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INTRODUCTION

Fault-tolerant computer development has been compared to surgery,

where new techniques may be practiced only upon “otherwise hopeless

cases”. PI This comparison may be somewhat strong in terms of computer

technology today, but without question the use of computer redundancy has

been virtually limited to cases where digital processing and infallibility

have been indispensable or irresistably rewarding. The SAGE air defense

computer system, the ESS electronic switching telephone exchange, and

the LVDC Saturn V guidance and control computer are examples of relatively

early approaches to fault tolerance, which were all wrought at v hat appeared

to be avery  large cost, i.e. replicated equipment. Without any doubt, however,

these were reasonable approaches both because the cost of additional

equipment was tolerable, and because there was no expeditious alternative.

Increasingly more fault-tolerant system applications are at hand, but

the fault-tolerant systems available in the market place, with a few

exceptions, provide scarcely more fault tolerance than systems designed

a decade ago. Cne possible conclusion is that, despite the fact that one

can demonstrate that fault tolerance can be achieved with fewer active

elements than by outright replication, the greatest economy is achieved in

most cases by duplex configurations and two-processor multiprocessors.
The exceptional systems available today are multiprocessors which contain

more than two processors, and which endeavor to provide graceful

degradation of their processing and memory resources.

To date, there has been no commercial system announced which has

had the capability of tolerating any fault whatsoever with guaranteed
recovery. There are a number of developmental efforts in this direction,

but the prevailing attitude has been that it is too complex and costly in

nearly all cases to provide such total fault immunity, and, m any case,
such immunity exists only if faults are statistically independent. Some of

the current ambitions in the aerospace field, however, are providing us

with some “otherwise hopeless cases”, where survivability of a kind

heretofore unknown is required. How to provide it is a question being

addressed by many independent designers and scholars, and the suggested
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approaches 1 differ considerably, to some extent because there are as yet

no agreed-upon figures of merit for the required system, and no single

date by which they must be in the field.

No unified figure of merit or solidificatron  is attempted in this paper.

Rather it is a representation of the consensus of opinion of one group of

workers with experience in the field of manned space flight as to the most

expeditious approach to fault-tolerant information processing in that field

and closely related fields in the 1975-1985 time frame.

GENERAL DESCRIPTION OF A SPACE FLIGHT

INFORMATION PROCESSING SYSTEM

For space flight in the 1975-1985 time period, and particularly for

manned missions, an information processing system is required which will

have functional longevity and avery  high probability of performing correctly

during time-critical mission-phases. To meet these requirements, the

components of the system will have to exhibit very low failure rates, probably

lower than any so far observed in components of the complexity required.

The system will also have to be able to tolerate one or more transient or

permanent failures during its mission life with only occasional opportunities

or perhaps with no opportunities for repair. Component reliability is at

best a random variable, and no system can truly be depended on which

does not allow for one or more failures. On the other hand, however, it is

just as inappropriate to design for fault tolerance to a high number of failures,

because if the probability for n failures is not negligible, the probability

for n + 1 failures is less apt to be negligible, the greater the value of n.

It is difficult to conceive of designing for n greater than three or four if

failures are random.

In addition to equipment redundancy and reconfiguration, the system

must provide for continuity of information flow. This requirement can

sometimes prevent cost savings which would otherwise be possible. Implicit

in this requirement is the necessity of detecting and correcting errors,

1
‘See, for example, References bl.
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whether transient or permanent, before the dataneeded for smooth recovery

is destroyed. This rules out the possibility of depending on periodic

self-testing programs for fault-tolerant behavior unless all such data is

buffered between times. Transient errors can not be detected by this

method.

A large number of other system attributes are desirable as well, all

of which are familiar to aerospace computer designers, including low cost,

smal l  s i ze , expandability, adaptability, ease of programming, ease of

debugging, ease of integration into the system, minimum connections, and

so on. Probably the first decision one would like to make is whether the

systems should be centralized, dedicated, or distributed, the latter of which

embodies elements of central and dedicated computers. Since this decision

must be made in context with the problem, it is first useful to summarize

some advantages and disadvantages of central and dedicated computers.

