

José Cordeiro
Marten van Sinderen
and Boris Shishkov (Eds.)

Enterprise Systems and
Technology

Proceedings of the
2nd International Workshop on
Enterprise Systems and Technology
I-WEST 2008

Enschede, The Netherlands, May 2008

INSTICC PRESS
Portugal

ii

Volume Editors

José Cordeiro (Portugal)
Marten van Sinderen (The Netherlands)
and Boris Shishkov (The Netherlands)

2nd International Workshop on
Enterprise Systems and Technology
Enschede, The Netherlands, May 2008
José Cordeiro, Marten van Sinderen and Boris Shishkov (Eds.)

Copyright © 2008
INSTICC PRESS
All rights reserved

Printed in Portugal

ISBN: 978-989-8111-50-0
Depósito Legal: 276371/08

iii

Foreword

This volume contains the proceedings of the Second International
Workshop on Enterprise Systems and Technology (I-WEST 2008), held
on May 23 in Enschede, The Netherlands.

The I-WEST workshop is a scientific event of IICREST, the
Interdisciplinary Institute for Collaboration and Research on Enterprise Systems and
Technology. I-WEST aims at providing a platform to researchers and
practitioners, from academia and industry, to discuss challenges, solutions,
ideas and experiences related to the broad field of enterprise systems and
technology. Each year, a special theme is chosen within this broad field, in
order to make presentations and discussions more focused. The theme of
I-WEST 2008 is: Design of complex enterprise systems and aligned
IT services.

The past decade has witnessed important advances in both design
approaches and technology-driven system capabilities. On the one hand,
modeling approaches such as SOA and MDA have been complemented
with techniques for expressing design intent at higher abstraction levels
and keeping abstract models in sync with implementation-oriented
models, thus increasing control over the design process. On the other
hand, wireless networks, mobile computing, sensor networks and agent
technologies created new application opportunities, primarily aiming at
increasing availability, ease-of-use and sophistication of system
capabilities, but at the same time leading to more complex systems with
corresponding complex design processes.

Although current enterprise technology essentially concerns the widely
considered challenge of overcoming the business-technology gap, there
are emerging requirements to enterprise systems, which further
complicate the enterprise engineering process. Such requirements relate to
desirable qualities concerning enterprise systems, such as contex-
awareness, pro-activity, intelligence. Hence, these new demands need to
be explicitly addressed by application developers.

The goal of this workshop is to look at issues related to designing
complex enterprise systems and aligned IT services. We are particularly
interested in application opportunities offered by context-awareness, the
design challenges that the incorporation of such properties in distributed
environments bring, and how these challenges can be addressed in the
design of enterprise systems that exploit these opportunities and IT

iv

services that provide appropriate support. I-WEST 2008 also has the
intention to bring together researchers from various communities,
including researchers working on enterprise engineering, context-aware
systems, IT infrastructures, model-driven development and service-
oriented architectures.

Following the I-WEST 2008 Call for Papers and received submissions,
6 papers were selected for a 30-minutes oral presentation during the
workshop and for publication in these proceedings. The selected papers
are a good illustration of different relevant topics that are currently under
research: some papers are more oriented towards application development
(considering this from the perspectives of enterprise ontology,
requirements elicitation, and context awareness) while others are more
SOA-oriented (considering service composition, utility computing, and
process mediation).

Taking this opportunity, we would like to express our sincere gratitude
to all people who have contributed to I-WEST 2008, including the
authors (who have provided the main content for this workshop) as well
as the program committee members and reviewers (who have provided
constructive comments contributing to the quality of the content). We
would also like to thank Vitor Pedrosa, for the brilliant organizational
support. Finally, we tremendously appreciate the willingness of INSTICC
to publish the proceedings, expressing respect and gratitude to its
President, Joaquim Filipe.

We wish all presenters and attendees an inspiring workshop, and a nice
stay in the beautiful city of Enschede.

May 2008

José Cordeiro
Marten van Sinderen

Boris Shishkov

v

Workshop Chairs

José Cordeiro
Polytechnic Institute of Setúbal / INSTICC / IICREST, Portugal

Marten van Sinderen
University of Twente / IICREST, The Netherlands

Boris Shishkov
University of Twente / IICREST, The Netherlands

Program Committee

Dumitru Dan Burdescu, University of Craiova, Romania
Kuo-Ming Chao, Coventry University, United Kingdom
Samuel Chong, Atos Origin, United Kingdom
Jan Dietz, Delft University of Technology, The Netherlands
Joaquim Filipe, Polyt. Inst. of Setúbal/INSTICC/IICREST, Portugal
Alexandre Girardi, Multitel ASBL, Belgium
Markus Helfert, Dublin City University, Ireland
Ilian Ilkov, IBM Nederland B.V., The Netherlands
Ivan Ivanov, SUNY Empire State College, United States
Dimitri Konstantas, University of Geneva / IICREST, Switzerland
Kecheng Liu, University of Reading, United Kingdom
Dimitris Mitrakos, Aristotle University of Thessaloniki / IICREST, Greece
Erik Proper, Radboud University Nijmegen, The Netherlands
Dick Quartel, Telematica Instituut, The Netherlands
Manfred Reichert, University of Ulm, Germany
Alexander Verbraeck, Delft University of Technology, The Netherlands

vi

Supporting Organizations and Projects

CTIT - Centre for Telematics and Information Technology

INSTICC - Institute for Systems and Technologies of Information,
Control and Communication

Freeband A-MUSE project - Architectural Modeling Utility for Service
Enabling in Freeband

vii

Table of Contents

Foreword.. iii

Workshop Chairs .. v

Program Committee ... v

Supporting Organizations and Projects... vi

Invited Speakers

Service Innovation: A Multi-Disciplinary Approach 3
Bart Nieuwenhuis

Papers

A UML Profile for Enterprise Ontology... 7
José Cordeiro, Joaquim Filipe and Kecheng Liu

On the Design of Context-Aware Applications................................... 21
Boris Shishkov and Marten van Sinderen

Utility Computing Paradigm and SOA Philosophy 35
Ivan Ivanov

A Comparison of Data and Process Mediation Approaches 48
Rodrigo Mantovaneli Pessoa, Dick Quartel and
Marten van Sinderen

viii

Modeling Requirements Elicitation Process for Web Applications .. 64
Marian Cristian Mihăescu, Cosmin Stoica Spahiu, Mihai Mocanu
and Bogdan Logofatu

Dynamic Service Composition: Why, Where and How...................... 73
Eduardo Silva, Luís Ferreira Pires and Marten van Sinderen

Author Index ... 87

INVITED
SPEAKERS

Service Innovation: A Multi-Disciplinary Approach

Bart Nieuwenhuis

University of Twente, School of Management and Governance
Enschede, The Netherlands

l.j.m.nieuwenhuis@utwente.nl

Abstract. The market service share in Western European economies is growing
at cost of agriculture and manufacturing. The success of these economies is
more and more depending on the success of their service economy. The
majority of the jobs, GDP and productivity growth depends on service
innovation. The service sector accounts for more than two thirds of deployment
and Gross Domestic Product (GDP) and Gross Value Added (GVA). During the
last decades, the services sector is the only economic sector that has generated
jobs. New, innovative services are the major source of economic growth in the
years to come. The introduction of new services to the market is one of the
major challenges for service companies in western economies.
Information and communication technology can be an enabler and a driver for
service innovation. The penetration of the Internet and mobile phones are
examples of these developments. These developments also illustrate the
globalization of previously national service markets. Consequently, the scale at
which services can be deployed is unprecedented.
However, service innovation is a complex process and certainly not only driven
by technological advances alone. In general, service innovation is multi-
dimensional and requires besides technological changes also new or adapted
service concepts, new ways of interactions with customers and suppliers and
new or changed processes within the organization of service providing
companies. Research shows that innovation in the service company differs from
innovations in a manufacturing company in various ways.
Companies are heading for a more systematic approach to develop new
services, but have difficulties to find employees with the right mix of
competences. Policy makers are developing innovation programs that stimulate
service innovation, but have limited knowledge on service innovations. The
academic institutes and research organizations have difficulties to conduct
research programs due to their mono-disciplinary organization structure.
In this keynote lecture, we present the results of a collaborative project where
service companies, research organizations and governmental organizations have
developed a multi-disciplinary, multi-sector program to stimulate service
innovations. We give an overview of the various dimensions that can be used to
elaborate on services and service innovation. We also present a service
innovation research agenda based on the results of interviews expressing the
needs of more than thirty service companies in The Netherlands.

Brief Biography

Bart Nieuwenhuis is part-time professor at the School of Management and
Governance at the University of Twente. He is member of the Research Group
Information Systems and Change Management (ICMS), holding the chair in QoS of
Telematics Systems. He is working as advisor and consultant for his own consultancy
firm K4B Innovation.

His research focuses on generic service provisioning platforms including Quality
of Service mechanisms. Application domains comprise telemedicine as well as billing
and payment services. His research interests include service innovation and business
modelling. Bart Nieuwenhuis supervises PhD students and publishes scientific articles
and conference papers on services provisioning platforms and middleware
technologies for Quality of Service and Context Awareness. Bart Nieuwenhuis is
chairman of the innovation-driven research programme Generic Communication, part
of R&D programmes funded by the Ministry of Economic Affaires.

For K4B Innovation, Bart Nieuwenhuis works as an advisor to The Netherlands
ICT Research and Innovation Authority. He was one of the initiators of EXSER, a
centre of service innovation in The Netherlands. This centre is currently founded and
is expected to start in the second half of 2008. The centre is sponsored by various
large, innovative service companies and governmental organizations in The
Netherlands.

Before joining the ISCM group, Bart Nieuwenhuis was part-time full professor at
the Architecture and Services of Network Applications (ASNA) group within the
Faculty of Electrical Engineering, Mathematics & Computer Science (EEMCS) of the
University of Twente. He joined the ASNA group in Twente after a period of five
years at the University of Groningen, where he was Tele-Informatics professor at the
Computer Science Faculty.

Before starting his own company, he worked more than 20 years for KPN
Research, the R&D facility of KPN, the telephony and Internet market leader in The
Netherlands. He served as manager of R&D departments and Head of Strategy of
KPN Research. Bart Nieuwenhuis worked on behalf of KPN for the European
Institute for Research and Strategic Studies in Telecommunications (EURESCOM) in
Heidelberg and was leader of various international, cooperative projects of European
public network operators. Bart Nieuwenhuis holds a PhD in Computer Science and a
MSc (cum laude) and BSc in Electrical Engineering, all from the University of
Twente.

4

PAPERS

A UML Profile for Enterprise Ontology

José Cordeiro1, Joaquim Filipe1 and Kecheng Liu2

1EST Setúbal/IPS, Rua do Vale de Chaves, Estefanilha
2910-761 Setúbal, Portugal

j.cordeiro@computer.org, j.filipe@est.ips.pt
2The University of Reading, Whiteknights, Reading, RG6 6AF, U.K.

k.liu@reading.ac.uk

Abstract. Enterprise Ontology (EO) is a new subject that applies the Ψ-theory
to the development and conception of social information systems. This theory,
proposed by Jan Dietz, is based on the Language Action Perspective. In order to
model an enterprise this theory presents a modelling method composed by four
distinct aspect models, which use a collection of tables and diagrams to express
themselves. A domain specific language was supplied for those diagrams that it
is not standard or easily portable. In order to make these diagrams more useful
and available this paper proposes the use of the Unified Modelling Language
(UML) to represent EO most important diagrams where the EO main concepts
are shown. The use of UML will bring some important benefits such as port-
ability, interoperability, wider audience and understanding among others. In this
sense a UML 2 profile has been created for representing the diagrams men-
tioned. An example of application of this profile is shown and an extended dis-
cussion of its creation is made. This will address the difficulties and issues
found when metamodelling the solution using UML and will help to assess the
feasibility of UML for this kind of problems.

1 Introduction

The Ψ-theory proposed by Jan Dietz [2] provides the foundations for designing and
engineering of enterprises seen as social information systems. This theory captures
the stable essence of any organization by focusing on commitments and the way peo-
ple interact using language. This focus on language rather than material actions or
technology comes from the Language Action Perspective view of the world (see, for
example, [14]) in which it is based. The Ψ-theory comprises a modelling method
composed by four distinct aspect models: the construction model, the process model,
the action model and the state model. A methodology named “Design and Engineer-
ing Methodology for Organizations” (DEMO) is the basis for this modelling method
[2], [3]. As many modelling methods, a few diagrams are used as a way of expression.
Because these diagrams constitute the main communicational mean for representing
the structure of the enterprise according to the Ψ-theory we are interested in include
these diagrams together with other diagrams in information system development pro-
jects. This is not easy due to the proprietary language used by these diagrams and its
lack of interoperability with other modelling languages. Also a formal verification is
not automatically made and there are only a small number of tools to work with those

diagrams. To overcome these problems we propose to use the Unified Modelling
Language (UML), to express the most important diagrams of those models. UML is
today a de facto standard widely used for modelling purposes, having numerous tools
available and its use will bring us some important benefits such as:

• A wider audience will be able to use and understand the diagrams.
• Diagram interoperability and inclusion in software projects
• Formal representation and automatic verification of the diagrams

In this sense this paper presents and proposes a new UML 2 profile for representing
those different types of diagrams. The difficulties and issues raised in the profile crea-
tion will also be the focus of this work because they will show the feasibility and the
problems of using UML for such purposes.
This paper is organised as follows: section 2 presents related work, section 3 summa-
rizes the main concepts of Enterprise Ontology (EO), the proposed UML Enterprise
Ontology profile will be shown and exemplified in section 4, section 5 will present
issues and rationale related to the EO profile development and finally, conclusions
will be given in section 6.

2 Related Work

We found just a small number of papers that refer to the use of UML with DEMO. In
[13], Shishkov and Dietz suggest using DEMO to derive UML use cases. In this work
a mapping from DEMO Business Transactions to UML Use Cases is proposed. In fact
there is a general tendency to separate the use of DEMO and UML. For example, in
[7] DEMO is used to model the business processes prior to information systems mod-
elling using UML. Nevertheless, the most significant work relating UML and DEMO
is [11]. In this paper instead of a direct UML representation it is proposed a language
mapping between DEMO models and UML. This mapping is accomplished in three
phases: first a concept mapping between both languages is made, next a notational
mapping is performed and at last there is a diagram transformation. In fact, a similar
approach is taken when we create the UML profiles as we will see. In UML profiles
concept matching is used to find the appropriate metaclasses corresponding to the
DEMO model elements, also a notational option is taken for the created stereotypes
and finally some new diagrams are created for showing the new model elements.
Even so according to this paper it will be necessary to have the original DEMO dia-
grams instead of a direct UML representation as we pretend.
Regarding UML profiles much work has been done and some references will be
pointed afterwards when appropriate.

3 Enterprise Ontology

Enterprise Ontology (EO) captures the essential aspects of any organization by focus-
ing on the ontological level of business where people interact, commit themselves and

8

Fig. 1. The Basic Transaction Pattern (adapted from [3]).

produce results. At this level people use language acts as the driver of any business
transaction or coordination acts. EO is about the construction and operation of an
organization. The Ψ-theory establishes the basis and the theoretical support for EO.
The Ψ-theory is composed by four axioms and one theorem. The first axiom – the
Operation Axiom – presents an organization as a group of actors performing two
kinds of acts: coordination acts (C-acts) and production acts (P-acts). C-acts are lan-
guage acts used by actors to engage themselves in commitments and to ultimately
originate the P-acts responsible for producing the effective work. The result of per-
forming a C-act is a coordination fact (C-fact), whereas the result of performing a P-
act is a production fact (P-fact) or production result. The second axiom – the Transac-
tion Axiom – comes from the observation that P-acts and C-acts seems to occur in a
universal pattern called transaction. This transaction is a key concept of the Ψ-theory
and EO. The complete transaction pattern is seen as a socionomic law that underlies
the conducting of any business always and everywhere. This transaction has its roots
in the notion of conversation for action [14] and the Workflow Loop [8] both from the
Language Action Perspective. In fig. 1 we depict the basic transaction pattern which
has three phases: an order phase where the negotiation about the P-act to be executed
takes place. In this phase two types of C-acts are usually performed: a request by the
initiator actor and a promise to accomplish it by the executor actor. The next phase is
the execution phase where the P-act is actually performed. Finally, the result phase
ends the transaction with the performance of a C-act stating the completion of execu-
tion of the P-act by the executor actor and a C-act by the initiator actor accepting the
result. The third axiom – the Composition Axiom – is concerned with the interrelation
of P-facts in a production world (the P-world). In particular the enclosing relationship
between transactions is analysed. Finally, the fourth axiom – the Distinction Axiom –
is about the human abilities that have a significant role in performing C-acts namely
the performa, informa and forma abilities. The performa ability is considered the
essential human ability for doing business and is part of the ontological level of EO.
The Organization Theorem completes the Ψ-theory by stating that “the organization
of an enterprise is a heterogeneous system that is constituted as the layered integration
of three homogeneous systems: the B-organization (from business), the I-organization
(from intellect), and the D-organization (from Document)” [2, p.115].

9

Fig. 2. The four DEMO aspect models (adapted from [2]).

For designing and engineering organizations EO is supported by the DEMO meth-
odology. The DEMO methodology defines the required steps for that purpose and
uses a modelling method composed by four distinct aspect models: the construction
model, the process model, the action model and the state model that together consti-
tutes the complete ontological knowledge of an organization (fig. 2). The construction
model (CM) specifies transactions types, associated actors roles and information
banks (conceptual stores of C-facts or P-facts). The CM is divided in two similar
models: the interaction model (IAM) and the interstiction model (ISM) that shows us
respectively the active and the passive influences between actor roles. The process
model (PM) details the CM by showing the specific transaction patterns for each
transaction type in the CM. The action model (AM) is the most detailed level and it
specifies the action rules that serve as guidelines for the actors. The last model, the
state model (SM) specifies the state space of the P-world. It includes object classes,
fact types, result types and ontological coexistence rules. In general these models are
expressed by different diagrams and tables. Table 1 show us the different diagrams
and tables used by each of them and what they depict. As it is shown the AM doesn’t
use any diagram and the SM uses a very specific type of diagram that doesn’t presents
directly the main concepts of EO, namely the transaction types, and we decided not to
represent them using UML. Thus, in this work we will be interested in provide UML
diagrams to mirror the following diagrams: ATD, PSD and ABD.

4 The Enterprise Ontology Profile

In figure 3 a part of the metamodel for the UML Profile created for EO is presented.
In this metamodel it is shown the equivalent UML elements for the DEMO Actor
Transaction Diagram (ATD) elements. The corresponding stereotypes and constraints
for this profile are detailed in table 2. Discussion of the creation of the complete pro-
file is made in the next section.

10

Table 1. DEMO aspect models.

Model Expressed by Typical contents

Interaction Actor Transaction Diagram (ATD) Actor roles, transaction types and
their connecting links

Transactions Result Table (TRT) Transaction and result types

Process
Process Structure Diagram (PSD)

C-act/C-result, P-act/P-result, causal
and conditional links and responsibil-
ity areas of actor roles

Information Use Table (IUT) Process steps and object class, fact
types or result types

Action Action Rule Specifications (ARS) Action rules

State Object Fact Diagram (OFD) Object classes, fact types, result
types and existential laws

Object Property List (OPL) Property types, object classes, scales

Interstriction
Actor Bank Diagram (ABD) Information banks, actor roles and

information links

Bank Contents Table (BCT) Object classes, fact types, result
types and production banks

Fig. 3. EO profile metamodel part 1 - UML representation of ATD elements.

Table 2. EO stereotype definitions part 1 – ATD elements.

Name TransactionType
Extended Class Class Notation
Description Represents the transaction type concept.

Constraints ------
Notes The name of the transaction should be a capital T

followed by the transaction number (ex: T02)
Name Actor Role
Extended Class Class
Description Represents the elementary actor role concept.
Constraints ------
Notes No special notation. Usually it is shown as a rectangle with the actor role name

inside. The actor role name should be a capital A followed by the actor role
number (ex. A02)

Name CompositeActorRole
Base Class ActorRole Notation
Description Represents the composite actor role concept.

As a class but filled
using a gray colour

Constraints ------
Notes The actor role name should be the capitals CA followed

by the actor role number (ex. CA03)

11

Table 2. EO stereotype definitions part 1 – ATD elements(cont).

Name ActorRoleLink
Extended Class Association
Description A relationship between an actor role and a transaction type
Constraints 1) It is a binary association

2) Must connect a TransactionType and an ActorRole element
3) It is an abstract metaclasse

Name InitiatorLink
Base Class Actor RoleLink
Description A special kind of an ActorRoleLink that connects an ActorRole and a

TransactionType where the ActorRole plays the role of the initiator of the
transaction

Constraints ------
Notes Usually no adornments are shown.

There is an implicit navigation from the actor role to the transaction.
Name ExecutorLink
Base Class Actor RoleLink Notation
Description A special kind of an ActorRoleLink that connects

an ActorRole and a TransactionType where the
ActorRole plays the role of the executor of the
transaction

The line end with
the black square
must be connected
to the actor role

Constrains ------
Notes There is an implicit navigation from the

transaction to the actor role.
Name Organization
Extended Class Package Notation
Description Represents a group of actor roles and transaction

types which belong and take place inside an
organization

Constrains ------
Notes The name of the package is placed upon its upper

boundary line

A special UML diagram – the AT diagram – one of diagrams which we propose
for this profile is a special case of a UML Class diagram. This diagram is used for
showing actor roles and transaction types and the links between them and mimics the
original DEMO ATD. In figure 4 an example of an ATD is given and in figure 5 the
same diagram is reproduced with the EO profile applied to it.

Fig. 4. Example of the DEMO ATD of a pizzeria (adapted from [2]).

