FINAL DRAFT

R-700

MIT's ROLE IN PROJECT APOLLO

FINAL REPORT ON CONTRACTS
NAS 9-153 and NAS 9-4065

VOLUME V

THE SOFTWARE EFFORT

by
Madeline S. Johnson
with

Donald R. Giller

March 1971

CHARLES STARK DRAPER LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

FINAL DRAFT

ACKNOWLEDGMENTS

This report was prepared under DSR Project 55-23890, sponsored by the
Manned Spacecraft Center of the National Aeronautics and Space Administration
through Contract NAS 9-4065. .

- -

The authors express appreciation to their many colleagues, both within and
‘without the Draper Laboratory, who gave of their time and contributed essential
information to this Final Report. These personsare cited at the end of this Volume
in a section entitled, "A Note on Sources'. We offer special thanks to Joseph A.
Klawsnik, who, though with us onIy briefly, left considerable impact on the format

and contents of Sections II and III herein.

The publication of this document does not constitute approval by the National
Aeronautics and Space Administration of the findings or conclusions contained herein,

It is published for the exchange and stimulation of ideas.

ii

REPORT R-700
MIT's ROLE IN PROJECT APOLLO

Final Report on Contracts
NAS 9-153 and NAS 9-4065

VOLUME V
THE SOFTWARE EFFORT -

ABSTRACT

Seventy-six days after the President of thé United States committed the nation
to a massive lunar-landing program, the Charles Stark Draper (formerly
Instrumentation) Laboratory of the Massachusetts Institute of Technology received
the first major contract of the Apollo program. This volume of the Final Report
discusses the efforts ofLabora-tory personnel in developing the specialized software
for the Guidance, Navigatioﬁ and Control System. Section I presents the historical
background of the software effort. Section II discusses the software architecture s
developed for the Apollo Guidance Computer, Section III treatsthe methods of tesf_ing
and verification of the flight progré_;n s, and the Laboratory's mission-support
activitieé. Four appendices present functional descriptions of some major-prvogram
capabilities—coasting-flight navigatioh, .targeting, powered-flight navigation and

guidance, and the digital autopilots,

iii

PREFACE

Rarely has mankind been so united aé in its awe at one man's step onto the
lunar surface. When Neil Armstrong placed his left foot in the dust of the moon,
engineers and scientists at the Massachusetts of Technology Instrumentation Labora-
~ tory felt a special pride for their significant contribution to this accomplishment in
the design of the Primary Guidance, Navigation and Control System for the Apollo
“spacecrafts. ‘

} This report discusses the efforts of Instrumentation Laboratory personnel in
- developing the special software for the Guidance, Navigation and Control System.
Although it is part of a multi-volume series documenting the total Project Apollo
efforts of the Instrumentation Laboratory, this section méy be read independently
of the other volumes; the authors intend it to be meaningful to the general reader
who may or may not have read the pre_céding volumes.

In January 1970, this facility‘ became the Charles Stark Draper Laborat'ory,
named in honor of its founder and current President. Throughout this report, "MIT"
and "Draper Laboratory" are used interchangeably, in reference to the former
Instrumentation Laboratory. |

iv

CONTENTS

Acknowledgments et e oo 0o e IR L ii

Abstract [P e e e e LR £ 1

Preface oo eveuenn e ee e e e e et . iv

List of Illustrations / B R N <1

I. HISTORY OF THE SOFTWARE EFFORT e e 1

1.1 Introduction P e e e e e aee e 1

1.2 Software Programs for the Apollo Missions e e e e 5

1.2.1 Block I ROPe SUMMATrY . v v c'e o o o o o o o o s s s o o s oo soos 8

1.2.2 Block II Rope Summary e ceee 9

1.2.3 Overview of the Apollo Flights A 5 |

1.3 Control of the Software Effort e e e e e e e -~ 11
1.3.1 Control by NASA e e 11

1.3.1.1 G&N System Panel Meetings e e s e e e e e e e 13

1.3.1.2 G&N System Implementation Meetings 13

1.3.1,3 Data Priority Meetings 14

1.3.1.4 "Tiger" Teams SR ce.. 14
1.3.1.5 "Black Friday" Meetingsuovevueneenoson 15

1.3.2 GSOP Concept and HiStOTY .« . v v o vieie e vsvnnnenenns 15

_ 1.3.3 Additional Software Controloeoeeo.. e 16

1.4 Man and Machine Lioading Requirements¢cc00oeeo 17

1.4.1 History of Man Loading e e e e e e .. 17

© 1.4.1.1 Initial PhiloSophy o« .o P

1.4.1.2 Creative Use of Subcontractors 18

1..4'.1.3 -Review of Man Loading et e e ... 19

1.4.2 History of Digital Machine Loading e 19

1,421 IBM 650 . .vvuevennn.. e 22

1.4.2,2 Honeywell 800 [et 23

1,4,2,3 Honeywell 1800 e e .23

1.4.2.4 IBM 360/75 ..vooun.. e, 24

1.4.2.5 Loading of the Digital-Computing Facilities - 26

II.

1.5 Major Recurrent Problems c et e et e e

1.,5.1 Difficulty in Estimating Time and Manpower Schedules

1,5.2 Control of Timely Spacecraff Data

AGC SOFTWARE......
2.1 Computer Capabilities

ooooooo ®© o o o o o ¢ ° o 0 e s o s 0 o

2.1.1 Storage and Manipulation of Computer Instructions

2.1.2 Timing and Control of the Computer . .,

2.1.3

2.1.2.1
2.1.2.2
2.,1.2.3

e ® o o o o o o

Interrupt System
Software Executive System , .
Sequence Control

Computer Interfaces

2.1.3.1
2.1.3.2

2.1.3.3

2.1.4

2.2 Major Mission Tasks Accomplished with the Computer Software

2.2.1 Early Approach to Na
Control ..,...

2.2.2

2,1.3.4

2.1.4.1
2.1.4.2

Counters and Channels

Cockpit Displays and Controls

PINBALL and DSKY Displays . .
Uplink and Downlink .,

Error-Detection and Self-Check Features

Hardware Restarts R

Software Restarts ,

.Q‘OO...C.O.......

e o o o

Transearth Injection , ,.....

vi

The G&N Mission Phases . v .o v eweenss
'2.2.2.1 Launch to Earth Orbit
2(2.2.2 Earth Orbit
2.2,2,3 Translunar Injection .,
2.2.2.4 Translunar,.......
2.2.2,5 Lunar-Orbit Insertion e e e o e s
2.2.2,6 LunarOrbit..............
2.2.2,7 Lunar Descent ..,
*2,2,2,71 Braking Phase ..,...

' 2.2.2,7,2 Visibility Phase
2.2,2,8 Lunar-Surface Operations
2.2.2,9 Lunar Ascent....... e e
2.2,2,10 Lunar-Orbit Rendezvous ,.....
2,2,2,11 ..

o o

o o

3

.

o e o o 9 o

.....

vigation, Targeting, Guidance, and

26

26

29.. .

32
33
33
35
35

37

39
40
40
44

) f‘_zs

58
60
62
64

85

65 -
67

69
70
71
71
73
73
73
4

76
76
"
77

2.2l2|12 Transearth ® © e o © o o o o o A. e .o & o o o .‘. e o o ... e o ’ 78
2.202.13 Reentry ® o o o°o o o .. e & o 6 e @ o o o O ° 0 0 ® e © o ° o o O 78
2.2.3 Rope Design Philosophy and Problems Encountered 79

III., TESTING, VERIFICATION, AND MISSION SUPPORT c e 82
3.1 Testing and Verificationiveeeeeeeesesesenossseas 82

3.1,1 Testing PhilosOophyvceceeveeesesessoceseess 82
3.1.2Lev_elsofTes4cing. PP - '

'3.1.3 Testing Tools ettt ieeaeaea... 86

3.1.3.1 All-Digital Simulatorccc00c0... .86

3.1.3,2 Hybrid Simulatorecce00ccseeceseees 89

3.1.3.3 Engineering Simulatorttt e 91

3.1,3,4 Systems TestLaboratoryeeeeeee... 91

3.2 Software Specification COMIOLS & v voee s oe e eeeenenenns 92

3.2.1 The Guidance System Operations Plan (GSOP) ...ceevn 93
3.2.2 Change Control Procedures:oeeeeeeceseass 94
3.2.3 Software Control Meetings . . vveeeeeeeeoeoeoeoocas 95
3.3 Documentation Generation and Review . . . oo v v vveeneeeeee. 96
3.4 Mission Support eeeeeeeeeeeeososoososcosaacoaeaes 99
3.4.1 Crew Support P < -
3.4.2 FLight SUPPOTt .+ v v vv v s em e e e e eeeemneeeeenn .. 101

Appendlx A MAJOR PROGRAM CAPABILITIES— . .
CoaStlng—Fllght Namgatlon © @ 0 06 8 ¢ o o e 0 ¢ 6 0 6 0 0 0 0 o s 0 e o o 104

A17C1s1unarNav1gat10n e e e o e s e s es e e aesaoses. 105
A.2 Rendezvous Navigationccc0u... R &
A.3 Orbital Navigation ueeeeeeeooeenoeenssess 127

Appendix B MAJOR PROGRAM CAPABILITIES—
Targetlng . . L] L] ° . L] L] . . e o L] I.

.. . L] L] L] Ll e e & o o o L] 133
B.1 TgrgetmgComputations.......;............... 134
e @ & & o o o . ® o o o o o o o 0 135
e o 0o o o o A- © @ e o o & 136

:B.3.1 Coelliptic Sequence Initiation (CSI) and Constant _
- Differential Height (CDH) 139

B.3.2 Transfer PhaselInitiation (TPI)and Transfer Phase
Midcourse (TPM) L] L] L] . . L] L] L] A. L] L] L] L] o L] * e . L] L] L] . [] 141

B.2 Ground-Targeted Maneuvers ., .

,)
B.3 Rendezvous Maneuvers . . o .o oo«

- vil

Appendix C

B.4 Return to Earth (RTE) e e e e e e s |

B.4ol' Options e o o o o o o o ® o o o 0 o o o ® o @ o o o o
B.4.2 TWO"'BOdy Problem ® ® o o © @ o o © 0 0 © o o o
B.4.3 Precision Solution ., v v v o v eeweeoo

B.4.4 General Considerations . . ¢ v v ¢ o o o o o o o

MAJOR PROGRAM CAPABILITIES—
Powered-Flight-Navigation and Guidance

C.1 Fundamentals of Powered-Flight Navigation and

C.1.1 Powered-Flight Nav1gat1on e e e e e e e e s e e
.C.LL1 Gravity Computation

C.1,2 Powered-Flight Guidance Using Cross- Product
N Steerlng e o ©o o ¢ o o I ® ®© o o o o o O o © 0 O o ©0 o © ° © o o

C.1.2,1 Cross- Product Steermg e e e e

C.1.2.2 Comparisonof Explicitand Implicit Guid-

ance Policies000...

C.1,2,3 Lambert Powered-Flight Guidance

C.1.2.4 Lambert ASTEER Guidance

C.1.2,5 External AV Powered-Flight Guldance
C.1.2.6 Thrust-Cutoff Sequencing.
- C.2 Thrust Monitor Program e e e e

C.3 Earth-Orbit Insertion Monitor Program ,.....
C.4 Entry Guidance and Mission Control Programs ‘
- C.4.1 EntryGu1dance
t C.4.2 Entry Mission Control Programs
C.4.2.1 Entry Preparation, P61

C.4.2.2 CM/SM Separation and Pre-entry Ma-

neuver, P62 ,.............
C.4.2.3 Entry Initialization, P63

Co4.2.4 POSt-O.OBg’ P64 e e o o 0 o o o o o o

. C.4.2,5 Upcontrol, P65
C.4.2.6 Ballistic, P66 .,0000u..
C.4.2.7 Final Phase, P67

C.5: Lunar-Landing Guidahce and Navigation

$

C.5.1 Guidance System Description , ,

C.5.2 Navigation System Description , ,......

viii

.

Guid-

ance..‘...‘..'.......00...O....Q.Q.l...

143

143
147
148
148

150

150
150 |

151

152

153

157

161
162 -

163
165

167

167 -
169

170
175
175

177
177
177
178

178

179
179
180
186

C.6 Lunér Ascent and Abort Guidance e et e e e . . 191
C.7. FINDCDUW—A Guidance/Autopilot Interface Routine ,.. 194

Appendix D MAJOR PROGRAM CAPABILITIES—
Dig"tal Autopi]'OtS e o o @ o o o . ® © o o © @ ©® ¢ & & o & 0 © 0 O © O ° ©° o o 196

D.1 Developmental History of the Digital Autopilots 196
D.1,1 CSMDAPS i veeeesosasosnssosasessss 197
D.1,2 LMDAP . . ittt oeeeescssoososnsssseses 1089

D.2 CSM Reaction Control System (RCS) Autopilot 200

| D.2.1 Modes of Operation¢.eecoeeseeeesss 201

D.2.1.1 FreeModeveveueeneenaasssss 201
D.2,1,2 HoldMode...................... 201
D,2.1.3 AutoMode:eeeeeeeeocsoosss 202
D.2.2 Crew Control of the RCS DAP Configuration 202
D.2,2.1 DSKY Operation 1
D.2.2.1.1 Data Loading 202

D.2.2.1.2 Other DSKY Operations 203

D.2.2.2 Attitude-ErrorDisplayseeeee... 203

D.2.3 RCS DAP Implementation e e eeee. 204
D.2.3.1 Attitude Hold and Stabilization 204
D.2.3.2 Automatic Maneuvering ceee.. 206

D.2.3.3 Manual Attitude-Rate Control 206

D.2.3.4 Ménual Rotational Minimum Impulse o
ContrOI ® © & o o o o o o o o . . e o o o 2.09

D.2.4 Restart Behavior of the RCSDAP 209
D.3 CSM Thrust Vector Control (TVC) Autopilot 209

D.3.1 Summary Description 209
D.3.1.1 TVC Pitch and Yaw Control 209
D.3.1,2 TVC Roll Control ce... 214

D.3.2. Design Requirements of the TVCDAP ., 214
D.3.2.1 General Design Considerations . .. ce.. 214

D.3.2.2 Initial Conditions and Time- Varymg _
Thrust Misalignment ,............. 215

D.3.2.3 Vehicle CharacteristiCs . .. e:e e o o o o .. 216
D.3.2.4 DeSig‘rl A‘pproaCh L] ° L] . Ll . . lv. o ° . . . L] L] L] 217
D.3.3 TVC DAP Implementationvveeeeseaees. 217

ix

D.§

' D.3.3.1 Compensation Filters . . . ¢ e v e o .. e

D.3.3.1.2 Switchover from High Band-
width to Low Bandwidth

D.3.3.2 TVC DAP Variable Gains ... e o e oo oo
D030303 Trim EStimation ® © o6 o6 e & 0 0 o @ © © © & o 0o o
D.3.3.4 RestartProtectioneeeeeooei oo

D.3.3.5 Computer Storage and Time Require-
. / ments ® @@ @ o © & o ¢ o e e o o o e o o ® & © & & ¢ o

D.3.3.6 Selection of Sampling Frequencies
D.3.3.7 Effects of Computational Time Delays . . .
D.3.4 TVC D'-A'P Operation o L] o o L] L] L] L] L] L] L] L] L] .Q . .- L] L] L] L] .

D.3.4.1 Pre-burn Initializationccc 00"

- -

D.3.4.2 Start-up Sequenceceoec00 o
D.3.4.3 Shutdown Séquenceo © e o6 o @ 6 0 o © o o o o o o

CMEntryAutopi]-Ot...4.......0000000000...l.-"

D.4.1 Exoatmospheric and Atmospheric Entry DAPs ...

D.4.2 Phase-Plane LOZIC o o e v v o v v e ovnsnnnnenss
D.4.2.1 Shortest-Path LogiC . . v ¢t e o e s eooeee
D.4.2.2 Buffer Zone and Deadzone of the Roll-

Attitude Phase Plane, ¢ v «c o o o oc0 e 0 o 0 o o

D.4.3 Entry DAP Displays . o e o vt o v eeevoseonsss
D.4.4 Manual OVerride, . oo oot v v v vnenennnnenses
AGC Takeover of Saturn Steering ¢ oo oo oo e
D.5.1 Generation of Guidance Commands
LM AUtOPIlOt { v v v e v e vt aveoononosnsoenanases
D.6.1 Inteéi‘atedDesign......._..;.;...........

D.6.1.1- Design Approach and Structure of the
AutopiIOt‘.o_o.oonooo9‘.00:._0..‘0..

D.6.2 Manual Modes of the LMDAP
D.6.2.1 Rate-Command/Attitude-Hold Mode
D.6.2.1.1 ‘Reduction of Drift .,

D.6.2.1.2 Precise Rate Control

D.6.2.1.3 Return to Attitude-Hold Mode . .

D.6.2.1.4 Availability for CSM-Docked
Configtlration ® 06 o o o o .. e & o o ©

D.6.2.1,5 Reduction of +X-Thruster
On-Time e ®© ¢ © 0 o © o & & 0 o o ©o o o

D060201.6 RHC Scaling 0 © 6 o6 o ¢ @ 0 o o 0 0 o

. 217

217. -
218
218
219

219
219
221

221 |

221
222
223
223

223

227
235 -

235

238

238

939
. 939

240
240

244
248
250
251
251
252

253

253 -
253

D06.3 CoaStingFlight ooo'.ooro..'oc.o..o.o ..‘00'0'

- D.6.3.1 Attitude-Hold Mode00000eeean
D.6.3.1,1 Ascentand Descent Configura=-
tionso eeeccancn
D.6.3.1.2 CSM-Docked Configuration ...
D.6.3.2 Automatic-Maneuvering Mode
D.6.4 Descent Powered Flight c e s s s e e e s e s e e e .
D.6.5 Ascent Powered Flightcovuviennnnn
D.6.5.1 Autopilot Single-Jet Control Boundary . ..
D.6.5.2° Effecf of Incorrect Knowledge of Inertia. .
D.6.5.3 Effect of an Undetected Jet Failure
D.6.5.4 Velocity Errors e s e e e s s
D.6.6 CSM-Docked Powered Flight
' D.6.6.1 Bending and Torsion Constraints
D.6.6.2 Slosh Constraint P
D.6.6.3 RCS Jet-Plume Impingement Constraints .
D.6.6.4 Constraints Related to Engine-On and

A Note on Sources . . .ceo oo

Throttling Transients , . ¢ ¢ ¢ e e ¢ 0 ¢ 0 o o

® o ¢ 6 6 06 ¢ o 0 0 6 06 0 6 0 0 0 % 0 0 0 0.0 0 & 0 0 & o

x1

254
254

255
257
264
265
266
267
270

272

274
271
2717
2717

271

278

280

ILLUSTRATIONS

Fig. No. | - Page
1.2-1 ROPE Tre€ . . v vt veeeeiooosssssoosssoscsssscsscscss 7
1.2-2 The Apollo Flightsot ie e et it eoneens 12
1.4-1 APOI10 Man Loading + v v v s v v eenncensecnneoenaennnas 20
1.4-2 Apollo History "Mijlestones™covieiieeeeea. 21
1.4-3 ~ Apollo Machine Loadingeeeeeeeoscoococsocssasses 27
2.'1-1 " Guidance, Navigationand Control Interconnections in the Com- ‘
, mand Moduleueeceveeeesoeannascanncaanasss 4l
2.1-2 Guidance, Navigationand Control Interconnectionsin the Lunar
Module 24
2.1-3 Displayand Keyboard . . v v v v v oo eeessocssaocssosocesss 40
2.1-4 Programs for a Lunar—Landing MiSSION 4 v v o s o s osesoeess 47
2.1-5 Verbs Used in Program COLOSSUS . ..veueuoeoeesaseos 49
2.1-6 Nouns Used in Program COLOSSUS ¢ et ceeoeecesacs 51
2.2-1 © G&N Mission-Phase SUMMATY + v v v oo v oo sooeeneeesesees 68"
A.1-1 Apollo Cislunar Navigation Phases 106
A, 1-2 Sextant View of a Typical Star/Horizon Measurement for Firsf
Cislunar Sighting Intervaleeceeoosocossoonassns 108
A.1-3 Sextant Star/Horizon Measurementso s N 109 '
A.1-4 Simplified Functional Diagram of Cislunar Navigation 110
A.1-5 Simplified Star/Horizon Navigation Updating 112
A.1-6 Illustration of Cloud-Top Problem with the Use of Apparent
Horizon.as aLocatorveevivneeeeooeasaasossss 114
A 1-7 Measurement-Plane Misalighment coeeeeeen.. se... 115
A.2-1 "Nominal Apollo Rendezvous Profile e e e s e eaeeeees. 118
A.2-2 Command and Lunar Module Rendezvous Measurements , 120
A.2-3 Simplified Functional Diagram of RendezVousv Navigation ,.... 122
A.2-4 Sim plifi"ed‘ Rendezvous-Navigation Angle Measurement Incorpo- -
Fation . v vt ittt e, 124
A.2-5 Typical Relative Motion Plot 0t it e et e oo oo oo eeeas 126
A.3-1 Sim piified Functional Diagram of Orbital Navigation ..,...... 128
A.3-2 Landmark-Tracking Geometry for a 60-Nautical-Mile Circular
Lunar Orbit P 2

kY : - xii

B.3-1
B.3-2
B.4-1
B.4-2
B.4-3

C.1-1

C.1-2
C.1-3
- C.1-4
C.4-1
C.4-2
 C.5-1

C.5-2
C.5-3
C.5-4
C.5-5

D.2-1
D.2-2
D.2-3
D.3-1

D.3-2

D.4-1
D.4-2
D.4-3
D.4-4
D.4-5
D.4-6

D.4-7
D.6-1

Concentric Flight Planccceceveeacoes

Typicél Mission Rendezvous:

Typical Abort Trajectories for TLI+20 Hours

Typical Abort Trajectories for TLI+50 Hours

aTXVG

-VG X VG Steering Commands ..,....

Steering Commands

Generalized Cross-Product Steering . .
Time-to-Cutoff Geometry
Typical Deceleration Profile

‘Typical Entry Events along Trajectory
Functional Diagram Showing Relationships between LM Guid-

ance and Navigation Systems

Powered Lunar-Landing Trajectory Phasescc00.

.

CSM-Centered Motion
Typical Abort Trajectories for TLI+6 Hours

.

L]

L]

e o @ ®© © 0 © ¢ 0 5 & o e 0o 0o o o

Thrust Profile for Reference Trajectory eeeeeeoess

Landing-Radar Beam Geometry .

Functional Diagram Showing Simplified Lunar-Landing Naviga-

tion and Control .

@ © ©6 o6 0 & & © ¢ & ¢ o o 0o ¢ o o o

® © o o & o 0 ¢ ¢ 0o o

Functional Diagram of CSM RCS Attitude-Hold Logic

Functional Diagram of CSM RCS Automatic Control Logic

Functional Diagram of CSM RCS Manual-Rate Control

Functional Diagram of Thrust Vector Control System (Pltch

or Yaw) . v v v e v e

Functional Diagram of Thrust Mlsahgnment Correctlon (TMC)

Loop . .:...

Functional Diagram of Entry Digital Autopilot

Exoatmospheric Phase-Plane LOGIC . . v e v e oo ..

Hybrid-Gain-Roll-Attitude Phase Plane

Dual-Ring -Response to Roll-Attitude Phase Plane . .-

e o o o o o o

.

.

Oo.o.oo.oooo'.o.ootoo...'c'000..

.

e e 68 o 6 6 06 0 6 6 06 86 8 06 06 06 0 0 0 0 0 0 0 0 0 o o

Single-Ring Response to Roll-Attitude Phase Plane

Transient Response of Roll- Attltude Phase Plane for Dual -Ring

and Single-Ring Conditions .,
Buffer Zone and Deadzone of the Roll-Attitude Phase Plane
Spacecraft Configurations Controlled' by the Lunar Module

Autopilot

xiii

e o o o o o o o o o

e © 6 6 06 0 ¢ 0 6 0 0 © 5 8 0 0 0 0 0 0 ¢ 0 0 0 0 o o

138
140
144
145
146

154

154
156
166
173
176

181
182
185
187

189

205
207
208

210

212
225
228

230

233

234

236 -
237

241

D.6-2
D.6-3
D.6-4
D.6-5

D.6-6

D.6-7
D.6-8

D.6-9
D.6-10
D.6-11
D.6-12

- D.6-13

LMDAP/AGCInterfaCeS 00.00‘-.00000000000o‘ol“oc'

The Control Axes of the LM . v v v v v v e ve e ennnennn.
Nonorthogonal LM U, V! AxiS SYSteImn . . v v v v oo e eennns
RCS Control-Law Phase Plane for Coasting Flight (Ascent and

Descentconfigurations) ® ®© o 6 o 0 6 & © 0 o 0 0 0 0 0 O o 0 0 ° 0 0 o o 0 o

RCS Control-Law Phase Plane for Large Attitude Error and
Error Rates (Ascent and Descent Configurations)

Control-Law Phase Plane (CSM-Docked Configuration)
Typical Error-State Trajectories of the CSM-Docked Configura-

tlon'o.cooooo'_i.oo..oon-o.uooco.ooo..-o.o.o.

CSM/LM Docked Configuration with Jet-Plume Deflectors . . .

Ideal Single-Jet Control Boundaryeeeeeoeeeeseos
Effective cg Displacement for Simulations of Mass-Mismatch ,
Limit-Cycle Behavior for Mass-Mismatch Heavy Vehicle~-

POWeredAscent .oo..oo-ooo.loo...ooc..oo..o.o.

