
5. 5 	BASIC SUBROUTINES 

5. 5. 1 	GENERAL COMMENTS 

The basic solar system and conic trajectory sub-

routines which are used by the various guidance and navigation 

routines are described in this section, 

5. 5. 1. 1 Solar System Subroutines  

The subroutines used to determine the translation 

and rotation of the relevant solar system bodies (earth, moon -

and sun) are designed specifically for a fourteen day lunar 

landing mission. The method of computing the position and 

velocity of the moon and the sun relative to the earth is given 

in Section 5. 5. 4. The transformations between the Basic Ref-

erence Coordinate System and the Earth- and Moon-fixed 

Coordinate Systems are described in Section 5. 5. 2. The pro- 

cedure for transforming between vectors in the Basic Reference 

Coordinate System and latitude, longitude, altitude coordinates 

is given in Section 5. 5. 3. Although these subroutines are 

normally used in the lunar landing mission, they are valid for 

use in any mission of not more than fourteen days duration in 

earth-moon space. 
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5. 5. 1. 2 Conic Trajectory Subroutines 

This is a description of a group of conic trajectory 

subroutines which are frequently used by higher level routines 

and programs in both the Command Module and the Lunar 

Module computers. 

These subroutines ,whose block diagrams are presented 

in Sections 5. 5. 5 to 5. 5. 10, provide solutions to the following conic 

problems. (See nomenclature which follows) 

( ) 	Given r (t 1 ), v (t 1 ), -ID ; solve for r (t 2  ), v (t 2  ) 

(Kepler Subroutine ) 

(2 ) 	Given r ( t 1  ), r ( t2  ), tD21,8G; solve for v (t 1 ) 

(Lambert Subroutine ) 

( 3) 	Given r (t /  ), v (t 1 ), 9 ; solve for t2i , r (t 2  ), v ( t2  ) 

( Time -Theta Subroutine) 

( 4 ) 	Given r (t 1 ), v 	), r (t 2),s1,.; solve for t,.2,1, r (t) :2-), v ft2) 

( Time-Radius Subroutine ) 

( 5) 	Given r (t ), v (t ) ; solve for r P, rA, e 
P' A' 

(Apsides Subroutine ) 

In addition, the following useful subroutines are pro- 

vided. 

(6 ) 	Conic Parameters Subroutine (See Fig. 5. 10-1). 

(7) 	Geometric Parameters Subroutine (See Fig. 5. 10-2). 

(8 ) 
	

Iterator Subroutine (See Fig. 5. 10-3). 



The solutions to the above set of conic problems 

have stringent accuracy requirements. Programming the 

fixed-point Apollo computer introduces two constraints which 

determine accuracy limitations: the 28 bit double precision 

word length, and the range of variables which is several orders 

of magnitude for the Apollo mission. 

In order to maintain numerical accuracy when these 

subroutines are programmed into the Apollo computer, floating 

point programming techniques must be exercised. The effect 

is for even a simple equation to require a large number of com-

puter instructions, The alternative to this is to separate the 

problem into phases, each with a different variable range. 

This, however, requires an even larger number of instructions. 

These considerations provide the incentive for efficiently organiz-

ing the conic equations as shown in the block diagrams. 

In addition to the requirement for accuracy, 

the solution to the Kepler and Lambert Problems must be ac- , 

 complished in a minimum of computation time in order that the 

guidance system operate satisfactorily in real time. This ad-

ditional constraint dictates that a minimum of computer instruc-

tions be performed when solving the problem. 

Method of Solution 

To minimize the total number of computer instruc-

tions, the problems are solved in the "universal" form; i, e. 

only equations which are equally valid for the ellipse, parabola 

andhyperbola are used. Also these subroutines can be used with 

either the earth or the moon as the attracting body. 



Kepler's equation, in the universal form, is utilized 

to relate transfer time,  o the conic parameters. All other 

necessary equations are also universal. The Kepler and Lambert 

problems are solved with a single iteration loop utilizing a 

simple first-order slope iterator. In the case of the Kepler 

problem a third order approximation is available to produce the, 

initial guess for the independent variable (See Eq.(2. 2. 4) of Section 

5. 2. 2. 2 ), 
Sections 5. 5. 5 thru 5. 5.10 provide block diagrams 

of the detailed computational procedures for solving the various 

problems. The equations are presented in block diagram form 

with the nomenclature defined below. 

Range of Variables 

As indicated previously, the programming of the 

conic subroutines requires a careful balance between ac-

curacy, computational speed and number of instructions. This 

balance, in the Apollo Guidance Computer, leaves very little 

margin in any of these areas. 

Since the values of problem variables are determined 

by the solution of the problem being solved and since the prob-

lem may originate from the ground system, it is essential 

that the variable range limitations be defined. The conic 

routines are incapable of handling problems when the solution 

lies outside of the range. 

The following is a list of the maximum allowable 

numeric values of the variables. Note that, in addition to 

fundamental quantities such as position and velocity, there 

are limitations on intermediate variables and combinations 

of variables. 



