
N. Bessis, F. Xhafa (Eds.): Next Generation Data Technologies for CCI, SCI 352, pp. 3– 30.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 1
Coordination Mechanisms in Complex
Software Systems

Richard Mordinyi and Eva Kühn1

Abstract. Software developers have to deal with software systems which are usu-
ally composed of distributed, heterogeneous and interacting application compo-
nents representing higher-level business goals. Although the message-passing
paradigm is a common concept allowing application components to interact with
each other in an asynchronous manner, the technology is not entirely suitable for
complex coordination requirements since the processing and state of coordination
have to be handled explicitly by the application component. Data-driven frame-
works support the coordination of application components, but have a limited
number of coordination policies requiring from the software developer to imple-
ment coordination functionality that is not directly supported by the coordination
framework. We illustrate the Space-Based Computing (SBC) paradigm aiming to
support and facilitate software developers efficiently in their efforts to control
complexity regarding concerns of interaction in software systems. Major results of
the evaluation in this context are improved coordination efficiency accompanied
with reduced complexity within application components.

1 Introduction

Complex systems are systems [1, 2] whose properties are not fully explained by an
understanding of their single component parts. Complex systems (e.g., financial
markets, bacteria life cycles) usually consist of a large number of mutually inter-
acting, dynamically interwoven, and indeterminably dis- and reappearing compo-
nent parts. The understanding often is that the complexity of a system emerges by
interaction of a (large) number of component parts, but cannot be explained by
looking at the parts alone. Software systems, especially software-intensive sys-
tems [3], can be interpreted as complex systems as well, because they usually
interact with other software, systems, devices, sensors and people. Over time these
systems become more distributed, heterogeneous, decentralized and interdepend-
ent, and are operating more often in dynamic and frequently unpredictable

Richard Mordinyi · Eva Kühn
Vienna University of Technology, Institute of Computer Languages,
Space-Based Computing Group, Argentinierstrasse 8, 1040 Vienna, Austria
e-mail: {richard.mordinyi,eva.kuehn}@tuwien.ac.at

4 R. Mordinyi and E. Kühn

environments. Therefore, software developers have to deal with issues like
heterogeneity and varying size of components, variety of protocols for interaction
with internal and external components, or with a number of potential incidents,
like crashed or unreachable components in distributed environments. In the course
of developing distributed software systems, software developers cannot avoid cop-
ing with these complexity issues. Today’s software systems typically consist of
mainly distributed application components representing higher-level business
goals and a middleware technology abstracting the complexity concerns related to
network and distribution. However, software developers still have to deal with the
interaction of application components.

The message-passing paradigm is a common concept allowing application
components to communicate with each other. The message-oriented middleware
[4, 5], prominent representative is the Enterprise Service Bus (ESB) [6], provides
synchronous and asynchronous message-passing properties and promises to inter-
connect application components in a loosely coupled manner. Since message-
oriented middleware is only capable of transmitting and transforming messages
between application components, it lacks support for complex interaction re-
quirements which involve the participation of several application components for
decision making, like in the telecommunication domain [7]. The software devel-
opers have no other choice but to take into account both, the application logic rep-
resenting the business goal and additional coordination logic needed to fulfill the
specific coordination requirement. Such logic for instance may contain implemen-
tation matters related to synchronization problems. Furthermore, it may include
logic for the management and supervision of the latest state of the coordination
process itself otherwise the application may get “lost” and the common business
goal cannot be reached. Additional management is needed in case the coordinating
component crashes and after recovery the failed application component still wants
to be part of the running coordinating process [8]. These additional issues intro-
duce potential sources of error, decrease the efficiency of the system, and increase
the cognitive complexity [9, 10] of the application component. However, the re-
sponsibility of the software developer should focus on the application’s business
goals and not on concerns related to distribution or coordination.

A framework that has been explicitly designed for coordination purposes is the
so called tuple space, based on the Linda coordination model of David Gelernter
[11]. It is a data-centered, blackboard based, architectural style that describes the
usage of a logically shared memory, the tuple space, by means of simple opera-
tions as interaction mechanisms. The approach promotes a clear separation be-
tween the computation model, used to express the computational requirements of
an algorithm, and the coordination model, used to express the communication and
synchronization requirements. The state of coordination is not embedded in the
coordinating process itself but in the space [12]. The state of the coordination in-
formation on the blackboard determines the way of execution of the process. By
means of this coordination model the application may entirely focus on business
goals since the model “gives application builders the advantage of ignoring some
of the harder aspects of multi-client synchronization, such as tracking names (and
addresses) of all active clients, communication line status, and conversation
status” [13]. The Linda coordination model uses template matching with random,

Coordination Mechanisms in Complex Software Systems 5

non-deterministic tuple access to coordinate processes (see Sect. 0) supporting one
coordination model only that can be considered a restriction limiting the benefit of
using such a communication abstraction. Therefore, with respect to more complex
coordination requirements the software developer still needs to implement coordi-
nation functionality not directly supported by the coordination framework within
application components. Consequently, this increases the complexity of the appli-
cation component, decreases performance due to additional implementation logic,
and leads once again to an unclear separation between computation model and co-
ordination model.

Taking into account the previously mentioned issues regarding interaction in
software systems, we illustrate the so called Space-Based Computing (SBC) para-
digm [14] supporting and facilitating software developers efficiently in their ef-
forts to control complexity concerns in software systems. SBC extends and
strengthens the clear separation between computation and coordination logic by
allowing the selection and injection of scenario specific coordination models.
From the application’s point of view the SBC paradigm is comparable to the
blackboard architectural style, orientated on the Linda coordination language. In
contrast to traditional Linda coordination frameworks, we define the SBC para-
digm to extend the Linda coordination model by introducing exchangeable me-
chanisms for structuring data in the space using special ordering characteristics
and reducing dependencies between application components and coordination
models. SBC explicitly embeds sophisticated coordination capabilities in the ar-
chitectural style, and thus makes the style itself dynamic with respect to the sce-
nario’s coordination problem statement. This means that SBC is capable of
abstracting coordination requirements and changes from the application. Since co-
ordination requires and thus inherently consists of communication, consequently
the abstraction of coordination also means that SBC abstracts communication re-
quirements as well.

We evaluate the Space-Based Computing (SBC) paradigm using an industrial
use case from an assembly workshop of a production automation system. The
evaluation will demonstrate SBC’s coordination and recovery capabilities focus-
ing on aspects like feasibility, effort, robustness, performance, and complexity.
Major results of the evaluation are higher coordination efficiency accompanied
with minimized complexity within application components.

The remainder of this chapter is structured as follows: Section 2 summarizes
related work on coordination models and platforms. Section 3 describes the indus-
trial use case while Section 4 concentrates on the conceptual details of the Space-
based Computing paradigm. Section 5 presents the evaluation whereas Section 6
discusses the advantages and limitations of SBC. Finally, Section 7 concludes the
chapter and provides further research issues for future work.

2 Related Work

Since significant characteristics of complex systems refer to the interaction be-
tween components of complex systems, coordination between these components is

6 R. Mordinyi and E. Kühn

an important issue to be investigated. This section summarizes related work with
emphasis on coordination theory by giving a definition of coordination, describing
coordination models, and presenting technologies built for supporting coordination.

2.1 Coordination Theory

Coordination [15] is the additional organizing activity (like information process-
ing) that is needed in case multiple actors pursue the same goal, that a single actor
would not perform. In a more general perspective [16], coordination refers to “the
act working together harmoniously”. However, it can be derived that coordination
itself consists of different components, like actors performing some activities
which are directed to a goal. Therefore, the definition implies that activities are
not independent and thus coordination can be seen as “the act of managing inter-
dependencies between activities performed to achieve a goal”. Later, Malone and
Crowston [17], the founders of interdisciplinary science of coordination theory,
describe their definition in a refined form just as “managing dependencies be-
tween activities". It has to be pointed out that coordination makes only sense if
tasks are interdependent. If there are no interdependencies, there is nothing to co-
ordinate either. Given the unavoidable existence of dependencies, a detailed char-
acterization of different sorts of dependencies is given in [17, 18].