12

Fig. 5. An UML AT Diagram applied to the pizzeria example using the EO Profile.

Fig. 6. EO profile metamodel part 2 - UML representation of PSD elements.

In figure 6 it is shown the second part of the EO profile which includes the
equivalent UML elements for the DEMO Process Structure Diagram (PSD)
elements. The corresponding stereotypes and constraints for this profile are
detailed in table 3.

Table 3. EO Profile stereotype definitions part 2 – PSD elements.

Name CoordinationAct
Extended Class Action Notation
Description Represents the C-act concept.

Constraints ------
Notes Just one symbol meaning the combination of a C-

act with a C-result
Name ProductionAct
Extended Class Action Notation
Description Represents the P-act concept.

Constraints ------
Notes Just one symbol meaning the combination of a P-

act with a P-result
Name ResponsibilityArea
Extended Class ActivityPartition Notation
Description Represents the responsibility area concept

Constraints isDimension = true
Notes It will not be possible to have nesting of actor

roles because each actor role establishes a unique
dimension.

13

Table 3. EO Profile stereotype definitions part 2 – PSD elements(cont).

Name CausalLink
Extended Class ControlFlow
Description A link used to show the control flow between C-act and P-acts.
Constraints ------
Notes It is equivalent of the causal link
Name Activation
Extended Class InitialNode
Description It represents the start of a process. It can be placed inside a Responsibility Area

meaning self activation or outside meaning external activation.
Constraints ------
Notes

As in the case of the AT Diagram a new UML diagram – the Process Structure
Diagram - was created to show DEMO PSD using UML. This diagram is a special
case of a UML Activity Diagram. Unfortunately UML diagrams are not part of the
main specification of UML, they are not model elements, therefore we have to intro-
duce these diagrams informally and it will not be possible to formalize some aspects
of the diagrams, for example positioning rules for the included elements. An example
of a PSD is given in figure 7. In figure 8 it is shown a UML PS diagram with the EO
Profile applied.

Fig. 7. An UML PS Diagram applied to the pizzeria example using the EO Profile.

Figure 9 shows the third and last part of the EO profile which includes the equiva-
lent UML elements for the DEMO Actor Bank Diagram (ABD) elements. The corres-
ponding stereotypes and constraints for this profile are detailed in table 4. Also a new

14

UML diagram – the Actor Bank Diagram - is proposed for representing the DEMO
ABD. This diagram is also a special case of a UML Class Diagram. This diagram is
very similar to the ATD.

Fig. 8. Example of the DEMO PSD of a pizzeria (adapted from [2]).

Fig. 9. EO profile metamodel part 3 - UML representation of ABD elements.

15

Table 4. EO Profile stereotype definitions part 3 – ABD elements.

Name InformationBank
Extended Class Class
Description A production or a coordination bank.
Constraints ------
Notes
Name CoordinationBank
Base Class InformationBank Notation
Description Represents a coordination bank

Constraints ------
Notes The coordination bank name should be the capitals CB

followed by the bank number (ex. CB02)
Name CompositeCoordinationBank
Base Class CoordinationBank Notation
Description Represents a composite coordination bank

Constraints ------
Notes The composite coordination bank name should be the

capitals CCB followed by the bank number (ex. CCB02)
Name ProductionBank
Base Class InformationBank Notation
Description Represents a production bank

Constraints ------
Notes The production bank name should be the capitals PB

followed by the bank number (ex. PB03)
Name CompositeProductionBank
Base Class ProductionBank Notation
Description Represents a composite production bank

Constraints ------
Notes The composite production bank name should be the capitals

CPB followed by the bank number (ex. CPB04)
Name InformationLink
Extended Class Association Notation
Description A connection relating actor roles and information banks

Constraints 1) It is a binary association
2) Must connect an InformationBank and an ActorRole

Notes

5 EO Profile Creation

If we want to have the benefits of using UML tools such as model interchange, model
validation and model storage it is necessary to create UML Profiles instead of a com-
plete metamodel for representing the DEMO diagrams. Thus, and in order to build
these profiles we should follow some guidelines (see for example [4]). In a general
and simple view these guidelines recommend to create first a domain metamodel, to
choose from this metamodel the relevant elements, to extend the appropriate UML
metamodel elements with some of those elements and to define additional constraints
and tagged values (see [12]). In our case we found as not necessary to create the do-
main metamodel because we already have the domain elements which correspond to
the DEMO diagram elements. In spite of skipping this step and although simple the
remaining process it has many issues, difficulties and compromises specially because
we are metamodeling non object-oriented theories. In the next sections some of the
issues and problems found for each DEMO diagram will be reported. It should be also

16

noted that the EO UML profile that was created uses version 2.1.2 of the UML super-
structure and infrastructure specifications [9], [10].

5.1 Development Issues - AT Diagram

The ATD diagram shows mainly actor roles, transaction types and links connecting
them. For transaction types we don’t have any similar UML model element and in this
situation it is usual to extend the metaclass ‘class’ as a representation of a concept.
Thus, the initiator or executor links between transaction types and actor roles should
be expressed using the association metaclass. This is the most powerful relationship
between model elements that is used to connect classifiers. The problem is the repre-
sentation of actor roles. In UML we have an actor element that matches the concept of
an actor role, it is a classifier and support associations as well but this element has
limited capabilities compared to classes. So, the best solution was to express actor
roles using classes as well. This will allow a more powerful expression of actor roles,
it will permit to create composite actor roles based on elementary actor roles using the
inheritance and composition concepts of object-orientation and it will have some extra
benefits when creating the EO profile elements for the PSD DEMO diagram. The last
ATD element that we need to represent is the boundary of an organization. This is a
grouping element that joins transactions, actor roles and links belonging to an organi-
zation, but some transactions with external actor roles are not placed completely in-
side the organization boundary but are seen as belonging to the boundary itself. This
cannot be represented used the common UML grouping element, the package. Ele-
ments of a package belong to the package and not to its boundary. Other UML group-
ing elements such as the activity partition or the subject (of a use case) are not suited
for this purpose, they can only surround very specific UML model elements and the
related concepts don’t match with our goals. So, we adopted as a solution to use the
package extension but to limit the elements of the organization package for being
transaction types where all the actors are organizational actor roles and all the actor
roles belong to the organization. A possibility is to show the boundary transaction
types using a second package which includes only boundary transactions.

Regarding the notation we choose to make the UML Profile elements close to the
original notation used in the DEMO diagrams. UML allows some flexibility in the
notation and this possibility to make it close to the original or to the traditional UML
as identified in [1] is used by our solution.

5.2 Development Issues - PS Diagram

The DEMO PSD shows two combined symbols for correspondingly C-acts/C-results
and P-acts/P-results. The links between these symbols are made using causal and
conditional links. Also external and self-activation lines are used to represent the start
of the depicted processes. A last element in these diagrams is a grouping element
defining the responsibility area of an actor role. Giving the “business process” nature
of these kinds of diagrams it would be most useful to represent them using an UML
activity like diagram. For this purpose their elements should be equivalent to the typi-
cal UML activity elements. In fact this is possible because the main elements, C-

17

acts/C-results and P-acts/P-results, can be represented by extending the UML action
element. If we consider just the C-acts and P-acts, they are both some kind of action
and they are suited to be represented as actions. We should make implicit the pro-
duced C-results and P-results; it will be possible to see them as the output of the cor-
responding actions. Regarding the notation we will make it close to the original PSD
elements. We choose to represent C-acts and P-acts using the combined symbol and
thus making explicit the associated C-results and P-results. The C-act/C-result symbol
is depicted as a single UML element hiding the combined nature of the symbol. This
symbol results from joining a circle – a C-fact (or C-result) type - and a square – a C-
act type - but this combination cannot be made using UML. There is no possibility to
combine two different UML elements without creating a new element with no con-
nection to the original symbols. The same applies to the P-act/P-result symbol which
uses a square for the P-act and a diamond for the P-fact (or P-result) type that it is
represented as a single symbol. UML doesn’t allow us to combine model elements but
we took advantage of the flexibility in the notation. Regarding the causal link it is in
fact a kind of a UML control flow causing the flow to jump from one act to the next.
In the case of the conditional link there is no equivalent UML element but we can use
some of the UML elements to produce the same effect as the conditional link. In the
case of the conditional link appear at the end of a conditional branch it can be re-
placed by a decision node at the beginning of the branch and a merge node at the end.
In case of appearing at the end of a concurrent branch it can be replaced by a fork at
the beginning and a join at the end. This last case is illustrated in fig. 8. In the PSD
also responsibility areas are used to delimit a group of acts performed by an actor
role. In this case an extension of activity partition is suited for this goal and can play
the same role. This solution is optimal because we choose before to use UML ex-
tended class elements for actor roles. Thus, actor roles will be the responsible agents
for the corresponding C-acts or P-acts. At last for activation lines UML also provide
model elements, we can use the Initial node of the activity diagram connected to a C-
act using a control flow to express the starting point of a process. If this Initial node
lies inside a responsibility area where it is connected to a C-act it means a self activa-
tion, otherwise if it lies outside the responsibility area it means an external activation.
Just a final remark to point the necessity of including a final flow node to indicate the
end of a process. There is no similar model element in the original PSD.

5.3 Development Issues - AB Diagram

The last part of the UML profile concerns the creation of the corresponding UML
elements for the DEMO ABD. This diagram is similar to the PSD and it can use most
of the elements defined before. We just need to express as well elementary and com-
posite production and coordination banks and information links. These banks are just
a kind of databases and can be shown using an extension of the UML class. Also we
can use the object oriented mechanisms to differentiate from elementary and compo-
site production and coordination banks. The ABD uses also a combined symbol for a
production and coordination bank that refers to an information bank. An information
as a general kind of bank can be expressed as a base class and we can use inheritance
to derive the production and coordination banks. We lose the combined nature but we

18

gain in expressivity. Finally the information link is naturally expressed as an exten-
sion of an association because it relates stereotypes of classes.

Table 5. Summary of identified UML issues.

UML issue Comments
A diagram is not an
UML metamodel
element

It is not possible to adequately formalize relationships between dia-
grams and model elements because the diagrams are not UML ele-
ments

UML metamodel
grouping elements with
limited options

The most important grouping UML element - the package – provides
a special kind of grouping that doesn’t allow representing elements
that belong to two packages simultaneously; this is the case of
boundary elements such as some of the transaction types in AT
diagrams. Other UML grouping elements such as the Activity
Partition and the Subject have limited application given the
restrictions in the elements they may contain.

UML metamodel ele-
ments usually have
hidden aspects

Some simple UML elements cannot be used to represent similar
concepts because they cannot be freely associated with other ele-
ments. This is hidden and it is a consequence of the rigidity of the
UML metamodel when defining these elements. In the case of the
actor element its limited capabilities make it preferable to use classes
to represent actor roles although an actor was a better matching con-
cept.

UML metamodel
elements without
combinations among
them

It is not possible to combine different UML elements in one joint
element preserving the original meaning of the individual elements.
The example was the C-act/C-result and the production
bank/coordination bank elements which had unique symbols for the
combined element.

6 Conclusions and Future Work

In this paper a UML profile for Enterprise Ontology was introduced. This profile
brings important benefits for the underlying DEMO methodology such as:

• Possibility to communicate the diagrams to information system and soft-
ware development teams and to include them with other diagrams in the
same projects

• Interoperability of the diagrams with other model tools
• Consistency, verifiability and formalization of the diagrams

Concerning the profile creation this paper has raised some issues that are resumed in
table 5. It should be noted as well that the stereotypes created in this profile intro-
duced a reduced number of constraints in order to have enough freedom when using
UML. Some additional constraints can be added if there is the necessity of a more
formal and rigid expression of the produced diagrams.

This work is part of a research project that has as a goal to create a unified and
fundamental theory for software development that integrates some relevant concepts
of three different socio-technical theories, namely Organizational Semiotics [6], the
Theory of Organized Activity [5] and the Language Action Perspective represented in
this paper by the Ψ-theory and the DEMO methodology. Concerning the UML profile

19

development issues raised in this paper, they complement another group of issues
identified in [1]. As a future work a UML profile of the new theory will be proposed
that will share some of the elements and concepts presented in this paper and in [1].

References

1. Cordeiro, J., Liu, K.: UML 2 Profiles for Ontology Charts and Diplans - Issues on Meta-
modelling. Proc. of EMISA 2007: 191-204, (2007).

2. Dietz, J. L.: Enterprise Ontology – Understanding the Essence of Organizational Operation.
In: Enterprise Information Systems VII. Eds. C. Chen, J. Filipe, I. Seruca, and J. Cordeiro.
Springer, Dordrecht, The Netherlands (2006)

3. Dietz, J. L.: The deep structure of business processes. Communications of the ACM 49, 5,
58-64. (May 2006)

4. Fuentes, L. and Vallecillo, A.: An Introduction to UML Profiles. UPGRADE, The Euro-
pean Journal for the Informatics Professional, 5(2):5-13 (2004). ISSN: 1684-5285.

5. Holt, A.: Organized Activity and Its Support by Computer, Kluwer Academic Publishers,
Dordrecht, The Netherlands (1997).

6. Liu, K.: Semiotics in Information Systems Engineering, Cambridge University Press, Cam-
bridge, UK (2000).

7. Mallens, P., Dietz, J., and Hommes, B-J.: The Value of Business Process modelling with
DEMO Prior to Information Systems modelling with UML. In Proc. EMMSAD’01, Inter-
laken, Switzerland (2001).

8. Medina-Mora, R., Winograd, T., Flores, R., Flores, F. The Action Workflow approach to
workflow management technology. In J. Turner and R. Kraut, Eds., Proceedings of the 4th
Conference on Computer Supported Cooperative Work. ACM, New York (1992).

9. OMG: Unified Modeling Language Superstructure Specificacion, v2.1.2. Available:
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/ (Apr 2008)

10. OMG: Unified Modeling Language Infrastructure Specificacion, v2.1.2. Available: http://
www.omg.org/spec/UML/2.1.2/Superstructure/PDF/ (Apr 2008)

11. Rittgen, P.: A language-mapping approach to action-oriented development of information
systems. Eur. J. Inf. Syst. 15, 1, 70-81. (Feb. 2006)

12. Rumbaugh, J., Jacobson, I. and Booch, G.: The Unified Modeling Language Reference
Manual (2nd edition), Addison-Wesley, Reading, MA (2005)

13. Shishkov, B. and Dietz, J.: Deriving Use cases from Business processes, the Advantages of
DEMO. In: Enterprise Information Systems V. Eds. O. Camp, J.B.L. Filipe, S. Hammoudi,
and M. Piattini. Kluwer Academic Publishers, Dordrecht/Boston/London (2004)

14. Winograd, T. and Flores, F.: Understanding Computers and Cognition. Ablex Publishing
Corporation, Norwood, NJ, USA (1986).

20

On the Design of Context-Aware Applications

Boris Shishkov and Marten van Sinderen

University of Twente, Department of Computer Science, Enschede, The Netherlands
{b.b.shishkov, m.j.vansinderen}@ewi.utwente.nl

Abstract. Ignoring the dynamic context of users may lead to suboptimal
applications. Hence, context-aware applications have emerged, that are aware
of the end-user context situation (for example, “user is at home”, “user is
travelling”), and provide the desirable services corresponding to the situation at
hand. Developing context-aware applications is not a trivial task nevertheless
and the following related challenges have been identified: (i) Properly deciding
what physical context to ‘sense’ and what high-level context information to
pass to an application, and bridging the gap between raw context data and high-
level context information; (ii) Deciding which end-user context situations to
consider and which to ignore; (iii) Modeling context-aware application behavior
including ‘switching’ between alternative application behaviors. In this paper,
we have furthered related work on context-aware application design, by
explicitly discussing each of the mentioned interrelated challenges and
proposing corresponding solution directions, supported by small-scale
illustrative examples. It is expected that this contribution would usefully
support the current efforts to improve context-aware application development.

Keywords. Application development; Context-Awareness; Behavior modeling.

1 Introduction

Traditional application development methods do not consider the context of
individual users of the application under design, assuming instead that end-users
would have common requirements independent of their context. This may be a valid
assumption for applications running on and accessed at desktop computers, but would
be less appropriate for applications whose services are delivered via mobile devices
[1, 9]. Ignoring the dynamic context of users may lead to suboptimal applications, at
least for a subset of the context situations the end-user may find him/herself in.
Therefore, especially driven by the successful uptake of mobile telephony and
wireless communication, a new strand of applications has emerged, referred to as
context-aware applications [12]. Such applications are, to a greater or lesser extent,
aware of the end-user context situation (for example, “user is at home”, “user is
travelling”) and provide the desirable services corresponding to the situation at hand.
This quality points also to another related characteristic, namely that context-aware
applications must be able to capture or be informed about information on the context
of end-users, preferably without effort and conscious acts from the user part.

Developing context-aware applications is not a trivial task nevertheless and the
following related challenges have been identified: (i) Properly deciding what physical
context to ‘sense’ and what high-level context information to pass to an application,
and bridging the gap between raw context data and high-level context information;
(ii) Deciding which end-user context situations to consider and which to ignore; (iii)
Modeling context-aware application behavior including ‘switching’ between
alternative behaviors.

Inspired by the mentioned challenges, we have furthered a related work on context-
aware application design [12], by explicitly discussing each of these interrelated
challenges and proposing corresponding solution directions, supported by small-scale
illustrative examples. It is expected that this contribution would usefully support the
current efforts to improve context-aware application development.

The outline of the remaining of this paper is as follows: Section 2 further motivates
the actuality of context-awareness as a desirable application quality. Section 3
provides relevant background information to be used as a basis for proposing
improvements. Section 4, Section 5, and Section 6 address in more detail the
challenges mentioned above, respectively. Finally, Section 7 presents our conclusions.

2 Motivation for Context-Awareness

The basic assumption underlying the development of context-aware applications is
that end-user needs are not static, however partially dependent on the particular
situation the end-user finds him/herself in. For example, depending on his/her current
location, time, activity, social environment, environmental properties, or
physiological properties, the end-user may have different interests, preferences, or
needs with respect to the services that can be provided by applications.

Context-aware applications are therefore primarily motivated by their potential to
increase user-perceived effectiveness, i.e. to provide services that better suit the needs
of the end-user, by taking account of the user situation. We refer to the collection of
parameters that determine the situation of an end-user, and which are relevant for the
application in pursue of user-perceived effectiveness, as end-user context, or context
for short, in accordance to definitions found in literature [4].

Context-awareness implies that information on the end-user context must be
captured, and preferably so without conscious or active involvement of the end-user.
Although in principle the end-user could also provide context information by directly
interacting with the application, one can assume that in practice this would be too
cumbersome if not impossible; it would require deep expertise to know the relevant
context parameters and how these are correctly defined, and furthermore be very time
consuming and error-prone to provide the parameter specifications as manual input.

Context-aware applications can be particularly effective if the end-user is mobile
and uses a personal handheld device for the delivery of services. The mobile case is
characterized by dynamic context situations often dominated by changing location
(however not necessarily restricted to this). Different locations may imply different
social environments and different network access options, which offer opportunities
for the provision of adaptive or value-added services based on context sensitivity.
Especially in the mobile case, context changes are continuous, and a context-aware

22

application may exploit this by providing near real-time context-based adaptation
during a service delivery session with its end-user. The adaptation is ‘near real-time’
because context information is an approximation (not exact representation) of the
real-life context and thus there may be a time delay.

Through context-awareness, applications can be pro-active with respect to service
delivery, in addition to being just re-active, by detecting certain context situations that
require or invite the delivery of useful services which are then initiated by the
application instead of by a user request. Otherwise said, traditional applications
provide service in reaction to user requests (re-active), whereas context-aware
applications have also the possibility of initiating a service when a particular context
situation is detected, without user input (pro-active).

Although context-aware applications have received much attention within the
research community, they have not been fully successful so far from a business point
of view. This situation may change rapidly however, due to the observed growing
power and reduced prices of mobile devices, sensors, and wireless networks, and due
to the introduction of new marketing strategies and service delivery models [6,5].

In summary, context-awareness concerns the possibility of delivering effective
personalized services to the end-user, taking into account his/her particular situation
or context. Technological advances enable better and richer context-awareness,
beyond mere location-sensitivity. Hence, service delivery models, specifically those
targeting the mobile market, would allow companies to offer the added value in more
attractive ways to the end-user.

Concerning the development and introduction of context-aware applications, as it
has been mentioned already, this is not a trivial task. Efficiency and productivity
would greatly benefit from an architecturally well-founded context infrastructure and
design framework [17, 16, 3].

3 Architectural Implications and Design Considerations

In this section, we consider essential architectural/design issues concerning context-
aware applications, and we also identify and briefly outline (on this basis) three
important related interconnected challenges (to be elaborated in the following
sections).

3.1 Architectural Implications

Context-aware applications acquire knowledge on context and exploit this knowledge
to provide the best possible service. As already mentioned, the particular focus in this
work concerns the end-user context, i.e. the situation of a person who is the potential
user of services offered by an application. Examples of end-user context are the
location of the user, the user's activity, the availability of the user, and the user's
access to certain devices or facilities. The assumption we make is that the end-user is
in different contexts over time, and as a consequence (s)he has changing preferences
or needs with respect to services.

23

A schematic set-up for a context-aware application is depicted in Fig. 1. Here, the
application is informed by sensors of the context (or of context changes), where the
sensing is done as unobtrusively (and invisibly) for the end-user as possible. Sensors
sample the user's environment and produce (primitive) context information, which is
an approximation of the actual context, suitable for computer interpretation and
processing. Higher level context information may be derived through inference and
aggregation (using input from multiple sensors) before it is presented to applications
which in turn can decide on the current context of the end-user and the corresponding
service(s) that must be offered.

context management

user within
context

sensor

service
delivery

context-
aware

application

Fig. 1. Schematic representation of a context-aware application.