Scaling for Conic Subroutines (Sections 5. 5. 5 to 5. 5. 10) 

Parameter 

Maximum Value
* 
 

Earth 
Primary Body 

Moon 
Primary Body 

r 2
29 

2
27 

v 2
7 

2
5 

t 2
28 

2
28 

a
** 2 -22 

2
-20 

aN. * 2
6 

2
6 

pi\T 

 cot y 

2 4 

2 5 

2
4 

2
5 

cot 2
5 

2
5 

2
17 

2
16 

2*** =ax -50 -50 

c 	r 	v I NIT - 
1 

c 	= r v2Im - 1 2 

X = r (t1)/ri(t2) 

cos 0 - X 

+47 2 

2
17 

2
6 

2
7 

2
7 

+ 47 
2 

2
16 

2
6 

2
7 

2
7 

A11 dimensional values are in units of meters and centiseconds 

The maximum absolute value occurs for negative values of 
this parameter. 

***Both the maximum and minimum values are listed since 
neither may be exceeded. 

• 
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Maximum Value* 

Parameter 

 

Earth 	 Moon 

     

     

e 	 2
3 

2 3 

x2 	
2

34 
2

32 

x 2 c (g) 	 2 33 	
2 31 

2 28 
2

28 x 3  s 	/Nri—i 

2
46 c/ x 2 c 	 2 49 

c 2 x
2 

s 	 2
35 	

2 33 

x (c2 x 2 s 	r (ti)] 	2
49 	

2 46 

s 	 2 7 
2 7 

x 2 c ()/r 	 2 8 	
2 8 

Jx s 	- 1)/r (t2) 	2
15 	

2 13 

c 	 2
4 

2 4 

s () 	 21 	 2 1 

All dimensional values are in units of meters and centit 



Nomenclature for Conic Subroutines (Sections 5. 5. 5 to 5. 5. 10)  

r(t 1 ) 	initial position vector 

v(t 1 ) 	initial velocity vector 

r(t
2

) 	terminal position vector 

v(t2 ) 	terminal velocity vector 
 

N 	
unit normal in the direction of the angular 

momentum vector 

a 	 reciprocal of semi-major axis 

(negative for hyperbolas) 

rP 	 radius of pericenter 

r
A 	

radius of apocer,ter 

e 	 eccentricity 

aN 	 ratio of magnitude of initial position vector 

to semi-major axis 

PN 
	 ratio of semi-latus rectum to initial 

position vector magnitude 

inertial flight path angle as measured from 

vertical 

6 
	

true anomaly difference between r(t 1 ) and r(t 2 ) 

f 
	

true anomaly of r (1 2 ) 

• 
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x 	 a universal conic parameter equal to the ratio 

of eccentric anomaly difference to -,\FT----- cr for the 
ellipse, or the ratio of the hyperbolic analog 

of eccentric anomaly difference tod1/ 77- for 

the hyperbola 

x' 	 value of x from the previous Kepler solution 

t
21 	 computed transfer time from Kepler's equation 

(t2 	t 1 ) 

tr
21 	 transfer time corresponding to the previous solu- 

tion of Kepler's equation 

t
D 	 desired transfer time through which the conic 

update of the state vector is to be made 

t
D21 	

desired transfer time to traverse from r(t
1

) 

to r(t 2 ) 

t
ERR 	

error in transfer time 

et 	 fraction of desired transfer time to which t
ERR 

must converge 

Ax 	 increment in x which will produce a smaller tERR  

E x 	 value of dx which will produce no significant 

change in -1 21  

scot y 	increment in cot y which will decrease the 

magnitude of t
ERR 

c c 
	 value of scot -y which will produce no signifi- 

cant change in t21 



e 

ii 	 product of universal gravitational constant 

and mass of the primary attracting body 

xMAX
maximum value of x 

xMIN 	
minimum value of x 

cot
MAX 	

maximum value of cot -y 

cotMIN 	
minimum value of cot -y 

tMAX 	
upper bound of general independent variable 

MIN 
	lower bound of general independent variable 

xMAX 1 	
absolute upper bound on x with respect to the moon 

x
MAX 0 	

absolute upper bound on x with respect to the earth 

k 	 a fraction of the full range of the independent 

variable which determines the increment of 

the independent variable on the first pass 

through the iterator 

y 
	 general dependent variable 

Y ! 
	

previous value of y 

YERR 
	error in y 

z 	 general independent variable 



Az 	 increment in z which will produce a smaller v -ERR 

s
G 	 a sign which is plus or minus according to 

whether the true anomaly difference between 

r(t
1 
 ) and /(t.

2 ) is to be less than or greater  
than 180 degrees 

a sign which is plus or minus according to 

whether the desired radial velocity at r(t 2 ) 

is plus or minus 

general vector # 1 

general vector # 2 

angle between 77 1  and 71 2  

f l  a switch set to 0 or 1 according to whether a 

guess of cot 7 is available or not 

f
2 
	 a switch set to 0 or 1 according to whether 

Lambert should determine uN  from r(t 1 ) and r(t
2

) 

or u N  is an input 

f3 	 a tag set to 0 or 1 according to whether the 

iterator should use the "RegulaFalsi"or bias 

method 

f4 	
a flag set to 0 or 1 according to whether the 

iterator is to act as a first order or a second 

order iterator 

f
5 
	 a flag set to 0 or 1 according to whether 

Lambert converges to a solution or not 
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f
6 
	 a switch set to 0 or 1 according to whether or 

not the new state vector is to be an additional 

output requirement of the Time-Theta or Time-

Radius problems. 

f
7 
	 a flag set to 1 if the inputs require that the conic 

trajectory must close through infinity 

f
8 	

a flag set to 1 if the Time-Radius problem was 

solved for pericenter or apocenter instead of 

r (t 2  ) 

f
9  

t p 

 t
R  

a flag set to 1 if the input to the Time-Radius 

Subroutine produced an e less than 2
-18

. 

