
Massachusetts Institute of Technology
Charles Stark Draper Laboratory

Cambridge, Massachusetts

LUMINARY Memo # 143

TO: Distribution

FROM: Allan Klumpp

DATE: March 24, 1970

SUBJECT; Automatic P66

HISTORICAL PREFACE

Program P65 was designed to guide the lunar module during the last 100

feet or so of a lunar landing. It was designed to produce a vertical descent by

nulling the horizontal components of velocity and providing a constant negative

vertical component. Program P66 was designed as an alternative to program P65
to be used for the last several hundred feet of a lunar landing. It was designed to

produce a vertical component of velocity controlled by astronaut commands via a

Rate Of Descent switch, and Attitude Hold / Attitude Rate Command capability

which would permit the astronaut to control the attitude such as to null the hori-

zontal components of velocity manually. Program P66 was used on Apollos 11

and 12. P65 was available but never used.

The P65 guidance equation, which is finally being eliminated, is the pre-

cursor of the new horizontal algorithm of the auto P66 mode. Some background

on the P65 algorithm should be interesting and provide notivation for the P66 hori-

zontal algorithm.

My first knowledge of the P65 guidance equation was in August 1965 when I

produced it for the sole purpose of making simulations work. It was the simplest

conceivable stopgap measure to allow deferment of the minor problem of vertical

descent until some of the major problems were solved. I never would have be-

lieved at the time that this inadequate algorithm would survive to be coded in the

guidance computer of the first two lunar landing missions. But there was never
much incentive to improve the algorithm because it was the expressed intent of

every astronaut queried not to use P65 whether it was improved or not.

2

The P65 equation produced a vector acceleration command proportional

to the vector velocity error, and therefore, to a linear continuous system ap-

proximation provided an exponential decay of the velocity error. It reads

^ - (v - V^)/t.

where is the commanded acceleration vector, v is the current velocity vec-

tor, v^ is the commanded velocity vector, and r is the time constant. Assuming
is constant and the commanded acceleration is achieved continuously, the

solution for the velocity error is:

Xe
= V - V e

-eo
-t/r

where v^^ is the velocity error at time t = 0,

This P65 equation is inadequate because the two second sample intearval

combined with the slow attitude response about the two horizontal axes forbids

a reasonable compromise between speed of response and well damped behavior.

For well damped behavior, r must be several times the combined sample inter-

val and system delays; the result is too slow. In missions r has been set at 8

or 10 seconds.

For a feedback system of a given configuration, there is frequently a

compromise between damping and speed. One can be traded for the other simi-

larly to the tradeoff between gain and bandwidth in amplifier design. In the

case of the horizontal channels of the vertical descent guidance algorithm, there

is not much we can do to reduce the system delays, but if we could change the

configuration of the guidance algorithm such as to produce inherently better

damping, we could then trade a portion of the damping improvement for faster

response. For a position control system, velocity feedback provides damping.

For a velocity control system, acceleration feedback provides damping. We
have a velocity control system.

3

In February, 1969 I suggested to my colleague Nicholas Pippenger that

he investigate acceleration feedback for the P65 equation. I envisioned feeding

back into the horizontal channels an acceleration derived from spacecraft attitude,

thrust, and mass. Starting with some ideas proposed by Jerrold Suddath of MSC
(Ref, 1), Nick produced an algorithm at least as effective as my proposal and
far simpler to implement than either suddath*s or mine. Nick proposed to feed

back the prior acceleration command. Because of the system delays, the prior

command is a ve^ good measure of the current acceleration. In fact Nick has

studied a class of algorithms which save and feedback the acceleration commands
from several past cycles.

After reading the accounts from ApoUos 11 and 12 of the difficulty of de-

termining translational rates during the final 100 feet or so of vertical descent,

it seemed to me that we could provide future missions with an automatic mode
for nulling horizontal velocity in P66 based on the knowledge of velocity by the

primary system which is undegraded by the dust. My colleague Donald Eyles had
produced the germ of the idea when he suggested the capability to return t^ P65
from P66, but that proposal would produce poor horizontal response and forfeit

rate of descent control. An automatic P66 mode could incorporate the algorithm

conceived by Nick Pippenger and continue to provide rate of descent control. The
question of whether such a mode would be desirable was put to the Apollo 12 crew
in the crew de-briefings on 9 December, 1969. On December 12, MIT was asked
by NASA whether we could provide the new capability in time for Apollo 13.