The design, implementation, deployment, and operation of context-aware applications
have many interesting concerns, including:

 social/economical: how to determine useful context-aware services, where
useful can be defined in terms of functional and monetary value?
 methodological: how to determine and model the context of the end-user that

is relevant to the application; how to relate the context to the service of the
application and how to model this service; how to design the application such that
the service is correctly implemented?
 technical: how to represent context in the technical domain; how to manage

context information such that it is useful to the application; how to use context
information in the provisioning of context-aware services?

Addressing the last two concerns (especially the last one) starts with considering
the possible architectures and in our view, two principle architectures could be proper:

 Context-aware Selection: end-user request(s) and end-user related context
information are used to discover a matching service (or service composition).
Discovery is supported by a repository of context-enhanced service descriptions. A
context-enhanced service description not only specifies the functional properties
(goals, interactions, input, output) and non-functional properties (performance,
security, availability), but also the context properties of the service. Context
properties indicate what context situations the service is targeting. For example, a
service could provide information which is region-specific (such as a sightseeing
tour), and therefore the context properties could indicate the relevance for a
particular geographical area.
 Context-aware Execution: after the end-user request(s) has been processed

and a matching service(s) has been found (possibly in the same way as described

24

above), the service delivery itself would adapt to changing context during the
service session with the end-user. When the context of the end-user changes in a
relevant (to the application) way, the service provided is adapted to the situation at
hand. For example, the user may move from one location to another while using a
service that offers information on objects of interest which are close-by (such as
historic buildings within a radius of five kilometres, for example).

In both architectures, a new role is introduced, namely the role of context provider.
A context provider is an information service provider where the information is
context information. A context provider captures raw context data and/or processes
context information with the purpose of producing richer context information which is
of (commercial) interest. Interested parties could be other context providers or
application providers. Further, a context-ware application obviously requires an
adaptive service provisioning component and a context information provisioning
component.

3.2 Design Considerations

Our design approach is a partial refinement of an existing approach [14] that concerns
a general design life cycle, comprising, amongst others:

 Business Modeling: during this phase, the end-user is considered in relation
to processes that either support him/her directly or the goal(s) of related
business(es). These processes have to be identified, modeled and analyzed with
respect to their ability to (collectively) achieve the stated goals. A model of these
processes and their relationships is called a business model.
 Application Modeling: during this phase, the attention is shifted from the

business to the IT domain. The purpose is to derive a model of the application,
which can be used as a blueprint for the software implementation based on a target
technological platform. A model of the application, whether as an integrated whole
or as a composition of application components, is called an application model.
Business models and application models should certainly be aligned, in order to
achieve that the application properly contributes to the realization of the
business/user goals. As a starting point for achieving proper alignment, one could
delineate in the final business model which (parts of) processes are subject to
automation (i.e., are considered for replacement by software applications). The
most abstract representation of the delineated behavior would be a service
specification of the application (as an integrated whole), which can be considered
as the initial application model.
 Requirements Elicitation: both the business model and the application model

have to meet certain requirements, which are captured and made explicit during the
phase called requirements elicitation. Application requirements can be seen as a
refinement of part of the business requirements, as a consequence of the
proposition that the initial application model can be derived considering (parts of)
the business processes (within the final business model), especially those processes
selected for automation.
 Context Elicitation: an important part of the design of a context-aware

application is the process of finding out the relevant end-user context from the

25

application point of view; we will refer to this phase as context elicitation. End-
user context is relevant to the application if a context change would also change the
preferences or needs of the end-user, regarding the service of the application.
Context elicitation can therefore be seen also as the process of determining an end-
user context state space, where each context state corresponds to an alternative
desirable service behavior. Since relevant end-user context potentially has many
attributes (location, activity, availability, and so on), a context state can relate to a
complex end-user situation, composed of (statements on) several context attributes.
Moreover, context elicitation relates to requirements elicitation in the sense that
each context state is associated with requirements (i.e., preferences and needs of
the end-user) on desirable user behavior. Context elicitation can best be done in the
final phase of business modeling and the initial phase of application modeling,
when the role and responsibility of the end-user and the role and responsibility of
the application in their respective environments are considered.

Fig. 2 depicts these different phases and activities.

Business
modeling

Application
modeling

refine

Business
requirements

Application
requirements

refine

Context
requirements

constrain constrain

Fig. 2. Application design life cycle.

Following [12], we assume that an end-user context space can be defined and that
each context state within this space corresponds to an alternative application service
behavior. In other words, the application service consists of several sub-behaviors or
variations of some basic behavior, each corresponding to a different context state.
Any service behavior model would have to express the context state dependent
transitions from one sub-behavior (or behavior variation) to another one.

3.3 Challenges

As mentioned already, developing context-aware applications is not a trivial task and
the following related challenges have been identified:

 Properly deciding what to ‘sense’ and how to interpret it in adapting
application behavior can be problematic since the interpreted sensed information
must be a valid indication for a change in the situation of the end-user and it is not
always trivial to know how context information is to correspond to a user situation.

26

 Deciding which end-user context situations to consider and which to ignore is
challenging because there may be tens or even hundreds of possible end-user
situations, with only several of them with high probability to occur, and therefore
considering the others at design time is not sensible with respect to adequate
resource expenditure.
 Modeling the application behavior including the ‘switching’ between

alternative desirable application behaviors can be complicated because alternative
behaviors are behaviors themselves which also are to be considered in an
integrated way, allowing for modeling the ‘switching’ between them, driven
possibly by rules.

In the following sections, we will address explicitly each of these challenges.

4 Deriving Context Information

An adequate decision about what should be ‘sensed’ and how it is to be interpreted,
concerns the extraction of context information from raw data, which relates broadly to
context reasoning [2].

Context reasoning is concerned with inferring context information from raw sensor
data and deriving higher-level context information from lower-level context
information. As for the extraction of context information from raw data, related
algorithms are needed to support it, and two main concerns are to be taken into
account:

 specific target applications, e.g. in domains such as healthcare or finance,
requiring the output of the algorithms;
 the availability of sensors providing input to the algorithms.

Current standard mobile devices can already operate as sensors, e.g. they can
gather GPS info, WiFi info, cellular network info, Bluetooth info, and voice call info.
In addition, dedicated sensors (that for example measure vital signs) can be integrated
with existing mobile networked devices. Next to that, future standard mobile devices
may even include other types of sensors, e.g. measuring temperature.

Hence, it is considered crucial developing efficient context reasoning algorithms,
by investigating whether it is possible to derive certain specific context information
from certain specific sensor information. In order to adequately refine such
algorithms, additional restrictions would need to be taken into account:

 restrictions concerning the (specific) processing environments of mobile
devices;
 restrictions on memory usage, processing power, battery consumption,

wireless network usage;
 restrictions that concern real-time versus delayed availability of extracted

context.

In order to develop adequate algorithms that extract context from raw sensor data,
it is thus important to appropriately consider gathering raw sensor data which is
augmented with user input. Concerning the sensor data, it should be pre-processed
and filtered, in order to be properly structured as input for the context reasoning

27

algorithms which in turn would be expected to automatically yield the desired output.
The (delivered) context information must be of certain (minimal) quality in order to
be useful; otherwise said, certain Quality-of-Context levels should be maintained.

Finally, some issues that have more indirect impact, need also to be taken into
account: (i) The delivered context information would have to be often applied in real-
time environments where failures, performance requirements, available interfaces,
and operational environments are to be taken into careful consideration; (ii) In order
new applications to be enabled, it is important to investigate how the algorithms could
be integrated in the infrastructure for context awareness.

5 Occurrence of Context Situations

Reasoning concerning context should point to the different situations the end-user
may appear to be (situations that are characterized by corresponding context
information. Often it is worthwhile considering the occurrence probabilities of these
situations since, as mentioned already, usually only several (out of more) end-user
situations are of high probability to actually occur. We call such an investigation
situation analysis.

As studied in [12], it is helpful to support such an analysis by means of ‘pragmatic’
decisions (for instance: to ignore end-user situations which usually do not occur,
although they might occur with some (certainly small) probability). Such subjective
decisions should however be rooted in more objective studies that justify the
decision(s) taken. In our view, a possible way of approaching this is through random
variables. Exploring their probabilities allows one to apply statistical analysis,
including hypotheses testing and parameters estimation [7].

Considering just possible outcomes is sometimes not enough in approaching a
phenomenon; one might need to refer to an outcome in general. This is possible
through a random variable, if the occurrence probability of the outcomes is studied (a
random variable is a function that associates a unique numerical value with every
outcome of an experiment).

An experimental data bank could be built through observations. Then, by applying
statistical analysis, the development team would get the right insight on: (i) which
end-user situation to be defined as the ‘default’ situation (the situation that points to
the ‘default’ application behavior); (ii) which of the other situations are to be put ‘for
consideration’; (iii) which (obviously the rest) should be ignored. This is illustrated in
Fig. 3 (where n should be certainly equal to m+p+1):

28

DS

STATISTICAL
ANALYSIS

S1 S2

… Sn

… SC1
SC2

SCm

… SI1
SI2

SIp

Legend:

S: Situation
DS: Default situation
SC: Situation for consideration
SI: Situation to be ignored

Fig. 3. Applying statistical analysis.

In a healthcare-related example, considered in [12], a hospital could be viewed as
an end-user and there are exactly two possible end-user situations or states
(considered as possible outcomes), namely: ‘not too busy’ (some medical doctors are
immediately available to provide help) and ‘very busy’ (all medical doctors are
occupied or have scheduled appointments within half an hour, for example). We
consider the random variable Y with respect to these outcomes. Y would be a discrete
random variable [7] since it may take on only a countable number of distinct values
(in our case two). Provided the number of possible distinct values is exactly two, we
have the case of a priori probabilities of each of the alternative outcomes (this means
that one of these probabilities can be calculated by deducting the other one from 1).

Only for the purpose of exemplifying how statistical analysis (applied to
information that has been collected through observations) could be of use for the
application designer, we take the probabilities from the mentioned example: the a
priori probability of the first of the mentioned possible outcomes (“not too busy”) is
0.9 and the a priori probability of the second alternative outcome (“very busy”) is
therefore 0.1.

Knowing the occurrence probability of each outcome helps in deciding (in this
particular example) which to be the ‘default’ desirable application behavior (the other
one – that points to the other alternative outcome – would be the alternative behavior).
It would be of course sensible considering the application behavior that corresponds
to the first possible outcome as the ‘default’ behavior.

Once the designer has grouped the possible end-user situations, as suggested by
Fig. 3 (only a ‘default’ and ‘alternative’ situations to be considered in the example), it
is important making sure that the application is capable of ‘sensing’ the end-user
situations. The proposed way of solving this is through observation of the values of
appropriate parameters. If there are n parameters relevant to a scenario, then each of
the parameters would have certain possible values. Then each value combination
would point to a particular end-user situation.

In the example, we might distinguish two parameters (p1 and p2) and five
corresponding values, as follows:

29

 p1 is about the ratio between the number of patients and the number of
medical doctors at the particular moment, and is with just three possible values: v11
(the number is less than 1), v12 (it is exactly 1), and v13 (it is more than 1)
 p2 concerns the particular moment – normal (the hospital is supposed to

function as usual during working hours) or extreme (the hospital can rely on
limited (human) resources, as during night-time, for example), and has just two
possible values, respectively for normal and extreme, namely v21 and v22.

There are six possible value (p1,p2) combinations, namely v11.v21, v11.v22, v12.v21,
v12.v22, v13.v21 and v13.v22. Driven by some additional domain analysis, omitted here
for brevity, we determine the last combination only as validly corresponding to the
0.1-probability alternative (the ‘Second’ alternative), and thus all the rest,
corresponding to the 0.9-probability alternative (the ‘First’ alternative), as depicted in
Fig. 4.

 First alternative v11.v21, v11.v22, v12.v21, v12.v22, v13.v21

 Second alternative v13.v22

Parameters’ values’ combinations

Fig. 4. Recognition of end-user situations.

Hence, knowing the values of the two parameters (the values can usually be
captured using sensors), one could actually ‘sense’ the end-user situation at a
particular moment [12].

6 Managing Alternative Application Behaviors

After a consideration of the different possible end-user situations that point to
(corresponding) alternative application behaviors, the application designer has to
adequately address the challenge of managing these behaviors; even though the
‘switching’ between behaviors would take place at real time, proper design time
preparations are to be realized. These preparations should not only concern the
modeling of each of the alternative behaviors to be considered but they should also
address the ‘switching’ between behaviors (driven by a change in the end-user
situation).

Taking into account that the ‘switching’ between alternative behaviors is
insufficiently elaborated in current approaches [11,12] and inspired by previous
experience, we propose the usage, in combination, of Petri Net [15] and Norm
Analysis [8,13].

Petri Net could be considered as a triple (P,T,F) that consists of two node types
(places and transitions), and a flow relation between them. Places are to model
milestones reached within a business process and transitions should correspond to the
individual tasks to execute. Places are represented by circles, transitions are

30

represented by rectangles. The process constructions which are applied to build a
business process, are called blocks. They express some typical constructs, such as
sequence, choice, parallelism, and iteration. Hence the strengths of Petri Net,
concerning the modeling of decision points and parallel processes, are especially
relevant to the challenge of modeling alternative behaviors. Using the same notations
for conveniently modeling at different abstraction levels, gives the precious
possibility to grasp the ‘big picture’ and go consistently in details, and also to map to
other notations, and also to simulate. A further challenge nevertheless that concerns
not only Petri Net but also other process modeling formalisms, is the insufficient
elaboration facilities with regard to ‘decision’ and other complex points. We claim
that combining Petri Net and Norm Analysis (to be introduced further in the current
section) could be a good solution in this perspective [10].

Norm Analysis essentially concerns Semiotic Norms, or norms for short, which
include formal and informal rules and regulations, define the dynamic conditions of
the pattern of behavior existing in a community and govern how its members (agents)
behave, think, make judgements and perceive the world. When the norms of an
organization are learned, it would be possible for one to expect and predict behavior
and to collaborate with others in performing coordinated actions. Once the norms are
understood, captured and represented in, for example, the form of deontic logic, this
could serve as a basis for programming intelligent agents to perform many regular
activities. The long established classification of norms is probably that drawn from
social psychology, partitioning them into perceptual, evaluative, cognitive and
behavioral norms; each governing human behavior from different aspects. However,
in business process modeling, most rules and regulations fall into the category of
behavioral norms. These norms prescribe what people must, may, and must not do,
which are equivalent to three deontic operators: “of obligation”, “of permission”, and
“of prohibition”. Hence, the following format is considered suitable for specification
of a behavioral norm:

whenever <condition>
if <state>
then <agent>
is <deontic operator>
to <action>

The condition describes a matching situation where the norm is to be applied, and
sometimes further specified with a state-clause (this clause is optional). The actor-
clause specifies the responsible actor for the action, who could be a staff member, or a
customer, or a computer system if the right of decision-making is delegated to it. As
for the next clause, it quantifies a deontic state and usually expresses in one of the
three operators - permitted, forbidden and obliged. For the next clause, it defines the
consequence of the norm. The consequence possibly leads to an action or to the
generation of information for others to act. With the introduction of deontic operators,
norms are broader than the normally recognised business rules; therefore provide
more expressiveness. For those actions that are “permitted”, whether the agent would
take an action or not is seldom deterministic. This elasticity characterises the business
processes, and therefore is of particularly value to understand organisations.

31

The combination between Petri Net and Norm Analysis is of interest, especially
with regard to the challenge of managing alternative application behaviors, for a
number of reasons, among which are the following:

 Petri Net is a well-established process modeling formalism with sound
theoretical roots and ‘convenient’ notations, that only misses facilities for
exhaustive elaboration concerning complex points, while Norm Analysis is a well
established rule modeling formalism possessing also sound theoretical roots and
impressive (process-elaboration-related) expressiveness.
 There are examples of applying Petri Net and Norma Analysis in combination

[10].
 The useful capability of modeling and elaborating (through Petri Net + Norm

Analysis) complex process constructs makes the Petri Net – Norm Analysis
combination attractive particularly with regard to the challenge of managing
alternative application behaviors.

4

1

3

2

5 6

8

7

9

10

11

 labels of transitions

 s: start

 1: register patient

 2: check emergency status

 3: list patient in ‘traffic-light’ (TL)
system

 4: list patient in a queue

 5: examine vital signs of patient

 6: check health history of patient

 7: analyze record of patient

 8: prescribe emergency
treatment

 9: examine patient

 10: formulate diagnosis

 11: treat patient

 e: end

s

e

emergency
treatment normal treatment

whenever a patient needs
emergency help
then the receptionist
is obliged
to list the patient in the TL
system.

whenever a patient does not
need emerg. help
then the receptionist
is obliged
to list the patient in a normal
queue.

Fig. 5. A typical health-care process.

Fig. 5 (left) presents a typical health-care process, using Petri Net, and it is easily
seen that there are two alternative behaviors, namely emergency and normal
treatment. We could use Norm Analysis in such cases to usefully elaborate the
process model. For instance, two norms corresponding to the choice construct in Fig.
5 (left) can be identified and specified in detail – consider Fig. 5 (right).

Therefore, by combining Petri Net and Norm Analysis, one could substantially
facilitate the handling of (alternative) application behaviors.

32

7 Conclusions

This paper has presented further results that concern the development of context-
aware applications. In particular, following a related motivation statement and based
on architecture/design visions on the development of context-aware applications, we
have identified and outlined three related interconnected challenges, proposing and
motivating afterwards corresponding solution directions, summarized as follows:

 To decide what to ‘sense’ and how to interpret it in adapting application
behavior, one would need to apply context reasoning for the purpose of properly
extracting context information from raw data (the guidelines presented in Section 4
could be useful in this direction).
 To decide (at design time) which should be the ‘default’ application behavior,

which alternative behaviors to remain under consideration, and which behaviors
may be ignored, one could get useful support through analyzing (considering
random variables) the occurrence probabilities of end-user situations; on the basis
of observations, statistical analysis can be applied in support of such decisions. As
for the ‘sensing’ the end-user situations corresponding to these application
behaviors, one could consider observing the values of appropriate parameters (the
guidelines presented in Section 5 could be useful in this direction).
 To appropriately model the complex behavior of a context-aware application

including ‘switching’ between alternative behaviors, one would require not only a
powerful process modeling formalism but also an appropriate elaboration facility
to be applied to complex points (the proposed in Section 6 combined application of
Petri Net and Norm Analysis could be useful in this direction).

It is expected that these results would usefully support the current efforts to
improve context-aware application development

However, all addressed challenges and corresponding solution directions must be
considered in an integrated manner, as part of a context-aware application
development approach, since they are interrelated. Hence, we plan (as further work)
to use the results reported in the current papers for extending usefully an existing
business-application-alignment approach [12].

Acknowledgements

This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl).
Freeband is sponsored by the Dutch government under contract BSIK 03025.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services, Concepts, Architectures and
Applications. Springer-Verlag, Berlin-Heidelberg (2004)

33

2. AWARENESS, Freeband AWARENESS project, http://www.freeband.nl/ project.cfm?id=
494&language=en (2008)

3. Broens, T.H.F., van Halteren, A.T., van Sinderen, M.J., Wac, K.E.: Towards an Application
Framework for Context-Aware m-Health Applications. International Journal of Internet
Protocol Technology, 2 (2) (2007)

4. Dey, A. K.: Understanding and Using Context. Personal Ubiquitous Computing 5 (1): 4-7
(2001)

5. Hristova, N., O’Hare, G.M.P.: Ad-me: Wireless Advertising Adapted to the User Location,
Device and Emotions. In: HICSS’04, 37th Hawaii International Conference on System
Sciences (2004)

6. Kurkovsky, S., Harihar, K.: Using Ubiquitous Computing in Interactive Mobile Marketing.
Pers Ubiquit Compt, vol. 10, no. 1 (2006)

7. Levin, R.I., Rubin, D.S.: Statistics for Management. Prentice Hall, USA (1997)
8. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,

Cambridge (2000)
9. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: WMCSA’94,

Workshop on Mobile Computing Systems and Applications (1994)
10. Shishkov, B. and Dietz, J.: Deriving Use cases from Business processes, the Advantages of

DEMO. In: Enterprise Information Systems V. Eds. O. Camp, J.B.L. Filipe, S. Hammoudi,
and M. Piattini. Kluwer Academic Publishers, Dordrecht/Boston/London (2004)

11. Shishkov, B., Quartel, D.: Combining SDBC and ISDL in the Modeling and Refinement of
Business Processes. In: Enterprise Information Systems VIII, Eds.: Y. Manolopoulos, J.
Filipe, P. Constantopoulos, J. Cordeiro, Lecture Notes in Business Information Processing.
Springer-Verlag, Berlin-Heidelberg (2008)

12. Shishkov, B., Van SInderen, M. J.: From User Context States to Context-Aware
Applications. In: Enterprise Information Systems IX, Eds.: J. Cordoso, J. Cordeiro, J.
Filipe, V. Pedrosa, Lecture Notes in Business Information Processing. Springer-Verlag,
Berlin-Heidelberg (2008)

13. Shishkov, B., Dietz, J.L.G., Liu, K.: Bridging the Language-Action Perspective and
Organizational Semiotics in SDBC. In: ICEIS’06, 8th International Conference on Enterprise
Information Systems (2006)

14. Shishkov, B., Van Sinderen, M.J., Quartel, D.: SOA-Driven Business-Software Alignment.
In: ICEBE’06, IEEE International Conference on e-Business Engineering (2006)

15. Van Hee, K.M., Reijers, H.A.: Using Formal Analysis Techniques in Business Process Re-
Design. In: Business Process Management; Models, Techniques, and Empirical Studies,
Eds.: W. van der Aalst, J. Desel, A. Oberweis, Lecture Notes in Computer Science. Springer-
Verlag, Berlin-Heidelberg (2000)

16. Van Sinderen, M.J.: Architectural Styles in Service Oriented Design. In: ICSOFT’06,
International Conference on Software and Data Technologies (2006)

17. Van Sinderen, M.J., Van Halteren, A., Wegdam, M., Meeuwissen, E., Eertink, H.:
Supporting Context-Aware Mobile Applications: An Infrastructure Approach. IEEE
Communications Magazine 44 (9): 96-104 (2006).