Limit-Cycle Behavior for -V Jet Failed Off (Undetected)—
PoWered Ascent ® o o o o o . @ o & o ¢ © O @ ¢ ©° & O ¢ & o © &8 © © 0 O € o ° 0

xiv

242
247
249

256

258
259

261
263
269

271

273

275

SECTION 1

HISTORY OF THE SOFTWARE EFFORT

1 1 Introduction

Seventy six days after John Fitzgerald Kennedy committed the United States
toparticipationin amassive lunar-landing program, the Instrumentation Laboratory
of the Massachusetts Institute of Technology received the first major contract of

" the Apollo program. Steps leading to this award, however, did not begin 25 May

1961 —the day of the President's special message to Congress; the footprints of

‘this history trace back at least several years earlier.

In the Fall of 1957, a group of scientists and engineers at MIT began the

investigation of a recoverable interplanetary_space vehicle. Under contract to the

U.S. Air Force, the MIT group collaborated with AVCO Corporation, the Reaction

Motors Division of Thiokol Chemical Corporation, and MIT's Lincoln Laboratory.

- As reported in the MIT/IL document R-235, "A Recoverable Interplanetary Space

Probe", this investigation established the feasibility of designing a vehicle which
would journey to a neighboring planet, take a high-resolution photograph there, and
return for recovery on earth. The investigators studied the navigational techniques -
and interplanetary orbits which would be required for a variety of such missions.
This study served to bring the engineering problems of interplanetary navigation,
attitude control, communications, reentry, and space exploration into sharp focus..
R-235 argued that the "early execution of a recoverable interplanetary space probe
is an effective means for advancing the state-of-the-art in self-contained interplane-
tary navigation and control needed for later scientific and military achievements".
Furthermore, the report stressed that the "successful physical recovery of a small

vehicle which has navigated itself around the solar system and which brings back

As explamed inthe Preface, the Laboratory was renamed the Charles Stark Draper
Laboratory in January 1970.

photographic evidence of its close and well-controlled passage by another planet is

certain to enhance the prestige of this nation'.

(Following the publication of the study in July 1959, the newly established
National Aeronautics and Space Administration undertook its first contract with the
Draper Laboratory. In September 1959, MIT agreed to investigate guidance and
navigation concepts for a variety of interplanetary missions. Placing emphasis on
unmanned missions, the Draper Laboratory devised a system for automatic guidance,
including the design of an automatic sextant. Upon completion of this contract in
March 1960, several months of discussion ensued between representatives of MIT
and NASA's Space Task Group, headquartered at Langley Field, Virginia. A second
study contract resulted, this one for another six-month effort: MIT was to present
a preliminary guidance and navigation design for a manned lunar-landing mission.
This study ran concurrently with several industry investigations of the overall Apoilo

‘spacecraft mission.

Although work on the preliminary guidance and navigation design for amanned

mission began in late 1960, the actual contract was not announced until 7 February
1961. Midway through the contractual period, President Kennedy declared that a
manned lunar landing and return would be a national goal for the 1960s. The
President's decision opened the way for formal contractual designations by NASA

for design, development and manufacture of the various Apollo spacecraft systems.

Thus, by the time of the Presidential message to Congress, the Draper
Laboratory had demonstrated scientific and engineering competence in three space
studies: theearlyrecoverable space-vehicle investigation; the six-month unmanned
guidance and navigation study; and the preliminary manned guidance and navigation
examination. Another factor which proved influential in NASA's assessment of MIT's
- capabilities was the Laboratory's responsibility for the design and development of
guidance and navigation systems for the Polaris guided missile. MIT's experience
with the U.S. Navy's Polaris project included engineering and managerial techniques
which, it appeared, might be implemented during Project Apollo. Indeed, during
~the month of July 1961, representatix}es of NASA and the Laboratory studied the
development and scheduling of the Polaris guidance and navigation system, from
original conception through production. The group plotted a rough schedule for a

similar program on Apollo. NASA representatives also expressed interest in MIT's

subcontractor philosophy on Polaris: through significant support by subcon'tractors',
the Draper Laboratory had been able to build up a working force and achieve
substantial results in a relatively short périod of time. Thus, though Project Apollo
would undoubtedly prove to be a much larger and more complex task than Polari's,

MIT had demonstrated achievement on a qualitatively similar project.

As a result of the preliminary manned guidance and navigation study, NASA's
Space Task Group recommendéd that the guidance and navigation portion of the Apollo
spacecraft mission be negotiated as a contract separate from the deveiopment of
the Apollo spacecraft. Shortly after this decision was made, and following a
noncompetitive, sole-source procurement procedure, the Space Task Group désig-’
nated MIT toimplement the guidance and navigétion system of the .Apoﬂllg spacecraft.
Announced 9 Augu_sf 1961, the first major Apollo contract awarded by NASA called
on MIT to conduct a Navigation and Guidance System Development Program which
‘would "meet the intermediate as well as the ultimate objectives of Project Apollo",’
and which would "provide a general on-board guidance capability for the various
earth-orbital and cislunar missions". |

Although, by the end of 1961, a great deal of theorizing and experimenting
had already been accomplished, and the major Apollo spacecraft Qontractors had
been chosen, a significant unknown remained to be answered:. how would men actually
land on the moon—and equally important, how would they return to earth? The
time had come to forecast the amount of rocket powef that could be achieved by the
end of the decade, to estimate how much weight_ thé- lunar surface could 'ac;tually

support, and to devise a means for leaving the moon after a safe landing.

By early 1962, three types of mission plans were being discussed by NASA
planners. These methods were called direét ascent, earth-orbit rendezvous (EOR)

and lunar-orbit rendezvous (LOR)

The direct- as‘cént scheme would place'a 150,000-1b manned spaceship directly
into lunar trajectory, using the boosting power of a still-to-be developed rocket
with an initial thrust of about 12 million lb. From lunar trajectory, the spacecraft
would enter lunar orbit; braking rockets would fire .and the vehicle would back down
toward the lunar sui"face. The same vehicle would later blast off the surfac‘e and

land back on earth from an earth orbit. But two problems faced this type of mission.’

First, there was considerable doubt that the neceSsary rocket power could be
harnessed by 1970. The so-called "Nova" would have required about twice as much
power as any rocket then being discussed. Second, planners were concerned that
so large a spacecraft might break through the lunar crust—or, indeed, that its high
center of gravity (the spacecraftitself would have measured about 90 ft) would cause
it to topple upon landing. ' ‘ '

/s :

A second method of lunar landing and earth return avoided the requirement
of so massive an initial rocket thrust. " Earth-orbit rendezvous would have placed
two payloads in orbit around the earth. First, a "tanker" rocket would be launched,
containing fuel that would eventually be fed into the second payload. After the tanker
had achieved its requisite orbit, the second payload would be launched; this would
be the manned Apollo spacecraft, propelled by a "Saturn V" rocket whose third
stage lacked the liquid-oxygen fuel necessary for the lunar trip. After the payloads
had rendezvoused, the spacecraft would dock with the tanker, and the fuel delivery
would be accomplished. The advantage of this method was that it involved rocket
power then considered likely by' the end of the decade. But the same problems of

landing on the lunar surface as faced the direct-ascent method still remained.

The third method of lunar landing at first appeared the least likely, probably
because it 1htu1t1ve1y seemed the most risky. A Saturn V rocket would propel an
Apollo vehlcle containing three astronauts, plus something new—a detachable craft
de51gned spemﬁcally for landing on the moon (e.g., it would possess a low center
of gravity and special landing "egs"). After stabilizing in earth orbit, the combined
spacecraft and landing vehicle would enter a lunar trajectory and finally stabilize
into a lunar orbit. At that point, two astronauts would move into the lunar landing
craft, detach it from the mother ship, and descend toward the fnbon's- surface, To
rejoin the ‘orbiting Apollo vehicle, the two astronauts would fire rockets for the
lunar craft to reinsert into lunar orbit, After the two vehicles had rendezvoused
and docked, the astronauts would reenter the main Apollo spacecraft, the landing
vehicle would be scut;cled, and the Apollo ship would fire its rockets for a return to
earth. ,)

The differences between earth-orbit and lunar-orbit rendezvous were immense.
EOR plotted a rendezvous in earth orbit before embarking onto a lunar trajectory;

LOR involved rendezvous in lunar orbit after the actual landing. The idea of doing

a rendezvous (which itself at the time seemed a hazardous maneuver) so far away
from earth as planned in the LOR method was initially a frightening proposition.
Eventually, however, a team of Langley scientists and engineers demonstrated that, .
despite outward appearances, LOR would result in substantial savings in earth boost
requirements. In addition, it would offer substantial simplification in all phases of
arn_ission—development, testing, manufacture, erection, countdown, launch and flight
operations. 4 | ‘
_ /

With the selection of the lunar-orbit rendezvous method in July 1962, NASA
filled in the most significant void then facing the major Apollo contractors. The
myriad of scientists and engineers planning for man's eventual landing on the moon-
could now follow a specific plan. More specifically, the software effort ongoing at
MIT at last was able to proceed toward aspecific goal. Forthemost pérjc, conception
and development of the Guidance, Navigation and Control hardware did not depend
upon thé specific mission plan chosen; soffware, on the other hand, most assuredly -
- had beenhampered by the lack of adefinitive goal. Landing onthe moon and return'ing.
via lunar-orbit rendezvous—this was the Apollo mlss1on, the software effort could

now begin in earnest.

1.2 Software Programs for the Apollo Missions

The Draper Laboratory's software efforts éulr_ninated in a series of flight -
programs for the Apollo Primary Guidance, Navigation and Control System. Each
flight required its own set of software, defined by the mission objecﬁveé and
constraints. In gdeneral, howevér the flight programs were comprised of mission
programs and routines which remained rather fixed in approach and techmque
Thus, such mission programs as rendezvous, targeting and landmg are now part of
every lunar- landmg flight; their underlying technlques are relatlvely constant, but,

in general, control.data change with each mission.

Before work could begin on the first flight program—indeed, even before the
Apollo mission had been finalized—basic software techniques had to be developed.
Many of these early software efforts are brleﬂy discussed in Section 2.2.1. A
completed flight program represents the assembly of mission programs’and routines,
In common parlance, the compieted assembly of hard-wire fixed and erasable memory

is known as a "rope', a name taken from the weaving process by which the fixed

.

memory is manufactured; the result of this weavingvprocess actually resembles a
rope. ‘

An intriguing aspect of the rope developmental history is the means by which
the ropes acquired their given names. At first, virtually all of the rope names
derived from their association with the name given the entire lunar-landing mission .
—Apollo: Greek god of the sj;m*. Those early ropes without "SUN" in their name
generally related to astronomical phenomena: thus, ECLIPSE (developed at the time
of a major solar eclipse, in 1963), CORONA and AURORA. (RETREAD was an
efctensive‘ly revised version of SUNRISE.) Assigning the early rope names was the
treasured prerogative of those mbst intimately concerned with each rope's develop-i
ment. After the succession of the "SUN" names given the next ropes—SUNDIAL,
SUNSPOT, SUNBURST, SUNDISK and SUNDANCE (and SOLARIUM, with its direct
sun association, as well)—it became somewhat difficult to differentiate which of the
ropes were for the Command Module' and which were for the Lunar Module.
Accordingly, NASA requested, and MIT agreed, that all Command Module ropes-
begin with a "C", and all ropes for the Lunar Module with an "L". After a lively
intramural competition, the names finally chosen for the LM and CM series Were-
LUMINARY and COLOSSUS, respectively (but not until such names as "Lewis" and
"Clark" and ""Lemon" and "Coughdrop" had been, for more or less obvious reasons,
disqualified). ‘ ‘ ‘ ‘

The following sections summarize the deVelopmen_t of flight programs for the
Apollo'Guidance Computer (AGC). As the result of a NASA decision emanating
from a Guidance afnd Navigation éystém Indplementation Meeting (see Section 1.3.1.2),
MIT began digital-autopilot design in late 1964. Two decisions—to integrate an
autopilot function into the Guidance, Navigation and Cc')ntrol"Sys'te‘m,v and to enlarge
and redesign the AGC—occurred at about the same time, requiring software to fit
that computer. Thus, two basic designs of the AGC evdlved. Ropes for the earlier,
Block I computer, are discussed in Seétion 1.2.1. The next section discusses the
programs developqd tor the Block II AGC. Section 1.2.3 presents a summary of

the Apollo flights, including the names of the flight programs, the launch dates and

* . o - - ' :
No.satlsfactory explanation has yet been offered for naming a project aimed at

landing on the moon after the sun god. Apollo's sister, Diana (also called Artemis),

goddess of the moon, might well feel offended. '

[COLOSSUS I1A

________ LUMINARY 1A
(Apollo 11) - (Apollo 11)
coLossus It | _ _ _ _ __ _[LUMINARY |
- (Apollo 10) (Apollo 10)
} '
COLOSSUS 1A |_ _ _ | SUNDANCE
‘ (Apollo 9) (Apolio 9)
’ } }
COLOSSUS | 4
“(Apollo 8) Manned -
PRt “Unmanned
Manned - 4
Unmanned SUNDISK II S
' (Apollo 7) //
rewi 1 i SUNBURST
(Apollo &) v (Apollo 5
(Apollo 6) 7/
S ¥
_ 7
CORONA . |
(AS-202) - | SUNDIAL j&—o AURORA
1 ~ _ —3
f
SUNRISE | ———— _——— — — ——— — — — —»{ 'RETREAD
ECLIPSE
CSM Block | 'CSM Block 1 | LM

. Figure 1. 2-1 Rope Tree

7.

crews, and flight descriptions. Figure 1.2-1 depicts the interrelationship of the
Block I and Block II ropes discussed in Section 1.2.1 and 1.2.2.

1.2.1 Block I Rope Summary

ECLIPSE is generally ascribed as the first test program designed for use in
an early Block I Apollo Guidance Computer. ECLIPSE was, in fact, an assembly of
many fundamental routines. /It brought together such routines as the Executive,
Inte_rpretér and Waitlist. (See Section II for a description of the AGC éomputer
architecture.) In addition, ECLIPSE included Program PINBALL GAME BUTTONS
AND LIGHTS, which processes the buttons and illuminates the lights 6f the spacecraft's
Display and Keyboard. Because ECLIPSE was intended only as a test of the Block
I AGC, it contained no routines to exercise the Guidance, Navigation and Contrbl
System (GN&CS) hardware. . |

By adding fundamental guidance and navigation functions to ECLIPSE, MIT-
engineers designed and developed SUNRISE, the first G&N systems-test program
for the Block T computer. SUNRISE was the first Block I program suitable for
operation in a laboratory-based guidance system. Included in SUNRISE were such
G&N-specific routines as an IMU mode-switching program, interface-moniforing
programs, down telemetry, and routines to measure gyro-drift coefficients and the
bias and scale factors of the three accelerometers. SUNRISE also contained aprogra.‘nd '
for prelaunch alignment. Although not destined for an actual mission, SUNRISE
served as a building block for;the first flight prograims that followed. Programs
under'developmerflt could be interfaced with SUNRISE, and thus tested and changed

in a working computer environment.

The program designed for the first Apollo flight was known as CORONA; it
was used on the unhmanned mission, AS-202. CORONA interacted with an onboard
Mission Control Programmer, a series of relays connected to the computer interface
to simulate certain _'-aszcronaut functions. Also, CORONA included an earth-orbital

reentry program which served as the model for all future such programs,

Two developmental eidensions of CORONA occurred at about tﬁe same time.
The more straightforward evolution led to SOLARIUM, the flight program for the
unmanned missions, Apollo 4 and Apollo 6. SOLARIUM contained few major changes

.

from CORONA, except that rescaling occurred to replace the elliptical trajectory
of CORON A with parabolic and hyperbolic reentry trajectories for SOLARIUM.

The second evolution from CORONA led to SUNSPOT, the program intended
for what would have been the first manned mission, AS-204. The major change
represented by SUNSPOT allowed for elaborate astronaut-interface display pro-
grams. Whereas programs were sequenced automatically in the previous unmanned
missions, allowing inyacertgin preordained series of events, SUNSPOT introduced
the flexibility of astronaut selection of programs. Most of the automatic sequences
provided-in CORONA were removed in SUNSPOT.

1.2.2 Block II Rope Summary

Toagreat extént the development of programs for the Block II Apollo Guidance
'Computer resembled the path takenin developing the Block I programs (Fig. 1.2-1). ;
The most obvious differences resulted from the added presence of the Lunar Module.
(LM), which was to contain an Apollo Guidance Computer identical to that in the
Command Module (CM). Following the tesﬁng of a Block II program which contained
basic guidance and navigation functions, programs for the CM and LM computers

evolved simultaneously.

For theinitial development of a Block II program, the basic Block I systems~-
test programs were adapted and assembled into the rope appropriately known as
RETREAD. Because the Block IT computer contamed a larger and more powerful
instruction reperto1re than that of the Block I AGC, recoding of the basic Block I
programs resulted in increased speed and efficiency. Analogous to Block I's
ECLIPSE, Block II's RETREAD contained the system-software programs required
to test the potential of the computer—Executive, Waitlist;lnterpreter. As in ECLIPSE,

no provision for mission- or spacecraft-specific programs was included in RETREAD.

From RETREA]) evolved the main on-line ropes, beginning with AURORA.
In many ways equivalent in purpcse to the Block I SUNRISE, AURORA included
programs which interfaced with LM GN&CS hardware. AURORA included the
monitoring routmes for the Inertial Measurement Unit, prelaunch ahgnment pro-

grams, radar-manipulation routines, and various means to control the Display and

Keyboard logic, altitude and altitude-rate meters, and the turn-on and turn-off
processes. Like the Block I SUNRISE, AURORA provided a software environment

for testing and development of future ropes.

As an offshoot from AURORA, arope called SUNDIAL tested the GN&C System
for the Command Module. SUNDIAL naturally resembled AURORA, except that the
LM-specific functions of AURORA were replaced with the CM-specific functions of
SUNDIAL. SUNDIAL and AURORA both grew out of RETREAD and they "fathered"
twolines of flight programs specific, respectlvely, to the Command and Lunar Module

computers

The first rope for a manned mission using the Block IT AGC was SUNDISK,
developed for Apoilo 7. Although this progrem was developed for an earth-orbital
-flight, it contained many translunar prograins in their formative stages. COLOSSUS-
I, the rope for Apollo 8, the first mission to orbit the ‘moon, included operational
cislunar and return-to-earth ta_rgetlng and navigation programs. Apollo 8 orbited
the moon without a Lunar Module, however. CSM /LM rendezvous programs were
exercisedin earth orbitin COLOSSUS IA, the rope developed for the Apollo 9 mission.
COLOSSUS 11, developed for the Apollo 10 mission, allowed for the first CSM/LM
rendezvous in lunar orbit and included arevised model of the lunar-gravity potential.
COLOSSUS 114, flown on Apollo 11, was v1rtua11y the same as COLOSSUS II.

-~ Programs for the LM Apollo Guidance Cvomprut‘er evolved from'the;early
AURORA assembly. SUNBURST was developed for Apollo 5, an unmanned flight
test of the Lunar Module and its flight rope. The SUNDANCE rope was developed
for the first manned Lunar-Module flight, Apollo 9. Although the Apollo 9 mission
was strictly'earth-orbital, SUNDANCE exefciSed lunar-landing, lunar-ascent and
rendezvous routines for the first time.

Employing th‘e rope LUMINARY I, Apollo 10 marked the first low pass (to
50,000 ft) over thelunar surfacé byésoio LM. LUMIN ARY I represented arefinement
of SUNDANCE, and included scaling for the lunar descent. On 20 July 1969,
LUMINARY IA finally guided the Lunar Module to its safe touchdown on the moon's

surface, thus fulfilling the nation's commitment to a lunar landing in the 1960s.

10

1.2.3 Overview of the Apollo Flights

Figurel.2-2 is asummary of the missions flown during Project Apollo, through.
the flight of Apollo 11. Included arethe flight name, the flight program(s) employed,
a description of the objectives, the launch date and the crew for each flight. For
thojse flights where two ropes are listed, the first is for the Command. Module and
the second for the Lunar Module*. '

s

1.3 Control of the Software Effort

This section describes the various means by which MIT's software activities
were monitored—internally, through several operating committees; and externally,
through formal contact with the customer, NASA. Linking these tip?as of control
was the Guidance System Operations Plan—a multi-volumed document that served
"several functions, including spe01flcat1on control of each succeeding mission fhght‘
plan. This document was prepared by the Draper Laboratory for NASA approval
and reflected the technical decisions emanating from internal and external monitoring
operations. Section 1.3.1 below discusses external control; Section 1.3.2 describes
the Guidance System Operations Plan; and Section 1.3.3 comments upoh other types
of control, including internal control. | V

1.3.1 Control by NASA

Much of NASA's control of; MIT's software activities occurred in the form of
regular series of meetings conducted among representatives of NASA, MIT, North
American Rockwell, Grumman Aircraft Engineering Corporation, and other relevant
contractors and subcontractors. 'These meetings served as avehicle for communica-
tions among. the prime contractors and the customer, and 'apparent‘ conflicts were
often settled through unhampered discourse. When contractors were unable to agree
on technical issues or future directioné, NASA would often use the forum of these

meetings to issue its decisions on such matters.

]

For an insight into all of the phases which comprise a lunar-landing mission, the
reader may choose at this time to continue with Section 2.2.2.

sydrrg orfody aYL 2-2 .H.mﬁ,_wﬂ

SUItIoD |
ULJIPTY VI AHVNINNT
guoaysway 69-91-L (69-0¢-L) Surpuel Jeuny }sItd VII SASSOTOD ' 11 oﬂom<
u'uJId) ; v .
gunox 33 000 ‘0G O} juddsap JeunT I AYVNINAT
pJIojrels 69-81-G {snoazapuad }iqto-aeuny 3satg II SASSOTOD 01 oriody .
(£1TATI0Y JBINOTYSA
BIIXH) YAH }1QJIO0 Yjpaed ul
1JIBIIO MUDS sonbiuyoa} SNOAZIPUSI PUB JUSISE :
13008 ‘Surpue] JEUN] JO SSTOISXD JYSIY HONVANAS
HNIATAPIN 69-€-€ SINPOIN Jeun] pauuBW }SITd VI SASSOTOD 6 orrody
sJaapuy younef
119407 A UJnjeg pauuew }sJaij “ysIy A
uewaog 89-1¢-¢l [e}rqIo-Jeun] pauuBU }SJITH I1SNSSOT0D 8 orrody
wreyduruun) .
9T9STH A : 1e3}rqa0
BIJIYOS 89-TI-01 ‘ypaes {HYSI[F POUUBRW }S.IT4 SISIANAS L orredy
wo)sLs uorjoajep Lousdaswia doof
-pOS010 JO UOT}EDTJIIaA (£}I001dA
uJanjaJ Jeuny je AIjus JIB[NOJIO
pauurwun 89-%-¢ -aadns ‘{1eirqaoqns feadode ysSiy WNAIYVIOS 9 ortody
, _ | Te3rquo
psuuewun 89-gg-1 yjaes 3YST[§ STNPOIN JBUNT 3SJITH LSHYNEGNNS grorrody
K310079A
uanjal Jeuny ye AI1j3ue JeNOJID
pauuswun L9-6-11 -aadns.{reirqroqns ‘oadode YSIH WNAIYVTIOS ¥ orrody
peol yeay Y31y yirm
pauuBwWuUn 99-GZ-8 Kxjus aernoaroaadns {[ejrqroqng YNOHOD 202-SV
Mmaa)d areq uorjdraosag swreN WYSTTI
younery weasoxdg

YSTA

12

1.3.1.1 G&N System Panel Meetings

The earliest series of discussions was known as G&N System Panel Meetings.

This series occurred from August 1962 through February 1964, under the direction
of the Apollo Systems Project Office of NASA/MSC. Participants represented NASA,
MIT, North American Rockwell, Grumman énd Bellcomm. Throughout this period,
three subseries of Panel Meetings met regularly, each focusing on a separate issue:
lunér-orbit operations of the Lunar and Command Modules; earth-orbit and cislunar
activities of both vehicles; and the reentry activities of the CSM. Through the medium
of vigorous discussion and debate, these meetings collated the technical decisions
being made in the design and development of the Guidance, Navigation and Control
System. ’

- -

1.3.1.2 G&N System Implementation Meetings

The next set of meetings served to define the required interfaces between the
GN&C System and the spacecraft. The Guidance and Navigation System Implementa-
tion Meetings were a means of negotiating the Interface Control Documents (ICDs)
which were binding upon all contractors. Implementation Meetings focusing on
interfaces for the CSM occurred from Juﬁe 1964 through February 1965. Implementa-
tion Meetings responsible for LM mterfaces occurred from September 1964 through
April 1966. In addition to phys1ca1 interfaces, among the topics discussed were
kinds of data being sent across the interfaces; the formating of data transmlssmn,
data rates; and accuracies of data.