NASA also suggested a significant improvement, i. e, to provide attitude error

needles in P66 attitude hold as well as in P66 auto. The primary doubts we had
were whether there was computation time sufficient to compute the horizontal

commands and whether the slower horizontal channels could be satisfactorily

married to with the faster vertical channel. By December 15 we felt we had sev-
eral workable solutions to both problems, and since these solutions consisted

largely of re-connecting existing programs, we ventured we could produce a sample
Luminary program for testing by NASA in short order. We delivered the test pro-
gram on December 22. The guidance algorithm of this first version has not been
changed in any way.

4

FEATURES OF THE NEW P66 PROGRAM

1. Attitude Hold Mode

The rate of descent (ROD) algorithm of the prior P66 program has been

retained without change for the vertical channel of P66 Attitude Hold and

P66 Auto, Thus P66 Attitude Hold provides all of the features of the prior

P66 program. In addition it provides attitude error needles which work
identically to the needles in other powered flight programs, e. g. P64.

They display the error between the current attitude and the attitude required

to null the horizontal velocity (the attitude which would be commanded by

P66 auto). P66 Attitude Hold may be entered in any of three ways; 1) by

switching to Attitude Hold in program P64 and waiting until the automatic

program change to P66; 2) by switching to Attitude Hold in P63 or P64 and

manipulating the rate of descent (ROD) switch; 3) by switching to Attitude

Hold while in P66 Auto.

2. Auto Mode

This mode provides fast, well damped, attitude limited nulling of the hori-

zontal velocity error and control over the descent rate via the ROD switch.

The horizontal dynamics are controlled by two erasable constants TAUHZ
and QHZ, and the attitude limit is controlled by the erasable AHZLIM. In

addition P66 auto provides the normal powered flight attitude error needles.

In future revisions P66 Auto may provide the capability to increment the

horizontal command via the hand controller in the same way redesignations

are made in P64. This will permit the astronaut to remove any PGNCS
velocity bias he observes. The horizontal velocity increment will be set

by an erasable. P66 Auto may be entered in either of two ways; 1) by waiting

for the automatic program change at the conclusion of P64 while in Auto;

2) by switching to Auto while in P66 Attitude Hold. Thus, as in P64, there

is a two way path between Auto and Attitude Hold which may be traversed

as often as one wishes.

3. New Priority Structure

Testing of an early revision of the new program revealed violent throttle

behavior under time loss stress testing (TLOSS) which simulates unexpec-

tedly heavy counter activity or computation demand. The difficulty,

described in Ref. 2, is caused by the failure of one servicer cycle to finish

before the subsequent servicer cycle is begun. Thus, two servicer jobs

could iterfere with one another's erasables in the ROD equations. To
avoid such conflicts:

5

A. The priority of the servicer job is raised from 20 to 21 at the start of

each P66 pass, which assures one servicer job will finish before the

subsequent servicer is permitted to start,

B. The RODTASK starts the ROD job at priority 22. This permits the

ROD job to interrupt a servicer job anywhere (except in the ROD
equations because of item C).

C. At the start of the ROD equations each servicer job is raised from
priority 21 to 23, and each ROD job is raised from 22 to 23. This

assures that only one job at a time can pass thru the ROD equations.

4. P66 Omissions and Padload 2LATE466

Item 3 above delays the start of a servicer cycle whenever the previous

cycle is unfinished. If servicer persistently runs slower than expected, it

will start increasingly late. Because the accelerometers are always read

on time, we must prevent servicer starting so late as to occasionally miss
using one pass of accelerometer data or the associated time tag called

PIPTIMEl. Thus when servicer gets behind to the point that on the subse-

quent pass the accelerometers would be in danger of being read before COPY -

CYCL, P66 is omitted to permit the subsequent servicer to start on time.