2.2 Coordination Models

A coordination model [19] is either a formal or a conceptual framework to model
the space of interaction. A formal framework expresses notations and rules for the
formal characterization of coordinated systems, as used in the frameworks listed in
[20] and [21]. A conceptual framework is required by software developers to
manage inter-component interactions, since it provides abstraction mechanisms. In
general, the emphasis is on the expressiveness of the abstraction mechanism of the
coordination model, and on its effectiveness helping software developers in man-
aging interactions.

From a functionality point of view distributed systems are typically divided into
the following three concerns:

• Computational logic (i.e. business logic) performs calculations representing
the main intention of the system (i.e. business specific goals)

• Communication responsible for sending and receiving data between
components to be further processed.

• Coordination or dependency management responsible to execute tasks in a
way where no dependencies are violated and the common coordination goal is
achievable.

Sancese et. al. [22] argue that a clear separation of the three parts leads to a reduc-
tion of complexity of the entire systems also enabling a reliable and more stable
implementation. The process of coordination follows a certain coordination model
for which Ciancarini [19] defines a generic coordination model as a triple of

Coordination Mechanisms in Complex Software Systems 7

{E, M, L}. In the model, {E} stands for either physical or logical entities to be co-
ordinated. These can be software processes, threads, services, agents, or even hu-
man beings interacting with computer-based systems. {M} represents the coordi-
nation media (i.e. communication channels) serving as a connector between the
entities and enables communication, which is a mandatory prerequisite for coordi-
nation [18, 23]. Such coordination media may be message-passing systems, pipes,
tuple spaces [11] etc. {L} specifies the coordination laws between the entities de-
fining how the interdependencies have to be resolved and therefore, semantically
define the coordination mechanisms. According to [12], existing variations of co-
ordination models and languages can be mainly divided into two categories: con-
trol-driven (or task- or process-oriented) or data-driven coordination models, as
described in the following sections.

2.2.1 Control-Driven Coordination

In control-driven coordination models [12] processes are treated as black boxes
and any data manipulated within the process is of no concern to other system
processes. Processes communicate with other processes by means of well defined
interfaces, but it is entirely up to the process when communication takes place. In
case processes communicate, they send out control messages or events with the
aim of letting other interested processes know their interest, in which state they
are, or informing them of any state changes.

From a stylistically perspective, in the control-driven coordination model it is
easy to separate the processes into two components, namely purely computational
ones and purely coordination ones. The reason is that “the state of the computation
at any moment in time is defined in terms of only the coordinated patterns that the
processes involved in some computation adhere to” [12] and that the actual values
of the data being manipulated by the processes are almost never involved enabling
a coordination component written in a high-level language. Usually, a coordinator
process is employed for executing the coordination code. The computations are
regarded as black boxes with clearly defined input and output interfaces which are
plugged into the coordination code, i.e. they are executed when the program
reaches a certain part of the coordination code. In which way (e.g., RPC [24], RMI
[24], messaging [5, 6], publish/subscribe [25-28]) events are transmitted to the
consumers is up to the middleware technology used in the given context. Exam-
ples for control-driven coordination languages include WS-BPEL [29], Manifold
[30], CoLaS [31], or ORC [32].

2.2.2 Data-Driven Coordination

In contrast to control-driven coordination models, the main characteristic of the
data-driven coordination model is the fact that “the state of the computation at any
moment in time is defined in terms of both the values of the data being received or
sent and the actual configuration of the coordinated components” [12]. This
means that a coordinated process is responsible for both examining and manipulat-
ing data as well as for coordinating either itself and/or other processes by invoking
the coordination mechanism each language provides. A data-driven coordination

8 R. Mordinyi and E. Kühn

language typically offers some coordination primitives which are mixed within the
computational code implying that processes cannot easily be distinguished as ei-
ther coordination or computational processes.

Carriero and Gelernter define in [33] that “a coordination model is the glue that
binds separate activities into an ensemble”. They express the need for a clear
separation between the specification of the communication entities of a system
and the specification of their interactions or dependencies; i.e. a clear separation
between the computation model, used to express the computational requirements
of an algorithm, and the coordination model, used to express the communication
and synchronization requirements. They explain that these two aspects of a sys-
tem’s construction may either be embodied in a single language or, as they prefer,
in two separate, specialized languages. Such a coordination language is e.g., the
Linda coordination model (see Sect. 0). In this data-driven coordination model,
processes exchange information by adding and retrieving data from a so called
shared dataspace.

2.3 Linda Coordination Frameworks

The Linda coordination model [11] was developed in the mid-1980's by David
Gelernter at Yale University. It describes the usage of a logically shared memory,
called tuple space, together with a handful of operations (out, in, rd, eval) as a
communication mechanism for parallel and distributed processes. In principal, the
tuple space is a bag containing tuples with non-deterministic rd and in operation
access. A tuple is built-up of ordered fields containing a value and its type, where
unassigned fields are not permitted, e.g. a tuple with the three fields <“index”, 24,
75> contains “index“ of type string and 24 resp. 75 of type integer.

The defined operations allow placing tuples into the space (out) and querying
tuples from the space (rd and in). The difference between rd and in is that rd only
returns a copy of the tuple, whereas in also removes it from the tuple space. Both
operations return a single tuple and will block until a matching tuple is available in
the tuple space. There are also non-blocking versions of the rd and in operation,
called rdp and inp, which return an indication of failure instead of blocking, when
no matching tuple is found [34]. The eval operation is like the out operation, but the
tuple space initiates a single or several threads and performs calculations on the tu-
ple to be written. The result of these calculations is a tuple that is written into the
space after completed evaluation and that can then be queried by other processes.

The Linda model requires the specification of a tuple as an argument for both
query operations and thus supports associative queries, similar to query by exam-
ple [35]. In such a case, the tuple is called template that allows the usage of a
wildcard as a field’s value. A wildcard declares only the type of the sought field,
but not its value, e.g. the operation rd(“index“ ?x, ?y) returns a tuple, matching
the size, the type of the fields and the string “index“. A tuple containing wildcards
is called an anti-tuple. If a tuple is found, which matches the anti-tuple, the wild-
cards are replaced by the value of the corresponding fields. The non-deterministic
rd and in operation semantics comes from the fact that in case of several matching
tuples a random one is chosen.

Coordination Mechanisms in Complex Software Systems 9

Implementations that support the exact tuple matching of the Linda coordina-
tion model are: Blossom [36], JavaSpaces [37], LIME [38, 39], MARS [40, 41],
and TuCSon [42-44]. Although both MARS and TuCSoN enable the modification
of the operations' semantics by adding so called reactions, they cannot influence
the way how tuples are queried. JavaSpaces adds subtype matching to the exact
tuple matching mechanism to query objects from the space.

The drawback of exact tuple matching is that all collaborating processes must
be aware of the tuple's signature they use for information exchange. Hence, there
are several tuple space implementations that offer additional queries mechanisms,
such as TSpaces [13, 45, 46], XMLSpaces.Net [47, 48] and eLinda [34, 49-51].
TSpaces offers the possibility to query tuples by named fields or by specifying
only the field's index and a value or wildcard. Furthermore, TSpaces allows the
definition of custom queries by introducing the concept of factories and handlers.
Both TSpaces and XMLSpaces.Net support the use of XML-documents in tuple
fields and therefore enable the use of several XML query languages such as XQL
or XPath. In addition, XMLSpaces.Net uses an XML-document like structuring
for its space, which allows the utilization of sophisticated XML queries on the
space. eLinda enables the usage of more flexible queries, via its Programmable
Matching Engine (PME), such as maximum or range queries. Beside these queries
the PME also provides aggregated operations that allow the summary or aggrega-
tion of information from a number of tuples, returning the result as a single tuple.
The PME allows, like TSpaces with its concept of custom factories and handlers,
the simple definition of custom matchers [49].