period of the orbit 

integral periods subtracted from t D 

 to produce a tip  less than t p  

x
R 	

value of x corresponding to t R  

k
1 	

the minimal acceptance percentage of t jj21  to 

whiclat
ERR 

must converge 

n
1 	 a flag set to 0 or 1 according to whether or not 

the velocity vector at the terminal position is to 

be an additional output requirement of the Lambert 

Subroutine 



5. 5. 2 	PLANETARY INERTIAL ORIENTATION SUBROUTINE 

This subroutine is used to transform vectors between the 

Basic Reference Coordinate System and a Planetary (Earth-fixed or 

Moon-fixed) Coordinate System at a specified time. These three 

coordinate systems are defined in Section 5.1.4. 

Let r be a vector in the Basic Reference Coordinate System, 

r P  the same vector expressed in the Planetary Coordinate System, and 

-b -the specified ground elapsed time (GET). Then, 

rc M(t) (r - X r) 	 (5. 2. 1) 

and 

r = M
T

(t) (r
P 

 + f. X ri 
	

(5. 2. 2) 

where M(t) is a time dependent orthogonal transformation matrix, k 

is a small rotation vector in the Basic Reference Coordinate System, 

and the the same vector k expressed in the Planetary Coordinate 

System. The vector k is considered constant in one coordinate sys - 

tem for the duration of the mission. The method of computing M(t) 

and k depends on whether the relevant planet is the earth or the moon. 

Case I - Earth  

soar the earth, the matrix M(t) describes a rotation about 

the polar axis of the earth (the Z-axis of the Earth-fixed Coordinate 
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System), and the vector X accounts for the precession and nutation 

of the polar axis (the deviation of the true pole from the mean pole). 

Let A and A be the small angles about the X- and Y-axes 

of the Basic Reference Coordinate System, respectively, that de-

scribe the precession and nutation of the earth's polar axis. The 

values of these two angles at the midpoint of the mission are inclu-

ded in the pre-launch erasable data load and are considered constant 

throughout the flight. Then, 

( 

A = A
ZO 

 + uE  (t + t0) (5. 2. 3) 

cos A 	sin A 0 

M(t) = -sin A cos A 

) 

0 

= M(t) 

where A ZO  is the angle between the X-axis of the Basic Reference 

Coordinate System and the X-axis of the Earth-fixed Coordinate 

System (the intersection of the Greenwich meridian and the equatorial 

plane of the earth ) at July 1.0,1963 universal time (1. e. j  midnight 

at Greenwich just prior to July 1, 1968 ) t 0  is the elapsed time 

between July 1.0,1968 universal time and the time that the computer 

clock was zeroed, and W
E 

is the angular velocity of the earth. 

0 	 0 	1 
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Case II - Moon 

For the moon, the matrix M(t) accounts for the difference 

in orientation of the Basic Reference and Moon-fixed Coordinate Sys - 

tems in exact accordance with Cassini's laws, and the rotation vector 

)2, corrects for deviations from the above orientation because of physi-

cal libration. 

Define the following three angles which are functions of 

time: 

the obliquity, the angle between the mean earth 

equatorial plane and the plane of the ecliptic. 

the longitude of the node of the moon's orbit 

measured from the X-axis of the Basic Reference 

Coordinate System. 

F 
	

the angle from the mean ascending - node of the 

moon's orbit to the mean moon. 

Let I be the constant angle between the mean lunar equatorial plane 

and the plane of the ecliptic (1 °  32. 1'). Then, the sequence of 

rotations which brings the Basic Reference Coordinate System into 

coincidence with the Moon-fixed Coordinate System (neglecting li-

bration) is as follows: 



Rotation 	Axis of Rotation 	Angle of Rotation 

1 	 X 

2 	 Z 	 Q
I 

3 	 X 

4 	 Z 	 it +F 

The transformation matrices for these rotations are, 

respectively, 

 

o1 1 

  

	

M
1 
 = 0 	cos B sin B 

	

0 	-sinB cos B 

	

cos Q
I 

sin Q
I 	

0 

	

M 2 = - sin Q 
I 

cos
I 	

0 

0 	0 	1 / 

	

i 1 	0 	0 

	

M
3 

= 0 	cos I 	-sin I 

	

k  0 	sin I 	cos I 

	

-cos F 	-sin F 	0\ 

M4  = 	sin F 	-cos F 0 

0 	0 	1 

(5, 2. 4) 
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The matrix M(t) is then given by 

m (o=m4m3m2m1 (5. 2. 5) 

The following approximate method is used to determine 

the transformation between the Basic Reference and Moon-fixed 

Coordinate Systems. 

The angles B, C21  and F are computed as linear functions 

of time. Let Q M  be the value of the vector libration 9. ( expressed 
— 	 —P 

in the Moon-fixed Coordinate System ) at the midpoint of the mission. 