The Implementation Meetings monitored the integration of guidance, navigation
and control. Out of these discussions came a decision which had a major impact
on MIT's Apollo responsibilities. Originally, the Apollo autopilot function had been
the responsibility of the Honeywell Corporation, under subcontract to North
American Rockwell, The Honeywell autopilot was analog and was deemed by the
N ASA monitors to lack the flexibility and versatility required for the complex Apollo
mission plan. Consequently, NASA directed the Draper Laboratory to develop a
digital autopilot which would have none of these limitations. The existing Block I
computer hardware did not have.sufficient storage capacity to accommodate an
addition of such import; however, at about this same period, another significant

decision was made to enlarge the computer capacity and at the same time make its

13

computer architecture more powerful than had heretofore been possible. Therefore,
through the forum of the G&N System Implementation Meetings, the Block II Apollo

Guidance Computer and the digital autopilots were conceived.
1.3.1.3 Data Priority Meetings

As a means of relieving the problem of customer-contractor and inter-con-
tractor communications, the concept of Data Priority Meetings emerged in 1967,
The Planning and Analysis Division of NASA/MSC regularly gathers together the
flight crews, flight directors, flight controllers, various MSC software, hardware
and analytical specialists, and appropriate contractor representatives. There are
thus brought into a single room three significant components: those ngch qu'esfions;

- those with answers; and those with authority to render decisions.

The group meticulously reviews the guidance and control details for each
‘succeeding mission. Data Priority Meetings define how the various data can be
used and the priority which can be imposed to effect thenominal and backup execution

of each mission phase.

MIT's role is restricted to the Guidance, Navigation and Control System, but
this is one of the most co'mplex subsystems in the Apollo spacecraft. MIT's
representatives to the Data Priority Meetings oversee the Laboratory's follow-up
to each meeting. Questions ar’ising from these meetings elicit formal responses,

usually in the form of Mission Techniques Memoes.
1.3.1.4 "Tigef" Teams

A fourth type of NASA control of MIT's software activities occurred thorugh
a means less formal than that of an organized meeting. In late 1967, the Flight
Operations Directorate of NASA/MSC organized so-called ""Tiger" Teams to hasten
technical decisions on MIT's rendezvous and display techniques. The Tiger Teams
were aptly named, for despite their relatively informal approach, they were extremely
effective. The first Tiger Team spent several days in Cambridge in a successful
attempt to clarify the rendezvous displays and Aop.erations. Display‘interfaces between
the crew and the landing and rendezvbus maneuvers were determined, and rendezvous-
display compatibility (e.g., scaling, polarity) between the LM and the CM were

14

established. Targeting programs were made consistent from one program to the
next. The second Tiger Team addressed itself to the same issues, but since the
decisions of greatest import had already been made, its impact was less pervasive

—hence, this Tiger Team was dubbed the "Pussycat" Team.
1.3.1.5 "Black Friday" Meetings

Shortly after MIT evidenced its disrhay over the rapidly-saturating fixed-
memory storage capacity of the AGC, joint MIT/NASA meetings were held to purge
the mission programs then under development of any routines deemed ' nonessentla
Three such meetings took place—on 13 May 1966, 13 January 1967 and 28 August
1967. These meetings became emotional because of disagreement about what was,
~in fact, nonessential. Nonetheless, difficult compromises resulted 1n the current
fixed-storage capacity being reduced sufficiently to allow inclusion of every essential

~routine.
1.3.2 GSOP Concept and History

Beginning with CORONA, the computer program for the AS-202 mission, a
document known as the Guidance System Operations Plan (GSOP) served as the
specification toward whigh the software efforts were directed. Development and
control of the GSOP were imporfant activities in planning the release of a flight
program. The format for the GSOP evolved through a series of discussions among
key personnel at NASA and the Draper Laboratory. During preparation of the
CORONA rope, several alternative mission profiles had been considered: orbital,
short-ranged suborbital, and long-ranged suborbital. MIT provided NASA with
estimates of navigational difficulty that might be encountered on each type of mission,
whereupon NASA chose the long-ranged suborbital trajectory. The CORONA GSOP
represented an integration of inputs from MIT, NASA and North American Rockwell
(the manufacturer of the CSM spacecraft), further defining the mechanics of achieving
such a trajectory. N'ASA reviewed the document, modified it where necessary, and

finally approved it as the specification for MIT's software effort.
In comparison to the GSOP format which would follow, the AS-202 document

was relatively informal, encompassing in one small volume the same type of

information which would later require six separate Avolunlles for each rope. The

15

CORONA GSOP discussed the general descrip;cion of the mission, the logic diagra.ms
defining the operation of the Apollo Guidance Computer, the uplink and downlink
that would interface with the guidance system, and the guidance equations and routines
which MIT considered of potential interest to NASA.

Further evolution of the GSOP structure resulted from the additional require-
ments, constraints and capabilities of later missions. For instance, the SUNSPOT'
rope developed for the AS-204 mission was the first to allow for manned Apollo
flight. With astronauts involved for the first time, more time was required for the
GSOP discussions, and more personnel participated in the GSOP development.
SUNBUR.ST, the rope for the Apollo 5 flight, contained the first routines developed
specifically for the Lunar Module, and thus thé GSOP for SUNBURST was the first
of the LM GSOPs. Beginning with SUNDISK (Apollo 7, CSM) and SUNDANCE
(Apollo 9, LM), successive GSOPs generally; represented merely changes from the

-preceding version, and did not require a c'ompletely fresh start. Most of the effort
in Guidance System Operations Plans currently involves accounting for changes,
with relatively little rewriting. ' '

As mentioned above, the GSOP is published separately for the Lunar Module
and the Command Module, and is updated with e_ach new progrand release, thus
providing NASA with current and accurate control oirer"the software and system
‘operations. Inaddition tothese functions, the GSOP ‘has served as an internal working
document to coordinate the efforts of the various MIT groups, and as a testlng gu1de.
for simulation personnel. Finally, the GSOP serves as a GN&C software description
and a crew tralimng aid for MSC personnel and contractors. A more detalled
deecription of the GSOP is contained in Section IIL.

1.3.3 Additional S'oftwareVControl ‘

The Draper'"Laboratory monitored the incorporation of missioh-program
requirements into the mission programs tﬁrough the actions of a Mission Design
Review Board (MDRB), a formally_~cohstituted group comprised of the directors of
all software groups. Under the direction of each rope's Project Manager, the MDRB
approved, mternally, all mission-related documentation. The Project Manager was
charged with the responsibility for MDRB coordmatlon and participation to ensure
proper processing of control documentatlon. "The specific function of the MDRB

was to provide amechanism for internal control and coordination of mission-related
activities. Program Change Requests (PCRs) and Program Change Notices (PCNs)
were used as interim revisions of the GSOP, and to document departures from the
published GSOP until such a time as MSC -approved changes were incorporated in
official GSOP revisions. A NASA-comprised group known as the Software Control
Board (with representatives of MIT) initiated and approved specific change concepts,

whereupon the MDRB would monitor MIT compliance with these changes.
/

1.4 Man and Machine Loading Requirements

- The story of Project Apollo's successful completion repres'ent-s, in the end, a
myriad of individual successes, most of which are based upon an intricately-tuned
interaction among men and machines. For its own part, the story of MIT's
software-development effort demonstrates the essential interdependence of talented

.sc1ent1sts, engineers, mathematicians and technicians with increasingly complex,'
versatile and powerful computmg equipment. As the tempo of the Laboratory s
1nvolvement in software tasks changed, these changes were reflected in the number
and types of personnel participating in the effort, and in the power and speed of
computers which the Laboratory acquired. This section dlscusses in general terms,

the history and philosophy of MIT's personnel and computing requirements.
1.4.1 History of Man Loading
1.4.1.1 Initial Philosophy

At the beginning of the Laboratoryis participation in Project Apollo, a simple
philosophy guided" the staffing of the software-development groﬁp; Eséentially, this
philosophy' placed a premium on engineers a.nd scientists who, in addition to original,
conceptual work, would put their own ideas into a form which machines could
understand. Thus, inthe early days of the Apollo work, there were no "'programmers",
as such. Instead, engmeers and smenhsts learned the techmques of programming.
At this stage, a relatively small group was thought capable of handling what was
then considered a practicable task. It was believed that competent engineers with
acredible, solid mathematical background could learn computer programming much
more easily than programmers could learn the engineering aspects of the effort.

The small size of the initial staff dictated that integration of engineering and

.

17

programming talents in a few individuals would be preferable to attempts: at
intercommunication by individual engineers and programmers. Thus, the original
intent was to have the project's basic core of engineers follow the program through,

from conception to actual flight support.

With the passage of time, however, it became clear that the philosophy could
best be followed in spirit, rather than in letter. As desirable as it might be to
have a staff composed solely of multidisciplinary personnel, it was clearly impos sible
to shape such a staff beyond a certain size. Individuals talented in both engineering
and in computer programming were not readily available. Also, as the software
tasks became better delineated, it was apparent that a major underestimation of
program-testing requirements had initially occurred. Because the Apollo Guidance
Computer has a comparatively small erasable memory, the problem of having various
people using the same registers for different tasks, the problem of overlaying memory
—these all required extensive precautionarymeasures to avoid conflict. Optimally,
one dedicated engineer/programmer assumed responsibility for ensuring that no
erasab1e¥memory conflict occurred, and for integrating the individual flight pro-

grams,

1.4.1.2 Creative Use of Subcontractors

Part of the solution to the problems'discussed in the preceding section developed
through the extensive use of subcontracted personnel. From the very beginning of
MIT's participationin Project Apollo, the Laboratory had stressed that its frequent.
and extensive use of subcontractors would allow it manpower leverage essential to
its responsibilitie's under the Apollo contract. Through the use of subcontracted
personnel, the Laboratory would not be required to assemble and disassemble its
own staff to meet ~the time-varying responsibilities of the Apollo program.
Subcontractors would serve as a buffer for the Laboratory's staffing requirements.
Importantly, Draper Laboratory personnel have traditionally enjoyed the benefits
of long-term employiment, so the use of subcontractors would permit Laboratory
management to carry amainline staff of a size that would assure maximum security
toall pefsqnnel. As detailedin Section 1.1, MIT's extensive hiring of subcontractors

" during the Polaris project had been a strong point in its presentation to NASA in
advance of the Apbllo program. Thus, when it became apparent that work loads
were greater thaninitially estimated—especially in the areas of testing and veriﬁc;a-

tion—subcontracted personnel were made available for virtually immediate deploy-
ment. '

18

Throughout MIT's participationin Project Apollo, subcontractors have served
in a variety of roles. They have provided a complement to the talents of the
Laboratory's own staff. Except in the area of direct administration, subcontractors
have played parts in virtually every phase of the software effort, including design,
analysis, testing, verification and simulation. Perhaps most significantly, the ready
availability of subcontracted personnel -facilitated quick solutions to unexpected
personnel requirements, since the Laboratory could hire such personnel without
necessarily promising any long-term commitment. The costs—direct and indirect

—relating toin-house staffing levels were therefore kept to a mimimum throughout.
1.4.1.3 f{eview of Man Loading-

Figure 1.4-1 depicts the man-loading history of the Apollo p;ggra.m at MIT
from September 1961 through March 1970, "As well as containing a curve for the
“total personnel levels, the figure shows separate breakdowns for subcontracted

hardware and software and total hardware and software levels.

Inclusion of the hardware-personnel figures demonstrates the relative per-
sonnel requirements for the hardware and software tasks under MIT's Apbllo contract.
Thus, the project manpower resources were concentrated on developing system
hardware from 1961 through 1965. In 1966, this hardware-development effort rapidly
Vtapered off, and the requirements for designing and developing the mission computer
programs increased. In November 1966, the software effort captured precedence
as the primary task of the Laboratory's Apollo division. | |

f | o '

Figure1.4-2 demonstrates some of the reasons for the rapid buildup of software
personnel. In 1966, no fewer than five ropes were being developed at one time.
During the.fbllowing year, when mubh of the software buildup had alfeady occurred,
six ropes were warked on simultaneously. Figure 1.4-2 is also a milestone chart

of the many decisions and events germane to the Apollo software efforts of MIT.

1.4.2 History of Digital Machine Loading
; .

Digital-computation facilities have played asignificé.nt rolein MIT's develop-
ment of software for the Primary Guidance, Navigation and Control System of the

Apollo spacecraft. As will be discussed in Sections II and III, digital computers

—658

|
T
i
{

| TOTAL ~AROWARE, SOFTWARE

ANZ S SZONTRACTORS/

—58n

| | | ~/ | | 1
é N\
AN

3

__J
J
>
Z

AN

TOTAL HARDWARE. SOFTWARE | { i
AND SUBCONTRACTORS — ; L : / !
1 | X .

i o
TOTAL HARDWARE
™ ToTaL HARDWARE : /\J] /\z
N ! ! —10

7 : o —

— ’./\/_/I' el oo "l \-—/; R /f_“ ~ \/-\E]
OTAL sOTHARE — -] / T R , ! e T T s o,

L ee—t A N N R T T TP A SO A B
/ | — O Y I S U S
SUBCONTRACTORS 'HARDWARE - -
/ / 1 . SUBCONTRACTORS / SOFTWARE —150
XT [NOV | DEC J JANTFEB [MAR [APR [wa- | N | suU [AG [562 [0T TNov [06C J AN T F8 Twa= [aPR TMAY [JUN [00 4G [Se® | OCT [NOv [06T | 2\) =3 [Mad [ars T2 TN T 00 [A6 | 2= 7 2 [NOV] DEC | .&. | == [wa=] PR [MAY] ItV i Sl TAUG [seP T OCT MOV [06C | ;AN [FE8 TMAP | ae2 [wav Torw | U 1w = | 560 | OCT | MOV] DiC _m. =T vao | APR | MAV] JUN | JUL [AUG] SEP | OCT | NOV] DEC | JAN | FEB | MAR | APR | MAY | JUN | JUU | AUG | €5 | OCT] NOV | DEC | JAN | FiB] MAR | APR] WAY] JUN | JUL P 0
1961 — 1962 R 1963 - 1964 : 1965 1966 197 ,11 1968 - 1969 ;}

CALENDAR YEARS

Figure 1.4-1 APOLLO Manloading - Charles Stark Draper Laboratory

are used in simulating the Apollo Guidance Computer during design, verification
and testing of software. {Inadditionto this so-called "'All-Digital Simulator' function
of the digital computer, it serves as a basis for the Engineering Simulator, also
described in Section III. A Hybrid Simulator and a Systems Test Laboratory also
‘assisted in the test and verification of computer software and are also discussed in
Section III.) This section discusses, in chronological sequence, the four types of
digital computers around which the Dréper Laboratory fashioned its digital-computa-
tion facilities. These computers are the IBM 650, the Honeywell 800, two Honeywell
1800s, and two IBM 360/755.'

‘ During the period in which MIT has partiéipated in the Apollo program, the
computing facilities described in this section have served other Draper Laboratory
 groups in addition to the Apollo division. However, Apollo activities have apcounted

for about 90 percent of the total use of these facilities.
1.4.2.1 IBM 650

When the Draper Laboratory received its first contract from NASA, in
September 1959, an IBM 650 provided the Laboratory with its in-house computing
capability. The IBM 650 was a 2000-word-drum central processor, with 60 words
of core stofage. One tape drive and a disc bar were the only pieces of peripheral
equipment. Programmers would write in MAC*, and the IBM 650 wasused prirﬁarily
to compile these pfograms for computation on much faster and more powerful outside
equipment, such as the IBM 704, 709 and 7090. Toward the end of 1959, the bufden
of the NASA pre-Apollo workload,"' added to the much larger workload of the
Laboratory's Polaris project, stimulated investigation into the possibilitybf providing
additional in-house equipment to accommodate all the work then done by the IBM

650 and the outside rented machines.

>kMAC is a high-level programming language for general-purpose computers,
developed at MIT for scientific application. It is not to be confused with MIT's
Project MAC. The latter was named independently some years later and is unrelated
to the MAC language. ' '

22

1.4.2.2 Honeywell 800

The Honeywell 800 was ordered during Summer 1960, with delivery occurring
in December 1961. Based upon the workload of mid-1960, the H-800 was predicted
to run about 4 hours per day and to cost no more than the previous total of in-house
IBM 650 and outside rented time. By the time the H-800 was placed in production *
—in May 1962—it was apparent that even greater speed and power were necessary.
Rather than the expected four hours per day, two operator shifts (16 hours/day)
were required for the initial H-800 workload. Despite the unexpected demands which
the H-800 faced immediately upon being placed in production, it represented
approximately a threefold increase over the capabilities of the IBM 650.

To overcome the inadequacy of the Honeywell 800, two aﬁp}oaches were
undertaken simultaneously in mid-1962. First, additional memory and peripheral

~equipment were acquired for the H-800; second, an order was placed for the Honeywell

1800, with expected delivery 18 months later.

The Honeywell 800 had been delivered with a 16,000-word memory, each word
having 48 bits. It included a printer, six tape drives and a card reader/punch. To
upgrade the H-800 while awaiting delivery of the H-1800, the memory was doubled,

additional tape drives and a printer were acquired, and a disc file and a graphic
plotter were added. '

1.4.2.3 Honeywell 1800

Honeywell's 1800 possesses a 2-usec access-to-memory, while the H-800's

access was on the order of 6 yusec. The H-1800's delivered memory size was 32,000
words, double that of the H-800. These capabilities rendered the delivered H-180C
roughly three times as powerful as the H-800. '

Although the ELaboratory's H-1800 was delivered in January 1964, it was notl

until the following May that the system was in total production. In the meantime,

failures in hardware necessitated total replacement of the machine's memory. As

“Inproduction" implies that the equipment is capable of acomplete AGC simulation.
Computers were '"in operation' before they could be "in production".

23

a result of these difficulties with the new system, between the months of January
and May, no in-house digital-computing facilities were available, since the H-800
had been removed to provide space for the H-1800. Consequently, time was rented

on outside equipment during this period.

By October 1964, it was becoming apparent that the H-1800 was computing
much more rapidly than its peripheral equipment could provide input and output.
At that time, Honeywell announced its Model 200 computer, a small machine that
could do much of its own cofnputation, could provide its own input and output, and
could serve as a buffer for the much more powerful H-1800. MIT ordered a Model
200 for delivery in October 1965.

Two decisions were reached in Summer 1965 regarding theneed for additional
computing facilities: a second Honeywell 1800 was ordered in June; and a study
-was begun of the potential advantagesvoffered by even more powerful computers.
The second H-1800 was delivered and placed in production in March 1966. The
investigation into other computers resulted in the Laboratory's decision to order
an IBM 360, Model 75.

The original H-1800'S memory had been increased in size from 32,000 to
48,000 words. The secortd H-1800 was delivered with the larger memory. By the
time of the second H-1800's acceptance, a second Model 200 had also been acquired.
The final upgrading of the H-1800 facilities occurred with the deliveryof a Honeywell
Model 2200, a system approximately equivalent to two Model 200s. It was estirhated
that the addition of the Model 2200 increased the capability of the H-1800 facilities
by about 20 percent. ‘ |

1.4.2.4 IBM 360/75

When the Summer-1965 study of large computing systems began, several
systems were under consideration. One was highly valued, but doubts»existe_d that
it would ever be manufactured. Another system was by far the fastest machine
under consideration, but Laboratory officials were concerned that internal parity
checking would not reach the standard necessary to ensure the safety of astronauts
—the ultimate customers of the Laboratory's services. Still another system was

rejected primarily because it did not allow eventual expansion into an even larger

24

system. Finally, the IBM 360, Model 75 (360/75) was chosen because of its relatively
high speed, its degree of internal error checking, and the availability of the more
powerful Model 91, should the need for expansion occur. It was estimated that a

single IBM 360/75 would be roughly equivalent to four HoneyWell 1800s.

The IBM 360/75 was delivered in October 1966, and it became operational
two months later. During the first eight months of operation, three basic activities
consumed most of the machine's availability: MAC language was adapted for the
360/75, system software was developed, and simulation software was implemented.
During these first months of IBM 360/75 operation, it was concluded that the CPU's
512,000-byte memory would not suffice for simulation purposes; memory size was
thereafter doubled. Not until September 1967, about ten months after ._gjeliv'ery-, was
"-the IBM 360/ 75 in total production for general simulations. '

By the time the IBM 360/75 came into total production, the need for a second
IBM 360/75 was already recognized. Accordingly, the Honeywell 1800s would be

removed. Removal of the second-delivered H-1800 occurred in December 1967,
and the original H-1800 was removed in April 1968 to ‘make way for the second
IBM 360/75, to be delivered the following month. Thus, during the last quarter of
1967, three complete systems were in operation— the IBM 360/75 and the two H-1800s.

The second IBM 360/75 was placed in total production a mere twe weeks after
delivery, primarily as aresult of the experience gained through the lengthy break-in
procedures on the first IBM 360/75. By the time the second system was plac'ed in
production, the peripheral equipmeﬁt originally delivered had also been expanded
in power and capacity. For instance, the six original IBM 2311 disc packs were
increased to ten. Two printers were added to the original two, and additional tape
drives and a card reader were acquired. Finally, three IBM 2314 disc packs were

gained, each of which was roughly equivalent to four IBM 2311s. .

In August 1969, following Apollo 11's successful lunar mission, thé second-de-
livered IBM 360/75 was removed, thus leaving the original IBM 360/75 and the
systems's péripheral equipment as the remaining digital-computing facility of fhe
Draper Laboratory. Although the remaining IBM 360/75 was deemed adequate for

the needs after the lunar landing, within seven months it also reached saturation.

25

1.4.2.5 Loading of the Digital Computing Facilities

Figure 1.4-3 charts the monthly load which was logged on the Laboratory's
digital-computing facilities, expressed in equivalent Honeywell-1800 hours. In this
figure, monthly saturation of a Honeywell 1800 is 660 hours (=22 hours/day x 30
days). Since the Honeywell 800 was roughly a third as powerful as the H- 1800,
saturation of the H-800 occurs at 220 hours/month. The IBM 650 was, in turn,
about one third as powerful as the H-800—or a ninth as powerful as the H-1800;
thus on this graph its saturation is 73.3 hours/month The IBM 360/75 is roughly
four times as powerful as the H-1800, and thus its saturation occurs at 2640
hours/month. This figure also indicates the dates of computer acqu1s1t10ns and
removals. '

1.5 Major Recurrent Problems

With the manned lunar landing and return accomplished in July 1969, Project
Apollo met the national goal enunciated eight years earlier. Through its deeign,
development and implementation of the Pr1mary Guidance, Navigation and Control
System for the Apollo spacecrafts, MIT's Draper Laboratory shared in that eminent
success. Along the course of its participation in the Apollo adventure, MIT
experienced the kinds of technical and managerial difficulties that can only be
expected inundertaking so massive a program—but that nevertheless create uneasi-
ness at the time of their occurrence. This section focuses on the two problems
which caused the greatest dlfflculty in the software effort, Difficulties were
encountered in the estimate of time and manpower schedules and in the control of
accurate, up-to-date spacecraft data. Both of these problems continually plagued
MIT's software efforts, since neither their. cause nor their solﬁtions ‘could be found
within the Laboratory, alone; ultimate solution would require an extraordinarily
well-tempered orchestration among NASA and all of its contractors and subcontrac-
tors.

1.5.1 Difficulty in Estimating Time and Manpower Schedules
Throughoixt much of the Apollo software’ effort at MIT, rnanagers ‘have

experienced difficulty in estimating the time and manpower requirements to design,

test and verify the successive mission-flight programs. At the commencement of

- 26

Sutpeor auryoey or1ody g-¥ 1 9InS1a

0L61 6961 8961 1961 9961 5961 1961 €961 2961 1961 0961 6561
! = 3SNOHNI
2 S 3 059We1 A
= S C
2 = 5
> o =
— = <
s b
= |
I = T N U =%
- a9 3 -
i S — o 2 .
2 2 c = c 2)
S S S5 S g (| wstH
> > o< O . =o ’
AR * o
J
> om S -
2 ez £ 2 .
S Sz S =) “SL0%EWal
= 2= 2 =2
{ P | - .
| Z_008T-H 3INO AIND3
—— S0081-H OML AIND3
: S0081-H 33YHL AIND3
—\ — S008T-H ¥N04 AIND3
\ Z— $0081-H 3AI4 AIND3 _

— S008I-H N3A3S AINO3

$0081-H XIS AIND3

01

0s

001

000

00001

(SYNOH 008T-H AINDI)

OW/SyH
ONIQV01 INIHOVW OT10dV.

27

work on a new flight program, it is advantageous—perhaps even essential—to break
down the total required effort ihto a series of smaller tasks, each fitting into a
preplanned sequence of steps leading to the required whole. . Specialists in each of
the subdivided tasks can then be assigned stated responsibilities within a specified
time constraint. This description fits the optimal situation—the situation in which

the Draper Laboratory more néarly finds itself today than it has in the past.r

It is more likely that at the commencement of work on an entirely new
mission-flight program, the separate tasks required to lead to the assembled
program cannot be known in advance. Indeed, this was the case with virtually every
program up to the revisions in COLOSSUS and LUMINARY which currently suffice
in the planning of new missions. Part of the development process-»incltides the
' understanding of what these basic steps should be. In brief, at the beginning no one
can forecast all the little pieces which will eventually be required, and thus predicting

accurate work schedules is almost a priori an impossible task.

Another probable cause of this overall scheduling problem is that subtasks
'required an ordered interrelationship. Not all of the tasks could occur simultaneously;
some took precedence over others, and certain later tasks could not proceed until
the completion of earlier tasks. In other words, the entire sequence of tasks could
be completed no sooner thaﬁ the time required to complete perhaps a certain few
"bacemaker" tasks. Perhaps the most difficult estimate to be made in advance is
the amount of time required for iter>ation and retests. Thus, to adequately forecast
accurate work schedules, the manager would have had to predict not only all ‘the
necessary subtasks, but, in addition, which few of these subtasks would be the

pacemakers and which would later be redesigned and require further testing.