Advantages of acentral  computer - A central computer allows- -
the pooling of resources for the sake of repair (reconfiguration)

and allocation to meet instantaneous demands. The  more

centralized a system is, the more efficient it will be of cost

and size, due to such overhead considerations as packaging and

power c o n v e r s i o n  a n d regulation. I n  p a r t i c u l a r ,  t h e

multiprocessor type of structure affords an excellent way to

configure the elements of a central computer to realize these

advantages.

Disadvantages of acentral  computer - Tn general applications,

a central computer is made feasible only by the incorporation

of digital logic elsewhere in the system, e.g. peripherals,

modems. Th is  i s  pr imar i ly  f o r  two  reasons :  one  i s  the

inefficiency of dedicated interfaces for far-flung communica-

tions; t h e  o t h e r  i s  t h e  a w k w a r d n e s s  o f  i n c o r p o r a t i n g  a l l

sequencing and coding functions in a central computer. In this

case, if the central computer is a fault-tolerant multiprocessor,

the incorporation of a large dedicated set of interfaces would

be so expensive to accomplish in redundant and infallible fashion

as to mask the fundamental economy of the multiprocessor.

3



Advantages of dedicated computers - If one were to adopt a-
free interpretation of what a computer is, the remote logic used

in central computer systems might be called dedicated com-

puters. Indeed some of the peripheral controllers made today

are so complex that they will soon be realized using small

computers. tn this light, therefore, one could argue that

dedicated computers exist whether or not they are wanted.

The advantage of using them to the exclusion of central com-

puters lies in the fact that they can be integrated into subsystems

early in the design and production cycles and can be programmed

without possible interference from other programs in other
computers except via the interfaces. If desired, they can also

be tailored to their specific applications.

Disadvantages of dedicated com.puters  - These are more or~-____
less opposite to the advantages of a central computer with respect

to resource pooling. Another disadvantage is in the amount of

intercomputer communication which has to take place in a

complex system.

Enough has been said already to reveal that in most applications there
wi l l  almost necessarily be some combination of central and dedicated

elements, even if one of the dedicated computers were to serve a coordinating

role. Therefore, the first decision is really not so much the form the

system should take, but rather how the distributed system should be

partitioned between central and dedicated elements. The requirement for

fault tolerance in a central computer can be l-net  by a carefully constructed

multiprocessor, which can also possess some of the other desirable system
attributes named earlier. The principal limitations of this design technique

lie in its input/output bandwidth and reaction speed. To interface a

multiprocessor with a set of subsystems requires some form of local digital

processing with dedicated interfaces to subsystem electronics. Here, a

different approach is needed to implement the required degree of fault

tolerance, which will depend on the nature of the subsystem itself, and
what technique is used to prevent its faults from adversely affecting the

mission.
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The nature of the dedicated processing equipment depends on what it

is expected to do and, of course, on the characteristics of the digital circuitry

to be used as predicted at the time of the design. To be somewhat

forward-looking, it isnot  unreasonable to assume that each subsystem will

contain one or more digital computers acting as sequencers, format

converters, test elements, and data filters. As such, they would constitute

an excellent functional complement to the central multiprocessor. They

would have the high input/ output bandwidth and reaction speed needed to

communicate with subsystem electronics, with the capability to pre-digest

this dataand  communicate with the central multiprocessor at substantially

lower bandwidth and with less reaction speed required.

Communication between central and dedicated (local) computers would

be via a multiplexed bus, with a bandwidth capability of the order of a

million pulses per second. The bus must be redundant for the sake of

fault tolerance, and must be interconnected in such a way that no fault can

render all of the buses useless as would happen, for example, if a defective

processor transmitted “garbage” on all copies of the bus.

Figure 1 shows the hierarchy of such asystem. The multiprocessor,

the local processor, the bus, and the multiplexers which protect the bus

are described in the following sections.

A FAULT-TOLERANT MULTIPROCESSOR

The multiprocessor concept described in this section has as its goal

the ability to reconfigure without loss of data, to be flexible and expandable,

and to be easy to program. To do this requires error detection, infallible

data recovery, redundant processors, memories and data paths, and some

means of avoiding memory conflicts. Error detection, moreover, must be

accomplished soon enough to enable correction to be made before errors

spread.