The vector .Q M  is included in the pre-launch erasable data load and is 

considered constant throughout the flight. Then, 

= —P --M 

tM = t+i 
0 

• 
B = B

0 	tM  

0= C2
I0 

-I- 0
I 

t
M 

FO +FtM  

I 	cos 0
1 
	

( 5.2.6 ) 

a 	cos B sin C2
1 

\ sin B sin U
T 

b 

( 

cos B cos 0
1 

-sin U 

sin B cos S-2 
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0 

-sin B 

cos B 

d 	:=1:3C -eS I 	I 

bS -FeC 
2 	I 	I 

Eao= -a cos F - d sin F 

= a sin F - d cos F ml  

(5.2.6) 

(cont. ) 

  

T 

T 
L 

• T 

  

M(t) = 

 

  

= M (t) ,C p  

where B
0' 10' and F 0 

 are the values of the angles B 1  r2I  and F, re- 
• • 

spectively, at July 1.0, 1968 universal time; B, S2 1  and F are the 

rates of change of these angles; and C I  and SI  are the cosine and sine, 

respectively,, of the angle I. Time t M  is defined in Section 5. 5. 4. 

e 
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2 	 b 2 
rF  

b 2  1 - (1 - -- ) (1 SINL 2 ) 
a 

(5. 3. 1) 

5. 5. 3 	LATITUDE - LONGITUDE SUBROUTINE 

For display and data load purposes, the latitude, longitude, 

and altitude of a point near the surface of the earth or the moon are 

more meaningful and more convenient to use than the components of a 

position vector. This subroutine is used to transform position vec-

tors between the Basic Reference Coordinate System and Geographic 

or Selenographic latitude, longitude, altitude at a specified time. 

In the case of the moon, the altitude is computed above 

either the landing site radius, r ts, or the mean lunar radius, rm . 

For the earth, the altitude is defined with respect to either the launch 

pad radius, rLF,,.or the radius of the Fischer ellipsoid, r F, which is 

computed from 

where a and b are the semi-major and semi-minor axes of the 

Fischer ellipsoid, respectively, and SINL is the sine of the geocen-

tric latitude. 

The computational procedures are illustrated in Figs. 

5. 3-1, 5. 3-2, and 5. 3-3. The calling program must specify either 

a vector r or latitude (Lat), longitude (Long), and altitude (Alt). In 

addition, the program must set the time t and the two indicators P 

and F where 

0 for earth 

P 

1 for moon 



1 for Fischer ellipsoid or mean lunar radius 

0 for launch pad or landing site radius 



Lat 	tan -1( 	u 2  

) 7 /II
02 

 + u
1

2 
 

11 = .= UNIT (rd 

Determine y and r 0 

 Fig. 5. 3 -3 

Coll Planetary Inertia]. Orientation 

Subroutine to Transform r to r P 

SINL = 

1 ( 
u1  

Long tan - 
0 

Alt =r -r 0  

EN ER 

EXIT 

Fig. 5. 3-1 Vector to Latitude, Longitude, Altitude 

Computation Logic Diagram 
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ENTER 

Determine -y 

Fig. 5. 3 -3a 

cos (Long) cos (Lat) 

= UNIT sin (Long) cos (Lat) 

-y sin (Lat) 

SINL = 112  

Call Planetary Inertial Orientation Subroutine 

to Transform Unit Vector r to Unit Vector r 

Determine r 

Fig. 5. 3-310 

+ Alt) r 

Fig. 5. 3-2 Latitude, Longitude, Altitude to Vector 

Computation Logic Diagram 
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Compute r F 

 Eq. (5. 3. 1) 

ENTER 

Figure 5. 3 -3a Determination of 

ENTER 

Figure 5. 3-31 Determination of r0 



• 
5. 5. 4 	LUNAR AND SOLAR EPHEMERIDES  

This subroutine is used to determine the position and 

velocity vectors of the sun and the moon relative to the earth. The 

position vectors of the moon and the sun are needed by the Coasting 

Integration Routine to compute gravity perturbations (Section 5. 2. 2. 3). 

The velocity of the moon is used by the Coasting Integration Routine 

when a change in the origin of the coordinate system is performed at 

the sphere of influence of the moon (Fig. 2. 2-3). The velocity of the 

sun is required,but not very accurately, to compute aberration cor-

rections to optical sightings. 

The position of the moon is stored in the computer in the 

form of a ninth-degree polynominal approximation which is valid over 

a14. 5 day interval beginning at noon ephemeris time on the d23 ,  of the 

launch. The following parameters are included in the pre-launch 

erasable data load: 

the elapsed time between July 1.0, 1968 uni-

vor sal time and the time at the center of the range 

over which the lunar -position polynominal is 

valid . The value of 
tMO 

 will be an integral num - 

ber of quarter days minus the difference be-

tween ephemeris time and universal time. 

c
0 
 to c

9 	vector coefficients  

Let t be the specified ground elapsed time (GET), and t 0  be the elapsed 

time between July 1.0, 1958 universal time and the time that the com-

puter clock was zeroed. Then, the approximate position and velocity 

of the moon are computed from 

tM = t 4. t 0  - t ivio 
	 (5. 4. 1) 

e 
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(5. 4. 2) 

i= 0 

YE (5. 4. 3) 

i=1 

The approximate position and velocity of the sun are com-

puted from the following items which are included in the pre-launch 

erasable data loath 

r
ESO' — vESO = the position and velocity vectors of the sun —  

relative to the earth at time t 
MO* 

to
ES 

= the angular velocity of the vector r
ESO 

 at time tMO 

Then, 

rEs  rEso  cos (c') ES tM)  

+ [
r X UNIT (v X r ) 
—ES 0 ESO —ESO 

YES = \LES° 

 

(5. 4. 4) 

sin (wEs  tM) 

 

 

(5. 4. 5) 
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• 
5. 5. 5 	KEPLER SUBROUTINE 

The Kepler Subroutine solves for the two body posi-

tion and velocity vectors at the terminal position given the 

initial position and velocity vectors and a transfer time to the 

terminal position. 