34

Utility Computing Paradigm and SOA Philosophy

Ivan Ivanov

Empire State College, State University of New York, Long Island Center
Hauppauge, NY 11788, U.S.A.
Ivan.Ivanov@esc.edu

Abstract. The purpose of this paper is to sort out, to the extent possible, the
contentious discussion regarding the impact of service oriented architecture to
utility computing. How useful is this philosophy in conjunction with utility
computing approaches on organizational IT strategies, business processes and
directional models? The change to IT utilization is being driven by the
infrastructural advantage and economic leverage of the Internet in combination
with imperative industry trends: commoditization of IT, Service-Oriented
Architectures (SOA) and Virtualization of Services and Applications. These
trends include several distinct innovations such as:
• the use of multiple servers to replace large expensive systems (IT

commoditization);
• the componentization of flexible application building blocks that can be

easily assembled into large, composite business specific applications
(Service Oriented Architectures);

• the virtualization of operating systems, data storage, network resources,
computing power (grid computing) and applications (as a top layer of
virtualized services).

The business approach seems to achieve the transformation of IT from an inert
monolith to a dynamic, business adaptive model. This forms the Utility
Computing paradigm. However, the question remains, how well do the UC
models synthesize with the agility provided by SOA philosophy to enable a
continuous optimization of business processes?

1 Introduction

Information Technology (IT) has had a profound impact on organizational strategies,
infrastructure, services, and business models in the last several decades. The
transformations inside IT industry as applications, services, and solutions have been
changing persistently because of customers’ needs and business necessities.

In the early stages in the development of information and communication
technology, there are few standards, majority proprietary (company specific) products
and solutions, limited applications, and deficient distributed network; as a result, IT
has been impossible to provide expected economies. IT solution and services were
usually regionally dependent and fragmented by product and applications. Such
fragmentation has appeared intrinsically lavish for the businesses. It compelled large
capital investments, heavy fixed IT expenses: both in the technology and in
operational costs (administration, monitoring, and maintenance), resulting in high

levels of overcapacity. The situation has been ideal for the suppliers of the technology
components and infrastructural builders, but it has been ultimately unsustainable.

The economic difficulties in 2000s, the cost-effective strength of the Internet and
some new technological advantages have made businesses more vigilant and more
demanding about the return of their IT infrastructural investments. As a crucial
business resource IT has matured and came to what economists describe as a General-
Purpose Technology (GPT), sharing four specific characteristics of GPTs:

• Wide scope for improvement and elaboration,
• Applicability across a broad range of uses,
• Potential for use in a wide variety of products and processes,
• Strong complementarities with existing or potential new technologies [4].

Because of the broad range of employments, variety of products and applications,
IT as a typical GPT proffers the potential of considerable economies of scale if their
supply can be unified and consolidated. The business approach seems to achieve the
transformation of IT from an inert monolith to a dynamic organism, better adaptive to
the business needs model. While delivering IT as utility has been recognized and a
central distribution becomes possible, large-scale utility suppliers arise and displace
the smaller product-specific providers. Although companies may take years to
abandon their proprietary supply IT operations and all the sunk costs they represent,
the savings offered by utilities eventually become too compelling to resist, even for
the largest enterprises[3].

The transformation to IT utilization is being driven by the infrastructural
advantage and economic leverage of the Internet in combination with imperative
industry trends that advance and permit realization of over-the-net different delivery
models. These trends include several distinct innovations such as:

• the use of multiple servers to replace large expensive systems (IT
commoditization);

• the componentization of flexible application building blocks that can be
easily assembled into large, composite business specific applications
(Service Oriented Architectures);

• the virtualization of operating systems, data storage, network resources,
computing power (grid computing) and applications (as a top layer of
virtualized services).

The purpose of this paper is to sort out, to the extent possible, the contentious
discussion regarding the impact of service oriented architecture approach to utility
computing models. The rest of the paper is structured as follows: Section 2 - Utility
Computing Paradigm expose the concept, technologies, models and the paradigm sifts
for consumers, vendors and providers of utility computing; Section 3- SOA
Philosophy and IT agility-integration reveals how SOA approaches can be deployed
to achieve agile business integration; Section 4 - The Implication of SOA within UC
structures illustrates some developments in employing SOA approaches within hybrid
utility computing models to advance integration of existing and newly developed
applications and to attain extensive economies; Section 5 – Conclusion, ends the
paper with closing notes.

36

2 Utility Computing Paradigm

2.1 The Concept

Utility computing was first described by John McCarthy at the Dartmouth conference
in 1955 as: "If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility just as the
telephone system is a public utility… The computer utility could become the basis of
a new and important industry." The major factors which impeded the development of
computer utilities in the last decades were:

• high data communications costs,
• timid public attention,
• limited number of trained and skilled IT users,
• lack of standardization of hardware, software and data communications,
• apprehensive compilation of database systems and development tools,
• high level of security threats.

Practically fifty years were needed to develop a broad-spectrum of computerized
devices, universal communication infrastructure and over-the-net applications, to
saturate organizations and users with appropriate computer systems and more
adaptive technology solutions. This time period was vital to educate a critical mass of
IT professionals in programming, networking, business productivity systems and web
based applications, and to train a vast majority of end-users how to utilize them [10].

2.2 Utility Computing Technologies

The recent utility computing development as a complex technology involve business
procedures that profoundly transform the nature of companies’ IT services,
organizational IT strategies, technology infrastructures, and business models. Based
on networked businesses and widely implemented Over-the-Net applications, utility
computing facilitates “agility-integration” of IT resources and services within and
between virtual companies.

There is immense variety in possible and actual configurations of technologies
and infrastructure to support utility computing development. According to Alfredo
Mendoza [12], well established and proven technologies like virtualization, advanced
application accounting, and dynamic partitioning, that have long existed in
mainframes and now are available on newer server architectures in combination with
grid computing, web services and hyperthreading technologies are contributing to
create an infrastructure based on the utility model. Other experts believe utility
computing will further evolve into a combination of the related concepts of grid
computing (a type of network-distributed parallel processing), on-demand, and Web
services [18]. The primary newly established technologies for companies seeking a
competitive advantage in utility computing development are grid computing, all forms
of virtualization services and automated provisioning.

37

2.2.1 Grid Computing
In a grid, all of the networked computers are coordinated and act as a single “virtual”
computer. Grids use specialized scheduling software that identifies available
resources and allocates tasks for processing accordingly. "A grid cluster is a collection
of independent machines connected together by a private network with a specific
software layer on top. This software layer has to make the entire cluster look like a
single computing resource." -- Don Becker, CTO, Penguin Computing (a
manufacturer of Linux-based grid solutions), offers a succinct definition of grid
computing.

The key element is that computers, or nodes, in a grid are able to act
independently without centralized control, handling requests as they are made and
scheduling others. Grid computing is the underlying technology for utility computing.
In a long term, grid computing is heading towards a convergence of utility computing
from the pricing and delivery prospective, and Web services-based integration and
virtualized technologies to enable multiple, networked computers to be managed as
one [17]. Amongst systems vendors developing and exploiting grid concepts are HP
with HP Adaptive Enterprise Initiative, Sun Microsystems Network One, IBM’s On-
Demand Computing, and Oracle Grid Computing.

The grid may increase geographically in organizations that have facilities in
different cities and continents. Dedicated communications connections, VPN
tunneling and other technologies may be applied among different parts of
organizations and the grid. The grid may grow to be hierarchically organized to
reduce contention implied by central control, while increasing scalability. With
developing the grid infrastructure, the grid may expand to cross organization
boundaries migrating to “Intergrid”, and may be used to collaborate on projects to
provide brokering and trading resources over a much wider audience; those resources
may be then purchased as a utility from trusted suppliers.

2.2.2 Virtualization
Virtualization services allow servers, storage capacity, network resources or any
virtual application to be accessed and referenced independent of its physical
characteristics and location. Virtualization presents a logical grouping or subset of
computing resources such as hardware, operating systems, storage and applications,
which may be accessed to enhance the original configuration. The improvement with
virtual resources is not limited geographically, by applications, or physically, such as
in configuration. Solution providers can use server virtualization and other virtual
appliances to provide new services. Server virtualization is used to create utility
computing server farms that combine multiple customers' workloads. The cost-to-
customers is based on metrics, such as the gigabytes of memory and disk space used,
computing power or servers needed. This maximizes the customers' ROI with a pay-
as-you-go model. It also allows access to an infrastructure, which operates on-
demand. A server farm can be used to duplicate or expand, rather than replace, a
customer's infrastructure. This may become important if a natural disaster should
happen, for instance, requiring migration of images from the customer's servers to
laptops or another system [15].

Stating it succinctly, virtualization for most vendors specialized in this
technology is an abstract layer that allows multiple virtual machines, with

38

heterogeneous operating systems to execute in separation side-by-side on the same
physical system. Virtualized services allow customers to utilize and expand their
systems in many directions such as:

• Server consolidation - combine many physical servers into fewer, highly
scalable enterprise-class servers, which host virtual machines, also known as
physical-to-virtual (P2V) transformation.

• Storage virtualization – high-speed data-storage switched networks, such as
Storage Area Networks (SAN) and Network-attached Storage (NAS), provide
shared access to many storage devices, virtual file servers or file systems.

• Network virtualization – segregates the inbuilt network resources into separate,
distinct and secure channels and devices composing virtual private networks
(VPNs), “demilitarized zone” in the context of firewalls, load balancers and
voice over IP services.

• Disaster recovery and business continuity protection - alters historical backup-
and-restore (virtual machines are used as "hot standby" environments, which
allow backup images to migrate and "boot" into live virtual machines).

• Streamline Testing and Training - hardware virtualization allows root access to
a virtual machine that is useful in kernel development, operating system
training and application testing.

• Portability for Applications and Automation Capabilities - applications
virtualized for portability will remain portable, while virtual appliances
combine simple deployment of software with the benefits of pre-configured
devices.

• Streaming Applications and Secure Enterprise Desktops - virtualized software
locked down onto the local Desktop, by providing a standard corporate
desktop image in a virtual machine, while the standardized desktop enterprise
environment is hosted in virtual machines accessed through thin clients or PCs.

VMware, is one of the leading providers for virtualization technology systems. As
said by VMware president Diane Greene “Once you aggregate your hardware
resources, you can allocate a certain amount of CPU power, memory, disk and
network to a group of virtual machines, and it will be guaranteed those resources. If
it’s not using them; other virtual machines will be able to use those resources… It’s
utility computing made real and working” [7]. Recently launched Virtual Application
Environment by Microsoft provides application extensive virtualization that can be
layered on top of other virtualization technologies – network, storage, machine – to
create a fully virtual IT environment where all computing resources can be
dynamically allocated in real-time based on real-time needs. Applications are turned
into on-demand utilities that can be used on any system, easy to dynamically add,
update and support, creating nimble business environment, using minimal time and
resources [13]. Virtualization techniques might affix a little higher operating costs and
complexity compared to nonvirtual settings, but there many other capabilities and
advantages of having virtualized resources that will bring much higher economies and
reliability.

2.2.3 Provisioning
Utility computing is generally a provisioning model - its primary purpose is to only
provide a service when, how, and where it is needed. Automated or manual

39

provisioning of resources in a large scale provides access to new servers or additional
capacity in an automated and “on-the-fly” manner. Since utility computing systems
create and manage many, and simultaneous, occurrences of a utility service, each one
providing application functions, it becomes necessary to establish provisioning
policies. The Internet Engineering Task Force (IETF) has adopted a general policy-
based administration framework with four basic elements: (1) a policy management
tool, (2) a policy repository, (3) a policy decision point, and (4) a policy enforcement
point.

The market and technology leader in this technology trend IBM, has
implemented three main categories of policies related to the provisioning of services
within a utility computing system:

• the service provider (SP), who deal with the sharing of the computing
infrastructure among different on-demand services (ODS),

• the utility computing service environments (UCSE), which deal with policies
associated with the allocation and management of computing resources
supporting a given ODS, and

• the resource managers, who deal with the administration of pools of specific
resources.

The type of provisioning provided depends upon the utility model implemented.
For a storage area network (SAN), for example, provisioning involves assigning
process space to optimize performance. IBM's on-demand architecture considers each
instance of a utility service a "utility computing service environment" (UCSE).
Recently, many companies are retooling their infrastructure to incorporate
virtualization technologies to work with policy-based automation management
software geared toward automated provisioning. The increasing need for more
flexible IT services will gear to a more consolidated and automated infrastructure
environment [12].

The above described utility computing technologies are supported by further
advances – the increased deployment of blade servers, inexpensive high-speed
networks development, the adoption of open source technologies and software as a
service approach, evolving policy-based automation and application management
software to streamline over-the net application allocation and management. With their
modular uni-, dual- or multiprocessor architecture, blade servers offer tremendous
space saving, solid performance and easy of management environment. All these
tendencies sit well with virtualization, grid computing and the allocation of
computing resource on-the-fly.

2.3 Utility Computing Model and the Paradigm Shift

The term "utility computing" is still pretty new and the phrase generates confusion,
since it is commonly used to describe a technology as well as a business model. The
difficulty is that computing is not nearly as simple as conventional utilities.
Computing involves a vast amount of context, as opposed to volts, amps and watts for
the most complex other public utility - the electricity. The utility computing uniquely
integrates storage, applications, computational power and network infrastructure as a
foundation for business adjustable IT services. In the ultimate utility computing

40

models, organizations will be able to acquire as much IT services and applications as
they need, whenever and wherever they need them.

Utility computing is a model that allows breaking down IT infrastructure into
discrete pieces that can perform different and separate business functionalities, can be
measured independently, can be turned on and off as necessary [12]. It offers
companies and private users an access to hosted computing services, scalable and
portable business applications through a utility-like, pay-on-demand service over the
Internet network. To achieve cost savings, to reduce IT complexity and to increase IT
flexibility and integration ability when utility computing model is being applied,
suppliers and consumers of utility services need to reach a higher level of
standardization and sharing. The five levels of Continuum of Utilities model,
illustrated by Alfredo Mendoza in Utility Computing: Technologies, Standards, and
Strategies, exposes some critical developments and infrastructural transformations
towards approaching a higher level of standardizations, consolidations and sharing:

• Level 1 - Utility Pricing – New technology enables utility like functionalities
and pricing in services within the infrastructure. Typical examples are:
capacity on demand, on-demand computing, pay-per-use, pay-per-service
where utility suppliers and consumers specify the scope and the frame of
computing services and negotiate the utility pricing model

• Level 2 – Infrastructure Utility – At this level, new technologies such as
virtual servers, storage and networks with advanced partitioning, automated
provisioning and policy-based management facilitate processes of virtualized
operating environment and allocate resources as and where needed

• Level 3 – Shared Application utilities – Architectural changes to enterprise
software applications derived from Service-oriented architecture (SOA)
implemented as Web services, and metering Software as a Service (SaaS) for
enterprise applications transform single instance applications into multi-tenant
applications served over-the-net

• Level 4 – Shared Process Utilities – At this level, companies identify business
functionalities that are non-strategic, deconstruct to similar functional
components within different processes to externalize or shared with other
organizational entities within the networked environment

• Level 5 – Virtual Infrastructure Utilities – At the last most advanced level
infrastructure utilities begin to share resources with each other.
Communications between utilities are done through industry-standard
protocols and format such as data communications markup language (DCML)
and are possible by sharing resources between separate data centers through
the use of grid infrastructure or utility computing environment.

The utility computing model creates a substantial magnitude in the paradigm shift
for vendors, providers and consumers of computing power and IT services. Risk-
reluctant organizations would take more discrete phase based approach when
applying some utility like services without affecting critical business systems.
Imaginative providers will reflect the new paradigm by offering a variety of utility-
based options - from specific customized systems through hybrid stepwise services to
total utility solutions. In the following paragraphs are listed some of the key steps and
techniques companies switching to the new utility computing paradigm should
consider from consumers’ and providers’ prospective. According to Gardner Group

41

study the utility computing suppliers are going through five stages to build their utility
infrastructure: (1) concentration of resources, (2) consolidation of assets, including
infrastructure facilities, (3) virtualization of services, (4) automation of processes, and
(5) extension of services and solutions. Firms move from one stage to the next, with
each stage firmly established before going to the next [6].

The leading companies in the utility paradigm recently are in late stage 3 or stage
4; they make available a wide range of automation processes and business operations
deployment based on virtualized computing resources and services. Sun with its N1
architecture, Grid compute utility and StorEdge services provide virtualization of data
center resources, dynamic allocation of IT applications, automation of installation,
configuration, accounting and reporting on per-service basis deployment. HP
Adaptive Enterprise is the HP shift to utility computing development. The HP strategy
is to deliver virtualization technology and utility computing services at different
product levels: individual or element-based virtualization, integrated virtualization,
and metered, managed and instant capacity operations. While the diversity of utility
like options is substantial and HP is acting as a typical IT utility provider, there are
some strategic HP advances in servers, storage, imaging and printing services. In
2006, HP won two multiyear $440M utility computing contracts from the United
States Federal Government. Based on its worldwide communication network,
specialized services and cross-platform expertise, HP deploys adaptive infrastructure
using HP Integrity and HP ProLiant servers, and delivers software solutions for
automated server provisioning, configuration, patch and IT asset management. HP
discontinued its Utility Data Center (UDC) monolith initiative advancing more
flexible and granular utility computing services such as imaging and printing
operations, server and storage virtualization and automated provisioning on modular
platforms to target larger costumers’ groups and variety of business expectations.

IBM On Demand strategy is the company’s complex utility computing model,
which incorporates infrastructure virtualization and management technologies,
application hosting services and business process operations. IBM has proved its
leading expertise in this realm with many successful utility projects from modular
business specific applications to the most comprehensive IT solution to American
Express announced in late 2002. “Today American Express is placing itself at the
forefront of a new computer services paradigm,” said Doug Elix, IBM senior vice
president and group executive, IBM Global Services. “The utility computing service
delivery model American Express is adopting will give it the flexibility to draw on all
the computing resources, skills and technologies required to support future growth.”
The agreement saves American Express hundreds of millions of dollars in information
technology costs, and having IBM’s resources on demand provides AmEx with the
flexibility to adjust rapidly to changing business needs.

The pragmatism that drives most organizations as consumers into utility model is
not only immediate cost savings, but also how IT is structured and managed,
accounted for, and used to enable businesses to improve their efficiency and
effectiveness. In today’s world, IT differentiation in products or services is unlikely to
be achieved; therefore more executives are looking to business process innovation as
a key competitive advantage. Virtually all businesses could take advantage and
building out a company-specific platform by employing best pieces of proved utility
computing options in different timeframe [10]. The timeframe IDC envisages
regarding the major steps customers would advance when they incorporate utility

42

principles methodically and incrementally includes four phases: (1) Virtualization 1.0
– Encapsulation, Resource Sharing and Dynamic Consolidation – 2005, (2)
Virtualization 2.0 – Mobility and Planned Downtime - 2007, (3) Virtualization 2.5 –
Unplanned Load, Alternate Disaster Recovery Workload Balancing – 2009, and (4)
Virtualization 3.0 – Automation Provisioning, Service Oriented and Policy Based
solutions, Variable Costs – 2010+ [8].

The important strategic decision consumers must take is the type of computing
utility: private (in-house) utilities, public utilities or hybrid (selective) utilities. The
answer depends on existing IT resources, infrastructure and professional expertise the
company possesses. Organizations could initiate small pilot projects, examine new
utility type services, and build expertise and confidence with implementation of new
technologies supporting utility computing paradigm. According to leading IT research
institutions (Gartner, Forrester, IDC) the operational costs are between 55 to 75 % of
the total IT costs and they are growing at twice the rate of overall expenses. In 2004,
IDC reported $55 billions are located for buying new servers and $95 billions to
manage them, while for 2008 new servers spending is expected to reach $60 billions
but the management cost would rise to around $140 billions. Employing utility
computing services, organizations could expect 30-65% decrease in operational costs
and over 50-75% savings from total cost of ownership.

3 SOA Philosophy and it Agility-Integration

Service-Oriented Architecture is a software design approach that dissolves business
applications into separate functions or “services” – e.g. check credit history, or open
new account – that can be used independent of the applications and computing
platforms on which they run. When individual functions within applications are all
available as discrete building blocks, companies have the ability to integrate and
group them differently to create new capabilities and align to business processes [9].
This architectural approach is specifically applicable when multiple applications and
process running on various technologies and platforms need to interact with each
other – a recurring scenario within utility computing environment.

SOA is a logical way of designing a software system to deliver services to either
end-user applications or other services distributed over-the-net through published and
discoverable interfaces. The basic SOA defines an interaction between software
agents as an exchange of messages between service client and service provider, while
both parties - provider and client - are respectively responsible for publishing a
description of the service(s) they provide and finding description of service(s) they
require and they must be able to bind them [14]. The SOA offers a model in which
relatively loosely coupled collections of existing IT assets (called services) are reused
and reconnected providing the functionality required by business applications,
management functions, and infrastructure operations. In this way, supply chain
partners and value nets can more easily integrate business processes and applications
across organizational boundaries and achieve better integration, greater flexibility,
and improved ease of cooperation and collaboration [19].