Although multiprocessors need little justification, it might be pointed

out that if a central computer is implemented as a single “large” computer

with spares, or as several “large” computers in a voting arrangement,
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then to tolerate n faults one needs n + 1 or more “large” computers, and

expandability is very poor owing to the non-modularity of the system.

The multiprocessor provides a means of using “smaller” computers

simultaneously, where the overhead for fault tolerance is n “small”
computers rather than n “large” computers. The greater the ratio of “large”
to “small” the greater the equipment saving. Also, the system is modular,

and changes in size can be accommodated relatively late in the design cycle.

The emphasis in design is on fault tolerance, rather than large
throughput. For this reason, the multiprocessor will differ in several

respects from commercial multiprocessors whose goal is large and efficient

throughput.

To meet the goals for this multiprocessor, there must be comprehen-

sive error detection in all elements. Each processor must be able to detect,

sufficiently quickly, the occurrence of an error, and retire gracefully.

Each memory unit must be paralleled by at least one other, and be able to

detect its own error and retire or to acquire a new parallel unit when

necessary. There must moreover be a means of error correction and/or

recovery; and a substantial benefit accrues if these procedures are

transparent to applications programs.

The remaining unspecified design consideration is the origin and

nature of faults which may occur. At worst, faults may occur in a correlated

way, such as by battle damage in combat a.ircraft,  where multiple faults

are induced virtually simultaneously. In the more benign environment of
spacecraft however, fault occurrences are more nearly independent of one

another, provided there are no systematic failure modes built into the

equipment. If one can assume randomness of faults, then the concept of
redundancy is valid, and advantage can be taken of the high probability
that faults will not occur close together, e.g. within one tenth of a second

in a thirty-day mission.

The design of this multiprocessor, then, is an exercise involving the

design of error-detecting processors, error-detecting and correcting

memories, and the additional mechanisms and procedures to guarantee

smooth recovery.
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The Processor

Error detection in processors has been accomplished in many ways,

using techniques ranging from program checks to coded and massive

redundancy. At this point in time, however, the state of the art of error

detection is rapidly being overtaken by the state of the art of integrated

circuitry, and the most economical method of providing comprehensive

single error detection will be to use a second, synchronized, processor to

check the first one via a redundant comparator on the memory interface.

This is not only superior to coded redundancy in that it detects all but a
very few multiple errors (i.e. identical errors in each processor), but it

is more economical, in that the absence of the many encoders and decoders
needed for comprehensive coded redundancy drastically reduces intercon-

nections. This is the dominant cost criterion in integrated circuits, to the

extent that two identical processors will be comparable in size to, and

cost less than, one processor using extensive coded redundancy for error
detection. Logic is inexpensive, if and only if it is highly regular, minimally

interconnected, and mass produced.

The basic processor element is thus envisaged to be two processors

with absolutely no attempt made to salvage and reassign individual

processors during a mission. To do so would require more connections

than would be economical. An alternative approach is possible, however,

in which two or three individual unchecked processors are assigned a job

at about the same time, and have their outputs compared or voted on by

the memory or input/output unit receiving these outputs. With paired

processors, the programmer is relieved of any burden relating to error
detection, and an error is detected immediately upon occurrence. What is

done upon occurrence depends on the location of the data to be salvaged.

If it is stored in memory units, it is necessary to salvage the central register

contents to allow another processor to re-run the instruction. If a scratchpad

memory is used, the central register contents plus the scratchpad contents

must be salvaged for automatic data continuity. The alternative to central

register salvage is to provide re-run points, which the programmer is

normally responsible for updating with each data store and job request.

Even this will fail if an error occurs partway through data storing, unless
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a two-step storing process is used. This is closely related to one of the

major caveats of multiprocessing, which is that correlated data must be

updated at one time without allowing another processor to read it part way

through the update. Errors committed during the process exacerbate the

problem.