This section contains information to aid the reader 

in understanding the less obvious aspects of the Kepler Sub-

routine block diagram depicted in Figs. 5.5-1 thru 5. 5-3. The 

subroutines referred to in these figures are presented in 

Section 5. 5. 10. Nomenclature is found in Section 5. 5, 1. 2. 

Prior to entering the Kepler Subroutine an initial 

estimate of x can be generated via Eq. (2.2. 4) of Section 5.2.2.2 
At 

with 	tD  - t21 	and 7 = t
D. 

However, x' and t
21 

are 7:  
non-zero only if the subroutine is being used repetitively. 

Although, theoretically, there is no upper bound on 

x, the practical bound is set to x 0  or xivrAxi  to eliminate 

non-feasible trajectories and increase the accuracy to which x 

can be computed. In addition, ax
2 

has a practical range of 

-50 <ax
2 

<(270
2

which determines an independent upper bound 

on x. The x
MAX 

 used, then, corresponds to the smaller of 

the two values. 

The transfer time convergence criterion is approxi-

mately the same as the granularity of the time input. Since, 

for some of the problems to be solved, the sensitivity of time 

to x is so large that the granularity in x, E x , produces a change 

in time which exceeds the granularity in time, it is necessary 

to introduce e
x asha redundant convergence criterion. 

The Kepler Subroutine, provided the parameter range 

constraints are satisfied will always produce a solution, 
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A negative value of tD  will cause the subroutine to update 

the state vector back-ward in time (1. e. backdate the state vector). 

The subroutine may be called to update or backdate for any 

amount of time; there are no restrictions on whether the time 

tri  is _less than a period. 

5.5-26 

Revised 	COLOSSUS 

  

FlAdded 	GSOP #R-577 PCR # 676.1  Rev. 5 	Date 10-30-68  

   



ENTER 

r(t 1  ). v(t 1  ), tD  x" 
x'

' 
t 21  '  ' 

Figure 5. 5-1 Kepler Subroutine 
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e l 	v7-1, 
r(t 1 ) 2(t 1 ) • v(t 1 ) 
	  1 

c 2 

a = (1 - c 2 )ir (t 1 ) 

• 20 

r(t 1 ) = I r(t i ) I 
ur1  = UNIT (r(t 1 )} 

r(t 1 ) • v(t i ) 



t  = 
x

max 

P  

= sign (t o ) Ei t 0  I - 

x 	= -x rain 	max 
x =0 

max 

 

x 	= 0 min 

   

Fig. 5.5-2 Kepler Subroutine 
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Call KEPLER EQUATION subrouthte, 

el' c 2 , x, 	r (t1), 

Resume 

t21, B()* c(C) 

Call ITERATOR subroutine 

0, 0, t21, t.21 t ERR, Ax, x. 0, xmAx, xmaN  

Resume 

Ax, xMAX' xMIN 

NO YES 
i -0 

Return 

r(t 2 ), ICt2 ), 
x  t21 

• 

Figure 5. 5-3 Kepler Subroutine 
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5. 5. 6 	LAMBERT SUBROUTINE  

The Lambert Subroutine solves for the two body ini-

tial velocity vector given the initial and terminal position vectors 

and a transfer time between the two. 

This section contains information to aid the reader 

in understanding the less obvious aspects of the Lambert Sub-

routine block diagrams depicted in Figs. 5. 6-1 and 5, 6-2, 

The subroutines referred to in these figures are presented in 

Section 5, 5.10 and the nomenclature is found in Section 5. 5. 1. 2. 

If the Lambert Subroutine is used repetitively and 

rapid computation is required, the previous value of the in-

dependent variable, cot -y , can be used as a starting point for 

the new iteration.; Flag f
1 provides this option. 

The Lambert Subroutine computes the normal to the 

trajectory, u N., using the two input position vectors. If these 

vectors are nearly colinear, it is desirable to specify the nor-

mal as an input rather than rely on the ill-defined normal based 

on the two input position vectors. Flag f 2  provides this option. 

The presence of the inputs in parentheses, therefore, is con-

tingent upon the setting of these flags. 

The theoretical bounds on the independent variable, 

cot y , correspond to the infinite energy hyperbolic path and 

the parabolic path which closes through infinity. These bounds 

are dynamically reset by the iterator to provide a more efficient 

iteration scheme. In addition, if during the course of the itera-

tion, cot Y causes a parameter of the problem to exceed its 

maximum as determined by its allowable range, the appropriate 

bound is reset and the iterator continues trying to find an ac-

ceptable solution. ( This logic does not appear in Figs. 5, 6-land 2 



as it is pertinent only to fixed-point programming). If no ac-

ceptable solution is reached, the transfer time input was too 

small to produce a practical trajectory between the input position 

vectors. When this happens, O cot y approaches its granularity 

limit c before time converges to within a fraction E
t 

of the 

desired time. However, this same granularity condition exists 

when the sensitivity problem described in the Kepler Subroutine, 

Section 5, 5. 5., occurs. In this case an acceptable solution does 

exist. This dual situation is resolved via a third convergence 

criterion. If the error in transfer time is greater than the usual 

fraction E
t 

of the desired transfer time, but still less than a 

slightly larger fraction kJ_  of the desired transfer time and 

cot -y is less than c c, then the solution is deemed acceptable 

and the required velocity is computed. 

