, namely statement 50, will occur.

This statement is used to obtain a computed many-way fork.

GENERAL FORM EXAMPLES

"GO TO n, (21, ng,..., Nm)" where GO TO K, (17,12, 19)

n is a non-subscripted fixed point

variable appearing in a previously

executed ASSIGN statement, and

Nj, Ng,---, Ny are statement

numbers.

This statement causes transfer of control to the statement with

statement number equal to that value of n which was last assigned by

an ASSIGN statement; nj, ng,..., Np are a list of the values which

n may have assigned.

20

ASSIGN

SENSE
LIGHT

IF (SENSE

LIGHT)

The assigned GO TO is used to obtain a pre-set many-way fork.

When an assigned GO TOexists in the range of a DO, there is a

restriction on the values of nj, ng,. -, Nm: (See page 25.)

GENERAL FORM EXAMPLES

"ASSIGN i TO n" whereiis a

statement numberand n is a non-

subscripted fixed point variable

which appears in an assigned GO

TO statement.
ASSIGN 12 TOK

This statement causes a subsequent GO TO n, (ny,--,°°? Nm) to

transfer control to the statement with the statement numberi.

GENERAL FORM EXAMPLES

"IF (a) ny, Ng, Ng" where a is an

expression and nj, ng, ng are

statement numbers.
IF(A(J, K)-B)10, 4, 30

Control is transferred to the statement with the statement number

Nj, ng, or ng if the value of a is less than, equal to, or greater than
zero, respectively.

GENERAL FORM EXAMPLES

"SENSE LIGHT i" where iis 0, 1,

2, 3, or 4.
SENSE LIGHT 3

If iis 0, all Sense Lights will be turned Off; otherwise Sense Light
i only will be turned On.

GENERAL FORM EXAMPLES

"IF (SENSE LIGHTi) nj, no"

where nj, and no are statement
numbers andiis 1, 2, 3, or 4.

IF (SENSE LIGHT 3) 30, 40

21

IF (SENSE
SWITCH)

IF ACCU-
MULATOR
OVERFLOW

IF QUOTIENT
OVERFLOW

Control is transferred to the statement with statement number nj
or ng if Sense Light i is On or Off, respectively. If the light is On,
it will be turned Off.

GENERAL FORM _ EXAMPLES

"IF (SENSE SWITCHi) nj, ng" IF (SENSE SWITCH3)
where n, and no are statement 30, 108
numbers andiis 1, 2, 3, 4, 5,

or 6.
Control is transferred to the statement with statement numbernj
or ng if Sense Switch i is Down or Up, respectively.

GENERAL FORM EXAMPLES

"IF ACCUMULATOR OVERFLOW IF ACCUMULATOR

ny, Ng" where nj and no are OVERFLOW 30, 49
statement numbers.

GENERAL FORM EXAMPLES

"IF QUOTIENT OVERFLOWnj, IF QUOTIENT OVER-

Ny" where n, and no are statement FLOW 30, 49
numbers.

Control is transferred to the statement with statement number ny
if an overflow condition is present in either the Accumulator or the
Multiplier-Quotient Register, and to ng is no overflow is present at
all. That is, in 709 FORTRAN, programmingeither of these

statements is equivalent to programming a non-FORTRANstatement,

IF OVERFLOW nj, no. In 709 FORTRAN,an internal indicatoris

used to denote the overflow condition; it is reset to the no-overflow

condition after execution of either of these two statements.

When either the Accumulator or Multiplier-Quotient Register over-
flows, the register is set to contain the highest possible quantity,
i.e., STTTTTTTTTTTg. The sign is unchanged.

If an underflow occurs in either register, that register is set to zero,
the sign remains unchanged. Thereis no test for the underflow
condition,

22

IF DIVIDE
CHECK

DO

GENERAL FORM EXAMPLES

"IF DIVIDE CHECK nj, no" where IF DIVIDE CHECK

ny and ny are statement numbers. 84, 40

Control is transferred to the statement with statement number nj}

or ng, if the Divide Check trigger is On or Off, respectively. If it

is On, it will be turned Off.

GENERAL FORM EXAMPLES

"DO ni=m,, M9" or "DOni=my,, DO 30 I=1, 10

M9, Mg" where n is a statement DO 30 I=1, M,3

number,i is a non-subscripted fixed

point variable, and mj, Mg, Mg are

each either an unsigned fixed point

constant or non-subscripted fixed

point variable. If mg is not stated,

it is taken to be 1.

The DO statement is a command to execute repeatedly the statements

which follow, up to and including the statement with statement number

n. The first time the statements are executed withi=my. For

each succeeding execution i is increased by mg. After they have

been executed with i equal to the highest of this sequence of values

which does not exceed mo, control passes to the statement following

the last statement in the range of the DO.

The range of a DO is that set of statements which will be executed

repeatedly; i.e., it is the sequence of consecutive statements

immediately following the DO, up to and including the statement

numbered n.

The index of a DO is the fixed point variable i, which is controlled

by the DO in such a way that its value begins at m, and is increased

each time by mg until it is about to exceed mg. Throughout the range

it is available for computation, either as an ordinary fixed point

variable or as the variable of a subscript. After the last execution

of the range, the DO is said to be satisfied.

23

Suppose, for example, that control has reached statement 10 of the

program

10 DO 11I=1, 10
11 A(l) =I* NQ)
12

The range of the DO is statement 11, and the index is I. The DO

sets I to 1 and control passes into the range. The value of 1- N(1)

is computed, converted to floating point, and stored in location

A (1). Since statement 11 is the last statement in the range of the

DO and the DO is unsatisfied, Iis increased to 2 and control returns

to the beginning of the range, statement 11. The value of 2-N(2) is

then computed and stored in location A(2). The process continues

until statement 11 has been executed with I= 10. Since the DO is

satisfied, control then passes to statement 12.

DOs within DOs. Amongthe statements in the range of a DO may

be other DO statements. Whenthis is so, the following rule must

be observed:

Rule 1: If the range of a DO includes another DO, then all of the

statements in the range of the latter must also be in the

range of the former.

A set of DOs satisfying this rule is called a nest of DOs.

Transfer of Control and DOs. Transfers of control from and into

the range of a DO are subject to the following rule:

Rule 2: No transfer is permitted into the range of any DO from

outside its range. Thus, in the configuration below, 1, 2

and 3 are permitted transfers, but 4, 5 and 6 are not.

24

Exception. There is one situation in which control can be transferred

into the range of a DO from outside its range. Suppose control is in

the range of the innermost DO of a nest of DOs which are completely

nested (i.e., every pair of DOs in the nest is such that one contains

the other). Suppose also that control is transferred to a section of

the program, completely outside the nest to which these DOs belong,

which makes no change in any of the indexes or indexing parameters

(m's) in the nest. Then after the execution of this latter section of the

program, control can be transferred back to the rangeof the same

innermost DO from which it originally came. This provision makes

it possible to exit temporarily from the range of some DOs to execute

a subroutine.

Restriction on Assigned GO TOs in the Range of a DO. When an

assigned GO TOis in the range of a DO, the statements to whichit

may transfer must all be in the exclusive range of a single DO (i.e.,

among those statements in the range of a DO which arenot in the

range of any DO in its range), or all outside the DO nest.

Preservation of Index Values. When control leaves the range of a

DO in the ordinary way (i.e. , when the DO becomessatisfied and

control passes on to the next statement after the range) the exit is

said to be a normal exit. After a normal exit from a DO occurs,

the value of the index controlled by that DO is not defined, and the

index cannot be used again until it is redefined. (In this connection,

see "Further Details about DO Statements, '' page 63.)

However, if exit occurs by a transfer out of the range, the current

value of the index remains available for any subsequent use. If

exit occurs by a transfer which is in the ranges of several DOs,

the current values of all the indexes controlled by those DOs are

preserved for any subsequent use.

Restrictions on Statements in the Range of a DO. Only onetype of

statement is not permitted in the range of a DO, namely any statement

which redefines the value of the index or of any of the indexing

parameters (m's). In other words, the indexing of a DO loop must

be completely set before the range is entered.

The first statement in the range of a DO mustnot be one of the non-

executable FORTRANstatements. The range of a DO cannot end

with a transfer.

Exits. When a CALL statement is executed in the range of a DO,

care must be taken that the called subprogram doesnot alter the

DO index or indexing parameters. This applies as well when a

Fortran Function is called for in the range of a DO.

29

CONTINUE

PAUSE

GENERAL FORM EXAMPLES

 "CONTINUE" CONTINUE

CONTINUEis a dummy statement which gives rise to no instructions

in the object program. It is most frequently used as the last statement

in the range of a DO to provide a transfer address for IF and GO TO

statements which are intended to begin another repetition of the DO

range.

As an example ofa program which requires a CONTINUE, consider

the table search:

10 DO 12 I=1, 100
IF (ARG - VALUE(I))12, 20, 12

12 CONTINUE

This program will scan the 100-entry VALUEtable until it finds an

entry which equals the value of the variable ARG, whereuponit exits

to statement 20 with the value of I available for fixed point use; if

no entry in the table equals the value of ARG, a normal exit to the

statement following the CONTINUEwill occur.

GENERAL FORM EXAMPLES

"PAUSE" or "PAUSE n" where n is PAUSE

an unsigned octal fixed point constant. PAUSE 77777

The machine will halt with the octal numbern in the addressfield

of the Storage Register. If nis not specified, it is understood to be

0. Depressing the Start key causes the program to resume execution

of the object program with the next FORTRANstatement.

26

STOP

END

GENERAL FORM EXAMPLES

"STOP" or "STOP n" where n is an STOP

unsigned octal fixed point constant. STOP 77777
This statement causes a halt in such a way that depressing the Start

key has no effect. Therefore, in contrast to PAUSE, this statement

is used where a terminal, rather than a temporary stop, is desired.

The octal numbern is positioned in the addressfield of the Storage

Register. If nis not specified, it is understood to be 0.