One satisfactory solution to this problem has been proposed at the

MIT Charles Stark Draper Laboratory. @I J bl A triplicated scratchpad

memory is used for data and instruction storage in conjunction with each

processor pair. All central registers are located in the scratchpad, and

all have buffer registers also located in the scratchpad. Each instruction

has two phases: one for computing, one for storing. Errors are detected
within each phase and processing is stopped before proceeding to the next

phase. An error signal in the processor pair or in the triplicated scratchpad

triggers a sequence generator in each scratch:pad  to initiate adump sequence

into a reserved area in main memory. The dump includes the name of the
phase that failed, l\;o  other processor can interrupt the dump, and if a
second error does not occur by the time the dump is completed, the dump
will be made correctly. The duration of the du.mp  for a 128-word  scratchpad

would be of the order of 0.1 millisecond. A similar procedure is used for
all updates of correlated data, which are therefore done in one motion,

protected from error. The cost is one more scratchpad memory per
processor than would otherwise be needed for error detection. In terms

of circuit volume in 1975, this can be projected to be no more than a few

cubic inches. What it provides is a mechanism for information continuity

and protection of correlated data, which are both of great importance in
reliability, and which are otherwise very difficult to achieve.

Figure 2 illustrates a processing unit comprising two processors,

two dual comparators (which can use common circuitry), three scratchpads,

and voting units necessary for fault isolation from quadruply redundant

serial buses. This unit is capable of 1)  operation as a collaborative

processor, 2)  detection of any error resulting from a single fault, 3)

completing any data transfers in progress with memory, system, or other

systems, 4)  transferring all necessary information to memory to effect

resumption of processing and reconfiguration, and 5) entering a self-check
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mode to attempt to qualify for returning to active status. Too many such

attempts cause the executive program to disqualify the processing unit from

further activity. All of the foregoing is dependent upon its being completed

before two of the scratchpads experience faults. The time scale for all

but the last item is tens of milliseconds. The last may continue over a

large time period, if the fault is persistent or permanent but seldom causes
errors. Tn  this case it must be assumed that enough errors are caused to

disqualify the processing unit before the second scratchpad failure. This
assumption is valid if, and only if, the self-check mode is exhaustive in

its exposure of faults.

All communication with external units is via serial redundant buses,

with the possible exception of the processor-memory bus, which may be

made byte-serial or parallel for the sake of high bandwidth. The

multiprocessor can be configured to tolerate the failure of n of these

processing units if n extraunits are incorporated over and above the number
necessary to furnish sufficient processing capability for the mission. The

bus system shown is two-fault tolerant, expandable to n faults by using

n + 2 buses and an appropriate configuration of voters,

The Memory Unit

Error detection and correction in memory units is essentially different

from error detection and correction in processors, in that where logic is

cheap, memory is not. More important, however, is that where a processor

is time-shared, memory systems are not. That is, neglecting swapping in

hierarchical storage systems, all words of memory must be retained and

backed up actively at all times, unlike processors, where no active continuity
is required. Therefore, if duplication is used for error detection, then a

third memory is required for correction of the first error, and either a

fourth memory or else a reassigned third is needed for correction of the

second error and so on.

Coded error detection methods are far more viable in the case of

memories than for processors for two reasons: they are more comprehen-

sive, and they occupy a far smaller fraction of memory than they do of
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processors . This is not to say that a trivial check like single parity is

adequate; far more comprehensive checks are needed, especially if the

memory has sophisticated internal sequencing such as test- and- set

operations on flag bits, important in global variable write protection, or

page table management. But until a coded redundancy design is actually

in hand and verified to be comprehensive for all single faults, the only-
acceptable assumption to make is that error detection will require two

memory units as set out in the preceding paragraph.

The next item to be discussed is the method of interconnecting the

memoryunits with the processors. Three sluch methods are distkguished:

c rossbar , redundant time-shared bus, and multiport units. *With the

crossbar , a processor makes a temporary (interruptible) hookup with a

memory unit for the duration of a job whose instructions and data are located

in that memory. The processor must wait if some other processor has

access . With a time- shared bus, no particular affiliation pattern emerges,

as each processor in turn has access to the entire set of memories through

a single bottleneck. With multiport memories, processors can request

access to any one memory unit at any time,, which will be granted in order

of priority among those seeking access to that unit. In general, instructions

are read very few at a time to avoid the ineff,iciencies  which would otherwise

result from branching early in an instruction block. Data, on the other

hand, may very well be accessed in blocks, for which reason it may be

stored in units separate from instructions.