The criterion is the erasable 2LATE466, "too late for 66" which is the time
relative to PIPTIME beyond which P66 is omitted. The test is made at the

start of the P66 guidance equations. Thus with 2LATE466 loaded as 1, 5

seconds, if the servicer program exits to P66 later than 1, 5 seconds past

PIPTIME, P66 will omit the horizontal and vertical equations and exit

directly to the displays,

5. Alarm 01466 and Padload TOOFEW

In case of extremely severe TLOSS or computation demand, item 4 above

can cause P66 to be omitted so frequently as to produce throttle or attitude

control instability, or it can even look out P66 altogether. Thus, when
stability is endangered by too frequent omissions, alarm 01466 is issued,

and P66 is omitted anyway. The criterion for issuing the alarm is the

erasable TOOFEW, which should be loaded as one less than the minimum
number of successful throttlings between a P66 omission. Note that each
time P66 is omitted once, the throttle is omitted twice, because when P66
is omitted it does not set up the subsequent RODTASK, TOOFEW can be
thought of as "two few throttlings between a pair of throttle omissions".
Thus, with TOOFEW loaded as three, four successful throttlings (two suc-
cessful P66 passes) are required between omitting a pair of throttlings

(omitting one P66 pass). Omitting more frequently produces alarm 01466.

X Axis Override

X Axis Override is permitted in both P66 Auto and Attitude Hold.

Throttle Mod es

P66 now permits one to switch back and forth between manual and automa-
tic throttle as often as one wishes. In revision 131 of Luminary, if the

astronaut should bring the spacecraft to a desired descent rate using the

manual throttle and then switch back to automatic throttle in order to re-
gain ROD switch control, the commanded descent rate which existed prior
to switching to manual throttle would stm exist. This command would cause
the throttle to drop and the spacecraft to revert to the prior descent rate,

which could be dangerous at low altitude. The new program checks the
automatic throttle discrete and resets the rate of descent command
(VDGVERT) equal to the current rate of descent (HDOTDISP) whenever the
throttle is in manual.

Landing Radar Off

The radar is turned off at an altitude controlled by the erasable constant
HLROFF, fulfilling PCR 942.

Response to Touchdown

P66 Auto maintains the attitude error needles and continues issuing attitude

commands, and P66 Attitude hold maintains the attitude error needles,
until the astronaut indicates touchdown by both; 1) "Proceeding" on the
flashing V06 N60 display and 2) switching the engine arm switch to off.

At this point P66 stops the above functions and causes the DAP to make
one pass thru DAPIDLER every two seconds. This may allow sporadic jet

firing for two seconds, but will stop the jets completely after two seconds.

7

10. New Overflow Subroutine

A new subroutine has been coded for responding to overflows which occur

anywhere in the descent, including P63, P64, or P66. This subroutine

issues alarm 01410, does a STOPRATE in INHINT, and resets the over-

flow indicator. The INHINT is desirable to prevent the autopilot from

interrupting the STOPRATE. Previously the INHINT was not done and the

overflow indicator was not reset.

11. INHINT in RATESTQP

The descent subroutine RATESTOP, which is used whenever STEERSW is

off indicating insufficient thrust, or following the 01406 alarm indicating

the time -to -go equations fail to converge, now does the STOPRATE under

INHINT.

12. Order of Overflow and STEERSW Checks, Deletion of Automatic Attitude

Check before doing STOPRATE

Overflow is now tested before STEERSW, reversing the previous order,

so that overflow will be checked even if STEERSW is off. In addition, the

STOPRATE in case there is overflow or in case STEERSW is down is no

longer omitted in Attitude Hold. PINDCDUW is supposed to do a STOPRATE
in Attitude Hold, but since PINDCDUW is also omitted in the overflow case,