GENERAL FORM EXAMPLES

END (11, Ig, Ig, Jy, I5) where I END (2, 2, 2, 2, 2)
is 0, 1, or 2. END (1, 2, 0, 1, 1)

This statement differs from the previous statements discussed in

this chapter in that it does not affect the flow of control in the object

program being compiled. Its application is to the FORTRANexecutive

program during compilation. It serves two purposes:

1. FORTRANprovides the option of running under monitor control,

which allows the compilation of a number of separate FORTRAN

source programs in succession. The END statement, then, marks

the end of any given FORTRAN source program, separating it from

the program that follows.

2. The END statement specifies the treatment of the setting of Sense

Switches 1 through 5. (The sense switch options are given in

Appendix D.)

For each I of the statement'slist,

I=0]| Ignore actual sense switch setting. Assumeit to be Up.

I=1] Ignore actual sense switch setting. Assumeit to be

Down.

 I1=2 Note actual setting and act accordingly. (See Appendix D.)

The END statement does not,of course, physically change the setting

of a sense switch.

27

CHAPTER 3 — SUBPROGRAM STATEMENTS

It is possible to program, in the FORTRANlanguage, subroutines

which are referred to by other programs. These subroutines may,

in turn, refer to still other lower level subroutines which may also

be coded in FORTRAN language. It is therefore possible, by means

of FORTRAN, to code problems using several levels of subroutines.

This configuration may be thought of as a total problem consisting

of one main program and any numberof subprograms.

Because of the interrelationship among several different programs,

it is possible to include a block of hand-coded instructions in a

sequence including instructions compiled from FORTRAN source

programs. It is only necessary that hand-coded instructions conform

to rules for subprogram formation, since they will comprise a

distinct subprogram.

This chapter presents a discussion of the two types of FORTRAN

coded subprograms possible. These are the FUNCTION subprogram

and the SUBROUTINE subprogram. Four statements, described

subsequently, are necessary for their definition and use. Two of

these, SUBROUTINE and FUNCTION, are dealt with in Section A;

the other two, CALL and RETURN, are discussed in Section B.

Illustrations of, and the rules for hand-coding subprogramsare

given on page 79.

Although FUNCTION subprograms and SUBROUTINE subprograms

are treated together and may be viewed as similar, it must be

rememberedthat they differ in two fundamental respects.

1. The FUNCTION subprogram, which results in a Fortran function

as defined on page 16, is always single-valued, whereas the

SUBROUTINE subprogram may be multi-valued.

2. The FUNCTION subprogram is called or referred to by the

arithmetic expression containing its name; the SUBROUTINE

subprogram can only be referred to by a CALL statement.

Each of these two types of subprogram, when coded in FORTRAN

language must be regarded as independent FORTRAN programs,

In all respects, they conform to rules for FORTRAN programming.

However, they may be compiled with the main program of which

they are parts by means of multiple program compilation. In this

way the results of a multiple program compilation will be a complete

main program-—subprogram sequence ready to be executed.

28

Schematically, the relationship among nested main and subprograms

can be shown as follows. This diagram, further, indicates. the main

division of the internal structure of each program.

Main Program

Transfer to Subprogram AL, __

START

Pass Control to Instruc- Subprogram A
tion which Transfers to -/-—
Subprogram A Transfer to Subprogram B b—

Argument Addresses

Return Point from _ ENTRY POINT

Subprogram A |
T

Pass Control to Instruc-

|

| Subprogram B
 i tion which Transfers to

,

+—~ Ls ENTRY POINT

Subprogram B

STOP Argument Addresses

Retum Point from
Subprogram B

|

|
|
|

|
! |

|
t |

|
|
|
|
|

Retum to
Main Program

i
 Retum to

Subprogram A

29

SECTION A: FUNCTION and SUBROUTINE

FUNCTION

GENERAL FORM EXAMPLES

"FUNCTION Name (aj, a9,..., ap)"

where Nameis the symbolic name

of a single-valued function, and the

arguments aj, 49,...a,, Of which

there must be at least one, are non-

subscripted variable names.

The function name consists of 1 to

6 alphanumerical characters, the

first of which must be alphabetic;

the first character must be I, J,

K, L, M, or N if and onlyif the

value of the function is to be fixed

point, and the final character must

not be F if there are more than

three characters in the name. The

function name must not occur ina

DIMENSIONstatementin the

FUNCTION subprogram, or ina

DIMENSIONstatement in any

program which usesthe function.

The arguments may be any variable

names occurring in executable

statements of the subprogram.

FUNCTION ARCSIN
(RADIAN)

FUNCTION ROOT
(B, A, C)

FUNCTION INTRST
(RATE, YEARS)

FUNCTION NAME(A, B)

NAME =Z+B

RETURN

30

The FUNCTION statement must be the first statement of a Fortran

function subprogram and defines it to be such,

In a FUNCTION subprogram, the name of the function must appear

at least once as the variable on the left-hand side of an arithmetic

statement, or alternately in an input statementlist, e.g.,

SUBROUTINE

By this means, the output value of the function is returned to the

calling program.

This type of program may either be compiled independently, or

multiple-compiled with others. A FUNCTION subprogram must

never be inserted between two statements of any other single program,

The arguments following the name in the FUNCTION statement, may

be considered as "dummy" variable names. That is, during object

program execution, other actual arguments are substituted for them.

Therefore, the arguments which follow the function reference in the

calling program must agree with those in the FUNCTION statement

in the subprogram in number, order, and mode. Furthermore,

when a dummy argument is an array name, the corresponding actual

argument must also be an array name. Each of these array names

must appear in DIMENSION statements of their respective programs

with the same dimensions.

None of the dummy variables may appear in EQUIVALENCEor

COMMONstatements in the FUNCTION subprogram.

GENERAL FORM EXAMPLES

"SUBROUTINE Name(a1, a),---, SUBROUTINE MATMPY
a)" where Nameis the symbolic (A, N, M, B, L, C)

name of a subprogram, and the

arguments a1, a9,-++, ay, if any, SUBROUTINE QDRTIC

are non-subscripted variable (B,A,C, ROOT1, ROOT2)

names.

The name of the subprogram may

consist of 1 to 6 alphanumerical

characters, the first of which is

alphabetic; its final character

must not be F if there are more

than three characters in the

name. Also, the name of the

subprogram must not be listed

in a DIMENSIONstatement of

any program which calls the sub-

program, or in a DIMENSION

statement of the subprogram itself.

The arguments may be any

variable names occurring in

executable statements in the

subprogram,
31

This statement is used as the first statement of a Subroutine function

and defines it to be such. A subprogram introduced by the

SUBROUTINE statement must be a FORTRAN program and may

contain any FORTRAN statements except FUNCTION or another

SUBROUTINEstatement.

A Subroutine subprogram must be referred to be a CALL statement

(see page 33) in the calling program. The CALL statement specifies

the name of the subprogram and its arguments.

Unlike the FUNCTION-type subprogram which returns only a single

numerical value, the Subroutine subprogram uses one or more of

its arguments to return output. The arguments so used, must,

therefore, appear on the left side of an arithmetic statement some-

place in the program (or alternately, in an input statement list within

the program).

The arguments of the SUBROUTINE statement are dummy variables

which are replaced, at execution, by the actual arguments which

are supplied by the CALL statement. There must, therefore, be

correspondence in number, order, and mode, between the two sets

of arguments. Furthermore, when a dummy argumentis an array

name, the corresponding actual argument must also be an array

name. Each of these array names must appear in DIMENSION _

statements of their respective programs with the same dimensions.

For example, the subprogram headed by

SUBROUTINE MATMPY(A,N, M, B, L, C)

could be called by the main program through the statement

CALL MATMPY (X%,5, 10, Y, 7, Z)

where the dummy variables, A,B,C, are the names of matrices.

A,B, and C must appear in a DIMENSIONstatement in subprogram

MATMPYand X, Y, and Z must appear in a DIMENSION statement

in the calling program, The dimensions assigned must be the same

in both statements.

None of the dummy variables may appear in EQUIVALENCE or

COMMONstatements in the Subroutine subprogram. These

subprograms may be compiled independently or multiple-compiled

with others.

32

SECTION B: CALL AND RETURN

CALL

The CALL statement has reference only to the Subroutine subprogram,

whereas the RETURN statement is used by both the Function and

Subroutine subprograms.

GENERAL FORM EXAMPLES

"CALL Name (aj, 49,.-, 4)" CALL MATMPY

where Nameis the name of a (X, 5, 10, Y, 7, Z)

Subroutine subprogram, and aj,
ao,.-., a, are arguments which CALL QDRTIC

take one of the forms described (P*9. 732, Q/4. 536,
below. R - S**2.0, X1, X2)

This statement is used to call Subroutine subprograms; the CALL

transfers control to the subprogram and presents it with the

parenthesized arguments. Each argument may be oneofthe following.

1. Fixed point constant.

2.

3.

Floating point constant.

Fixed point variable, with or without subscripts.

Floating point variable, with or without subscripts.

Arithmetic expression.

Alphanumerical characters. Such arguments must be preceded

be nH wheren is the count of characters included in the argument,

e.g., 9HEND POINT. Note that blank spaces andspecial
characters are considered characters when used in alphanumerical

fields.

Alphanumerical arguments can, of course, only be used as input

to hand—coded programs. (See Appendix E.)

The arguments presented by the CALL statement must agree in

number, order, mode and array size with the corresponding

arguments in the SUBROUTINEstatement of the called subprogram,

33

RETURN

GENERAL FORM EXAMPLES

 "RETURN" RETURN

This statement terminates any subprogram, whetherof the type

headed by a SUBROUTINE or a FUNCTION statement, and returns

control to the calling program. A RETURN statement must, there-

fore, be the last executed statement of the subprogram. It need not

be physically the last statement of the subprogram;it can be any

point reached by a path of control and any number of RETURN

statements may be used.

34

CHAPTER 4 — INPUT/OUTPUT STATEMENTS

Specifying
Lists of

Quantities

There are thirteen FORTRANstatements available for specifying

the transmission of information during execution of the object

program, between storage on the one hand, and magnetic tapes,

drums, card reader, card punch, and printer on the other hand.