The crossbar and time- shared bus techniques easily lend themselves

to allowing a processor to “hold on” to a memory to write correlated data,

but only the bus technique allows a proce,>s’sor to have momentary access

to all memory units to write correlated data into scattered locations.

Whichever memory-processor interconnection technique may be used,

care must be taken in its design to ensure that no combination of n or

fewer faults can bring down the system. As  examples ,  two  memory

approaches are described below, both of which use the time shared serial

bus shown in Fig. 2. The first approach, illustrated in Fig. 3, has n + 2

redundant memory units for n-fault tolerance. Again, four buses are shown
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for the case of two-fault tolerance. Each memory unit comprises enough

modules (m innumber) to store all data, and may be a hierarchical memory

system with mass memory. This is conceptually the simpler, more effective,
but possibly more costly of the two approaches shown. Each unit has a

control unit, similar to a processor, which formats information for transfer

and executes access sequences such as read, write, and test-and-set. At

least two of these four control units must survive for system survival.

The second approach is shown in Fig. 4. It requires fewer memory

modules than the first approach, but more control modules, each of which

is more complicated. In the second approach, n-l spare memory modules

are available for assignment to replace failed modules in two-out-of three
voting groups. This requires the ability to load replacement modules to

match the survivors of the group; plus the ability to identify a disagreeing

module in a group, plus the ability to ensure that a module cannot falsely

respond to a request for access to data it does not contain. The total

number of memory modules used is 3m + n-l, as compared to m (n + 2)

in the first approach. Each memory module needs a control unit in this

approach as compared to the four used in the first approach. For example,

to achieve three-fault tolerance (n=3) where the number of different words

stored is four times the capacity of one memory module (m=4),  then the

first approach uses 20 memory modules and four control units, where the

second uses 14 memory modules and 14 control units.

The choice between these approaches is not immediately obvious,
and, moreover, several other approaches may be competitive with these

two. This area is as yet far from adequately understood.

Input/Output and Executive

Access from the central multiprocessor to the input/output redundant

bus may be made by way of the memory complex or, if used, by way of the

scratchpad memories. Direct access from processors is undesirable

because of the problem of data continuity at the time of a processor failure.

The criteria for memory error detection and correction make memories

the most appropriate access points for the input/output bus.
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Operationally, a time-shared input/output channel requires a certain

amount of datamana ement. One promising approach, again from the MIT

Draper Laboratory, Yl6 1s  the quasi-dedication of one of the processor pairs

of the multiprocessor to management of the input and output through its

scratchpad. In this scheme, the processor that handles the input/output

continues to do so uninterrupted until it com!mits  an error, at which time
the job is transferred to any free processor. This is like having a distinct

input/output processor, except that it is taken from the processor pool,

and needs no special backup. The reason for quasi-dedication of this

processor as opposed to letting any free processor manage the input and

output on a sampled basis is to provide full use of the available bandwidth.

The input/output bus is managed by the central multiprocessor, and
the remote units (dedicated processors) respond on a speak-when-spoken-to

basis. In this way there are no program interrupts in the usual sense.
Job requests are sent to the central multiprocessor in response to polling

inquiries, issued at a rate of roughly one eve.ry  few milliseconds. This is
approximately the rate at which jobs are dispatched, and is a fair measure

of the reaction time of the machine. It wou.ld  be possible to implement

conventional program interrupts, but it would :be awkward and unnecessary,

In fact, with no more program restrictions than are observed in conventional
machines, it is possible to time share a mult.iprocessor  without interrupt,

as easily as, or more easily than, time sharing amultiprogrammed machine,

provided that the number of processors is greater than the number of jobs
which are allowed unrestricted running time, such as the input/output job.

The executive program, which is responsible for allocating resources

to jobs which are called by automatic or manual inputs, is of a floating

form. Any processor may insert a job request in the executive input file

during the execution of a job segment. Each processor, upon completing a

job segment (which it must do within a specified time or be dumped) first

checks to see if any pathological situation exists, in which case it takes

care of it. If not, the processor attempts to examine the executive file in

memory. If the file is busy, the processor waits. If not, the processor

updates the file and takes the highest priority job to do. There is virtually

nothing else to be done at high speed. At low speed, another segment of

s
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the executive program handles the allocation of memory resources. There
is little executive overhead, a moderate amount of input/output overhead,

and an overhead chargeable to memory access depending on whether a

scratchpad is used and what the statistics of its use are.