The Linda coordination model exhibits the problem that access to local tuples is
tied to the built-in associative mechanisms of tuple spaces. This implies that any
non-directly supported coordination policy, like automatically reading several tu-
ples, has to be charged upon the coordinating processes. This means that processes
have to be made aware of the coordination laws increasing the complexity of the
application design and so breaking the separation between coordination and busi-
ness issues. The LuCe framework (stands for Logic Tuple Centres [52-54] and is
further development of MARS and TuCSoN) introduces the concept of tuple cen-
tres as an extended tuple space, which can work as a programmable coordination
medium. Beside normal tuples, information about the behavior of the centre is
stored in the so called specification tuples. The main difference between a tuple
space and a tuple centre is that the former supports only Linda coordination while
the latter can be programmed to bridge between different representations of infor-
mation shared by coordinated processes to provide new coordination mechanisms.
Such mechanisms are realized by reactions allowing the extension of effects from
the execution of communication operations as needed. Reactions map a logical op-
eration onto one or more system operations. Furthermore, the results of an opera-
tion can be made visible to the coordinating processes as a single transition.

LuCe extends the Linda coordination model by a dynamic coordination behav-
ior realized by means of reactions. This allows LuCe to satisfy complex coordina-
tion requirements, like handling of ordered tuples. Reactions are limited to Linda

10 R. Mordinyi and E. Kühn

primitives only. Therefore, they are only capable of handling coordination re-
quirements which do not need the integration of other components for interaction
than tuple spaces themselves. Beside the fact that reactions cannot perform block-
ing operations, to the best knowledge they introduce accidental complexity into
the coordination framework due to missing structuring and separation of concern
mechanisms. For instance, aggregation and ordering logic has to be implemented
in one reaction. Furthermore, in case tuples need to be sorted according to a spe-
cific requirement, they have to be extended with additional information represent-
ing the current position of the tuple. This implies that every operation performed
on the space has to be adapted to the new structure of tuples decreasing the overall
performance of the system.

3 Use Case Description

The SAW (Simulation of Assembly Workshop) research project [8] investigates
coordination requirements and recovery capabilities of software agents represent-
ing functional machines in an assembly workshop. The overall goal is to increase
the efficiency of the assembly workshop. This is achieved in two different ways,
as described in the following.

The scenario from the production automation domain (Fig. 1) consists of several
different software agents each being responsible for the machine it represents.
Such an agent may be:

• a pallet agent (PA) representing the transportation of a production part and
knowing the next machine to be reached by the real pallet,

• a crossing agent (CA) routing pallets towards the right direction according to
a routing table,

• a conveyor belt agent (CBA) transporting pallets, with optionally speed
control, from one crossing agent to another,

• a machine agent (MA) controlling robots of a docking station for e.g.,
painting or assembling product parts,

• a strategy agent (SA) which, based on the current usage rate of the production
system, knows where to delegate pallets, so that by taking some business
requirements, like order situation, into consideration, a product is created in an
efficient way, or

• a facility agent (FA) which specifies the point in time when machines have to
be turned off for inspection.

Fig. 1 shows a software simulator for a production system, in the concrete case for
an assembly workshop. Such manufacturing systems are very complex and dis-
tributed. The usage of a digital simulator instead of a miniature hardware model
has a lot of advantages like, low operating costs, the easy reconfiguration and par-
allel testing.

Coordination Mechanisms in Complex Software Systems 11

Fig. 1 View of a simulated Production Automation System1 [55-57]

Multi-agent system (MAS) [58] is an accepted paradigm in safety-critical
systems, like the production automation. A major challenge in production automa-
tion is the need to become more flexible. The requirement is to react quickly to
changing business and market needs by efficiently switching to new production
strategies and thus supporting the production of new market relevant products.
However, the overall behavior of the many elements in a production automation
system with distributed control can get hard to predict as these elements may in-
teract in complex ways (e.g., timing of fault-tolerant transport system and ma-
chines) [59]. Therefore, an issue in this context refers to the implementation of
agents with reduced complexity of their implementation by e.g., minimizing the
communication effort to be managed by the agent.

An approach towards fast reactions may be the prioritization [60, 61] of pallets.
Some special parts of the product with higher priority have to be favored by the
agents rather than pallets with lower priority. This approach may help to a) pro-
duce a small number of products quickly, or b) to phase out products as soon as
possible in order to free resources for brand new products to be assembled. There-
fore, the aspect of priority has to be considered between all neighboring CAs and
all CBAs connecting them. In the described scenario a CA has to check first,
whether there is a pallet with high priority on one of the transporting conveyor
belts. If this is the case that particular CBA may speed up its transportation speed
as well as the CA may force the other conveyor belts to stop. This may happen by
e.g. either not handling any pallets coming from them and so forcing those CBAs
to stop, or by requesting the other CBAs to halt. So, the high priority pallet is

1 Thanks to Rockwell Automation for the provision of the simulator.

12 R. Mordinyi and E. Kühn

routed earlier than the other pallets, and it overtakes other pallets which may oc-
cupy machines needed by the prioritized pallet based on its production tree.

4 Space-Based Computing

Similar to the Linda coordination model, SBC2 is mainly a data-driven coordina-
tion model, but can be used in a control-driven way as well (see Sect. 0). As
shown in Fig. 2, application components running on different physical nodes coor-
dinate each other by means of writing, reading, and removing shared structured
entries from a logically central space entity.

Fig. 2 High-level view of the Space-Based Computing Paradigm

An implementation of the SBC paradigm can be deployed on a physical central

server, or on several multiple nodes. In the latter case, internal mechanisms have
to make sure, that the shared data structures on the participating nodes are syn-
chronized by taking into account use case specific requirements.

The following paragraphs summarize the XVSM2 reference architecture based
on the latest MozartSpaces2 implementation in detail. Fig. 3 illustrates a general
overview of the XVSM reference architecture divided into an application part (left
side) and a space part (right side).

Container-Engine: As in Linda, in SBC application components coordinate each
other by means of placing and retrieving data into/from a shared “space”. In
XVSM data is stored in so called containers that can be interpreted as a bag con-
taining data entries. In XVSM multiple containers may exist at the same time and
the number of containers defines the XVSM space. The responsibility of the con-
tainer-engine layer is the creation and destruction of containers. In its basic form a
container is similar to a tuple space - a collection of entries. The main difference
to a tuple space is that a container

• extends the original Linda API with a destroy method
• introduces so called coordinators enabling a structuring of the space
• may be bounded to a maximum number of entries

2 SBC has been realized in the eXtensible Virtual Shared Memory (XVSM) reference archi-

tecture which has been implemented among others in Java (mozartspaces.org) and .Net
(xcoordination.com)

Coordination Mechanisms in Complex Software Systems 13

Fig. 3 XVSM architecture with a container hosting a random-, a FIFO-, and a PRIO coor-
dinator structuring 7 entries [55]

Container-API: As in Linda (out, in, rd), a container’s interface provides a sim-
ple API for reading, taking, and writing entries, but extends the original Linda
API with a destroy operation. Similar to a take operation, a destroy operation re-
moves an entry from the container. Although a destroy operation could be mapped
onto a take operation where the result is omitted, it is still necessary to induct this
kind of operation that does not return an operation value. The reason is that this
way a lot of data traffic is avoided since the removed data does not need to be
transferred back to the initiator of the operation.