These input/output statements can be grouped as follows:

1. Five statements (READ, READ INPUT TAPE, PUNCH, PRINT,

and WRITE OUTPUT TAPE) which cause transmission of a

specified list of quantities between storage and an external

input/output medium: cards, printed sheet, or magnetic tape,

for which information is expressed in Hollerith punching,

alphanumerical print, or binary-coded-decimal (BCD) tape code,

respectively. |

2. One statement (FORMAT), which is a non-executable statement,

that specifies the arrangementof the information in the external

input/output medium with respect to the five source statements

of group 1 above.

3. Four statements (READ TAPE, READ DRUM, WRITE TAPE,

and WRITE DRUM) which cause information to be transmitted in

binary machine-language.

4, Three statements (END FILE, BACKSPACE, and REWIND)that

manipulate magnetic tapes.

Of the thirteen input/output statements, nine call for the transmission

of information and must, therefore, include a list of the quantities

to be transmitted.” This list is ordered, and its order must be the

same as the order in which the words of information exist (for input),

or will exist (for output) in the input/output medium.

The formation and meaning of a list is best described by an example.

A, B(3), (C(I), DiI, K), 1=1, 10), ((E(I,J),

I=1, 10, 2), F(J,3), J =1,K)

Suppose that this list is used with an output statement. Then the

information will be written on the input/output medium in this order:

A, B(8), C(1), DG, K), C(2), D@, K),..... » C(10), DO, K),

E(1, 1), E(3, 1),..... » E(9, 1), F(1, 3),

E(1, 2), E(8, 2),....., E(9, 2), F(2, 3),...... » F(K, 3).

35

Input/Output
in Matrix

Form

Similarly, if this list were used with an input statement, the

successive words, as they were read from the external medium,

would be placed into the sequence of storage locations just given.

Thus, the list reads from left to right with repetition for variables

enclosed within parentheses. Only variables, and not constants,

may be listed. The execution is exactly that of a DO-loop, as though

each opening parenthesis (except subscripting parentheses) were.a

DO, with indexing given immediately before the matching closing

parenthesis, and with the DO range extending up to that indexing

information. The order of the above list can-+thus be considered the

equivalent of the "program:"

1A
B(3)
DO51=1, 10
C(I)

D(I, K)
DO9 J =1, K
DO 8I=1, 10, 2
K(I, J)
F(J,3)P

O
A
A
A
P
L

p

Note that indexing information, as in DOs, consists of three constants

or fixed point variables, and that the last of these may be omitted,

in which case it is taken to be 1.

For a list of the form K, (A(K)) or K, (A(I), I=1, K) where an

index or indexing parameter itself appears earlier in the list of an

input statement, the indexing will be carried out with the newly

read-in value,

As outlined on page 8, FORTRANtreats variables according to

conventional matrix practice. Thus, the input/output statement

READ 1, ((A(I,J), I=1, 2), J =1, 3)

causes the reading of I x J (in this case 2 x 3) items of information.

The data items will be read into storage in the same order as they

are found on the input medium.

For example, if punched on a data card in the form:

Pp
Poot

Ay, 1HAa, 14, 2iA2, 21, 342, 3
	J		

36

Input/Output
of Entire

Matrices

FORMAT

the items will be stored in locations N, N-1, N-2,..., N-5,

respectively, where N is the highest absolute location used for the

array of information to be read in.

Wheninput/output of an entire matrix is desired, an abbreviated

notation may be used for the list of the input/output statement; only

the name of the array need be given and the indexing information

may be omitted.

Thus, if A has previously been listed in a DIMENSION statement,

the statement,

READ 1, A

is sufficient to read in all of the elements of the array A. In

709 FORTRAN, the elements, read in by this notation, are stored

in their natural order, i.e., in order of decreasing storage locations.

If A has not previously appeared in a DIMENSIONstatement, only

the first element will be read in.

Note: Certain restrictions to these rules exist with respect to lists

for the statements READ DRUM and WRITE DRUM,for

which the abbreviated notation mentioned immediately above

is the only one permitted.

GENERAL FORM EXAMPLES

"FORMAT(Specification)'' where FORMAT

Specification is as described below. (12/(E12. 4, F10.4))

The five input/output statements of group 1 (listed on page 35)

contain, in addition to the list of quantities to be transmitted, the

statement number of a FORMATstatement describing the information

format to be used. It also specifies the type of conversion to be

performed between the internal machine-language and external

notation. FORMAT statements are not executed, their function is

merely to supply information to the object program. Therefore,

they may be placed anywhere in the source program, except as the

first statement in the range of a DO.

For the sake of clarity, the details of writing a FORMATspecification

are given below for use with PRINT statements. However, the

description is valid for any case simply by generalizing the concept

of "printed line" to that of unit record in the input/output medium.

A unit record may be:

37

Basic Field
Specifications

1. A printed line with a maximum of 120 characters.

2. A punched card with a maximum of 72 characters.

3. A BCD tape record with a maximum of 120 characters.

Three basic types of decimal-to-binary or binary-to-decimal

conversion are available:

INTERNAL EXTERNAL

Floating point variable Floating point, decimal

Floating point variable Fixed point, decimal
 si

t

 Fixed point variable Decimal integer

The FORMATspecification describes the line to be printed by giving,

for each field in the line (from left to right, beginning with the first

type wheel):

1. The type of conversion (E, F, or I) to be used.

2. The width (w) of the field.

3. For E- and F-type conversion, the numberof places (d) after

the decimal point that are to be printed (dis treated modulo 10).

These basic field specifications are given in the forms

Iw, Ew.d, and Fw.d

with the specification for successive fields separated by commas.

Thus the statement FORMAT(I2, E12.4, F10.4) might give the line:

27 -0.93821E 02 -0.0076

As in this example, the field widths may be made greater than

necessary so as to provide spacing blanks between numbers. In

this case, there is 1 blank following the 27, 1 blank after the E

(automatically supplied except in cases of a negative exponent, when

a minus sign will appear), and 3 blanks after the 02. Within each

field the printed output will always appear in the right-most positions

It may be desired to print n successive fields within one record, in

the same fashion. This may be specified by giving n before E, F,

or I. Thus, the statement FORMAT (12, 3E12.4) might give:

27 -0.9321E 02 -0.7580E-02 0.5536E 00

38

Repetition of A limited parenthetical expression is permitted in order to enable

Groups repetition of data fields according to certain format specifications
within a longer FORMAT statement specification. Thus, FORMAT

(2(F10.6, E10.2), 14) is equivalent to FORMAT (F10.6, E10.2, F10.6,

E10. 2, I4).

To permit more general use of F-type conversion, a scale factor

followed by the letter P may precede the specification. The scale

factor is defined suchthat:

Printer number = Internal number x 108°@le factor

Thus, the statement FORMAT (12, 1P8F11. 3) used with the data

of the preceding example, would give

27 -932. 096 *~0.076 5.536

whereas FORMAT(12, - 1P3F11. 3) would give

27 ~9, 321 -0.001 0. 055

A positive scale factor may also be used with E-type conversion to

increase the number and decrease the exponent. Thus, FORMAT

(I2, 1P3E12.4) would produce with the same data

27 -9.3210E 01 -7.5804E-03 5.5361E-01

The scale factor is assumed to be zero if no other value has

been given, However, once a value has been given, it will

hold for all E~ and F-type conversions following the scale

factor within the same FORMAT statement. This applies to

both single-record and multiple-record formats (see page 40).

Once a scale factor has been given, a subsequent scale factor

of zero in the same FORMATstatement mustbe specified by

OP. Scale factors have no effect on I-conversion.

Hollerith A field may be designed as Hollerith, in which case alphanumerical

Fields information will be printed in it. The field width, followed by the

desired characters, should appear in the appropriate place in the

specification. For example, the statement FORMAT (8HXY= F8. 3,

AH Z = F6.2, 7H W/AF= F7. 3) would give

XY = -93.210 Z= -0.01 W/AF= 0,554

Note that any Hollerith characters, including blanks may be printed.

This is the only instance in which FORTRANdoesnot ignore blanks.

It is possible to print Hollerith information only, by giving nolist

with the input/output statement and specifying no I, E, or F fields

in the FORMAT statement.

39

Originating
Hollerith Text

Mu ltiple-
Record

Formats

FORMAT and

Input/Output
Statement

Lists

Ending a
FORMAT
Statement

Consider a Hollerith field in a FORMAT statementat the time of

execution of the object program. If the FORMAT statement is used

with an input statement, the Hollerith text listed in the FORMAT

statement will be replaced by whatever text is read in from the

correspondingfield in the input/output medium. When that same

FORMATstatement is used for output, whatever information is then

in the FORMAT statement will appear in the output data. Thus,

text can be originated in the source program, or as input to the

object program.

To deal with a block of more than one line of print, a FORMAT

specification may have several different one-line formats, separated

by a slash (/) to indicate the beginning of a new line. Thus, FORMAT

(3F9.2, 2F10.4/8E14.5) would specify a multi-line block of print
in which lines 1, 3, 5,.... have format (3F9.2, 2F10.4), and lines

2, 4, 6,.... have format 8E14, 5.

If a multiple-line format is desired such that the first two lines will

be printed according to a special format and all remaining lines

according to another format, the last line-specification should be

enclosed in a second pair of parentheses; e.g., FORMAT(12,

3E12.4/2F10.3, 3F9.4/ (10F12.4)). If data items remain to be
transmitted after the format specification has been completely

"used, '' the format repeats from the last open parenthesis.

As these examples show, both the slash and the closing parenthesis

of the FORMAT statement indicate a termination of a record.

Blank lines may be introduced into a multi-line FORMAT statement,

by listing consecutive slashes. N +1 consecutive slashes produce

N blank lines. 7 |

The FORMATstatement indicates, among other things, the max-

imum size of each record to be transmitted. In this connection,

it must be remembered that the FORMAT statement is used in con-

junction with the list of some particular input/output statement,

except when a FORMAT statement consists entirely of alphanumerical

fields. In all other cases, control in the object program switches

back and forth between the list (which specifies whether data remains to

be transmitted) and the FORMAT statement (which gives the specifica-

tions for transmission of that data).