• 
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Figure 5.6-1 Lambert Subroutine 
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Call KEPLER EQUATION subroutine 

c l , c2 , x, E, r (t 1 ), 

Y 	
(t2  ) (

ce (E) 
2 

1 x 	 
r (t 2 

'1(t 

Return 

,y(y, 

cot y 

Return 

y (t 2 ), 

cot y 

Figure 5. 6-2 Lambert Subroutine 
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-VI 

5. 5. 7 	TIME-THETA SUBROUTINE 

The Time-Theta Subroutine solves for the two body 

transfer time given the initial position and velocity vectors and 

the true anomaly difference (transfer angle) to the terminal 

position. 

This section contains informatiOn to aid the reader 

in understanding the less obvious aspects of the Time-Theta 

Subroutine block diagram depicted in Fig. 5, 7-1. The sub-

routines referred to in this figure are presented in Section 

5. 9,10 4-and the nomenclature is found in Section 5. 5.1, 2. 

The flag f 6  must be zero if the user desires compu- 

tation of the terminal state vector in addition to the transfer time. 

If the conic trajectory is a parabola or hyperbola and 

the desired transfer angle, 6, lies beyond the asymptote of the 

conic, f7  will be set indicating that no solution is possible. 

In addition to the parameter range constraints imposed on 

Kepler's equation, the additional restriction on Time-Theta 

that the trajectory must not be near rectilinear is indicated by 

the range of cot -y. * 

The Time-Theta problem is not well defined for near 

rectilinear trajectories, i e, the transfer angle 6 is no longer 

a meaningful problem parameter. This will not cause difficul-

ties provided the input variables are within the specified ranges. 

*If the Time-Theta Routine is called with inputs for which no 
solution is possible (for either or -both of these two reasons), 
then the routine will abort with an alarm code of 00607. 

5,5-34 

Revised COLOSSUS 

Added 	GSOP #R-577 PCR # 692 	 Rev. 5 	Date 1-21-69 



ENTER 

r(t i ), Y(t i ), u, sin 0, cos 0, f6  

Call CONIC PARAMETERS subroutine 

r(t i ), v(t 1 ), 

Resume 

n 	cot 1,  RN. tit 	u 
N' • N' 	' 	1 ' —rl 

V  

Call UNIVERSAL VARIABLE subroutine 

sin 0, cos 0, cot y, 	 PN 

Resume 

x ' C ' c l' c 2 

Call KEPLER EQUATION subroutine 

x, cl
, c 2 , r(t 1 ), 

Resume 

tat  8(0. cU) 

NO 

Call STATE VECTOR subroutine 

v(t 1 ), r(t 1 ), 

E. S(E), n(0, t 

Resume 

r(t2 ), v(t 2 ) 

Return 

r(t 2 ), yit2 ) t21 , 

Figure 5. 7-1 Time-Theta Subroutine 
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5.5.8 	TIME-RADIUS SUBROUTINE 

The Time-Radius Subroutine solves for the two body 

transfer time to a specified radius given in the initial position 

and velocity vectors and the radius magnitude. 

This section contains information to aid the reader 

in understanding the less obvious aspects of the Time-Radius 

Subroutine block diagrams depicted in Figs. 5.8-1 and 5.8-2. 

The subroutines referred to in this figure are presented in 

Section 5.5,10 and the nomenclature is found in Section 5.5.1.2. 

Paragraphs 3, 4 and 5 of Section 5.5.7 apply to the 

Time-Radius Subroutine as well.* 

Since an inherent singularity is present for the cir-

cular orbit case, near-circular orbits result in a loss of ac-

curacy in computing both the transfer time, t 21 , and the final 

state vector. This is caused by the increasing sensitivity of 

t
21 to r (t

2 ) as the circular orbit is approached.. In the extreme 

case that eccentricity is less than 2 -18
, the problem is undefined 

and the subroutine will exit without a solution, setting flag f 9  to 

indicate this, 

If r (t
2 

) is less than the radius of pericenter or 

greater than the radius of apocenter, then r ( t 2  ) will be ignored 

and the pericenter or apocenter solution, respectively, will be 

computed. A flag, f 8 , will be set to indicate this. 

*If the Time-Radius Routine is called with inputs for which no 
solution is possible (for any one or more of the reasons 
given in paragraphs 4 or 5 of Section 5.5.7 or paragraph 4 
above), the routine will abort with an alarm code of 00607. 
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Figure 5. 8-1 Time-Radius Subroutine 
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Call UNIVERSAL VARIABLE subroutine 

sin e, cos 0, cot7, r(td, aN. 

Resume 

, E, C l , c 

V  
Call KEPLER EQUATION subroutine 

f, x, e l' c2' rft I ), p 

Resume 

t 21 , s(), e(E) 

Call STATE VECTOR subroutine 

r(t i ), v(t i ), r(t i ), ury  x, 	s(f), c(C). t21 . 

Resume 

r(t 2 ), v(t 2 ) 

Return 

t21' r(t 2 ), v(t 2 ) 

Figure 5.8-2 Time-Radius Subroutine 
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5. 5. 9 	APSIDES SUBROUTINE  

The Apsides Subroutine solves for the two body 

radii of apocenter and pericenter and the eccentricity of the 

trajectory given the position and velocity vectors for a point 

on the trajectory. 