The destroy operation is also helpful especially in the case of bulk operations
[62]. Containers support bulk operations, so that it is possible to insert multiple
entries into a container resp. to retrieve/remove multiple entries out of it within
one operation.

While Linda makes an explicit distinction between blocking (rd, in) and non-
blocking (rdp, inp) primitives, XVSM primitives are restricted to the mentioned
four basic operations. Whether an operation blocks depends on the coordination
policy a coordinator represents.

Coordinator: A container possesses one or multiple coordinators. Coordinators
implement and are the programmable part of a container. They are responsible for

14 R. Mordinyi and E. Kühn

managing certain views on the entries in the container. The aim of a coordinator is
to represent a coordination policy. Each coordinator has its own internal data
structures which help it perform its task. If the business coordination context and
requirements are known beforehand, the coordinator can be implemented in an ef-
ficient way with respect to its policy. A coordination policy is represented in the
implementation of each coordinator. This implies that the semantics of two coor-
dinators may be the same, but they may be implemented in different ways; each of
them taking into account different business specific requirements. A coordinator
has an optimized view on the stored entries by taking into account scenario
specific coordination requirements. Fig. 3 shows three exemplary coordinators
(Random, FIFO, and PRIO Coordinator) referencing seven entries (E1-E7). The
Random Coordinator contains all existing entries in the container and re-
turns/removes an arbitrary entry in case of read/take, destroy operations. The
FIFO Coordinator imitates a queue. It stores in the lowest index the entry that has
been in the container for the longest time and in the highest index the entry that
has been added last. The PRIO Coordinator groups references only to specific en-
tries according to a priority defined by the software developer.

In general, whenever an operation is performed on a container, the parameters
of the operation are collected in a so called selector. Every coordinator has its spe-
cific selector which can be interpreted as the coordinator’s logical interface for the
performed operation. Comparing the relation between selector and coordinator
with OOP concepts, the selector is the interface and the coordinator the actual im-
plementation of that interface. In case of read, take, and destroy operations the
selector contains parameters (like a counter for the exact number of entries to be
retrieved) for querying the view on the managed entries. In case of a write opera-
tion parameters influencing the coordinator in updating its view are required.

In case a container hosts several coordinators, operations may define multiple
selectors as well. The number of specified selectors depends on the business coor-
dination requirements and is not bound to the number of coordinators in the con-
tainer. If more than one selector is used in querying operations, the outcome of the
execution of the first selector will be used as input to the second and so on [63,
64]. The sequence of selectors in read operations is non-commutative AND con-
catenated (i.e. filter style). This means that it makes a crucial difference if 10
entries are selected from a FIFO Coordinator and then a template matching is per-
formed or if the template matching is done first and then the FIFO Coordinator
tries to return ten entries.

Before explaining how operations are executed two classes of coordinators
have to be introduced. The software developer may declare a coordinator at the
time of its creation to be either obligatory or optional. An obligatory coordinator
must be called for every write operation on the container, so that a coordinator al-
ways has a complete view of all entries. An optional coordinator, however, only
manages entries if it is explicitly addressed in the write operation, while other en-
tries in the container remain invisible. The FIFO Coordinator can be used as an
obligatory one since it does not need any additional parameters.

Coordination Mechanisms in Complex Software Systems 15

In the following the execution of the operations in the container-engine is ex-
plained in general. The given explanation does not consider the semantics of
XVSM operation transactions or operation timeout. Those aspects are described in
[65] in detail.

• Write: the write operation is executed on all optional coordinators for which
parameters have been specified. Afterwards, the write operation is executed on
all remaining obligatory coordinators even if the operation cannot provide pa-
rameters for those coordinators. When a write operation has to be blocked
depends on the semantics of the coordinator. A semantic may be that an opera-
tion has to block if for instance, a Key Coordinator already has a key in its
view that the write operation of a new entry uses too.

• Read: the container-engine iterates over the specified selectors of the opera-
tion and queries the corresponding coordinators. In case multiple selectors are
specified the result set of the first queried coordinator is the set the next coor-
dinator has to use to execute its query. A read operation has to be blocked in
case the query cannot be satisfied.

• Take: the operation is executed the same way as a read operation whereas the
result set of the last coordinator defines the set of entries which have to be re-
moved from the container. Therefore, before returning the result set to the ini-
tiator of the operation the container-engine asks all coordinators which store a
reference on the entries of that result set to remove the entry from their views.
Similar to a read operation, a take operation has to be blocked in case the
query cannot be satisfied.

• Destroy: the operation is executed like a take operation without returning the
final result set to the initiator of the operation. Similar, a destroy operation has
to be blocked in case the query cannot be satisfied.

The XVSM Runtime is a layer that is responsible for executing the basic opera-
tions by concurrent runtime threads. Operations executed in the container-engine
are called requests in the XVSM Runtime layer. Beside the operation itself re-
quests contain context specific meta-information (e.g., timeout, location of the re-
ceiver of the request result). Analogously to Linda primitives that block if a tuple
does not match a specific template, the XVSM Runtime is also responsible for
managing the blocking semantics of operations. The difference to the Linda coor-
dination model is that software developers can alter the semantics of the initiated
request. This is achieved by so called aspects (see below) that are treated by the
Runtime as well.

Containers are Internet addressable using an URI of the addressing scheme
"xvsm://namespace/ContainerName", like “xvsm://host.mydomain.com:1234
/CName”. Every XVSM Runtime hosts several different transportation profiles
responsible for accepting requests and sending responses over the physical net-
work. Transportation profiles implement mechanisms for transporting data be-
tween nodes. The protocol type "xvsm" makes the usage of transportation profiles

16 R. Mordinyi and E. Kühn

transparent to the application component. This means that as a transportation me-
dium for accessing that particular container one of the transportation profiles is
used without impact on the application component. The application component
may specify the properties of transportation (e.g., reliability).

Aspects: The XVSM Runtime layer realizes aspect-oriented Programming (AOP)
[66] by registering so called aspects [67] at different points, i.e. before the opera-
tion accesses the container-engine or when the operation returns from the con-
tainer-engine. Aspects are executed on the node where the container is located and
are triggered by operations either on a specific container (i.e. container aspect) or
on operations related to the entire set of containers (i.e. space aspect). The join
points of AOP are called interception points (IPoints). Interception points on con-
tainer operations are referred to as local IPoints, whereas interception points on
space operations are called global IPoints. IPoints are located before or after the
execution of an operation, indicating two categories: pre and post. Local pre- and
post-IPoints exist for read, take, destroy, write, local aspect appending, and local
aspect removing. The following global pre- and post-IPoints exist: transaction
creation, transaction commit, transaction rollback, container creation, container
destruction, aspect add, and aspect delete. In case multiple aspects are installed on
the same container, they are executed in the order they were added. Adding and
removing aspects can be performed at any time during runtime.

Fig. 4 Data- and control-flow in a container with three installed pre- and post-aspects [67]

Fig. 4 shows a container with three local pre and three post aspects and their

various return values. The XVSM Runtime layer accepts incoming requests and
passes them immediately to the first pre-aspect of the targeted container. The
request passed to and analyzed by the aspect contains the parameters of the opera-
tion, like entries, transaction, selectors, operation timeout, and the aspect’s con-
text. The called aspect contains functionality that can either verify or log the
current operation, or initiate external operations to other containers or third-party
services. Aspects can be used to realize security (authorization and authentication)
[68], the implementation of highly customizable notification mechanisms (see be-
low), or the manipulation of already stored incoming or outgoing entries.