During input/output of data, the object program scans the FORMAT

statement to which the relevant input/output statement refers. When

a specification for a numerical field is found and list items remain

to be transmitted, input/output takes place according to the specifica-

tion and scanning of the FORMAT statement resumes. If no items

40

Carriage

Control

Data Input
to the

Object
Program

remain, transmission ceases and execution of that particular

input/output statement is terminated. Thus, a decimal input/output

operation will be brought to an end when a specification for a

numerical field or the end of the FORMAT statement is encountered,

and there are no items remainingin thelist.

The WRITE OUTPUT TAPEstatement prepares a decimal tape

which can later be used to obtain off-line printed output. The off-

line printer is manually set to operate in one of three modes: single

space, double space, and Program Control. Under Program Control,

which gives the greatest flexibility, the first character of each BCD

record controls spacing of the off-line printer and that character is

not printed. The control characters and their effects are:

Blank Single space before printing

0 Double space before printing

+ No space before printing

1 - 9 Skip to printer control channels 1-9*

J - R Short skip to printer control channels 1-9*

Thus, a FORMATspecification for WRITE OUTPUT TAPEforoff-

line printing with Program Control, will usually begin with 1H

followed by the appropriate control character. This is required for

the PRINT statement since on-line printing simulates off-line

printing under Program Control.

Decimal input data to be read by means of a READ or READ INPUT

TAPE when the object program is executed, must be in essentially

the same format as given in the previous examples. Thus, a card

to be read according to FORMAT(I2, E12.4, F10.4) might be punched

27 -0.9321E 02 ~-0.0076

Within each field, all information must appear at the extreme right.

Plus signs may be omitted or indicated by a blank or +. Minus signs

may be punched with an 11=punch or an 8-4 punch, Blanks in

numerical fields are regarded as zeros. Numbers for E- and F-type

conversion may contain any number of digits, but only the high-order

8 digits will be retained (no rounding will be performed). Numbers

for I-type conversion will be treated modulo git,

* See the section on Carriage Control in the Reference Manual for

the IBM 709 Data Processing System (Form A22-6501).

4]

To permit economy in punching, certain relaxations in input data

format are permitted. .

1. Numbers of E-type conversion need not have 4 columns devoted

to the exponent field. The start of the exponent field must be

marked by an E, or if that is omitted, by a + or - (not a blank).

Thus E2, E02, +2, +02, E02, and E+02 are all permissible

exponent fields.

2. Numbers for E- or F-type conversion need not have their decimal

point punched. If it is not punched, the FORMATspecification

will supply it; for example, the number ~09321+2 with the

specification E12.4 will be treated as though the decimal point

had been punched between the 0 and the 9. If the decimal point

is punched in the card, its position over-rides the indicated

position in the FORMATspecification.

READ GENERAL FORM EXAMPLES

"READ n, List" where n is the READ 1, ((ARRAY(I,J),

statement number of a FORMAT I=1, 3), J =1, 5)

statement, and List is as described

on page 35.
The READstatement causes the reading of cards from the card

reader. For 709 FORTRAN, the Data Synchronizer Channel to

which the card reader is attached, must be specified by the

installation (see ''Symbolic Input/Output Unit Designation" page 43).

Record after record (i.e., card after card) is read until the complete

list has been "satisfied," i.e., brought in, converted, and stored

in the locations specified by the list of the READ statement. The

FORMATstatement to which the READ refers, describes the

arrangement of information on the cards and the type of conversion

to be made.

READ INPUT GENERAL FORM EXAMPLES

TAPE

"READ INPUT TAPEi, n, List" READ INPUT TAPE

wherei is an unsigned fixed point 24, 30, K, A(J)

constant or a fixed point variable;

n is the statement numberof a READ INPUT TAPE

FORMATstatement; and List is N, 30, K, A(J)

as described on page 35.
42

Symbolic
Input/Output
Unit
Designation

PUNCH

The READ INPUT TAPE statement causes the object program to

read BCD information from symbolic tape unit i (in 709 FORTRAN,

0<i<49). Record after record is brought in, in accordance with the

FORMATstatement, until the complete list has been satisfied.

The object program tests for the proper functioning of the tape

reading process. In the event that the tape cannot be read properly,

the object program halts. |

Tape units. In order to enable 709 FORTRAN to accept source

programs written in connection with other programming systems,

a distinction is made between the logical tape unit numbers specified

in the source program, and the actual tape units which will be affected

by the resulting object program. Logical/actual equivalences for

the 709 FORTRANsystem are specified in the system as distributed,

but these may be changed bythe installation in accordance with its

own needs. The equivalences are established by the insertion of a

control card into the edit deck of the 709 FORTRAN system. (See

"The 709 FORTRAN Editing Program," in the 709 FORTRAN

Operations Manual.)

Card reader, on-line printer, and card punch. One each of these

input/output units can be attached to Data Synchronizer Channels A,

C, or E of the 709. The card reader, on-line printer, or card punch

which will actually be involved in the execution of READ, PRINT,

or PUNCH, respectively, is specified by the system as distributed

and may be changed by the installation.

At the time the 709 FORTRANobject program is executed, the

equivalence betweenthe logical and actual input/output units must

be known.

GENERAL FORM EXAMPLES

"PUNCH n, List" where n is the PUNCH 30, (A(J),

statement number of a FORMAT J=1, 10)

statement, and List is as

described on page 35.
The PUNCHstatement causes the object program to punch Hollerith

cards. Cards are punched in accordance with the FORMAT statement

until the complete list has been satisfied.

43

PRINT GENERAL FORM EXAMPLES

"PRINT n, List" where n is the PRINT 2, (A(J),

statement number of a FORMAT J=1, 10)

statement and List is as described

on page 35, :

The PRINT statement causes the object program to print output data

on an on-line printer. Successive lines are printed in accordance

with the FORMATstatement, until the complete list has been satisfied.

WRITE GENERAL FORM EXAMPLES
OUTPUT

TAPE "WRITE OUTPUT TAPEi, n, WRITE OUTPUT TAPE

List" where i is an unsigned fixed 42, 30, (AQ), J =1, 10)

point constant or a fixed point

variable, n is the statement WRITE OUTPUT TAPE

number of a FORMATstatement, L, 30, (A(J), J =1, 10)

and List is as described on

page 35.

The WRITE OUTPUT TAPEstatement causes the object program to

write BCD information on symbolic tape unit i (in 7029 FORTRAN,

0<i<49).

Successive records are written in accordance with the FORMAT

statement until the complete list has been satisfied. An end-of-file

is not written after the last record.

READ TAPE GENERAL FORM EXAMPLES

"READ TAPEi, List’ where i READ TAPE 24, (A(J),
is an unsigned fixed point constant J=1, 10)

or a fixed point variable, and List

is as described on page 35, READ TAPE K, (A(J),

J=1, 10)

The READ TAPE statement causes the object program to read binary

information from symbolic tape unit i (in 709 FORTRAN, 0<i<49),

into locations specified in the list. A record is read completely

44

READ DRUM

only if the list specifies as many words as the tape record contains;

no more than one record will be read. The tape, however, always

movesto the beginning of the next record.

Binary tapes read by a 709 FORTRAN compiled program should have

been written by a 709 FORTRANobject program. It is, however,

possible to use a non-FORTRANwritten binary tape provided the

tape records are in the proper format. The following is a description

of this record format.

Consider a logical record as being any sequence of binary words to

be read by any one input statement. This logical record must be

broken into physical records, each of which is a maximum of 1289

words long. Of course, if a logical record consists of fewer than

12819 words, it will comprise only 1 physical record. Thefirst

word of each physicalrecord is a "signal" word that is not part of

the list. This word contains zero for all but the last physical record

of a logical record. The first word of the last physical record

contains a number designating the number of physical recordsin

this logical record.

The object program checks tape reading. In the event that a record

cannot be read properly, the object program halts.

GENERAL FORM EXAMPLES

"READ DRUM i, j, List'' where i and READ DRUM 2, 1000,

j are each either an unsigned fixed A, B, C, D (3)

point constant or a fixed point variable,

with the value of i between 1 and 8 in- READ DRUM K, J,

clusive; and List is as described below. A, B, C, D (8)
The READ DRUMstatement causesthe object program to read words

of binary information from consecutive locations on drum i, begin-

ning with the word in drum location j, where 0<j<2048. (If j>2047,

it is interpreted modulo 2048.) Reading continues until all words

specified by the list have been read in. If the list specifies an array,

the array is stored in inverse order.

The list for the READ DRUM and WRITE DRUMstatements can

consist only of variables without subscripts or with only constant

subscripts, such as A, B(5), C, D. Variables consisting of only

one element of data will be read into storage in the ordinary way;

those which are arrays will be read with indexing obtained from

their DIMENSION statements. Thus, the statement READ DRUM i,

j, A, where A is an array, causes the complete array to be read.

The array, A, is stored in inverse order.

45

WRITE TAPE

WRITE DRUM

END FILE

GENERAL FORM EXAMPLES

"WRITE TAPE i, List" where i WRITE TAPE 24,

is an unsigned fixed point constant (A(J), J =1, 10)

or a fixed point variable, and

List is as described on page 35. WRITE TAPE K,

(AG), J=1, 10)
The WRITE TAPE statement causes the object program to write

binary information on the tape unit with symbolic tape numberi (in

709 FORTRAN, 0<i<49). One record is written consisting of all

the words specified in the list.

The object program checks tape writing. In the event that a record

cannot be written properly, the object program halts.

GENERAL FORM EXAMPLES

"WRITE DRUM i, j, List'' where WRITE DRUM 2, 1000,

i and j are each either an unsigned A, B, C, D(6)

fixed point constant or a fixed point .

variable, with the value of i between WRITE DRUM K, J,

1 and 8, inclusive, and List is as A, B, C, D(6)

described for READ DRUM.
The WRITE DRUM statement causes the object program to write

words of binary information onto consecutive locations on drum i,

beginning with drum location j. (If j>2047, it is interpreted modulo

2048.) Writing continues until all the words specified by the list

have been written.

The list of the WRITE DRUM statement is subject to the same

restrictions that apply to READ DRUM.