the STOPRATE might never have been done in Luminary 131. In the case

when STEERSW is down, the STOPRATE is superfluous since one is done

by Servicer,

13. Deletion of INHINT and ZATTEROR at STOPFIRE

The ZATTEROR, which was previously done in response to the proceed at

touchdown, does not succeed in stopping hard-on attitude jets, whereas the

measures described in item 9 above do stop jet activity. Therefore the

ZATTEROR and the associated INHINT have been deleted,

14. Deletion of P65

The coding associated with P65 has been deleted where necessary to provide

room for the Auto P66 coding. The remaining P65 coding will be deleted

from future revisions of Luminary,

8

P66 HORIZONTAL GUIDANCE ALGORITHM

The simplest type of algorithm, such as was used in P65, produces a
vector acceleration command proportional to the vector velocity error, with iden-
tical gains m all components. Nick Pippenger proposed originally (for a modified
P6 5 type program) to supplement that result with a negative fraction of the previous
vector acceleration command, retaining equal gains in all components. For a
P66 type program with ROD inputs, retaining equal gains for the three components
is neither feasible nor necessary. It is not feasible because there is insufficient
computation time to compute the horizontal commands as frequently as the vertical
commands are computed, and the attitude changes which modulate the acceleration
for horizontal control cannot be made anywhere near as fast as the throttle changes
which modulate the acceleration for vertical control. Equal gains are not neces-
sary because we do not require as speedy response to small horizontal velocity
errors as we require to large ROD inputs.

These considerations dictate analgorithm in which the horizontal commands
are computed once per two seconds and vertical commands once per second. The
vertical channel can hopefully be left entirely unchanged.

One important design question was whether the attitude commands (horizon-
tal channels) should be generated preceding or following the throttle commands
(vertical channel). We decided to process the horizontal channels before the ver-
tical channel for the following reasons:

1. The existing P66 vertical algorithm solves for the state inputs at the
time it is processed and is therefore insensitive to the additional time
delay in processing the horizontal channels first.

2. Assuming the horizontal channels use the velocity data generated by
the normal state vector update routine, processing the horizontal
channels first avoids the computation delay (about 300 milliseconds

)

of the vertical channel, thus improving the horizontal dynamics. In
the future we could consider using for the horizontal channels the
velocity vector generated by the vertical channel, in spite of item 3

below.

9

3. Because available computation time requires the horizontal channel

to be updated only half as often as the vertical, the simplest possible

organization is to locate the horizontal coding at a point which is

accessed only once per two seconds. Thus, odd and even cycle tests

are avoided.

Another important design question was whether we should use the vertical

component of thrust acceleration commanded as one of the inputs for attitude con-
trol (as per P65) or whether we should assume the vertical thrust acceleration

identical to lunar gravity, ignoring the thrust modulation required to alter the

descent rate. Ignoring this vertical thrust modulation will modulate the gains in

the horizontal channels and we will achieve the commanded horizontal acceleration

only when descending at a constant rate.

In the case when there is a substantial upward acceleration, e. g. when the

throttle is above about 60%, the horizontal channels become unstable and the attitude

oscillates divergently. For example, at the soft throttle stop the attitude oscilla-

tes with a period of about 14 seconds and a divergence of about 20% per cycle. At

maximum thrust the period is about 12 seconds and the divergence is perhaps 30%
per cycle. The erasable padload AHZLIM limits the growth of such attitude oscil-

lations in the same way it limits the deviation from an erect attitude in the normal
case when there is a substantial velocity error, except for some attitude overshoot

due to control limitations of theDAP. These attitude oscillations are likely to occur

only if one should choose to abort in Auto P66 from a point where sufficient propel-

lent remained to permit such oscillations to develop. In this unlikely case, one

would leave a very crooked con -trail.

In spite of the above considerations, all of which were anticipated, we de-

cided to ignore thrust modulation in the horizontal channels because;

1. To use the vertical thrust acceleration commanded as the vertical in-

put for the thrust direction command (as per P65) would produce

attitude modulation in response to astronaut ROD commands. This

would be disconcerting and it would increase consumption of attitude

propellant,

2. The vertical channel can modulate the thrust so much faster than the

horizontal channels can modulate the attitude that when the thrust is

being modulated we could not react fast enough to achieve the com-
manded horizontal acceleration if we tried.

10

3. The vertical thrust acceleration must be nearly constant because

any significant variation produces a large change in the descent rate

in a very short time (e.g. a 20% variation produces over 1 ft/sec^

vertical acceleration).