LOCAL PROCESSORS IN A FAULT-TOLERANT SYSTEM WI

The use of small dedicated processors in subsystems is a new

extension of an old idea. The extension comes about because of the new,
inexpensive and small realizations of processors that are being developed

now. It is not unreasonable to expect to have simple processors with ten

microsecond add times and 4K words of memory which occupy only about

ten cubic inches of volume, available in the time span with which this effort

is concerned.

No one redundancy configuration of local processors appears to be

basically superior to another, because of the wide variety of applications.

In rocket propulsion, redundancy is often achieved in using multi-engine

stages, where the life expectancy of the engine is less than that of a computer.
It would appear to be sensible to use a single processor pair per engine,

which could shut the engine down if an engine failure or computer error

were detected. In a power distribution system, on the other hand, the system
itself is redundant, and a single redundant computer complex seems
appropriate for control of the whole system. This may be done in either

of two basic ways. One is a set of paired processors in which one is

active (at bat), one is in standby (on deck), one inactive (in the hole) and
so forth. Input/output is handled by the active processor, whose interface

circuits are enabled by power switching. The second way is to use a set
of single processors three at a time in synchronism with voter circuits on

each output signal. This uses fewer processors for a given number of

tolerable faults, but requires a more expensive input/output complex.

For either type of redundant local processor configuration, redundant

inputs from the subsystem(s) are brought into all of the processors to be

compared or voted upon. Analog inputs in particular do not lend themselves

ill not coincideto hardware comparison or voting, and, in general, inputs w

well enough in time to permit hardware voting.
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Local processors will undoubtedly use conventional approaches to

multi-job real-time control ranging frorrL  programmed scanning of inputs

tomultiprogramming. This is of little concern to the fault-tolerant aspect
of the system except as it emphasizes the need for multi-phased input

circuitry to avoid pulse slivering that might force the redundant processors
out of synchronism and restart mechanisms which can resynchronize  them

if they do slip out.

A FAULT-TOLERANT REDUNDANT INPUT/OUTPUT BUS

A parallel multiplexed bus can be made fault-tolerant by coded

redundancy, provided the multiplexers for each bit line are independent

and capable of determining for themselves when to allow access. In this

way a multiplexer failure only affects one line, whose erroneous behavior

is filtered out by all of the error-correcting decoders. Aserial  multiplexed
bus can be made fault-tolerant by replication with error detection by coded

or comparative means. Voting, however, best assures information continuity

in the serial case, using n + 2 buses for n-fault tolerance. Parity may be

used to signal ultimate breakdown of the bus system, but it is inadequate
to detect all possible erroneous behavior in a single line.

It may be expedient to route separate bus lines through separate

conduits to avoid the possibility of system breakdown through physical

damage. Alternatively, all lines might be run through a single, well armored,

cable that may be assumed to be indestructible.

Electrically, the bus presents an interesting challenge, because there

may be as many as the order of 100 stations. One solution is to arrange

the stations in a daisy chain where information is transmitted from one

station toone  other, whence it is transmitted to a third, and so on in order

through all stations. The originating station alone refrains from transmitting

the information arriving from its neighbor. When this station’s message

ends, another station may open its tie from its receiver and begin to transmit

its information. Any failure in any station makes the whole loop faulty. A

second solution is to connect all transmitters and receivers in parallel.

Only one station transmits at a time, the other transmitter connections

14



being passive. An  unpowered station would not affect bus operation, so
that faulty units could be retired from the system by being shut down.

Each bus line would interface with each central or local processor

through a separate multiplexing station.

transmitter, a receiver, and logic.
Each station would contain a

Functionally, the multiplexer would

need to be able to recognize when it is eligible to transmit and when it is
not. For local processor multiplexers, this requires logic to ascertain
that its name is called by the multiprocessor, and to place a limit on the

length of the message that its local processor tries to send, For central

processor multiplexers, the quasi-dedicated input/output processor is the
only one enabled to transmit, and it begins transmitting as soon as required

after the end of a message from a local processor. This end of message

is signified by a synchronizing pulse issued by the local processor’s
mliltiplexers.