GENERAL FORM © EXAMPLES

"END FILEi" where i is an unsigned END FILE 29

fixed point constant, or a fixed point

variable. END FILE K

46

The END FILE statement causes the object program to write an

end-of-file mark on symbolic tape unit i (0<i<49).

REWIND GENERAL FORM EXAMPLES

"REWINDi" where i is an unsigned REWIND3

fixed point constant, or a fixed point

variable. REWIND K.
The REWINDstatement causes the object program to rewind symbolic

tape unit i (0<i<49).

BACKSPACE GENERAL FORM EXAMPLES

"BACKSPACE i" where iis an BACKSPACE18

unsigned fixed point constant, or a

fixed point variable. BACKSPACE K

The BACKSPACEstatement causes the object program to backspace

symbolic tape unit i (0<i<49) by one record.

47

CHAPTER 5 — SPECIFICATION STATEMENTS

DIMENSION

FREQUENCY

The final type of FORTRANstatement consists of the four specification

statements: DIMENSION, FREQUENCY, EQUIVALENCE,and

COMMON. These are non-executable statements which supply

necessary information, or information to increase object program

efficiency.

GENERAL FORM EXAMPLES

"DIMENSIONv,v,v,...' where DIMENSION A(10),

each v is the nameof a variable, B(5, 15), CVAL(, 4, 5,)

subscripted with 1, 2, or 3 un-

signed fixed point constants. Any

number of v's may be given.
The DIMENSION statement provides the information necessary to

allocate storage in the object program for arrays.

Each variable which appears in subscripted form in a program or

subprogram must appear in a DIMENSION statement of that program

or subprogram; the DIMENSIONstatement must precedethe first

appearanceof that variable. The DIMENSION statement lists the

maximum dimensions of arrays; in the object program references

to these arrays must never exceed the specified dimensions.

The above example indicates that B is a 2-dimensional array for

which the subscripts never exceed 5 and 15. The DIMENSION

statement therefore, causes 75 (i.e., 5 x 15) storage locations to be

set aside for the array B.

A single DIMENSION statement may specify the dimensions of any

number of arrays. A program must not contain a DIMENSION

statement which includes the nameof the program itself, or any

program whichit calls.

GENERAL FORM EXAMPLES

"FREQUENCYn (i, j,---), FREQUENCY30(1, 2, 1),

m(k, 1,...),--." where n, 40 (11), 50(1, 7, 1, 1)

m,... are statement numbers 10 (1, 7, 1, 1)

and i, j, k, 1, ... are unsigned

fixed point constants.

48

Statements

to Which

Applicable

The FREQUENCYstatement has no direct effect upon the execution

of the object program. Its sole purpose is to inform FORTRAN

about the number of times which the programmerbelieves that each

branch of one or more specified control branchings will be executed.

The purpose of the statement is to make the object program as

efficient as possible in terms of execution time and storage locations

required. In no case will the logical flow of an object program be

altered by a FREQUENCYstatement.

A FREQUENCYstatement can be placed anywhere in the FORTRAN

source program except as the first statement in the range of a DO,

any may be used to give frequency estimates for any number of

branch-points. For each branch-point, the information consists of

the statement numberof the statement causing the branch, followed

by parentheses enclosing the estimated frequencies separated by

commas.

In a program including the above example, statement 30 might be an

IF, and statement 50, a computed GO TO. In these cases, the

probability of going to each of the 3 or 4 branch points, respectively,

is given by the corresponding entry of the FREQUENCY statement.

Statement 40 must be a DO, in which at least one of the parameters

is variable and the value of which is not known in advance. An

estimate is made that the DO range will be executed 11 times before

the DO is satisfied.

All frequency estimates, except those about DOs are relative. Thus,

the example given above could have been FREQUENCY30(2, 4, 2),

40(11), 50(3, 21, 3,3), with equivalent results. A frequency can be

estimated as 0; this will be taken to mean that the expected frequency

is very small.

The following table lists the seven FORTRANstatements about

which frequency information may be given.

49

EQUIVALENCE

No, of

STATEMENT Branches REMARKS

(Computed) GO TO 22

IF 3

Frequencies must appear in
IF (SENSESWITCH) 2 the same order as the > .

> branches. If no frequencies
IF ACCUMULATOR are given they are assumed

OVERFLOW 2 to be equal for all branches.

IF QUOTIENT OVER- FLOW 2

IF DIVIDE CHECK 2 J

DO 1 Frequency need be given

only when Mj, Mg, Or Mg

is variable.

A frequency estimate concerning a DO is ignored unless at least one
of the indexing parameters of that DO is variable. Moreover, such
frequency estimates should be based only on the expected values of
those variable parameters; in other words, even if the range of a
DO wereto contain transfer exits (see page 24), the frequency
estimate should specify the numberof times the range must be
executed to cause a normal exit. A DO with variable indexing
parameters and for which no FREQUENCYstatementis given will
be treated by FORTRANas though a frequency of 5 has been estimated.

GENERAL FORM EXAMPLES

"EQUIVALENCE(a,b, c,...), EQUIVALENCE(A, BQ),
(d,e,f,...),...' where a, b, c, C(5)), (D(17), E(3))
d, e, f,... are variables

optionally followed by a single

unsigned fixed point constant in

parentheses.

The EQUIVALENCEstatement provides the option of controlling the
allocation of data storage in the object program. In particular, when

50

the logic of the program permits it, the numberof storage locations

used can be reduced by causing locations to be shared by two or

more variables.

An EQUIVALENCEstatement may be placed anywhere in the source

program, except as the first statement of the range of a DO. Each

pair of parentheses of the statement list encloses the namesof two

or more quantities which are to be stored in the samelocations.

during execution of the object program; any numberof equivalences

(i.e., sets of parentheses) may be given.

In an EQUIVALENCEstatement, the meaning of C(5) would be "the

4th storage location following the one which contains C, or (if Cis

an array) contains Cy, Cj,4, or Cy,1,1." In general C(p) is defined

for p>0 to mean the (p-1) th location after C or after the beginning

of the C-array; i.e., the p th location in the array. If p is not

specified, it is taken to be 1.

Thus, the above sample statement indicates that the A, B, and

C arrays are to be assigned storage locations such that the elements

A, B, and C(5) are to occupy the samelocation. In addition, it

specifies that D(17) and E(3) are to share the same location.

Quantities or arrays which are not mentioned in an EQUIVALENCE

statement will be assigned unique locations.

Locations can be shared only among variables, not among constants.

The sharing of storage locations cannot be planned safely without a

knowledge of which FORTRAN statements, when executed in the _

object program, will cause a new valueto be stored in a location.

There are seven such statements:

A. Execution of an arithmetic formula stores a new value of the

variable for the left-hand side of the formula.

B. Execution of an ASSIGN i TO stores a new value in n.

C. Execution of a DO will in general store a new indexing value.

(It will not always do so, however; see the section, ''Further

Details about DO statements," page63)

D. Execution of a READ, READ INPUT TAPE, READ TAPE, or

READ DRUMeach stores new values for the variables mentioned

in the statementlist.

ol

COMMON

Arguments in
Common
Storage

GENERAL FORM EXAMPLES

"COMMONA,B,...'' where A, COMMON X, ANGLE,

B,... are the namesof variables MATA, MATB

and non-subscripted array names.
Variables, including array names, appearing in COMMONstatements

are assigned to upper storage. They are stored in locations

completely separate from the block of program instructions, constants,

and data (see page 57). This area is assigned separately for each

program compiled. For 709 FORTRAN,the area is assigned begin-

ning at location 77461g and continuing downwards. This separate
(COMMON) area may be shared by a program and its subprograms.

In this way, COMMONenables data storage area to be shared

between programsin a way analogousto that by which EQUIVALENCE

permits data storage sharing within a single program. Where the

logic of the programs permits, this can result in a large saving of

storage space.

Array names appearing in COMMON must also appear in a

DIMENSIONstatement in the same program.

The programmer has complete control over the locations assigned

to the variables appearing in COMMON. The locations are assigned

in the sequence in which the variables appear in the COMMON

statements, beginning with the first COMMONstatement of the problem.

Because of the above, COMMONstatements may be used to serve

another important function. They may be used as a medium by which

to transmit arguments from the calling program to the called Fortran

function or Subroutine subprogram. In this way, they are transmitted

implicitly rather than explicitly by being listed in the parentheses

following the subroutine name.

To obtain implicit arguments, it is necessary only to have the

corresponding variables in the two programs occupy the samelocation.

This can be obtained by having them occupy corresponding positions

in COMMONstatements of the two programs.

Notes:

1. In order to force correspondence in storage locations between two

variables which otherwise will occupy different relative positions

in COMMONstorage, it is valid to place dummy variable names in

o2

o3

a COMMONstatement. These dummy names, which may be

dimensioned, will cause reservation of the space necessary to

cause correspondence.

While implicit arguments can take the place of all argumentsin

CALL-type subroutines, there must be at least one explicit

argument in a Fortran function. Here, too, a dummyvariable

may be used for convenience.

The entire COMMONarea may be relocated downward for any

one problem by means of a Control Card,(See FORTRAN

Operations Manual.)

When a variable is made equivalent to a variable which appears

in a COMMONstatement, the first variable will also be located

in COMMONstorage. When COMMONvariables also appearin
EQUIVALENCEstatements, the ordinary sequence of COMMON

variables is changed and priority is given to those variables in

EQUIVALENCEstatements, in the order in which they appear

in EQUIVALENCEstatements. For example,

COMMONA, B, C, D

EQUIVALENCE(C, G), (E, B)

will cause storage to beassigned in the following way.

77461, C and G

77460g Band E

77457. A

774568 D

CHAPTER 1 — MISCELLANEOUS DETAILS ABOUT FORTRAN

SOURCE AND
OBJECT
MACHINES

ARRANGEMENT
OF THE

OBJECT
PROGRAM

FIXED POINT
ARITHMETIC

The source machineis that which is used to translate a FORTRAN
source program into the object program. The object machineis
that on which the object program is executed.

For 709 FORTRAN, the source machine must be an IBM 709 Data
Processing System which includes at least 8, 192 storage locations,
5 tape units, 1 on-line card punch, 1 on-line card reader, and 1 on-
line printer. When multiple-program compiling, 3 additional tape
units are required.