There are many real-world examples of a single or inter-organizational SOA at
work. Amazon uses SOA to create a sales platform with 55 million active customers,

43

and more than one million retail partners worldwide. Up to 2001, Amazon ran a
monolithic, very inflexible, and vulnerable to failures Web server application that
created the customer and vendor interface, and a catalog. Recently, Amazon’s
operation is a collection of hundreds of services delivered by a number of application
servers that provide the customer interface, customer service interface, the seller
interface, billing and many third-party Web sites that run on Amazon’s SOA platform
[5]. A typical inter-organizational SOA coordination is Dollar Rent A Car’s systems
using Web services to link its online booking system with Southwest Airline’s Web
site. Although both companies’ systems are based on different technology platforms,
a person booking a flight on Southwest.com can reserve a car from Dollar without
leaving the airline’s Web site. Dollar used Microsoft .NET Web services technology
as an intermediary to get Dollar’s reservation system to share data with Southwest’s
information systems [11].

Virtually all major IT leaders such as IBM, Microsoft, Oracle, SAP, Sun, HP, and
some software vendors specialized in SOA as BEA Systems, TIBCO Software,
Software, Sybase, Xcalia, Systinet, Zend Technologies provide tools or entire
platforms for building SOA services, integrating software applications and easy of
deployment business operations using Web services. Many of above listed companies
collaborate their efforts in identifying requirements and designing standards to make
data and applications services easier to build and maintain with recent and
forthcoming products and to protect the resources and investment. Current
publications and discussions in various forums, including the Open SOA
Collaboration alliance support the need for an explicit Data Access Service initiative
that builds upon SDO (Service Data Objects) and SCA (Service Component
Architecture) to standardize important aspects of data services from the consumer’s
viewpoint [2].

According to a new Evans Data Corp. study, enterprise adoption of service-
oriented architecture is expected to double over the next two years. Evans Data's
recently released Corporate Development Issues Survey showed that nearly one-
fourth of the enterprise-level developers surveyed said they already have SOA
environments in place, and another 28 percent plan to do so within the next 24 months
[16]. To facilitate the evolution of applications and make quicker responses to the
consumers and businesses needs, the leading companies in SOA structure better the
shared IT services by designing horizontal and vertical layers such as: presentation
services with profiles, business process and activity services, data and connectivity
services, SOA messaging, event processing, management, security and governance.
Layering functionality enables IT systems to offer efficiently tailored capabilities to a
wide variety of service consumers, to easy adapt to new business conditions by
generating an updated services or composing new applications [1].

4 The Implication of SOA within UC Models

Business and IT costumers want to achieve greater agility in their business processes
and larger variety of service applications, whereas utility computing providers want to
reduce costs by consolidating computing power, data storage, information services
and network infrastructure. How well do the UC models synthesize with the agility

44

provided by SOA philosophy to enable a continuous optimization of business
processes and to satisfy both providers and consumers.

The primary technologies that support utility computing model such as
virtualization, SOA and provisioning can mutually interact, be complimentary to one
another and became key enablers for flexibility, efficiency and agility of IT utility like
services if they are designed and implemented correctly. Dynamic provisioning of the
service provider side of the SOA, using virtualization techniques, offers significant
gains to utility providers when they build their SOA services on a virtualization
platform. There are also benefits from the virtualization of the application or service
consumer side based on removing the traditional operating system and allowing more
virtual machines to be accommodated on a physical machine. Partial virtualization of
the SOA service infrastructure is advisable if the service consumer is new either to
virtualization or to SOA technology. Parts of the service may reside on a virtual
platform, while other parts of it may reside on a physical one. A J2EE application can
communicate with legacy mainframe systems using older protocols, but at the same
time present SOA interfaces to its consumers. The J2EE and web services
implementation can live on virtual infrastructure while the older legacy systems on its
original physical platform. The scheme is followed today with Java/J2EE applications
that communicate with legacy systems, and it is equally applicable to the SOA world.
When SOA is implemented across the service provider infrastructure, a large
collection of services is likely to be present. At a minimum, each SOA service
requires a copy of itself to be running on a separate platform, to achieve a level of
fail-over and load balancing. When a set of services undergoes an unexpected
increase in demand, the whole system must be capable of flexing its processing power
to meet that demand, based on the authority and capability of the resource
management tools to expand the pool of resources and services [20].

As utility computing becomes more typical, providers and consumers companies
have to analyze and reengineer their organization IT resources and processes, and
have to develop corresponding changes to IT infrastructure. When implementing
SOA, the role of the IT infrastructure changes toward managing the services, which
support business processes and therefore, lead to more efficient business results. IT
architects with detailed knowledge and understanding to the companies’ business
needs, processes and expectations have to be involved with more collaborative efforts
between previously disconnected professionals like business analysts, infrastructure
analysts and application IT analysts to specify and design a new utility computing
service oriented infrastructure. Service-Oriented Infrastructure as a shared pool of
infrastructure resources that can be dynamically manipulated to align with application
requirements, provides more adaptive and with better performance utility computing
environment.

As the new ideas for innovation in technology always come from customers and
not from technology companies, consumers have a chance to continue to define and
refine their requirements so that vendors and service providers would be able to give
them what they need. The SOA expanding will stimulate additional performance,
flexibility and scalability within services and applications since the immense increase
of componentization and standardization into both providers and consumers utility
computing infrastructure. When synthesizing SOA philosophy by deploying and
realizing business value into utility computing model based on principle of creative
frugality: getting the most out of what already exists, rather than replacing

45

technologies that are working effectively, businesses can attain more rapid return on
lower investment by acquiring the tools and services that make those technologies
more productive and efficient.

5 Conclusions

The paper characterizes the utility computing technologies and the paradigm shits
consumers, vendors and providers would face when applying partially (selectively) or
completely a utility computing model. The role and the advances of SOA approach in
this process of utilizing IT services by composing and reusing business-required
applications in a utility computing environment has been discussed. Service-oriented
computing is a new enormously complex and challenging trend implementing many
technologies that must be elaborate in a coherent manner. The framework of SOC
might bring more complexity and logical classification of creating composite in-house
solutions with external components residing in a virtual utility provider environment.

References

1. BEA Systems: BEA’s SOA Reference Architecture: A foundation for Business Agility, BEA
Systems, Inc. San Jose, CA 95131, U.S.A. (2008)

2. Carey, M.: SOA What? Computer, March 2008, Volume 41, Number 3, IEEE Computer
Society, NY 10016, U.S.A. (2008)

3. Carr, N.: The End of Corporate Computing. MIT Sloan Management Review, Vol. 46 No.
3, Cambridge, Massachusetts, U.S.A. (2005)

4. David, P., Wright, G.: General Purpose Technologies and Surges in Productivity:
Historical Reflections on the Future of the ICT Revolution. Oxford University Press for the
British Academy (2003)

5. Grey, J.: Learning from the Amazon Technology Platform, ACM Queue, No. 4, U.S.A.
(2006)

6. Gray, P.: Manager’s Guide to Making Decisions about Information Systems. John Wiley &
Sons, NJ, U.S.A. (2006)

7. Hammond, S.: Utility Computing: Building the blocks. ComputerWorld, Hong Kong (2006)
8. Humphreys, J.: Themis Delivers Policy-Based Automation Across an Application Portfolio.

IDC, MA, U.S.A. (2007)
9. IBM Global Business Services: Changing the way industries work: The impact of service-

oriented architecture, IBM Global Services, Route 100, Somers, NY 10589, U.S.A. (2006)
10. Ivanov, I.: Utility Computing: Reality and Beyond. In: ICE-B’07, International Conference

on E-Business (2007)
11. Laudon, K., Laudon, J.: Management Information Systems: Managing the Digital Firm,

(10th edition), Pearson Prentice Hall, Upper Saddle River, NJ 07458, U.S.A. (2006)
12. Mendoza, A.: Utility Computing: Technologies, standards, and strategies. Artech House,

Norwood, MA 02062, U.S.A. (2007)
13. Microsoft Corp.: SoftGrid® v4: Application Virtualization and Streaming. U.S.A. (2006)
14. Papazoglou, M. and Ribbers, P.: e-Business: organizational and technical foundations,

John Wiley and Sons, West Sussex, England (2006)
15. Roberts, J. and Yacono, J.: Server Virtualization Offers Many Opportunities. CRN:

Iss.1076, NY, U.S.A. (2003)

46

16. SOA World Magazine: SOA Adoption to Double in Enterprise Available: http://soa.sys-
con.com/read/358785.htm (May2008)

17. The 451 Group: Grid Technology User Case Study: JP Morgan Chase. The 451 Group
Report, NY, U.S.A. (2003)

18. Thickens, G.: Utility Computing: The Next New IT Model. Available online at:
http://www.darwinmag.com/read/040103/utility.html (July 2007)

19. Turban, E., King, D., McKay, J., Marshall, P., Lee, J., and Viehland, D.: Electronic
Commerce 2008: A Managerial Perspective, Pearson Prentice Hall, Upper Saddle River,
NJ 07458, U.S.A. (2008)

20. VMware: SOA and Virtualization: How Do They Fit Together? A White Paper from BEA
and VMware, Palo Alto, CA 94304, U.S.A. (2007)

47

A Comparison of Data and Process Mediation
Approaches

Rodrigo Mantovaneli Pessoa1, Dick Quartel2 and Marten van Sinderen
1

1 University of Twente, 7500 AE Enschede, The Netherlands
2 Telematica Instituut, 7500 AN Enschede, The Netherlands

{r.mantovanelipessoa, M.J.vanSinderen}@ewi.utwente.nl
{Dick.Quartel}@telin.nl

Abstract. In recent years, a huge amount of effort has been invested in the area
of service discovery and composition. However, surprisingly little effort is
being put into the evaluation of these approaches. The SWS Challenge is an
ongoing and continuous experiment in developing a common understanding of
various technologies intended to facilitate the automation of mediation,
composition, and discovery for Web Services using semantic annotations. The
mediation scenario problems concern making a legacy order management
system interoperable with external systems that use a simplified version of the
RosettaNet PIP3A4 specifications. The participants are supposed to be
evaluated with focus on functional coverage. However, it turned out that it is
extremely difficult to assess this in an objective manner. In this paper, we
describe a framework for comparison of data and process mediation
approaches. As a case study, we apply our framework to perform a comparative
analysis of four participants from the SWS Challenge.

Keywords. Data and Process Mediation, Enterprise Application Integration
(EAI), Semantic Web Service Challenge

1 Introduction

One of the most engaging promises of Service Oriented Architectures (SOA) is to
enable the construction of flexible and loosely coupled business applications,
spanning over several networked enterprises capable of interconnecting their
applications and share data by combining a set of services. As services mature to suit
the basic building blocks of Service Oriented Architectures, the service composition
paradigm is becoming one of the main concerns of the application development
process. Some already raised questions related to services are: how to specify them in
an expressive enough language, how to compose them, how to discover them through
the distributed environment, and how to ensure their correctness.

However, the multiplicity and diversity of the proposed approaches attests a lack of
consensus on the most appropriate technologies and methodologies to compose
services. The Semantic Web Service Challenge is an initiative aiming to develop a
common understanding of various technologies intended to facilitate the automation

of mediation, discovery and composition for services using semantic annotations. The
evaluation process is performed by teams composed of workshop organizers and peer
participants with focus on evaluating the functional coverage, i.e. on whether a
particular level of the problem could be solved by a particular approach. However it
turned out that it is extremely difficult to assess this in an objective manner [1].

Motivated by this fact, we developed a framework for comparison of mediation
approaches. The framework is expressed in terms of quantitative and qualitative
evaluation points in order to clarify and expose different aspects involved in features
supported by a method or tool. As a case study, we applied our framework to perform
a comparative evaluation of four participants from the SWS Challenge, around the
mediation scenario.

The remaining of this work is structured as follows: Section 2 presents the
mediation scenario proposed by the Semantic Web Services Challenge. Section 3
introduces our comparison framework. Section 4 describes four different approaches
for data and process mediation. In Section 5, the comparison is conducted and
summarized. Finally, Section 6 presents our conclusions and defines some future
research directions.

2 The Mediation Problem: Purchase Order Scenario

This session describes the static mediation scenario proposed by the Semantic Web
Services Challenge. This problem centres around a simple purchase order scenario
between two companies: Moon and Blue. The manufacturer Moon has signed an
agreement with the company Blue, to exchange purchase order messages in
RosettaNet PIP 3A4 format. RosettaNet is an industry-driven standard for B2B
integration that represents an agreement on the message exchange patterns, the
message content and a secure transportation mechanism among business trading
partners in a supply chain network. The Blue’s system has to interact with Moon’s
legacy system, also provided as a set of Web services, which however do not use the
RosettaNet standard. The objective of the SWS Challenge is to build a system called
Mediator, which compensates the differences in communication between the involved
parties by solving possible data and behaviour mismatches.

The subsequent levels of the SWS Challenge addresses the mediation problem by
asking its participants to, while minimizing direct intervention from programmers,
effectively and quickly react to incremental changes of the application requirements
built on top of the static scenario. Those solutions that were still able to tackle the
problem are then ranked in different levels of adaptability.

2.1 The Static Mediation Scenario

The static scenario involves the mediation between two companies, Blue and Moon,
within a stable (static) context: the protocols, the messages, and the data formats are
known a priori and fixed. In the scenario discussed above, the company Moon uses
two back-end (legacy) systems to manage its order processing, namely, a Customer
Relation Management System (CRM) and an Order Management System (OM).

49

As illustrated by Figure 1, the customer Blue sends a RosettaNet order request and
expects that, upon the request being submitted, the order will be processed and a
purchase order confirmation will be received, acknowledging that the order was
received and processed by the company Moon. Messages in RosettaNet PIP 3A4
format enable a buyer to issue a purchase order and to obtain a quick response from
the provider that acknowledges which of the purchase order product line items are
accepted, rejected, or pending. As mentioned before, the company Moon only offers a
set of legacy Web Services that do not fit with the RosettaNet standard. The mediator
is in charge of receiving a single RosettaNet message (containing all the order details)
from Blue and splitting it to the various messages needed by Moon to create and
handle a purchase order. In this way, the mediator will have to orchestrate a sequence
of services provided by Moon and translate the set of confirmation messages into a
whole RosettaNet Purchase Order Confirmation to be sent back to Blue.

Fig. 1. Mediation Scenario Overview.

At first, the Mediator receives a Purchase Order Request message from the
customer Blue. The Purchase Order Request message is synchronously confirmed by
an Acknowledgement of Receipt message. However, in order to orchestrate Moon to
process a RosettaNet purchase order, several steps have to be made.

First, the customer needs to be identified by sending a search string to Moon’s
CRM system. The internal costumer identification number is obtained by invoking the
searchCustomer operation. As a next step, the creation of a new order is requested by
sending the costumer identification number to Moon’s OM system invoking and
invoking the createNewOrder operation, which returns the id of the newly created
order. After a new order is created, Moon’s OM system expects all order lines to be
added one by one by invoking addLineItem operation (possibly for many times).
Finally, once all the line items are submitted, Moon OM system is requested to close
the order (closeOrder operation) and returns the number of items that has been
received. Subsequently, Moon’s OM system confirms the status of each order line,
which is acknowledged synchronously the mediator. After all order lines have been
confirmed, a RosettaNet PIP3A4 Purchase Order Confirmation message is sent to
Blue and confirmed synchronously by an Acknowledgement of Receipt message.

50

3 The Comparison Framework

This section describes our framework for comparison of mediation approaches. In
order to develop our framework, we use the DESMET method [2], a comprehensive
methodology for assisting organisations and academic institutions to plan and execute
unbiased and reliable evaluation exercises. This method identifies such an evaluation
as a qualitative or subjective evaluation and enables the framework to be expressed in
terms of a set of common (mandatory and/or desirable) features supported by a
method or tool.

Quantitative or objective evaluations are based on identifying the expected benefits
and drawbacks of a new method or tool in measurable terms. Qualitative or subjective
evaluations assess the appropriateness of a method/tool in terms of the features
provided by the method/tool, the characteristics that distinguish this method/tool from
others, support offered by the method/tool supplier and its training requirements. This
type of analysis is usually based on the identification of the requirements that
potential users have for performing a particular task and the mapping of those
requirements to features that a method/tool (intend to support that task) should
possess. The main activities involved in carrying out a feature analysis are [2]:

1. Select a set of candidate method/tools to evaluate.
2. Decide upon the required properties or features of the item being evaluated.
3. Prioritise those properties or features with respect to the requirements of the

method/tool users.
4. Decide the level of confidence that is required in the results and therefore

select the level of rigour required of the feature analysis.
5. Agree on a scoring/ranking system that can be applied to all the features.
6. Allocate the responsibilities for carrying out the actual feature evaluation.
7. Carry out the evaluation to determine how well the methods/tools being

evaluated meet the criteria that have been set.
8. Analyse and interpret the results.
9. Present the results to the appropriate decision-makers.

As shown in Figure 2, our framework involves both qualitative and quantitative
elements, structured into five main features: data mediation, process mediation,
correctness, suitability of design concepts and level of effort required to drive
changes. Under data mediation and process mediation features, we consider both
design time and runtime aspects of the mediation task. The first refers to the design
support provided by each approach as well as the steps needed to implement each
solution, whereas the second refers to characteristics concerning their execution.

51

Fig. 2. The Comparison Framework Elements.

In addition to the separation between quantitative and qualitative evaluations, there
is another dimension to an evaluation: the way in which the evaluation is organised.
DESMET has identified three rather different ways of organising an evaluation
exercise, including: formal experiment (where many subjects are asked to perform a
variety of tasks using the different methods/tools under investigation), case study
(where each method/tool under investigation is tried out on a real project) or a survey
(where subjects that have used a specific method/tool on past are asked to provide
information about the method or tool). As mentioned before, as a case study we have
adopted the mediation scenario proposed by the SWS Challenge, where different
mediation approaches addressing the same real world problem scenario have been
peer reviewed and documented.

4 Data and Process Mediation Approaches

In this section, we briefly describe different approaches proposed to address the
mediation scenario offered by the SWS Challenge. Based on past studies, we have

52

selected four well-documented approaches which have shown some distinctions in
their realization.

4.1 WSMO, WSML and WSMX

The DERI (Galway and Innsbruck) team based its solution on the Web Service
Modelling eXecution environment (WSMX) [7]. WSMX is a reference
implementation of the Web Services Modelling Ontology (WSMO) [6] and operates
using the Web Services Modelling Language (WSML) [8]. The approach incorporates
four core elements that are needed to represent semantic web services and related
issues: ontologies, that provide the common terminology used by other WSMO
elements, services that are requested, provided, and agreed upon by requesters and
providers, goals that represents a desire that a client delegates (which should be
solved by services), and mediators, which deal with interoperability problems
between different WSMO elements.

During design time, the design and implementation of adapters, creation of WSMO
ontologies and services, rules for lifting/lowering, and mapping rules between
ontologies are carried out for the RosettaNet, OMS and CRM systems. The run-time
phase involves discovery, selection and execution of the appropriate services to
mediate the interaction between Blue and Moon systems. The general view of the
approach is shown in Figure 3.

Fig. 3. General view of the approach.

Initially, ontologies describing the information model used by each involved party
are manually designed, after careful analysis of the schemas for the RosettaNet
messages and the WSDL service descriptions offered by CRM and OMS systems. In
the given scenario, both Blue and Moon use different information models and the data

53

mediation is accomplished through mappings between RosettaNet and CRM/OMS
ontologies. In particular, a mapping can specify that classes from two ontologies are
equivalent while transformation rules use logical expressions to unambiguously
define how the data encapsulated in an instance of one class can be encapsulated in
instances of the second class. During run time, if there is a need for data to be
mediated, the source instances are provided to the data mediation component, which
has the role to derive the target data instances from the source data instances.

In WSMO, requestors of a service express their objectives as goals, which are high
level descriptions of concrete tasks. From this point of view, a WSMO goal
description consists of a requested capability and requested interfaces. The former
shall specify the objective to be achieved in terms of a capability from the client
perspective. The latter is intended to specify the communication behaviour for
automated Web service usage supported and required by the client. A goal template is
a generic objective description that is defined at design time and a goal instance
denotes a concrete client request that is created at runtime by instantiating a goal
template with concrete values. One advantage of this approach is that the requestor
only has to provide a declarative specification of what it wants, and does not need to
have a fixed relation with the Web Service or to browse through an UDDI registry for
finding Web Services that provide the appropriate capability.

In order for this goal to be accomplished, the requestor has to find an appropriate
Web Service which may fulfil the required task. Similar to the way the requestor
declares its goal, every Web Service has to declare its capability (that is, what it is
able to accomplish) in terms of its own ontology. A WSMO Web service description
consists of two central parts. At first, the capability describes the overall functionality
provided by a Web service in terms of pre-conditions, assumptions, post-conditions,
and effects; these are logical expressions, specified e.g. in WSML. Secondly, the
interfaces describe the interaction behaviour supported by a Web service. To cope
with impossibility of service requester and provider to communicate with each other
due to heterogeneity of their communication protocols, WSMO introduces the
mediator concept, which has the task of overcoming the heterogeneity problems, both
at data level and at behaviour level.

The WSMX process representation is similar with the WSMO choreography
definition, which representation is based on Abstract State Machines (ASM),
consisting of states and guarded transitions. A state is described by the WSMO
ontology and the guarded transitions (transition rules) are used to express changes of
states by means of transition rules. It falls into process execution based on underlying
rich knowledge base formalism where an ASM is used to abstractly describe the
behaviour of the mediator. In the utilized Abstract State Machines (ASM), the domain
ontology constitutes the underlying knowledge representation and transition rules
(specified in terms of logic formulas) describe how the state changes when a
transition is executed. For the purposes of the SWS Challenge, the provided solution
has the assumption that the invocation order is unimportant, but that is not the case:
there is an order in which the operations should be correctly invoked.