Another cause of the work-schedule p.roblem relates to the vagaries of personal
dynamics. Throughout much of the software effort, management encountered a
problem of--deadline definition; that is, when a deadline for rope release became
known, anumber of intermediate deadlines or goals had to be established, particularly
for pacemaker tasks, to ensure that the final deadline be met. After all of the
deadlines had been assigned, it was sometimes difficult to convince software personnel
of the importance of meeting the earlier deadlines; the tendericy was strong for
those with the earlier tasks to aim toward the deadline for the completed flight

program. Consequently, management was continually required to reemphasize the

importance of meeting each assigned deadline.

28

A final cause of the work-schedule problem also relates to the area of human
dynamics. The communication of "bad news"—e.g., news of imminent delays—slows
" as it goes up the line of management. This difficulty derives from the basic human
- drive to prefer the communication of positive tidings to that of negative findings.
Both the bearer and the receiver of bad news feel uneasy with the experience, but
management must encourage its personnel to communicate the bad with the good.
When the person responsible for one of the subtasks recognizes that his schedule
must slip, it is human nature to defer passing along word of the delay. As this one
piece of bad news progresses up the ladder of administrative responsibility,
communication of the bad news is further impeded. As theinitial step inrationaliza-
tion, each person along the line attempts to discover for himself whether the bad
news is as bad as anticipated—or if, perhaps, some degree of overstatement has
occurred. Only through conscious recognition of this process by all personnel can

this problem be alleviated.

‘ Thus, four separate causes combined to render the estimation of work schedules

an especially vexing problem:

“the difficulty of predicting all of the required subtasks;

.

the difficulty of pinpointing and hastening pacemaker subtasks;

the difficulty of meeting deadlines for individual subtasks;

oo oy

the difficulty of communicating 'bad news' quickly through the line of
management

As MIT gained experience through its successive responsibilities in the Apollo
program, the work-schedule problem became increasingly more routine—and less
annoying. Nevertheless, small remnants of this problem continue to cause occasional

difficulties in the scheduling of current ropes.

1.5.2 Control of Timely Spacecraft Data

The second major problem encountered by MIT software planners relates to
- the acquisition of complete and up—to;date data on spacecraft parameters. In the
design, verification and testing of guidance, navigation and control software, it was
essential that the responsible MIT engineers possess the most current dataobtained

by other NASA contractors in the development of the spacecraft components. From

29

the beginning, it was clear that a mechanism for such data exchange was of prime

importance. -

One of the initial responsibilities of liaison personnel was the development of
a data-exchange mechanism. For instance, North American Rockwell's liaison with
MIT was to record the most up—to-date information on the Command and Service
Modules, and the liaison from Grumman was to do the same for the Lunar Module.
In practice, however, this official mechanism broke down quickly, since spacecraft
engineers were reluctant to formally release data on parameters still undergoing
development, measurement or testing. Such virtually universal reluctance to commit
preliminary data, even to discretionary use, rendered the officially-recognized
channels rather dinosauric in current-information content. During years of effort
to establish a smoothly-functioning, up-to-date data-exchange pi"ogram, MIT software
personnel resorted to other means for learning the parametérs and tolerances to

which they should design their software and-simulations.

As MIT software personnel became acquainted with their peers at the other
relevant spacecraft contractors, an informal network of data exchange developed.
Rather than relying upon the official mechanism of liaison contact, the engineers
responsible for the development of software would place strategic telephone calls
~ to learn up-to-the-minute data being used in the development of the spacecraft
systems. Although this informal method bf data exchange possessed the disadvantage
of consuming much valuable time, it produced the distinct benefit of collecting the

most timely information available.

In an attempt to formalize the person-to-person method of data control, a

"Data Book" which listed current datawas organized at MIT. There were two sections
within this document: class A data, which were official and verified by an authority
at the originating contractor; and Class B data, the type gerierally received through
telephone and person-to-person communication, but which lacked official verifica-
tion. But the Data-Book mechanism required personal enthusiasm for the task of
collecting data—enthusiasm which virtually all dedicated software engineers feel

should better be devoted to the task of designing software.

All of the parameters and tolerances to which the software and simulations

were designed were published in Chapter 6 of the GSOP. (See Section 3.2.1 of this

30

report.) Inthisfashion, the Laboratory kept NASA continuously and officially apprised
of MIT's current information—information which could be approved along with

NASA's general approval of GSOP revisions.

By no means has the problem of timely data control been solved, but solely
because of MIT's increased familiarity with the spacecraft components, it has become
somewhat less of a problem. Just as there were elements of human dynamics in
the problem of time and manpower scheduling above, so, too, did personal vagaries
play a role in this difficulty: people are unwilling to divest themselves of data
which they consider not yet final. And the very qualities of technical competence
and conscientiousness which one needs to invest in the area of data exchange are
difficult to come by, since individuals so endowed generally prefer .to appiy these

qualities in the actual software development.

31

SECTION 11

AGC SOFTWARE

This section describes the software which controls the present LM and CM
guidance computers. The computer is the heart of the Apollo Guidance, Navigation
and Control System. The software maintains positional knowledge of the vehicle in
space, determines the path toa desired destination, and steers the spacecraft along
that path by sending commands to the engines. It communicates with the as_‘tronauts

and the ground, and monitors the performance of the GN&C System.

Missio;rx }Srograms, such as rende'zvous, targeting and landing, control some
of the phases of an Apbllo flight. However, before these can be discussed, it is
necessary to examine the underlying computer organization which allows the mission
program to operate. ‘Thus, Section 2.1 describes the basic machine architecture,
the Executive and service programs which control AGC operations, and the input/
output functions which allow the computer to monitor the GN&CS and to communicate
with the astronauts and the ground. Although the CM and LM computers satisfy
different missionvrequirements, the underlying system software is quite similar
for the two vehicles. Hence Section 2.1 presents a generalized Apollo Guidance

Computer, and specific differences are noted when they apply.

Section 2.2 includes ageneral descfiptidn of all the phases of the Apollo mission
and of the major flight tasks required for.that mission. The design effort which
produced these mission programs has been a long and challenging task. This report
will not attempt to. glve a complete discussion of this effort, since 1t has been
documented in other sources; however, the rope design ph1losophy and the problems
encountered as it finally evolved are discussed in Section 2.2.4, and the major program

capabilities are described in somewhat greater detail inthe appendices to this report.

32

2.1 Computer Capabilities
2.1.1 Storage and Manipulation of Computer Instructions

The AGC contains two distinct memories, fixed and erasable, as well as variéus
computer hardware. The fixed memory is stored in a wire braid which is manufactured
and installed in the computer. This memory cannot be changed after manufacture
and it can only be read by the computer. Fixed memory contains 36,864 "words"
of memory grouped into 36 banks. Each word contains 15 bits of information (a
sixteenth bit is used as a parity check). The word may contain either a piece of
data, or an instruction which tells the computer to perform an operation. A series
of instructions forms a routine or a program. In addition to stormg_pyogramé, the
-fixed memory stores data such as constants and tables which will not change during

a mission.

The erasable memory makes use of ferrite cores which can be both read and
changed. It consists of 2048 words divided into 8 banks. Erasable memory is used
to store such data as may change up to or during a mission, and is also used for

temporary storage by the programs operating in the computer.

Included in the hardware is a Central Processing Unit (CPU). The CPU
performs all the actual ma.nipul_ation of data, according to the instructiohs desighated
by a program. The 34 possible machine instructions include arithmetic operatioris
(add, multiply, etc.) as well as logicél operations, sequence control, and input/ otitput
operations. Also included are a limited number of "double-precision' instructions
which permit two words of data to be processed as a single "word" of greater

precision.

The memory cycle time (MCT) inthe AGC is 11.7 uéec. Most single-precision
instructions (e.g., addition) are completed in two MCTs; most double-precision
machine instructions are completed in three MCTs. The unconditional transfer-con-

trol instructions, however, operate in one MCT.
To be used as an instruction, a computer word must specify the operation to

be performed and give the location of the data to be operated on. However, a 15-bit

word does not contain enough information to specify 34 operations and 38,912 fixed

33

and erasable locations. In fact, 15 bits cannot even specify 38,912 locations
unambiguously. H is for this reason that both the fixed and the erasable memories
are grouped into banks. An instruction may specify any address within its own
bank, and may also address the first four banks of erasable and the first two banks
of fixed memory. Access to other banks is accomplished using bank-selection
registers in the CPU. In many cases a program exists entirely within one bank

memory, in which case bank switching is not required.

Many of the tasks the AGC performs can be adequately carried out by machine
instructions. However, for extensive mathematical calculations—in such areas as
navigation—the short word length of the AGC presents difficulties. It limits the
number of instructions available, the range of memory that can be addressed without
-switching banks, and the precision with which arithmetic data can be stored and
manipulated. To alleviate these problems, nontime-critical mathematical calcula-
tions are coded in "interpretive language' and are processed by a software system
known as Interpreter. Each Interpreter instruction is contained in two or more
consecutive computer words. The increased information available allows more
possible instructions and a greater range of memory addressable without bank
switching. In fact, with some exceptions, all of erasable memory and fixed memory
may be addressed directly. -Among the available Interpreter instructions are a full
set of operaﬁons on double- precisioh quantities, including square root and trigono-
metric functions, some triple- precision instructions, and aset of vector instructions
such as cross product, dot product matrix multiply, and vector magmtude
Interpreter routines translate an Interpreter instruction into an equivalent series
of machine instructions tobe performé”d by the CPU. Thus, one Interpreter instruction
may be equivalent to many machine instructiéns, and much storage space is séved
in the computer. The Interpreter é.lso contains software routines for the manipulation

and temporary storage of double- and triple-precision quantities and vectors.

Interpreter expands the processing capabilities of the CPU hardware. However,

its operation is quite‘slow, since the CPU must perform all the actual operations,
and much time is spent in the translation of instructions and the manipulation of
data. Although processing time is slower, much storage space is saved in fixed
memory by the more powerful Interpreter instructions; thus, the vast majority 6f

nontime-critical mathematical computations are coded using interpretive language.

34

2.1.2 Timing and Control of the Computer

Two of the more stringent requirements placed upon the AGC are the need

for real-time operations and the necessity for time-sharing of multiple tasks.

Certain computer functions must occur in real time. For example, certain
input datamust be stored or processed immediately upon receipt; and outputs, such
as those which turn the jets on and off, must occur at precisely the correct time.
An interrupt system causes' normal computer operation to be suspended while

performing such time-critical tasks.

Several programs, which are less time-critical, may all be r~equired during
" a phase of the mission. Time sharing between these programs is controlled by a
software executive system which monitors the programs and processes them in
-order of priority. The Executive can stop one job when a higher priority job is

necessary, then resume the low-priority job when time is available.

2.1.2.1 Interrupt System

To permit quick response to timé-dependent requests, the AGC has acomplex
ihterrupt structure. There are two classes of interrupts, counter interrupts and
program interrupts. Counter int‘errupts have the highest priorityv of all AGC
operations. Counters are locations in erasable memory which can be modified b-y
inputs originating outside the CPU. Some counters are used as clocks, while others
interface with spacecraft systems to receive or transmit sequences of data pulses.
The counters respond to a set of involuntary instructions called counter 'intei‘rﬁpts,
which may increment, decrement, or shift the contents of the counters. A counter
interrupt suspends the normal operation of the CPU forone MCT, while the instruction
is being processed. Except for the short time loss, the ongoing program is not
affected by the counter interrupt; in fact, it is not aware that the interrupt has
occurred. These inferrupts are used solely for counter update and maintenance;
their priority assures that no information will be lost in the counters.

The use of counters as input/output devices will be described in Section 2.1 .3.1;

it is appropriate now, however, to discuss the six counters which are used for timing

purposes. Two counters, designated TIMEl1l and TIME2, form a double—precision

35

master clock in the AGC. TIME1 isincremented at the rate of 100 counter in{errupts
per second. Overflow of TIME1 triggers a counter interrupt to increment TIME2.
Since total time that must elapse before TIME2 overflows exceeds 31 days, TIME1
and TIME2 are thus able to keep track of total elapsed mission time.

The remaining clock-counters, designated TIME3 through TIMES6, measure
time intervals needed by the AGC hardware and software. For example, autopilot
computations must be processed periodically whenever the autopilotis inuse. Before
reaching completion, these computations preset the TIMES5 counter so that it will
overflow at a specified time in the future. TIMES is incremented at the rate of 100
counter interrupts per second. When TIMES overflows, a signal sent to the CPU
causes a "program interrupt' which interrupts the program in process and b'egins

- a

- the autopilot computations once again.

Program interrupts have lower priority than counter interrupts, but greater
“priority than normal program opera;cion. Unlike counter interrupts, the purpose of
program interrupts is to alter the normal procéssing sequence. There arell program
interrupts; they may be triggered by a clock-counter overflow, as in the example
given above, or by externally generated signals, such as the depression of a key on
the Display and Keyboard (DSKY) by an astronaut. The occurrence of a program
interrupt causes the c_ornputér to suspend normal operation at the end of the current
instruction. The current’CPU data are saved, the computer is placed in interrupt
mode, and control is passed to a preassigned location in fixed memory. This
preassigned location is the beginning of a program which performs the action
appropriate to the interrupt. While the interrupt program is running, the combuter
remains in interrupt mode, and no aéditional «program interrupts will be accepted,
although counter interrupts can still occur. (Requests for other progra.rh interrupts
are stored by the hardware and processed before returning to normal operation.)
At the conclusion of the interrupt program; a ''resume' instruction is executed. If
there are no other program interrupts, the CPU is taken out of interrupt mode, the
original contents are restored, and the program returns to the point at which it
was interrupted. One program interrupt (restart) takes precedence‘over all the
others, and can even interrupt an interrupt. Itresults from various kinds of computer

malfunctions. (This interrupt will be discussed in Section 2.1.4;)

A computation which takes place by means of a program interrupt is called a
task. ‘Since tasks may not be interrupted, they must be short to avoid delaying

other tasks. This speed requirement precludes the use of interpretive language.

36

One class of tasks is initiated by overflow of time counters TIME3, TIME4,
TIMES5, and TIMES6. These are considered time-dependent tasks. The TIMES
interrupt, described above, initiates autopilot computations at precise pefiodic
intervals. TIMEG controls the timing of the autopilot RCS jetfirings. TIME4 initiates
a series of routines which periodically monitor the IMU, radar, etc., and process
input/output commands. The TIME3 counter is under the control of the softv_vare
executive system (described below). It is available for general use by any program

needing to schedule a task for a specific time.

A.second class of tasks is initiated by interrupts caused by external action.
For example, depressing a DSKY key initiates a task that begins pfocessing DSKY
réadings and storing the information for later processing. Telemetry and the radar

also cause interrupts that initiate tasks to receive or transmit the next data word,
2.1.2.2 Software Executive Syétem'

Computationin the AGC ismanaged by asoftware executive system compfised
of two groups of routines, Executive and Waitlist.- This sysfem controls two distinet
types of computational units, jobs and tasks. In its normal operating mode, the
computer processes jobs. These are scheduled by the Executive, according to a
~ priority system. The Waitlist uses the TIMES3 .interrupt to schedule tasks for a
specific time in the future. (Tasks originated by the other program interrupts take

place independently of the software executive system.)

" Most AGC Computations‘ are processed as jobs. Division of a program intc
discrete jobs is at the discretion of the programmer, who also assigns a priority
to each job indicative of its ifnp_ortance. . The Executivejcan' manage up to seven
jobs (eight in the LM program) simultaneously. |

To schedule a job, the VExecutive piaces the job's priority and beginning location
on a list, assigning the job a set of working storage locations called a core set. In
addition, if a job 'requires a-larger working storage, as in the use of interpretive
language, a second area, called a VAC area, may be assigned. The Executive is
capable of maintaining se’v.en core sets (eight in-the LM program) and five VAC
areas as each is assigned to a job, and of redesignating them as available when the

job is finished.

A job in process must periodically call Executive to scan the list 'of-wait‘ihg
jobs, thus défermining,if any scheduled job has a priority higher than itself. If so,
the job currently active is suspended ahd the higher priority job is initiated. To
permit suspension of a job and subsequent resumption at a point other than its
beginning, the working storage associated with the job is saved when the job is
suspended and restored when the job is reinstated. A suspended job is returned to
the job list and is not reinstated until it has the highest priority onthe list. Eventually,
a given job will run td completion, at which time it is removed entirely from
consideration. ‘When all jobs on the list have run to completion, a "DUMMYJOB"
wi{h zero priority constantly checks to see if new jobs have appeared. (The computer

also performs a self-check, as described in Section 2.1.4.)

The relative importance of a job may change for various reasons. When this

is the case, Executive changes the priority list and rechecks the list for the job of
' higheét priority. Many times it is desirable to purposely suspend the execﬁtion of
a job, but not to terminate it compietely. Temporary suspension is desirable to
await an event such as the input or output of data, or for the availability of a
nonreenterable subroutine currently in use. To accomplish temporary suspensioh,
Executive saves the job's interrupted regiéters and sets its priority to a negative
value. Because the interrupted job has anegative priority, DUMMYJOB has priority
~ overit. As aresult, the jobis, in'effect, suspended indefinitely. Eventually, Executive
is called to restore the job, usually by the event. for which the job is waiting.
Executive restores the original priority and again checks the list for the highest
priority job. ' - |
: f

Waitlist allows any program to schedule a task to occur at a specified time
in the future. The TIME3 clock interrupts the job in pro_cess' at the correct time
and initiates the task. (As mentioned before,' tasks initiated by the other program
interrupts are not controlled by the Executive.) ' |

To schedule a' new task, Waitlist requires the starting address of the task
and the amount 'of time which must elapse before execution. Waitlist maintains a
list of tasks waiting to run in the order in which they will be performed and a list
of time differences betwee’rj adjacent items on the-task list. It determines when the
new task will run in relation to others on the list, placing it appropriately in the
list.

- 38

The TIMES3 counter counts the time to the first item on the list. When this
time arrives, the TIME3 program interrupt occurs. TIMES3 is immediately set to
overflow when the time has élapsed for the next task on the list, and all tasks and
times move up one position on the list. The computer remains in interrupt mode
until the task is completed. It is then free to process other interrupts or return to
the original job. | | |

s

Since TIME3 is a single precision AGC word (15 bits) that is incremented
100 times a second, Waitlist can process tasks up to 162.5 sec in the future. For
longer délays, a routine called LONGCALL processes a single task—the repeated
calling of Waitlist. LONGCALL can schedule tasks for as long as 745 hours in the

- em

future, a time span larger than an entire Apollo mission.

2.1.2.3 Sequence Control

In normal AGC operation, the Executive maintains a constant background of
activity, while program interrupts break in for short, time-critical bursts. The
execution of a job is subject to numerous interruptions. A counter interrupt may
occur after the completion of any instruction. Program interrupts stop the job in
process. While the computer is in-in{errupt mode; any further program interrupts -
are saved by the hardware and processed one at a time before returning to the job.
Under control of the Executive, high-priority jobs also steal time from a jbb in
process. This cdntrol system 6f—interrupts and priorities ensures that in times of

heavy load, the most critical computations for the mission will be processed first.

Normally, the CPU does not stbp during periods of low activity. If no jobs or
tasks are being executed, the CPU executes a short loop of instructions (DUMMYJOB)
which continually looks for jobs toinitiate. Periodically, TIME4 overflows, initiating
a task tomonitor vqrio‘us GN&C subsystems. If an autopilot is in operation, TIMES
triggers other interrupts for 'autopilot functions. In addition, periodic counter
interrupts will occur as counter input is received and clock counters are updated.

More extensive éomputer aétivity awaits action by the astronaut, as described in
the following section. '

2.1.3 Computer Interfaces

To perform its various functions, the AGC must interact with the other’
spacecraft systems, the astronaut, and the ground. External to the AGC are the
various sensors and controls which provide inputs, and the spacecraft systems and
d1splays which receive outputs Figures 2.1-1 and 2.1-2 illustrate the signal
interconnections between the computer and the external hardware for the CM and
LM systems, respectively. This report will not, in general, discuss these external
equipments, except as they apply to specific AGC programs. (See functional
description treated in Part 1, Chapter II, and Part 2, Chapter 1 of this Apollo Fmal
Report.)

Within the AGC, the actual transmissionof datais accomplished through special
‘registers known as counters and channels, as discussed below. Various AGC_
programs process the input and output data. A mission program such as rendezvous
will interrogate selected counters and channels for the specific input datait requires.
The program will, in turn, issue commands by means of these interfaces. The
operation of the mission programsis discussed in Section 2.2 and in the appendlces.
In addition to the mission programs, there are also spe01al programs designed to
process input/output information for purposes of telemetry and commumcatmn with

‘the astronauts. These interfaces are-discussed in'the present section.

2.1.3.1 Counters and Channels
f - " .
All AGC input/output takes place through counters and channels. Counters
are used for the transmission and reception of numeric data, channels are used for

%
the commun1cat1on of discrete data.

Channels are solid-state registersin the CPU that donot form partof memory.
They cannot be reférenced by most machine-language instructions, but are read
and in some cases written into by means of special channel instructions. Each

channel can congist of up to 15 separate bits or-discretes. For input channels, the

The AGC has 15 1nput and output channels whose b1ts are individually distinct (1 e.,
discrete). Each bit either causes or indicates a change of state, e.g., liftoff, zero
optics, SPS-engine on, RCS-jet on, etc.

40

SAVIdSIO <

4315008
Nunivs

$313WIS10
$NOINVTIFOSIN

anodyoL ©
1SNUHL <
44Y¥I30VdS

—

A¥LINIL

SINPOIN PUBWIWIO)) dU} U SUOT}IdUUO0DISU] [0IIUOD pue uorjeSiaeN ‘eouepmy I-1°'g o4ndig

S1N0QV3H¥ TIVIIYINNN

S.ANSQ NO SIHDIT NOILNVD @ SNIVIS W31SAS

NUVM S61 U 'NGVM 000 'NOILNVO SONOd

SAVI3Y ®
Q4vVOEAIN 8 AVIdSIa
¥3LNdWOD OML
(S,ANSG) OML

1 1

ONINYVM ®]
NOILAVD
Tve
f——————————— e
30NLILLY LT ARLLLIE) AN Woud
$37033N
goyy3 P
aaniiLLy $,nad
. v/Q 334HL
TIND (dNNOVE) m.v|'zo:< 35uv03
ANIWNYLSNI 1 yod NI oL
aAi-s J30IN> BAT-S ANV 19VIS NOILSIFNT
Nunivs 35VIIA © "4301417 35V3I38 Ging
2805010 (dANOvE] NUNIVS 40 JOHINOD WD
HOLIMS ud Aor §I VATEd
IVANVN ¥NI1an NJ018

¥3IOIN3IND3IS NOH4

XGv3IY NOISINdOHd 3IDIAHE3S
31VH¥Vd3IS WS ®

TQ3HOVLILY W3 T lH08V/ 31VHVH3S GAl-S

T = .