The object machine may be of any size. The information produced
at compiling time by FORTRANincludes a count of the storage
locations required by the object program. From this information it
can be determined whether an object program, together with its
subprograms, is too large for a given object machine.

A main object program and its associated subprograms, may each
be considered as a separate, but complete block, containing every-
thing, except COMMONdata, necessary for execution of the program.
These blocks are placed contiguously by the FORTRAN BSSloader
in lower storage with a variable length area separating them from
COMMONin upperstorage.

Each program block consists of program instructions, constants,
erasable storage, and data, which are stored in that order in
ascending storage locations. The data is separated into non-
dimensioned variables, dimensioned variables, and variables
appearing in EQUIVALENCEstatements. The first program loaded
will start at location 11g.

COMMONdatastarts at 77461¢ | and continues downward in storage.
The area above 77461g is available for erasable storage for library
and hand-coded subroutines.

When a source program is compiled, FORTRAN producesa printed
"storage map" of the arrangementof storage locations in the object
program.

The use of fixed point arithmetic is governed by the following
considerations:

1, Fixed point constants specified in the source program must have
magnitudes < 217,

57

OPTIMIZATION
OF ARITHMETIC
EXPRESSIONS

2. Fixed point data read in by the object program itself is treated

modulo git,

3. The output from fixed point arithmetic in the object program is

modulo 217, However, if, during computation of a fixed point

arithinetic expression, an intermediate value occurs which is

2219) it is possible that the final result will be inaccurate.

(The inaccuracy will occur only when the arithmetic expression

contains a divide.)

4, Indexing in the object program is modulo (size of core storage) —

never greater than 215,

Considerable attention is given by FORTRANtothe efficiency of the

object program instructions arising from an arithmetic expression,

regardlessof how the expression is written. Thus, although the

expression

A-B-C-D-E

is taken to mean

((((A* B): C)- D): E)

(where - represents / or *, or + or -)

FORTRANassumesthat mathematically equivalent expressions are

computationally equivalent. Hence, a sequence of consecutive

multiplications and/or divisions (or additions and/or subtractions)

not grouped by parentheses will be reordered, if necessary, to

minimize the number of storage accesses in the object program.

Although the assumption concerning mathematical and computational

equivalence is virtually true for floating point expressions, special

care must be taken to indicate the order of fixed point multiplication

and division, since fixed point arithmetic in FORTRANis "greatest

integer" arithmetic (i.e., truncated or remainderless). Thus, the

expression |

5*4/2

which is by convention taken to mean ((5 x 4)/2), is computed in a

FORTRAN object program as

((5/2)*4)

i.e., it is computed from left to right after permutation of the

58

SUBROUTINES
ON THE
SYSTEMS
TAPE

operands to minimize storage accesses. The result of a FORTRAN

computation in this case, would be 8. On the other hand, the result

of the expression (5 x 4)/2 is 10. Therefore, to insure accuracy of

fixed point multiplication and division, it is suggested that parentheses

be inserted into the expression involved.

One important type of optimization, involving common sub~expressions,

takes place only if the expression is suitably written. For example,

the arithmetic statement

Y = A¥B*C + SINF(A*B)

will cause the object program to compute the product A*B twice.

An efficient object program would compute the product A*B only

once. The statement is correctly written

Y = (A*B) * C + SINF (A*B)

By parenthesizing the common subexpression, A*B will be computed

only once in the object program.

In general, when common sub-expressions occur within an expression,

they should be parenthesized.

There is one case in which it is not necessary to write the parentheses,

because FORTRANwill assume them to be present. These are the

type discussed in "Hierarchy of Operations,"' page 10), and need not

be given. Thus

Y = A*B+C+SINF(A*B)

is, for optimization purposes, as suitable as

Y (A*B)+C+SINF(A*B)

However, the parentheses discussed in "Ordering within a Hierarchy,"

on page 10, must be supplied if optimization of common sub-expressions

is to occur.

Various library subroutines in relocatable binary form are available

on the FORTRAN master tape. As mentioned on page 15, further

subroutines can be placed on the tape by each installation in

accordance with its own requirements. Todo so, the following

steps are necessary:

1. Produce the subroutine in the form of relocatable binary cards.

og

INPUT AND

OUTPUT OF
ARGUMENTS

RELATIVE
CONSTANTS

2. Produce a program card in accordance with specifications
outlined in the FORTRAN Operation's manual.

3. Transcribe the resulting card deck onto the master tape by

means of the 9LIB program included in the FORTRAN

Editing Program.

Tape subroutines may include Fortran functions and Subroutine

subprograms. The program card compiled by FORTRANwith these

programswill be in the format required for tape subroutines.

If the name of a function defined by a library tape subroutine is

encountered while FORTRANis processing a source program, that

subroutine will be included in the object program. Only one such

inclusion will be madefor a particular function, regardless of how

many times that function occurs in the source program.

Whencontrol is transferred to a library subroutine, other than a

Fortran function or Subroutine subprogram, the argument(s) will be

located as follows: Arg, will be located in the Ac, Argo (if any) in

in the MQ, Args (if any) in relocatable location 77775g, Arg, in

relocatable location 777748, etc. Locations down through 77462
are available for common erasable storage for library subroutines.

The output of any function called.by an arithmetic statement which

is a single value, must be in the Accumulator when controlis

returned to the calling program. All Index Registers which were

stored at the beginning of the subroutine, must be restored prior

to returning control.

The arguments for Fortran functions and Subroutine subprograms

-are listed in the object program after the transfer to the subroutine

(see Appendix D).

A relative constant is defined as a variable in a subscript, which is

not under control of a DO, or a DO-implying parenthesesin list.

For example, in the sequence:

A = B(K)

DO 10I=1, 10

X = B() + C1, 3342)

K and J are relative constants, but I is not.

60

Relative

Constants in

an Input List

Relative

Constants in

an Argument

List

The appearance of a relative constant in any of the following ways

i will be called a relative constant definition.

On the left side of an arithmetic statement.

In the list of an input statement.

As an argument for a Fortran function of Subroutine subprogram.

In a COMMONstatement.R
O
N

hr

The following paragraphs describe methods for assuring that the

computation for relative constants occur at the proper point between

the definition and the use of the relative constant.

In the object program, some computation will take place at each

such defintion. In the case of READ, READ TAPE, and READ

INPUT TAPE lists, the computation may not precede the use of a

relative constant in the list unless the relative constant appearance

is handled properly.

Wherethe relative constant definition appears in the same READ,

READ TAPE, or READ INPUT TAPElist with its relative constant

and precedesit, extra parentheses may be required in the list. In

such a list, it is necessary that there be a left parenthesis, other

than the left parenthesis of a subscript combination, between the

relative constant definition and its relative constant. If the list does

not contain the parenthesis, it should be obtained by placing parentheses

around the symbol subscripted by the relative constant.

Examples:

A,B,K,M, (CJ), J =1, 10), G(K)

A,B, K,M, G(K)

The first of these two input lists is correct. The second is incorrect,

but may be made correct with extra parentheses; i.e.,

A, B,K,M, (G(K))

A relative constant definition must not appearto the left of the name

of an array in the list of a READ DRUM statement.

A variable defined in one program mayhaveits value transmitted

to another program, whereit is a relative constant and where,

consequently, the value is used. This may be done by placingit in

an argument list. The appearance of a relative constant in an

argumentlist is sufficient to provide the necessary computation for

the relative constant.

61

Relative

Constants in

Common
Statements

FURTHER
DETAILS
ABOUT DO
STATEMENTS

A relative constant value may be transmitted from one program to.
another by placing it in COMMON, but only if it is being transmitted

from the calling to the called subprogram.

Example

Main Program

. SUBROUTINE ABC

COMMON K COMMONI

DIMENSION B(i0)

K=5 A= B(I)

CALL ABC

Triangular Indexing

Indexing such as

DO I=1,10

DO J=I1,10

or

DO I=1,10

DO J=1,I1

is permitted and simplifies work with triangular arrays. These

are simply special cases of the fact that an index under control of

a DO is available for general use as a fixed point variable.

The diagonal elements of an array may be picked out by the following
type of indexing:

DO I=1,10

A(I, I, I) = (Some expression)

Status of the Cell Containing I

A DO loop with index I does not affect the contents of the object program

storage location for I, except under the following circumstances:

1. An IF-type or GO TO-type transfer exit occurs from the range

of the DO.

62

2. Iis used as a variable in the range of the DO.

3. I is used as a subscript in combination with a relative constant

whose value changes within the range of the DO.

Therefore, if a normal exit occurs from a DO to which cases 2 and

3 do not apply, the I cell contains what it did before the DO was

encountered. After normal exit where 2 or 3 do apply, the I cell

contains the current valueofI.

What has just been said applies only when I is referred to as a
variable. When it is referred to as a subscript, I is undefined after

any normal exit and is the current value after any transfer exit.

63

CHAPTER 2 — LIMITATIONS ON SOURCE PROGRAMSIZE

Statements with

Statement

Numbers

Fixed Point

Constants

Floating Point
Constants

Subscripted
Variables

Subscripts

In translating a source program into an object program, FORTRAN

internally forms and utilizes various tables containing certain items

of information about the source program. Thesetables are of finite

size and thus place restrictions on the volumeof certain kinds of

information which the source program may contain. Ifa table size

is exceeded, a halt will occur while the object program is being

compiled.

The relevant tables and the limitations are given below. In the

following, the term ''literal appearance"indicates that if the same

item appears more than once, it must be counted more than once.

Maximum table sizes are given first for the 32,000 word (32K)

system, and then for the 8,000 word (8K) system.

TEIFNO Table. The number of source statements which have statement
numbers mustnot exceed 3000 (32K) or 750 (8K) in any single source
program. (An input/output statement which has a statement number
and whose list contains controlling parentheses counts as 2.)

FIXCON Table. The numberof different fixed point constants must

not exceed 400 for 32K systems, or 100 for 8K systems. (For this

purpose, constants differing only in sign are not considered different.)