Coordination Mechanisms in Complex Software Systems 17

The central part of a container is the implementation of the container’s business
logic, i.e. the storage of the entries and the management of coordinators. A request
is successful if it passed all pre-aspects, the container-engine, and all post-aspects
without any errors. However, an aspect may return several values by which
the execution of the request can be manipulated. The following return values are
supported:

• OK: The execution of the current aspect has been finished and the execution of
the next aspect or of the operation on the container proceeds.

• NotOK: The execution of the request is stopped and the transaction is rolled
back. This can be used by e.g. a security aspect denying an operation if the
user does not have adequate access rights.

• SKIP: This return value is only supported for pre-aspects and triggers the
execution of the first post-aspect. This means that neither any other pre-aspects
nor the operation on the container is executed.

• Reschedule: The execution of the request is stopped and will be rescheduled at
a later time. This can be used to delay the execution of a request until an
external event occurs.

Depending on the result of the last post-aspect the result of the request is either re-
turned to the initiator of the request, or the request is rolled back.

The XVSM-Application API extends the XVSM-Space API with a notify
method. It is a programming language specific implementation which communi-
cates with the XVSM-Space API. The exchange of requests between the two APIs
is performed in an asynchronous way. Fig. 5 shows the general structure of proc-
essing a notification in XVSM. In contrast to a specific notification mechanism in
e.g., JavaSpaces, the introduced notification approach is flexible, thus can be
adapted to business specific needs. In the example there is a container “X” and an
application component 3 that wants to be notified whenever container X is ac-
cessed. When that application component invokes the notify method, XVSM Run-
time registers an aspect (e.g., a so called notification aspect) on container X and
creates a so called notification container. The notification aspect intercepts the
processing of the operation on container X and writes data into the notification
container. When the operation is intercepted (pre or post) information (e.g., a copy
of the executed operation or use case specific information about the operation) is
written into the notification container, depending on the scenario. A notification
container is an “ordinary” container that is therefore capable of hosting additional
pre and post-aspects for e.g., aggregation of entries.

Beside the notification aspect and the notification container, XVSM Runtime
performs take operations on the notification container and specifies a virtual an-
swer container where the result for that take operation has to be placed. The vir-
tual answer container is addressed like an ordinary container but is bound to a call
back method of the application component specified at the time of creating the no-
tification. Therefore, whenever an entry is written into the virtual answer container
the application component receives that entry. This way an application is notified
about events on container X.

18 R. Mordinyi and E. Kühn

Fig. 5 General structure of an XVSM Notification [69]

As it can be seen, the introduced notification mechanism builds on already de-
scribed XVSM architectural concepts. This allows software developers to create
domain and application specific notification mechanisms which exactly meet
given requirements. In Fig. 5 application component 2 wants to be notified in case
entries were written. Since that component is not always online, notifications are
temporarily and transparently stored in container Y [26].

The described mechanism shows several points where tuning of notification is
possible. For instance, the notification aspect can be placed either before or after
the execution of the operation on the container. If the aspect is installed as a pre-
aspect, the application component cannot be sure whether the operation was really
successfully executed on the container or had to be aborted due to errors. Further-
more, if the operation has to be blocked the application component is notified
every time that operation comes to execution. The notification aspect can be regis-
tered for any XVSM operation (read, write …) and therefore a notification cannot
only be created when an entry is written. It is also possible to create notifications
which notify a user when entries are read, taken or deleted. Furthermore, Fig. 5
does not define where the shown containers are placed physically. It is possible
that the containers are on the same node or on different ones. The latter one en-
ables the creation of durable subscriptions [26] by placing the notification con-
tainer on a node which is always reachable. The notification events are collected
in the notification container whether or not the client is reachable. When the sub-
scribing application component is online again, the XVSM Runtime fetches the
notifications from the notification container which contains new entries written

Coordination Mechanisms in Complex Software Systems 19

and optionally aggregated during its absence and pushes them via the specified
call back method to the application component.

5 Evaluation

A major challenge in production automation is the need to be flexible in order to
support a fast and efficient reaction to changing business and market needs. An
approach towards fast reactions may be the prioritization of pallets. As mentioned
before, some special parts of the product with higher priority have to be favored
by the agents to pallets with lower priority. Simplified, the scenario can be sum-
marized as the following: entries have to be ordered by means of the sequence of
writing and grouped according to the priority of the entry written. Then, the task is
to remove the entry first written from the non-empty group with the highest prior-
ity. Additionally, a conveyor belt has only a limited amount of space available de-
pending on the length of the conveyor. In the following the proposed SBC based
architecture is compared with architectures based on JMS messaging middleware
or the Linda tuple space.

5.1 Java Message Service

For communication between agents in the production automation system, JMS [4]
queues are appropriate. With respect to the described statement, Fig. 6 depicts how
queues would realize the coordination problem with three different priority cate-
gories whereas 1 is the highest priority. In contrast, Fig. 7 shows the realization
with an XVSM space container containing a PRIO-FIFO Coordinator. The PRIO-
FIFO Coordinator stores messages in a FIFO order grouped according to their pri-
ority. Additionally, both figures show the sequence to write an entry and to take
the next entry with the highest priority from the FIFO perspective.

In case of queues there are two possible implementations. In the first variant
there is one queue for each priority. In the second variant a single queue hosts all
messages (i.e. entries) whereas parameters in the message header define its prior-
ity for which so called selectors allow querying.

In the first solution, when an agent (Agent A1) wants to place an entry into a
queue it looks up its priority. Based on the entry’s priority the send operation (op-
erations 1, 2, or 3) of the proper queue is executed. This implies that the applica-
tion component has to manage three different queue connections. However, before
placing the entry into the queue the agent has to retrieve its size. If the number of
stored messages is greater than the maximum of permitted ones, then the sender
has to look for alternative routing paths. On the receiver side, the agent (Agent
A2) has two options of how to receive an entry (operations 4, 5, or 6). Either it
polls queues starting with the queue with the highest priority, or it is notified by
JMS in case an entry has been written into one of the queues. If it polls, then the
agent accesses the queue with the highest priority (Q-Priority 1, operation 4) first.
If it is empty then it accesses the queue with the second highest priority (operation
5), and so on. Once a queue has been found that is not empty it removes the entry
from the queue and processes it. If the agent is notified then messages are pushed

20 R. Mordinyi and E. Kühn

to the subscribed agents. However, in this case the concepts of a queue have to be
changed from QueueSession and QueueReceiver to e.g., TopicSubscriber and
MessageConsumer triggering an update of the agent’s implementation logic. The
difference between the two approaches is mainly concerned with the question of
who controls an agent. If the agent is notified then it has to process the pushed en-
try immediately. If the agent polls a queue it can act more autonomously since it
can specify when to access a queue and according to which strategy (e.g., configu-
ration of polling rate).

Fig. 6 Prioritized JMS queues

In the second implementation, agents (Agent A1’ and A2’) access a single

queue. The difference to the first implementation is the usage of selectors specify-
ing the priority of entries to be accessed. This means that instead of three different
connections to a queue, three different selectors have to be used appropriately.

In the proposed SBC architecture (see Fig. 7), the usage of a “PRIO-FIFO” co-
ordinator allows the software developer to specify the coordination policy trans-
parent to the agents. A write operation needs a priority parameter and the entry.
How entries are stored in the coordinator is up to the software developer and of no
concern to the application component (coordination category). Since the coordina-
tion policy is represented in the coordinator the agent’s take operation already
reflects its semantics regarding priority restrictions. This means that the take op-
eration does not need any parameters as the coordinator already knows that the en-
try with the highest possible priority has to be returned.

The migration from a take operation to a notification of written entries does
not imply any change of concepts. The application component just executes a no-
tify operation where it specifies the callback method. As described in the previous

Coordination Mechanisms in Complex Software Systems 21

section, aspects make sure that consuming notifications are pushed to the applica-
tion component. In contrast to the three queues, aspects can also help sort notifica-
tions according to the concurrently written entries’ priorities before delivering
them to the application component.