MO NO
$13F NOILOV3IY
ELYELYE _
STVNSIS 4307NO L13r NOILoV3H
. NS NO
$13f NOLLOVIY ¥ONN3 ONVAWOD
N33LXIS SNILNIOd XS 1xs oL
N3LSAS $,nAd
NOISINdoud SANVANOD v/Q OML
301AH3S 379NV 3NION3
{sds) 3307 NO 3NISN3I
AMLIN3I3L HONAS 3015 UILSVA
8 ONINIL

NNITNMOG ® XNINdN

H3LNdWOD
3JONVAINS
3INAON
GNVANOD

SINdNT JUvoukIN ANsd

(13A37 379NIS)

SONVAWOD NOILVISNVHL "ZF "AST X3

Y3ITTOMLNOD ONVH
TVYNOILVISNYYL

(13A37_3719NIS)

SANVNKOD 3LV 1083 "MVAS "HOLIdS

MITIOMLNOD QNVH
IAYNOILYLOY

SANVANOD 3iVH 1708+ "MVAS "HOLIdS

H3TT0MLNOD
3SANd NI
14VHO3I0VdS

NUVN 103738 © NEVA

SNOLLNG XNUVN
$211d0

. _SANVNNOD YITTO0ULNOD ANVH
31N $J11Ld0 $211d0
$.0a0 v/Q OML xoflnllv@\l.l.! LNV1X3S
° (1xs)
$,nQ9 .
$379NV §J11d0 a/v oml
r 3dp2s373L
ONINNVOS
(198)
$,NAD NWI Woud NSTIV355V03 uwuw
$IVNDIS DHOL O¥AD NOITV 3NIJ } 4

|
S3TONV TVENWIO NNKI

SIVNOIS H313W0¥3TIDDV

$,nA0
Q/Vv 338HL

LINN LNIWIHUNSVIN
AVILY3NL (ANWD)

AVIdSI@ 7TVE 30NLILLVY Ol

(dNXOVE NI ¥O0J) SLN3INIUONI ITONV

437dN0D AQNV
SO¥A9 30NLiLLV
QG3ILNNON 4AQO8
(009 8 SOVNE)

v

§3s 01

r $I0ULNOD
ANV

> SUOSNIS

41

$AVdSIO <

$313¥3810
SNOINVIISIN

3no¥0L ®©

ASNUNL
14vdd30vds

AWLINITAL

<

<

STNPOJN JBUNT S} UT SUOTIOSUUOIJISIU] [0JIU0)) PUE UOTIBSIARN ‘oouepIny gz-1°'z 9Ind1g

1N0AQV3Y¥ IVOININNN

ONINYVM ®
NOILNAVD

ANSG NO SIHOIT NOILAVD ® SNLIVLS W3LSAS

$AVI3IY ®
QUvoE8A3IN 8 AVdSIA
Y3ILNdNOD
(ANSQ)

SLNdNI QHVOBA3N ANSQ

NUVM §S1 @ 'NYVM 097 .zo_._“n.(u SON®

ALIDOT3A
IVANOZINOH

§,0ad v/a
(yvavd) Woud

alvy 3anliLly
GNV 34nLillv

SAYOM VI¥3IS VLIS H © H

 ¥31ndNOd
30NVAING
]

H3TT0MLNOD
SANVANOD HV3 L1N30830 40 3ILVN
(73A31__319NIS) SHITTIOULNOD ANVH
SANVANOD NOILVISNVEL Z3 © 'As X3 . NOILVISNVYHL
(®OTVNY) S¥370MLINOD ANVH
SONVANOD 3L1VH 1108 8 MVA HOLld IYNOILVLON
. 7
- B
GNVANOD NOILiSOd HIAOH
2v08 01 (¥ '0008 ViVa A(€ ‘G009 Viva H (3 . wvaw
TNOILISOd .VNNBINV (I :S1VNDIS SALVLIS H1 ONIGNY
SIVNBIS BNIWIL VIVd] (47)
VIVG ALIJ0T3A © 3aniiiiy
TTIVRT Wo5vEL WU
‘NO _NIMOd (T ‘0000 Viva (i
'STVYNDIS SNLviS 8
TIVREIS SNTRIL VIV |
VIvVd 3ivd 3O0NVY © 39NVY
* ¥3LIN T3A HOW OL uvavy
~ SNOAZIAN3IY
5,009 (uu)
v/Qa OML /Ooz.:oxg
OHAD ¥Y
(dvavy)
zm.:quo_m %,009
a/v OMl
340953731
STTVNOIS NYVN, AVIILHO ANINNSITY

5,102 NNI WOY4

.39V9,
nnNi
VISVY Ol <t «
SIVNOIS
Y3LIN0UI 1300V LINN LN3N3IUNSVIN
s3tony | s,nad : AVILYINIL (NND)
VanIo NN Q/v 33¥HL

}{

«0¥3Z,

ViVG LIN3IWNOIVY

$31033N 1||®4(AR)
uouu1 O¥u3 3GNLILLV 5,005
IqanliLlLy ¥/Q 334HL
NOITV 3SHVOD
¥O04 NWI OL
1ve .
————————_
300LILLY ViSVO STToNV Tvanis— "M woud
TIV3S MOT ALID0TIA VINOZIWOH]
Ta3SA IONT SNTYan W3078]
3805012 VIVG JVILY3NI AV1dSIO
HOLIMS 5 T5 g
IVANYN .
TIII0UAI 61NV © "GI0A "OLNV " TONINOD N© 9
$1Iva_ "ivd 1ar
OlAd WOYJ W4I3N0D 30ViS
s13r
:o_»w_ﬁx SIVNOIS 440/NO 13r §d0d
——————3¥I355530 J8ATIV{ TVAWTS Wil "]
3INION3 SONVAWNOD IN3NW3HONI 1VEWNID Wibl
4N30830 SONVANOD LNIWIUONI 13A371 ISNHHL
ANIONI Y3ON3ND3S 440/ NO 3NION3
AN3JSY .3ANION3
BCELCLAELIELE B
A¥LIN3I3L HONAS %0010 H3LSVA
® ONINIL

ANITINMOT

viva zo_F_ozoo AVILING

N3LSAS
3ONVAINS L¥oav

'

§38 O1

42

discretes are set by external G&N hardware and may be read by the computer.
The input channels inform the computer of the state of the hardware, such as a
hand controller out of detent, or the last key depressed onthe DSKY. Output channels
are written into by the computer to command external hardware functions, such as
turning jets on or off, changing the DSKY. display, or turning on panel lights. The
AGC reads or writes into channels only when instructed to do so—either by the
ongoing program or by a ‘progra.m interrupt. For example, pressing a key on the
DSKY changes the information in channel 15; it alsoinitiates the KEYRUPTI program

interrupt which causes the computer to read channel 15.

Counters are used for the input and output of numerical information. As
described in Section 2.1.2, counters can be changed by programs as’if they were
ordinary erasable Vlocations, but the counters also respond to counter interrupts

which are not under program control.

For input, é typical operation' requires that a céuntex: first be set to zero
under program control. The counter may then be incremented or decremented,.
one count at a time, via counter interrupts triggered by an external device. Thus,
a counter is able to keep track of the state of the external device. An examvplerof
this kind of counteris that used with the Coupling Data Units (CDUs), the interfaces
between the Inertial Meaéurerﬁent Unit and the AGC. For each 39.5-arcsec change
in a particular gimbal angle, the CDU generates a signal to the AGC which causes
a decrement or increment counter interrupt to the appropriate counter. o

i e ,

The output counters function in a similar way. The program sets the counter
to an initial value which is later "enabled" via a channel discrete. Following the
initialization, all action is automatic and not under program control. A series of
counter interrupts decrement the counter toward avalueof zero. For each interrupt,
asignal of appropriate signis sent to an external device. When the counter reaches
zero, another signal ‘is'. generated which stops the counting process. Thus, thenumber
of signed pulses sent outis equal tothe original contents of the counter. For example,

signed pulses torque the gyros or control the optics shaft and trunnion drives.
For telemetry input, counter interrupts shift a pattern of bits into the counter.

Selective use of two types of interrupts achieves the desired pattern after the counter

has been cleared under program control.

43

2.1.3.2 Cockpit Displays and Controls

The Apollo Guidance, Navigation and Control System has been designed to
utilize the best features of man and machine. Many mission tasks are best left to
the computer, such as those that are extremely tedious or that require accurate
response too rapid to lie within man's capabilities. However, man's judgment and
adaptability, his decision-'mak,ing capability in reacting to unanticipated situations,
and his unique abilityto recognize and evaluate patterns are all necessary for mission
success. The Apollo displays and controls have therefore been designed to provide
the crew with the most flexibility in monitoring and controlling the spacecraft..
The astronaut can choose to be directly involved in the procedures, or to allow

- -

automatic operation which he can monitor.

Displays available to the crew in both the CM and LM are the attitude ball, .

- attitude-error needles, attitude-rate needles, caution and warning lights, and a DSKY.
The LM has additional displays which 'give the astronaut essent{al information during -
the descent to the lunar surface; these are the altitude/altitude-rate, horizontal-ve-.
locity, and thrust-level meters and the Landing Point Designator. '

Several; manual controllers enable the astronaut to become directly involved
in spacecraft control. Both the CM and LM have rotational and translational hand
controllers. The LM has a rate;of—descent controller. In the CM, additional
controllers are used in conjunction with the 6ptics; these. :ire“ the minimum-impulse
and optics hand co?trollers and the optics mark buttons. In the LM, a DSKY command
can convert the rotational hand controller to a minimum impulse controller. All of
these controllers make available to the astronaut allarge repertoire of manual

maneuvers. -

The basic man/computer interface device is the DSKY (shown in Fig. 2.1-3).
Through the DSKY the astronaut can initiate, monitor, or change progra.rns being
processed by the computer. He can request the display of specific data or enter
new data. Communication with the DSKY is two-way; just as the astronaut can
exercise comrnand via the DSKY, the computer can request the astronaut to rhonitor,
approve, or enter data when necessary. There are two DSKYs available in the CM
and oneinthe LM. Each DSKY hasa keyboard, several electroluminescent displays, .
and activity and alarm lights. The activity lights are for the computer and the

44

o J

o] e
URery || Teme | come 2
o[|y
| STBYJLPROG HE EE
i e)
——| |+BEEEE| |
YHEEEE | | o
+ 7 (| 81 9 | |
VERB ! = ENTR
» | 4 5 | fS PRO =116
NOUN — ‘ RSET || =5
ol I || 2| 3 |re |
Q L il Y-

- Figure 2.1-3 Display and Keyboard

45

telemetry uplink, and the alarm lights are for the computer and inertial subsystems.
These aid the astronaut in monitoring the status of the G&N system. The alarm
lights indicate equipment-failure and program alarms. There are two levels of
program alarms. The more serious type of alarm either terminates all but the
most necessary program activities or terminates all current program activities
and requests astronaut action. The latter is accomplished by a preemptive flashing
display of anerror code indicating the cause of the alarm. The other type of program
alarm is also indicated by the program-alarm light, but in this case the program
in process continues without change. Should the astronaut wish to interrogate the
cause of this alarm, he can key in a request to the computer to display the error
code. The DSKY keyboard and displays-are discussed in the next section.

- ea

2.1.3.3 PINBALL and DSKY Displays

The AGC program which responds to DSKY buttons and requests illumination
of the DSKY liphtsis called PINBALL GAME BUTTONS AND LIGHTS—or PINBALL,
for short. PINBALL isunder Executive control and enables communication between
the computer and the astronaut. As mentioned in the previous section, exchanges
can beinitiated by operator action or by an internal computer program. Four modes
of operation are associated with PINBALL—internal dvata display, external data
loading, systems-test usage, and initiation of large-scale mission phases. Internal
data can be displayed once for verification (e.g., the ascent-injection parametérs
for lunar ascent) or periodicélly updated and displayed for monitoring (e.g.,'>
time-to-go tomain-engine ignition). External data are displayed in the appropriéte
display-panel register as they are keyed into the DSKY. The data for the loading
(external) and displaying (internal) modes can be presented in octal or decimal
format; if internal data are presented in decimal format, the program supplies the
appropriate scale factors for the display. PINBALL can also initiate a class of
routines used for systems-test functions which might require operator interaction
to determine whether to stop or continue the routine. The final mode of PINBALL
is initiation of large—écale mission phases by operator action, i.e., by changing the
mission program via the DSKY. (Fig. 2.1-4 lists the AGC programs for the CM
and LM available during a lunar mission.) A

The DSKY keyboard contains the following notations: VERB, NOUN, +, -, the
numerical characters 0 through 9, CLR (cleér), ENTR (enter), RSET (error reset),

46

Command Module
AGC

00
01
02
03

07
11
17
20
21
22

23
27

30

31

32
33
34

35

37
38
39

40
41
47

51

52
53
54

61
62
63
64
65

. . 66

67

72
73
74
75
76

7

78
- 79

‘LM TPI Search

... _ Programs

CMC Idling

Prelaunch Initialization
Gyro Compassing
Verify Gyro Compassing
CMC Power Down

IMU Ground Test

Earth Orbit Insertion (EOI) Monitor
Transfer Phase Initiation (TPI) Search

Rendezvous Navigation

Ground Track Determination
Orbital Navigation

Cislunar Midcourse Navigation
CMC Update

External AV

Lambert Aimpoint Maneuver
Coelliptic Sequence Initiation (CSI)
Constant Delta Height (CDH)
Transfer Phase Initiation (TPI)
Transfer Phase Midcourse (TPM)
Return to Earth (RTE)

Stable Orbit Rendezvous (SOR)
Stable Orbit Midcourse (SOM)

SPS
RCS »
Thrust Monitor

IMU Orientation Determination

IMU Realign

Backup IMU Orientation Determination
Backup IMU Realign

Maneuver to CM/SM Separation Attitude
CM/SM Separation & Preentry Maneuver
Entry-Initialization

Entry-Post 0.05 g

Entry-Up Control

Entry-Ballistic

Entry-Final Phase

LM Coelliptic Sequence Initiation (CSI)
LM Constant Delta Height (CDH)

LM TPI Targeting

LM TPM Targeting

Target AV

Lunar Module
’ AGC
Programs |

I_GC Idhng
GNCS Power Down

Powered Ascent Guidance

Rendezvous Navigation
Ground Track Determination
Lunar Surface Navigation
Preferred Tracking Attitude
LGC Update

External AV ,

Lambert Aimpoint Maneuver
Coelliptic Sequence Initiation (CSI)
Constant Delta Height (CDH)
Transfer Phase Initiation (TPI)
Transfer Phase Midcqurse (TPM)
Stable Orbit Rendezvous (SOR)
Stable Orbit Midcourse (SOM)

DPS
RCS
APS
Thrust Monitor

IMU Orientation Determination
IMU Realign
Lunar Surface Align

Braking Phase
Approach Phase
Landing Phase (Auto)
Landing Phase (ROD)
Landing Phase (Manual)
Landing Confirmation

DPS Abort

APS Abort

CSM CSI Targeting
CSM CDH Targeting
CSM TPI Targeting
CSM TPM Targeting
Target AV

CSM SOR Targeting
CSM SOM Targeting

LM SOR Targeting

“CMC is Command Module Computer (CM AGC)
LM SOM Targeting ok

"LGC is Lunar Guidance Computer (LM AGC)

Figure 2.1-4

47

Programs for a Lunar-Landing Mission

PRO (proceed), and KEY REL (key release). Each of these notations is internally
represented by a’ 5-bit binary code which is transmitted and recognized by the
computer. When the operator depresses any one of these buttons on the keyboard,
an interrupt program called KEYRUPT enters arequest to the Executive for another
program that decodes and stores the key code in an input register of the AGC.

The numeric sections of the DSKY panel form three data-display registers,
R1, R2 and R3, which can containup to fivenumerals each, and three control display
registefs, VERB, NOUN, and PROG (program), of two numerals each. Each of the
three data display registers has a sign section which displays a plus sign, a minus
sign or nothing at all (blank). The PROG register indicates the mission program
currently operating; the VERB and NOUN registers indicate the display and load
‘activity initiated by the operator or by the computer. All information necessary to
| operate the display panel on the DSKY is transmitted fbrom the computer thfough an
output register which activates two display characters at a time. The basic language
used for communication between the operator and PINBALL is apair of two-character
numbers that represents a verb/noun combination. The verb code indicates the
operation to be performed, while the noun code indicates the operand to which th}e
operation (verb) applies. Typical of the verb codes used are those for displaying
and loading data. Noun codes call up g_rbups of erasablé registers within computer
memory. Figures 2.1-5 and 2.1-6 give a list of the verbs and nouns available in
the AGC for the CSM program COLOSSUS. (The LM program, LUMIN ARY, has a

similar list.)

In addition to the numeric buttons and verb/noun conti‘ol buttons, PINBALL
responds to the other control buttons found on the DSKY. The RSET button usuélly
turns off the alarm lights on the panel. Should any of these alarm lights remain on
after the RSET button is depressed, the condition causing the alarm persists. The
ENTR button has two functions: it causes the AGC to execute the verb/noun
combination appearing inthe VERB and NOUN registers or to accept anewly- entered
data word. The CLR button is used to blank R1l, R2, or R3 during a data-loading
sequence, thus allowing reloading of a data word. The KEY REL button allows
internal programs to use the DSKY if the operator has not previously released the
DSKY for such use. The KEY REL light is turned on when an internal progra.rh
attempts touse the DSKY but finds that the astronaut hasnot released it for internal
use; depressing the KEY REL button performs this release. Thus, the operator

48

Y01 23A w»qhw #SD OIND ¥CI23A 51VLIS W1 13S
dvQ 3IVAILDYV

CVv13 3Ivd4bNS 1353y
9v14 wu«ua:m 135
(ATINO 1S34) $37033N ¥Cry3d LIV 1va3 QvOd
.) 0349 3ndy¥0L 3$7nd

(Ten*nZN K) NAJI NIV 3S¥v0d

(GZN M) NG 0¥37

S8u3A G30ON31x3

3¥vds

3YvdS

WYY¥90td 39NYHD
1¥V1S HS3¥d4 1S3ND3IY
SIH9IT 1S3l
31VNIWY3L

03320%d

370423y

1SIILIVA 1$3Nd 3y
3A11NJ3X3 153N003y
3yvdS

: 3¥vdS

- A¥CW3IW 03xI3 AVIdSIQ
3¥vds
€¥42¥ Ty UINI €°2*T LIN3NLGWOD GQVON

LY
9y
Sy
Yy
€Y
Yy

('3]

6c
9c
Le
9¢
€
ve
€€
2e
¢
o€ .
62
8z
Lz
52

se

mDmmOAOU weifolq ur pasn SqI8A. G-1°g 9Indrg

Z3¢1y OIND 21 »7wzoazuu avon
iy ULND © LIhaNOCWOD GVl

24 UINT 2 1h3hudnU) QY00

14 OIN] 1 ‘:.mzCalc.u avon
 awves

3¥vdS

38vdS

4Ty N1 WHID5G o dLInOn

£342u°Tr d0 Zu‘l¥ ¥0 T¥ NI IVwId3C :011KOw
€Y42YtTy NI €421 dh0D TV1J0 ¥OLINOW
2¥' 1y NI 241 nUd WD t01IHOW
S¥ NI € ¢h0D W10 oOLINOW

2d N1 2 ¢W02 120 ®01INOR
"y NI T ¢WDD W10 ¥OLINUW

: . Jevds

3¢vds

- 3dvdS

2% T8 N WK123¢ dC AVIdSIQ
€42¢%1% o0 Zu'lo 40 1¥ A1 WhID30r AVISIU
€4%25¢%Ta NI €241 ¢hUD VL3 AVdSIU

2uCTY NI 2T orD Widu AVIdSIU

,m« N1 € oW0OD IVLIDU AVIESIU

24 NI 2 dn0d VLU AV1LSIG

© 1d NI 1 dw0D 120 AVIdSIU

. a3sn N1 10N

S8x3A ¥VINOIX

B X4

e
1e

61
g1
L1
91

sl

A

21

ol
6C

8C

49

SNSSOTOD Wesdoag up pasf sqdap

(°3u0d) G-1°g 2ansryg

NGILINST 3NI9NI 378VN3
33vdS

AVIdSIQ TIvd 1SNYHL
03d 0% 09 GNV NOILVE93INI 31VNIWYdL
34vdS

372423 SNINIVEL BYNNISID 318VN3
NOLLVZITVILINI XIulve M 37QVN3

(L0d) 1S31 3INVAY¥O3¥5a NRI L1¥VLS

WNSHNVY

..om«. A¥10S1U 3NVI9 JC 1NO ON3Y 153ND3y
(€9d) ¥3ANINVW 30NLTILYV TWNIY GN3Y 1uviS
9VI3d 3SAVy dMA 1353y

VI3 3ONVE dHA 13S

Y¥Vh ONILHOIS df XJV8 GN3a» 19373y

(9€%) 2# AV1cSIQ WYBVd QN3 Y 1S3INS3Y

34vdS

~

LT€4) 15 AVIASIG hVoved OGN 1S3N53y
(OTB) AVISSIU m¥EVG L1830 130034

_ BOLDIA IIVIS WSD 31vaen
: "¥ULI3A HLYIS w1 3LVCEN

(99%¥) 3NI4NJs 3COm 31D3IGEV6 L¥vis

HINATZY HONAVI3Yg 31vcan

, Ov14 30N11L1V G3¥¥dd3zd L3S3y
9vI14 34NL 141y G3d¥s333¥d 13S
4401411 dNXIVE

ANIINMUG VIA dWNG 3718VvSVY3 321 ILINI

66
66
L6
96
S6
v6
€6
26

16

06

(L2d) (IVL20) 3wll 2nD 34V0dN
(L2d) ¥OY 3T19NIS-31VGdN TWSUIAING
(42d) AV %2078-31V0dN IWSYIAINN
| (L2d) 3wW]l 33044171 31vadNn

, 1YVIS3Y

ND 1S3L 3%C:1S WSO

AVISSIG dUNE3 Sy X I¥1VW-M L¥V1S

YOLIIA 34VLS A OUNT ¥ILD3IA 3LVLIS WSD 13S

{€ud) INIWNOL IV RHINNVI3Y¥d 30 NOIIVIIIIY3A WWIIL1dU 1¥ViS

(svd) DJIvI INV ONVE-S 1YVIS

6g ((DZN-LIN) ¥0¥s3 3GNLILLV INVNOYISY TWLDL AV1dS10) € 300K 12313

88
L8
98
S8
%8
£8
8
18
ve .
6L
81
LL
9L
Si

9l

((IIN=C2N)

¥Y0oyd3- 30NLI14v IVLO0L AVIASIG) ¢ 300w 13373

(¥0Y¥¥3 30NLI1LV dVA AVIdSIG) 1 300~ 133735

°30N1 114V IN3S3¥d 01 3ON34343d x0w¥3 3CGNLTLLV L3S

(NOI1VY6IIVI SII1d0) X¥vW 3SV3Id

9v13 8INISA 135 ONV 9V14 %D11S 1353%

© 4T12%) N¥Vh ONILHOIS GN3® 1¥VLS
ENINIVEL 31VNIn¥3L

. (IVW1230) mrl» WD INIWIYOINI
S (€2¥)-M¥VA ONILHOIS oN NIVE ON3Y 1¥VIS
| SO 3AVNEILIV ¥¥TA 3SVIG
3115 UNIONVI 135440 NO O3xNu¥n

NHVH 3SV3T

WY04¥3d 3SV3d

(¢94) 23ANINVA C3NI35C MI2D 1¥VLS

f€ug) ¥iVU dvG Qvol

€L
L

1

- 0L

69
89
L9

99

59

%9
£9

29

19

09
6$
8s
LS
95
14
¥s
€S

s

16

Js
64

89

50

930

338
NIk
SdH

930
930
930

S3SINd
S 357nd
$3SNd

230
9340
. 930

N S34d
- 030
930

930
: 130
_ Omc

33s
NIwW
SaH

Sx¥axX
CXXXIX

CCRANXX

XX XXX

SREXARX

130
-120
120

TX2XXX

Xx°*XX0
*xx000
SXXX0Q0

XX *XXX
XX XXX
Xx *XXxX

XX XXX
XXX XX
CXXXXX

XX XXX
XX XXX
XX XXX

XX *axX
XX XXX
XX X3 X

AXOTXXD>
XX TXXN
XX CAMN

Ax*xx0
°*xxQQeC
*Xxx 00

1u

> >N @ o >

@ a >

o a >

(NOTIVDIS1¥3A
SNISSVgWOI0%AD)
3662 13%9vL Ot
IV HONNYY WS, 62
' 3hvds 8¢

HILIMS J43U/ND 1S3l uamm4 L2

NUDGESSIYCVEAVII0/01Kd 92

(isA mIIM G3SM) 1S1IXI3AD 62

230719 Swd ¥04 3nil v1135 %2

3dvaeS €2

$379NV NCII M3IN 22
Svald 12

$3719NV NGI IN3S32d I2

33vasS ol

°

WIANSNTHL JIAY S3TUNT 1IVvs &1

(lesa) S31Q33N € 300K NI JEsn)
2001154V WL0L 1nvNneElsY Ll

(ATNU 8Y3A IXx3 Aw C3SN) IN3IAZ a0 WL 91

SSAYTUV LNHWIBINT ol

23S
NIn
SdH

BEN
NIw
SdH

930

930
930
903G

931INI
931N]
931INI

vyl
vl
Jvdd

XX XXV
R 2 EEN)
SXXXLY

130
170

XX XX
*XX0uJ
XXX W

170

120
120
120

120
120
120

170
120
120

120
120

XX XXX

XX XXX
XX XXX
XX *XXX

SXXXXX
XX XXX
CXXXXX

XXXXX*®
xXxXXxX*®
XxXXXx*®

SNSSOTOD Weadold Ut pes) SUunoN 9-1°2 2ans1g

3YvdsS
HOD 30 911
3002 NO11d0

- ’ 1S2 d4u 914

Q314123dS 38 01 V3INNVHD
$3003 -HY¥VIV
ViVG WiV IV

¥0LVY3d0 318VSVE3/QU0OMOV IS/ TINNVHI

300) NOI11d0

3ON3 Y3310/ 20¥¥3 ¥VINONY

14

3¥vdS .

(33¥930) S$S3IYACGV A3193dS
(370HK) $$3300V A3123dS

(Iva3) SS390CV A31I3dS

3SN NI ION

91

el

21

11
o1

6C

8e

10

90

sQ
%0

€s
4

10

51

.