This subroutine is depicted in Fig. 5. 9-1. The 

subroutines referred to in this figure are presented in Section 

5_ 5.10. Nomenclature is found in Section 5. 5.1.2. 

It is characteristic of this computation that the 

apsides become undefined as the conic approaches a circle. 

This is manifested by decreasing accuracy. When the conic is 

nearly parabolic, or hyperbolic, the radius of apocenter is 

not defined. In this event the radius of apocenter will be set 

to the maximum positive value allowed by the computer. 



ENTER 

) , v 	, P 

V  

Call CONIC PARAMETERS subroutine 

v 	p 

Figure 5. 9-1 Apsides Subroutine 
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• 
5. 5. 10 	MISCELLANEOUS SUBROUTINES  

There are, as part of the Conic Trajectory Sub-

routines, three subroutines which are useful in their own right. 

These are the Conic Parameters, the Geometric Parameters 

and the Iterator Subroutines which are depicted in Figs. 5. 10-1, 

5. 10-2 and 5. 10-3, respectively. 

The Conic Parameters and Geometric Parameters 

Subroutines are self explanatory. 

The Iterator Subroutine serves several purposes. It 

is used when flag f4  is set to zero to solve for the value of the indepen-

dent variable which drives the error in .. the dependent variable 

to zero, provided the function is monotonically increasing. To 

improve convergence for functions whose derivative changes 

rapidly, the limits are reset as shown in the block diagram. 

With f4 
set to 1, the Iterator seeks a minimum of 

the function, provided the first derivative is single-valued be-

tween the limits. The inputs are redefined so that "y" is the 

derivative of the independent variable with respect to the dependent 

variable, and "x" is the value at which the derivative was computed 

or approximated. Since the desired value of y is zero, y ERR  

Since the Iterator uses the "Regula Falsi" technique, 

it requires two sets of variables to begin iteration. If only one 

set is available, flag f3  must be set to 1, causing the iterator to 

generate the independent variable increment from a percentage 

of the full  range. 



In addition to the above subroutines there are three 

other subroutines of primary interest to the five basic conic sub-

routines described in Sections 5. 5. 5 to 5. 5. 9. These are the 

Universal Variable Subroutine, the Kepler Equation Subroutine 

and the State Vector Subroutine shown in Figs. 5. 10-4, 5. 10-5 

and 5. 10-6,,respectively. 

The Universal Variable Subroutine is utilized by the 

Lambert, the Time-Theta and the Time-Radius Subroutines to 

compute the universal parameter x required for the time equa-

tion. There are two different formulations required according 

to the size of the parameter w. 

If the input to the subroutine requires the physically 

impossible solution that the trajectory "close through infinity", 

the problem will be aborted, setting flag f 7 . 

The Kepler Equation Subroutine computes the transfer 

time given the variable x and the conic parameters. 

The State Vector subroutine computes the position 

and velocity vectors at a point along the trajectory given an 

initial state vector, the variable x and the transfer time. 

The final miscellaneous subroutine, the SETMU Sub-

routine, is depicted in Fig. 5. 10-7. It sets /2  to the appropriate 

primary body gravitational constant consistent with the estimated 

CSM or EM state vector as defined in Section 5. 2. 2. 6. 
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Return 

a N, px, cot 7, uN , r (t i ), 

v (t 1 ), llvi  

e 

Figure 5.10-1 Conic Parameters Subroutine 
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Figure 5. 10-3 Iterator Subroutine 
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Figure 5.10-4 Universal Variable Subroutine 
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Figure 5.10-5 Kepler Equation Subroutine 
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Figure 5.10-6 State Vector Subroutine 
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Figure 5. 10 -7 SETMU Subroutine 



5.5.11 INITIAL VELOCITY SUBROUTINE 

The Initial Velocity Subroutine computes the required 

initial velocity vector for a trajectory of specified transfer time 

between specified initial and target position vectors. The tra-

jectory may be either conic or precision depending on an input 

parameter (namely, number of offsets ). In addition, in the 

precision trajectory case, the subroutine also computes an 

"offset target vector", to be used during pure-conic cross-product 

steering. The offset target vector is the terminal position vector 

of a conic trajectory which has the same initial state as a precision 

trajectory whose terminal position vector is the specified target 

vector. 

In order to avoid the inherent singularities in the 180 ° 

 transfer case when the (true or offset) target vector may be 

slightly out of the orbital plane, the Initial Velocity Subroutine 

rotates this vector into a plane defined by the input initial posi-

tion vector and another input vector (usually the initial velocity 

vector ), whenever the input target vector lies inside a cone whose 

vertex is the origin of coordinates, whose axis is the 180 °  trans-

fer direction, and whose cone angle is specified by the user. 

The Initial Velocity Subroutine is depicted in Fig. 5.11-1. 

The Lambert Subroutine, Section 5.5.6, is utilized for the conic 

computations; and the Coasting Integration Subroutine, Section 5. 2. 2, 

is utilized for the precision trajectory computations. 
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Nomenclature for the Initial Velocity Subroutine  

r
1

) 	Initial position vector. 
 

v (t
1  ) 
	Vector (usually the actual initial velocity vector) 

—  used to determine whether .the transfer from the 
initial position vector to the target vector is through 
a central angle of less or greater than 180 0, and also 
used in certain cases to specify the transfer plane 
(see text). 

rT (t2 ) 	Target Vector (True target vector if N 1  > 0, or 
Offset target vector if N

1 
= 0). 

t
D 	

Desired transfer time from initial position vector to 
target vector. 