4. The small and short duration variations of the gains in the horizontal

channels due to modulation in the vertical channel do not significantly

alter the dynamic response of the horizontal channels.

5. To use the vertical command, we would either have to use the com-
mand saved from the previous cycle or generate the horizontal

commands after the vertical which we had decided not to do.

The following table lists some gain pairs supplied by Nick Pippenger which

produce increasingly faste r and less well damped horizontal response. The first row
produces an effective time constant of about 4 seconds and essentially dead beat

response. It has been used in all simulations to date.

TAUHZ (sec) QHZ TAUHZ (oct) QHZ (oct)

5 .4 07640 14632

4 .45 06200 16315

3.448 ,50 05306 20000

2. 857 . 525 04356 20632

The following table lists the erasable loads corresponding to various

limits of pitch and roll angles. The 20^ limit has been used in most simulations

to date.

Angular Limit AHZLIM (M/sec^) AHZLIM (oct)

15° .435 00013
20°

. 591 00017
25° .757 00024
30°

. 936 00031
35°

1. 135 00036
40°

1. 360 00044
45° 1.623 00053

60° 2.810 00112

The following flow chart defines the Auto P66 program as presently coded

for Apollo 13. The notation is identical to the JjGC program.

12

References:

1. Suddath, J. H., "Guidance and Control Systems Interaction in P64 and
P65", NASA MemoEG23-69-39, February 10, 1969,

2. Klumpp, A, , "A Collection of the Known Manifestations of Time Loss in

Luminary Revision 131 and LM131 revision 001 - Suggested Work-Around
Procedures", Luminary Memo #140, March, 1970.

13

R13 (every 2 seconds)
GUILDENSTERN (Servicer enters Descent Guidance here

Y at Priority 20)
r P66 \

^ATT \ N
HOLD —

GUILDRET

RODCOUNT

Continue P63, P^

STARTP66

RODELAG
. Set

MODE = 66
VDGVERT = HDOTDISP

WCHVERT = - 0
CNTTHROT = - TOOFEW

VHZC = WM X ^

Compute ROD scaling

FCOLD, FWEIGHT = 0
WCHPHOLD, WCHPHASE = 2

snd of^
approach
.phase

maintain
alt. rate,

reset Astro
Pro flag,
initialize

throttle
counter and
vel cmd

compute
P63, P64
guidance
commands

END OF JO

Call STOPRATE Initialize for ROD commands
Set Vertical Phase flags

Set RODFLAG
,
. _

SarS™AG . !

bommands

Is It Too Late in the Servicer Cycle to do P66 ?

CRIT ? 2LATE466 - (t - PIPTIME)

RODFLAG set Indicates no
restarts and no P66 omissions

Allow X axis override

Terminate redesignations

14

<r CRIT> 0

P66 HZ
Commanded Acceleration Vector for Horizontal Velocity Nulling'^

AHZCX = GHZ
AHZCY = (limit AHZLIM) (-QHZ UNFC/2Yj_^ - (VY - VHZCY)/TAUHZ)

AHZCZ = (limit AHZLIM) (-QHZ UNFC^Zj,^ - (VZ - VHZCZ)/TAUHZ)

Priority = 21 (*

P66 A

OVERFLOW

Clear = RODFLAG
CRIT = CNTTHROT
CNTTHROT = -TOOFEW

ALARM 01410
Call STOPRATE
Reset OVERFLOWind

lNGINE ARME]

CRIT> 0

ALARM 01466

DAP
• '^sWCHVERT = -Q>

initialization
so jets turn
off on
surface i'

FINDCDUW INPUTS

UNFC/2 = AHZC

i 3 E

p- T
Call FINDCDUW

1

*--Has Proceed been keyed in response to
Flashing V06 N60 ?

GHZ is lunar gravity; QHZ and
1/TAUHZ are gain constants; VY and
VZ are the Y and Z components of
velocity, platform coordinates
VHZCY and VHZCZ are the Y and Z
components of commanded velocity,
platform coordinates; I-l indicates
the previous pass, and on the first P66
pass this indicates the final P64pass.
(LIMIT AHZLIM) indicates the content
of the subsequent parentheses is magnitude
limited to AHZLIM.

15