FLOCON Table. The numberof different floating point constants

must not exceed 200 for the 32K system (50 for the 8K system) in any

one arithmetic statement, nor more than 450 in any one source

program. (Constants differing only in sign are not considered

different, neither are numbers such as 4., 4.0, 40. E-1, etc.,

considered different.)

FORTAG Table. The total number of literal appearances of subscripted

variables must not exceed 6000 for the 32K system, or 1500 for the

8K system.

TAU Tables. The total numberof different 1-, 2-, and 3-dimensional

subscript combinations must not exceed 400, 360, and 300 respectively

for the 32K system, or 100, 90, and 75 for the 8K system. Subscript

combinations are considered different if corresponding subscripts,

exclusive of addends, or corresponding "leading dimensions"of the

subscripted arrays differ. 'Leading dimensions"are the first dimension

of a 2-dimensional array, and the first and second dimensions of a

3-dimensional array.

64

Arithmetic

Statements

Arithmetic
Statements:

Fixed Point

Variables

SIGMA Tables. The numberof literal appearances of variables whose

subscripts contain one or more unique addends, must not exceed 120

for the 32K system, or 30 in the 8K system in any one arithmetic

expression.

LAMBDA Table. This table, and the BETA Table discussed immediately

below, limit the size of arithmetic expressions both on the right-hand

side of arithmetic statements, and as the arguments of IF and CALL

statements. For each expression, A must not exceed 1440 for the

32K system, or 360for the 8K system (709 FORTRAN)in the equation

A= n+4b+4a-3f+3p+2tt+e+3, where

n = numberof literal appearances of variables and constants, except

those in subscripts.

b = numberof open parentheses, except those introducing subscripts.

p = numberof appearances of + or -, except in subscripts or as unary

operators (the + in A*(+B) is a unary operator).

t = number of appearances of * or /, except in subscripts.

e = number of appearancesof **.

f = numberof literal appearances of function names.

a = number of arguments of functions (for SINF(SINF(X)), a = 2).

BETA Table. With the above definitions, 8 must not exceed 1080 for

the 32K system, or 270 for the 8K system (709 FORTRAN) where

B =r + 1-n-f

ALPHA Table. To determine whether an ALPHAtable overflow will

occur during the course of translation of an arithmetic statement, the
following procedure should be carried out. Set the initial value of a

counter to 3. Scanning the right-hand side of the statement in question,

add 4 to the value of this counter for each left parenthesis encountered

and subtract 4 for each right parenthesis encountered. This statement

is compilable by the 709 FORTRAN System if and only if the counter

value never exceeds 556 for 32K systems and 139 for 8K systems.

FORVAL Table. The total numberof literal appearances of non-sub-

scripted fixed point variables on the left-hand side of arithmetic state-

ments, in input lists, in COMMON statements, and in argumentlists

for Fortran functions and Subroutine Subprograms must not exceed

2000 for the 32K system, or 500 for the 8K system.

65

Arithmetic State-
ments: Functions

Transfer

Statements

STOP

DO

CALL

Alphanumerical
Arguments

FORMAT

FORVAR Table. The total number of literal appearances of non-

subscripted fixed point variables on the right-hand side of arithmetic

statements, and in the arguments of IF and CALL statements must

not exceed 3000 for the 32K system, or 750 for the 8K system.

FORSUB Table. For 709 FORTRAN,the total numberof distinct

Arithmetic Statement functions must not exceed 140 for the 32K

system, or 35 for the 8K system.

TRAD Table. The numberof literal appearances of statement

numbers mentioned in assigned GO TO and computed GO TO

statements must not exceed 1, 000 for the 32K system, or 250 for

the 8K system.

NLIST Table. The total number of different fixed point variabies in

assigned GO TO statements must not exceed 200 for the 32K system,

or 50 for the 8K system in 709 FORTRAN.

TIFGO Table. The number of ASSIGN, and If- and GO TO-type

statements in a source program must not exceed 1200 for the 32K

system, or 300 for the 8K system in 709 FORTRAN.

TSTOPS Table. The total number of STOP statements in a source

program must not exceed 1200 for the 32K system, or 300 for the

8K system.

TDO Table. The total number of DOs must not exceed 600 for the

32K system, or 150 for the 8K system in any one source program.

(A DO-implying parenthesis counts as a DO.)

DOTAG Table. The number of DOs must not exceed 200 for the

32K system, or 50 for the 8K system in any one nest of DOs.

CALLFN Table. The total number of CALL statements appearing

in one source program must not exceed 2400 for the 32K system,

or 600 for the 8K system.

HOLARG Table. Entries are made in this table when a CALL

statement lists alphanumerical arguments. For every nH in a CALL

statement, divide n by 6. Add 1 to the quotient if there is a remainder.

Add 1 to this. The total of all such calculations must not exceed

3600 for the 32K system, or 600 for the 8K system.

FMTEFN Table. The total number of input-output statement

references to FORMAT with numerical statement numbers must

not exceed 2000 for the 32K system, or 500 for the 8K system.

66

Subprogram
Arguments

Subprograms,
Functions

and
Input/Output
Statements

Non-Executable

Statements

DIMENSION

EQUIVALENCE

FREQUENCY

COMMON

FRET Table.

FORMAT Table. For each FORMAT statement compute f as follows:

Count all characters, including blanks, following the word FORMAT,

up to and including the final right parenthesis.

Divide this count by 6. Add 1 to the quotient if there is a remainder.

The total of all the f values thus computed, must not exceed 6000

for one source program in 32K systems or 1500 for 8K systems.

SUBDEF Table. The SUBDEFtable arises from the SUBROUTINE

and FUNCTION statements. An entry is made for the name of the

subprogram being defined, and for each “dummy” argument contained

in the argument list. The numberof entries must not exceed 720

for the 32K system, or 180 for the 8K system.

CLOSUB Table. One entry is made in this table for each closed

subroutine, Fortran function, and Subroutine subprogram called in

the source program. In addition, as many as three entries may be

made for each input/output statement. The table must not exceed

6000 (32K), or 1500 (8K) entries, of which no more than 3000 or 750

respectively may be different.

NONEXC Table. The number of non-executable statements in a

source program must not exceed 1200 for the 32K system, or 300

for the 8K system.

DIM Tables. The total number of 1-, 2-, and 3-dimensional

variables mentioned in DIMENSION statements must not exceed 400,

400, and 360, respectively, for the 32K system, or 100, 100, and

90, respectively, for the 8K system.

SIZE Table. The number of arrays mentioned in a source program

must not exceed 1160 for the 32K system, or 290 for the 8K system.

EQUIT Table. The total numberof literal appearances of variables

in EQUIVALENCE statements must not exceed 3000 (32K), or 750

(8K) in any one source program, nor 1200 (32K), or 300 (8K) in any

one EQUIVALENCEstatement.

The total number of numbers mentioned in FREQUENCY

statements must not exceed 3000 for the 32K system, or 750 for the

8K system. For example FREQUENCY 30 (1, 2, 1) mentions four

numbers.

COMMONTable. The number of literal appearances of variables

in COMMONstatements must not exceed 2400 for the 32K system,

or 600 for the 8K system.

67

APPENDIX A — SOURCE PROGRAM STATEMENTS AND SEQUENCING

Non-Executable

Statements

The precise rules which govern the order in which the source program

statements of a 709 FORTRAN program will be executed can be stated

as follows:

1. Control originates at the first executable statement.

2. If control has been with statement S, then control will pass to the

statement indicated by the normal sequencing properties ofS.

(The normal sequencing properties of each FORTRANstatement

are given below. If, however, Sis the last statement in the

range of one or more DO's which are not yet satisfied, then the

normal sequencing of S is ignored and DO-sequencing occurs.)

The statements FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY

and COMMONare non-executable statements. In questions of

sequencing they can simply be ignored.

:

If the last executable statement in the source program is not a STOP,

RETURN, IF-type, or GO TO-type statement, then the object program

is compiled to give the effect of depressing the Load Cards key

following the last executable statement.

Every executable statement in a FORTRAN source program (except

the first) must have somepath of control leading toit.

Table of Source Program Statement

Sequencing

Statement Normal Sequencing

a=b Next executable statement

GO TOn ‘| Statement n

GO TOn, (nj, Nog,..., Dm) Statement last assigned ton

ASSIGN i TOn | Next executable statement

GO TO (nj, No,..., Dm)» i Statementn;

IF (a)ny, Ng, Ng Statementnj, No, or ng if (a) < 0,

(a)=0, orif(a) >0, respectively.
69

Statement

SENSE LIGHT i

IF (SENSE LIGHT i) ny, no

IF ACCUMULATOR OVER-

FLOW Ny, Dy

IF QUOTIENT OVERFLOW

ny; No

IF DIVIDE CHECKnj, ny

PAUSE or PAUSE n

STOP or STOP n

DOn i=my,, Mg or

DOni=m,, M5, Mg

CONTINUE

END (I, ly; In, Is I)

CALL Name(aj, a9,--+» a)

SUBROUTINE Name

(ay, Agreees A)

Normal Sequencing

Next executable statement.

Statement nj, no if Sense
Light i is On or Off,

-respectively.

Statement nj, Ny if Sense

Switch i is Down or Up,

respectively.

Statement nj, No if the 709

FORTRANinternal over-

flow indicator is On or Off,

respectively.

Statement nz, No if the 709

FORTRANinternal over-

flow indicator is On or Off,

respectively.

Statement nj, No if the

Divide Check indicator is

On or Off, respectively.

Next executable statement.

Terminates program.

Do-sequencing, then next

executable statement.

Next executable statement.

No sequencing; this statement

terminates a problem.

First statement of subroutine

Name.

Next executable statement.

70

Statement

FUNCTION Name (a,; a9)+++5 ay)

RETURN

READ n, List

READ INPUT TAPE i, n, List

PUNCH n, List

PRINT n, List

WRITE OUTPUT TAPE i, n, List

FORMAT (Specification)

READ TAPE i, List

READ DRUM i, j, List

WRITE TAPE i, List

WRITE DRUM i, j, List

END FILE i

REWIND i

BACKSPACEi

DIMENSION v, v, v, ...

EQUIVALENCE(a, b, c, ...).

(d,e,f,...),....