AN x%xXXX

Sdd *xxXxXxX
930 xx°*XxX

$3U XX °XXX
930 xx°*xxX
CXX XXX

93C x> *¥xX
Sdd X°xX¥xX
KN XX *XXX

930 Xx°*xXxXx
Sda X°*XXXxX
AN XX *XXX

930 X» °XXxX

930 XX °XXxX
930 XX *XxX

S=h XXuXxXx
AN XCXXAXxX
AN X SXXXX

*X 0000

Sdd Xx*xXxXxX
WN X°xxXxX

93U x> *xXxx
30 XX XXX

. S8 *xaxXxX

M SHT *XXXXX

120
1Ju

930 XX XXX
S=W Xx8XxX
XXEXX

I S=W XxXxdxX
AN XTxXXX
WN X ®XxXXX

WN X°*XXXX
930G XX °*XXX
| 930 Xx°*XxX

i
{
I

H

SNSSOTOD werdoad Ul pas[Sunoyn ("3u0d) w..H ‘g 2Jansdryg

E€SJIV3IT HIA SSVH +) (40S) 4 v113¢
A v113C
319KV A¥IN3SZ

muu~1w> 3AISSVa 30 379NV IvelNID
(3) 37CNV LOILVA3T3
3G0J v3d

Vi3dl
31VE 39NV
39NV e

IHd -

31Ve 39NVY
JONYV 3

3TDIHIA 3ALLIV 40 379NV IVIINID

VahVO
CHa

J41
5491434
mouquam

3C¢c) 329N3S
A V1134
¥ V113u

RIXEL MVA OVEnlY
hldl HILIS Venie

IHOI3M 3TD1H3A 33HLD
LHOI3M 3701H3IA S1HL

914N0D ¢va

Von
(NaNe tx3N) J31
(S211d0-3HA) SHY¥VAW

341
17V v3d
17V 0odv

30N111v
(1Sv3 +) 30n119NON
(H1¥0hK +) 30N111VTY

LS

9s

SS

%S

€S
4

1s

9s

34

84

Ll

9%

SY

vy

€Yy

Sdd
WN
WN

© 930

93G

Sdd
Sdd

S-
J3s
NIW
SdH

23S

Niw

SYH

PEN
NIW
SdH

BEN
NIW
SAH

PER
NIW
S¥H

23S
NIW

.mmI

235

NIk
SYH

J3S

NIW
S™H

XX XXX
XX XXX
XeXXXX

X D900
XXX *XX
XX *XXX

CXOXXXX
X XXX X
W oXX8xX

XX XXV

XX
*XXxJ0

XX *XXx0
*XXJ6)
*XXX0V

XX *XX 4
*XXuUdu
XXX JQ

XX XX
*xXQu0
*XXX0

XX*XX")
XX\ 0
EXXX IV

XX XX J
*XXCCI
CXXXU)

XX TXX .
*XXulda
XXXy

XX°*XX 9

CXX0GIV
3

(G321 1034) A V1130,

17V d3d
11v Odv

(JEN wWOdd 31SVvd) ¥3I1311N3GI 139%vi
: NOI1VA313 1399vVL
. H1NWIZV 139uv1L

(G31vINWNJIV) A V1130
9A
J41/131

awumz«xk,«Om.wxak V1134
uo»uw>.wh<hm 30 3nllL
(lo1)1139

%3012 JW) 40 3wll

AN3A3 nJ¥3d 3nIL

IN3AS 30 3nll

1139

33901234 w4 3InlL

JYVIS

24

19

0y

(33

g€

Le

9t

St

ve

133

43

1t

52

Sd3 X *xxXxX
Sdd X*XxXxXxX
Sdd X°*XXxX

Sdd X°*XXxX
Sd3d X°*XxXXX
Sdd X°*XXXxX

Sdd X°*XxXxX

Sd3 X *xXxXx~

Sdd X°xXxXxX

Sdd X *xXxX
Sdd X°*XXXX
Sdd X*xxXxX

Sdd °xXxXXX
Sd3 *XXxXxX
S=h XXYXX

*XXXXX
930 xx°xXxX
23S/930 XxXxX°*X

I3S/NIH XX8XX
J3S/NId XX 3XxX
© RN X*XXXX

9 XX XXX
Sdd *XXXXX

930 XX °*XXX.

930 XX °XXX
Sd3 *XXXXX
THN *8XXXXX

SXXXXX
WN X°XXXX

930 XX°XXX

120
120
© 120

'SNSSOTOD WeiSolg ur pas[SUNON (3u0d) 9-1°'g 2aInST g

(H3A0)2ZA ViT30
(H3A:0)AA V113G
(H3A 0)xA Vv113Q

(INGD)ZA v1730
(INOJ)AA V1134
(INDDIXA V1730

(AT} ZA V1130
(A7) AA V1730
(A7} XA V1130

(A1) ZA V1130
(A7) AA V113G
(A7) XA V1130

LQ3LVINWNIIV) A VLII3G
9N
241/1414

3009 SIav
‘ ONVEQV 3L
{NGI SNISVIYINI +) 31vy

3YvVdS
JeVdS
3Y¥VdS

{1d1nON-Jd1l ¥0 HCI-1d1) 3WIL V1130
(hUD-1d1 80 1S2-HO3) 3wWll V1130
#A2 3001117V vi13Q

NOILV231322V 9V¥G ¢ 9
ALID073A IVILYSNE ¢ A
319NV WNVE UdS *V1i38

JIONV HIVd LHOITd
AL112073A
30n1117V

NOILd0 HOYV3S
(3A08Y H3IA SSV4 +) 17 1730
(SOV3T H3A. LIV +) 9NV 1730

V1ivQ NOZIYOH
ViVQ XBVWONV

(XYVW ¥31d4V) 300D AQUS IWVIL1S$313D

%8

€8

Zs

6L
8L

L

9L

SL

9L

€L

2L

1w

nN

120

120

120

Sd4 *XxXXXxX
9 XX°*XXX
930 XX°*XXX
Sdd *XXXXX
Sd3 *XXXXX
930 XX°*XXX
930 XX *XXX
930 XX °*XXxX
WN X *XXXX
WN X°*XXXX
WN X®XXXX
930 XX *XXX
23S xX*XxXxJ
CNIW *XXG20
SdH *XxXu)
WN X *XXXX
Sdd °*XXX¥xX
9 XXx°®XXX

T S-W XXx8XX
Sdd *XXXXX
WN X°*XXXX
AL X3 anX
Sda *Ixxx)>
Sds *xxx¥Xx
°x)

030 AX*XXX
S 93U XX XXX
930 x>°*xxX
Sdd *xaxXxXx
& XX °xXxX
Sdd X°*X¥XX
Sdd X*XxXxXX
Sd3 ¥°xXxxx
Sdz X®XxxXx¥
Sd3 X*xXxXxX
XOXXXX "

..

ViVO NOZI1¥OH
. VIVO YHVRONVI
(N¥VW 380438) 3003 ACO8 IVIL1$313D

. IA
10
. vi38

) 31vY LIV* 10QH
AL120713A IVILY3NT? 1A
3ISNVY NNVE Ow2d ‘vi3g

(1SV3 +) NOI1ISOd IN3S3dd*® ONOT
(HLYON +) NOI1L1SOd IN3S3¥d* 1V
(1HSAD +) 09 O1 ¥

(1HSAD +) w0¥¥3 3SONVY NMOG
(ly 191 +) ¥Od¥¥3 39NVY SSOYD
JISNV MNNVE OWd *vil3s

(1dN¥33INT N1 G3HD134)
: IR L JhD GIVIRVS

. _ {1HSAO +) 09 0L ¥
ALI2373A IVIIE3NTS A
NOIL1V®31323% Svel *9

*1°3 WOed w0484 3Inll® 331
I3A 1¥3AN1 (03101038d* OIA
HSVIdS U1 *1°3 WObxd 9NY® 0913

000 ONTGRY T sl sl avis Cve 2ALes L b

EF LR S L AN { FISTY]

Syvv 13A Y5licesnlt 1A
(Jdi +) BMUCG/uf SOV 3N
JGNLILNGTY 10Venl
300L1IVT 1Dvcenl

(di +) 13 %¥rinvy

Q3ad ¢

. XVn %

€ S0V A Vviad
¢ SV A Vv1INiG
1 SOV A Vi34

(IVNIS 2CS 0L dol) A V17130
(xLS ®U lol) A V113G

(X3S ¥J Id4 1STd) 17V 'diag.

oL .

69

89

LS

99

s9

%9

€S

I

15

6s

8s

53

"Sd3 X°*x¥xX

R-[oF-E-F]
¥0dy3

SNSSOTOD weadodd

3002 NOI1d3
ALIZ013A 30 3NTVA SAY¥
NO111S0d 40 3NIVA SAd 66

93d
930G

93y

193G

93U

930
930

930
930

930
Sd3
WN

WN
930
930

930
930

Sdd
Sdd
Sdd

Sdd

Sdd
Sd3

SXXXXX
XxXXXX®
CXXAXX

*XXXXX
*XXXXX
*XX¥XX

XX*xxX
XX *XXX

XX *AXX

XX *XXX
XX * XXX
XX ®Xax

XXX *xX
XX xxX

XXX *xX
XRX XX
XXX *xX

XXX XX
XX *YxXx

Xxx*xXx
XX OXXX

XX XXX
X "X XXX
XX * XXX

XX XXX
XxX*xX
XXX XX

xXXXXX*® .

XXXXX*®
XXXXX®

XXX *XX
XX *XxX

TXXXXX
XX XXX
XX XXX

X*xXXX
XX XxX

XCXXXX .

«a >

o a >

x>~

ur pes(SUnoN. (‘3u0d) 9-1'g °andig

SINJNI CONV
S1INS30 1531 wW3I1SAS

SiNaN1 1S31 W31SAS

S319NV IYCs Iv. sIxv x+

$3ONV IvU3 L1V d3ad

NNy .
13aVES = SO dlvNeE3L WV

S319hV OuAS V1130

Nfgl .
: 13dVHS =S379NV NGIO0 M3N
Nlsl -
13VHS = S379NV NUIC LIN3S34dd
IS¢
10G A

A S3313WVeVvd 3Nvld 40 1ND Ck3d

-30N1 1LV HeVRCHYT
(4SV3 +) ¢/3GNLITESNUT XavrGhvll
(HL1GON +) 30H1ELIV] XuVIWONYI

z
> .
X %0123A KJ111S0d 11NN 13NVId
3195V LOINNNXL SII1d0

JISNV 14VHS SIILlcU :V1v¥a Mavi
. (A1) ZA v113Q

(A7) AA ViT30
(A7) XA V1713C

: (INOD)Y Z9A
(INOD) ASA
(INOD) X9A

86

Lé

Sé

$6

%6

te

26

16

68

886

L8

96

S8

54

has control over the displays he wishes to observe, without being interrupted by an

internal request. As will be shown in a discussion which follows on multi-level

displays, the KEY REL button can also be used to reestablish displays which have

been temporarily suspended.

While the astronaut communicates with the computer by entering information
in the DSKY, the computer communicates with the astronaut by a flashing or
nonflashing verb/noun display. The loading of data registers provides an example
of two-way communication. To load three registers of data, the astronaut selects
VERB 25 NOUN XX ENTR, where NOUN XX describes the data involved. He then
depresses the ENTR button and the computer responds by flashing VERB 21, telling
him to load register R1, which has been blanked. After the astronaut keys in the

' initial data, he keys ENTR. The computer responds with a flashing VERB 22,

indicating that it is ready to accept data in the second register. The process is

 then repeated for the third register. Since PINBALL is able to distinguish between

two modes of the ENTR button (execute verb/noun or enter data), data are not
processed until the final component is loaded and the ENTR button is depressed.
At this time, the data entered are scaled for each component and stored in the

proper location in memory.

When a sign button is depressed before data are entered into each register,
numeric information is treated as decimal; otherwise, PINBALL considers the data
to be octal. If the operator depresses the 8 or 9 button on the DSKY while loading
octal data, the OPR ERR (operator error) light is illuminated, which he can turn
off by depressing the RSET button.

PINBALL was first developed to exercise systems-test and operations pro- -

grams in an early version of the AGC. At that time only one level of priority was

‘provided. Consequently, two internal jobs requiring displays could not run simultane-

ously. (This was satisfactory then and even for later unmanned flights during which
the Boost Monitor Display—a constantly updated sequence of trajectory parameters
—was continuously displayed on the DSKY.) But procedures like rendezvous-radar

navigation marktaking could not run in the background behind atargeting computation

~ and communicate updated data through thenormal display activity in the foreground.

~ With the advent of manned flights, it became clear that the computer would have to

communicate with the astronaut on several levels; consequently, development of

display-interface software and a hierarchy of priority interrupts was begun. Boost
Monitor Display programs in SUNSPOT were the initial components of the complete
G&N astronaut/ AGC interface software that was further developed in SUNDISK and

ultimately refined for COLOSSUS and LUMINARY.

The initial display-interface routine, GOFLASH, was created to save coding
for the four or five calls to PINBALL by the Boost Monitor programs. The subroutine
approach saved 12 instructions of the 18 otherwise required each time the AGC
initiated an information transfer through PINBALL to the DSKY. In a recent
COLOSSUS program, there are 45 calls to GOFLASH, which accomplishes a net
saving of 540 instructions.

A second level of displays which was added carried a higher priority than
normal program displays. These so-called Extended-Verb displays permitted an
information request to be keyed in—even though another normal-priority program
might be in progress—and to attract the crew's attention via a flashing display,
effectively preempting the normal program's DSKY activity. An Extended Verb
usually takes the form of an information request which differs from a regular verb
in that it cannot be satisfied by simply displaying already available information

stored in an erasable-merhory location. An Extended Verb requires some data

‘manipulation and ordinarily involves one or more subroutine calls. While the Extended

Verb is running, thenormal display is held in abeyance. Since sufficient information
has to be saved to restore an interrupted display after the interrupt, display points
became natural restart points. And because displays are usually natural breakpoints
in an extended computation, they provide excellent demarcation points for program
phase changes. A special restart mechanism therefore was created to 'permit

"restarts" to pick up at the most recent display. A more comprehensive description

of restarts follows in Section 2.1.4.

At about the.time'_the need for Extended-Verb displays was recognized, asimilar
requirement was recognized for mark displays. During rendezvous, the astronaut

isvery busy with three four-partoperational cycles (navigation, targeting, maneuver,

and burn) in succession to be accomplished during brief spans of time. It therefore

became virtually mandatory that the Range Radar (LM) and VHF (CM) navigation
marktaking be performed automatically without astronaut supervision; but with

provision for astronaut intervention if anomalous mark data were obtained. The

56

same priority-interrupt technique implemented in the Extended Verb feature wés
also implemented to permit navigation marks to be taken while a targeting routine
was in progress, and—when they satisfied certain threshold-acceptance criteria—to
‘be incorporated automatically. Only marks that violate accept/reject criteria need
be presented for the astronaut's consideration explicitly via the display-interruﬁt
software interface. Since Extended Verbs and mérking-program displays shared
the same priority level, a restriction was necessarily imposed that no Extended

Verb using displays could be imposed during marktaking.

A second higher level of priority-interrupt displays was required both to
display anomalous mark data which exceeded the threshold for acceptance and to

~ permit alarm-type displays to override the first two levels. Sincetargeting programs

or Extended Verbs run during the rendezvous programs, a third priority level was
needed for alarm conditions and for marks that exceeded the auto-accept threshold.
The three-level display hierarchy thus consists of normal displays, which are the
lowest level and can be overriden by Extended Verb or mark displays, and third-level
priority displays (alarm conditions, excessive updates) which can interrupt displays

in both of the lower priority levels.

In addition to the three internally-generated priority-display levels described,
- the astronaut can key in two higher levels called external monitor request and
non-monitor request. Altogether, five levels of display information are provided.
After keying in a nén-monitor request over an external-monitor‘request which in
turn has overridden the three levels of internal priority display, an astronaut can
return to the fourth external-monitor level from the fifth non-monitor level by keying
KEY REL, and from external monitor to the third (priority) level via another KEY
REL. He can then respond to the priority display and obtain the second and normal \
display levels, in tufn; by keying appropriate responses to each succeeding display
level. Thus, while monitoring a program computation and simultaneously taking
navigation marks; the;astronau't may be notified of an emergency-alarm condition
by a priority display and may then initiate two levels of monitor-interrupt displays

to discover the cause of the alarm condition before taking appropriate action.

The most significant effect of the additional display routines was that it became
possible to have three levels of programs—with displays—running simultaneously.

Response by the astronaut to any of the higher level displays would automatically

37

cause the next lower-level display to reappear. This feature gives the astronaut

the flexibility of using five levels of displays at a time.

'2.1.3.4 Uplink and Downlink

Uplink is the digital telemetry system which enables ground control to load
data or issue instructions to the AGC in the same manner employed by the astronaut
using the DSKY keyboard. All information received by the AGC via uplink is in the
form of keyboard characters. Each characteris assigned anidentifying code number
called its character code. The AGC picks up the transmitted codes (these codes
are the same as key- codes) and enters a request to the Executive for the program
which decodes and accepts them. The PINBALL program which decodes and accepts

‘the transmitted code makesno distinction between inputs from the keyboard or from

uplink, and any ground-command sequence normally transmitted via uplink may be

- duplicated by the astronaut using the keyboard.

The astronaut can choose to reject uplink from ground control by setting a

toggle switch on the cockpit control panel to the blocked position.

A Universal Update Program exists in the AGC which facilitates updating the

‘erasable memory and can be called by a number of extended verbs. To protect

against the ingestion of erroneous information, the Update Program temporarily
stores all new inputs in a buffer and transmits its contents back to ground control
via downlink (see below) for verification. Furthermore, storage of state-vector
updates (position and velocity) with their associated sphere-of-influence (earth or

lunar) are delayed until current state~vector integration is finished.
The Update Program accepts four types of erasable-memory updates:

1. Contiguous Block Update provides ‘ground-control capability to update
up to 18 consecutive erasable-memory registers in the same erasable-
memory bank.

2. Scatter Update provides grdund-control capability to update from 1 to 9
nonconsecutive erasable-memory registers in the same or different
erasable banks, ‘

3. Octal-Clock Increment provides ground-control capability to increment
or decrement the AGC clock with a double-precision octal-time value.

58

4, Liftoff-Time Increment provides ground-control capability to increment
or decrement the AGC time, LM and CSM state-vector times and
ephemeris time with a double-precision octal-time value.

This Universal Update Program capability has been available since SUNDISK
(Apollo 7). '

Downlink is the digital telemetry system which automatically selects lists
(downlists) of internal AGC data for transmission to the ground downlink. Each
downlist contains data pertinent to specific mission phases. COLOSSUS has five
standard downlists: Powered, Coast and Align, Rendezvous and Prethrust, Entry
and Update, and P22 (Orbital Navigation Program). LUMINARY has six standard
downlists: Orbital Maneuvers, Coast and Align, Rendezvous and Prethrust, Descent
‘and Ascent, Lunar Surface Align, and Initialization and Update of the Abort Guidance
System (AGS). Whenever a new program is entered, a request for its list is made
- by placing the appropriate code into a downlink register. The downlink program
then transmits the complement of this code as an identifier and uses it to select
the appropriate list. The complete list is transmitted even if the program is changed

during its transmission.

The standard AGC downlist contains 100 words (200 AGC registers). The

AGC digital downlink is transmitted at a high rate of 50 vs)ords/sec or at a low rate
of 10 words/sec. Thus, transmission of one downlist requires two sec at the high

rate and ten sec at the low rate.

Certain data on the standard downlists are meaningful only when considered
in multiregister arrays. Since the programs which compute these ar'rays‘are not
synchronized with the downlink program, a "snapshot" is taken of these words so
~that changesin their values will not occur while these arrays are being transmitted
to the ground. When a "snapshot" is taken, several words are stored at the time
the first word is tranémitted. ‘The other words in the downlist are read at the time
of transmission.

There is a special mode of »downlink, called Erasable-Memory Dump, which

can preempt the standard downlist being transmitted. The transmission consists

of all of the erasable banks being transmitted sequentially. One complete pass

59

through erasable requires 20.8 sec. The computer makes two passes through the
complete erasable’ memory before returning to the standard downlist for the current
mission phase. Since normal processing continues during the transmission of the
Erasable-Memory Dump, some of the registers transmitted could have different
contents on the second pass because they may have been recalculated during the

transmission time.

This erasable-dump capability can be initiated using an Extended Verb and
was deVeloped to support postflight analysis; it can, however, be used whenever

information not on a standard downlist is desired.

9.1.4 Error-Detection and Self-Check Features

- .-

’

Considerable effort has been expended over the years to uncover and-correct
for a number of hardware- or software-initiated problems. These problems can
vary from a hardware power failure to the software getting caught in a loop. Both
the hardware and software are designed to catch these problems, and the software
procedures used to reinitialize (restart) the computer have become relatively
standard. ' ’

The function of the ha.rdware—' and software-restart logic is to restore the
current program with a minimum of disturbance to the mission. Fundamentally,
this requires that certain specified tasks be called at the end of the correct time
intervals (from a suitable base time) and that the speciﬁed jobs be reestablished
with the proper priorities. In some cases, the proper "restarting' addresses for
the jobs and/or tasks shouldnot be at their beginning, but instead at some 1ntermec}1ate
location or even at -a special location .entered only if a restart is encountered.
These locations (restart peints) are chosen to fall between computations such that
when a restart occurs, the program resumes at a point in the program which precedes
~ the place where the problem arose. | |

To accomplish the required restart functions, the various activities performed
by the program software, in essentially independent computations, are divided into
"restart groups'; there is provision in the restart software for six groups. One
group, for example, might be conce‘rned with the periodic powered?flight navigation

cycling; another with orbital integration (perhaps required with powered flight to

60

generate relative .CSM/ LM display data); a third with the timing of events leading
to engine ignition; a fourth with generation of a time display on the DSKY; a fifth
with computation of required velocity information for a rendezvous maneuver; and
a sixth with a special computation performed shortly before engine ignition (to estimate
the length of the burn). All six of these functions could be part of the complete
program's computational load (as jobsor tasks) at one time and be in various stages
of completion; and, consequently, they could be associated with separate restart
groups. Not all computational 'activity in the program is restart-protected in this
fashion; for example, should a restart occur while data are being loaded via the

- DSKY, the loading sequence must be reinitiated.

A A restart group, therefore, can generally be considered to be éséociated with
S a particular. functional software activity. Each group, in turn, is conventionally
divided into a number of "'phases'" indicating just where the computations should be
reinitiated in. the event of a restart. The phase information for a given group is
retained in both true and complemented form in the erasable memory, giving' a
total of 12 cells for the six pairs of cells associated with the six restart groups.
When the restart software is entered, a check is made to ensure that all six pairs
of cells have the proper internal complement relationship. If not, it is concluded
that suspect information prex;ents the satisfactory resumption of computations, and
the attempt to perform the restart is abandoned in favor of a FRESH START. FRESH
START, which reinitializes the ‘compiete guidance system and essentially leaves it
in an "idling" configuration, is discussed in Section 2.1.4.2.) The complement
relationship could be destroyed if the erasable memory were modified by whatever
caused {he reétart action, such as a power transient, or should the restart occur

during certain portions of the programs that change restart-phase information.

Should the restart software conclude that adequate phase information is
available (on the evidence of a proper complement relationship for the six pairs of
phase data), the RESTART routine can be entered for each restart group that is
"active' (agroupis made "inactive' by setting the phase of that group to+0, indicating
that none of its computations are restart-protected). The RESTART routine, depending
on the value of the phase associated with that group, can cause jobé to be established
and/or Waitlist tasksto be called at .appropriate timesvia LONGCALL or thenormal
waitlist routines. The value of the phase information also determines whether one

or two such jobs and/or tasks are to be reinitiated, and, additionally, whether the

61

parameters associated with the reinitiation are to be obtained from fixed or erasable

memory.

The value of the phase for a particular restart group, properly interpreted,
is used to select an appropriate table entry in fixed and/or erasable memory. The
table entries, separated by groups, are stored so that memory capacity is not wasted
should there be more fixed-memory tables of one type than the other. The polarity
with which information is stored in the tables is used to determine whether the
table information pertains to> a job, a Waitlist task, or a LONGCALL task, and,
additionally, to determine which of several available options for defining the
reinitiation parameters is to be employed.

During the course of the computations, it is necessary to update the phase
value associated with the appropriate group. This can be done directly by loading
new phase information into the apprdpriate group's phase cells or through use of
one of several available phase-changing subroutines. The three most commonly
used phase-changing subroutines are NEWPHASE, PHASCHNG and 2 PHSCHNG, all
of which have avariety of options, depending upon the details of the calling sequence.
Each one of these subroutines identifies the nature of the restart desired—fixed-

memory table only, fixed and erasable tables, or erasable-memory table only.

°

The AGC restart mechanism provides great flexibility for restarting with.

optimal configuration of important computations, at almostno cost in erasable memory
and little cost in execution time,

The sig}nificance of this restart protection can be appreciated mdfe fully if
one considers the cbnsequences 'of the accidental knockdown of an unprotected
engine-on bit during a burn. The following two sections describe remedies for
hardware- and software-discovered difficulties and illustrate how self-check

procedures contribute to the integrity of the mission program.

Y

2.1.4.1 Hardware Restarts

One kind of program interrupt—a hardware restart—differs markedly from.

those described in Section 2.1.2.1. This special kind of program interrupt does not

62

result in''normal" resumption of the program; it takes absolute priority over other
program interrup'ts; it cannot be inhibited; and it can even interrupt an interrupt.
As part of its generation, a special involuntary-interrupt instruction is produced,
causing the hardware to generate a master-clear signal which knocks down all of
the outbits. '

A hardware restart can be triggered by such hardware problems as power
failure, computer-oscillator failure, or parity failure. If the failure is transitory,

the restart logic will resume the program flow.

A parity failure indicates pos sible malfunctions in a fixed or erasable register,

in a sense line or in an amplifier. The AGC-stored wordvlength consists of a sign
' bit, 14 magnitude bits of information and a parity bit. Whenever a register is
addressed, odd parity must be observed or a hardware restart will occur. Should
the parity error be detected in an erasable-memory register, it will be reinitialized
and thus reset by the software-recovery logic. However, should a parity failure
occur in a fixed-memory register, either a more serious physical problem exists

or the astronaut has accidentally addressed an empty (unused) register.

Hardware restarts can <;ccur_upori the software-detection of a program-inter-
rupt failure (RUPT LOCK)°revea1eci if a program interrupt is continuously in effect
for a specified period of time or if no program interrupt takes place within an
equally long interval. Similarly, a transfer-control failure (TC TRAP) can be
discovered. In addition, a special procedure called NIGHT WATCHMAN reveals
the failure to address one specific memory location with a certain frequency, thus

detecting the inadvertent entrapment in a lai'ge program loop.