Multiplexers  have the additional function of turning power on and off

in local processors for purposes of mission sequencing and of reconfigura-

tion following detection of errors.

The multiplexer is a key element in the system. It has many
responsibilities and is used in large number. To make the system feasible 9
it will be necessary to implement these devices using customized integrated

circuits. Because of the irregular nature of the logic required, it will not
be packaged as efficiently as memories and arithmetic units, and it may

require from two to six chips for its implementation, depending upon a

number of factors not yet known.

A serial implementation is proposed for the input/output bus for

spacecraft requirements, assuming a requirement for two-fault tolerance,

and estimating a bandwidth requirement of! tens of kilobits  per second 0
Voting is done in each processor on identical. and simultaneous information

received over four identical bus lines.

three with one replacement.
The voting strategy is two out of

This strategy may not be totally satisfactory,
however, because it fails to accommodate errors which develop in different

multiplexers on different lines. Thus it requires two lines with all their
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multiplexers to survive, where a three-out-of-five arrangement would allow

any two multiplexers in every processor to fail. The choice must be based

on the reliability required and the component failure-rate predictions.

T h i s  p a p e r  h a s  s o  f a r discussed a number of generalities about

contemporary approaches to fault-tolerant systems. It also has tried to

convey in brief the important elements of a proposed spaceborne fault-

tolerant information processing system which is felt to represent a propitious

solution to a many-faceted problem. There are several notable features

in this concept. One is a new assessment of the capabilities and limitations

of integrated circuits. Specialized circuits are costly to design, difficult

to qualify, and wasteful of interconnections. The only such circuits

contemplated are for multiplexers, which seem to be unavordable. Nearly

all of the rest of the system circuitry consists of memories and arithmetic

units.

Error  de tec t i on  in  the  proposed  sys tem i s  accompl i shed  large ly

through the use of replication and comparison of units of significant size.

This provides comprehensive detection at a cost which may be lower than

that of less powerful detection methods. This paradoxical situation arises

from the fact that a simple, unchecked processor can now be realized with

remarkably few semiconductor devices. Any circuit complexities, such

as those incurred in many coded redundancy schemes, tend to result in a

much greater volume and/ or a greater cost of developing integrated circuits,

because of their high incidence of “random” logic.

One of the key features of the concept is that error recovery is

implemented by providing adequate buffering of datato enable an expeditious

and exact rerun of an instruction, job segment, or program as appropriate

to the location and nature of the error. Hardware reconfiguration by itself

is generally inadequate without a mechanism of dynamic program and data

recovery. The expenditure of extra hard.ware  to solve this problem is

well justified. In general, fault detection can range from inexpensive

reasonableness checks to outright duplication and comparison, and the means
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used will have a substantial impact on the nature of the data recovery

mechanism used. For example, detection and recovery are both provided

in straightforward fashion by voting redundancy. The system described
here, however, provides a less expensive and more efficacious combination

of techniques to do the job without sacrificing too much of the conceptual

simplicity of the voting method. The importance of conceptual simplicity
should not be underestimated. It  yields advantages in design, test, production,

and marketing, i.e. the customer’s willingness to accept the development

and deployment risk. One other thing which must be kept in mind is that

redundancy alone fails to improve dependability unless component part

reliability is high. For the spaceborne applications contemplated, it will

be necessary to achieve greater component reliability than ever before,

even if multiple-fault tolerance exists in the system. Component reliability
is not independent of circuit design, however, and simplicity of design has

yet another potential benefit in this respect,

Another feature of this concept is that it is not restricted to the

synthesis of a fault tolerant computer. Rather the entire information

processing system must be considered. The problem of handling hundreds
of real-time inputs and outputs in a single computer is difficult, and

distributed systems are increasingly bei.ng  developed for on-line ap-

plications. This approach is advantageous where local control functions
involve simple data processing and high information rates and global control

functions involve sophisticated calculation (“number crunching”) and low
information rates. Such is the case in most of the large aerospace vehicles
now being developed. The concept presented here is a distributed system
with fault tolerance concepts extended to all of its members and the

communication medium between them.