At this point, both Blue and Moon back-end systems have semantically rich
descriptions of the information models and behaviour (choreography) of both
systems. This, along with additional mappings between the ontologies of the Blue and
Moon systems, allows both choreographies to “connect” at run-time and resolve
process interoperability issues (mediate between both choreographies). One of the

54

main advantages of the WSMX-based integration is the strong partner de-coupling.
As opposed to traditional centralized solution (when a central workflow would solve
this integration problem), this approach enables the automatic adaptation when
changes to service descriptions are introduced. In contrast, solutions based on a
central workflow would additionally require changes to the workflow type definition.

4.2 SWE-ET: Semantic Web Engineering Environment and Tools

The team composed of Politecnico di Milano and CEFRIEL based its solution on the
SWE-ET [3] framework. SWE-TE is a framework for designing and developing
Semantic Web Service applications, based on existing models for the specification of
business processes (such as BPMN [4]) combined with Web engineering models for
designing Web applications (such as WebML [5]), with strong emphasis on graphical
process modelling.

The approach aims to lead the designer from the process modeling to the running
Web application by producing some intermediate artifacts (BPMN models, data
models, hypertext models). Such models are enriched by imported ontological
descriptions and transformed into a WSMO specification: the ontology is derived
from the process model, data model, and hypertext model; the service capability
description is derived from the hypertext model; and the choreography information is
derived from the process model and the hypertext model. Later, the execution is
delegated to a Semantic Execution Environment (e.g. WSMX). Figure 4 provides an
overall picture of the approach.

Fig. 4. Overall picture of the approach.

The specification of the mediator consists of a set of models: the application data
model (an extended Entity-Relationship model), one or more hypertext models (i.e.,
providing different site views for different types of users), expressing the navigation
paths and the page composition of the Web application; and the presentation model,
describing the visual aspects of the pages.

Initially, the RosettaNet message schemas and the service descriptions offered by
Moon systems were analysed and a corresponding data model was manually obtained
from it. The WebML data model is the standard Entity-Relationship (E-R) model and
the conversion from RosettaNet messages is handled by Adapter units that use XSLT
for transforming messages in an XML format compatible with WebML’s internal data
format (WSML). In the same way conversion to and from Moon legacy messages are

55

handled by proper XSLT stylesheets that act as templates for SOAP messages and
that are then populated by runtime queries.

After modeling the data structures, a high level Business Process Modelling
Notation (BPMN) model is created representing the mediator. This model formalizes
the orchestration of the Moon Web services and defines states pertaining to the
mediation process as by the SWS Challenge specification. The BPMN notation allows
one to represent all the basic process concepts such as data and control flow, activity,
actor, conditional/split/join gateways, event and exception management, and others.
BPMN activities can be grouped into pools, and one pool contains all activities that
are to be enacted by a given process participant. The elements of the workflow model
(e.g., activity, names, and lanes) are extracted as semantic concepts and used as
additional piece of the ontology. If a lane is identified as a mediator at the BPMN
level, the basic information about the design of the mediation can be extracted from
high-level BPMN description of the interactions (in particular, basic information
about possible choreography, interface and parameters of the service).

Then, the BPMN model is used to automatically generate a WebML skeleton that
is manually refined. The WebML [5] service model allows one to define different
hypertexts (e.g., for different types of users or for different publishing devices), called
site views. A site view is a graph of pages, allowing users from the corresponding
group to perform their specific tasks. Pages consist of connected units, representing
publishing of atomic pieces of information, and operations for modifying the
underlying data or performing arbitrary business actions. Units are connected by
links, to allow navigation, parameter passing, and computation of the hypertext from a
unit to another. The WebML conceptual model offers standard workflow units to
model control flow and has been extended with Web service units to describe Web
services interactions. These units correspond to the WSDL classes of Web service
operations, including request-response and one-way operations. Distributed processes
can be obtained by combining the workflow units and Web services units. The
language is extensible, allowing for the definition of customized operations and units.

Once the business process has been designed, workflow constraints must be turned
into navigation constraints among the pages of the activities of the hypertext and into
data queries on the workflow metadata for checking the status of the process, thus
ensuring that the data shown by the application and user navigation respect the
constraints described by the specification.

Then, the WSMO description of the mediator can be derived from the WebML
diagrams. This specification can be used to generate a working Web Service
providing mediation between Blue and Moon Web Service.

4.3 jABC/jETI Framework

The jABC/jETI solution is realized within the jABC framework [9], an environment
for model-driven service orchestration based on lightweight process coordination.
jABC originated in the context of the verification of distributed systems and use SLGs
(Service Logic Graphs) as choreography models, allowing users to easily develop
services by composing reusable building blocks into (flow-)graph structures. These
basic building blocks are called SIBs (Service Independent Building Block) and the

56

development process is supported by an extensible set of plug-ins that provide
additional functionality.

SIBs have one or more edges (branches), which depend on the different outcomes
of the execution of the functionality represented by the SIB. Each SLG model can be
wrapped into a single coarser-grained SIB, and may be used on another hierarchical
level of modelling. Similarly, each SIB can be refined into an own model, showing a
more detailed view on the represented feature. The provided model driven design
tools allow modelling the mediator in a graphical high level modelling language and
supports the derivation of an executable mediator from these models. Figure 5 shows
an overview of the described approach.

Fig. 5. Approach Overview.

Initially, the corresponding SIBs are automatically generated from the WSDL
descriptions of the web services provided by the Moon legacy system. At this step,
the SIB generator extracts the information about the functions defined in the WSDL
service descriptions and creates a SIB for each function. The structure prescribed by
the original WSDL service descriptions and RosettaNet Schemas is then mapped into
the structure of the SIB parameters, using the pre-existing graphical user interface of
the jABC. As a result, the messages are created within the SIBs according to the
structure prescribed by the original WSDL descriptions, which is reflected and
mapped into the hierarchical parameter structure of the SIBs.

These parameters and the SIB branch labels are visible to the model checker,
which allows automatically proving global compliance constraints on the business
logic of an SLG. These constraints are expressible in mu-calculus and its derivatives,
a family of modal (temporal) logics. Additionally, arbitrary relations between data
elements can be provided as local checking expressions, with the expressiveness of
Java. This facility allows expressing and checking pre and post conditions.

Next, the mediator is manually modelled as a workflow, by dragging and dropping
elements from the palettes of standard and generated SIBs. The modelling activity can
then be complemented by analysis, verification and simulation techniques, provided
by a set of plug-ins. At this point, the mediation model consists of a structured
coordination graph and is interpreted by the tracer plug-in as a flow graph with one or
more distinguished start nodes.

To export the mediator as a Web service, the composite and hierarchical SLG of
the mediator is first transformed into a single SIB, using the subgraph feature of the

57

jABC. This creates a Graph-SIB that represents the corresponding SLG. Its
implementation is the argument SLG, executable within the jABC Tracer, the
interpreter (or a virtual machine) for SLGs. The tracer is able to execute the mediation
model comparable to a standard debugger in run mode or step mode and using
breakpoints or pause to stop the execution. However, to provide a Web service
mediator that is completely independent of the jABC, the code generator plug-in is
used to obtain executable source code from the Graph-SIB. This code is then
deployed on a server using the AXIS framework, this way making the functionality
accessible to other users and generating a WSDL description that contains all the
necessary information to access the deployed service as a web service.

4.4 COSMO Framework

This approach proposes the use of the COSMO framework [12] for service modelling
and refinement in order to raise the level of abstraction at which problems such as
mediation and integration of legacy systems are usually solved. In terms of Model
Driven Architectures, this means that platform-specific (service) models (PSMs) of
Blue and Moon are transformed into platform-independent (service) models (PIMs)
by removing all platform-specific details. Next, the approach adds additional
semantics to the service PIMs of Blue and Moon in order to make them more precise
(e.g. the semantics of service requests and the relations among service operations are
explicit modelled). In this way, the solution of the mediation problem is captured in
the service PIM of the Mediator. In the final step, a concrete implementation (the
mediator PSM) is derived from this PIM by adding technology-specific details. The
approach is illustrated in Figure 6.

Fig. 6. General view of the approach.

First, to cope with the problem of data mismatches, the platform-independent
information models of the Blue and Moon, hereby referred to as domain-specific
ontologies and expressed in OWL, were partially derived using the types section of
the WSDL descriptions of Moon and Blue systems. The platform-independent
behaviour models are partly derived using the interface section of the WSDL
descriptions of Moon and Blue. These behaviour models are expressed using
Interaction System Design Language (ISDL) and the lifting of the interface section of
WSDL to ISDL is supported by an integrated editor and simulator for ISDL.

58

A WSDL types section defines only the syntax of the messages that are exchanged
between the service provider and its users. Therefore, some further manual work is
required to define the semantics of these messages (e.g. hidden assumptions should be
made explicit by defining new classes and relations among them). Next, mappings
between classes, properties and individuals from Blue’s and Moon’s domain-specific
ontologies are defined.

A WSDL interface section defines only its constituent messages and message
exchange patterns in a single operation. Hence, the complete behaviour model should
also define the relationships between the different operations. Since these
relationships are not part of the WSDL descriptions they have to be derived from the
informal textual descriptions as provided in the mediation scenario. In this way, the
integrated behaviour model, describing the possible message exchanges between
Blue’s and Moon’s services, is manually refined from combining concepts provided
by the COSMO framework and defining the relationships between their executions.

The core concept underlying the COSMO framework constitutes the interaction
concept, which represents an activity in which the involved systems produce some
common result in cooperation. An interaction is defined by a composition of two or
more interaction contributions, which represent the participation (or responsibility) of
each system involved in the interaction. Consequently, an interaction is considered an
atomic activity that either occurs and establishes the same result for all involved
systems, or does not occur for any of the systems and therefore does not establish a
(partial) result. Additionally, the action concept provided by the framework models an
activity performed by a single entity and the causality relations model how actions
and interaction contributions depends on other actions or interactions contributions.

Once the integration solution is specified at the business service layer, it can be
early subjected to various analysis and simulation techniques. This is done by
applying horizontal transformations to the service model, which are related to
transform the service behaviour into a formal specification, which can be then tested
and verified to assure the correctness of the derived design with respect to its
specification.

After the validation and simulation of the interaction models specified at the
business service layer, an IT integration solution can be semi-automatically derived
by applying a number of model transformations and refinements. In this step, the
behaviour model of the mediator is transformed into a BPEL specification. However,
before this mapping can be applied a preparatory step is needed in which the
behaviour model of the mediator is annotated with marks and possibly restructured.
Marks are used to add implementation details (e.g.: interaction contributions should
be marked to indicate whether they have to be mapped onto an invoke, receive or
reply activity in BPEL). Furthermore, information about partner links and invoked
web services (e.g., namespace URI and endpoint address) may have to be provided.

5 Comparison

Table 1 summarizes, according to our framework, the profiles of the proposed
solutions, which are commented and described in more detail below:

59

Table 1. Comparison of the described approaches.

 WSMO WebML jABC COSMO

Design time
aspects

Ontologies
manually
created from
analyzing the
RosettaNet
messages and
WSDL service
descriptions.

Ontology to
Ontology
mappings.

ER-model
manually
created from
analyzing the
RosettaNet
messages and
WSDL service
descriptions.

XML to
Ontology
mappings.

SIBs and
hierarchical
parameters
automatically
generated from
WSDL service
descriptions.

XML to SIB
parameters
mapping.

Ontologies
partially
generated from
RosettaNet
messages and
WSDL service
descriptions.

Ontology to
Ontology
mappings

Data mediation

Runtime
aspects

Mappings
execution on
the instance
level.

Mappings
execution on
the instance
level.

Reflected into
the hierarchical
parameter
structure of the
SIBs.

Mappings
execution on
the instance
level.

Design time
aspects

Defining
services
capability,
choreography
interfaces and
goal templates.

Behaviour
modelled as
Abstract State
Machines by
means of
transformation
rules.

Defining BPMN
model,
hypertexts and
constraints.

Behaviour
specified at a
high level of
abstraction is
transformed
into a hypertext
model for
further manual
refinement.

Defining a
workflow
explicitly
describing the
behaviour of
the mediator.

Behaviour
modelled in
terms of
control flow
graphs based
on fork/join
parallelism.

Defining a
workflow
explicitly
describing the
behaviour of
the mediator.

Behaviour
modelled in
terms of
interactions,
operation calls
and causality
relations.

Process
mediation

Runtime
aspects

Execution
based on
abstract state
machines and
transformation
rules defined
by
choreography.

WebML model
is transformed
into a WSMO
specification
and execution
is delegated to
a Semantic
Execution
Environment
(WSMX).

Model-to-code
transformation
s are defined
to generate the
implementation
code and the
execution tree
is defined as
the unfolding of
the marking
graph of the
mediator.

Simulator tool
able to execute
the behaviour
models. In
addition, the
Mediator was
transformed
into a BPEL
process and its
execution
delegated to a
BPEL engine.

Behaviour correctness No explicit
support.

No explicit
support.

Formal
verification
capability
based on
temporal logic
formulas
expressed in
mu-calculus.

Formal
verification
capability
based on ISDL
techniques.

Suitability of design concepts

Appropriate
(mediators,
goals, services
and
ontologies).

Sufficient, but
not intuitive
(pages, units,
hypertexts, and
links).

Appropriate
(Service
Independent
Building Blocks
and
hierarchical
parameters).

Appropriate
(Goals,
operations and
Interactions).

Level of effort required to
drive changes*
*Assessed by peer reviews at
the SWS workshops.

Low
(level 3)

Low
(levels 3)

Medium
(level 2) Not evaluated

60

The profiles presented in Table 1 illustrate that, while the primary aim of the four
approaches summarized above is to solve the mediation problem described by the
SWS Challenge, their realization differ in several important aspects.

The WSMO approach reflects its four top elements by explicitly modelling goals,
mediators, services and ontologies. Ontology-to-ontology mediation is achieved
through the design and implementation of adapters specifying mapping rules between
ontologies. The approach stresses the importance of the mediators, treated as first
class citizens, as the core concepts to describe elements that overcome interoperability
problems. Goals are described as requested capability and requested interfaces. From
the perspective of a Goal description, the capability describes the functionality that
the owner of the Goal wishes to achieve from a Service. Analogously, the capability
of a Service describes the functionality offered by that service. The approach focus
was on modelling semantically enhancing Web Services description, services requests
(expressed as goals) and mediators. The adopted goal-oriented paradigm facilitates
the Web Service's discovery by a potential client, the selection of the most appropriate
service for a certain task, the actual invocation of a service and the composition of
multiple services for accomplishing a common task.

On the other hand, the other approaches focus more on the modelling of the
mediator internal logics. The WebML approach starts modelling a BPMN workflow,
specified at a high level of abstraction. This model is then transformed into hypertext
diagrams, representing the service execution chains, and need to be refined later by
the designer. The design concepts provided by the hypertext diagram, originally
developed in the context of conceptual modelling of Web pages and applications,
were adapted to the mediation purpose and showed to be sufficient to model a
mediation solution, but not in an intuitive way. The data mediation is handled by
Adapter units that are configured by a proper XSLT stylesheet that transforms
messages in an XML format compatible with WebML’s internal ontology format.

The jABC approach automatically imports basic service types (called SIBs,
Service-Independent Building Blocks) from the WSDL service descriptions. The
designer is then responsible for the specification of the behaviour models, defined as
SLGs (Service Logic Graphs), by composing the reusable building blocks into (flow-
)graph structures. Behavioural properties of the modelled business logic can be
expressed as logic formulas and the provided model, which describes the mediator
behaviour, can be analysed in early stages of the design process to check the
correctness with respect to its specification. Formal verification capability of the
service models is greatly appreciated since it simplifies debugging complex processes
directly on the model, possibly reducing development cycle time and increasing
robustness of the system. The approach handles data mediation by mapping the
structure prescribed by the original WSDL service description into hierarchical SIB
parameters (additional semantic properties attached to the SIBs). A derivation of an
executable mediator from these models is obtained by applying model-to-code
transformations.

Similarly to the WSMO approach, the COSMO approach employs ontologies as
the underlying information model. This allows for reasoning to assess whether the
relations defined between classes and properties are violated at the instance level or if
a common interaction result can be established by matching input and output services
parameters. Based on the selected match, the signature for the required data
transformation can be obtained automatically. In particular, the approach focuses in

61

applying reasoning techniques to automate parts of the mediator design process. The
mediator behaviour is specified as a workflow explicitly modelling interactions
between services, operation calls and causality relations between then. Formal
verification and analyse of the behaviour models is also supported. The simulator tool
is able to execute the behaviour models by performing real web service invocations
and incorporating the results that are returned by web services into the simulation. In
addition, the Mediator was transformed into a BPEL process and its execution
delegated to a BPEL engine.

The level of effort required to adapt each mediator solution to cope with the new
changes proposed to the mediator scenario has been assessed by peer reviews at the
SWS workshops. For practical reasons, these assessments were adopted and
incorporated in our comparison study. There are four possible levels of success that
evaluate the transition of the designed solution from one problem level to another.
The initial mediation scenario, described in section 2, corresponds to level 0 (static
mediation). On top of this static scenario were added various levels, each
corresponding to a general kind of problem, and each with sublevels of complexity. In
this sense, a higher evaluation success level indicates a better solution to the problem
level transition. Since the COSMO team only participated in the first edition of the
workshop, their solution has not been assessed by peer review yet.

6 Conclusions

In this paper, we have presented a framework for comparison of data and process
mediation approaches. The proposed framework establishes a common set of criteria
that provide basic guidelines for the evaluation process, enabling a more
comprehensive understanding of existing mediation approaches by exploring and
making more explicit their possibilities and limitations. In order to assess the features
and aspects defined in our framework, the DESMET method for Feature Analysis has
been used. This type of analysis identifies an evaluation as a quantitative or
qualitative evaluation. In particular, our framework involves both objective and
subjective elements and the assessment to which the approaches provide the required
features was based on literature review and personal opinion.

As a case study, we applied our framework to perform a comparative analysis of
four approaches aimed to solve the mediation problem described by the SWS
Challenge. The mediation scenario is pretty close to a real world integration problem
involving data and process mediation and has showed to be complex enough to stress
the compared solutions. In addition, by applying our framework, we could expose and
evidence the advantages and drawbacks of each approach and show that their
realization differs in several important aspects.

With our framework, we hope to help the SWS Challenge community by
describing and comparing these approaches and providing a comprehensive overview
about the underlying concepts, assumptions and promising practices of each
approach, including methods, principles and techniques involved in data and process
mediation tasks.

62

Acknowledgements

This work is part of the Freeband A-MUSE project. Freeband is sponsored by the
Dutch government under contract BSIK 03025.

References

1. Petrie, C., Margaria, T., Käuster, U., Lausen, H., Zaremba, M. (2007): SWS Challenge:
status, perspectives and lessons learned so far. In Proceedings of the 9th International
Conference on Enterprise Information Systems (ICEIS2007), Special Session on
Comparative Evaluation of Semantic Web Service Frameworks, Funchal, Madeira-
Portugal.

2. Kitchenham, B. (1996): DESMET: A method for evaluating Software Engineering methods
and tools Technical Report TR96-09. Department of Computer Science, University of
Keele, Staffordshire.

3. M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. Della Valle, F. M. Facca (2006): A
Software Engineering Approach to Design and Development of Semantic Web Service
Applications, In Proceedings of the 5th International Semantic Web Conference (ISWC
2006), Athens, GA, USA, 5-9 November 2006, LNCS 4273, pp. 172-186.

4. White S. A. (2004). Business Process Modeling Notation (BPMN), BPMI.org,
http://www.bpmi.org/ bpmi-downloads/BPMN-V1.0.pdf

5. S. Ceri, P. Fraternali, and M. Matera (2002): Conceptual Modeling of Data-Intensive web
Applications. IEEE Internet Computing, 6(4).

6. D. Roman, U. Keller, L. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel (2005): Web Service Modeling Ontology, Applied Ontologies,
vol. 1, pp. 77-106.

7. Mocan, A., Moran, M., Cimpian, E., and Zaremba, M. (2006): Filling the gap - extending
service oriented architectures with semantics. In ICEBE, pp. 594-601. IEEE Computer
Society.”

8. de Bruijn, J. , H. Lausen, A. Polleres, D. Fensel (2006) The Web Service Modeling
Language WSML: An Overview. In Proceedings of the 3rd European Semantic Web
Conference (ESWC 2006), Budva, Montenegro: Springer, LNCS 4011.

9. Steffen, B., Margaria, T., Nagel, R., Jörges, S., and Kubczak, C. (2006). Model-Driven
Development with the jABC. In Proceedings of Haifa Verification Conference, LNCS
N.4383. Springer Verlag.

10. Müller-Olm, M., Schmidt, D., and Steffen, B. (1999). Model-checking: A tutorial
introduction. In SAS, 6th In: Static Analysis Symposium, LNCS N.1694, pages 330–354.
Springer Verlag.

11. Dick A. Quartel , Maarten W. Steen , Stanislav Pokraev , Marten J. Sinderen (2007):
COSMO: A conceptual framework for service modelling and refinement, Information
Systems Frontiers, v.9 n.2-3, p.225-244.

63

Modeling Requirements Elicitation Process for Web
Applications

Marian Cristian Mihăescu1, Cosmin Stoica Spahiu1, Mihai Mocanu1
and Bogdan Logofatu2

1University of Craiova, Faculty of Automatics, Computers and Electronics
Software Engineering Department, Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj, Romania

{mihaescu, stoica_cosmin, mocanu}@software.ucv.ro
2University of Bucharest, CREDIS Department

Bd. M. Kogalniceanu 36-46, Sector 5, Bucuresti, Romania
logofatu@credis.ro

Abstract. Requirements engineering plays a critical role within a software
development process. Studies have revealed a lack of systematic processing of
requirements due to high number of activities that need to be accomplished in
this phase. There are many reasons for this situation. One of the most difficult
tasks is to model requirements elicitation process. This is the first and one of the
most important steps from the implications point of view in the nest steps of
the development process and in the quality of the obtained software. This paper
presents a requirements elicitation technique that has been successfully used in
the development process of a web application. The direction of improvements
are represented by requirements traceability and their modeling during
elicitation phase.