Fig. 7 Container with PRIO-FIFO coordinator (P..payload)

5.2 Linda Tuple Space

Fig. 8 depicts how the Linda tuple space approach would realize the coordination
problem. Additionally, the diagrams show the sequence to write an entry and to
take the next entry with the highest priority from the FIFO perspective.

For the implementation of a queue in Linda two additional tuples have to be
placed into the tuple space. One tuple that represents the first index (i.e. begin-
ning) of the queue (in-token) and one that represents the last index (i.e. end) of
the queue (out-token). Therefore, each tuple in the space has to follow a specific
structure. Either it is an index tuple containing information about its index type
(in-token or out-token), the priority of the queue representing, and the actual
value of the index, or it is a message type consisting of its type (i.e. message) and
its index in the queue. Whenever a tuple is placed into the queue the last index
tuple has to be taken out, the new tuple and an updated index tuple (i.e. index
is increased by one) written into the space. Whenever the first tuple needs to be

22 R. Mordinyi and E. Kühn

read, the first index tuple has to be found, its index read, and according to this
information the tuple retrieved. Whenever the first tuple needs to be taken out, the
first index tuple has to be found, its index read, the message based on this index
taken out the space, and an updated index tuple (i.e. index is increased by one)
written into the space. If no message can be retrieved then it implies that the cur-
rent queue is empty. Therefore, the process has to be repeated until a message has
been found with a lower priority.

Fig. 8 Prioritized queue realized with the traditional Linda approach

Listing 1 shows how to retrieve an entry based on Fig. 8 as an example setting
for stored entries in queues. It can be seen, that while the XVSM approach (see
Fig. 7) needs a single API operation to write or to retrieve an entry from the space,
the Linda tuple space approach requires three API operations: one to remove the
index tuple, one to remove/write the message, and one to write back the index tu-
ple. This is because the realization of a prioritized queue requires the agent taking
over a part of the coordination problem.

Listing 1. Retrieving a FIFO sorted entry with Linda

Nr. Operation

1.
//retrieve index of first message with highest priority 1
index = in(“in-token”, 1, ?int)

2.
//retrieve message from index with highest priority 1
message = inp("msg", 1, index, ?P)

3.
// write back retrieved index tuple
out("in-token", 1, index)

4.
//retrieve index of first message with new priority 2
index = in(“in-token”, 2, ?int)

5.
//retrieve message from index with new priority 2
message = inp("msg", 2, index, ?P)

6.
//write back new index tuple of new priority 2
out("in-token", 2, index+1)

Coordination Mechanisms in Complex Software Systems 23

Measured times required to retrieve the next entry, with highest priority, from a
prioritized queue are shown in Table 1. A benchmark has been set up, which com-
pares the performance of a JavaSpaces (as a Linda tuple space implementation),
and a PRIO-FIFO coordinator. The benchmark demonstrates that a PRIO-FIFO
coordinator is both able to retrieve entries faster than a coordinator with Linda pat-
tern matching techniques and behaves retrieves entries in a constant access time,
as expected from a FIFO queue.

Table 1 Time in ms to retrieve a single entry using different coordinators

Entries Linda PRIO-FIFO
10000 5,24 0,20
20000 15,15 0,20
30000 47,93 0,21
40000 58,66 0,20
50000 70,10 0,21

In order to run the benchmark the container was first filled with a specific
amount of entries (10000, 20000, 30000, 40000 and 50000 entries). After that a
take operation was issued, and the time needed to get the entry measured. The re-
sults of the benchmarks clearly show that the PRIO-FIFO coordinator is always
the fastest. The results also show that the PRIO-FIFO coordinator offers constant
access time, thus perfectly representing the coordination requirements within a
single operation call. The benchmarks were run three times on a single node using
an Intel Core2Duo T9500 with 4GB RAM to calculate the average access time.

6 Discussion

Besides XVSM the LuCe coordination framework, described in Sect. 0, offers the
possibility to enrich the semantics of coordination operations. XVSM achieves
this property by means of changeable coordinators. LuCe relies on the usage of so
called reactions. Such reactions are hidden from the application and triggered
transparently to the application whenever an entry is written or read. Reactions are
also changeable and capable of simulating any kind of coordination policies.

However, LuCe just maps a single logical operation onto one or more system
operations. This means that one operation in the application is mapped onto sev-
eral Linda operations in the system. Therefore, the complexity of coordination
policies has been just moved from the application (and consequently from the
application developer) to the coordination middleware, thus to the software devel-
oper of that platform. In contrast, XVSM also moves the complexity of coordina-
tion from the application to the coordination middleware, but allows the usage of
language specific primitives (i.e. the semantics of a FIFO coordination can be
mapped on e.g., a java.list) which shift complexity further away from the software
developer to the compiler of that language.

24 R. Mordinyi and E. Kühn

For example if LuCe had to support coordination models with ordering re-
quirements, every tuple in the space had to be additionally wrapped into a tuple
managed by reactions. This extra tuple stores meta-information, like the position
in the queue, of each written tuple. Consequently, every incoming operation has to
be adapted according to the new structure of the tuples, which decreases perform-
ance. In the MozartSpaces implementation of XVSM Java specific func-
tions/libraries are used to organize entries in a queue resulting in a single and
efficient operation.

Based on the fact that reactions in LuCe are implemented by means of Linda
primitives, they cannot access other resources but the tuple space. Aspects in
XVSM are written in higher-level languages and allow therefore the integration of
other technologies, like web services or databases, into the coordination process.
Furthermore, reactions cannot execute blocking operations. The limitation may
arise due to the missing separation between reactions responsible for coordination
and reactions responsible for e.g., tuple aggregation. Reactions must be non-
blocking since strategies for synchronizations of reactions had to be implemented
which would significantly decrease the performance of the platform.

Discussing similarities and differences of XVSM and control-driven coordina-
tion models like JMS then it can concluded that the FIFO coordination model
represents the characteristics and behavior of messaging. However, in JMS the
used interface for representing the FIFO coordination model is almost strongly
coupled to underlying queuing technologies. This implies that in case of JMS the
coordination of processes is not only limited to FIFO capabilities but also to the
predefined middleware technology. On the other hand, XVMS’s interface speci-
fies only the way of coordination. Its interface is therefore capable of abstracting
heterogeneous middleware technologies [70]. It allows injecting aspects e.g., used
to coordinate services provision of a group rather than only of a single receiver.
Additionally, aspects help manage different integration strategies depending on
the used middleware technology. Adding the possibility to intercept communica-
tion methods in the XVSM platform minimizes the complexity of implementation.
Compared to traditional integration solution XVSM abstracts any kind of middle-
ware technologies. While in traditional solutions specific connectors between each
used combination of different middleware technologies need to be implemented,
the XVSM requires only the binding to the interface of the middleware adapter
only. Although the approach of a common interface is not sophisticated, the bene-
fit of it is a common interface with different transmission semantics. The semantic
of the method, e.g. reliable or secure communication, depends on the capability of
the middleware that is represented by that interface.

7 Conclusion

Today’s software systems can be seen as complex systems in the sense that they
usually interact with other software, systems, devices, sensors and people over dis-
tributed, heterogeneous, decentralized and interdependent environments while
operated more often in dynamic and frequently unpredictable circumstances.
Therefore, software developers have to deal with issues like heterogeneity and

Coordination Mechanisms in Complex Software Systems 25

varying size of components, variety of protocols for interaction with internal and
external components. Those software systems typically consist of mainly distrib-
uted application components representing higher-level business goals and a mid-
dleware technology usually representing an architectural style and abstracting the
complexity concerns related to network and distribution.