FREQUENCY n (i, j, ...).

mi(k, I,...),.....

COMMONA, B,...

Normal Sequencing

Next executable statement.

The statement or part of

statement following call.

Next executable

Next executable

Next executable

Next executable

Next executable

Not executed.

Next executable

Next executable

Next executable

Next executable

Next executable

Next executable

Next executable

Not executed.

Not executed.

Not executed.

Not executed.

statement.

statement.

statement.

statement.

statement.

statement.

statement.

statement.

statement.

statement.

statement.

statement.

APPENDIX B — TABLE OF SOURCE PROGRAM CHARACTERS

7 oe os nw

Y 2| el 2 a| oe] 9 ajove) |2 18
oe a eleiae al Pi geile! al] & 2 “| a;F&i¢g
< ee alos a a;jols!|! Silaiois a QAO

8 U Viel S| SISIRIS! SI|ZIEL BS) S| SIE

12 11 0
1 1 O01 lo1| A 1 6t| 211) 1 |41 |41 7 2 21 61

12 11 0
2 2 02 |02/|B 2 62] 22K 2 1421/42 11S 2 22 |62

12 11 0
3 3 03 |o3\|Cc 3 631} 23)L 3 143 143 IT 3 23 163

12 11 0
4 4 04 |04|] D 4 |64|/241M| 4 |44 1/44]uU 4 24 64

12 11 0
5 5 |05 |OS|E 5 |65/25/N 5 l45 145 ive] 5 25 |65

12 11 0
6 6 06 106||F 6 66 26/0 6 146 |46 ||\w] 6 26 |66

12 11 0

7 7 07 |07||G 7 |671|27|)P 7 147 |47|\|X 7 27 167

12 11 0

8 8 10 |10]/|H 8 |70}30/0 gs |50 |so lly 8 30 |70

12 11 0
9 9 11 {111 1 9 {711/31 R 9 151/51 11Z 9 31171

blank blank }20 }60l1+ 12]/00{/20— 11 |40 14040 O 12 {00

12 11 0
= g-3 113/131]. |8-3 731331¢$ 8-3 |53 153] , 8-3] 33 73

12 11 0
- 8-4 |14 1141) |8-4 74] 34] * 8-4 54/54 11(8-4] 34174

NOTE: There are two - signs. Only the 11-punch minus sign can be used in FORTRAN

source program cards. Either minus sign may be used in input data to the object

program; object program output uses the 8-4 minus sign.

The character $ can be used in FORTRAN only as Hollerith text in a FORMAT

statement.

73

APPENDIX C — TABLE OF LIBRARY FUNCTIONS

No. of Mode of

Type of Function Definition Args. Name Argument Function

Natural Computes 1 LOGF Floating Floating

Logarithm natural log

for X, where

X>0.

Trigonometric Computes sine 1 SINF Floating Floating

Sine of an angle

given in

radians.

Trigonometric Computes 1 COSF Floating Floating

Cosine cosine of an

angle in

radians.

Exponential X< 87.3 1 EXPF Floating Floating

Square Root Computes 1 SQORTF Floating Floating

VIX!

Arctangent Computes 1 ATANF Floating Floating

floating

arctangent

Hyperbolic Computes 1 TANHF Floating Floating

Tangent TANH X.

Result has

sign of X.

75

APPENDIX D — SENSE SWITCH SETTINGS FOR 709 FORTRAN

Sense Switch 1

Sense Switch 2

Sense Switch 3

Sense Switch 4

77

UP

DOWN

UP

DOWN

UP

DOWN

UP

DOWN

Cards containing the object program(s)

are punched on-line. Actual tape unit

B3 contains the object program of the

source program compiled, or, if under

monitor control, of the last source

program compiled.

Actual tape unit B3 contains the object

program for the last or only source

program compiled. If under monitor

control, tape unit B4 contains the

object programsfor all the source

programs compiled, in the order

compiled. No cards are punched.

Produces, on actual tape unit B2, two

files for the source program compiled,

containing the source program and a

map of object program storage. If under

monitor control, actual tape unit A3

will contain two files for each program

compiled and actual tape unit B2 will

contain two files for the last program

compiled.

Adds a third file for each program

compiled (see above) containing the

object program in terms of the symbolic

code FAP (FORTRAN Assembly Program)

on actual tape unit B2 (and A3, if under

monitor control).

No on-line listings are produced.

Lists on-line the first two or three

files of tape unit B2, depending upon

the setting of Sense Switch 2.

Punched output, if any, is relocatable

row binary cards.

Punched output is relocatable columnar

binary cards.

Sense Switch 5

78

UP

DOWN

Library subroutines will not be punched

on cards or written on actual tape unit

B3.

Causes library subroutines to be punched

on cards or written on actual tape unit

B3, depending upon whether Sense

Switch 1 is Up or Down.

APPENDIX E — USING HAND-CODED SUBROUTINES WITH 709 FORTRAN
COMPILED OBJECT PROGRAMS

Calling
Sequence

Fortran function subprograms and Subroutine subprograms coded

by hand or by a system other than FORTRANcan also be linked to

FORTRAN programs. If coded in FAP and assembled through the

FORTRAN Monitor, the linkage instructions will occur auto-

matically. For hand-coding other than by FAP, rules for providing

this linkage are given below.

It is necessary for hand-coded subprograms to conform to FORTRAN

programs with regard to five conditions.

1.

4,

3.

Transfer lists to called subroutines, if any.

Method of obtaining the variables (arguments) given in the

calling sequence.

Saving and restoring index registers.

Storing results.

Method of returning to the calling program.

A calling sequence for a subprogram, produced by FORTRAN

consists of the following:

79

TSX NAME, 4

TSX LOCX1

TSX LOCX2

TSX LOCXn

Transfer List,

Prologue,
and Index
Register

Saving

RESULTS

The calling sequence consists of n+l words. The first is an instruction

which causes transfer of control to the subprogram. The remaining

n words include one for each argument. The 'TSX"' in these words

is never executed. In case an argument consists of an array, one

instruction determines the entire array; the address of that instruction

specifies the location of the first element of the array, i.e., element

Aj,1,1- If the argument is Hollerith data, the location given is that

of the first word of the block containing the data.

The first instructions of a subprogram will consist of a transferlist

and a prologue in that order. The transfer list contains the symbolic

namesof the lower level subprogramsand functions, if any, that the

subprogram calls. The prologue obtains and stores the locations

givenin the calling sequence. It will consist of the CLA and STA

instructions necessary for each argument. If it is desired, index

registers may be saved.

The instructions below show such a transfer list and prologue.

pies REMARKS
L

| Locarion OPERATION | |ADDRESS, TAG, DECREMENT/COUNT COMMENTS

12 eltfa 14115116 a oe _ _

JSU.BPA BCD,... TSUBPL , \o pce cuca pee eeee
''SUBP2| BCD,.., ‘1SUBP2,, |p cpu uu ecuuaaussie tdeetr topes ait iia
pit ppeelett

Pa atia J wd kb. dod Late copeaTeensferMit

ofaa atid at "eg na theaa

Lisuppy] Bop, 0.) 180BPNJe
oat} PETRoa i. . se a «Storageforcontentsindex4.101414bi
pirat ATR, ..:! ...4.. . . Storage forcontents pfindexregister2.)001...1.11.4
ptaooe ad FATR 1! 1:4... Storageforcontentsofindexregister}.
NAME, | §.XD, . , ‘NAME =3,,,4. , Save IRA contentaip location(NAME+3)0ggeet

Piuuia BXD,. ,, i NA ME -,2,,,2, ,.Save [R2contents ip logation(NAMEr2) 00pp

Fit. a] SXD.., ! NAME~1,.1,Save TRIpantentaiplopation(MAMFr))os
PMA
nad STA, , , ERAidocationpfletargument,

en CLL vtBark fe odtd
faa The RReanOPEREPGg

i e tu °
Hope 1 Lutbo

Pow ita
1 1 1%a

1 .i] CLA, 4 pa, »4 Boboaahb

toora} BTA, Ba po Location pf.nthargumentPH,sesa Lebtes ek
lL. Ld
A FORTRAN function mustplace its (single) result in the Accumulator

prior to returning controlto the calling program.

A Subroutine subprogram must place each of its results in a storage

location. (Such a subprogram need not, of course, return results.)

A result represented by the n th argument of a CALL statementis

stored in the location specified by the address field of location (n, 4).

80

Return

Entry

System Tape
Subroutines

Alphanumerical
Information

Transfer of control to the calling program is effected by

1. Restoring the Index Registers to their condition prior to transfer

of control to the subprogram.

2. Transferring to the calling program. The required steps are:

*F
LOCATION OPERATION ! ! ADDRESS, TAG, DECREMENT/COUNT COMMENTS
i toa

7 raistie

- 4 F,

VINAME-2.,,2).,..,.,4 F,
it ~ F,

roa
—Ht-A--!

Is
‘

pHi. ttt

Unlike a Fortran compiled subprogram, a hand-coded subprogram

may have more than one entry point. A hand-coded subprogram used

with a FORTRANcalling program may be entered at any desired point,

provided that a subprogram name acceptable to FORTRANis assigned

to each selected entry point. All the above mentioned conditions,

must of course, be satisfied at each entry point. The entry point

name by which a FORTRANcalling program refers to a DAP sub-

program need not have been used in the original symbolic DAP

coding.

As discussed on page 59, hand-coded subprograms as well as Library

functions, may be placed on the system tape of the FORTRAN system.

When a FORTRAN source program mentions the name of such a

subprogram, it is handled in exactly the same way as a library function.

Hand-coded subprograms may handle alphanumerical information.

This information is supplied as an argument of a CALL statement.

The form for an alphanumerical argumentis

NHx)X9...-Xpy

-. The following example illustrates the method of storing alphanumerical

information.

Example:

CALL TRMLPH (8, C, 13HFINAL RESULTS)

the characters 13H are dropped, and the remaining information stored:

81

Location

Xx

X+1

X+2

X+3

Contents

FINAL b

RESULT

Sbbbbb (represents a blank - 60.)

TTTTTTTTTTT

The address X is given in the calling sequence for the CALL

statement.

82