Several lesser proble'_ms are indicated by warning lights and do not cause a
restart: Counter Fail, which arises if counter increments occur too frequently or
fail to occur following an increment requesf; PIPA Fail, which arises if no pulses
arrive from the Pulsed Integrating Pendulous Accelerometers during a specified
period, or if both positive and negative puises occur simultaneously, or if too long
a time were to elapse without at least one pdsitive pulse and at least one negative

pulse arriving; and Uplink Too Fast and Downlink Too Fast.

63

2.1.4.2 Software Restarts

Software restarts are programmed branches into the software-recovery logic.’
They use much of the same coding as the hardware restarts and, in fact, execute

the actual restart in an identical fashion.

Software-restart logic is frequently useful to perform nonproblem functions
such as stopping certain computations while allowing others to continue. It is also
used when anew niission program is selectedvia V37, Inthiscase, current processing
is étoppe,d; all scheduled jobs, tasks and interrupts are cleared out; all restart
groups except the one used by the background-tracking program (if in progress)
become inactive; the new program is set up in a restart group; and then the restart
is executed to initiate the new program. Restart logic is used similarly in an abort
from lunar descent, but in this case, the new program selected would be the abort
program Software restart procedures can also be initiated by such software- detected '
* difficulties as too many tasks in.the Waitlist system or a.negative input to ‘the.
square-root subroutine. '

Two of the more important alarms which cause software'restarts are BAILOUT
and POODOO., A BAILOUT initiates a software restart for a problem from which
recovery is expected, such as the overflow of job-register sets. A POODOO initiates
a software restart for a problem from which a simple recovery is not expected,
such as an attempt to take the square root of a negative number. Such a problem
canhappen if erroneous parameters have been loaded; consequently, areinitialization
of these same pe{rameters will contmuously yield the same alarm. In this case,
normal computation flowis terminated and a flashing V37 (Change Program) comes
up on the DSKY. | o T T

A FRESH START reinitializes the complete guidance system and essentially
leaves it in an "idling" configuration with all of the output channels (outbits) and
pending interrupts knocked down; at this point the program checks to see if the
engine-on bit shoul‘d be restored and if the IMU is in gimbal lock, and it takes
whatever protective measures are necessary. FRESH START is the most radical

reinitialization available for recovery.

A software program called BANKSUM Check, initiated by an Extended Verb

to check all fixed and erasable memory for parity failures, is used principally for

"\
A

64

systems-test purposes. This routine sums the contents of the addresses within
each fixed bank— haltmg temporarily when the last memory cell is reached. At
this point a2 memory-cell summing routine included in the self-check portion of the
fixed memory checks to ensure that the magnitude-of-the-sum is equal to the bank
number and provides a DSKY display of the sum for operator review. The feat of
having the magnitude-of-the-sum equal to the bank number is accomplished in the
assembly process simply by adding an appropriate constant stored at the end of
each bank to the correct value of each BANKSUM's magnitude. ’

- As mentionedin Section 2.1.2.2, when no mission functions are being performed,
anidling job (DUMMYJOB) is run to check for new jobs while checking fixed and/or

.erasable memory, depending on the option last selected by the astronaut.

Lastly, should the astronaut want to check the DSKY lamps, they can all be
illuminated.

2.2 Major Mission Tasks Accomplished with the Computer Software

2.2.1 Early Approach to Navigation, Targeting, Guidance and Control

Thenavigation, térgeting, guidance and control software specifies and manages

the various spacecraft motions required to accomplish each mission phase. Functions
of concern include the onboard measurement of rotational and translational motion,
the processing of these measurements for display to the crew and ground control,
the acceptance from the crew or ground control of ‘desired spacecraft‘-.méneuver
instructions, and the.execution of- the de_ﬁnéd maneuvers to change the spacecraft
motion by modulating the firing of the various rocket-propulsion systems. In this

context, navigation, targeting, guidance and c¢ontrol are defined as follows:

Navigation is the measurement and computation necessary to determine the
present spacecraft position and velocity.

Targeting is the computation of the maneuver required to-continue on to the
next step in the mission.

Guidance is the continuous measurement and computatrion during accelerated
flight to generate steering signals necessary to assure that the position and

65

velocity changes of the maneuver will be those required by navigation
measurements and targeting computations.

Control is the management of spacecraft-attitude motion—the rotation to and
the stable maintenance of the desired spacecraft attitude during free-fall
coasting flight and powered accelerated flight. »

The appendices to this report present a functional description of these major
prograni capabilities. Their design and development represent a significant portion
of the Apollo software effort. The integration of these guidance, navigation and
control programs with mission-oriented programs into a flight rope requires the
comprehensive testing and verification effort described in Séction 111,

The early studies of the major program capabilities began, in most cases,
well before the Apollo mission plan. was finalized, since most of their concepts
were fundamental to the overall task to be performed. For example, rendezvous
procedures would be essential to both the earth-orbit and lunar-orbit rendezvoﬁs

plans.

As a first step in MIT‘s software efforts, the basic organization of AGC
computation and control had to be deC1ded upon and implemented. PINBALL was
developed to enable commumcatmn between the astronaut and the AGC. Guldance,
navigation and control techniques had to be developed for every phase of the Apollo "
mission—from earth-orbit insertion to soft landing on the lunar surface to reentry
into the earth's atmosphere. Similarly, abort procedures had to be developed for
every phase. Studies determined the effect of the earth's luminous exponential
atmosphere upon space navigation. Star- a_rid_horizon-sighting techniques had to be
developed. Lunar-orbit determinationusing star-occultation measurements and the
NASA Manned Space Flight Network were investigated. The effects of retrorocket
exhaust velocity on visibility were ascertained. Development proceeded on auniversal
powered-flight guidance program tailored specifically to exploit the powers of an
onboard digital computer. In addition, powered-flight steering of a spacecraft using
a time-shared digital computer was studied, considering, of course, such factors
as performance, response time and fuel conserva’uon. And operatmg procedures

had to be defined for the entire Apollo mission.

66

‘These are but a fraction of the many tasks which were studied and implemented
before a mission- orlented rope could be integrated. These tasks continue, Flight
experience frequently indicates the desirability of improvements or refinements.
An example of such ongoing design workis the automation of the rendezvous sequence.
Another is the restoration of the GN&C System Saturn-Take-over program as a
backup system. With these exceptions and at this advanced date in the program,

most changes are of a relatively minor nature.

The lunar-landing objective of the Apollo mission was finally achieved after
many preliminary flights, each of which evolved from its predecessor (see Secﬁon
1.2). Each flight rope contained not only the programsnecessary for the completion
,of its stated mission, but also many programs which were not of immediaté application.
" In this fashion, existing flight ropes also served to bench- test programs which would
beutilized in future flights. For example, the lunar operations sequence was present
in its entirety in SUNDANCE, the rope developed for a manned earth-orbital flight.
But SUNDANCE provided the unique opportunity to exercise the lunar sequences in
the comparatively safe earth-orbital environment. To prepare the actual lunar-
landing sequence, however, those programs still had to be adapted to the conditions

expected to prevail at the time of the lunar landing.
2.2.2 The G&N Mission Phases

For tractability the Apollo mission was divided into a number of discrete

phases. Although each phase will be dig:cussed somewhat independently, itis essential

tonote that all phases lead logically and efficiently from one to anotherin a stepwise
fashion. | '

The lunar-landing miésion, Apollo 11, contained all of the completed software
programs. While many detailed variations can existin future missidns, the. g‘uidanée,
navigation and control.functions remain essentially the same. A synopsis of a typical
Apollo lunar-landing mission follows to aid inunderstanding the comprehensive task
which the G&N software performs. |

As stated above, the o.verall' Apollo mission trajectory can be divided into

several linked phases. Figure 2.2-1 illustrates thirteen such phases. The following

paragraphs discuss each of these phases, along with luhar-su_rface operations.

67

| Arewwing 9SBYJ-UOISSTIN NBD -2 'g 24nd1d

v

11930 HL¥V3 OL HONNVI

NOILD3IINI
~H1¥V3ISNVIL

Ll

NOI1D3rNI
JYNNISNVIL

€

11930 HLY¥v3

N .

A¥LIN3-3¥ HL¥V3

el

3SVHd ONINVYG
1N3DS3a yvNNl

SNOAZIANIY /

11930 3VNMI o

Ol e ISVHY ALITIISIA
NOILY¥ISNI IN3DS3a YNNI

11930 dvNN1 R m

§ S~ N3OSV AvNAT
11830 ¥YNN

68

2.2.2.1 Launch to Earth Orbit

Prior to launch there is an intensive and intricate schedule of activity. Automatic
programmed checkout equipment performs exhaustive tests of the major subassem-
blies in two major sequences: countdown demonstration and the actual countdown.
Two operating sets of guidance equipment.are prepared for the launch. The Saturn .
guidance equipment in the Saturn Instrument Unit controls the launch vehicle, while
the Apollo guldance equlpment in the Command Module provides a monitor of Saturn
guidance durmg launch. The Lunar Module GN&C System, after prelaunch testing,

is normally powered down for the launch phase of the mission.

Both sets of inertial 'g'uidance sensors, Saturn and Command Module, are
aligned to a common vertical and launch-azimuth reference. During countdown,
both systems are gyro-compassed to an earth-frame reference. Near liftoff, both

éy_stems respond to discrete signals to switch over from the earth reference to the

nonrotating inertial reference used during boost.

During first-stage flight, the Saturn » guidance system controls the vehicle 'by.
swiveling the outer four rocket engines. During the initial vertical flight, the vehicle
is rolled from its launch azimuth to the flight-path azimuth. The Saturn guidance
then controls the vehicle in an open loop preprogrammed pitch maneuver des1gned
to pass safely thorugh the period of h1gh aerodynam1c loadlng .

Both the Saturn and Comman_d Module guidance sYstems continuously measure
vehicle motion an compute position and velocity. In addition, the GN&C System
compares the actual motion history with that expected from the Saturn control equation
to generate an error display for the crew. .

Shortly after -the initial fuel- setthng ullage and the second-stage thrust, the
aerodynamlc pressure approaches zero, the .launch escape tower is jettisoned, and
the vehicle passes out bf the atmosphere. Any required abort, now, would normally
be accomplished uaing the Service Module propulsion to accelerate the module away
from the rest of the vehicle.

Since the problems of aerodynamic structure loading are no longer important,

the Saturn guidance system now steers the vehicle toward the desired orbital-insertion |

- 69

conditions using propellant-optimizing guidance equations. Thrust-vector control

is achieved by swiveling the outer four engines of the second stage.

During second-stage flight, the GN&C System continues to compute vehicle
position and velocity, as well as several other flight parameters which can be displayed
to the crew. The free-fall time to atmospheric entry, the apocenter altitude and

pericenter altitude are the primary displays ‘at this time.

The third Saturn stage (SIVB) has a single main propulsion engine gimballed
for thrust-vector control. Roll control is achieved using the small SIVB roll
attitude-control thrusters. The Saturn guidance system continues to steer the vehicle
‘to orbital altitude and speed. When orbit is achieved, the main SIVB propulsion is
shut down; thisusually occurs at about 12 minutes after liftoff ona 100-mile circular

orbit.

During the second- and third-stage boost flight, the Command Module is
configured to allow the crew to take over the SIVB steering function manually, should
the Saturn guidance system indicate failure. Should this switchover occur, presumably
the mission could be continued. More drastic failures would require an abort using
the Service Module prbpuléion sysfem. |

2.2.2.2 Earth Orbit

The Apollo spacecraft remains attached to the Saturn SIVB in earth orbit.
The Saturn system controls attitude by commands to the small SIVB reaction-control

thrusters for pitch, yaw and roll.

Ground-tracking navigation data telemetered from the Manned Space Flight
Network (MSFN) stations are available to correct the position and vel-ocity of the
Saturn navigation system and to provide navigation data for the GN&C Systein via
uplink telemetry. The inertial-subsystem alig_nfnént in the Command Module may
also be updated by star sightings with the optical subsystem. For these measurements,
the crew exercises manual control of vehicle attitude through the Saturn attitude-con-

trol system.

70

Typically, the earth-orbital phase lasts less than three hours for systems
checkout before the MSFN-computed signals are transmitted to the Saturn system

to initiate the translunar-injection maneuver.

2.2.2.3 Translunar Injection

Translunar injection is performed using a second burn of the Saturn SIVB
propulsion system. Saturn guidance and control systems again provide thenecessary
steering and thrust-vector control to the near-parabolic velocity that puts the vehicle
on a so-called "free return' trajectory to the moon. This trajectory is constrained
ideally to pass in back of the moon and to return to earth-entry conditions without

additional propulsion.

- s

As before; the GN&C System independently generates appropriate parameters
for display to the crew for monitoring purposes. Should the Saturn guidance system
indicate failure, steering takeover by the crew is possible. The typical translunar-in-
jection thrusting maneuver continues for slightly over five minutes' duration before
the SIVB is commanded its final shutdown.

2.2.2.4 Translunar

The spacecraft conf{guration' injected into the translunar free-fall must be
reassembled for the remaining operations. An adapter in front of the SIVB houses
the LM until this phase of the flight. The astronauts separate the Command -and
Service Modules from the SIVB and then turn the CSM around for docking with the
Lunar Module. To accomplish this, the pilot has a three-axis left-hand translation
controller and a three-axis right-hand rotational controller. Output signals from
these controllers are processed in the Command Module computer to modulate the
firing of the 16 low-thrust reaction-control jets for the maneuver. The normal
response from the translation controller is proportional vehicle acceleration in the
indicated direction. The normal response from the rotational controller is propor-
tional vehicle angular velocity about the indicated axis.

During the separation and turnaround mé.neuver, the SIVB coﬁtrol system holds
the Lunar Module attitude stationary; this allows for a simple docking maneuver of
the Command Module to the Lunar Module docking hétch. The SIVB, Saturn Instrument

3

71

Unit, and Lunar Module adapter are staged to leave the Apoilo spacecraft in the
translunar flight configuration. A further short maneuver puts the SIVB on aseparate
trajectory which will not interface with the Apollo spacecraft,

Very soon after injection into the translunar free-fall coast phase, MSFN-com-
puted navigation measurements are examined to determine the acceptability of the
trajectory. These data indicate Whéther there is a need for an early midcourse
maneuver to correct any error in the flight path which might propagate with time
to a larger value, thus avoiding a needless waste of correction-maneuver fuel.
Th1s first correction is made— perhaps a few hours from injection—only if it is
needed. Ground-tracking data can be telemetered to the spacecraft anytlme they
are available. Using these ground data or horizon-to-star angle measurements
‘obtained from the onboard sextant, the onboard computer can correct the knowledge

of the spacecraft state vector p051t10n and veloc1ty

Missiori control on the ground pefiodically examines the ground-based radar
data for uncertainty in position and velocity and the estimate of indicated velocity
correction required to improve the present trajectory. If the indicated position
and velocity uncertainties are suitably small and the indicated correction is large
enough to be worth the effort, the crew may execute the telemetered midcourse
correction. Each midcourse velocity correction requires, first, an initial spacecraft
orientation which aligns the estimated direction of the thrust axis along the desired
acceleration direction. Once the thrust direction is aligned, the rocket is ignited
and controlled by the GN&C System. | ‘

Typical midcourse corrections are of the order of 30 ft/sec or less. If a
required correction happens to bevery small, it is made with the small reaction-con-
trol thrusters. Larger corrections require.a short burn of the service-propulsion
rocket. The direction and magnitude of each burn adjust the trajectory so that the
moon is finally approacﬁed near the plane and pericynthion altitude that provide for

satisfactory conditions for the lunar-orbit insertion and lunar lahding.

During the translunar phase, mission control periodically transmits blocks
of data via voicelink to the crew-to permit safe return in the event of loss of
communications. These data include state-vector updates to be loaded by the crew

at the appropriate time into the AGC, The data are sent as a precaution against
o .

72

Unit, and Lunar Module adapter are staged to leave the Apollo spacecraft in the
translunar flight configuration. A further shortmaneuver puts the SIVB on a separate

trajectory which will not interface with the Apollo spacecraft.

Very soon after injection into the translunar free-fall coast phase, MSFN-com-
puted navigation measurements are examined to determine the acceptability of the
trajectory. These data indicate whether there is a need for an early midcourse
maneuver to correct any errgr in the flight path which might propagate with time
to a larger value, thus avoiding a neédless waste of correction-maneuver fuel.
This first correction is made—perhaps a few hours from injection—only if it is
needed. Ground-tracking data can be telemetered to the spacecraft anytime they'
are available. Using' these ground data or horizon-to-star angle measurements
obtained from the onboard sextant, the onboard computer can correct the knowledge

of the spacecraft state vector—position and velocity.

Mission control on the grouhd periodically examines the ground-based radar:
data for uncertamty in position and velocity and the estimate of indicated velomty
correction required to improve the present trajectory. If the indicated p051t10n
and velocity uncertainties are suitably small and the indicated correction is large
enough to be worth the effort, the crew may exec-utevthe"telemeter_ed midcourse
correction. Each midcourse veldéity correction requires, first, an initial spacecraft
orientation which aligns the estimated direction of the thrust axis along the desired
acceleration direction. Once the thrust direction is aligned, the rocket is ignited
and controlled by the GN&C System. '

Typical midcourse corrections are of the order of 30 ft/sec or less. If a
required correction happens to be very small, itis made with the small feaction- con-
trol thrusters. Larger corrrections requiré a short bu_i‘n of the service-propulsion
rocket. The direction and magnitude of each burn adjust the trajectory so that the
moon is finally approached near the plane arid perlcynthlon altitude that provide for
satisfactory condltlons for the lunar orbit insertion and lunar landing. |

] . . .

During the translunar phase, mission control periodically tra.r.lsmits' blocks
of data via voicelink to the crew to permit safe return in the event of loss of
communications. These data include state-vector updates to be loaded by the crew
at the appropriate time into the AGC. The data are sent as a precaution against

&

72

the contingency that telemetry and/or voice communication fail prior to the néxt

scheduled update. These updates occur at about ten-hour intervals,

2.2.2.5 Lunar-Orbit Insertion

Prior to lunar-orbit insertion maneuvers, as with all normal thrusting with
the Service Propulsion System, the inertial subsystem is realigned using star
sightings. Then the GN&C System generates initial conditions and steering parame-
ters based upon targeting parameters telemetered from the ground. The guidance
programs initiate engine turn-on, control the direction of the acceleration appropri-
ately, and shut the engine down when the maneuver is complete. Lunar-orbit insertion

maneuvers are the two burns typically intended to put the spacecraft in an orbit of

-approximately 60 nmi altitude. The first thrusting maneuver, behind the moon,

slows the spacecraft so that it will be "captured" by lunar gravity into a highly
elliptical orbit and not pass on free-return to earth. Then, the second burn, at
periluhe behind the moon, circularizes the orbit. The plane of the orbit is selected

to pass over the preplanhed landing region.
2.2.2.6 Lunar Orbit

In lunar orbit, navigation measurements may be made to update the knowledge
of the actual orbital motions. A particularly important sighting—that to the intended
landing target—provides data for the site's precise location in the lunar navigation
coordinate frame. Sufficient measurements must be made and combined with
ground-tracking data to provide accurate initial conditions to the Lunar Module

guidance system for the LM's controlled descent to the lunar surface,

2.2.2.7 Lunar Descent

During lunar orbits, before separation, the Lunar Module GN&C System is
turned on and receives a checkout and its initial conditions, and the rendezvous

radar (RR) is self-tested. Before initiation of the Lunar Module descent-injection

- maneuver, thevehicles are separated; the Lunar Module inértial subsystem receives

final realignment from star sightings; the directional tracking and ranging operation
of the RR is checked against the radar transponder on the CM; and the maneuver
attitude is assumed. The maneuver is made using Lunar Module descent-stage

propulsion under control of the module's GN&C System.
¥

73

During free-fall phases of the Lunar Module descent, the Command Module
can make optical tracking and VHF range-only measurements of the Lunar Module
for confirmation of its relative orbit. For that part of the trajectory in front of the
‘moon, earth-based tracking provides an independent check. The RR continues to
track the CM transpdnder throughout free-fall for additional trajectory corrobora-
tion. At lower altitudes, the Lunar Module landing radar on the descent stage is
s-elf-tested prior to powered descent-insertion. Alignment updating of the Lunar

Module inertial subsystem is also performed.
2.2.2;7.1 Braking Phase

Powered-descent braking begins when the descent engine is“r“eignited; the
velocity- and altﬂ:ude-reducing maneuver is controlled via the Lunar Module inertial

subsystem and autopilot calculations in the computer.

The -descent; stage engine can be throttled over the range necessary to provide
initial braking and to provide controlled hover above the lunar surface, Engine-
throttle setting is automat1ca11y commanded by the guidance system to achieve proper
path control, although the crew can override this signal with several alternative
control modes, if desired.

Thrust-vector control of the descent stage is achieved by a combination of
body-fixed reaction jets and limited gimballing of the engine. The engine gimbal
angles follow guidance commands in a slow loop (fixed rate command of approximately
0.2 deg/sec), thus causing the thrust direction to pass through the vehicle center of

gravity—and minimizing the need for continuous fuel-wasting torques from the
reaction jets.

During all phases of the descent, the operations of the various systems are
monitored from Onboa'rd and earth-based radar. The landing can be retargeted by
uplink telemetry or the mission could be aborted for a number of reasons, If the
GN&C System performing the descent control is still operating satisfactorily, it

would control the abort back to rendezvous with the Command Module, If the primary
| guidance system has failed, the independent backup Abort Guidance System could

steer the vehicle back to orbital conditions for rendezvous.

74

2.2.2.7.2 Visibility Phase

One significant feature of this phase isthat the controlled trajectory is selected

‘to provide the Lunar Module crew with visibility of the landing surface. The vehicle

attitude, descent rate, and direction of flight are all essentially constant, so the
landing point being controlled by the guidance appears fixed, relative to the window.
A‘ simple reticle pattern in the window indicates this landing point in line with a
number denoted by computer display. Should the astronaut observe that the landing
point isin an area of unsatisfactory surface features relative to other areas nearby,
he can select a new landing site for the computer-controlled landing. Alternately,
the astronaut has the option of taking manual control of this landing maneuver at
any time, o

Automatic guidance control during the braking and visibility phases uses
weighted combinations of inertial-sensing and landing-radar data, with the weighting
dependent upon expected uncertainties in the measurements., The landing radar
includes altitude measurement and a three-beam Doppler measurement of three

components of Lunar Module velocity with respect to the lunar surface.

At any point in the landing, the astronaut can elect to assume partial or complete

control of the vehicle. For instance, one logical mixed mode of operation would
have the rate-of-descent controlled automatically by modulation of the thrust

magnitude and astronaut manual control of attitude for horizontal maneuvering,

Near the lunar surface, the spacecraft enters a hover phase which may have

avariety of conditions, depending upon 'rhis sion ground rules, crew option and computer .
program. Descent-,St_age fuel allowance provides for hovering before touchdown.
If hovering is not accomplished, an abort is initiated on the ascent stage. The
crew makes final selection of the landing point and maneuvers to it either by tilting
the vehicle or by operating the reaction jets for translation acceleration. The
inertial- subsystem altitude and velocity computation is updated by the landing radar

so that, astouchdown is approached, good data are available from the inertial sensors,

since the flying dust and debris caused by the rocket exhaust degrade radar and

visual information. Touchdown is made with the spacecraft near vertical and with

a downward velocity of less than 4 ft/sec.

v

75

2.2.2.8 Lunar-Surface Operations

The period on the moon includes considerable activity in exploration, equipment
‘deployment, experimentation, and sample -gatherings. Also during this time,
spacecraft systems é.re checked and prepared for the return. For example, the
ephemeris of the Command Module in orbit is periodically updated, and the
information is relayed to the Lunar Module crew and computer. The Lunar Module
rendezvous radar can also track the Command Module as it passes overhead to
provide further dataupon which to base the ascent-guidance maneuvers. The inertial
subsystem receives final alignment from optical star or planet sightings prior to
the start of ascent or, as a backup, the vertical components of this allgnment can
be achieved by accelerometer sensing of lunar gravity in a vertical-erection loop.
'Still another backup mode involves using computer-stored knowledge of the
spacecraft's inertial alignment at touchdown. Liftoff must be timed to achieve the
desired trajectory for rendezvous with the Command Module,

2.2.2.9 Lunar Asc_ent

Launches from the lunar surface leave the descent stage of the Lunar Module
behind, and can be initiated over a range of time by entering a holding orbit at low
valtitude until the phasing is proper for transfer to the Command Module. A desirable
constraint on all ascent-powered maneuvers, as well as abort maneuvers during
the landing, is that the following coasting trajectory have sufficient altitude to avoid -
intersection with the lunar surface. This is a safety consideration which allows
for the possibility of failure of the engine to reignite. If the Lunar Module engine
thus fails, the spacecraft could then Safely coast until a rescue maneuver by the .
Command Module is'aocomplished. That is, the Command Module could execute
"mirror images" of those thrusting maneuvers that the Lunar Module would have
normally performed. - Thus, the Lunar Module can be the passive vehicle in the

rendezvous exercise. -

Theinitial partof the ascent trajectoryis avertical rise followed by pitchover,
~as commanded by the guidance equations. The ascent-engine maneuvers are under
the control of the GN&C System. The ascent engine is fixed-mounted and nonthrottle-
able; consequently, thrust-vector control is achieved by complementing the engine

thrust with that of the 16 reaction-control jets mounted on the ascent stage. Required

76

commands from guidance terminate thrusting when a suitable rendezvous coast

trajectory is achieved.