The message-passing paradigm is a common concept allowing application
components to interact with each other. But even asynchronous message-oriented
middleware technologies are not suitable for complex coordination requirements
since the processing and state of coordination have to be handled explicitly by the
application component, thus increasing its complexity. Data-driven frameworks,
like tuple spaces, support the coordination of application components, but have a
limited number of coordination policies. Therefore, with respect to more complex
coordination requirements application components still need to implement coordi-
nation functionality that is not directly supported by the coordination framework.
Control-driven coordination models suit best in scenarios with point-to-point or
1:N communication requirements. Data-driven coordination models on the other
hand are effective when several processes need to be synchronized to reach a
common goal. The evaluation of the Simulation of Assembly Workshop (SAW)
project shows that Space-Based Computing (SBC) is capable of representing both
coordination models. The paradigm allows software developers to build applica-
tions being suitable for both coordination models and to switch between the
models requiring small changes (regarding operation parameters) in the imple-
mentation of coordinating processes.

In the SBC paradigm coordination requirements are reflected in so called coor-
dinators which explicitly distinguish between coordination data and payload. The
evaluation of benchmark results shows that this distinction improves the efficiency
of coordination significantly. This is due to the fact that a coordinator can be im-
plemented efficiently by taking into account scenario specific context and coordi-
nation requirements.

With respect to complexity management the provided SBC concept of coordi-
nators in containers moves the complexity of coordination requirement away from
application components to a central point in the SBC coordination framework. The
complexity of a coordination issue is concentrated at one point enabling a clear
separation between business logic and coordination logic again. Process models
comparing the number of processing steps needed to realize a coordination
requirement show that by moving the complexity into the coordinator coordination
requirements can be reduced to a single operation call on a container. Addition-
ally, since coordination inherently consists of communication, aspects of commu-
nication can be abstracted as well by reducing the number of operations to a
minimum.

Remaining future work refers to research topics such as the improvement of
evaluation strategies for complexity measurement, investigation of scenarios with
high-frequently changing conditions both of infrastructure and application re-
quirements and capabilities, and wide-scale benchmarks of the proposed reference
architecture with respect to scalability. Additionally, the proposed SBC paradigm
will be further investigated in several research projects. In the research project

26 R. Mordinyi and E. Kühn

SecureSpace [68] the main issue is to develop a software platform for the secure
communication and collaboration of autonomous participants across enterprise
boundaries in the Internet and to prove its usability by means of industrial applica-
tions from the security domain. Moreover, in the research project AgiLog [71] the
aspect of mobility is investigated in the context of SBC. Industrial scenarios from
the logistics domain are used to evaluate the strengths and limitations of SBC with
respect to development, configuration, and deployment of distributed applications
running on mobile, embedded devices.

Acknowledgments. The work is funded by the Austrian Government under the program
FIT-IT (Forschung, Innovation und Technologie für Informationstechnologien), project
825750 Secure Space - A Secure Space for Collaborative Security Services.

References

[1] Solomon, S., Shir, E.: Complexity; a science at 30. Europhysics News 34(2), 54–57
(2003)

[2] Cilliers, P.: Complexity and Postmodernism: Understanding Complex Systems.
Routledge, London (1998)

[3] Broy, M.: The ’Grand Challenge’ in Informatics: Engineering Software-Intensive
Systems. Computer 39(10), 72–80 (2006)

[4] Monson-Haefel, R., Chappell, D.: Java Message Service, p. 220. O’Reilly & Associ-
ates, Inc., Sebastopol (2000)

[5] Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and De-
ploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Bos-
ton (2003)

[6] Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol (2004)
[7] Karhinen, A., Kuusela, J., Tallgren, T.: An architectural style decoupling coordina-

tion, computation and data. In: Proceedings of Third IEEE International Conference
on Engineering of Complex Computer Systems (1997)

[8] Kühn, E., Mordinyi, R., Lang, M., Selimovic, A.: Towards Zero-Delay Recovery of
Agents in Production Automation Systems. In: IEEE/WIC/ACM International Con-
ference on Web Intelligence and Intelligent Agent Technology (IAT 2009), vol. 2,
pp. 307–310 (2009)

[9] Auprasert, B., Limpiyakorn, Y.: Structuring Cognitive Information for Software
Complexity Measurement. In: Proceedings of the 2009 WRI World Congress on
Computer Science and Information Engineering, vol. 07. IEEE Computer Society,
Los Alamitos (2009)

[10] McDermid, J.A.: Complexity: Concept, Causes and Control. In: 6th IEEE interna-
tional Conference on Complex Computer Systems. IEEE Computer Society, Los
Alamitos (2000)

[11] Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

[12] Papadopoulos, G.A., Arbab, F.: Coordination Models and Languages. In: Advances
in Computers (1998)

Coordination Mechanisms in Complex Software Systems 27

[13] Lehman, T.J., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan, V., Landis, S., Davis,
P., Khavar, B., Bowman, P.: Hitting the distributed computing sweet spot with
TSpaces. Comput. Netw. 35(4), 457–472 (2001)

[14] Mordinyi, R.: Managing Complex and Dynamic Software Systems with Space-Based
Computing. Phd Thesis, Vienna University of Technology (2010)

[15] Malone, T.W.: What is coordination theory? MIT Sloan School of Management,
Cambridge (1988)

[16] Malone, T.W., Crowston, K.: What is coordination theory and how can it help design
cooperative work systems? In: CSCW 1990: Proceedings of the 1990 ACM Confer-
ence on Computer-Supported Cooperative Work. ACM, New York (1990)

[17] Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. 26(1), 87–119 (1994)

[18] Weigand, H., van der Poll, F., de Moor, A.: Coordination through Communication.
In: Proc. of the 8th International Working Conference on the Language-Action Per-
spective on Communication Modelling (LAP 2003), pp. 1–2 (2003)

[19] Ciancarini, P.: Coordination models and languages as software integrators. ACM
Comput. Surv. 28(2), 300–302 (1996)

[20] Ciancarini, P., Jensen, K., Yankelevich, D.: On the operational semantics of a coor-
dination language. In: Object-Based Models and Languages for Concurrent Systems,
pp. 77–106 (1995)

[21] Zavattaro, G.: Coordination Models and Languages: Semantics and Expressiveness.
Phd Thesis, Department of Computer Science, University of Bologna (2000)

[22] Sancese, S., Ciancarini, P., Messina, A.: Message Passing vs. Tuple Space Coordina-
tion in an Aerodynamics Application. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS,
vol. 1662. Springer, Heidelberg (1999)

[23] Franklin, S.: Coordination without Communication. Inst. For Intelligent Systems,
Univ. of Memphis (2008)

[24] Tanenbaum, A.S., Steen, M.v.: Distributed Systems: Principles and Paradigms, 2nd
edn. Prentice-Hall, Inc., Englewood Cliffs (2006)

[25] Triantafillou, P., Aekaterinidis, I.: Content-based publish-subscribe over structured
P2P networks. In: International Conference on Distributed Event-Based Systems
(2004)

[26] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

[27] Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI Event-Based Infrastructure and Its
Application to the Development of the OPSS WFMS. IEEE Trans. Softw.
Eng. 27(9), 827–850 (2001)

[28] Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. Wirel.
Netw. 10(6), 643–652 (2004)

[29] Web services business process execution language version 2.0. OASIS Committee
Specification 2007 (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[30] Arbab, F., Herman, I., Spilling, P.: Manifold: Concepts and Implementation. In: Pro-
ceedings of the Second Joint International Conference on Vector and Parallel Proc-
essing: Parallel Processing. Springer, Heidelberg (1992)

[31] Cruz, J.C., Ducasse, S.: A Group Based Approach for Coordinating Active Objects.
In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, pp.
355–370. Springer, Heidelberg (1999)