Keywords. Requirements elicitation, traceability, modeling, web application.

1 Introduction

Ideally, software development, based on any of the well-established life cycle models
described in [9] or [10], is linear, starts from scratch, and its phases can be (logically)
delimited. No matter the software development model referred, distinct identifiable
phases such as, requirements specification and analysis, architectural (overall) design,
component design, implementation, component integration, validation and
verification, code maintenance and evolution, can be extracted. If and how much are
they really separated and easy to reveal, this is a difficult matter related to the specific
and goals of the software development process applied.

In practice, software development must deal with the strong tendency to overlap
development phases, due perhaps to social issues, and problem domain traditional
“ways of doing things”, little considered in the past within the discipline of software
engineering. The facts are clear: software developers make mistakes, clients change
their requirements while the software product is being developed, errors in operating
software cannot be avoided a.s.o. The Winburg mini-case study [10] proved all these
issues in the most convincing manner. From the implementation of the first version of

a software product, continuing to the episode when a fault is found (i.e. due to a slow
product operation), and a new design has to be adopted (i.e. using a faster algorithm),
or an episode when the requirements change (i.e. because the accuracy has to be
increased), the only thing that is “stable” and could be easily noted is a recurrence of
problems.

Requirements engineering, based on requirements specification, elicitation and
analysis, is not only the first, but also one of the most critical, knowledge-intensive
activities of software development [1] The most basic question in requirements
engineering is how to find out what users really need. Research has shown that in
general many large projects fail because of inadequate requirements and specifically
that poor execution of elicitation will almost guarantee that the final project is a
complete failure. Since project failures are so rampant [2], it is quite likely that
improving how the industry performs elicitation could have a dramatic effect on the
success record of the industry [3]. Improving requirements elicitation requires us to
understand it first. Although many papers have been written to define elicitation, or to
prescribe a specific technique to perform during elicitation, nobody has defined yet a
unified model of the elicitation process that emphasizes the role of knowledge.

The motivations of this paper can be seen in our effort to reach such a model. We’d
like to make the necessary steps in establishing and describing (documenting) the
requirements engineering phase, with an emphasis put on requirements elicitation,
based on our experience in large software projects. Furthermore, we want to illustrate
how we assessed the correctness of all these steps, based on a realistic software
product development. In this paper, our specific aim is to discuss all the
improvements regarding requirements elicitation that have been tested under real
circumstances when developing an e-Learning platform called Tesys [4].

The organization of the rest of the paper is as follows. First, the paper presents an
overview of the requirements engineering process (involving requirements
specification, elicitation and analysis). Then it presents briefly the Tesys application
platform. Next, it discusses the proposed improvements to requirements elicitation,
regarding traceability and modeling of requirements in the elicitation process, and the
benefits regarding verification and validation The paper concludes with a discussion
of the proposed solutions and makes recommendations on how requirements
elicitation could proceed.

2 Requirements Specification, Elicitation and Analysis

The purpose of the requirements engineering process, which involves requirements
definition (specification), elicitation and analysis is to document the requirements for
the next phases to be implemented during the software process according to the
specific aims of the project. From a social point of view, this should be a collaborative
process involving domain expertise from the client and software expertise from the
contractor part. The key concept behind this step consists of the separation of
application requirements from business/process requirements, which later on permits
to link these to design objects. The up-front separation of application from business
requirements really helps to clarify and focus on each aspect of the user's

65

requirements, or even helps to determine who should be asking for information about
the requirements.

The requirements analysis methodology should cover the entire cycle, from the
initial requirements-gathering phase through the separation phase where requirements
and non-requirements are set apart. The overall steps required to define an approved
set of requirements, and reach closure of the glossary definitions, should be:
1. Collection of ‘raw’ requirements – This step may start with the domain area

experts (in this case the physicians) to write a few pages of text describing the
problem to be solved. All relevant sources of possible requirements must be
collected. Multiple sources of domain knowledge must be found, to allow the
verification of sources. Specialized software tools, such as EasyRM Requirement
Management Suite (http://www.easy-rm.com/) or AnalystPro
(http://www.analysttool.com/) could be used from this point onwards.

2. Refining of requirements - The objective of this step is to identify the key business
concepts, and their properties. Each requirement must be processed in turn for:

− Exclusion for all the following processing steps of any requirements, which are
outside the scope of the mission statement,

− Decomposition into sub-requirements, containing only one concept.
− Naming convention – making sure that the name of the requirement reflects the

requirement content.
− Redundancies elimination and resolving of duplicate requirements.
− Adjustment of ‘priority’ (initially all requirements will have the same low

priority) and ‘status’. Once all requirements have at least the status of ‘Approved’
then the requirement work has been completed to the point where the requirement
set can be passed to the modelers of both teams (client team and implementation
team) – possibly to act from here as a ‘joint’ team, for the creation of the
conceptual models.

3. Establishing of reference sources for requirements – Many requirements are
directly derived from mission papers, and other conceptual documents. A
document manager tool can allow links to be established to these documents.

4. Creation of a document reference (the so-called ‘requirements document’), in a
bottom-up manner, with a short description giving an overview of what the other
documents contain, and a location field used to point to the actual document –
this can be filled with a path in the file system, or an URL. As the number of
documents may increase, it is essential to classify these in a hierarchical manner,
into folders required for specific subject areas.

5. Pass the ‘requirements document’ to system modelers, to check with the
conceptual model they created in parallel with steps 3 and 4.

The end product of this succession of steps should be a requirements document and
a correct system conceptual model which should allow the successful development of
a software framework and possibly an open source architecture for the software
product.

66

3 Tesys Application Platform

An e-Learning platform that represents a collaborative environment for students,
professors, secretaries and administrators has been designed and developed. Secretary
users manage sections, professors, disciplines and students. The secretaries have also
the task to set up the structure of study years for all sections. The main task of a
professor is to manage the assigned disciplines. The professor sets up chapters for
each assigned discipline by specifying the name and the course document and man-
ages test and exam questions for each chapter. The platform offers students the
possibility to download course materials, take tests and exams and communicate with
other involved parties like professors and secretaries.

The Tesys platform has initially been designed and implemented only with core
functionalities that allowed involved people (learners, course managers, secretaries) to
collaborate in good conditions. The requirements engineering followed an ad-hoc
process that informally followed the classical life-cycle: elicitation, modeling,
analysis, validation, verification and management. The involved parties were
represented by three parties: development team, beneficiaries and end-users. Firstly, a
prototype that implemented main functionalities has been developed. The
requirements were elicited and negotiated between development team and
beneficiary. After prototype has been deployed the e-Learning system has been
populated with data and users. The beneficiary was the one that kept a close relation
with end-users and closely looked the effectiveness of the platform.

The e-learning platform consists of a framework on which a web application may
be developed. On server side we choose only open source software that may run on
almost all platforms. To achieve this goal Java related technologies were employed.

The model is represented by DBMS (Data Base Management System) that in our
case is represented by MySQL [11]. The controller, which represents the business
logic of the platform is Java based, being build around Java Servlet Technology [12].
As Servlet container Apache Tomcat 5.0 [13] is used.

This architecture of the platform allows development of the e-learning applica-tion
using MVC architecture. The view tier is template based, WebMacro [14] tech-nology
being used. WebMacro is also a Java based technology the link between view and
controller being done at context level. The separation between business logic and
view has great advantages against having them together in the same tier. This de-
coupling makes development process more productive and safer. One of the biggest
advantages of not having business logic and view together is the modularity that
avoids problems in application testing and error checking.

In the figure 2 there are presented the main software components from the MVC
point of view. MainServlet, Action, Manager, Bean, Helper and all Java classes
represent the Controller. The Model is represented by the DBMS itself while the
Webmacro templates represent the View. The model is built without any knowledge
about views and controllers.

The business logic of the application uses Java classes. As it can be seen in figure
2, there are four levels of dependency between classes. The levels are: servlets, ac-
tions, managers and beans. Servlets level has so far two of them: MainServlet and
DownloadServlet.

67

The MainServlet first job first job is to initialize application’s parameters. For this
purpose the init() method is used. Firstly, there is initialized a pool of database
connections. Helper classes like ConnectionPool or ExecuteQuery based on the in-
formation from database.properties configuration file conduct this process. In the
database configuration file there are set the address of MySQL server and the user-
name and password of MySQL user that is used.

Fig. 1. Software architecture of the platform.

Fig. 2. Software components of the application from MVC point of view.

Another important part of software architecture regarding software development
process is unit testing. For this purpose JUnit [15] is used. Unit tests are created for
running the critical code like creating of a test, computing the result, saving the
questions from the test, saving the test result, computing time for test. To accomplish
this regressive testing is used. For each chain of actions a scenario is defined. If the
computed result matches the expected result it means the test passed. Otherwise, it
means something is wrong with the code because it does not behave like it supposed
to. Whenever a method is added, test cases are written trying to have a full coverage
of the code. There are created batch files that build the code experimentally and
continuously and run all the tests. Similarly, a scheduled job runs the nightly build of
all the code from the staging area and runs all tests.

68

The platform is currently in use on Windows 2003 Server machine. This platform
has three sections and at each section four disciplines. Twelve professors are defined
and more than 650 students. At all disciplines there are edited almost 2500 questions.
In the first month of usage almost 500 tests were taken. In the near future, the
expected number of students may be close to 1000.

4 Improvements in Requirements Elicitation

We present improvements regarding two issues: traceability and modeling of
requirements in the elicitation process.

A requirement is defined as an object with his own status and life cycle. The status
is determined by the set of values of fields. We define the following set of fields:

Id – uniquely identifies the requirement;
Role – defines the role to which the requirement addresses;
Activity – defines the activity to which the requirement addresses;
Status – there were defined three states: INWORK, SOLVED and VERIFIED;
Solver – person responsible for implementing the requirement;
Memo – text that represents a short summary about the requirement.
Date – represents the date when the action has been executed on the requirement
This structure ensures the traceability of the requirement.

• The improvements in requirements elicitation is analyzed from the following
points of view [6]:Time and Effort allocation: how requirements elicitation is
distributed over time

• Artifacts produced by requirements elicitation: various deliverables like data,
effects, results, documents, etc, resulted from requirements elicitation
process usage.

• Requirements elicitation Activities: what activities produce artifacts
including the requirements specification.

• Disciplines and automation: specify major areas of concern that can
influence

• Requirements elicitation, technology and management tools
• Roles: Various roles in RE and differences between them.

The process of modeling the requirements is described in figure1.
The requirements phase has its own life cycle. The specialty literature proves that

is difficult to give a general description of requirements activities. In the 80’s Krasner
identified five phases: need identification and problem analysis; requirements
determination; requirements specification; requirements fulfillment; and requirements
change management. Another approach presented by Jarke and Pohl in 1994 propose
a three-phase cycle of elicitation, expression and validation.

It seems that different approaches use different labels for the requirements
activities and this brings about one of the critical problems in requirements
engineering: lack of a systematic process. The main problem is that requirements
Engineers involves people that communicate with other people. The communication
is hard due to the lack of a common scientific language and knowledge. The

69

misunderstandings from this kind of communication are translated directly in wrong
application development.

Fig. 3. The process of modeling requirements.

The existing problems for requirements elicitation have been grouped into three
categories as follows [8]:

• problems of scope (the system edge capabilities are not well defined,
unnecessary design information may be given);
• problems of understanding (users don’t know exactly what they need and don’t
know the compter limitations, the users frequently skip “obvious” information,
there can be conflicts views from different users
• requirements are often vague and untestable (problems of volatility,
requirements evolve over time)
Although this area was not researched enough, there are a series of techniques

developed to solve these problems. Traditional methods include brainstorming,
interviewing and use of questionnaires[8]. The latests methods for requirements
engineering include techniques for information gathering, modeling and
representation of information.

Requirements engineering relies fundamentally on verification and validation as a
way of achieving quality by getting rid of errors, and as a way of identifying
requirements.

One benefit from structuring requirements is the use of automation for verification
of requirements. The requirements may be inspected such that verification is
performed by using well established checklists. The checklists are applied to the
requirements by a well established process.

Modeling requirements in a custom structured form provides the opportunity for
analyzing them. Analysis techniques that have been investigated in requirements
engineering include requirements animation, automated reasoning, consistency, and a
variety of techniques for validation and verification that are further discussed.

70

Validation is the process of establishing that the requirements and derived
structures provide an common and accurate base for involved persons (developers and
beneficiaries). Explicitly describing the requirements is a necessary precondition not
only for validating requirements, but also for resolving conflicts between developers
and beneficiary.

Difficulty of requirements validation comes from many sources. One reason is the
problem itself is philosophical in nature. This makes the formalizing process hard to
define. On the other hand, there is a big difficulty in reaching agreement among
involved persons dew to their conflicting goals. The solution to this problem is
requirements negotiation. These will attempt to resolve conflicts between involved
parties without necessarily weakening satisfaction of each person’s goals.

Structuring requirements brings a big advantage for validation and verification in
case of changing requirements. As all successful systems, our e-Learning platform
evolves. This means that when a functionality changes because of beneficiary and
developer negotiated such a change, this transition needs to be done with minimum of
effort. For this, requirements have to be traceable and this feature is accomplished by
proposed structuring.

5 Conclusions

In this paper, there were presented the main challenges in requirements engineering
and especially requirements elicitation. There were presented solutions regarding
traceability and modeling of requirements during elicitation phase.

Proposed solutions were tested during Tesys e-Learning platform software
development process. It has been also presented the initial requirements engineering
process that was used when the prototype has been developed as compared to the
improved one.

Proposed solutions come to support a big effort of software globalization
development process since the application is rapidly growing in size. More than this,
the business logic complexity, degree of heterogeneity among assets is increasing.

Other benefit is that there may be created pools of requirements based on
functionality at role level and even with a higher granularity at activity level. This will
have a big impact on future decisions regarding what parts of software to be out-
sourced in the effort of globalization.

From requirements point of view there were presented three improvements.
Finally, there presented the benefits brought by our structuring to verification and
validation processes. The proposed structure ensures traceability of requirements,
such that as the system evolves the requirements are still properly managed.

References

1. Gottesdeiner, E.: Requirements by Collaboration, Addison-Wesley, (2002)
2. Standish Group, The Chaos Report, www.standishgroup.com, (1995)
3. Hofmann, H., and F. Lehner: Requirements Engineering as a Success Factor in Software

Projects, IEEE Software, 18, 4 (2001)

71

4. Burdescu, D.D., Mihăescu, M.C.: Tesys: e-Learning Application Built on a Web Platform,
Proceedings of International Joint Conference on e-Business and Tele-communications,
Setubal, Portugal (2006)

5. Ann M. Hickey, Alan M. Davis, "Requirements Elicitation and Elicitation Technique
Selection: A Model for Two Knowledge-Intensive Software Development Processes,"
hicss, p. 96a, 36th Annual Hawaii International Conference on System Sciences
(HICSS'03) - Track 3, 2003

6. Bhavani Palyagar, Frank Moisiadis, "Validating Requirements Engineering Process
Improvements - A Case Study," rev, p. 9, First International Workshop on Requirements
Engineering Visualization (REV'06 - RE'06 Workshop), 2006

7. Daniela E. Herlea Damian, “Challenges in Requirements Engineering”, Requirements E,
Springer, Springer, 2003, vol. 8, no.3, pp. 149-160

8. Michael G. Christel , Kyo C. Kang, “Issues in Requirements Elicitation”, Technical Report,
1992

9. Sommerville I., Software Engineering, 7th Ed., Pearson –Addison Wesley, 2004
10. Schach S.R., Object-Oriented and Classical Software Engineering, 6th Ed., McGraw Hill,

2006
11. Randy Jay Yarger, George Reese, Tim King, “Managing & Using MySQL, Second Edi-

tion”, O’Reilly, 2002.
12. Jason Hunter, “Java Servlet Programming, 2nd Edition”, O’Reilly, 2001.
13. Chanoch Wiggers, “Professional Apache Tomcat”, Wiley Publishing, 2003.
14. Faulk, S. “Software Requirements: A Tutorial, Software Engineering”, Los Alamitos, CA:

IEEE Computer Society Press, 1996.
15. A. Sutcliffe, S. Fickas, and M. M. Sohlberg. PC-RE a method for personal and context

requirements engineering with some experience. Req. Eng. J., 11(3):1–17, 2006.

72

Dynamic Service Composition: Why, Where and How

Eduardo Silva, Luı́s Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
The Netherlands, P.O. Box 217, 7500 AE Enschede

{e.m.g.silva, l.ferreirapires, m.j.vansinderen}@cs.utwente.nl

Abstract. We live in a society that is in its nature service-oriented: organizations
and individuals get services from others, and provide services to others. This
paradigm has been now applied to computer systems with the Service-Oriented
Architecture, and it is gaining momentum, mainly motivatedby the natural envi-
ronment provided by the Internet to connect people and businesses. The Service-
Oriented Architecture provides an architectural style forthe creation, share, com-
position and execution of networked services. Given the actual dynamic, hetero-
geneous and distributed nature of computer systems, the composition of services
requires mechanisms to support service description, advertisement, discovery,
composition, and execution. In this paper we motivate the dynamic composi-
tion of networked services, presenting an overview onwhy this area is gaining
importance; discussingwhereit has its most promising applications; and finally
exposing our initial ideas onhow dynamic service composition can be realized.
To tackle these problems we present a life-cycle for the service composition task,
and present our initial framework to support dynamic service composition.

1 Introduction

Nowadays we are observing a constant emergence of mobile computing devices, with
powerful communication capabilities and increasing processing power. These devices
are getting smaller and ubiquitous, and this tendency will continue. Recent studies [1]
have concluded that in the upcoming years an increase usage of small devices, referred
asInternet-centric pocketabledevices, will overcome the usage of laptops, mainly for
users with high mobility. Such a trend is triggering a changeon the way software ap-
plications are provided, going from the traditional on-device software applications to
Internet-based software applications. This class of Internet-based software applications
will take advantage of the high processing power of back-endserver systems, providing
users with advanced functionality on their pocket computers, offered as services. There-
fore, these trends are expected to cause an increase in the usage of Service-Oriented Ar-
chitecture (SOA) [2]. The acceptance of SOA principles in the design of such distributed
software systems will allow companies to sell and buy services based on subscription
instead of product licenses. This idea of offering functionality as services (according
to the SOA principles) is referred to asSoftware as a Service (SaaS)[3], and allows a
client organization or user to use on demand services provided by other organizations
or users. Such a change in the way software is provided (as a service) will mainly be
possible due the high bandwidth available today, and the waysoftware companies are

developing their services, by following open standards, which allows higher interoper-
ability amongst different companies products.

In the context of end-users service provisioning new applications areas are appear-
ing. A clear example is the creation of services on demand, taking into consideration
the context (situation) and preferences of the user to adaptthe service accordingly [4].
Users’ preferences, behaviour, context, etc., vary with the user and his situation, so ap-
plications created targeting a large set of users, will not be optimally tailored for all
their possible users. Having this idea in mind we claim in this paper that mechanisms
for the dynamic composition of services are necessary in order to provide tailored ser-
vices on demand to service users. We argue that SOA provides the basic principles to
support dynamic service composition, but more mechanisms are necessary to improve
the collaboration of the different parts of a service-oriented system.

The rest of the paper is organized as follows: Section 2 motivates the dynamic com-
position of services, why is it required and why is it possible; Section 3 shows some of
the possible scenarios for dynamic service composition; Section 4 presents a possible
life-cycle for dynamic composition of services; Section 5 presents our initial framework
for dynamic service composition; Section 6 presents some related work on dynamic and
automatic service composition; and finally Section 7 present some conclusions and dis-
cuss challenges to be addressed in the future.

2 Motivation

New service applications appear everyday, such as online map services, messaging ser-
vices, location services, online shopping, etc. This is mainly triggered by the intensive
use of the Internet, not only by companies but also by regularend-users, who can create
applications and make them available. One of the most popular and successful exam-
ples is provided by the open source communities, which are most of the time a group of
developers scattered all over the world working remotely (through the Internet) on com-
mon projects [5]. The result is a constant increase of available applications, which can
be used by different users in different devices. Considering that such applications are
made available, for example, on the Internet, new opportunities arise. One of the most
interesting opportunities is the creation of new applications out of existing ones,reuse
instead of re-do. The aim is to allow one to create a new application, in a givenpro-
gramming language, in a given system, and expose it to potential users without requiring
them to use exactly the same set of technologies used to develop the application, but in-
stead using the technologies that are more convenient to that application user. However
to have such an open architecture all the different parties have to agree on common prin-
ciples to allow interoperability between the applications. Service-Oriented Architecture
(SOA) [2] provides such a set of principles to create distributed computing systems,
which supports the creation of loosely coupled applications services in heterogeneous
distributed systems.

2.1 Service-Oriented Architecture

The Organization for the Advancement of Structured Information Standards (OASIS)
defines SOA as [6]:

74

A paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means
to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.

Provided with such principles, developers can create functionality, and make it avail-
able to potential users. This functionality is provided as aservice to possible users, by
defining the service capabilities and how it can be invoked ina service description doc-
ument. Figure 1 shows the basic concepts behind SOA, such as the different players and
interactions required in this architecture.

Service Registry

Service
Provider /Developer

Service
User

Service

Service
Descript ion

Service
Descript ion

Sx

Sx

Sx

i) publish service
descr ipt ioni i) request service

i i i) retr ieve service
descript ions

iv) invoke service

Sx

Fig. 1. Service-Oriented Architecture concepts and interactions.