A central computer handles the global computing functions. It is
configured as a collaborative multiprocessor, designed to incorporate an

invulnerable floating executive and input/output control. Each processor

is duplicated for fault detection, and has a triplicated scratchpad memory

for error detection and masking of data critical to error recovery. In the

event of a processor or scratchpad fault, the scratchpad memory complex

sends its contents to the data memory, where it will be acquired by the
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next free processor, which will continue processing from the beginning of

the interrupted instruction. No attempt is made to reconfigure the failed

processor. If the fault was transient, as may be most likely, the processor

will come back on line after it successfully executes a self-check program.

Otherwise, it is totally expendable.

The central multiprocessor has a redundant main memory accessible

to all of the processors. Although memories can be checked to a fairly

high degree of confidence by coded techniques, the use of voting is urged

here wherever the extra few pounds of weight incurred is acceptable, for
the sake of increased confidence.

The central computer is capable of communicating with similar central

computers in other areas of a vehicle, other stages, ground test equipment,

etc. The communication medium is a redundant serial time-shared bus.

An identical redundant bus system is used for communication between a

central computer and all of the distributed, or local, processors. A
bandwidth of about one megabit per second is probably adequate for all of

the projected applications of such systems.

Local processors will resemble the processors in the central com-

puter. Either a voting arrangement of three or more local processors, a

switched group of paired local processors or independent processors in

redundant subsystems may be used. The tradeoff between the schemes is
basically the cost of voting circuits in the voting arrangement, the cost of

extra processors and the switching and recovery mechanism in the switched
group arrangement, and the expendability of the independent subsystems.

All arrangements may be used within a single system.

A requirement for any fault-tolerant system is to be fully testable
to ensure that the recovery capability is functional. In this system, for

example, it will be necessary to check periodically that comparator circuits

will alarm on any disagreement. This can be achieved on a routine basis
by microprogram, which would be the only area of intrinsic difference

between two paired processors. The comparator and alarm circuits would
be exercised in this way without actually inducing errors in the processor.
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Voting circuits, likewise, need to be checked, which calls for the inclusion

of special modes of operation in virtually all elements of the system.

Systems structured along the lines of the preceding discussion may

be configured to be tolerant of single, double, or indeed any number of

faults, w i th  the  res t r i c t i on  that  c e r ta in  fau l t  pa i r s  must  no t  o c cur

simultaneously (within Y miNiseconds of one another) as might happen if

the system is susceptible to e1ectromagneti.c interference. Such systems

are within the state of the art using large scale integrated and hybrid

circuits, both bipolar and MOS, The organization permits localization and

identification of all errors which can expedite maintenance, and signal

mission plan changes which s’hould  be made under existing circumstances.

Some of the important potential features of the system are:

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

Uniform information interfaces.

Minimization of harnessing through use of time shared buses,

Ability to add (or delete) information processing resources,

Flexible capability for adding or deleting functional interfaces

by software.

Degree of fault tolerance can be varied within a system.

Flexible resource allocation capability in the multiprocessor.

Elimination of need for programmer to implement recovery

algorithms for hardware fault restarts.

A b i l i t y  t o  e x e c u t e  p r o g r a m s  d e v e l o p e d  a n d  v e r i f i e d  b y

independent teams.

CONCLUSION

Aerospace technology is increasingly developing vehicles for which

system survival is a paramount issue, yet which require sophisticated

onboard information processing. Examples are the “giant” commercial

aircraft, reusable space shuttles, space stations, deep planetary mission

vehicles, and nuclear rocket stages.
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Avionics technology lags behind structural technology in the area of

survival, probably because it has only recently become critical to crew

and passenger safety or to cost effectiveness. Fault-tolerant computers

and systems are still in their infancy, yet they are sorely needed in the

current and next generations of aerospace systems.

This system concept is not claimed to represent the ultimate that is

achievable through fault tolerant design techniques. It does, however,

represent a practical approach to solving a current need for comprehensive

fault tolerance, for which no adequate systems are available. Moreover,

it does so in a fashion which is transparent to programming and to most

of the electronic design. It  is a conceptually- simple information processing
system well suited to the functional requirements of many of the most

sophisticated space vehicles.
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