28 R. Mordinyi and E. Kühn

[32] Jayadev, M.: Computation Orchestration - A basis for wide-area computing. In: En-
gineering Theories of Software Intensive Systems, pp. 285–330 (2005)

[33] Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun.
ACM 35(2), 96 (1992)

[34] Wells, G.C.: Coordination Languages: Back to the Future with Linda. In: Proceed-
ings of the Second International Workshop on Coordination and Adaption Tech-
niques for Software Entities (WCAT 2005), pp. 87–98 (2005)

[35] Zloof, M.M.: Query-by-example: the invocation and definition of tables and forms.
In: Proceedings of the 1st International Conference on Very Large Data Bases. ACM,
Framingham (1975)

[36] van der Goot, R., Schaeffer, J., Wilson, G.V.: Safer Tuple Spaces. In: Garlan, D., Le
Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282. Springer, Heidelberg
(1997)

[37] Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Longman Ltd., Essex (1999)

[38] Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A coordination model and middle-
ware supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Meth-
odol. 15(3), 279–328 (2006)

[39] Picco, G.P., Murphy, A.L., Roman, G.C.: LIME: Linda meets mobility. In: ICSE
1999: Proceedings of the 21st International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos (1999)

[40] Cabri, G., Leonardi, L., Zambonelli, F.: MARS: a programmable coordination archi-
tecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

[41] Cabri, G., Leonardi, L., Zambonelli, F.: Mobile Agent Coordination for Distributed
Network Management. Journal of Network and Systems Management 9(4), 435–456
(2001)

[42] Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and Access Control in
Open Distributed Agent Systems: The TuCSoN Approach (2000)

[43] Omicini, A., Ricci, A.: MAS Organization within a Coordination Infrastructure: Ex-
periments in TuCSoN (2004)

[44] Omicini, A., Zambonelli, F.: Coordination for Internet Application Development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

[45] Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T spaces. IBM Systems
Journal 37(3), 454–474 (1998)

[46] Lehman, T.J., McLaughry, S.W., Wycko, P.: T-Spaces: The Next Wave. In: Hawaii
Intl. Conf. on System Sciences (HICSS-32) (1999)

[47] Tolksdorf, R., Glaubitz, D.: Coordinating Web-Based Systems with Documents in
XMLSpaces. In: CooplS ’01: Proceedings of the 9th International Conference on Co-
operative Information Systems. Springer, London (2001)

[48] Tolksdorf, R., Liebsch, F., Nguyen, D.M.: XMLSpaces.NET: An Extensible Tuple-
space as XML Middleware. Report B 03-08, Free University Berlin (2003),
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-0308.pdf; Open
Research Questions in SOA 5-25 and Loose Coupling in Service Oriented Architec-
tures (2004)

[49] Wells, G., Chalmers, A., Clayton, P.: Extending the matching facilities of linda. In:
Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, p. 380.
Springer, Heidelberg (2002)

[50] Wells, G.C.: A Programmable Matching Engine for Application Develoment in
Linda. Phd Thesis, University of Bristol (2001)

Coordination Mechanisms in Complex Software Systems 29

[51] Wells, G.C.: New and improved: Linda in Java. Sci. Comput. Program. 59(1-2), 82–
96 (2006)

[52] Denti, E., Natali, A., Omicini, A.: Programmable Coordination Media. In: Garlan, D.,
Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282. Springer, Heidel-
berg (1997)

[53] Denti, E., Omicini, A.: An architecture for tuple-based coordination of multi-agent
systems. Softw. Pract. Exper. 29(12), 1103–1121 (1999)

[54] Denti, E., Omicini, A., Toschi, V.: Coordination Technology for the Development of
Multi-Agent Systems on the Web. In: Proceedings of the 6th AI*IA Congress of the
Italian Association for Artificial Intelligence (AI*IA 1999), pp. 29–38 (1999)

[55] Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the concept of cus-
tomizable structured spaces for agent coordination in the production automation do-
main. In: Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009), International Foundation for Autonomous
Agents and Multiagent Systems, Richland (2009)

[56] Vrba, P.: MAST: manufacturing agent simulation tool (2003)
[57] Vrba, R., Marik, V., Merdan, M.: Physical Deployment of Agent-based Industrial

Control Solutions: MAST Story. In: IEEE International Conference on Distributed
Human-Machine Systems (2008)

[58] Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Inc.,
New York (2009)

[59] Lüder, A., Peschke, J., Sauter, T., Deter, S., Diep, D.: Distributed intelligence for
plant automation based on multi-agent systems: the PABADIS approach. Production
Planning and Control 15, 201–212 (2004)

[60] Kemppainen, K.: Priority scheduling revisited - dominant rules, open protocols and
integrated order management. Phd Thesis, Acta Universitatis oeconomicae
Helsingiensis. A. (2005)

[61] Rajendran, C., Holthaus, O.: A comparative study of dispatching rules in dynamic
flowshops and jobshops. European Journal of Operational Research 116(1), 156–170
(1999)

[62] Hirmer, S., Kaiser, H., Merzky, A., Hutanu, A., Allen, G.: Generic support for bulk
operations in grid applications. In: Proceedings of the 4th International Workshop on
Middleware for Grid Computing. ACM, Melbourne (2006)

[63] Kühn, E., Mordinyi, R., Schreiber, C.: An Extensible Space-based Coordination Ap-
proach for Modeling Complex Patterns in Large Systems. In: 3rd International Sym-
posium on Leveraging Applications of Formal Methods, Verification and Validation,
Special Track on Formal Methods for Analysing and Verifying Very Large Systems
(2008)

[64] Craß, S., Kühn, E., Salzert, G.: Algebraic foundation of a data model for an extensi-
ble space-based collaboration protocol. In: Proceedings of the 2009 International Da-
tabase Engineering & Applications Symposium (IDEAS 2009). ACM, New
York (2009)

[65] Crass, S.: A Formal Model of the Extensible Virtual Shared Memory (XVSM) and its
Implementation in Haskell. Institute of Computer Languages, Vienna University of
Technology (2010)

[66] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming (1997)

30 R. Mordinyi and E. Kühn

[67] Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C., Bessler, S., Tomic, S.: Aspect-
oriented Space Containers for Efficient Publish/Subscribe Scenarios in Intelligent
Transportation Systems. In: Proceedings of the 11th International Symposium on
Distributed Objects, Middleware, and Applications, DOA 2009 (2009)

[68] Secure Space - A Secure Space for Collaborative Security Services (2010),
http://tinyurl.com/34ymays (cited)

[69] Kühn, E., Mordinyi, R., Schreiber, C.: Configurable Notifications for Event-based
Systems, Vienna University of Technology (2008), TechRep. at
http://tinyurl.com/oht888

[70] Mordinyi, R., Moser, T., Kuhn, E., Biffl, S., Mikula, A.: Foundations for a Model-
Driven Integration of Business Services in a Safety-Critical Application Domain. In:
Euromicro Conference on Software Engineering and Advanced Applications, pp.
267–274 (2009)

[71] Agile-Logistics. Komplexitätsreduzierende Middleware - Technologien für Agile
Logistik (2010), http://tinyurl.com/2u8qovc

Glossary

AOP Aspect-oriented Programming
API Application Programming Interface
ESB Enterprise Service Bus
JMS Java Message Service
MAS Multi-agent System
SAW Simulation of an Assembly Workshop
SBC Space-based Computing
XVSM eXtensible Virtual Shared Memory

	Coordination Mechanisms in Complex Software Systems
	Introduction
	Related Work
	Coordination Theory
	Coordination Models
	Linda Coordination Frameworks

	Use Case Description
	Space-Based Computing
	Evaluation
	Java Message Service
	Linda Tuple Space

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