N
1 	

Number of offsets to be used in calculating the offset 
target vector from the true target vector. (N 1  = 0 
implies conic calculations only with offset target vec-
tor input). 

Cone Angle of a cone whose vertex is the coordinate 
origin and whose axis is the 180 °  transfer direction 
(i. e. , the negative initial position direction). The 
cone angle E is measured from the axis to the side 
of the cone. 

Switch set to 0 or 1 according to whether a guess of 
cot y is input or not. 

Guess of cot y. 

Required initial velocity vector of a precision [a conic] 
trajectory which passes through the true [or offset] 
target vector, or the rotated true [or offset ] target 
vector if the original target vector was in the cone, 
at the end of the desired transfer time, if N

1 
> 0 

[or N
1 

= 0]. 

r(t 2 ) 	Computed offset target vector. 

—vT(t2 ) 	Final precision[conic] velocity vector resulting from a 
precision[conic] update of the initial position vector and 
the required initial velocity vector v T (t i ), if N 1  > 0, 
[or N 1  --- 0, respectivelY]. 

r 	) 
—T 2 

cot -y 

Final precision position vector. 

Value to which the Lambert Subroutine converged 
(for later use as guess to minimize computation time). 

f2 	
Switch set to 0 or 1 according to whether the input 
(true or offset) target vector was not or was in the 
cone, and consequently was not or was rotated into 
the plane. 
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Figure 5.11-1 Initial Velocity Subroutine 
(page 1 of 2) 
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Figure 5.11-1 Initial Velocity Subroutine 
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5.5.12 TRANSFER ANGLE SUBROUTINE 

The computation of orbital transfer trajectories 

generally requires a time of flight, tr . However, for purposes 

of communication between the astronaut and the guidance compu-

ter, wt , the central angle of travel of the passive vehicle' during 

the transfer is more convenient. This subroutine is used to 

convert from t
F 

to wt. The conversion is approximate because 

it is based on the mean motion of the passive vehicle. 

The equations and logic used for the conversion are 

shown in Fig. 5. 12-L 
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Fig. 5.12 71 Transfer Angle Subroutine 



5. 5. 13 LOSSEM ST_TBROUTTNE 

The LOSSEM Subroutine computes the lines-of-sight 

of the Sun, Earth, and Moon with respect to the spacecraft in 

the Basic Reference Coordinate System. This data is used by 

the IMU alignment programs whenever the astronaut elects to 

sight on the Sun, Earth, or Moon instead of a star for purposes 

of IMU alignment. The data is also used by the Star Selection 

Routine (Section 5. 6. 4) when testing for star occultation. In 

addition, this subroutine computes the sizes of the occultation 

cones used in the Star Selection Routine and the correction for 

aberration of light which is applied in the IMU alignment pro-

grams to the line -of-sight unit vector of a star stored in basic 

reference coordinates. 

The unit vectors 	uE, and uM  specifying the lines - 

of -sight to the Sun, Earth, and Moon respectively, in the Basic 

Reference Coordinate System are computed as follows: 

UNIT (rEs ) 	 if P = E 

UNIT (rES - rEm) if P = M 
(5.13. 1) 

- UNIT (:C ) 	 if P = E 

- UNIT (rEm  Ec) if P = M 
(5. 13. 2) 

UNIT (rEm  - rc) if P = E 

- UNIT (re ) 	 if P = M 
(5. 13. 3) 

where P, E, M, and S respectively denote the primary body, 

Earth, Moon, and Sun, r
C 
 is the position vector of the GSM 

with respect to the primary body, and r
EM 

 and r
ES 

 are the posi-

tion vectors of the Moon and Sun with respect to the Earth ob-

tained from the Lunar and Solar Ephemerides Subroutine of 

Section 5. 5. 4. The line-of-sight vectors are determined for 

a time specified by the calling program or routine. 
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E 

(N1 
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cos [5°  + sin -1 

 cos 5
o 

cos 5 o 

cos 5 	i ± sin -1  [ o 	-1 ( RM)] 
r

C  

if P = E 

if P = M 

if P= E 

if P= M 

(5. 13. 5) 

(5. 13. 6) 

a 
V - V 
—C —ES  

The occultation cones used in the Star Selection Routine 

for the Sun, Earth, and Moon are computed as follows: 

c = cos 15
o 	

(5. 13. 4) 

where c is the cosine of one half the total angular dimension of 

a cone and represents a more convenient way of treating the di-

mension of a cone in the Star Selection Routine, r
C 
 is the mag-

nitude of the CSM position vector, R E  is the equatorial radius 

(6378. 166 km) of the Earth, and R M  is the mean radius (1738. 09 km) 

of the Moon. 

The vector a which is used by the IMU alignment pro-

grams to correct the stored star vectors for aberration of light 

is determined as follows: 

(5.13. 7) 

where 	is the velocity of the CSM with respect to the primary 

body, vEs  is the velocity of the Sun relative to the Earth, and c 

is the speed of light. Note that this correction does not consider 

the velocity of the Moon relative to the Earth when the primary 

body is the Moon since the contribution from this source is con-

sidered negligible. 



5.5.14 PERICENTER—APOCENTER (PERIAPO ) SUBROUTINE  

The Pericenter Apocenter Subroutine computes the 

two body apocenter and pericenter altitudes given the position 

and velocity vectors for a point on the trajectory and the primary 

body. 

This subroutine is depicted in Fig. 5.14-1. 
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