0 2.2.2.10 Lunar-Orbit Rendezvous

This phase starts from the low holding orbit achieved by the ascent burn of
the previous phase. From this orbit, the RR makes direction and range measurements
to the Command Module for refinement of the navigation data in the Lunar Module
computer. The phasing of motion between the two vehicles eventually reaches a
specific point at which a standard transfer burn puts the Lunar Module on an ascending
trajectory to intercept the orbiting Command Module. During this period, radar
measurements provide data for the Lunar Module computer's small velocity correc-
tions needed to establish a more accurate intercept trajectoryv. Coasting continues

between and during these corrections until the range to the Command Module is

reduced to a few miles.

A series of braking maneuvers under control of the Lunar Module GN&C System
and the astronaut is required during the terminal rendezvous phase. During this
phase, data from the inertial sensors and the rendezvous radar are utilized. The

Command Module pilot can monitor progress with the sextant, with VHF ranging,

~and with the computer-contained rendezvous program. This operation reduces Lunar

Module velocity relative to the Command Module to zero at close range, leaving
the Lunar Module pilot in a position to initiate a manual docking maneuver with the
translation and rotation control of the reaction jets. These maneuvers are normally -
done with the Lunar Module, although propulsion or control problems could require
the Command Module to take the active role. After final docking, the Lunar. Module
crew transfers into the Command Module. The remaining ascent stage of the Lunar.

Module is then jettis.o_ned.

2.2.2.11 Transearth Injection

-

Navigation measurements made while in lunar orbit determine the proper initial

conditions for transearth injection. These measurements are performed as before,

' Ausing available onboard and earth-based tracking data.

: Tl&e guided transearth injection, which of necessity is performed behind the

moon, is normally made under the control of the GN&C System. Targeting for this

7

maneuver is normally provided by uplink telemetry before the spacecraft passes
behind the moon. Several backup means are available to cover possible failures in
the primary system. The injection maneuver is controlled to put the spacecraft‘on

a free-fall coast which will attain satisfactory entry conditions near earth.

2.2.2.12 Transearth

The transearth phase is 'very similar to the translunar phase. During the
long coasting phases going to and from the moon, the systems and crew must control
the spacecraft orientation. Typical midcourse orientation constraints include
ensuring that the high-gain communicaﬁon antenna can point to earth while remaining
‘ VWithin its gimbal limits; that the proper omnidirectional é.ntenna is selected by the
crew; and that the spacecraft attitude is not held fixed relative to thé sun for too
lorig a period, thus minimizing the effect of local heating. Consequently, a passive
‘thermal-control mode (barbecue) is normally used via the GN&C System to change

spacecraft attitude slowly, relative to the sun line-of-sight.

Onboard and ground-based navigation measurements nominally lead to aseries
of three midcourse correction maneuvers during the transearth flight. Very accurate
transearth injection has made it probable that one or more of these maneuvers
may be deleted. The aimpoint of these corrections is the center of the safe earth-entry
corridor suitable for the desired landing area. This safe corridor is expressed as
a variation in flight-path angle of -6.5 deg +0.05 deg, measured with reépect tq.thé
local horizontal. A too-high entry could lead to a skipout from the atmosphere; a
too-low entry could lead to atmospﬁeric drag decelerations exceeding the crew
tolerance. ' |

After safe entry conditions are confirmed by navigation, the inertial platform
is aligned or realigned, the Service Module is jettisoned, and the initial entry attitude
of the Command Module is achieved. ’

2.2.2.13 Reentry
Initial control of entry attitude is achieved by GN&C System commands to the

12 reaction jets onthe Command Module. As the étmosphere is entered, aerodynamic

forces ¢reate torques determined by the shape and center of mass. ‘These torques

78

are in a direction toward a stable trim orientation, with the heat shield forwa'mrd
and the flight path nearly parallel to one edge of the Command Module's conical
surface. The entry digital autopilot in the GN&C System now operates the reaction
- jets to damp out any ascillation about this trim orientation. The resulting angle of
attack of the entry Shape causes an aerodynamic lift; this force is used for entfy
path control by rolling the vehicle about its wind axis under control of the GN&C
Sys.tem. Range control is achieved by rolling, so that an appropriate component of
the lift vector is either up or down, as required. Cross-range control involves
rolling' the spacecraft so that the lift vector points right or left of the flight path,

as required.

Safe reduction of high velocity to suborbital conditions through the eénergy-dissi-
~ pation-effect of the atmospheric drag forcesis the first concern of the entry guidance.
At lower velocity, controlling to the earth-recovery landing area is included in the
automatic guidance; manual entry maneuvers can also be used as a backup mode.
Velocity continues to decrease until deployment of the drogue parachutes. Final

letdown is normally by three parachutes to a water landing.
2.2.3 Rope Design Philosophy and Problems Encountered

The principal flight software efforts which, when integrated together, allow
such a complicated mission to succeed are coasting flight navigation, targetihg,
powered-flight guidance and navigation, and digital autopilots. The philosophy which
guided the design, development and integration of each of these tasks is presented

in this section, and a functional description of each is presented in the appendices.

Early in MIT's Apollo software effort, the engineer who .designed a mission
program was also reéponsible for the coding and testing of that program. Because
early programs were to'fly in unmanned, fixed-sequence flights, mission programs
were arrangedin afixed, predefined sequen'ce. AGC memor;);capacity seemed ample,

and programming and verification were relatively simple and straightforward.

With each successive rope, the software task became decidedly more compli-
cated. With the arrival of manned flights, provision for astronautinteraction brought
about a requirement for nonfixed program sequences with interfacing routines.

Thenecessity arose for several programs to run simultaneously. Memory require-

79

* - ° -
ments beganto grow at astaggering rate . Finally, themission programs themselves
became so complex that it became virtually impossible for an individual design
engineer to accomplish all the design, programming andverification tasks by himself.

Clearly, the need for a formal design philosophy was at hand.

Mission programs were apportioned into standardized computational, service
and interfacing routines. Fux;-thermore, nearly every program was modularized so
that there were no assumptions concerning program sequence, except where manda-
tory. Consequently, the program became tractable, allowing the allocation of analysis,
program.ming and verification to expert programming individuals—each of whom
was to become a specialist in his own area. '
With this mddulariiation of the progranis, it became apparent that many could
“run in parallel. (The CM AGC Executive allows up to seven to run in parallel, and
the LM AGC Executive allows up to eight.) Parallel operation would create DSKY
display conflicts, however, because PINBALL originally restr:icted to one the number
of programs which might have access to the DSKY at any one time. But these
conflicts had been anticipated, since the multiple-level, DSKY-display capability
was being developed concurrently. Furthermore, the DSKY-display capability
provided a standard display interface for all programs and established a useful
‘mechanism for restartingprograxns (see Sections 2.1 .3.3. and 2.1.4). The modulariza-.
tion of the programs, together with the multiple-level DSKY displays, allowed the
flexibility and program manageability needed to accomplish the Apollo mission.

Problems were attendant throughout the development, however.

Great care had to be exercised in the allocation of erasable me'mofy, since
the demand exceeded the available registers; the sharing of erasables wherever
possible became s'tandard. With the enlarged staff of programmers, careful control
was more critical than earlier. Each individual programmer concentrated on a

particular aspect of the program, and frequently was unfamiliar with areas other

]

N :
Even the relatively simple Apollo 4 program had required no less than 87 percent
of the Block I computer memory. '

80

%< . . L -
than hisown. Considerable effort was expended in the allocation of erasable storage

and in the prevention or correction of erasable-memory conflicts.

Difficulty in ""'shoehorning' erasable storage** and the ever-attendant problems
of erasable-memory conflict were not the only vexations imposed by the meager
AGC erasable memory (2048 words): erasable sharing brought on external restraints,
causing programs to become less flexible—they had to be programmed to conserve
erasable memory even at the/cost of simplicity and execution time; and many basic

subroutines could not be made reentrant.

, From the beginning, restart protection has been provided for all the ropes¥
at a cost in fixed memory, execution time, and complexity (complexity because a
restart could occur anywhere in the program). One school of thought felt such

protection was unnecessary; it was unlikely, this viewpoint held, that such a restart
| would occur in flight at all, and ahy that did occur would probably be during an
unimportant pért of the program. However, zi more conservative philosophy
prevailed, providing safe error recovery—a sobering factor, since little or no
‘ redundarlcy was provided for fault toleranoe in the hardware, Simpler, more obvioué
programming techniques, which might have averted some of the problems encoun-
tered, were not used if it were felt that they might restrict the scope and usefulness
-of the program '

Gradually, provision has been included in the softwar'e to check'agains{ astronaut
procedural errofrs and to baok- up hardware failures with alternative software
processing; several software procedures have been implemented to ensure that
failures of critical switches and indicators can be overcome by special provisions
within the prograrn. ‘ ' '

At one point an Erasable Committee, consmtmg of the Assembly Supervisor and
representative experts from each of the major areas, would adjudicate every request
for an erasable word or b1t

COLOSSUS 237 (Apollo 8) flew with only 15 unused erasable words, and LUMINARY
69 (Apollo 10) with only 5.

®

- 81

SECTION III

TESTING, VERIFICATION, AND MISSION SUPPORT

For each flight a new assembly of onboard computer programs is integrated
and tested. Improvements over the previous flight are included and parameters
improvements over the previous flight are included, and parameters are changed
tomeet specific flight objectives. Asmentioned in Section I, this completed assembly
of hard-wired and erasable memory is known as a "rope', a name taken from the
weaving process by which the fixed memory is manufactured_. The present section
of this report describes MIT's continuing effort in the qualification and support of
eachnew rope. The support effortisvariedinnature. Before release for manufacture,
the rope undergoes avigorous testing and verification program. Specification change
procédures provide NASA with control over the software system. Documentation
is generated for trainiﬁg and information purposes, as well as for specification
control. MIT also supports the Apollomissions by training crews, flight controllers
and others, by providing support personnel to NASA, and by actively monitoring
each flight.. ‘

3.1 Testing and Verification

3.1.1 Testing Philosophy

Because the lives of astronauts are at stake, all components of the Apollo
system must undergo exceptionally stringent testing. Schedules have been tight
and launches frequent; thus, timely, well-managed testing pfogra.ms have been
necessary. The testing program for Apollo software was designed under additional
constraints, because ':che software is subject to constant change. Improvements are
continually suggested by the astronauts, NASA and MIT—evenup to the time of launch.
The fixed memory, however, must be tested and released for manufacture three to
- four months prior to flight, to allow for manufacturing time and for integrated testing
of the complete vehicle. Thus, an obvious conflict arises between the desire for
improvements and the need for testing. As a result, MIT must perform a large

‘,
amount of work in a short period of time—and with very high accuracy.

82

In general, the MIT testing program encompasées two major areas—cofnputa-
tion and logic. The mathematical portions of the program are tested for computa-
tional accuracy, both to discover programming errors and to identify degradatioh
in accuracy resulting from such factors as truncation and roundoff. Tt is also
necessary to test the entire program sequentially to ensure that the proper logical
sequences occur. a | ‘

s

The first step in the testing program is the preparation of comprehensive
test plans. A test plan specifies the objeétive of the test, the broad initial conditions,
and the sequence of program operation, and it identifies the criteria (test points)
upon which the results are to be judged. Preparation of test plans requires the
cooperation of the designers and programmers who are intimatély acquaintéd with
the particular coding being tested, as well as coordination by those familiar with
the overall program structure. Test plans thus sérve toorganize, control and evaluate.
the testing program.

After preparation of the test plan, the second step in the testing procedure is
to generate specific initial-condition data and adetailed operating sequence, including
astronaut operations when applicable. The third step is to perform the test on the
All-Digital or Hybrid Simulators and to collect the test-point data from on-line
‘printouts and post-run edits. Compari‘s.ori data are collected from other simulations.
The fourth step is to compare the test-point data from the various sources and .to
make a judgment concerning the future cdurse of the test. It is not unusual for a
test to go through the second, third and fourth stéps repeatedly before being judged

successful. The final step is the documentation of the test.

Testing procedures developed along with the programs-. In the early conceptual

and engineéring stages, MAC”< programs wer:e written by the designers to test their
ideas before AGC coding was started. When small pieces of AGC coding were
completed, they were'individually tested to sée that all logical branches were correct
and that they yielded the desired arifhmetic outputs. As these pieces of coding

were integrated to form larger blocks, interfaces were tested to verify that ‘the

>I<As explained in Section I, MAC is a high-level programming language for general-
purpose computers, developed at MIT for scientific applications. It is not to be
confused with MIT's Project MAC. The latter wasnamed independently, some years
later, and is unrelated to the MAC language.

83

pieces of coding which were tested independently would also work together. Much
insight and pianning were necessary to ensure that sufficient representative tests
were run on combinations of programs, since the length and complexity of the
integrated system software made it impossible to test every conceivable sequence
of events. However, all of those sequences which could reasonably occur for a

particular mission were vigorously tested.

As work progressed from subroutines to the major-program level, testing
emphasis shifted from the individual bits and branches to the overall performance,
computational accuracy, scaling problems, and major logic flow. It was important
to determine whether the design was adequate to perform the required functions.

As it reached completion, the integrated flight rope required performance
and stress testing. Typical mission sequences, such as navigation, targeting and
powered flight, were simulated. Testirig was also designed to ensure that the computer
could accomplish all the required tasks in real time, (If the AGC is asked to do
too many things at once, a restart will occur, and valuable time will be lost.) It .
was also important to test the effects of off-nominal procedures and data upon

computer functioning.

After the early ‘missions were flown and the testing program became well
defined, it became unnecessary to duplicate the above testing for each new mission.
The program worked—only the changes and additions needed exhaustive tesvt‘ing{
As aflight approached, the testing emphasis shifted towards those program sequences
and combinations which were anticipaféd for the mission.

3.1.2 Levels of Testing

Formally, the testing effort has been subdivided into six levels:

Level 1 testing was part of the early design effort. As a partiéular set of
specifications was created, design engineers coded the equations in MAC and
performed various test cases toidentify possible computational and logical difficul-

ties, such as loss of acceptable accuracy and range of variables.

<4

84

Level 2 testing began when a block of AGC coding was corhpleted for the above
specifications. The programmer would test the coding on the All-Digital Simulator.
Only those factors directly influencing the block of coding were included in the
simulation. Results of Levels 1 and 2 testing were compared and distributed among

MIT personnel.

- Eventually, Levels 1 and 2 wére combined by building edit programs in the
All-Digital Simulator which processed the data through both MAC and AGC equa-
tions, and printed comparisons. As the overall programs became well developed,
new design changes would thus undergo "unit testing', which took the place of Levels
1 and 2. |

Levei 3 testing was done by the programmers to verify the operation of cgjmplete
programs or routines. Dig'ital and hybrid simulations were used to ensure that the
smaller blocks of coding fit together logically. As each logical path of the coding
was tested, it ‘was traced on amaster copy of GSOP, Section 4, including test number
and date. (Section 4 isthe NASA- approved specification document for software-logic

flow, as discussed in Section 3.2.1 of this report.)

Level 4 testing required the cooperation of designers and programmers, using
both digital é.nd hybrid simulations. Sequences of several programs were tested,
corresponding topossible missionusage. These tests verified the proper communica-
tion from program'to program and investigated conflicts in such areas as erasable-
memory usage and time sharing, between the major programs. Test points were
compared with the edit programs in the All-Digital Simulator, or, if edit programs
were unavailable, with an engineering simulation. Completion of Leve'l- 4 testing

corresponded to release of a program for manufacture.

The programs und‘erwént continual change during Levels 3 and 4 testing due
tonew specifications,.as well as problems uncovered by the testing program. Level
5 testing repeated all the Levels 3 and 4 tests on the final rope which was released

for manufacture, and thus verified the continual validity of these earlier tests.
Level 6 testing, which took place after the.rope was released for manufacture,

made use of the All-Digital Simulator to establish performance specifications, and

the Hybrid Simulator to reveal program anomalies. Level 6 testing onthe All-Digital

85

Simulator was oriented toward the particular flight; these tests used the expected
timeline, operational trajectories, procedures and erasable data. Expected one-
sigma and three-sigma errors in equipment and in state vectors were employed to
give a broad range of performance data. Results of the tests were analyzed by the
designers and programmers, and presented to NASA as predictions of the Guidance,

Navigation and Control System's performance.
3.1.3 Testing Tools

Software designers and programmers used various simulations in the develop-
ment and testing of the flight programs; The All-Digital Simulator bore the largest
brunt of the testing effort. It afforded the most precise and repeatdble simulation
of the AGC and its environment. The Hybrid Simulator permitted the tester to
interface directly with a program by means of a DSKY and to make on-the-spot
changes if necessary. The Engineering Simulator provided quick turnaround, thus
permitting multiple runs with changes in many parameters. The following sections
briefly describe each of these simulations, with emphasis on those aspects pertinent

to their use in the testing and verification program.
3.1.3.1 All-Digital Simulator

The All-Digital Simulator has been the most powerful tool in the verification
program. It exists entirely as codihg on a general-purpose digital computer, and
is composed of two logically independent sections, linked by an interface routine.
The AGC Insfruction Simulator simulates the operation of the Apollo. Guidance
Computer, both in storage layout and in détailed arithmetic and logical operation.
The Environment, made up of a number 6f MAC-coded sﬁbroutines, simulates all
relevant aspects of the hardware and flight environment within which the AGC
operates. This environment includes effects of the ehgine, spacecraft dynamics,
optics, IMU, radar, astronaut interactions, atmosphefic and gravity effects, and
celestial-body motion. Almostevery aspect of the environment which can conceivably
interact with the flight program is included.

During a simulated se,quence., the Instruction Simulator advances through the

AGC p"-rogram, instruction by instruction, simulating the detailed operations per-

formed by the AGC in executing each instruction. After each instruction cycle, the

86

state of the simulated computer, including such factors as instruction sequencing,
contents of erasable storage, intefrupt activity and clock incrementation, is identical
to the state of an actual AGC executing the same program; in addition, truncation,
round-off, overflow and timing exhibit the same behavior on the simulated AGC as

they do in the real one.

Inthe course of advancing through the AGC program, the Instruction Simulator
encounters instructions which refer to input or output operations, such as the reading
of an input counter or the setting of an output discrete. A program known as the
Communicator examines all such input/output references and determines whether
immediate interaction with the Environment simulation is required by the specific
action of the AGC. When input data are required by the Instruction.Simulator, the

"Communicator tries to provide this information by extrapolation from the previous

Environment state. If this can be done, control returns immediately to the Instruction
Simulator. Should the Communicator not have a valid extrapolation formula, there
will be a full Environment update. In general, the Communicator updates the
Environment over the 1ongest possible time interval consistent with maintaining
simulation accuracy.

By maintaining a high degree of similarity between the simulated and the real
AGC-Environment interface, the simulated AGC can be subjected to computational
loads and dynamic situations which closely approximate the conditions of a real
mission. Precision in the simulated AGC performance is degraded primarily by
inaccuraciesin AGC or Environment models. These inaccuracies may be deliberate,
representing a compromise betweenbf:'idelity and computational speed, or may be of
unknown cause and difficult to evaluate; however, the inaccuracies are all within

the precision needed to test the programs vigorously.

In addition to providing the Instruction Simulator with all the necessary inputs
for the simulation to run, the Environment serves as a standard against which flight
software performancé can be judged. This is because many ofvthe tasks required
of the AGC involve measurement and computation of factors in the ext'ern'al
surroundings, such as spacecraft attitude and tréjectory, the effects of gravity, and
sensor errors. Inaccuracies can arise in ’chesé AGC computations for a number of
reasons: informationfrom the sensors may be imperfect; the measurements available

may have to be processed before the information required can be obtained; space

87

and time limitations in the AGC, with its short, 15-bit single-precision accuracy,
also introduce errors; finally, programming errors can lead to subtle or gross
miscalculations. All of these error sources are represented in the All-Digital
Simulator. However, the Environment portion of the simulator has available or
can generate the "true" value of the quantity being measured and the "true" value
of the quantity being computed. Although the "true' quantities in the Environment
simulation are obtained from finite precision mathematical models, the 64-bit
accuracy of the MAC-coded environment is far greater than the AGC provides, and
the models are more comprehensive than those used in the flight programs. For
example, the Environment can compute the "true' altitude of the Lunar Module above
the simulated lunar surface. This altitude can serve as a standard by which to
_jﬁdge the AGC-computed altitude. Post-run edits permit the user 1o make this

type of comparison on any pertinent section of the software.

The Digital Simulator provides theuser with numerous output options, traces,
dumps and edits, which permit detailed analysis of AGC performance. Before
processing each instruction, the Instruction Simulator checks whether there is a
user-interrupt attached to that instruction. These interrupts can be initiated by
accessing a memory locatior}, or can be made conditional upon various parameters
of the computer state or upon the number of accesses to a location. Thus, the user
can interrupt the program ’.co dump onto magnetic tape any portion of the AGC memory
or the Environment. He can flag the time an instruction occurs, change any register,
or even terminate the run. The user may periodically dump a "snapshot" of the
entire simulator from which a subsequent simulation can be initiated. This feature,
commonly called "rollback', is extremely valuable when many hours have been
invested in a simulation run that has terrhinated for one reason or another. The
results may be examined, changes made to the AGC progfam or the Environment,
and the run continued in a deterministic manner. Since the simulation is entirely
digital, it has bit-by-bitrepeatability, and any changes bétween runs can be attributed
to modifications by theuser. As previously fnentioned, the editing capability causes
information to be stored and then analyzed at the end of the simulation by a MAC

program.
Generally, debugging of AGC }Srograms proceeds by testing individual elements

of programs on the Digital Simulator separately, and then gradually merging the

elements into a working rope. The AGC programmer uses the simulation in early

88

stages of development to debug preliminary coding. The program under test is
executed in a simulation, and, by using the various diagnostic tools, the programmer

can determine where errors exist.

In later stages of rope development, the Digital Simulator can be used to verify
the adequacy of the various guidance, navigation and control programs to perform
required tasks in a flight environment. The implementation of specific guidance,
navigation or control laws on the AGC often leads to problems with scaling, job
sequencing, or timing. Thesé problems may be uncovered in simulation and result
in redesign of some of the control algorithms. The closed-loop simulation of the
AGC interacting with the vehicle is able to test the adequacy of the steering and
~autopilot design in many ways that are not possible through analysis alone. In the
final stages of program development, the simulator may be used to generate long

verification runs which demonstrate the full mission capability of the rope.

The All-Digital Simulator plays the largest part in the testing and verification
program. Among its advantages are the exact reproducibility of tests, and the
availability of many user options. One disadvantage is that the user cannot interface
directly with the program. All required environment and astronaut actions must
be decided upon before thé test, and changes cannot be made until computer printout
is returned to the user. AnotherAdisadvantage is that, in a few circumstances, the
simulation may be forced to runmuch slower thanreal time, as when high-frequency
bending is being simulated, and the Instruction Simulator has to wait while digital
approximations are being calculated in the Environment. For these cases the Hybrid
Simulator is the more appropriate testing tool; and cbmplements the cap_abilities of
the Digital Simulator. '

3.1.3.2 Hybrid Simulator

The Hybrid Simulator combines analog and digital computers with various
pieces of G&N hardware to provide a real-time simulation of the flight programs.
By interfacing with the simulation through a DSKY and various hand controllers
and switches, theuser can control the flow of the program in process and can make
on-line modifications if necessary'. This capability is especially pertinent, since
the Apollo system involves such a high degree of man/machine interaction. The

user may be a designer testing a new design, a prograrhmer verifying his coding, a

89

human-factors engineer evaluating crew procedures, or an astronaut familiarizing
himself with the ‘system. Two‘complete simulators exist, one for the Command
Module and one for the Lunar Module. Mockups of the CM. and LM cockpits are
interfaced with each of the hybrid computers to provide an environment for realistic

replication of crew functions associated with the G&N system.

Analog and digital computers are both necessary to provide real-time simula-
tions. Such high-frequency effects in the environment as bending and actuator
dynamics are simulated by analog computers, since adigital computer cannot respond
in real time with the accuracyneeded. Repetitive mathematical and data-processing
functions, however, are best performed by the digital computer.

In the Hybrid Simulator, actual Apollo LM and CM computers are used;
however, Core Rope Simulators replace all of the AGC memory with erasable
‘memories, thus facilitating convers-ion‘ from one rope assembly to another, Core
Rope Simulators also provide many useful features to aid in program analysis, such
as the ability to monitor and change memory locations, and to stop and single-step
either computer. Actual Coupling Data Units interface with the AGCs, but the
remaining G&N hardware, as well as spacecraft dynamics and the external environ-
ment, are simulated. The cockpits feature planetarium displays and television for

use by the optics equipment and for simulated lunar landing.

Operation of. the Hybrid Simulator requires the participation of an AGC user
and a computer operator. An XDS 9300 computer controls the simulation; It
initializes, checks and modes the analdé computers. It loadsthe Core Rope Simulator
with an AGC program, sets up the values of variables, uplinks erasable-load values
to the AGC, and turns the entire simﬁlétion' on. At this point, the'AGC user will
call up on the DSKY the AGC program to be-verified. This can be done either from
the DSKY in the hybrid labobratory or from the one in the cockpit mockup. '

During operatic;n, data are taken from the AGC every two seconds 1n two ways:
the co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>