SOA is not an implementation technology but a set of principles, that can be imple-
mented in different concrete technologies. One of the most prominent and widely used
technologies for implementing the SOA principles is Web services, which is a technol-
ogy with high industrial acceptance, for which many standards and tools are available.
This allows developers or service providers to create and publish services, and allow
potential users (Service users) to discover services and possibly invoke them. Some
of these standards are Web Services Definition Language (WSDL) [7], Simple Object
Access Protocol (SOAP) [8], Universal Description, Discovery and Integration (UDDI)
[9], and Business Process Execution Language (WS-BPEL) [10]. They allow one to de-
scribe services, exchange messages, publish/discover service descriptions and compose
services, respectively. More standards have been developed, which aim at addressing
all the additional issues concerning Web services systems.

75

2.2 Why Dynamic Composition

Traditionally service developers make application services from scratch, triggered by a
specific request from the service users or by the identification of some potential (busi-
ness) opportunity. This approach is time consuming, and leads, many times, to the du-
plication of already existing functionality. Following the SOA principles, service de-
velopers can instead create compositions of existing services to fulfill some given user
needs. Nowadays there are plenty of tools to support developers in the task of service
composition, and these tools tend to facilitate (ease and optimize) this task, enabling
the re-use of existing services. However, the current approach consists of the creation
of static service compositions, with fixed service end-points, targeting a specific group
of service users. We argue that more dynamic composition mechanisms have to be de-
veloped to allow the creation of more personalized, adaptable and context sensitive
services.

Assuming that different services are available that can be discovered and composed,
we claim that more dynamic mechanisms can be used to achieveon demandservice
composition, given a specific user service request. This is the essence of dynamic ser-
vice composition:perform the composition of existing services on demand to match
specific user requirements and preferences. In this paper we motivate dynamic service
composition based on a specific user service request, so taking the user request, con-
text and preferences into account in the service composition process. Dynamic service
composition may also address, such as, for example, the adaptation of a service compo-
sition in case a service component is unavailable, implyingthat an alternative service is
discovered to replace the unavailable one, however this is not the focus of this paper. In
[11] other research challenges have been identified in the area of service composition,
however is clear that much focus is given to the creation of more dynamic mechanisms
for service composition.

To achieve dynamic service composition, frameworks to coordinate all the phases of
the service composition life-cycle are required. If such frameworks are available, users
will be able to develop more personalized services, according to their needs.

3 Scenarios for Dynamic Service Composition

The most natural scenarios for service composition areInternet-based. This is mainly
justified by the big number of applications that are available, which can be exposed as
services (e.g., web services). Considering that the providers of these services publish
their descriptions in a service registry, other users or service developers can discover
and make use of these services. For example, if there are services that provide lists
of hotels and lists of taxi companies given a location, a client user may on-demand
create a new service that allows to book a hotel and given the location of the hotel
book a taxi to take him from the airport to the hotel. Another clear example concerns
inter-organisational (business) computing. If differentorganisations provide specialized
services to each other, each organisation can focus on theirown expertise and simply
outsource some services by reusing other organisation’s services to achieve the func-
tionality they require. This inter-organisational cooperation allow partners to reduce the
cost and possibly optimize their products, since they can focus on the problem to be

76

solved, avoiding to tackle all the less important issues that are required to solve it. The
main issue in this situation, most of the time, is not the service composition process at
the technical level, but the contractual issues. This is in our opinion one of the great-
est barriers to the actual usage of service-oriented architectures in inter-organizational
systems.

Another interesting scenario is concerned withmobile computing, in which mobile
devices are provided with some functionality, but rely on back-end systems to perform
the most complex computations and provide the necessary services. In [12] these ser-
vices are described asField Web services. The idea of this scenario is to provide thefield
mobile user device with the necessary functionality to interact with the back-end sys-
tems, and perform all the more complex computing tasks on theback-end systems. This
is an emerging idea, and is gaining a lot of attention from different parties, especially
from telecom service providers. If service users are provided with basic frameworks that
allow them to discover and compose available servicesanywhere and anytimeaccord-
ing to their context and preferences, companies may create agreat source of revenue by
providing such personalised services. This hybrid system (mobile clients and back-end
server system) has a lot of potential applications, and fits the current trend of moving
user client to mobile platforms. Another advantage that canbe foreseen in applying
SOA principles in mobile computing environments is that SOAprovides a natural en-
vironment for task distribution, which allows one to save battery life of mobile devices.
This issue is a very well known problem in mobile computing areas, since it is often
a bottleneck for the usage of mobile devices. In [13] severalideas and challenges to
the application SOA principles in mobile environments are discussed, as well as how
more mature SOA principles applied to wired environments can be adapted to mobile
environments.

These examples differ in their nature and application areas. TheInternet-basedsce-
nario seems to be the most natural and also the most suitable scenario for service com-
position at the moment. However, theMobile computingscenario, due to the intrin-
sic mobility of the users, provide interesting applicationopportunities to be explored.
We expect that both scenarios will increase the usage of service-oriented architecture
techniques, mainly triggered by the flexibility provided bysuch architectural approach.
Dynamic service composition techniques will allow one to address the personalization,
context and preferences of the users in any of these scenarios. This implies that efforts
have to be made to allow the dynamic composition of services.

4 Service Composition Life-cycle

To present our framework for dynamic service composition wefirst introduce the notion
of service composition life-cyclefor dynamic service composition. Figure 2 shows the
different phases and the different perspectives of the service composition life-cycle.

In the context of service-oriented systems different perspectives (or parties) have to
be considered in the service composition creation and execution life-cycle. We admit
that there are two main perspectives in this life-cycle: theService userand theService
developer/providerperspectives. Other authors distinguish the service developer from
the service provider. However, to simplify the discussion,we assume that the service

77

Service creat ion

End-user

Service
deve loper /prov ider

Service registry

Serv ice request Service discovery

Service publ icat ion

Service composit ion

Service composit ion
select ion

Service developer

Service user

Fig. 2. Service composition life-cycle.

developer and the service provider are the same entity in ourlife-cycle. The service
user can be an end-user, a person without much technical knowledge, or can also be a
service developer, who makes use of services that are possibly provided by other service
developers/providers to create new value-added services.

From the perspective of the service developer/provider, two main phases can be
identified:service creationandservice publication. The service creation phase basically
focuses on the creation of the application service. An application service may be a
new application created from scratch, or may consist of wrapped legacy or existing
applications exposed as a service with a well-defined interface. The service creation
can alternatively consist on the construction of a new service composition, meaning
that a service developer/provider simply re-uses existingservices to compose a new
value-added service. After the creation of a new service, a service descriptions for this
service should be published in a service registry. The publication phase consists on the
publication of the service description document, so the service can be later discovered
by possible service users.

From the perspective of the service user, several phases canbe identified:service
requestspecification;service discovery; service composition; service composition se-
lection. The service request specification consists of the definition of the desired service
properties and goals. This information is used to perform service discovery, and to drive
the service composition and selection processes. Two main approaches to service dis-
covery can be considered: discover all the relevant services for the composition, based
on the service request; or iteratively discover the required services during the service
composition process. A combination of these two approachescan also be considered, in
which all the relevant services are considered first and thenextra services are discovered
on-demand at composition time, in case the set of discoveredservices is not sufficient to
complete the service composition process. Independently of how the service discovery
phase is implemented, it is always made based on informationspecified in the service

78

request. The next phase is the actual service composition, where an algorithm for the
creation of a service composition plan is used to match the user service request for a
composition. Given the set of discovered services, different alternative service compo-
sition plans may be generated. In this case, the next phase consists on the selection of a
service composition, again based on properties of the user service request such as, for
example, cost, reliability and response time, and his context and preferences. Addition-
ally, and not stated in the figure, for the end-user case a service deployment phase must
also exist, so the service can be deployed to be ready for execution. In Figure 2 there is
another possible phase in the perspective of the service user, mainly the service devel-
oper - theService publication. This phase consists on the publication of a service that is
created dynamically for a given service user. This motivates the use of dynamic service
composition mechanisms to support not only end-users, but also service developers,
who can then publish the generated service compositions.

In this service composition life-cycle we ignored several issues, such as for example
service binding, service deployment. We intentionally ignore these details, leaving them
open to be addressed in the concrete frameworks for dynamic composition of services,
since these operations can be specified in different phases of the life-cycle.

5 Framework for Dynamic Service Composition

Figure 3 presents our initial framework for dynamic servicecomposition, following the
life-cycle presented in the Section 4.

Figure 3, shows that our framework makes uses of ontologies for service creation
and description, service request description and also for service discovery and the con-
struction of service compositions. In computer science, anontology consists of a for-
mal specification of a conceptualization of a given domain. This formalization allows

Spate l
service creat ion

End-user

Service
deve loper /prov ider

Service registry

Serv ice request
Service discovery

and
Matr ix construct ion

Service
descr ipt ion publ icat ion

Graph-based
 composit ion

Select ion based on
Non-funct ional props.

and semant ics

Service developer

Service user

UDDI

Domain Ontologies

Fig. 3. Framework for dynamic service composition.

79

the description of a domain at a semantic level. This semantic level description enables
automatic reasoning, i.e., without human intervention. Inour framework we make use
of this possibility to perform the service composition based on a service request and
the service description of the existing services, both concepts described in common
ontologies.

Our framework is being implemented in the context of the SPICE (Service Plat-
form for Innovative Communication Environments) project [14]. In the SPICE project
a language called Spatel [15] has been defined to support the creation, composition and
execution of services and service compositions. Another property of this language is
that it allows semantic annotations to be associated to service operations and proper-
ties. Provided with the Spatel language, a service developer can create new services,
and semantically annotate them according to ontologies of the service domain. In our
framework this is done by theSpatel service creationmodule. Another language could
be used that support semantically annotated services, suchas for example SAWSDL
[16]. After the service is created, such annotations can be used in theService descrip-
tion publicationmodule, to publish the necessary information to enable service discov-
ery. These modules reflect the life-cycle service developer/provider perspective in the
framework.

From the perspective of the service user, the first step we consider in the framework
is the definition of theService request. The service request has to express the goal(s)
of the service user for his service, so that the necessary discovery and composition of
existing services can take place. We define a service request, in an XML-based format,
as follows:

<ServiceRequest>
<Inputs>..</Inputs>
<Outputs>..</Outputs>
<Preconditions>..</Preconditions>
<Effects>..<Effects/>
<Goals>..</Goals>
<Non-functional>..</Non-functional>
<Ontologies>..</Ontologies>

</ServiceRequest>

At the moment we are experimenting with simple stateless services, not taking into ac-
count complex service behaviors. The service request abovehas seven different types
of annotations. The serviceInputs, Outputs, PreconditionsandEffects(IOPEs) refer to
specific input, output, precondition and effect parametersthat the service composition
has to contain and satisfy. TheGoalsannotations describe specific goals that the service
composition has to fulfill, such as, for example: translate,bookTicket, findDoctor. The
Non-functionalproperties specify some additional requirements that the service com-
position has to fulfill, such as, for example: maximum cost ofthe service composition
and minimum level of security. TheOntologieslists the ontologies used to specify the
service request properties. This means that each property has to be specified following
a defined concept in a valid domain ontology. An example of a service request is the
following:

80

<ServiceRequest>
<Inputs>

<"LanguageOnt#Language" name="srcLang">
<"LanguageOnt#English" name="trgtLang">
<"LanguageOnt#Text" name="txtToTrans">
<"TelecomOnt#PhoneNum" name="destNumber">

</Inputs>
<Outputs>

<"TelecomOnt#AckSMS" name="AcknowledgmentSMS">
</Outputs>
<Preconditions/><Effects/>
<Goals>

<"GoalOnt#translate">
<"GoalOnt#sendSMS">

</Goals>
<Non-functional>

<"NFPOnt#Cost" value=0,50 EUR>
</Non-functional>
<Ontologies>

<"GoalOnt" "TelecomOnt" "NFPOnt" "LanguageOnt">
</Ontologies>

</ServiceRequest>

This service request denotes a service that performs the translation of a text from a given
language to English, and sends the result by SMS to a specific telephone number. Fur-
thermore the service should not cost more that 0,50 EUR. Thisservice request specifies
the necessary inputs for the service, i.e., the text to be translated, the source and target
languages for the translation, and the telephone number to which the message has to be
sent. The output of the service request is a simple acknowledgment that the SMS mes-
sage has been received. The goals are to translate and send anSMS message. Finally,
the ontologies used to specify the annotations are also listed in the service request.

Once the service request is available theService discovery and matrix construc-
tion module can be used to perform the discovery of the necessary services and orga-
nize them into a matrix that facilitates the construction ofthe actual service compo-
sitions by theGraph-based compositionmodule. We perform service discovery based
on service goals. For example, in the service request above two goals are specified:
GoalOnt#translate andGoalOnt#sendSMS. Based on these goals the service dis-
covery module queries the service registry (an UDDI-based registry, extended with se-
mantic support) for services with goal annotations semantically related with the service
request goals. After retrieving all the matching services,they are organized in aCausal
Link Matrix (CLM+) [17], which is a formalism that allows the representation ofall the
possible semantic links between the discovered services. By semantic links we mean
the connection between services inputs and outputs, which are described with semantic
annotations using common ontologies, to allow their composition and interoperability.

Once the CLM+ is created, theGraph-based compositionmodule can perform the
necessary service composition. The service composition algorithm consists of a graph-
based algorithm that uses the service request specificationto drive the composition
process. It starts from the specified service request outputs and composes services back-

81

wards until all the requested service inputs are matched andall the requested goals are
resolved. At each iteration, the composition algorithm checks whether the requested
non-functional properties are met by the service composition; if these are not met the
composition is discarded.

At the end of the process several service compositions may begenerated. To help
select a particular composition we rank the generated compositions according the spec-
ified non-functional properties and the services semantic links. This is an important
issue, since if the service user is an end-user without any technological knowledge, he
expects to obtain a running service. This implies that a particular composition has to be
selected if alternative service compositions are possible. In the future we also intend to
take the user’s context into account in the selection of the most appropriate service.

We refer to [18] for a discussion in the CLM+ creation, the graph-based composi-
tion algorithm and the proposed ranking algorithm for service composition selection.

6 Related Work

The area service composition is a very active area of research nowadays. Different as-
pects of service composition are being studied. However theintegration of the differ-
ent parts of the process of service composition, from the service request to the actual
runnable service composition, using dynamic and automaticmechanisms is still not
addressed by many.

[19] address the problem of interleaving web service discovery and composition,
considering only simple workflows where web services have one input and one output
parameter. In this case the web service composition plan is restricted to a sequence
of limited web services corresponding to a linear workflow ofweb services. In our
framework we propose a formalism to support the compositionof services with multiple
inputs and outputs, and also address the other phases of the life-cycle of the service
composition process.

In [20] an algorithm for automatic composition of services is presented. The service
composition is considered as a directed graph, where nodes are linked by the seman-
tic matching compatibility (Exact, Subsume, PlugIn, Disjoint) between input and
output parameters. Based on this graph, the shortest sequence of web services from
the initial requirements to the goal can be determined. Thisapproach compute the best
composition according to the semantic similarity of outputand input pa rameters of
web services, but it does not consider any non-functional properties of the composi-
tion services. We consider this to be a very pertinent point to take into account, since
the selection of the most suitable service compositions aremany times based on such
properties (e.g.: cost, security, etc.).

In [21] a semi-automatic composition process is proposed toperform the composi-
tion of web services. This approach supports the system useron the selection of web
services for each activity in the composition, and to createflow specifications to link
them. The discovery process consists on finding matching services, meaning web ser-
vices that provide outputs that can be fed as input on the services that exist in the service
composition. After selecting all the services, the system generates a composite process
in DAML-S [22]. The composition is executed by calling each service separately, and

82

passing the results between services according to the flow specifications. This process
grant a higher control over the composition process, which is sometimes desirable for
service developers. However, and since the composition process is semi-automatic, end-
users without technical knowledge can’t usually make use ofthis approach. Our frame-
work deals with the composition process in a more abstract and automated way, which
allow its usage by both service developers and end-users.

7 Conclusions and Future Work

In this paper we motivate dynamic service composition. We claim that given the cur-
rent trends on computer and communication systems an increase usage of distributed
application services is expected. This implies that new mechanisms and architectures
are required to support such systems, and also to provide users with tools to use these
new application services. The main architectural principles to support these ideas can
be found in the Service-Oriented Architecture (SOA).

To motivate the creation of mechanisms for dynamic service composition we pro-
vide two potential scenarios suitable for service composition: the Internet-basedsce-
nario, where several services can be published or advertised, and one can make use of
them to compose new application services, reusing the existing services; and theMo-
bile computingscenario, which has a lot of potential with the emergence of mobile
devices and communications. In the later scenario mechanisms are required to support
mobile users, providing them with minimal functionality atthe mobile terminal, and
performing the complex tasks at the back-end server systems.

We conclude by providing some initial ideas on how to tackle the problem of dy-
namic composition of services. We discuss a dynamic servicecomposition life-cycle,
showing the phases, and perspectives that are necessary to support the process of dy-
namic composition of services. Based on this we present our initial framework for
dynamic composition of services, from the service user request to the actual service
composition.

In the future we plan to explore further our ideas and improvethe proposed frame-
work towards a generic framework to support dynamic servicecomposition using dif-
ferent technologies in different application scenarios. The following research challenges
have been identified:

1. The service request module has to accept user service requests in an abstract form,
to support not so technical skilled users. It has also to collect context information
and other user preferences, to be used in the composition process.

2. At the moment we perform service discovery based on the specified goals on the
service request, but it is clear that other services may be needed at composition
time to complete a service composition. Given this, mechanisms to make service
discovery at composition time have also to be considered in the framework.

3. The use of ontologies is clearly required to allow such a dynamic mechanism for
service composition. Nevertheless how and where these ontologies are defined is
still fuzzy. This is an issue that may have very interesting research challenges.

4. The proposed framework is being prototyped, following the proposed modular ar-
chitecture. The aim is to provide a very modular architecture so one can easily

83

extend it and support other service description languages,and service composition
languages. We plan to evaluate the prototype in a specific scenario in the e-health
domain, specifying for this a library of services and also the necessary ontologies
to describe the domain.

Acknowledgements

This work is supported by the European IST SPICE project (IST-027617) and the Dutch
Freeband A-MUSE project (BSIK 03025).

References

1. Gartner: Gartner highlights key predictions for it organisations and users in 2008 and beyond.
http://gartner.com/it/page.jsp?id=593207 (January 2008)

2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
(2005)

3. O’Reilly, T.: The open source paradigm shift. In: Perspectives on Free and Open Source
Software, The MIT Press (July 2005) 461 – 481

4. Jorstad, I., van Thanh, D.: Service personalisation in mobile heterogeneous environments. In:
Advanced International Conference on Telecommunicationsand International Conference on
Internet and Web Applications and Services, IEEE Computer Society (February 2006) 70 –
75

5. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Sebastopol, CA,
USA (1999)

6. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model for
service oriented architecture 1.0. Technical report, OASIS (October 2006)

7. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description language
(wsdl) version 2.0. http://www.w3.org/TR/wsdl20/ (June 2007)

8. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A., Lafon,
Y.: Simple object access protocol (soap) version 1.2. http://www.w3.org/TR/soap12-part1/
(April 2007)

9. Clement, L., von Riegen, A.H., Rogers, T.: Universal description discovery and integration
(uddi) version 3.0. http://uddi.org/pubs/uddiv3.htm (October 2004)

10. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services, version 1.1 (May 2003)

11. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State
of the art and research challenges. IEEE Computer40(11) (2007) 38 – 45

12. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice Hall (2007)
13. Sen, R., Handorean, R., Roman, G.C., Gill, C.: Service Oriented Computing Imperatives in

Ad Hoc Wireless Settings. In: Service-Oriented Software System Engineering: Challenges
And Practices. Idea Group Publishing (2005) 247 – 269

14. Cordier, C., Carrez, F., van Kranenburg, H., Licciardi,C., van der Meer, J., Spedalieri, A.,
Rouzic, J.P.L.: Addressing the challenges of beyond 3G service delivery: the SPICE plat-
form. In: 6th International Workshop on Applications and Services in Wireless Networks.
(May 2006)

15. Almeida, J.P., Baravaglio, A., Belaunde, M., Falcarin,P., Kovacs, E.: Service creation in
the spice service platform. In: Wireless World Research Forum meeting on ”Serving and
Managing users in a heterogeneous environment”. (November2006)

84

16. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web services
standards. In: 1st International Conference on Web Services. (2003) 395–401

17. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: International
Semantic Web Conference. LNCS, vol. 4273 (2006) 385–398

18. Lécué, F., Silva, E., Pires, L.F.: A framework for dynamic web services composition. In: 2nd
ECOWS Workshop on Emerging Web Services Technology, CEUR Workshop Proceedings
(November 2007)

19. Lassila, O., Dixit, S.: Interleaving discovery and composition for simple workfows. In: First
International Semantic Web Services Symposium. (2004)

20. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web ser-
vices. In: 1st International Conference on Web Services. (2003) 38–41

21. Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition of web services using se-
mantic descriptions. In: 1st Workshop on Web Services: Modeling, Architecture and Infras-
tructure. (2003) 17–24

22. Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.L.,McDermott, D.V., McIlraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.: Daml-s: Web service description for
the semantic web. In: International Semantic Web Conference. (2002) 348–363

85

87

Author Index

Cordeiro, J. .. 7
Filipe, J. .. 7
Ivanov, I. ... 35
Liu, K. .. 7
Logofatu, B. .. 64
Mihăescu, M. 64
Mocanu, M. ... 64
Nieuwenhuis, B. 3
Pessoa, R. .. 48
Pires, L. .. 73
Quartel, D. .. 48
Shishkov, B. .. 21
Silva, E. .. 73
Sinderen, M. 21, 48, 73
Spahiu, C. .. 64

	initial_pages_volume_i-west.pdf
	I-WEST 2008 (papers).pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

